
Jakarta EE
Recipes

A Problem-Solution Approach
—
Josh Juneau

Jakarta EE Recipes
A Problem-Solution Approach

Josh Juneau

Jakarta EE Recipes: A Problem-Solution Approach

ISBN-13 (pbk): 978-1-4842-5586-5 ISBN-13 (electronic): 978-1-4842-5587-2
https://doi.org/10.1007/978-1-4842-5587-2

Copyright © 2020 by Josh Juneau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484255865. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Josh Juneau
Hinckley, IL, USA

https://doi.org/10.1007/978-1-4842-5587-2

This book is dedicated to my wife, Angela, and my five children,
Kaitlyn, Jacob, Matthew, Zachary, and Lucas. You are my joy and
inspiration. It is also dedicated to the many Java and Jakarta EE
developers worldwide. I hope that these recipes can lead you to

developing the sophisticated solutions of tomorrow.

—Josh Juneau

v

About the Author ��xxxiii

About the Technical Reviewer ���xxxv

Acknowledgments ���xxxvii

Introduction ��xxxix

Table of Contents

Chapter 1: Servlets and JavaServer Pages ��� 1

1-1.Developing a Servlet... 3

Problem ... 3

Solution ... 3

How It Works ... 5

1 -2. Packaging, Compiling, and Deploying a Servlet .. 8

Problem ... 8

Solution ... 8

How It Works ... 9

1 -3. Registering a Servlet Without Web.xml.. 11

Problem ... 11

Solution ... 11

How It Works ... 13

1 -4. Displaying Dynamic Content with a Servlet... 14

Problem ... 14

Solution ... 14

How It Works ... 17

1 -5. Handling Requests and Responses ... 17

Problem ... 17

Solution ... 17

How It Works ... 20

vi

1 -6. Listening for Servlet Container Events .. 22

Problem ... 22

Solution ... 22

How It Works ... 24

1 -7. Reading and Writing with Nonblocking I/O .. 26

Problem ... 26

Solution ... 26

How It Works ... 31

1 -8. Pushing Resources from a Server to a Client .. 34

Problem ... 34

Solution ... 34

How It Works ... 36

1 -9. Creating a Simple JSP Page .. 37

Problem ... 37

Solution ... 37

How It Works ... 38

1 -10. Embedding Java into a JSP Page .. 40

Problem ... 40

Solution ... 40

How It Works ... 41

1 -11. Separating Business Logic from View Code .. 43

Problem ... 43

Solution ... 43

How It Works ... 44

1 -12. Yielding or Setting Values .. 46

Problem ... 46

Solution ... 46

How It Works ... 48

Table of ConTenTs

vii

1 -13. Invoking a Function in a Conditional Expression ... 50

Problem ... 50

Solution ... 50

How It Works ... 53

1 -14. Creating a JSP Document .. 55

Problem ... 55

Solution ... 55

How It Works ... 56

1 -15. Embedding Expressions in EL .. 58

Problem ... 58

Solution ... 58

How It Works ... 61

1 -16. Accessing Parameters in Multiple Pages .. 65

Problem ... 65

Solution ... 65

How It Works ... 67

1 -17. Creating a Custom JSP Tag.. 68

Problem ... 68

Solution ... 68

How It Works ... 71

1 -18. Including Other JSPs into a Page .. 74

Problem ... 74

Solution ... 74

How It Works ... 75

1 -19. Creating an Input Form for a Database Record ... 76

Problem ... 76

Solution ... 76

How It Works ... 80

Table of ConTenTs

viii

1 -20. Looping Through Database Records Within a Page ... 82

Problem ... 82

Solution ... 82

How It Works ... 86

1 -21. Handling JSP Errors ... 87

Problem ... 87

Solution ... 87

How It Works ... 89

1 -22. Disabling Scriptlets in Pages ... 91

Problem ... 91

Solution ... 91

How It Works ... 91

1 -23. Ignoring EL in Pages .. 92

Problem ... 92

Solution #1 .. 92

Solution #2 .. 92

Solution #3 .. 92

How It Works ... 93

Chapter 2: JavaServer Faces Fundamentals �� 95

2 -1. Writing a Simple JSF Application ... 96

Problem ... 96

Solution #1 .. 96

Solution #2 .. 100

How It Works ... 102

