
209
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_3

CHAPTER 3

Advanced JavaServer
Faces
The JSF framework allows developers to build applications utilizing a series of views, and

each view consists of a series of components. The framework is kind of like a puzzle in

that each piece must fit into its particular place in order to make things work smoothly.

Sprinkled into those pieces of the puzzle are advanced capabilities that are used for

helping to create a seamless user interface experience.

Components are just one piece of the puzzle. Components are the building

blocks that make up JSF views. One of the strengths of using the JSF framework is

the abundance of components that are available for use within views. To developers,

components can be tags that are placed within the XHTML views. Components resemble

standard HTML tags; they contain a number of attributes, an opening tag and a closing

tag, and sometimes components that are to be embedded inside of others. Components

can also be written in Java code, and their tags can be bound to Java code that resides

within a JSF CDI controller.

A number of components come standard with the JSF framework. Some of the

recipes in this chapter will cover some widely used standard components in detail, and

the chapter will provide examples that will allow you to begin using components in your

applications right away.

Another important piece of the JSF user interface puzzle is seamless integration with

the backend business logic. A task that can be run in the background, independent of

other running tasks, is known as an asynchronous task. JavaScript is the most popular

modern browser language that is used to implement asynchronous tasking in web

applications. Ajax is a set of technologies that allows you to perform asynchronous

tasks using JavaScript in the background, sending responses from the client browser

to the server and then sending a response back to the client. That response is used to

https://doi.org/10.1007/978-1-4842-5587-2_3

210

update the page’s Document Object Model (DOM). Enhancing an application to make

use of such asynchronous requests and responses can greatly improve the overall

user experience. The JSF framework allows developers to create rich user experiences

via the use of technologies such as Ajax and HTML5. Much of the implementation

detail behind these technologies can be abstracted away from the JSF developer using

JSF components. As such, the developer needs to worry only about how to use a JSF

component tag and relate it to a server-side property.

This chapter delves into using Ajax with the JSF web framework. Along the way,

you will learn how to spruce up applications and make the user interface richer and

more user-friendly so that it behaves more like that of a desktop application. You’ll also

learn how to listen to different component phases and system events, allowing further

customization of application functionality.

Note This chapter contains examples using the third-party component library
PrimeFaces. It is recommended to use the most recent releases of third-party
libraries in order to ensure that your application contains stable and secure
sources.

Before tackling the recipes, though, the following section provides a brief overview

of the standard JSF components and associated common component tags. This will help

you get the most out of the recipes.

Component and Tag Primer
Table 3-1 lists the components that are available with a clean install of the JSF

framework.

ChaPTer 3 advanCed JavaServer FaCeS

211

Table 3-1. JSF HTML Components

Component Tag Description

UIColumn h:column represents a column of data in the

dataTable component

UICommand h:commandButton Submits a form

h:commandLink Links pages or actions

h:commandScript Provides ability to call an arbitrary

server-side method via ajax from a

JSF view

UIData h:dataTable represents a table used for iterating

over collections of data

UIForm h:form represents an input form

UIGraphic h:graphicImage displays an image

UIInput h:inputHidden Includes a hidden variable in a form

h:inputSecret allows text entry without displaying

the actual text

h:inputText allows text entry

h:inputTextarea allows multiline text entry

UIOutcomeTarget h:link Links to another page or location

UIMessage h:message displays a localized message

UIMessages h:messages displays localized messages

UIOutput h:outputFormat displays a formatted localized

message

h:outputLabel displays a label for a specified field

h:outputLink displays text and links to another page

or location

UIPanel h:panelGrid displays a table

h:panelGroup Groups components

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

212

JSF provides a number of core tags that can be used to provide more functionality

for the components. For example, these tags can be embedded inside JSF component

tags and specify rules that can be used to convert the values that are displayed or used

as input for the component. Other uses of the core tags are to provide a list of options

for a select component, validate input, and provide action and event listeners. Table 3-2

describes the JSF core tags.

Table 3-1. (continued)

Component Tag Description

UISelectBoolean h:selectBooleanCheckbox displays a (Boolean) checkbox choice

UISelectItem h:selectItem represents one item in a list of items

for selection

UISelectItems h:selectItems represents a list of items for selection

UISelectMany h:selectManyCheckbox displays a group of checkboxes that

allow multiple user choices

h:selectManyListbox allows a user to select multiple items

from a list

h:selectManyMenu allows a user to select multiple items

from a drop- down menu

UISelectOne h:selectOneListbox allows a user to select a single item

from a list

h:selectOneMenu allows a user to select a single item

from a drop- down menu

h:selectOneRadio allows a user to select one item from

a set

ChaPTer 3 advanCed JavaServer FaCeS

213

Table 3-2. JSF Core Tags

Tag Function

f:actionListener registers an action listener method with a component

f:phaseListener registers a PhaseListener to a page

f:setPropertyAction

Listener

registers a special form submittal action listener

f:valueChangeListener registers a value change listener with a component

f:converter registers an arbitrary converter with a component

f:convertDateTime registers a DateTimeConverter instance with a component

f:convertNumber registers a NumberConverter with a component

f:facet adds a nested component to particular enclosing parents

f:metadata registers a particular facet with a parent component

f:selectItem encapsulates one item in a list

f:selectItems encapsulates all items of a list

f:websocket Provides ability to receive messages into a view via WebSockets

f:validateDoubleRange registers a DoubleRangeValidator with a component

f:validateLength registers a LengthValidator with a component

f:validateLongRange registers a LongRangeValidator with a component

f:validator registers a custom validator with a component

f:validateRegex registers a RegExValidator with a component (JSF 2.0)

f:validateBean delegates validation of a local value to a BeanValidator (JSF 2.0)

f:validateWholeBean delegates validation of an entire bean or class

f:validateRequired ensures that a value is present in a parent component

Note The common sources and the completed classes to run the application
for this chapter are contained within the org.jakartaeerecipes.chapter03
package, and one or more recipes throughout this chapter will utilize classes
contained within that package.

ChaPTer 3 advanCed JavaServer FaCeS

214

 Common Component Tag Attributes
Each standard JSF component tag contains a set of attributes that must be specified in

order to uniquely identify it from the others, register the component to a controller class,

and so on. There is a set of attributes that are common across each component tag, and

this section lists those attributes, along with a description of each. All attributes besides

id can be specified using JSF EL:

• binding: A controller class property can be specified for this attribute,

and it can be used to bind the tag to a component instance within a

controller class. Doing so allows you to programmatically control the

component from within the controller class.

• id: This attribute can be set to uniquely identify the component.

If you do not specify a value for the id attribute, then JSF will

automatically generate one. Each component within a view must

have a unique id attribute, or an error will be generated when the

page is rendered. I recommend you manually specify a value for the

id attribute on each component tag, because then it will be easy to

statically reference the tag from a scripting language or a controller

class if needed. If you let JSF automatically populate this attribute,

it may be different each time, and you will never be able to statically

reference the tag from a scripting language.

• immediate: This attribute can be set to true for input and command

components in order to force the processing of validations,

conversions, and events when the request parameter values are

applied.

• rendered: The rendered attribute can be used to specify whether the

component should be rendered onscreen. This attribute is typically

specified as a JSF EL expression that is bound to a controller class

property yielding a Boolean result. The EL expression must be an

rvalue expression, meaning that it is read-only and cannot set a

value.

• style: This attribute allows a CSS style to be applied to the

component. The specified style will be applied when the component

is rendered as output.

ChaPTer 3 advanCed JavaServer FaCeS

215

• styleClass: This attribute allows a CSS style class to be applied

to the component. The specified style will be applied when the

component is rendered as output.

• value: This attribute identifies the value of a given component. For

some components, the value attribute is used to bind the tag to a CDI

property. In this case, the value specified for the component will be

read from, or set within, the CDI property. Other components, such

as the commandButton component, use the value attribute to specify a

label for the given component.

 Common JavaScript Component Tags
Table 3-3 lists a number of attributes that are shared by many of the components, which

enable JavaScript functionality to interact with the component.

Table 3-3. Common Component Attributes

Attribute Description

onblur JavaScript code that should be executed when the component loses focus

onchange JavaScript code that should be executed when the component loses focus

and the value changes

ondblclick JavaScript code that should be executed when the component has been

clicked twice

onfocus JavaScript code that should be executed when the component gains focus

onkeydown JavaScript code that should be executed when the user presses a key down

and the component is in focus

onkeypress JavaScript code that should be executed when the user presses a key and

the component is in focus

onkeyup JavaScript code that should be executed when key press is completed and

the component is in focus

onmousedown JavaScript code that should be executed when the user clicks the mouse

button and the component is in focus

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

216

 Binding Components to Properties
All JSF components can be bound to controller class properties. Do so by declaring a

property for the type of component you want to bind within the CDI controller class and

then by referencing that property using the component’s binding attribute. For instance,

the following dataTable component is bound to a CDI property and then manipulated

from within the bean:

In the view:

<h:dataTable id="myTable" binding="#{myBean.myTable}" value="#{myBean.

myTableCollection}"/>

In the controller:

// Provide getter and setter methods for this property

private javax.faces.component.UIData myTable;

...

myTable.setRendered(true);

...

Binding can prove to be very useful in some cases, especially when you need to

manipulate the state of a component programmatically before re-rendering the view.

Table 3-3. (continued)

Attribute Description

onmouseout JavaScript code that should be executed when the user moves mouse away

from the component

onmouseover JavaScript code that should be executed when the user moves mouse onto

the component

onmousemove JavaScript code that should be executed when the user moves mouse within

the component

onmouseup JavaScript code that should be executed when the mouse button click is

completed and the component is in focus

onselect JavaScript code that should be executed when the component is selected by

the user

ChaPTer 3 advanCed JavaServer FaCeS

217

3-1. Creating an Input Form
 Problem
You want to add input fields to a form within your application.

 Solution
Create an input form by enclosing child input components within a parent form

component. There are four JSF components that will allow for text entry as input. Those

components are inputText, inputSecret, inputHidden, and inputTextarea. Any or all

of these components can be placed within a form component in order to create an input

form that accepts text entry.

In the example for this recipe, you will create an input form that will be used to sign

up for the Acme Bookstore newsletter. The user will be able to enter their first and last

names, an email address, a password, and a short description of their interests.

 The View: recipe03_01.xhtml

The following code is for the view recipe03_01.xhtml, which constructs the layout for

the input form:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

ChaPTer 3 advanCed JavaServer FaCeS

218

 <p>

 Enter your information below in order to be added

to the Acme Bookstore newsletter.

 </p>

 <label for="first">First: </label>

 <h:inputText id="first" size="40"

value="#{contactController1.current.first}"/>

 <label for="last">Last: </label>

 <h:inputText id="last" size="40"

value="#{contactController1.current.last}"/>

 <label for="email">Email: </label>

 <h:inputText id="email" size="40"

value="#{contactController1.current.email}"/>

 <label for="password">Enter a password for site

access:</label>

 <h:inputSecret id="password" size="40"

value="#{contactController1.current.password}"/>

 <label for="description">Enter your book interests

</label>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController1.current.description}"/>

 <h:commandButton id="contactSubmit"

action="#{contactController1.subscribe}" value="Save"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

ChaPTer 3 advanCed JavaServer FaCeS

219

Note as you can see from the example, hTML can be mixed together with
JSF component tags. an hTML label tag is used to specify a label for each input
component in this recipe. In recipe 3-3, you will learn about the JSF component
that is used to render a label.

To learn more about how the commandButton component works, please see
recipe 3-2.

 Controller Class: ContactController.java

Each view that contains an input form needs to have an associated controller class,

right? The controller class in this case is RequestScoped, and the name of the class is

ContactController. An excerpt from the listing for the ContactController class is as

follows:

import java.util.*;

import javax.enterprise.context.RequestScoped;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.event.ValueChangeEvent;

import javax.faces.model.SelectItem;

import javax.faces.validator.ValidatorException;

import javax.inject.Inject;

import javax.inject.Named;

@RequestScoped

@Named(value = "contactController")

public class ContactController implements java.io.Serializable {

 private Contact current;

 /**
 * Creates a new instance of ContactController

 */

 public ContactController() {

 }

ChaPTer 3 advanCed JavaServer FaCeS

220

 /**
 * Obtains the current instance of the Contact object

 * @return Contact

 */

 public Contact getCurrent(){

 if (current == null){

 current = new Contact();

 }

 return current;

 }

 /**
 * Adds a subscriber to the newsletter

 * @return String

 */

 public String subscribe(){

 // No implementation yet, will add to a database table in Chapter 7

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_

INFO,

 "Successfully Subscribed to Newsletter for " +

getCurrent().getEmail(), null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 return "SUBSCRIBE";

 }

 /**
 * Navigational method

 * @return String

 */

 public String add(){

 return "ADD_SUBSCRIBER";

 }

}

ChaPTer 3 advanCed JavaServer FaCeS

221

Note at this time, nothing happens when the submit button is clicked other than
a nice “Success” message being displayed on the screen. Later in the book, you
will revisit the subscribe method and add the code for creating a record within an
underlying database. The input screen should look like Figure 3-1 when rendered.

