
167
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Advanced Perl Programming, https://doi.org/10.1007/978-1-4842-5863-7_10

CHAPTER 10

POD
POD (Plain Old Documentation) is the method you want to use to document your

Perl modules. While simple comments work well for pointing out tricky code, they are

cumbersome when you want to give a detailed explanation of your module.

POD was designed so you can create formatted comments. POD uses tags to specify

text formats such as fonts as well as text positions.

POD can be embedded within your code or placed in a separate file. When

embedded within your code, there are methods of telling the Perl interpreter when to

execute code and when to skip over lines.

You put POD documentation together in paragraph format. Each POD paragraph is

separated by a blank line. There are three types of paragraphs in POD:

•	 Command – A command paragraph is used to treat a chunk of text is

a certain fashion. For example, you can use a Command paragraph to

generate a list.

•	 Text (or ordinary) – A text or ordinary paragraph is used to generate

text that can either be formatted (bold, italic, hyperlink) or just plain

text. A markup feature, similar to HTML or XML, is used to specify

formatting.

•	 Verbatim – A verbatim paragraph is used to generate text that

contains no formatting. Anything in a verbatim paragraph is

considered "plain text."

�POD commands
POD commands begin with the equal sign and are immediately followed by the

command. Text can follow the command as well. The end of the line is the end of the

command.

https://doi.org/10.1007/978-1-4842-5863-7_10

168

The following is a summary of the POD commands that are available:

POD command Meaning

=back Used in conjunction with =over and =item to generate a list

=begin format Allows you to specify text to be interpreted by a different parser such as HTML

=cut Used to specify the end of POD text

=end Ends a =begin block

=for format Specifies a format change that will affect the next paragraph only

=head1 text Specifies that the following text is formatted by the predefined "head1" format

=head2 Specifies that the following text is formatted by the predefined "head2" format

=item Used in conjunction with =over and =back to generate a list

=over Used in conjunction with =back and =item to generate a list

=pod Specifies the beginning of POD text

�Using headings
The POD commands =head1, =head2, =head3, and =head4 provide predefined formats.

These are primarily designed to create an indented style format for documentation. The

following code describes how they are used:

#head.pod

=head1 This is head1

Text under head1

=head2 This is head2

Text under head2

=head3 This is head3

Text under head3

=head4 This is head4

Text under head4

Chapter 10 POD

169

How these are displayed really depends on the POD interpreter that is used. Some

POD interpreters, such as the perldoc command (this command will be covered in more

detail later in this Chapter), may consider =head2, =head3, and =head4 to be the same or

very similar. For example, perldoc indents the head values differently as shown in the

following output but doesn’t display them in different fonts or font sizes:

[student@OCS student]$ perldoc head.pod

This is head1

 Text under head1

 This is head2

 Text under head2

 This is head3

 Text under head3

 This is head4

 Text under head4

�Starting and ending POD text
When you embed POD within a Perl script, you need to tell the Perl interpreter when to

stop "looking at" the code. The =pod command tells Perl to stop interpreting code. The

=cut tells Perl to start interpreting code again.

The =pod command is rarely used because any POD command (except =cut) will

"turn on" POD. However, if you want to start POD documentation with a verbatim

paragraph, then =pod would be necessary.

When POD is "on," the Perl interpreter will ignore everything until POD is "turned

off." POD interpreters, which will be discussed later, will ignore Perl code and only

parse POD Commands.

�Using other formats
Instead of using POD formats, you can specify other formats. Additional formats that

POD can handle are "html," "text," "man," "latex," "tex," and "roff." If you

already know how to format text in these other formats, this can be a useful option.

Chapter 10 POD

170

To "turn on" a different format for a single paragraph, use the =for command:

=for text

To "turn on" a different format for a block, use the =begin command to start the

block and =end to stop the block:

=begin text

This is plain text

=end text

�Using POD to create multi-line comments
A common question people have when learning Perl is "does Perl support multi-

line comments like some other languages, like C++, offer?" Typically, novice

Perl programmers are told "no," but in reality multi-line comments are possible by

using POD.

Recall that any POD commands or text will not be interpreted by the Perl interpreter.

So, you could create a multi-line comment by doing the following:

=for text

This is a comment

It can span multiple lines

=cut

However, the problem with this technique is if you are actually using POD in this

program to create documentation, then the multi-line comment will be included with

the POD output.

To avoid this, use the following:

=for comment

Anything between this command and =cut will be ignored by both the Perl

interpreter and any POD interpreter. You can even omit the extra blank lines after =for

and before =cut in this specific case.

Chapter 10 POD

171

�Creating a list
You can create an indented numbered or bulleted list with POD. To do this, you need to

use three commands:

=over This command tells POD to begin a list. You can specify a numeric value to indicate

how many "spaces" to use to intend (e.g., =over 4).

