
121
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Advanced Perl Programming, https://doi.org/10.1007/978-1-4842-5863-7_7

CHAPTER 7

Packages and
Namespaces
Novice Perl programmers typically are told that Perl has no scope by default. While not

technically accurate, without packages, variables in Perl appear to be global.

Technically, most variables are not "global". Variables are stored in "namespaces"

which are created by packages.

One package exists by default: the main package. To prevent accidentally overwriting

variables that exist in other portions of the script, you can create additional namespaces

with the package command.

If you create a Perl module that will be called by another Perl program, you should

always place your variables in a different package than the main package.

�Creating namespaces with the package command
To tell Perl to switch to a different package, use the package command as demonstrated

in the following program:

#!perl

#pack1.pl

$name="Bob";

print "name = $name\n";

package New;

print "name = $name\n";

$name="Ted";

print "name = $name\n";

package main;

print "name = $name\n";

https://doi.org/10.1007/978-1-4842-5863-7_7

122

package New;

print "name = $name\n";

While reviewing pack1.pl, notice the output of the program:

[student@OCS student]$ perl pack1.pl

name = Bob

name =

name = Ted

name = Bob

name = Ted

Notes:

•	 Package names start with a capital letter by convention. While this

isn’t a requirement, it is generally considered good style. The main

package, however, is in all lowercase letters.

•	 In addition to variables, other identifiers are stored in namespaces:

functions, typeglobs, and so on.

�Fully qualified package names
Even if you change to a different package, you can still access identifiers from the main

package (or any other package). To do this, you will have to use fully qualified package

names.

You can think of a fully qualified package name much like a full pathname in a UNIX

or DOS shell. In a UNIX shell, you use a slash key to separate the name of the files and

the directories (or backslash in DOS). In Perl, you use the "::" symbol to separate the

name of the package and the identifier:

#!perl

#pack2.pl

$name="Bob";

print "name = $name\n";

package New;

print "main::name = $main::name\n";

$name="Ted";

print "name = $name\n";

Chapter 7 Packages and Namespaces

123

Output of pack2.pl:

[student@OCS student]$ perl pack2.pl

name = Bob

main::name = Bob

name = Ted

Note T he identifier $main::var can also be written as $::var.

�Alternative method
The "old" method of specifying fully qualified variable name was to use a single quote

instead of double colons. This means that the preceding example can be rewritten like this:

#!perl

#pack3.pl

$name="Bob";

print "name = $name\n";

package New;

print "main'name = $main'name\n";

$name="Ted";

print "name = $name\n";

Because of this, the following statement will produce an "unusual" result:

print "This is $person’s new car\n";

This will print the $s variable from the "person" package.

�Nested packages
You can (kind of) have a package nested within another package, what you might

consider to be a "nested" package. Note: The following is not an example of declaring

a package within another package. In this example, we just switch from one package to

another:

Chapter 7 Packages and Namespaces

124

#!perl

#nest1.pl

$name="Bob";

print "name = $name\n";

package New;

$name="Ted";

package Data;

$name="Fred";

package main;

print "name=$New::name\n";

print "name=$Data::name\n";

Output of nest1.pl:

[student@OCS student]$ nest1.pl

name = Bob

name=Ted

name=Fred

�Declaring "nested" packages
To declare a package "within" another package, use the following syntax:

#!perl

#nest2.pl

$name="Bob";

print "name = $name\n";

package New;

$name="Ted";

package New::Data;

$name="Fred";

package main;

print "name=$New::name\n";

print "name=$New::Data::name\n";

Chapter 7 Packages and Namespaces

125

Note T his isn’t really a nested package, at least not how it is stored by Perl. This
is just two packages, and one of them just looks like it is in another package. Think
of this as a technique to organize your data in a logical structure using packages.

�Accessing identifiers from nested packages

Note  If you have a nested package, you can’t refer to identifiers of the inner
package from outside of the package unless you give a fully qualified name. This
includes when you attempt to access identifiers from the "outer" package:

#!perl

#nest3.pl

$name="Bob";

print "name = $name\n";

package New;

$name="Ted";

package New::Data;

$name="Fred";

package New;

print "name=$Data::name\n"; #Will not access $New::Data::name

�use strict 'vars'
In the Pro Perl Programming book, the "use strict 'vars';" statement was covered.

This section is a review of that topic (with some additional details as well).

�use strict 'vars'
This pragma will generate an error if a variable is used that hasn’t been either declared

as a my variable or isn’t fully qualified. While it is sometimes useful to have "global"

variables (such as in small programs written by a single developer), "use strict 'vars'"

Chapter 7 Packages and Namespaces

126

doesn’t allow this. This pragma can be very useful if you want to require my variables or

fully qualified names.