 How It Works
The JavaServer Faces framework ships with a slew of standard components that can

be utilized within JSF views. There are four standard components that can be used

for capturing text input: inputText, inputSecret, inputHidden, and inputTextarea.

These component tags, as well as all of the other standard JSF component tags, share

a common set of attributes and some attributes that are unique to each specific tag.

To learn more about the common attributes, please see the related section in the

introduction to this chapter. In this recipe, I will go over the specifics for each of these

input components. The form component, specified via the h:form tag, is used to create

an input form within a JSF view. Each component that is to be processed within the form

should be enclosed between the opening and closing h:form tags. Each form typically

contains at least one command component, such as a commandButton. A view can

contain more than one form component, and only those components that are contained

within the form will be processed when the form is submitted.

Figure 3-1. JSF input form for subscribing to the Acme Bookstore newsletter

ChaPTer 3 advanCed JavaServer FaCeS

222

Each of the input tags supports the list of attributes that is shown in Table 3-4, in

addition to those already listed as common component attributes in the introduction to

this chapter.

The inputText component is used to generate a single-line text box within a rendered

page. The inputText component value attribute is most commonly bound to a controller

class property so that the values of the property can be retrieved or set when a form is

processed. In the recipe example, the first inputText component is bound to the controller

class property named first. The EL expression #{contactController.current.first}

Table 3-4. Input Component Tag Attributes

Attribute Description

converter allows a converter to be applied to the component’s data.

converterMessage Specifies a message that will be displayed when a registered converter

fails.

dir Specifies the direction of text displayed by the component. (LTR is
used to indicate left-to-right, and RTL is used to indicate right-to-left.)

immediate Flag indicating that, if this component is activated by the user,

notifications should be delivered to interested listeners and actions

immediately (i.e., during the apply request values phase) rather than

waiting until the Invoke application phase.

label Specifies a name that can be used for component identification.

lang allows a language code to be specified for the rendered markup.

required accepts a Boolean to indicate whether the user must enter a value for

the given component.

requiredMessage Specifies an error message to be displayed if the user does not enter a

value for a required component.

validator allows a validator to be applied to the component.

valueChangeListener allows a controller class method to be bound for event-handling

purposes. The method will be called when there is a change made to

the component.

ChaPTer 3 advanCed JavaServer FaCeS

223

is specified for the component value, so if the controller class’s first property contains a

value, then it will be displayed within the inputText component. Likewise, when the form is

submitted, then any value that has been entered within the component will be saved within

the first property in the controller class.

The inputSecret component is used to generate a single-line text box within a

rendered page, and when text is entered into the component, then it is not displayed;

rather, asterisks are displayed in place of each character typed. This component

makes it possible for a user to enter private text, such as a password, without it being

displayed on the screen for others to read. The inputSecret component works

identically to the inputText component, other than hiding the text with asterisks. In

the example, the value of the inputSecret component is bound to a controller class

property named password via the #{contactController.current.password} EL

expression.

The inputTextarea component is used to generate a multiline text box within a

rendered page. As such, this component has a couple of additional attributes that can be

used to indicate how large the text area should be. The inputTextarea has the rows and

cols attributes, which allow a developer to specify how many rows (height) and how many

columns (wide) of space the component should take up on the page, respectively. Other

than those two attributes, the inputTextarea component works in much the same manner

as the inputText component. In the example, the value attribute of the inputTextarea

component is specified as #{contactController.current.description}, so the

description property will be populated with the contents of the component when the

form is submitted.

The input component I have not yet discussed is the inputHidden component. This

component is used to place a hidden input field into the form. It works in the same

manner as the inputText component, except that it is not rendered on the page for the

user to see. The value for an inputHidden component can be bound to a controller class

property in the same way as the other components. You can use such a component for

passing a hidden token to and from a form.

As you can see, the days of passing and receiving request parameters within JSP

pages are over. Utilizing the JSF standard input components, it is possible to bind values

to controller class properties using JSF EL expressions. This makes it much easier for

developers to submit values from an input form for processing. Rather than retrieving

parameters from a page, assigning them to variables, and then processing, the JSF

framework takes care of that overhead for you.

ChaPTer 3 advanCed JavaServer FaCeS

224

3-2. Invoking Actions from Within a Page
 Problem
You want to trigger a server-side method to be invoked from a button or link on one of

your application pages.

 Solution
Utilize the commandButton or commandLink component within your view to invoke

action methods within a controller class. The command components allow for the user

invocation of actions within controller classes. Command components bind buttons

and links on a page directly to action methods, allowing developers to spend more time

thinking about the development of the application and less time thinking about the Java

servlet-processing life cycle.

In the example for this recipe, a button and a link are added to the newsletter page

for the Acme Bookstore. The button that will be added to the page will be used to submit

the input form for processing, and the link will allow a user to log into the application

and manage their subscription and bookstore account.

Note This recipe will not cover any authentication or security features; it focuses
only on invoking actions within controller classes. For more information regarding
authentication, please see Chapter 16.

 The View: recipe03_02.xhtml

The following code is for the newsletter subscription view including the command

components. The sources are for the file named recipe03_02.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

ChaPTer 3 advanCed JavaServer FaCeS

https://doi.org/10.1007/978-1-4842-5587-2_16

225

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 Enter your information below in order to be added

to the Acme Bookstore newsletter.

 </p>

 <label for="first">First: </label>

 <h:inputText id="first" size="40"

value="#{contactController.current.first}"/>

 <label for="last">Last: </label>

 <h:inputText id="last" size="40"

value="#{contactController.current.last}"/>

 <label for="email">Email: </label>

 <h:inputText id="email" size="40"

value="#{contactController.current.email}"/>

 <label for="password">Enter a password for site

access:</label>

 <h:inputSecret id="password" size="40"

value="#{contactController.current.password}"/>

 <label for="description">Enter your book interests

</label>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController.current.description}"/>

ChaPTer 3 advanCed JavaServer FaCeS

226

 <h:commandButton id="contactSubmit"

action="#{contactController.subscribe}" value="Save"/>

 <h:commandLink id="manageAccount"

action="#{contactController.manage}" value="Manage

Subscription"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

 Controller Class: ContactController.java

The controller class that contains the action methods is named ContactController,

which was created in Recipe 3-1. The following code excerpt is taken from the

ContactController class, and it shows the updates that have been made to the methods

for this recipe:

Note The complete implementation of ContactController resides within the
package org.jakartaeerecipes.chapter03.

...

 /**
 * Adds a subscriber to the newsletter

 * @return String

 */

 public String subscribe(){

 // Using a list implementation for now,

 // but will add to a database table in Chapter 7

ChaPTer 3 advanCed JavaServer FaCeS

227

 // Add the current contact to the subscription list

 subscriptionController.getSubscriptionList().add(current);

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_

INFO,

 "Successfully Subscribed to Newsletter for " +

getCurrent().getEmail(), null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 return "SUBSCRIBE";

 }

 /**
 * Navigational method

 * @return String

 */

 public String add(){

 return "ADD_SUBSCRIBER";

 }

 /**
 * This method will allow a user to navigate to the manageAccount view.

 * This method will be moved into another controller class that focuses

on

 * authentication later on.

 * @return

 */

 public String manage(){

 return "/chapter03/manageAccount";

 }

...

When the view is rendered, the resulting page looks like Figure 3-2.

ChaPTer 3 advanCed JavaServer FaCeS

228

 How It Works
The command components make working with JSF vastly different from using JSP

technology. In many of the other technologies, form actions are used to handle request

parameters and perform any required business logic with them. With the JSF command

components, Java methods can be bound directly to a button or a link and invoked when

the components are activated (button or link clicked). In the example for this recipe,

both the commandButton and commandLink components are utilized. The commandButton

component is used to submit the form request parameters for processing, and the

commandLink component is bound to an action method that performs a redirect to

another application page.

The command components have a handful of attributes that are of note. Those

attributes, along with a description of each, are listed in Table 3-5 and Table 3-6.

Figure 3-2. Utilizing command components within a view

ChaPTer 3 advanCed JavaServer FaCeS

229

Table 3-5. commandButton Component Additional Attributes

Attribute Description

action eL that specifies a controller class action method that will be invoked when

the user activates the component.

actionListener eL that specifies a controller class action method that will be notified

when this component is activated. The action method should be public and

accept an ActionEvent parameter, with a return type of void.

class CSS style class that can be applied to the component.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

disabled a Boolean to indicate whether the component is disabled.

image absolute or relative UrL to an image that will be displayed on the button.

immediate Flag indicating that, if this component is activated by the user, notifications

should be delivered to interested listeners and actions immediately (i.e.,

during the apply request values phase) rather than waiting until the Invoke

application phase.

label name for the component.

lang Code for the language used for generating the component markup.

readonly Boolean indicating whether the component is read-only.

rendererType Identifier of renderer instance.

tabindex Index value indicating the number of tab button presses it takes to bring

the component into focus.

title Tooltip that will be displayed when the mouse hovers over the component.

transient Boolean indicating whether the component should be included in the state

of the component tree.

type Indicates type of button to create. values are submit (default), reset, and

button.

ChaPTer 3 advanCed JavaServer FaCeS

230

Table 3-6. commandLink Component Additional Attributes

Attribute Description

action eL that specifies a controller class action method that will be invoked when the

user activates the component.

accessKey access key value that will transfer the focus to the component.

cords Position and shape of the hotspot on the screen.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

disabled Specifies a Boolean to indicate whether the component is disabled.

hreflang Language code of the resource designated by the hyperlink.

immediate Flag indicating that, if this component is activated by the user, notifications

should be delivered to interested listeners and actions immediately (i.e., during

the apply request values phase) rather than waiting until the Invoke application

phase.

lang Code for the language used for generating the component markup.

rel relationship from the current document to the anchor specified by the

hyperlink.

rev reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating the number of tab button presses it takes to bring the

component into focus.

target name of a frame where the resource retrieved via the hyperlink will be

displayed.

title Tooltip that will be displayed when the mouse hovers over the component.

type Indicates type of button to create. values are submit (default), reset, and

button.

charset Character encoding of the resource designated by the hyperlink.

ChaPTer 3 advanCed JavaServer FaCeS

231

The commandButton and commandLink components in the example for this recipe

specify only a minimum number of attributes. That is, they both specify id, action, and

value attributes. The id attribute is used to uniquely identify each of the components.

The action attribute is set to the JSF EL, which binds the components to their controller

class action methods. The commandButton component has an action attribute of

#{contactController.subscribe}, which means that the ContactController class’s

subscribe method will be invoked when the button on the page is clicked. The

commandLink has an action attribute of #{contactController.manage}, which means

that the ContactController class’s manage method will be invoked when the link is

clicked. Each of the components also specifies a value attribute, which is set to the text

that is displayed on the button or link when rendered.

As you can see, only a handful of the available attributes are used within the

example. However, the components can be customized using the additional attributes

that are available. For instance, an actionListener method can be specified, which

will bind a controller class method to the component, and that method will be invoked

when the component is activated. JavaScript functions can be specified for each of

the attributes beginning with the word on, providing the ability to produce client-side

functionality.

Command components vastly changed the landscape of Java web application

development. They allow the incorporation of direct Java method access from within

user pages and provide an easy means for processing request parameters.

3-3. Displaying Output
 Problem
You want to display text from a controller class property within your application pages.

 Solution
Incorporate JSF output components into your views. Output components are used to

display static or dynamic text on a page, as well as the results of expression language

arithmetic. The standard JSF component library contains five components that render

output: outputLabel, outputText, outputFormat, outputLink, and link. The Acme

Bookstore utilizes each of these components within the bookstore newsletter application

façade.

ChaPTer 3 advanCed JavaServer FaCeS

232

 The View: recipe03_03.xhtml

In the following example, the newsletter subscription view has been rewritten to utilize

some of the output components:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{contactController.

newsletterDescription}"/>

 </p>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{contactController.current.first}">

 <f:validateRequired/>

 <f:validateLength minimum="2" maximum="40"/>

 </h:inputText>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{contactController.current.last}">

 <f:validateRequired/>

 <f:validateLength minimum="2" maximum="40"/>

 </h:inputText>

ChaPTer 3 advanCed JavaServer FaCeS

233

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{contactController.current.email}">

 <f:validateRequired/>

 <f:validateRegex pattern=""/>

 </h:inputText>

 <h:outputLabel for="password" value="Enter a password

for site access: "/>

 <h:inputSecret id="password" size="40"

value="#{contactController.current.password}">

 <f:validateRegex pattern=""/>

 </h:inputSecret>

 <h:outputLabel for="description" value="Enter your

book interests"/>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController.current.description}"/>

 <h:commandButton id="contactSubmit"

action="#{contactController.subscribe}" value="Save"/>

 <h:commandLink id="manageAccount"

action="#{contactController.manage}" value="Manage

Subscription"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

ChaPTer 3 advanCed JavaServer FaCeS

234

 Controller Class: ContactController.java

The ContactController controller class has been modified throughout the recipes

within this chapter to incorporate new functionality as the recipes move forward. In

this recipe, a new property has been added to the ContactController that contains the

description of the newsletter.