=item This command tells POD to add an item to the list. To specify bulleted lists, use

this syntax: "=item *". To specify numbered lists, use this syntax: "=item 1.",

"=item 2.", etc.

=back This command tells POD to stop the list.

The following example demonstrates a simple two-item list:

=over 4

=item *

This is one item

=item *

This is another item

=back

The following demonstrates how the pod list would appear:

[student@OCS student]$ perldoc podlist.pod

 * This is one item

 * This is another item

�POD text
POD text can be displayed as "plain text" or formatted using the following

commands:

Chapter 10 POD

172

Text command Meaning

I<text> Italicize text

B<text> Bold text

S<text> Nonbreaking spaces text

C<code> Display "code" in a typewriter font to distinguish from other text

L<name> A link to either another document or a section in this document

E<lt> A less than character: "<"

E<gt> A greater than character: ">"

E<sol> A slash character: "\"

E<verbar> A pipe character: "|"

Notes:

•	 Look at the perlpod man page for additional text commands.

•	 Depending on your POD interpreter, some of the preceding

commands may not result in any text change. For example, the

perldoc command typically ignores these options as the output is

normally in a terminal window:

[student@OCS student]$ perldoc podformat.pod

 This is very important - please report all data to Frank.

�POD verbatim
If you don't want any formatting done on your text, you can use the verbatim method.

With the verbatim method, no "special" characters are allowed (like italics, bold, etc.).

If you don't want to have formatted text, you can use verbatim text by indenting your

text with at least one space:

This is an example

The primary purpose of POD verbatim is when you want to use a character that is

normally considered a formatting character. For example, consider the following:

=for text

To display in bold, use B<text>

Chapter 10 POD

173

A POD interpreter might attempt to make "text" bold when it displays this line. If

you don't want the code to be interpreted, but rather display just as it appears, just put a

space in front of the line:

=for text

To display in bold, use B<text>

�POD examples
In the following example, we have a file that only contains POD commands:

#pod1.pod

=head1 EXAMPLE

An example of POD

=head2 DESCRIPTION

This is an example of how bulleted lists work:

=over 4

=item *

Item one

=item *

Item two

=back

We are still displaying text under the head2 command here

Here is an example of numbered lists

=over 4

=item 1.

Item one

=item 2.

Chapter 10 POD

174

Item two

=back

One last thing: This is an example of verbatim text:

 A \ is just a slash, a < is just a less than sign...

The following demonstrates the output of pod1.pl:

[student@OCS student]$ perldoc pod1.pod

EXAMPLE

 An example of POD

DESCRIPTION

This is an example of how bulleted lists work:

•	 Item one

•	 Item two

We are still displaying text under the head2 command here

Here is an example of numbered lists

	1.	Item one

	2.	Item two

One last thing: This is an example of verbatim text:

A \ is just a slash, a < is just a less than sign...

In this example, POD is embedded in a Perl script:

#!perl

#pod2.pl

=head1 EXAMPLE

Just an example of POD within a perl script...easy, isn't it?

=cut

sub hello {

Chapter 10 POD

175

 print "hello\n"

}

&hello;

Note that pod2.pl can be run as a normal Perl script. The POD documentation has

no impact on the execution of the script:

[student@OCS student]$ perl pod2.pl

hello

You can also view the POD documentation of the pod2.pl script:

[student@OCS student]$ perldoc pod2.pl

EXAMPLE

 Just an example of POD within a perl script...easy, isn't it?

Note  While you will sometimes see POD documentation in a separate file, it is
much more common to see it in the script itself. Typically, it appears at the top of
the script, but you will sometimes see it at the bottom as well. There aren't any
rules as to where you place POD documentation.

�Common POD problems
As you can probably tell, POD is very simple. It's not very fancy, but to create "Plain Old

Documentation," quickly and easily, it works very well.

Because it is so simple, very few things can go wrong. Here is a list of the major

potential problems:

	 1.	 Forgetting to use =pod to begin (or =cut to end) when you embed

POD in Perl scripts.

	 2.	 Some POD interpreters require blank lines between commands

and the text that follows.

	 3.	 Not understanding the "text commands." For example, some

POD interpreters add additional text when you use the L<link>

command.

Chapter 10 POD

176

�POD utilities
There are several utilities that are useful when you work with POD.

Note  Not all of these utilities may be available on your system.

�podchecker
This utility is useful to check the syntax of your POD file. If there are no syntax errors,

podchecker reports "syntax OK":

[student@OCS student]$ podchecker pod1.txt

pod1.pod pod syntax OK.

Based on the current documentation, podchecker will check the following (note: this

list hasn't changed for a very long time, so expect this will be the same check for future

Perl 5 releases):

If there are any syntax problems, POD indicates what the problems are:

[student@OCS student]$ podchecker pod3.txt

*** ERROR: empty =head1 at line 3 in file pod3.txt

pod3.txt has 1 pod syntax error.