In the following example, we are implementing "use strict 'vars'", which would

cause compile errors if we didn’t use fully qualified variable names:

#!perl

#use1.pl

use strict 'vars';

sub test {

 print "$main::total\n";

}

$::total=100;

my $name="Bob";

print "$name\n";

&test;

As you can see from the following output of use1.pl, the rules that are imposed by

the pragma are followed and there are no errors:

[student@OCS student]$ use1.pl

Bob

100

Notes regarding "use strict":

•	 The statement "use strict" will enforce all restrictions (refs, subs,

and vars).

•	 Perl built-in variables are not affected by "use strict vars".

�The "use vars" pragma
As we discussed in the Pro Perl Programming book, you can predeclare variables by

using the "use vars" pragma:

#!perl

#use2.pl

Chapter 7 Packages and Namespaces

127

use strict 'vars';

use vars qw($total);

sub test {

 print "$total\n";

}

$total=100;

&test;

Output of use2.pl:

[student@OCS student]$ use2.pl

100

It’s important to note that you are not declaring the variable for the life of your

program. The variable is being declared only for a package ("main::" unless otherwise

specified):

#!perl

#use3.pl

use strict 'vars';

use vars qw($total);

sub test {

 print "$total\n";

}

$total=100;

&test;

package Other;

print $total;

Note the error in the output of use3.pl which occurs when the package is switched:

[student@OCS student]$ use3.pl

Global symbol "$total" requires explicit package name at use3.pl line 15.

Execution of use3.pl aborted due to compilation errors.

Chapter 7 Packages and Namespaces

128

�use vars is obsolete
As of Perl 5.6, use vars is considered to be obsolete. It is covered in this book for the

following reasons:

	 1.	 You may wish to write code that is backward compatible to older

versions of Perl. If so, you may want to continue to use the use

vars statement.

	 2.	 While use vars is considered to be obsolete, it still performs the

same way that it always has. As a result, you will still see it being

used in other programmer’s code as well as in older scripts.

Instead of using use vars, you should use the our statement to "globally declare"

a variable. Much like use vars, specifying the our statement will allow you to use a

variable without its fully qualified name while your code has use strict implemented.

The our statement will be covered in a later section of this chapter.

�Identifiers not affected by packages
Almost all identifiers exist solely within the package in which they are created. Many of

Perl’s special identifiers, however, don’t solely exist within a namespace.

Almost all of Perl’s built-in variables are not affected by packages and take on an

almost true global scope. For example, the default variable ($_) can be set in the main

package and then accessed in another package:

#!perl

#non1.pl

$_="test";

package New;

print "$_\n";

In fact, the "use strict vars;" pragma doesn’t have any effect on these sorts of

Perl built-in variables:

Chapter 7 Packages and Namespaces

129

#!perl

#non2.pl

use strict vars;

$_="test"; #Will not result in an error

package New;

print "$_\n"; #Will not result in an error

Note S ome of Perl’s built-in variables are stored in packages. Consult the
perlvar man page to determine which of Perl’s built-in variables are not affected
by packages.

�Determine the current package
In some cases, you may not know the current package name. If you need to determine

the current package, use the __PACKAGE__ symbol:

$package=__PACKAGE__;

Example:

#!perl

#show.pl

print __PACKAGE__, "\n";

package New;

print __PACKAGE__, "\n";

Output of show.pl:

[student@OCS student]$ perl show.pl

main

New

Chapter 7 Packages and Namespaces

130

�Packages vs. my variables
A lot of confusion arises from the difference between package namespace and the my

statement. Consider the following code:

#!perl

#my1.pl

$name="Bob"; #main package variable

print "name=$name\n"; #main package variable

package New;

$name="Ted"; #New package variable

print "name=$name\n"; #New package variable

{my $name="Nick"; #my variable

 print "name=$name\n";} #my variable

package main;

print "name=$name\n"; #main package variable

print "name=$New::name\n"; #New package variable

Output of my1.pl:

[student@OCS student]$ perl my1.pl

name=Bob

name=Ted

name=Nick

name=Bob

name=Ted

Note that while the script was in the New package, we generated a block in which a

my variable was created. Since my variables only exist for the length of the block, once we

came out of the block, $name went back to being the New package’s $name.