Note The hard-coded newsletter description is not a good idea for use in a
production application. It is used in this example for demonstration purposes only.
For a production application, utilization of resource bundles or database storage
would be a more viable approach for storing Strings of text.

The following source excerpt from the ContactController class shows the code that

is of interest in this example:

...

 private String newsletterDescription;

 public ContactController() {

 current = null;

 newsletterDescription = "Enter your information below in order to

be " + "added to the Acme Bookstore newsletter.";

 }

...

 public String getNewsletterDescription() {

 return newsletterDescription;

 }

 public void setNewsletterDescription(String newsletterDescription) {

 this.newsletterDescription = newsletterDescription;

 }

...

The resulting page looks like Figure 3-3. Note that the text is the same, because it is

merely reading the same text from a controller class property. Also note that there is now

an additional link added to the bottom of the page, which reads Home.

ChaPTer 3 advanCed JavaServer FaCeS

235

 How It Works
Output components can be used to display output that is generated within a controller

class or to render a link to another resource. They can be useful in many cases for

displaying dynamic output to a web view. The example for this recipe demonstrates

three out of the five different output component types: outputText, outputLink, and

outputLabel. Each of the components shares a common set of attributes, which are

listed in Table 3-7.

Note The outputText component has become a bit less important since
the release of JSF 2.0 because the Facelets view definition language implicitly
wraps inline content with a similar output component. Therefore, the use of the
outputText tag within JSF 2.0 is necessary only if you want to utilize some of
the tag attributes for rendering, JavaScript invocation, or the like.

Figure 3-3. Utilizing output components within a view

ChaPTer 3 advanCed JavaServer FaCeS

236

Table 3-7. Common Output Component Attributes (Not Listed in Introduction)

Attribute Description

class CSS class for styling

converter Converter that is registered with the component

dir direction of text (LTR, left-to-right; RTL, right-to-left)

escape Boolean value to indicate whether XML- and hTML-sensitive characters are

escaped

lang Code for language used when generating markup for the component

parent Parent component

title Tooltip text for the component

transient Boolean indicating whether the component should be included in the state of

the component tree

The outputText component in the example contains a value of

#{contactController.newsletterDescription}, which displays the contents of the

newsletterDescription property within ContactController. Only the common output

component attributes can be specified within the h:outputText tag. Therefore, an

attribute such as class or style can be used to apply styles to the text displayed by the

component. If the component contains HTML or XML, the escape attribute can be set to

true to indicate that the characters should be escaped.

The outputFormat component shares the same set of attributes as the outputText

component. The outputFormat component can be used to render parameterized text.

Therefore, if you require the ability to alter different portions of a String of text, you

can do so via the use of JSF parameters (via the f:param tag). For example, suppose you

wanted to list the name of books that someone has purchased from the Acme Bookstore;

you could use the outputFormat component like in the following example:

<h:outputFormat value="Cart contains the books {0}, {1}, {2}"/>

 <f:param value="Java 9 Recipes"/>

 <f:param value="JavaFX 2.0: Introduction by Example"/>

 <f:param value="Java EE 8 Recipes"/>

</h:outputFormat>

ChaPTer 3 advanCed JavaServer FaCeS

237

The outputLink and outputLabel components can each specify a number of other

attributes that are not available to the previously discussed output components. The

additional attributes are listed in Table 3-8 (outputLink) and Table 3-9 (outputLabel).

The outputLink component can be used to create an anchor or link that will redirect an

application user to another page when the link is clicked. In the following example, the

outputLink component is used to redirect a user to a view named home.xhtml. The value

for the outputLink component can be set to a static page name, as per the example, or

it can contain a JSF EL expression corresponding to a controller class property. It is also

possible to pass parameters to another page using the outputLink component by nesting

f:param tags between opening and closing h:outputLink tags as follows:

<h:outputLink id="homeLink" value="home.xhtml">

 <h:outputText value="User Home Page"/>

 <f:param name="username" value="#{contactController.current.email}"/>

 </h:outputLink>

The previous example would produce a link with the text User Home Page when

rendered on the page. It would produce the following HTML link, where emailAddress

corresponds to the EL expression of #{contactController.current.email}:

Home Page

Similarly, rather than displaying a link as text on the page, an image can be used by

embedding a graphicImage component.

The outputLabel component renders an HTML <label> tag, and it can be

used in much the same way as the outputText component. In the example, the

outputLabel component values are all using static text, but they could also utilize JSF

EL expressions to make use of controller class property values if that is more suitable

for the application.

ChaPTer 3 advanCed JavaServer FaCeS

238

Table 3-8. outputLink Additional Attributes

Attribute Description

accessKey access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

charset The character encoding of the resource designated by this hyperlink.

cords Position and shape of the hotspot on the screen.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

disabled Specifies a Boolean to indicate whether the component is disabled.

fragment Identifier for the page fragment that should be brought into focus when the

target page is rendered.

hreflang Language code of the resource designated by the hyperlink.

lang Code for the language used for generating the component markup.

rel relationship from the current document to the anchor specified by the hyperlink.

rev reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating the number of tab button presses it takes to bring the

component into focus.

target name of a frame where the resource retrieved via the hyperlink will be displayed.

title Tooltip that will be displayed when the mouse hovers over the component.

type Type of button to create. values are submit (default), reset, and button.

ChaPTer 3 advanCed JavaServer FaCeS

239

Table 3-9. outputLabel Additional Attributes

Attribute Description

accessKey access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

escape Flag indicating that characters that are sensitive in hTML and XML markup

must be escaped.

for Client identifier of the component for which this element is a label.

lang Code for the language used for generating the component markup.

tabindex Index value indicating the number of tab button presses it takes to bring the

component into focus.

title Tooltip that will be displayed when the mouse hovers over the component.

type Type of button to create. values are submit (default), reset, and button.

The last output component that I’ll cover in this recipe is the link component. It was

introduced to JSF in release 2.0, and it makes the task of adding links to a page just a bit

easier. Both the outputLink and link components produce similar results, but link has

just a couple of different attributes that make it react a bit differently. The value attribute

of the h:link tag specifies the label or text that should be used when the link is rendered

on the page, and the outcome attribute specifies the page that should be linked to. The

following example of the link component produces the same output as the outputLink

component in the example for this recipe:

<h:link id=""homeLink"" value=""Home"" outcome=""home""/>

Parameters and images can also be embedded within the h:link tag, in the same

manner as with outputLink. The link component also contains some custom attributes,

as listed in Table 3-10.

ChaPTer 3 advanCed JavaServer FaCeS

240

This recipe provided a high-level overview of the JSF standard output components.

In JSF 2.0+, it is important to note that you can simply include a JSF EL expression

without using an output component to display text within a page. However, these

components can still be quite useful under certain circumstances, making them an

important set of components to have within your arsenal.

3-4. Adding Form Validation
 Problem
To ensure that valid data is being submitted via your form, you need to incorporate some

validation on your input fields.

Table 3-10. link Component Additional Attributes

Attribute Description

charset Character encoding of the resource that is designated by the hyperlink.

cords Position and shape of the hotspot on the screen, usually used when

generating maps or images containing multiple links.

disabled Flag to indicate that the component should never receive focus.

fragment Identifier for the page fragment that should be brought into focus when

the link is clicked. The identifier is appended to the # character.

hreflang Language of the resource designated by this link.

includeviewparams Boolean indicating whether to include page parameters when

redirecting.

outcome Logical outcome used to resolve a navigational case.

rel relationship from the current document to the resource specified by link.

rev reverse link from the anchor specified from this link to the current

document.

shape Shape of the hotspot on the screen.

target name of the frame in which the resource linked to is to be displayed.

type Content type of resource that is linked to.

ChaPTer 3 advanCed JavaServer FaCeS

241

 Solution #1
Utilize prebuilt JSF validator tags on the view’s input components where possible. JSF

ships with a handful of prebuilt validators that can be applied to components within a

view by embedding the validator tag within the component you want to validate. The

following code excerpt is taken from a JSF view that defines the layout for the newsletter

subscription page of the Acme Bookstore application. The sources can be found in

the view named recipe03_04.xhtml, and the excerpt demonstrates applying prebuilt

validators to some inputText components:

...

<h:outputLabel for="first" value="First: "/>

<h:inputText id="first" size="40" value="#{contactController.current.first}">

 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>

<h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

<h:outputLabel for="last" value="Last: "/>

<h:inputText id="last" size="40" value="#{contactController.current.last}">

 <f:validateLength minimum="1" maximum="40"/>

</h:inputText>

<h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

...

In the preceding code excerpt, you can see that the f:validateLength validator tags

have been embedded in different inputText components. When the form is submitted,

these validators will be applied to the values within the inputText component fields and

will return an error message if the constraints have not been met.

ChaPTer 3 advanCed JavaServer FaCeS

242

 Solution #2
Utilize JSF bean validation by annotating controller class fields with validation

annotations. It is possible to perform validation from within the controller class by

annotating the property field declaration with the validation annotations that are

needed. When the form is submitted, then the bean validation will be performed.

Note an f:validateBean tag can be embedded within the component in the
view if making use of validationGroups in order to delegate the validation
of the local value to the Bean validation aPI. If using f:validateBean, the
validationGroups attribute will serve as a filter that instructs which constraints
should be enforced.

The following code excerpt is taken from the JSF view that defines the layout for the

newsletter subscription page of the Acme Bookstore application. The sources can be

found in the view named recipe03_04.xhtml:

...

<h:outputLabel for="email" value="Email: "/>

<h:inputText id="email" size="40" value="#{contactController.current.

email}"/>

<h:message id="emailError"

 for="email"

 errorStyle="color:red"/>

...

Next is an excerpt from the ContactController controller class that demonstrates

applying a validator annotation to the email property field declaration:

...

@Pattern(regexp = "[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-zA-Z0-9]+", message =

"Email format is invalid.")

 private String email;

...

ChaPTer 3 advanCed JavaServer FaCeS

243

When the form is submitted, the validation on the email field will occur. If the

value entered into the inputText component does not validate against the regular

expression noted in the annotation, then the error message will be displayed within the

corresponding messages component.

 Solution #3
Create a custom validator method within a controller class, and register that method

with an input component by specifying the appropriate EL for the component’s

validator attribute. In this scenario, the controller class does not need to implement the

Validator interface. The following code excerpt is taken from the JSF view that defines

the layout for the newsletter subscription page of the Acme Bookstore application.

The sources can be found in the view named recipe03_04.xhtml, and the excerpt

demonstrates a custom validator method to a component by specifying it for the

validator attribute:

 ...

<h:outputLabel for="password" value="Enter a password for site access: "/>

<h:inputSecret id="password" size="40" redisplay="true"

value="#{contactController.current.password}"/>

<h:outputLabel for="passwordConfirm" value="Confirm Password: "/>

<h:inputSecret id="passwordConfirm" size="40" redisplay="true"

 validator="#{contactController.

validatePassword}"/>

<h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

...

Note If you are thinking outside of the box, you’ll see that the previous code
fragment would be an excellent choice for creating into a composite component!
If a composite component is created, then it would be as simple as adding a tag
such as <custom:passwordValidate> to your form.

ChaPTer 3 advanCed JavaServer FaCeS

244

The validator attribute specifies the validatePassword method within

the ContactController controller class. The following excerpt is taken from

ContactController, and it shows the validator method’s implementation:

...

/**
 * Custom validator to ensure that password field contents match

 * @param context

 * @param component

 * @param value

 */

 public void validatePassword(FacesContext context,

 UIComponent component,

 Object value){

 Map map = context.getExternalContext().getRequestParameterMap();

 String passwordText = (String) map.get(("contactForm:password"));

 String confirmPassword = value.toString();

 if (!passwordText.equals(confirmPassword)) {

 throw new ValidatorException(new FacesMessage("Passwords do not

match"));

 }

 }

...

When the form is submitted, the validatePassword method will be invoked during

the Process Validations phase. The method will read the values of both the password

and passwordConfirm fields, and an exception will be thrown if they do not match. For

example, if the input form for the newsletter subscription page is submitted without any

values, then the page should be re-rendered and look like Figure 3-4.

ChaPTer 3 advanCed JavaServer FaCeS

245

 How It Works
There are a few different ways in which to apply validation to form input fields. The

easiest way to apply validation to an input component is to utilize the prebuilt validator

tags that ship with JSF. There are prebuilt tags for validating data for a specified length,

range, and so on. Please see Table 3-2 in the introduction to this chapter for the complete

list of validator tags. You can also choose to apply validation to input components using

bean validation. Bean validation requires validation annotations to be placed on the

property declaration within the controller class. Yet another possible way to perform

validation is to create a custom validation method and specify the method within the

input component’s validator attribute. This section will provide a brief overview of

each prebuilt validation tag, cover the basics of bean validation, and demonstrate how to

build a custom validation method.

Note It is possible to create a class that implements the Validator interface to
perform validation.