2 -2. Writing a Controller Class .. 105

Problem ... 105

Solution ... 105

How It Works ... 111

Table of ConTenTs

ix

2 -3. Building Sophisticated JSF Views with Components .. 114

Problem ... 114

Solution ... 114

How It Works ... 122

2 -4. Displaying Messages in JSF Pages ... 125

Problem ... 125

Solution ... 125

How It Works ... 128

2 -5. Updating Messages Without Recompiling ... 131

Problem ... 131

Solution ... 131

How It Works ... 134

2 -6. Navigation Based upon Conditions .. 134

Problem ... 134

Solution ... 135

How It Works ... 142

2 -7. Validating User Input .. 144

Problem ... 144

Solution ... 144

How It Works ... 149

2 -8. Evaluation of Page Expressions Immediately .. 151

Problem ... 151

Solution ... 152

How It Works ... 154

2 -9. Passing Page Parameters to Methods ... 155

Problem ... 155

Solution ... 155

How It Works ... 159

Table of ConTenTs

x

2 -10. Operators and Reserved Words in Expressions ... 161

Problem ... 161

Solution ... 161

How It Works ... 163

2 -11. Creating Bookmarkable URLs .. 165

Problem ... 165

Solution ... 165

How It Works ... 167

2 -12. Displaying Lists of Objects .. 169

Problem ... 169

Solution ... 169

How It Works ... 173

2 -13. Developing with HTML5 ... 175

Problem ... 175

Solution ... 175

How It Works ... 176

2 -14. Creating Page Templates ... 177

Problem ... 177

Solution ... 177

How It Works ... 179

2 -15. Applying Templates .. 181

Problem ... 181

Solution ... 181

How It Works ... 189

2 -16. Adding Resources into the Mix .. 193

Problem ... 193

Solution ... 194

How It Works ... 197

2 -17. Handling Variable- Length Data .. 198

Problem ... 198

Solution ... 198

How It Works ... 201

Table of ConTenTs

xi

2 -18. Invoking Controller Class Actions on Life- Cycle Phase Events .. 206

Problem ... 206

Solution ... 206

How It Works ... 206

Chapter 3: Advanced JavaServer Faces ��� 209

Component and Tag Primer ... 210

Common Component Tag Attributes .. 214

Common JavaScript Component Tags ... 215

Binding Components to Properties .. 216

3 -1. Creating an Input Form .. 217

Problem ... 217

Solution ... 217

How It Works ... 221

3 -2. Invoking Actions from Within a Page ... 224

Problem ... 224

Solution ... 224

How It Works ... 228

3 -3. Displaying Output .. 231

Problem ... 231

Solution ... 231

How It Works ... 235

3 -4. Adding Form Validation .. 240

Problem ... 240

Solution #1 .. 241

Solution #2 .. 242

Solution #3 .. 243

How It Works ... 245

3 -5. Validating Input with Ajax .. 249

Problem ... 249

Solution ... 249

How It Works ... 255

Table of ConTenTs

xii

3 -6. Submitting Pages Without Page Reloads... 260

Problem ... 260

Solution ... 260

How It Works ... 261

3 -7. Making Partial-Page Updates .. 262

Problem ... 262

Solution ... 262

How It Works ... 263

3 -8. Applying Ajax Functionality to a Group of Components ... 264

Problem ... 264

Solution ... 264

How It Works ... 270

3 -9. Custom Processing of Ajax Functionality... 270

Problem ... 270

Solution ... 271

How It Works ... 273

3 -10. Listening for System- Level Events .. 275

Problem ... 275

Solution ... 275

How It Works ... 277

3 -11. Listening for Component Events .. 278

Problem ... 278

Solution ... 278

How It Works ... 279

3 -12. Developing a Page Flow .. 280

Problem ... 280

Solution ... 280

How It Works ... 285

Table of ConTenTs

xiii

3 -13. Broadcasting Messages from the Server to All Clients ... 289

Problem ... 289

Solution ... 289

How It Works ... 291

3 -14. Programmatically Searching for Components ... 293

Problem ... 293

Solution #1 .. 293