Chapter 10 POD

177

�perldoc
The perldoc command will display the output of a POD file:

[student@OCS student]$ perldoc pod2.pl

EXAMPLE

 Just an example of POD within a perl script...easy, isn't it?

In addition to modules, the Perl core documentation is also in POD format. To see

the core Perl documentation, use the following command:

[student@OCS student]$ perldoc perl

NAME

 perl - The Perl 5 language interpreter

SYNOPSIS

 perl [-sTtuUWX] [-hv] [-V[:*configvar*]]

 [-cw] [-d[t][:*debugger*]] [-D[*number/list*]]

 [-pna] [-F*pattern*] [-l[*octal*]] [-0[*octal/hexadecimal*]]

 [-I*dir*] [-m[-]*module*] [-M[-]*'module...'*] [-f]

 [-C [*number/list*]] [-S] [-x[*dir*]] [-i[*extension*]]

 [[-e|-E] *'command'*] [--] [*programfile*] [*argument*]...

 For more information on these options, you can run "perldoc perlrun".

GETTING HELP

 The perldoc program gives you access to all the documentation that

 comes with Perl. You can get more documentation, tutorials and

 community support online at <http://www.perl.org/>.

{remaining output omitted}

Included in the output of the preceding command is a list of other

documents that you can view, such as the following:

[student@OCS student]$ perldoc perlcheat

NAME

 perlcheat - Perl 5 Cheat Sheet

Chapter 10 POD

178

DESCRIPTION

 This 'cheat sheet' is a handy reference, meant for beginning Perl

 programmers. Not everything is mentioned, but 195 features may already

 be overwhelming.

{remaining output omitted}

If you read through the main perldoc documentation, you will see a bunch of FAQs.

The -q option to perldoc allows you to search the FAQs using a keyword:

[student@OCS student]$ perldoc -q sort

Found in /usr/bin/perl/lib/pods/perlfaq4.pod

 How do I sort an array by (anything)?

 Supply a comparison function to sort() (described in "sort" in

 perlfunc):

 @list = sort { $a <=> $b } @list;

 The default sort function is cmp, string comparison, which would sort

 "(1, 2, 10)" into "(1, 10, 2)". "<=>", used above, is the numerical

 comparison operator.

{remaining output omitted}

Note that the output of the perldoc -q sort command also showed you where

the POD file exists (/usr/bin/perl/lib/pods/perlfaq4.pod in the previous

example). This location can vary based on your platform (operating system) and type

of Perl that you installed (standard, Strawberry, ActiveState, etc.). The advantage of

knowing this location is you can go look at a large collection of POD files as a way of

learning POD better.

If you want to see a list of all of Perl's functions, view the perlfunc document. This

is also an excellent way to see a list of what functions are available on the version of Perl

that you are currently using:

[student@OCS student]$ perldoc perlfunc

NAME

 perlfunc - Perl builtin functions

Chapter 10 POD

179

DESCRIPTION

 The functions in this section can serve as terms in an expression. They

 fall into two major categories: list operators and named unary

 operators. These differ in their precedence relationship with a

 following comma. (See the precedence table in perlop.) List operators

 take more than one argument, while unary operators can never take

 more than one argument. Thus, a comma terminates the argument of a

 unary operator, but merely separates the arguments of a list operator. A

 unary operator generally provides scalar context to its argument, while a

 list operator may provide either scalar or list contexts for its arguments.

 If it does both, scalar arguments come first and list argument follow,

 and there can only ever be one such list argument. For instance,

 "splice" has three scalar arguments followed by a list, whereas

 "gethostbyname" has four scalar arguments.

{skipping output…}

 Input and output functions

 "binmode", "close", "closedir", "dbmclose", "dbmopen", "die", "eof",

 "fileno", "flock", "format", "getc", "print", "printf", "read",

 "readdir", "readline", "rewinddir", "say", "seek", "seekdir",

 "select", "syscall", "sysread", "sysseek", "syswrite", "tell",

 "telldir", "truncate", "warn", "write"

{remaining output omitted}

Being able to view the list of functions can be helpful in many ways. For example,

suppose you forget the name of a function that you rarely use. You could read through

the list of functions, or, if your platform has a filter command like the grep command,

you could send the output to the filter command to view just the lines you want to see.

To see a specific function's documentation, use the -f option:

[student@OCS student]$ perldoc -f sort

 sort SUBNAME LIST

 sort BLOCK LIST

 sort LIST

 In list context, this sorts the LIST and returns the sorted list

 value. In scalar context, the behaviour of "sort" is undefined.