Figure 3-4. Validation errors on input fields

ChaPTer 3 advanCed JavaServer FaCeS

246

No matter which validation solution you choose to implement, the validation occurs

during the Process Validations phase of the JSF life cycle. When a form is submitted,

via a command component or an Ajax request, all validators that are registered on

the components within the tree are processed. The rules that are specified within the

attributes of the component are compared against the local value for the component. At

this point, if any of the validations fails, the messages are returned to the corresponding

message components and displayed to the user.

To utilize the prebuilt validation tags, they must be embedded between opening

and closing input component tags and specify attributes according to the validation

parameters you wish to set. In Solution #1 for this recipe, you learned how to use the

f:validateLength validator tag, which allows validation of component data for a

specified length. The minimum and maximum attributes are set to the minimum string

length and maximum string length, respectively.

The f:validateLongRange validator can be used to check the range of a

numeric value that has been entered. The minimum and maximum attributes of

f:validateLongRange are used to determine whether the value entered falls within the

lower and upper bounds, respectively.

Similar to f:validateLongRange is the f:validateDoubleRange validator, which is

used to validate the range of a floating-point value. Again, the minimum and maximum

attributes of f:validateDoubleRange are used to determine whether the value entered

falls within the lower and upper bounds, respectively.

The f:validateRequired validator is used to ensure that an input field is not empty.

No attributes are needed with this validator; simply embed it within a component tag to

ensure that the component will not contain an empty value.

Another validator that ships with JSF is the f:validateRegex validator. This validator

uses a regular expression pattern to determine whether the value entered matches

the specified pattern. The validator’s pattern attribute is used to specify the regular

expression pattern, as shown in the example for Solution #1 to this recipe.

In Solution #2, JSF bean validation is demonstrated. Bean validation allows you

to annotate a controller class field with constraint annotations that indicate the type

of validation that should be performed. The validation automatically occurs on the

annotated fields when a form that contains input components referencing them is

submitted. A handful of standard constraint annotations can be applied to bean fields,

as listed in Table 3-11. Each annotation accepts different attributes; please see the online

documentation at https://docs.jboss.org/hibernate/beanvalidation/spec/2.0/api/

for more details.

ChaPTer 3 advanCed JavaServer FaCeS

https://docs.jboss.org/hibernate/beanvalidation/spec/2.0/api/

247

Table 3-11. Constraint Annotations Used for Bean Validation

Annotation Description

@AssertFalse The annotated element must be false.

@AssertTrue The annotated element must be true.

@DecimalMax The annotated element must be a decimal that has a value less than or equal

to the specified maximum.

@DecimalMin The annotated element must be a decimal that has a value greater than or

equal to the specified minimum.

@Digits The annotated element must be a number within the accepted range.

@Email The annotated element must adhere to the format of an email address.

@Future The annotated element must be a date in the future.

@Max The annotated element must be a number that has a value less than or equal

to the specified maximum.

@Min The annotated element must be a number that has a value greater than or

equal to the specified minimum.

@Negative The annotated element must be a negative number.

@NotBlank The annotated element must not be null or blank after removing any trailing

or leading whitespace.

@NotEmpty The annotated element must not be null or empty.

@NotNull The annotated element must not be null.

@Null The annotated element must be null.

@Past The annotated element must be a date in the past.

@Pattern The annotated element must match the pattern specified in the annotation’s

regular expression.

@Positive The annotated element must be a positive number.

@Size The annotated element must be between the specified boundaries.

ChaPTer 3 advanCed JavaServer FaCeS

248

When using bean validation, the input component that references an annotated

bean field can contain an f:validateBean tag to customize behavior. The

f:validateBean tag’s validationGroups annotation can be used to specify validation

groups that can be used for validating the component. For instance, such a solution may

resemble something like the following:

<h:inputText id="email" value="#{contactController.email}">

 <f:validateBean validationGroups="org.jakartaeerecipes.validation.

groups.EmailGroup"/>

</h:inputText>

Note validation groups define a subset of constraints that can be applied for
validation. a validation group is represented by an empty Java interface. The
interface name can then be applied to annotation constraints within a bean class
in order to assign such constraints to a particular group. For instance, the following
field that is annotated with @Size specifies a group of EmailGroup.class:

@Size(min=2, max=30, groups=EmailGroup.class)
private String email;

When utilizing the f:validateBean tag, any constraint annotations that are
contained within the specified group will be applied to the field for validation.

When using bean validation, a custom error message can be displayed if the

validation for a field fails. To add a custom message, include the message attribute within

the annotation, along with the error message that you want to have displayed. As a

best practice, error messages should be pulled from a message bundle (https://docs.

oracle.com/javase/tutorial/i18n/resbundle/concept.html) so that they can be

updated without the need to change code.

The example for Solution #3 demonstrates the use of a custom validator method in

order to perform validation on an input component. The input component’s validator

attribute can reference a controller class method that has no return type and accepts a

FacesContext, a UIComponent, and an Object. The method can utilize the parameters

to gain access to the current FacesContext, the UIComponent that is being validated,

and the current value that is contained in the object, respectively. The validation logic

can throw a javax.faces.validator.ValidatorException if the value does not pass

validation and then return a message to the user via the exception. In the example, the

ChaPTer 3 advanCed JavaServer FaCeS

https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

249

method named validatePassword is used to compare the two password field

contents to ensure that they match. The first two lines of code within the method are

used to obtain the value of the component with the id of password and save it into a

local variable. The actual validation logic compares that value against the incoming

parameter’s Object value, which is the current value of the component being validated,

to determine whether there is a match. If not, then a ValidationException is thrown

with a corresponding message. That message will then be displayed within the messages

component that corresponds to the component being validated.

As mentioned at the beginning of this recipe, there are a few ways to validate input.

None of them is any better than the other; their usage depends upon the needs of your

application. If you are going to be changing validation patterns often, then you may want

to stick with the prebuilt validator tags so that you do not need to recompile code in

order to change the validation. On the other hand, if you know that your validation will

not change, then it may be easier for you to work with the bean validation technique.

3-5. Validating Input with Ajax
 Problem
You want to validate the values that are entered into text fields of a form, but you want

them to be evaluated immediately, rather than after the form is submitted.

 Solution
Perform validation on the field(s) by embedding the f:ajax tag within each component

whose values you want to validate. Specify appropriate values for the event and render

attributes so that the Ajax validation will occur when the field(s) loses focus, and any

validation errors will be identified immediately. The following listing is the JSF view for

the newsletter subscription page of the Acme Bookstore application. It has been updated

to utilize Ajax validation so that the validation occurs immediately, without the need to

submit the form before corresponding errors are displayed:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

ChaPTer 3 advanCed JavaServer FaCeS

250

 template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{ch3ContactController.

newsletterDescription}"/>

 </p>

 <h:panelGrid columns="2" bgcolor="" border="0">

 <h:panelGroup>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{ch3ContactController.current.first}">

 <f:validateLength minimum="1" maximum="40"/>

 <f:ajax event="blur" render="firstError"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{ch3ContactController.current.last}">

 <f:validateLength minimum="1" maximum="40"/>

 <f:ajax event="blur" render="lastError"/>

 </h:inputText>

 </h:panelGroup>

 <h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

ChaPTer 3 advanCed JavaServer FaCeS

251

 <h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

 <h:panelGroup>

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{ch3ContactController.current.email}">

 <f:ajax event="blur" render="emailError"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup/>

 <h:message id="emailError"

 for="email"

 errorStyle="color:red"/>

 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"

value="#{ch3ContactController.current.gender}">

 <f:selectItem itemValue="M" itemLabel="Male"/>

 <f:selectItem itemValue="F" itemLabel="Female"/>

 </h:selectOneRadio>

 <h:panelGroup>

 <h:outputLabel for="occupation" value="Occupation: "/>

 <h:selectOneMenu id="occupation"

value="#{ch3ContactController.current.occupation}">

 <f:selectItems value="#{ch3ContactController.

occupationList}"/>

 </h:selectOneMenu>

 </h:panelGroup>

 <h:message id="genderError"

 for="gender"

 errorStyle="color:red"/>

ChaPTer 3 advanCed JavaServer FaCeS

252

 </h:panelGrid>

 <h:outputLabel for="description" value="Enter your book

interests"/>

 <h:inputTextarea id="description" rows="5" cols="75"

value="#{ch3ContactController.current.description}"/>

 <h:panelGrid columns="2">

 <h:outputLabel for="password" value="Enter a password for

site access: "/>

 <h:inputSecret id="password" size="40"

value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="blur" render="passwordError"/>

 </h:inputSecret>

 <h:outputLabel for="passwordConfirm" value="Confirm

Password: "/>

 <h:inputSecret id="passwordConfirm" size="40"

value="#{ch3ContactController.passwordConfirm}"

 validator="#{ch3ContactController.

validatePassword}">

 <f:ajax event="blur" render="passwordConfirmError"/>

 </h:inputSecret>

 </h:panelGrid>

 <h:message id="passwordError"

 for="password"

 style="color:red"/>

 <h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

 <hr/>

ChaPTer 3 advanCed JavaServer FaCeS

253

 <h:panelGrid columns="3">

 <h:panelGroup>

 <h:outputLabel for="newsletterList"

value="Newsletters:" style=" "/>

 <h:selectManyListbox id="newsletterList"

value="#{ch3ContactController.current.newsletterList}">

 <f:selectItems value="#{ch3ContactController.

newsletterList}"/>

 </h:selectManyListbox>

 </h:panelGroup>

 <h:panelGroup/>

 <h:panelGroup>

 <h:panelGrid columns="1">

 <h:panelGroup>

 <h:outputLabel for="notifyme" value="Would you

like to receive other promotional email?"/>

 <h:selectBooleanCheckbox id="notifyme"

value="#{ch3ContactController.current.

receiveNotifications}"/>

 </h:panelGroup>

 <h:panelGroup/>

 <hr/>

 <h:panelGroup/>

 <h:panelGroup>

 <h:outputLabel for="notificationTypes"

value="What type of notifications are you

interested in receiving?"/>

 <h:selectManyCheckbox id="notifyTypes"

value="#{ch3ContactController.current.

notificationType}">

 <f:selectItems value="#

{ch3ContactController.notificationTypes}"/>

ChaPTer 3 advanCed JavaServer FaCeS

254

 </h:selectManyCheckbox>

 </h:panelGroup>

 </h:panelGrid>

 </h:panelGroup>

 </h:panelGrid>

 <hr/>

 <h:commandButton id="contactSubmit" action="#{ch3Contact

Controller.subscribe}" value="Save"/>

 <h:panelGrid columns="2" width="400px;">

 <h:commandLink id="manageAccount" action="#{ch3Contact

Controller.manage}" value="Manage Subscription"/>

 <h:outputLink id="homeLink" value="home.xhtml">Home</

h:outputLink>

 </h:panelGrid>

 </h:form>

 </ui:define>

</ui:composition>

Once the input components have been “Ajaxified” by embedding the f:ajax tag

within them, then tabbing through the fields (causing the onBlur event to occur for each

field) will result in a form that resembles Figure 3-5.

ChaPTer 3 advanCed JavaServer FaCeS

255

 How It Works
In releases of JSF prior to 2.0, performing immediate validation required the manual

coding of JavaScript or a third-party component library. The f:ajax tag was added to the

JSF arsenal with the release of 2.0, bringing with it the power to easily add immediate

validation (and other asynchronous processes) to JSF views using standard or third-

party components. The f:ajax tag can be embedded within any JSF input component

in order to immediately enhance the component, adding Ajax capabilities to it. This

provides many benefits to the developer in that there is no longer a need to manually

code JavaScript to perform client-side validation. It also allows validation to occur on the

server (in Java code within a JSF controller class) asynchronously, providing seamless

interaction between the client and server and generating an immediate response to

the client. The result is a rich modern web application that behaves in much the same

manner as a native desktop application. Validation can now occur instantaneously in

front of an end user’s eyes without the need to perform several page submits in order to

repair all of the possible issues.

Figure 3-5. Ajax validation using the f:ajax tag

ChaPTer 3 advanCed JavaServer FaCeS

256

To use the f:ajax tag, simply embed it within any JSF component. There are a

number of attributes that can be specified with f:ajax, as described in Table 3-12. If

an attribute is not specified, then the default values are substituted. It is quite possible

to include no attributes in an f:ajax tag, and if this is done, then the default attribute

values for the component in which the f:ajax tag is embedded will take effect.

Table 3-12. f:ajax Tag Attributes

Attribute Description

delay a value that is specified in milliseconds, corresponding to the amount of

delay between sending ajax requests from the client-side queue to the server.

The value none can be specified to disable this feature.

disabled Boolean value indicating the tag status. a value of true indicates that the

ajax behavior should not be rendered, and a value of false indicates that

the ajax behavior should be rendered. The default value is false.

event a String that identifies the type of event to which the ajax action shall apply.