Solution #2 .. 294

How It Works ... 295

Chapter 4: Eclipse Krazo �� 299

4 -1. Configure an Application for the Eclipse Krazo Framework ... 300

Problem ... 300

Solution ... 300

How It Works ... 303

4 -2. Making Data Available for the Application ... 304

Problem ... 304

Solution #1 .. 305

Solution #2 .. 310

How It Works ... 316

4 -3. Writing a Controller Class .. 317

Problem ... 317

Solution ... 317

How It Works ... 319

4 -4. Using a Model to Expose Data to a View ... 322

Problem ... 322

Solution ... 322

How It Works ... 324

Table of ConTenTs

xiv

4 -5. Utilizing CDI for Exposing Data .. 325

Problem ... 325

Solution ... 325

How It Works ... 327

4 -6. Supplying Message Feedback to the User .. 328

Problem ... 328

Solution ... 328

How It Works ... 332

4 -7. Inserting and Updating Data .. 332

Problem ... 332

Solution ... 333

How It Works ... 335

4 -8. Applying a Different View Engine ... 336

Problem ... 336

Solution #1 .. 336

Solution #2 .. 337

How It Works ... 339

Chapter 5: JDBC with Jakarta EE ��� 341

5 -1. Obtaining Database Drivers and Adding Them to the CLASSPATH 342

Problem ... 342

Solution ... 342

How It Works ... 344

5 -2. Connecting to a Database.. 344

Problem ... 344

How It Works ... 349

5 -3. Handling Database Connection Exceptions ... 353

Problem ... 353

Solution ... 353

How It Works ... 353

Table of ConTenTs

xv

5 -4. Simplifying Connection Management .. 354

Problem ... 354

Solution ... 354

How It Works ... 359

5 -5. Querying a Database ... 360

Problem ... 360

Solution ... 360

How It Works ... 361

5 -6. Performing CRUD Operations .. 363

Problem ... 363

Solution ... 363

How It Works ... 367

5 -7. Preventing SQL Injection ... 368

Problem ... 368

Solution ... 369

How It Works ... 373

5 -8. Utilizing Java Objects for Database Access ... 377

Problem ... 377

Solution ... 377

How It Works ... 384

5 -9. Calling PL/SQL Stored Procedures... 386

Problem ... 386

Solution ... 386

How It Works ... 387

5 -10. Querying and Storing Large Objects .. 388

Problem ... 388

Solution ... 388

How It Works ... 392

Table of ConTenTs

xvi

5 -11. Querying with a REF_CURSOR ... 393

Problem ... 393

Solution ... 393

How It Works ... 394

Chapter 6: Object-Relational Mapping �� 395

6 -1. Creating an Entity .. 397

Problem ... 397

Solution ... 397

How It Works ... 400

6 -2. Mapping Data Types .. 403

Problem ... 403

Solution ... 403

How It Works ... 405

6 -3. Creating a Persistence Unit ... 407

Problem ... 407

Solution ... 407

How It Works ... 408

6 -4. Using Database Sequences to Create Primary Key Values .. 411

Problem ... 411

Solution ... 411

How It Works ... 414

6 -5. Generating Primary Keys Using More Than One Attribute ... 416

Problem ... 416

Solution #1 .. 416

Solution #2 .. 420

How It Works ... 422

6 -6. Defining a One-to-One Relationship .. 426

Problem ... 426

Solution ... 426

How It Works ... 429

Table of ConTenTs

xvii

6 -7. Defining One-to-Many and Many-to-One Relationships .. 430

Problem ... 430

Solution ... 430

How It Works ... 433

6 -8. Defining a Many-to-Many Relationship ... 436

Problem ... 436

Solution ... 436

How It Works ... 438

6 -9. Querying with Named Queries ... 441

Problem ... 441

Solution ... 441

How It Works ... 443

6 -10. Performing Validation on Entity Fields ... 443

Problem ... 443

Solution ... 444

How It Works ... 445

6 -11. Generating Database Schema Objects Automatically .. 447

Problem ... 447

Solution ... 447

How It Works ... 447

6 -12. Mapping Date-Time Values .. 454

Problem ... 454

Solution ... 454

How it Works ... 455