Chapter 10 POD

180

 If SUBNAME or BLOCK is omitted, "sort"s in standard string

 comparison order. If SUBNAME is specified, it gives the name of

 a subroutine that returns an integer less than, equal to, or

 greater than 0, depending on how the elements of the list are to

 be ordered. (The "<=>" and "cmp" operators are extremely useful

 in such routines.) SUBNAME may be a scalar variable name

 (unsubscripted), in which case the value provides the name of

 (or a reference to) the actual subroutine to use. In place of a

 SUBNAME, you can provide a BLOCK as an anonymous, in-line

 sort subroutine.

{remaining output omitted}

If you want to see a module documentation, use the following syntax:

[student@OCS student]$ perldoc File::Copy

NAME

 File::Copy - Copy files or filehandles

SYNOPSIS

 use File::Copy;

 copy("sourcefile","destinationfile") or die "Copy failed: $!";

 copy("Copy.pm",*STDOUT);

 move("/dev1/sourcefile","/dev2/destinationfile");

 use File::Copy "cp";

 $n = FileHandle->new("/a/file","r");

 cp($n,"x");

DESCRIPTION

 The File::Copy module provides two basic functions, "copy" and "move",

 which are useful for getting the contents of a file from one place to

 another.

{remaining output omitted}

You can even have perldoc tell you where the module is installed by using the -l

option. This can be useful when you want to view the module code directly:

[student@OCS student]$ perldoc -l File::Copy

C:\Perl64\lib\File\Copy.pm

Chapter 10 POD

181

Or, to see the raw code of a module, use the -m option:

[student@OCS student]$ perldoc -m File::Copy

File/Copy.pm. Written in 1994 by Aaron Sherman <ajs@ajs.com>. This

source code has been placed in the public domain by the author.

Please be kind and preserve the documentation.

#

Additions copyright 1996 by Charles Bailey. Permission is granted

to distribute the revised code under the same terms as Perl itself.

package File::Copy;

use 5.006;

use strict;

use warnings; no warnings 'newline';

use File::Spec;

use Config;

During perl build, we need File::Copy but Scalar::Util might not be built

yet. And then we need these games to avoid loading overload, as that

will confuse miniperl during the bootstrap of perl.

my $Scalar_Util_loaded = eval q{ require Scalar::Util; require overload; 1 };

We want HiRes stat and utime if available

BEGIN { eval q{ use Time::HiRes qw(stat utime) } };

our(@ISA, @EXPORT, @EXPORT_OK, $VERSION, $Too_Big, $Syscopy_is_copy);

sub copy;

sub syscopy;

{remaining output omitted}

�Additional utilities
Depending on factors such as your platform and version of Perl, you might also have

access to the following POD utilities:

pod2fm – Translates POD files to FrameMaker formats

pod2html – Translates POD files to HTML format

pod2latex – Translates POD files to LaTeX format

pod2man – Translates POD files to man page format

pod2text – Translates POD files to text format

Chapter 10 POD

182

�POD style
When creating POD documentation, there are several things that you may want to

consider. For some Perl programmers, one of the most important things to consider is

where to place your POD documentation.

To begin with, in most cases your POD documentation should be embedded within

your Perl module file and not in a separate file. Placing POD in a separate file poses

problems when the module is copied to another location (and the POD file is not).

When you place the POD documentation in your Perl module, you basically have

three choices:

	 1.	 At the top of your module file – Several Perl programmers

take this approach; however, this does tend to frustrate other

programmers who view the module file directly as they don't want

to have to scroll through a bunch of POD documentation to read

the actual code.

	 2.	 Spaced throughout the module file – Some Perl programmers

use this technique to provide documentation while also

commenting sections of the Perl code. However, it does tend to

make reading the code directly difficult.

	 3.	 At the end of your module file – Because other programmers

rarely read POD directly from your file, this may be the best option.

Place all of the Perl code first and POD at the end of the code.

For other POD style considerations, view the perlpodstyle documentation:

[student@OCS student]$ perldoc perlpodstyle

NAME

 perlpodstyle - Perl POD style guide

DESCRIPTION

 These are general guidelines for how to write POD documentation for Perl

 scripts and modules, based on general guidelines for writing good UNIX

 man pages. All of these guidelines are, of course, optional, but

 following them will make your documentation more consistent with other

 documentation on the system.

{remaining output omitted}

Chapter 10 POD

183

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/apress/advanced-perl-programming

�Lab exercises
Use POD to document the module that you created in the Chapter 8 lab.

Chapter 10 POD

https://github.com/apress/advanced-perl-programming
https://doi.org/10.1007/978-1-4842-5863-7_8

	Chapter 10: POD
	POD commands
	Using headings
	Starting and ending POD text
	Using other formats
	Using POD to create multi-line comments
	Creating a list

	POD text
	POD verbatim
	POD examples
	Common POD problems
	POD utilities
	podchecker
	perldoc
	Additional utilities

	POD style
	Additional resources
	Lab exercises