If specified, it must be one of the supported component events. The default

value is the event that triggers the ajax request for the parent component

of the ajax behavior. The default event is action for ActionSource

components and is valueChange for EditableValueHolder components.

execute a collection that identifies a list of components to be executed on the server.

a space- delimited String of component identifiers can be specified as the

value for this attribute, or a ValueExpression (JSF eL) can be specified.

The default value is @this, meaning the parent component of the ajax

behavior.

immediate Boolean value indicating whether the input values are processed early in the

life cycle. If true, then the values are processed, and their corresponding

events will be broadcast during the apply request values phase; otherwise,

the events will be broadcast during the Invoke application phase.

listener name of the listener method that is called when an AjaxBehaviorEvent

has been broadcast for the listener.

onevent name of the JavaScript function used to handle UI events.

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

257

Attribute Description

onerror name of the JavaScript function used to handle errors.

resetValues If true, then this particular ajax transaction will reset the values.

render Collection that identifies the components to be rendered on the client

when the ajax behavior is complete. a space-delimited String of

component identifiers can be specified as the value for this attribute, or a

ValueExpression (JSF eL) can be specified. The default value is @none,

meaning that no components will be rendered when the ajax behavior is

complete.

Table 3-12. (continued)

The execute and render attributes of the f:ajax tag can specify a number of

keywords to indicate which components are executed on the server for the Ajax behavior

or which are rendered again after the Ajax behavior is complete, respectively. Table 3-13

lists the values that can be specified for both of these two attributes.

Table 3-13. f:ajax Tag execute and render Attribute Values

Attribute Value Description

@all all component identifiers are executed on the server, and all component

identifiers are re-rendered once ajax behavior is complete.

@form The form that encloses the component.

@none no component identifiers (default for the render attribute).

@this The ajax behavior parent component.

@child(n) The nth child of the base component.

@composite Closest composite component ancestor of the base component.

@id(id) all component descendants of the base component with the specified id.

@namingcontainer Closest namingContainer ancestor of the base component.

@next next component in view after the base component.

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

258

In the example for this recipe, an f:ajax tag has been embedded inside many of

the input components within the form. Each of those components has been Ajaxified,

in that the data entered as the values for the components will now have the ability

to be processed using the JavaScript resource library associated with JSF. Behind

the scenes, the jsf.ajax.request() method of the JavaScript resource library will

collect the data for each component that has been Ajaxified and post the request to

the JavaServer Faces life cycle. In effect, the data is sent to the controller class property

without submitting the page in a traditional fashion. Notice that the event attribute

specifies a JavaScript event that will be used to trigger the Ajax behavior. The JavaScript

events that can be specified for the event attribute are those same JavaScript event

attributes that are available on the parent component’s tag, but the on prefix has been

removed. For instance, if you want to perform an Ajax behavior on an inputText

component when it loses focus, you would specify blur for the f:ajax event attribute

rather than onBlur. Applying this concept to the example, when a user leaves the

first or last name field, they will be validated using their associated f:validate tags

immediately because the f:ajax tag has been embedded in them and the event on the

f:ajax tag is specified as blur. When the Ajax behavior (the validation in this case) is

complete, then the components whose identifiers are specified in the f:ajax render

attribute will be re-rendered. In the case of the first and last inputText fields, their

associated message components will be re- rendered, displaying any errors that may

have occurred during validation.

Attribute Value Description

@parent Parent of the base component.

@previous Previous component to the base component.

@root UIviewroot.

Component Ids Space-separated list of individual component identifiers.

JSF eL expression that resolves to a collection of string identifiers.

Table 3-13. (continued)

ChaPTer 3 advanCed JavaServer FaCeS

259

UTILIZING AN ACTION LISTENER

It is possible to bind an action listener to an f:ajax tag so that when the invoking action

occurs, the listener method is invoked. Why would you want to bind an action listener?

There are any reasons to do so. For instance, suppose you wanted to capture the text

that a user is typing into a text field. You could do so by binding an action method within

a controller class to the listener attribute of an inputText field’s corresponding f:ajax

tag and then obtaining the current component’s value from the AjaxBehaviorEvent

object within the action method. For instance, suppose that you wanted to test a password

for complexity and display a corresponding message indicating whether a password was

strong enough. The inputSecret component for the password could be modified to

include an f:ajax tag with an event specification of keyup and a listener specified as

#{ch3ContactController.passwordStrength}, as the following listing demonstrates:

Within the view:

<h:outputLabel for="password" value="Enter a password for site access: "/>

<h:inputSecret id="password" size="40"

 value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="keyup" listener="#{ch3ContactController.passwordStrength}"

 render="passwordStrengthMessage"/>

</h:inputSecret>

...

Within the controller:

. . .

private String passwordStrengthMessage;

. . .

public void passwordStrength(AjaxBehaviorEvent event){

 UIInput password = (UIInput) event.getComponent();

 boolean isStrong = false;

 String input = password.getValue().toString();

 if(input.matches("((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).{6,})")) {
 isStrong = true;

 }

ChaPTer 3 advanCed JavaServer FaCeS

260

 if(isStrong == true){

 setPasswordStrengthMessage("Password is strong");

 } else {

 setPasswordStrengthMessage("Password is weak");

 }

 }

The code in this example would create a listener event that, when a user types a value, would

check the present entry to determine whether it met the given criteria for a secure password.

a message would then be displayed to the user to let them know whether the password was

secure.

Using the f:ajax tag makes it easy to add Ajax behavior to a JSF component. Before

the f:ajax tag, special third-party JavaScript libraries were often used to incorporate

similar behaviors within JSF views. f:ajax adds the benefit of allowing the developer

to choose between using Ajax behaviors, without the need for coding a single line of

JavaScript.

3-6. Submitting Pages Without Page Reloads
 Problem
You want to enable your input form to have the ability to submit input fields for

processing without reloading the page. In essence, you want your web application input

form to react more like that of a desktop application rather than navigating from page to

page in order to process data.

 Solution
Embed an <f:ajax/> tag within the command component in the view so that the CDI

controller class action is invoked without the page being submitted. Enable f:ajax to

update the messages component in the view so that any errors or success messages that

result from the processing can be displayed. In this example, the newsletter subscription

page for the Acme Bookstore will be changed so that the form is submitted using Ajax,

and the commandButton component is processed without submitting the form in a

ChaPTer 3 advanCed JavaServer FaCeS

261

traditional manner. The following excerpt from the newsletter subscription form sources

from recipe03_06.xhtml, which demonstrates how to add Ajax functionality to the

action components within the form:

<h:commandButton id="contactSubmit" action="#{ch3ContactController.

subscribe}"

 value="Save">

 <f:ajax event="action" execute="@form" render="@all"/>

</h:commandButton>

<h:panelGrid columns="2" width="400px;">

When the button or link is clicked, JavaScript will be used in the background to

process the request so that the results will be displayed immediately without needing to

refresh the page.

 How It Works
The user experience for web applications has traditionally involved a point, click, and

page refresh mantra. While this type of experience is not particularly a bad one, it is not

as nice as the immediate response that is oftentimes presented within a native desktop

application. The use of Ajax within web applications has helped create a more unified

user experience, allowing a web application the ability to produce an “immediate”

response much like that of a native desktop application. Field validation (covered

in Recipe 3-5) is a great candidate for immediate feedback, but another area where

immediate responses work well is when forms are being submitted.

The f:ajax tag can be embedded in an action component in order to invoke the

corresponding action method using JavaScript behind the scenes. The f:ajax tag

contains a number of attributes, covered in Table 3-12 (see Recipe 3-5), that can be used

to invoke Ajax behavior given a specified event and re-render view components when

that Ajax behavior is complete. Please refer to Table 3-13 to see the values that can be

specified for the execute and render attributes of the f:ajax tag.

In the example for this recipe, the commandButton component with an identifier of

contactSubmit contains an f:ajax tag that specifies the event attribute as action, the

execute attribute as @form, and the render attribute as @all. This means that when

the button is invoked, the ch3ContactController.subscribe method will be called

asynchronously using JavaScript, and it will send all the input component values

ChaPTer 3 advanCed JavaServer FaCeS

262

from the form to the server (controller class) for processing. When the Ajax behavior

(subscribe method) is complete, all of the components within the view will be re-

rendered. By re-rendering all the components in the view, this allows those message

components to display any messages that have been queued up as a result of failed

validation or a successful form submission. It is possible to process or render only

specified components during an Ajax behavior; to learn more about doing so, please see

Recipe 3-7.

Note The event attribute has a default value of action when the f:ajax tag
is embedded within a UICommand component. however, it is specified in the code
for this example for consistency.

3-7. Making Partial-Page Updates
 Problem
You want to execute only a section of a page using an Ajax event and then render the

corresponding section’s components when the Ajax behavior is complete.

 Solution
Use the f:ajax tag to add Ajax functionality to the components that you want to execute

and render when the Ajax behavior is completed. Specify only the component identifiers

corresponding to those components, or @form, @this, or one of the other execute

keywords, for the f:ajax tag execute attribute. Likewise, specify only the component

identifiers for the corresponding message components within the render attribute.

Suppose that the Acme Bookstore wants to execute the submission of the

newsletter subscription form values and update the form’s global message only when

the submission is complete. The following commandButton component would execute

only the form in which it is placed and the component corresponding to the identifier

newsletterSubscriptionMsgs:

ChaPTer 3 advanCed JavaServer FaCeS

263

<h:commandButton id="contactSubmit" action="#{ch3ContactController.

subscribe}" value="Save">

 <f:ajax event="action" execute="@form" render="newsletterSubscription

Msgs"/>

</h:commandButton>

When the button is clicked, the current form component values will be processed

with the request, and the ContactController controller class subscribe() method will

be invoked. Once the subscribe() method is complete, the component within the form

that contains an identifier of newsletterSubscriptionMsgs (in this case a messages

component) will be re-rendered.

Note In the case of the newsletter subscription form for the acme Bookstore, a
partial-page render upon completion is a bad idea. This is because the form will
never be submitted if the values within the form do not validate correctly. In this
case, if some of the form values do not validate correctly, then nothing will be
displayed on the page when the save button is clicked because the subscribe
method will never be invoked. If the f:ajax tag’s render attribute is set to
@all, then all of the components that failed validation will have a corresponding
error message that is displayed. This example should demonstrate how important
it is to process the appropriate portions of the page for the result you are trying to
achieve.

 How It Works
The f:ajax tag makes it simple to perform partial-page updates. To do so, specify the

identifiers for those components that you want to execute for the f:ajax execute

attribute. As mentioned in the example for this recipe, suppose you want to execute only

a portion of a page, rather than all of the components on the given page. You could do so

by identifying the components that you want to execute within the view, specifying them

within the f:ajax execute attribute, and then rendering the corresponding message

components when the Ajax behavior was completed. If nothing is specified for an

f:ajax execute attribute, then the f:ajax tag must be embedded inside a component,

in which case the parent component would be executed. Such is the default behavior

ChaPTer 3 advanCed JavaServer FaCeS

264

for the f:ajax execute attribute. In the example, the execute attribute of the f:ajax

tag specifies the @form keyword, rather than a specific component id. As mentioned

previously, a number of keywords can be specified for both the execute and render

attributes of the f:ajax tag. Those keywords are listed in Table 3-13, which describes

that the @form keyword indicates that all components within the same form as the given

f:ajax tag will be executed when the Ajax behavior occurs. Therefore, all fields within

the newsletter subscription form in this example will be sent to the controller class for

processing when the button is clicked.

The same holds true for the render attribute, and once the Ajax behavior has

completed, any component specified for the render attribute of the f:ajax tag will be

re-rendered. Thus, if a validation occurs when a component is being processed because

of the result of an f:ajax method call, a corresponding validation failure message can be

displayed on the page after the validation fails. Any component can be rendered again,

and the same keywords that can be specified for the execute attribute can also be used

for the render attribute. In the example, the newsletterSubscriptonMsgs component is

rendered once the Ajax behavior is completed.

3-8. Applying Ajax Functionality to a Group
of Components
 Problem
You want to apply Ajax functionality to a group of input components, rather than to each

component separately.