In fact, my variables aren’t part of a package at all. Even if you declare a my variable

in the "main scope" of your script, it isn’t considered a "main" variable. Consider the

following example:

#!perl

#my2.pl

Chapter 7 Packages and Namespaces

131

my $name="Bob"; #my package variable

print "name=$name\n"; #my package variable

print "name=$main::name\n"; #main package variable (not defined)

Output of my2.pl:

[student@OCS student]$ perl my2.pl

name=Bob

name=

In the preceding example, the variable $name in the main package is different than

the $name variable in the scope of the main area of the script.

Changing to a different package doesn’t affect a my variable either:

#!perl

#my3.pl

my $name="Bob"; #my package variable

print "name=$name\n"; #my package variable

print "name=$main::name\n"; #main package variable (not defined)

package New;

print "name=$name\n"; #my package variable

$name="Ted"; #my package variable

print "name=$name\n"; #my package variable

package main;

print "name=$name\n"; #my package variable

print "name=$main::name\n"; #main package variable (not defined)

print "name=$New::name\n"; #New package variable (not defined)

Output of my3.pl:

[student@OCS student]$ perl my3.pl

name=Bob

name=

name=Bob

name=Ted

name=Ted

name=

name=

Chapter 7 Packages and Namespaces

132

In the preceding example, the variable $name is always the my variable. The variables

$main::name and $New::name are never set because we would need to explicitly state

a fully qualified name in order to do so or leave the scope in which the my variable was

declared.

�The our statement
On occasion, you will see a Perl script or module in which the programmer chooses to

use the our statement instead of the my statement. The our statement often creates a lot

of confusion among Perl programmers (especially novice Perl programmers).

According to the Perl man pages, the our statement 'has the same scoping rules

as a "my" declaration, but does not create a local variable.' In a sense, an

"our" variable is somewhat of a merge between a my variable and a variable declared

with the use vars statement.

Remember that the use vars statement allowed you to specify $var instead of

$Package::var and this pertained to the package itself. A my variable falls completely

outside the realm of packages… it exists only in its own "area".

An our variable allows you to specify $var instead of $Package::var. So, like

variables created with use vars, it exists inside a package. However, if you enter a new

package, the our variable can still be accessed by specifying $var (you don’t need to

specify $Package::var). If you leave the scope that the our variable was created in, you

need to use the fully qualified name ($Package::var) to access the variable again.

All three variable types (use vars, my, and our) are allowed when the use strict

'vars' pragma is in force. The example on the following page displays the differences

between the three variable types:

#!perl

#our.pl

{package ABC; #Beginning of scope and ABC package

our($our_var)="xyz"; #part of ABC package

my($my_var)="123"; #part of scope only

use vars qw($use_var); #declares $$ABC::use_var

$use_var="abc"; #part of ABC package

Chapter 7 Packages and Namespaces

133

print "\$our_var = $our_var\n";

print "\$my_var = $my_var\n";

print "\$use_var = $use_var\n";

package New;

print "\$our_var = $our_var\n"; #Displays $ABC::our_var

print "\$my_var = $my_var\n"; #Displays "scoped" $my_var

print "\$use_var = $use_var\n"; #Doesn't exist - wrong package

} #End of Scope

print "\$our_var = $our_var\n"; �#Doesn't exist - out of scope & wrong

package

print "\$my_var = $my_var\n"; #Doesn't exist - out of scope

print "\$use_var = $use_var\n"; #Doesn't exist - wrong package

See the output of this script in the following and compare it to the statements in the

our.pl program.

Output of our.pl:

sue% perl our.pl

$our_var = xyz

$my_var = 123

$use_var = abc

$our_var = xyz

$my_var = 123

$use_var =

$our_var =

$my_var =

$use_var =

Final note T he purpose of the our statement was to replace the use vars
statement, not to replace the my statement.

Chapter 7 Packages and Namespaces

134

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/apress/advanced-perl-programming

�Lab exercises
Modify the script you created in Chapter 6 to include the following changes:

	 1.	 Implement "use strict 'vars'".

	 2.	 Have the identifiers that are created in the subroutines that open

and save the data be placed in separate packages instead of using

my variables.

Chapter 7 Packages and Namespaces

https://github.com/apress/advanced-perl-programming
https://doi.org/10.1007/978-1-4842-5863-7_6

	Chapter 7: Packages and Namespaces
	Creating namespaces with the package command
	Fully qualified package names
	Alternative method

	Nested packages
	Declaring "nested" packages
	Accessing identifiers from nested packages

	use strict'vars'
	use strict'vars'
	The "use vars" pragma
	use vars is obsolete

	Identifiers not affected by packages
	Determine the current package
	Packages vs. my variables
	The our statement

	Additional resources
	Lab exercises