 Solution
Enclose any components to which you want to apply Ajax functionality within an

f:ajax tag. The f:ajax tag can be the parent to one or more JSF components, in

which case each of the child components inherits the given Ajax behavior. Applying

Ajax functionality to multiple components is demonstrated in the following code

listing. In the following example excerpt, the newsletter subscription view of the Acme

Bookstore application is adjusted so that each of the inputText components that

contains a validator is enclosed by a single f:ajax tag. Given that each of the inputText

ChaPTer 3 advanCed JavaServer FaCeS

265

components is embodied within the same f:ajax tag, the f:ajax render attribute has

been set to specify the message component for each of the corresponding inputText

fields in the group:

<ui:define name="content">

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{ch3ContactController.

newsletterDescription}"/>

 </p>

 <h:messages id="newsletterSubscriptionMsgs" global Only="true"

errorStyle="color: red" infoStyle="color: green"/>

 <f:ajax event="blur" render="firstError lastError emailError

genderError passwordError passwordConfirmError">

 <h:panelGrid columns="2" bgcolor="" border="0">

 <h:panelGroup>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{ch3ContactController.current.first}">

 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{ch3ContactController.current.last}">

 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>

 </h:panelGroup>

ChaPTer 3 advanCed JavaServer FaCeS

266

 <h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

 <h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

 <h:panelGroup>

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{ch3ContactController.current.email}">

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup/>

 <h:message id="emailError"

 for="email"

 errorStyle="color:red"/>

 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"

value="#{ch3ContactController.current.gender}">

 <f:selectItem itemValue="M" itemLabel="Male"/>

 <f:selectItem itemValue="F" itemLabel="Female"/>

 </h:selectOneRadio>

 <h:panelGroup>

 <h:outputLabel for="occupation" value="Occupation: "/>

 <h:selectOneMenu id="occupation"

value="#{ch3ContactController.current.occupation}">

 <f:selectItems value="#{ch3ContactController.

occupationList}"/>

 </h:selectOneMenu>

 </h:panelGroup>

 <h:message id="genderError"

 for="gender"

 errorStyle="color:red"/>

 </h:panelGrid>

ChaPTer 3 advanCed JavaServer FaCeS

267

 <h:outputLabel for="description" value="Enter your book

interests"/>

 < h:inputTextarea id="description" rows="5" cols="75"

value="#{ch3ContactController.current.description}"/>

 <h:panelGrid columns="2">

 <h:outputLabel for="password" value="Enter a password for

site access: "/>

 <h:inputSecret id="password" size="40"

value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="keyup" listener="#{ch3ContactController.

passwordStrength}" render="passwordStrengthMessage"/>

 </h:inputSecret>

 <h:outputLabel for="passwordConfirm" value="Confirm

Password: "/>

 <h:inputSecret id="passwordConfirm" size="40"

value="#{ch3ContactController.passwordConfirm}"

 validator="#{ch3ContactController.

validatePassword}">

 </h:inputSecret>

 </h:panelGrid>

 <h:panelGroup>

 <h:outputText id="passwordStrengthMessage"

value="#{ch3ContactController.passwordStrengthMessage}"/>

 <h:message id="passwordError"

 for="password"

 style="color:red"/>

 </h:panelGroup>

ChaPTer 3 advanCed JavaServer FaCeS

268

 <h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

 <hr/>

 <h:panelGrid columns="3">

 <h:panelGroup>

 <h:outputLabel for="newsletterList"

value="Newsletters:" style=" "/>

 <h:selectManyListbox id="newsletterList"

value="#{ch3ContactController.current.newsletterList}">

 <f:selectItems value="#{ch3ContactController.

newsletterList}"/>

 </h:selectManyListbox>

 </h:panelGroup>

 <h:panelGroup/>

 <h:panelGroup>

 <h:panelGrid columns="1">

 <h:panelGroup>

 <h:outputLabel for="notifyme" value="Would you

like to receive other promotional email?"/>

 <h:selectBooleanCheckbox id="notifyme"

value="#{ch3ContactController.current.

receiveNotifications}"/>

 </h:panelGroup>

 <h:panelGroup/>

 <hr/>

 <h:panelGroup/>

 <h:panelGroup>

 <h:outputLabel for="notificationTypes"

value="What type of notifications are you

interested in recieving?"/>

ChaPTer 3 advanCed JavaServer FaCeS

269

 <h:selectManyCheckbox id="notifyTypes"

value="#{ch3ContactController.current.

notificationType}">

 <f:selectItems value="#{ch3Contact

Controller.notificationTypes}"/>

 </h:selectManyCheckbox>

 </h:panelGroup>

 </h:panelGrid>

 </h:panelGroup>

 </h:panelGrid>

 <hr/>

 </f:ajax>

 <h:commandButton id="contactSubmit" action="#{ch3ContactController.

subscribe}" value="Save">

 <f:ajax event="action" execute="@form" render="@all"/>

 </h:commandButton>

 <h:panelGrid columns="2" width="400px;">

 <h:commandLink id="manageAccount" action="#{ch3Contact

Controller.manage}" value="Manage Subscription">

 <f:ajax event="action" execute="@this" render="@all"/>

 </h:commandLink>

 <h:outputLink id="homeLink" value="home.xhtml">Home

</h:outputLink>

 </h:panelGrid>

 </h:form>

</ui:define>

When the page is rendered, each component will react separately given their

associated validations. That is, if validation fails for one component, only the message

component that corresponds with the component failing validation will be displayed,

although each component identified within the f:ajax render attribute will be

re- rendered.

ChaPTer 3 advanCed JavaServer FaCeS

270

Note as a result of specifying a global f:ajax tag, the password component can
now execute two ajax requests. One of the ajax requests for the field is responsible
for validating to ensure that the field is not blank, and the other is responsible for
ensuring that the given password String is strong.

 How It Works
Grouping multiple components with the same Ajax behavior has its benefits. For one,

if the behavior needs to be adjusted for any reason, one change can now be made to

the Ajax behavior, and each of the components in the group can benefit from the single

adjustment. However, the f:ajax tag is smart enough to enable each component to

still utilize separate functionality, such as validation or actions, so each can still have

their own customized Ajax behavior. To group components under a single f:ajax tag,

they must be added to the view as subelements of the f:ajax tag. That is, any child

components must be enclosed between the opening and closing f:ajax tags. All of the

enclosed components will then use Ajax to send requests to the server using JavaScript

in an asynchronous fashion.

In the example for this recipe, a handful of the inputText components within the

newsletter subscription view have been embodied inside an f:ajax tag so that their

values will be validated using server-side bean validation when they lose focus. The

f:ajax tag that is used to group the components has an event attribute set to blur,

and its render attribute contains the String-based identifier for each of the message

components corresponding to the components that are included in the group. The

space-separated list of component ids is used to re-render each of the message

components when the Ajax behavior is complete, displaying any errors that occur as a

result of the validation.

3-9. Custom Processing of Ajax Functionality
 Problem
You want to customize the Ajax processing for JSF components within a view in your

application.

ChaPTer 3 advanCed JavaServer FaCeS

271

 Solution
Write the JavaScript that will be used for processing your request, and utilize the

jsf.ajax.request() function along with one of the standard JavaScript event-handling

attributes for a JSF component. The following example is the JSF view for the newsletter

subscription page for the Acme Bookstore application. All of the f:ajax tags that were

previously used for validating inputText fields (Recipe 3-1) have been removed, and the

onblur attribute of each inputText component has been set to use the

jsf.ajax.request() method in order to Ajaxify the component. The following excerpt

is taken from the view named recipe03_09.xhtml, representing the updated newsletter

subscription JSF view:

...

 <h:outputScript name="jsf.js" library="javax.faces"

target="head"/>

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{ch3ContactController.

newsletterDescription}"/>

 </p>

 <h:messages id="newsletterSubscriptionMsgs"

globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:panelGrid columns="2" bgcolor="" border="0">

 <h:panelGroup>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{ch3ContactController.current.first}"

 onblur="jsf.ajax.request(this,

event, {execute: 'first', render:

'firstError'});

ChaPTer 3 advanCed JavaServer FaCeS

272

 return false;">

 <f:validateLength minimum="1"

maximum="40"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{ch3ContactController.current.last}"

 onblur="jsf.ajax.request(this,

event, {execute: 'last', render:

'lastError'});

 return false;">

 <f:validateLength minimum="1"

maximum="40"/>

 </h:inputText>

 </h:panelGroup>

 <h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

 <h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

 <h:panelGroup>

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{ch3ContactController.current.email}"

 onblur="jsf.ajax.request(this,

event, {execute: 'email', render:

'emailError'});

 return false;"/>

 </h:panelGroup>

 <h:panelGroup/>

 <h:message id="emailError"

ChaPTer 3 advanCed JavaServer FaCeS

273

 for="email"

 errorStyle="color:red"/>

 <h:panelGroup/>

...

Note The <h:panelGroup/> tag is used to add a placeholder panel group to
the grid for spacing purposes.

Using this technique, the inputText components that specify Ajax behavior for the

onblur event will asynchronously have their values validated when they lose focus. If any

custom JavaScript code needs to be used, it can be added to the same inline JavaScript

call to jsf.ajax.request().

Note Method calls to CdI controllers cannot be made using the jsf.ajax.
request() technique, so it is not possible to invoke a listener explicitly with the
ajax request.

 How It Works
The JavaScript API method jsf.ajax.request() can be accessed directly by a

Facelets application, enabling a developer to have slightly more control than using

the f:ajax tag. Behind the scenes, the f:ajax tag is converted into a call to jsf.

ajax.request(), sending the parameters as specified via the tag’s attributes. To

use this technique, you must include the jsf.js library within the view. A JSF

outputScript tag should be included in the view, specifying jsf.js as the script

name and javax.faces as the library. The jsf.js script within this example

will be placed in the head of the view, which is done by specifying head for the

target attribute of the outputScript tag. The following excerpt from the example

demonstrates what the tag should look like:

<h:outputScript name="jsf.js" library="javax.faces" target="head"/>

ChaPTer 3 advanCed JavaServer FaCeS

274

Note To avoid nested Ids, it is a good idea to specify the h:form attribute of
prependId=“false” when using jsf.ajax.request() manually. For instance,
the form tag should look as follows:

<h:form prependId="false">

The jsf.ajax.request() method can be called inline, as is the case with the

example for this recipe, and it can be invoked from within any of the JavaScript event

attributes of a given component. The format for calling the JavaScript method is as

follows:

jsf.ajax.request(component, event,{execute:'id or keyword', render:'id or

keyword'});

Usually when the request is made using an inline call, the this keyword is specified

for the first parameter, signifying that the current component should be passed. The

event keyword is passed as the second parameter, and it passes with it the current event

that is occurring against the component. Lastly, a map of name-value pairs is passed,

specifying the execute and render attributes along with the component identifiers

or keywords that should be executed and rendered after the execution completes,

respectively. For a list of the valid keywords that can be used, please refer to Table 3-2

within the introduction to this chapter.

Note You can also utilize the jsf.ajax.request method from within a
controller class by specifying the @ResourceDependency annotation
(https://jakarta.ee/specifications/faces/2.3/apidocs/javax/
faces/application/ResourceDependency.html) as follows:

@ResourceDependency(name="jsf.js" library="javax.faces"
target="head")

ChaPTer 3 advanCed JavaServer FaCeS

https://jakarta.ee/specifications/faces/2.3/apidocs/javax/faces/application/ResourceDependency.html
https://jakarta.ee/specifications/faces/2.3/apidocs/javax/faces/application/ResourceDependency.html

275

3-10. Listening for System-Level Events
 Problem
You want to invoke a method within your application whenever a system-level event

occurs.

 Solution
Create a system event listener class by implementing the SystemEventListener

interface and overriding the processEvent(SystemEvent event) and

isListenerForSource(Object source) methods. Implement these methods

accordingly to perform the desired event processing. The following code listing is for a

class named BookstoreAppListener, and it is invoked when the application is started up

or when it is shutting down:

public class BookstoreAppListener implements SystemEventListener {

 @Override

 public void processEvent(SystemEvent event) throws

AbortProcessingException {

 if(event instanceof PostConstructApplicationEvent){

 System.out.println("The application has been constructed...");

 }

 if(event instanceof PreDestroyApplicationEvent){

 System.out.println("The application is being destroyed...");

 }

 }

 @Override

 public boolean isListenerForSource(Object source) {

 return(source instanceof Application);

 }

}

ChaPTer 3 advanCed JavaServer FaCeS

276

Next, the system event listener must be registered in the faces-config.xml file.

The following excerpt is taken from the faces-config.xml file for the Acme Bookstore

application:

...

<application>

 <system-event-listener>

 <system-event-listener-class>

 org.jakartaeerecipes.

chapter03.recipe03_10.

BookstoreAppListener

 </system-event-listener-class>

 <system-event-class>

 javax.faces.event.

PostConstructApplicationEvent

 </system-event-class

 </system-event-listener>

 <system-event-listener>

 <system-event-listener-class>

 org.jakartaeerecipes.

chapter03.recipe03_10.

BookstoreAppListener

 </system-event-listener-class>

 <system-event-class>

 javax.faces.event.

PreDestroyApplicationEvent

 </system-event-class

 </system-event-listener>

 </application>

...

When the application is started, the message “The application has been

constructed…” will be displayed in the server log. When the application is shutting down,

the message “The application is being destroyed…” will be displayed in the server log.

ChaPTer 3 advanCed JavaServer FaCeS

277

 How It Works
The ability to perform tasks when an application starts up can sometimes be useful. For

instance, let’s say you’d like to have an email sent to the application administrator each time

the application starts. You can do this by performing the task of sending an email within

a class that implements the SystemEventListener interface. A class that implements

SystemEventListener must then override two methods, processEvent(SystemEvent

event) and isListenerForSource(Object source). The processEvent() method is where

the real action occurs, because it is the method into which your custom code should be

placed. Whenever a system event occurs, the processEvent() method is invoked. In this

method, you will need to perform a check to determine what type of event has occurred

so that you can process only those events that are pertinent. To determine the event that

has occurred, perform an instanceof() check on the SystemEvent object. In the example,

there are two if statements used to determine the type of event that is occurring and to

print a different message for each. If the event type is of PostConstructApplicationEvent,

then that means the application is being constructed. Otherwise, if the event type

is of PreDestroyApplicationEvent, the application is about to be destroyed. The

PostConstructApplicationEvent event is called just after the application has been

constructed, and PreDestroyApplicationEvent is called just prior to the application

destruction.

The other method that must be overridden within the SystemEventListener class is

named isListenerForSource(). This method must return true if this listener instance

is interested in receiving events from the instance referenced by the source parameter.

Since the example class is built to listen for system events for the application, a true

value is returned if the source parameter is an instance of Application.

After the system event listener class has been written, it needs to be registered with the

application. In the example, you want to listen for both the PostConstructApplicationEvent

and the PreDestroyApplicationEvent, so there needs to be a system-event-listener

element added to the faces-config.xml file for each of these events. Within the system-

event-listener element, specify the name of the event listener class within a system-

event-listener-class element and the name of the event within a system-event-

class element.

ChaPTer 3 advanCed JavaServer FaCeS

278

3-11. Listening for Component Events
 Problem
You want to invoke a listener method when a specified component event is occurring.

For instance, you want to listen for a component render event.

 Solution
Embed an f:event tag within the component for which you want to listen for events.

The f:event tag allows components to invoke controller class listener methods based

upon the current component state. For instance, if a component is being rendered or

validated, a specified listener method could be invoked. In the example for this recipe,

an outputText component is added to the book view of the Acme Bookstore application

to specify whether the current book is in the user’s shopping cart. When the outputText

component is being rendered, a component listener is invoked that checks the current

state of the cart to see whether the book is contained within it. If it is in the cart, then

the outputText component will render a message stating so; if not, then the outputText

component will render a message stating that it is not in the cart.

The following excerpt is taken from a view named recipe03_10.xhtml, a derivative

of the book view for the application. It demonstrates the use of the f:event tag within a

component. Note that the outputText component contains no value attribute because

the value will be set within the event listener:

...

<h:outputText id="isInCart" style="font-style: italic; color: ">

 <f:event type="preRenderComponent" listener="#{ch3CartController.

isBookInCart}"/>

</h:outputText>

...

The CartController class contains a method named isBookInCart(Compone

ntSystemEvent). The f:event tag in the view references this listener method via

the CartController controller name ch3CartController. The listener method

is responsible for constructing the text that will be displayed in the outputText

component:

ChaPTer 3 advanCed JavaServer FaCeS

279

public void isBookInCart(ComponentSystemEvent event) {

 UIOutput output = (UIOutput) event.getComponent();

 if (cart != null) {

 if (searchCart(authorController.getCurrentBook()

.getTitle()) > 0) {

 output.setValue("This book is currently in your cart.");

 } else {

 output.setValue("This book is not in your cart.");

 }

 } else {

 output.setValue("This book is not in your cart.");

 }

 }

 How It Works
Everything that occurs within JSF applications is governed by the JSF application life

cycle. As part of the life cycle, JSF components go through different phases throughout

their lifetimes. Listeners can be added to JSF components to perform different tasks

when a given phase is beginning or ending. There are two pieces to the puzzle for

creating a component listener: the tag that is embedded within the component for

which your listener will perform tasks and the listener method itself. To add a listener

to a component, the f:event tag should be embedded within the opening and closing

tags of the component that will be interrogated. The f:event tag contains a handful of

attributes, but only two of them are mandatory for use: type and listener. The type

attribute specifies the type of event that will be listened for, and the listener attribute

specifies the controller class listener method that will be invoked when that event occurs.

The valid values that could be specified for the name attribute are preRenderComponent,

postAddToView, preValidate, and postValidate. In addition to these event values, any

Java class that extends javax.faces.event.ComponentSystemEvent can also be specified

for the name attribute.

The listener method must accept a ComponentSystemEvent object. In the example,

the listener checks to see whether the shopping cart is null, and if it is, then a message

indicating an empty cart will be set for the outputText component’s value. Otherwise,

if the cart is not empty, then the method looks through the List of books in the cart to

ChaPTer 3 advanCed JavaServer FaCeS

280

see whether the currently selected book is in the cart. A message indicating whether

the book is in the cart is then added to the value of the outputText component. Via the

listener, the actual value of the component was manipulated. Such a technique could be

used in various ways to alter components to suit the needs of the situation.

3-12. Developing a Page Flow
 Problem
You want to develop a flow of pages within your application that share information with

one another.

 Solution
Define a page flow using the faces flow technology, a solution that allows a defined set

of views to be interrelated with one another to share a common set of data, and views

outside of the flow do not have access to the flow’s data. Flows also have their own set of

navigational logic, so they are almost like a subprogram within an application. To enable

an application to utilize faces flow, a <flow-definition> section should be added to the

faces-config.xml file. The section can be empty, because the navigational logic can

instead reside in a separate configuration file for the flow. The following faces-config.

xml file demonstrates how to enable faces flow for an application:

<faces-config version="2.3"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd">

 ...

<flow-definition>

 </flow-definition>

 ...

</faces-config>

ChaPTer 3 advanCed JavaServer FaCeS

281

The views belonging to a flow should be separated from the rest of the application

views and placed into a folder at the root of the application’s web directory. The folder

containing the flow views should be named the same as the flow identifier. Navigation

and configuration code is contained within a separate XML configuration file that

resides within the flow view directory, and the file is named flowname-flow.xml,

where flowname is the flow identifier. The following configuration file demonstrates

the configuration for a very basic flow identified by exampleFlow. You can find

more information regarding the different elements that can be used within the flow

configuration in the “How It Works” section:

<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

 <flow-definition id="exampleFlow">

 </flow-definition>

</faces-config>

The views belonging to the flow should reside within the flow folder alongside the

flow configuration file. Each of the views can access a controller class that is dedicated

to facilitating the flow. The flows share a context that begins when the flow is accessed

and ends when the flow exits. The following view demonstrates the entry point to a flow

named exampleFlow. This example view can be found in the book sources in the file

recipes03_12.xhtml:

<ui:composition xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

ChaPTer 3 advanCed JavaServer FaCeS

282

 <h:form id="flowForm">

 <p>

 Faces Flow Example

 </p>

 <h:commandButton value="Begin Flow" action="exampleFlow"/>

 <h:commandButton value="Stay Here" action="stay"/>

 </h:form>

 </ui:define>

</ui:composition>

Next, let’s take a look at a view that is accessing the controller class that is dedicated

to the flow. In the following view, the controller class named FlowBean is accessed

to invoke a method, which will return an implicit navigational String directing

the application to the next view in the flow. Notice that this view also accesses the

facesContext.application.flowHandler, which I will discuss more in the “How It

Works” section:

<h:body>

 <f:view>

 <h:form>

 <p>

 This is the first view of the flow.

 Flow ID: #{facesContext.application.flowHandler.currentFlow.id}

 <h:commandLink value="Go to another view in the flow"

action="#{flowBean.navMethod()}"/>

 </p>

 </h:form>

 </f:view>

 </h:body>

ChaPTer 3 advanCed JavaServer FaCeS

283

Each subsequent view within the flow can also access the resources of the

flow’s controller class. Lastly, you’ll look at the code that is contained within org.

jakartaeerecipes.chapter03.FlowBean, which is the controller class that is dedicated

to the flow:

import javax.faces.flow.FlowScoped;

import javax.inject.Named;

@Named

@FlowScoped("exampleFlow")

public class FlowBean implements java.io.Serializable {

 private String flowValue;

 private String parameter1;

 /**
 * Creates a new instance of FlowBean

 */

 public FlowBean() {

 }

 /**
 * Initializes the flow

 */

 public void initializeIt(){

 System.out.println("Initialize the flow...");

 }

 /**
 * Finalizes the flow

 */

 public void finalizeIt(){

 System.out.println("Finalize the flow...");

 }

 public String navMethod(){

 return "intermediateFlow";

 }

ChaPTer 3 advanCed JavaServer FaCeS

284

 public String testMethod(){

 return "intermediate";

 }

 public String endFlow(){

 return "endingFlow";

 }

 /**
 * @return the flowValue

 */

 public String getFlowValue() {

 return flowValue;

 }

 /**
 * @param flowValue the flowValue to set

 */

 public void setFlowValue(String flowValue) {

 this.flowValue = flowValue;

 }

 /**
 * @return the parameter1

 */

 public String getParameter1() {

 return parameter1;

 }

 /**
 * @param parameter1 the parameter1 to set

 */

 public void setParameter1(String parameter1) {

 this.parameter1 = parameter1;

 }

}

ChaPTer 3 advanCed JavaServer FaCeS

285

This solution provided a quick overview of the files that are required for creating a

flow within a JSF application. In the next section, I’ll cover the features in more detail.

 How It Works
The concept of session management has been a difficult feat to tackle since the

beginning of web applications. A web flow refers to a grouping of web views that are

related and must have the ability to share information with each view within the

flow. Many web frameworks have attempted to tackle this issue by creating different

solutions that would facilitate the sharing of data across multiple views. Oftentimes,

a mixture of session variables, request parameters, and cookies are used as a

patchwork solution.

Since JSF 2.2, a solution has been adopted for binding multiple JSF views to each

other, allowing them to share information among each other. This solution is referenced

as faces flow; and it allows a group of interrelated views to belong to a flow instance,

and information can be shared across all the views belonging to a flow instance. Flows

contain separate navigation that pertains to the flow itself and not the entire application.

As such, flow navigation can be defined in an XML format or via code. A flow contains a

single point of entry, and it can be called from any point within an application.

 Defining a Flow

As mentioned in the solution to this recipe, the faces-config.xml file for a JSF

application that will utilize the flow feature must contain a <flow-definition> section.

This section of the faces-config.xml file can contain information specific to one or

more flows residing within an application. However, for the purposes of this recipe, the

solution utilizes a separate XML configuration file for use with the flow. Either way will

work; the syntax does vary just a bit because the XML configuration file that is flow-

specific uses a new JSF taglib for accessing the flow-specific configuration tags.

Note To learn more about using the faces-config.xml file for flow
configuration, please refer to the online documentation (https://docs.oracle.
com/javaee/7/tutorial/jsf-configure003.htm).

ChaPTer 3 advanCed JavaServer FaCeS

https://docs.oracle.com/javaee/7/tutorial/jsf-configure003.htm
https://docs.oracle.com/javaee/7/tutorial/jsf-configure003.htm

286

Even if a flow is not using the faces-config.xml file for defining the flow

configuration, the <flow-definition> section must exist to tell the JSF runtime that

flows are utilized within the application.

The flow-specific configuration file and all flow-related views should reside within

the same folder, at the root of the application’s web directory. The name of the folder

should be the same as the flow identifier. As mentioned in the solution, the flow

configuration file should be named flowname-flow.xml, where flowname is the same as

the flow identifier.

 The Flow Controller Class

A flow contains its own controller class annotated as @FlowScoped, which differs from

@SessionScoped because the data can be accessed only by other views (ViewNodes)

belonging to the flow. The @FlowScoped annotation relies upon Contexts and

Dependency Injection (CDI), because FlowScoped is a CDI scope that causes the

runtime to consider classes with the @FlowScoped annotation to be in the scope of the

specified flow. A @FlowScoped bean maintains a life cycle that begins and ends with a

flow instance. Multiple flow instances can exist for a single application, and if a user

begins a flow within one browser tab and then opens another, a new flow instance will

begin in the new tab. This solution resolves many lingering issues around sessions and

standard browsers that allow users to open multiple tabs. To maintain separate flow

instances, the ClientId is used by JSF to differentiate among multiple instances.

Each flow can contain an initializer and a finalizer (i.e., a method that will be

invoked when a flow is entered and a method that will be invoked when a flow is exited,

respectively). To declare an initializer, specify a child element named <initializer>

within the flow configuration <flow-definition>. The initializer element can be an EL

expression that declares the controller class initializer method, as such:

...

<initializer>#{flowBean.initializeIt}></initializer>

...

Similarly, a <finalizer> element can be specified within the flow configuration

to define the method that will be called when the flow is exited. The following

demonstrates how to set the finalizer to an EL expression declaring the controller class

finalizer method:

ChaPTer 3 advanCed JavaServer FaCeS

287

...

<finalizer>#{flowBean.finalizeIt}></finalizer>

...

Flows can contain method calls and variable values that are accessible only via

the flow nodes. These methods and variables should be placed within the FlowScoped

bean and used the same as standard controller class methods and variables. The main

difference is that any method or variable that is defined within a FlowScoped bean is

available only for a single flow instance.

 Navigating Flow View Nodes

Flows contain their own navigational rules, which can be defined within the

faces-config.xml file or the individual flow configuration files. These rules can be

straightforward and produce a page-by-page navigation, or they can include conditional

logic. There are a series of elements that can be specified within the navigation rules,

which will facilitate conditional navigation. Table 3-14 lists the different elements, along

with an explanation of what they do.

Table 3-14. Flow Navigational Elements

Element Description

view navigates to a standard JSF view.

switch represents one or more eL expressions that conditionally evaluate to true

or false. If true, then navigation occurs to the specified view node.

flow- return Outcome determined by the caller of the flow.

flow- call represents a call to another flow; creates a nested flow.

method- call arbitrary method call that can invoke a method that returns a navigational

outcome.

ChaPTer 3 advanCed JavaServer FaCeS

288

The following navigational sequence is an example of a flow navigation that contains

conditional logic using the elements listed in Table 3-14:

<flow-definition>

 <start-node>exampleFlow</j:start-node>

 <switch id="startNode">

 <navigation-case>

 <if>#{flowBean.someCondition}</if>

 <from-outcome>newView</from-outcome>

 </navigation-case>

 </switch>

 <view id="oneFlow">

 <vdl-document>oneFlow.xhtml</vdl-document>

 </view>

 <flow-return id="exit">

 <navigation-case>

 <from-outcome>exitFlow</from-outcome>

 </navigation-case>

 </flow-return>

 <finalizer>#{flowBean.finalizeIt}</finalizer>

 </flow-definition>

 Flow EL

Flows contain a new EL variable named facesFlowScope. This variable is associated

with the current flow, and it is a map that can be used for storing arbitrary values for use

within a flow. The key-value pairs can be stored and read via a JSF view or through Java

code within a controller class. For example, to display the content for a particular map

key, you could use the following:

The content for the key is: #{facesFlowScope.myKey}

ChaPTer 3 advanCed JavaServer FaCeS

289

3-13. Broadcasting Messages from the Server to
All Clients
 Problem
Your organization has constructed a Jakarta EE application, and it is in use by a number

of clients. You wish to have the ability to send a message from the server and have that

message distributed to all of the clients at once.

 Solution
Make use of the f:websocket tag, which was new with the release of JSF 2.3, to send

a message to all listening clients. The following example includes a client view which

contains a text box, a send button, and a f:websocket tag. The user can type a message

into the text box and click the send button, and the typed message will be sent to all

other clients that are currently listening on the same channel:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <head>

 </head>

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="webSocketForm">

 <script type="text/javascript">

 function messageListener(message) {

 document.getElementById("messageDiv").innerHTML

+= message + "
";

 }

 </script>

ChaPTer 3 advanCed JavaServer FaCeS

290

 <p>

 Websocket Integration Example

 </p>

 <p>

 Enter text into the box below and press send

button. This will send

 a message to all connected clients.

 </p>

 <h:inputText id="websocketMessageText"

value="#{bookstoreController.messageText}"/>

 <h:commandButton id="sendMessage"

action="#{bookstoreController.sendMessage}"

value="Send">

 <f:ajax/>

 </h:commandButton>

 <f:websocket channel="messagePusher"

onmessage="messageListener" />

 <div id="messageDiv"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

The following code shows the server-side code behind the messagePusher channel

and the bookstoreController.sendMessage() method:

import java.util.Date;

import javax.enterprise.context.ApplicationScoped;

import javax.faces.push.Push;

import javax.faces.push.PushContext;

import javax.inject.Inject;

import javax.inject.Named;

ChaPTer 3 advanCed JavaServer FaCeS

291

@Named("bookstoreController")

@ApplicationScoped

public class BookstoreController {

 private Date dayAndTime = null;

 private int counter;

 @Inject

 @Push(channel="messagePusher")

 private PushContext push;

 private String messageText;

. . .

/**
 * Initiates a notification to all Websocket clients. This method is

used

 * for example 3-12.

 */

 public void sendMessage(){

 System.out.println("sending message");

 push.send(messageText);

 messageText = null;

 }

. . .

}

The resulting solution looks like the following. If one types and clicks send, all

listening clients (on the same view) will receive the message.

 How It Works
Websockets have become a standard protocol for client and server communication.

There are a couple of different ways in which to implement Websocket solutions.

One can utilize a framework such as Atmosphere to develop Websockets, or since the

release of Java EE 7, the native Websocket support can be utilized. Both approaches are

supported by the JSF Websocket. The support in JSF 2.3 includes both implementations,

ChaPTer 3 advanCed JavaServer FaCeS

292

so it provides some flexibility. To enable this support, one must specify the javax.faces.

ENABLE_WEBSOCKET_ENDPOINT context parameter in the web.xml deployment descriptor

with a value of true, as follows:

<context-param>

 <param-name>javax.faces.ENABLE_WEBSOCKET_ENDPOINT</param-name>

 <param-value>true</param-value>

</context-param>

The f:websocket tag enables support for Websockets within JSF client views. The

tag includes a required channel attribute, which is a ValueExpression used to list the

channel on which the Websocket client will listen. The tag also includes a required

onmessage attribute, which is also a ValueExpression, and it is used to list the name of

a JavaScript function that is to be executed when the Websocket message is received.

In the example, you can see that the channel is set to messagePusher, meaning that

the server must send message(s) to the channel named messagePusher in order to

successfully send to this client. The message attribute is set to messageListener, and

if you look at the JavaScript source that has been added to the view, you can see that

it contains a function named messageListener. This function is executed when the

message is received. In this example, the function merely prints a message to the div

with an ID of messageDiv in the view. The signature of the JavaScript function in this

example accepts the message only. However, a JavaScript function could also accept a

channel name and event argument, if needed.

The f:websocket tag contains a number of other useful attributes as well. While

optional, the following parameters may be of use in certain circumstances:

• onclose: Specifies a JavaScript function to invoke when the message

is closed.

• scope: Used to specify a limit as to where messages are propagated.

If set to session, this attribute limits the messages to all client views

with the same websocket channel in the current session only.

• port: Specifies the TCP port number other than the HTTP port, if

needed.

ChaPTer 3 advanCed JavaServer FaCeS

293

Now let’s take a look at the server-side implementation. The solution to this recipe

uses a new PushContext, which is injected into an ApplicationScoped bean. This

PushContext is used to send the message to all listening clients, and it can be injected

into any CDI bean by including the @Push annotation, along with the context. The

name of the channel can be specified via an optional channel attribute on the @Push

annotation; otherwise, it will assume the same name as the PushContext identifier. In

the example, the PushContext is simply named “push.” This is the channel on which all

clients must listen.

To send a message, call upon the send() method of the PushContext, passing

the message to be broadcast. The message will be encoded as JSON and delivered to

the message argument of the JavaScript function on the client which corresponds to

the function named in the f:websocket onmessage attribute. The message can be

composed of any number of containers, including a plain String, List, Map, Object,

and so on.

3-14. Programmatically Searching for Components
 Problem
You wish to use Expression Language or Java code to find a particular component or a

set of components within a JSF view. There are a number of reasons why you may wish

to obtain access to components, such as invoking the component programmatically or

referencing them from another component within the view.

 Solution #1
Make use of the JSF component search framework via the use of expression language or

programmatically from Java code. In the following example, a JSF panelGrid component

is updated via expression language using key JSF search terms. The f:ajax tag contains a

render attribute that specifies @parent, indicating that the parent component should be

re-rendered once the Ajax process is complete:

<h:panelGrid columns="2">

 <h:outputLabel for="password" value="Enter a password for

site access: "/>

ChaPTer 3 advanCed JavaServer FaCeS

294

 <h:inputSecret id="password" size="40"

value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="blur" render="@parent"/>

 </h:inputSecret>

 <h:panelGroup/>

 <h:message id="passwordError"

 for="password"

 style="color:red"/>

 <h:outputLabel for="passwordConfirm" value="Confirm

Password: "/>

 <h:inputSecret id="passwordConfirm" size="40"

value="#{ch3ContactController.passwordConfirm}"

 validator="#{ch3ContactController.

validatePassword}">

 <f:ajax event="blur" render="@parent"/>

 </h:inputSecret>

 <h:panelGroup/>

 <h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

 </h:panelGrid>

 Solution #2
Utilize the programmatic API to search for components from within a server-side CDI

controller class. In the following solution, a button from a JSF view is used to invoke an action

method in the CDI bean. The action method merely demonstrates the programmatic search

expression API. In the action method, a component is looked up by explicit ID:

public void findById() {

 FacesContext context = FacesContext.getCurrentInstance();

 SearchExpressionContext searchContext = SearchExpressionContext.

createSearchExpressionCo

ntext(context, context.

getViewRoot());

ChaPTer 3 advanCed JavaServer FaCeS

295

 context.getApplication()

 .getSearchExpressionHandler()

 .resolveComponent(

 searchContext,

 "passwordConfirm",

 (ctx, target) -> out.print(target.getId()));

 }

 How It Works
For years, JSF developers had difficulty referencing JSF components within a view

by ID. There are a couple of problems that can be encountered if attempting to

simply look up a component by ID. First, if an ID is not explicitly assigned to a JSF

component, then the FacesServlet assigns one automatically. In this situation, the

ID is unknown until runtime, and therefore it is almost impossible to reference the

component using EL or from within Java code. Second, even if a JSF component

is assigned a static ID, then the nesting architecture of JSF views and the JSF

component tree causes the IDs of each parent component to be prepended to the ID

of the child component. This can cause for long and sometimes difficult to maintain

component IDs. Moreover, even if a specified component is easy to identify by

prepending parent IDs, some components, such as those nested in tables, will still

have a dynamic ID assigned at runtime.

There have been a number of third-party libraries that have developed solutions

to combat this problem. OmniFaces and PrimeFaces are some of the most widely

used. The addition of the JSF search expression API to JSF proper significantly

reduces the work that needs to be done in order to gain access to JSF components

within a view. This is especially the case in the event that a component is nested

deep within other components in a view or part of a dataTable as mentioned

previously. The search expression API allows one to utilize keywords to help search

the component tree in a dynamic manner, rather than hard-coding static IDs that

may change down the road.

ChaPTer 3 advanCed JavaServer FaCeS

296

Prior to JSF 2.3, there were four abstract search keywords that could be used to

obtain reference to components, those being "@all", "@this", "@form", and "@none".

Moreover, one could only perform EL search expressions in the f:ajax tag. This was

quite a limitation, and JSF 2.3 greatly expands this functionality. Please refer to Table 3- 15

for the search keywords. The following features have been added to the search

expression API:

• Keywords and search expressions can be used programmatically.

• Many more keywords have been added.

• Keywords accept arguments.

• Keywords are extendible and can be chained.

Table 3-15. Search Keywords

Keyword Description

@child(n) The nth child of the base component

@composite nearest composite component of the base

@id(id) nearest descendant of the base component with an id

matching a specified value

@namingcontainer nearest naming container of the base component

@next next component in view following the base component

@parent Parent of the base component

@previous Previous component to the base

@root The UIviewroot

The solution demonstrates how to find components using the @parent keyword, but

any of the others can be used and strung together in order to find desired components.

Another new feature with JSF 2.3 is the programmatic search expression API. This

makes it possible to gain access to components from within the controller class. The

second listing in the solution demonstrates how to use the programmatic API. To use the

API, first create a SearchExpressionContext, which will later be passed as a parameter

ChaPTer 3 advanCed JavaServer FaCeS

297

to help find the component. Second, call upon the FacesContext to gain reference to

the application via getApplication(), and then invoke getSearchExpressionHandler().

resolveComponent(), passing the SearchExpressionContext, the search expression

string, and the function to call when the component is found. This can be used to search

for any component via a programmatic API.

ChaPTer 3 advanCed JavaServer FaCeS

	Chapter 3: Advanced JavaServer Faces
	Component and Tag Primer
	Common Component Tag Attributes
	Common JavaScript Component Tags
	Binding Components to Properties

	3-1. Creating an Input Form
	Problem
	Solution
	The View: recipe03_01.xhtml
	Controller Class: ContactController.java

	How It Works

	3-2. Invoking Actions from Within a Page
	Problem
	Solution
	The View: recipe03_02.xhtml
	Controller Class: ContactController.java

	How It Works

	3-3. Displaying Output
	Problem
	Solution
	The View: recipe03_03.xhtml
	Controller Class: ContactController.java

	How It Works

	3-4. Adding Form Validation
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	3-5. Validating Input with Ajax
	Problem
	Solution
	How It Works

	3-6. Submitting Pages Without Page Reloads
	Problem
	Solution
	How It Works

	3-7. Making Partial-Page Updates
	Problem
	Solution
	How It Works

	3-8. Applying Ajax Functionality to a Group of Components
	Problem
	Solution
	How It Works

	3-9. Custom Processing of Ajax Functionality
	Problem
	Solution
	How It Works

	3-10. Listening for System-Level Events
	Problem
	Solution
	How It Works

	3-11. Listening for Component Events
	Problem
	Solution
	How It Works

	3-12. Developing a Page Flow
	Problem
	Solution
	How It Works
	Defining a Flow
	The Flow Controller Class
	Navigating Flow View Nodes
	Flow EL

	3-13. Broadcasting Messages from the Server to All Clients
	Problem
	Solution
	How It Works

	3-14. Programmatically Searching for Components
	Problem
	Solution #1
	Solution #2
	How It Works