6 -13. Using the Same Annotation Many Times ... 456

Problem ... 456

Solution ... 456

How It Works ... 457

Table of ConTenTs

xviii

Chapter 7: Jakarta NoSQL��� 459

7 -1. Configuring for Jakarta NoSQL .. 460

Problem ... 460

Solution ... 460

How It Works ... 463

7 -2. Writing a Query for a Document Database .. 464

Problem ... 464

Solution ... 465

How It Works ... 465

7 -3. Inserting, Updating, and Deleting from a Document- Oriented Database 467

Problem ... 467

Solution ... 467

How It Works ... 469

7 -4. Working with a Key- Value Database .. 472

Problem ... 472

Solution ... 472

How It Works ... 473

Chapter 8: Enterprise JavaBeans ��� 475

8 -1. Obtaining an Entity Manager ... 476

Problem ... 476

Solution #1 .. 476

Solution #2 .. 477

How It Works ... 477

8 -2. Developing a Stateless Session Bean ... 478

Problem ... 478

Solution #1 .. 478

Solution #2 .. 480

How It Works ... 484

Table of ConTenTs

xix

8 -3. Developing a Stateful Session Bean .. 487

Problem ... 487

Solution ... 487

How It Works ... 493

8 -4. Utilizing Session Beans with JSF .. 495

Problem ... 495

Solution ... 495

How It Works ... 499

8 -5. Persisting an Object .. 501

Problem ... 501

Solution ... 501

How It Works ... 501

8 -6. Updating an Object .. 502

Problem ... 502

Solution ... 502

How It Works ... 502

8 -7. Returning Data to Display in a Table .. 503

Problem ... 503

Solution #1 .. 503

Solution #2 .. 505

How It Works ... 507

8 -8. Creating a Singleton Bean ... 508

Problem ... 508

Solution ... 509

How It Works ... 511

8 -9. Scheduling a Timer Service ... 513

Problem ... 513

Solution #1 .. 513

Solution #2 .. 514

How It Works ... 515

Table of ConTenTs

xx

8 -10. Performing Optional Transaction Life-Cycle Callbacks .. 518

Problem ... 518

Solution ... 518

How It Works ... 519

8 -11. Ensuring a Stateful Session Bean Is Not Passivated ... 521

Problem ... 521

Solution ... 521

How It Works ... 521

8 -12. Denoting Local and Remote Interfaces .. 522

Problem ... 522

Solution ... 522

How It Works ... 522

8 -13. Processing Messages Asynchronously from Enterprise Beans 524

Problem ... 524

Solution ... 524

How It Works ... 525

Chapter 9: Java Persistence Query Language �� 527

9 -1. Querying All Instances of an Entity .. 528

Problem ... 528

Solution #1 .. 528

Solution #2 .. 528

How It Works ... 529

9 -2. Setting Parameters to Filter Query Results ... 531

Problem ... 531

Solution #1 .. 531

Solution #2 .. 532

How It Works ... 532

9 -3. Returning a Single Object .. 534

Problem ... 534

Solution ... 534

How It Works ... 535

Table of ConTenTs

xxi

9 -4. Creating Native Queries ... 535

Problem ... 535

Solution #1 .. 536

Solution #2 .. 536

How It Works ... 537

9 -5. Querying More Than One Entity ... 539

Problem ... 539

Solution #1 .. 539

Solution #2 .. 540

How It Works ... 541

9 -6. Calling JPQL Aggregate Functions ... 545

Problem ... 545

Solution ... 545

How It Works ... 545

9 -7. Invoking Database Stored Procedures Natively ... 547

Problem ... 547

Solution ... 547

How It Works ... 547

9 -8. Joining to Retrieve Instances from Multiple Entities ... 548

Problem ... 548

Solution ... 548

How It Works ... 549

9 -9. Joining to Retrieve All Rows Regardless of Match .. 550

Problem ... 550

Solution ... 550

How It Works ... 551

9 -10. Applying JPQL Functional Expressions .. 552

Problem ... 552

Solution ... 552

How It Works ... 553

Table of ConTenTs

xxii

9 -11. Forcing Query Execution Rather Than Cache Use ... 555

Problem ... 555

Solution ... 555

How It Works ... 556

9 -12. Performing Bulk Updates and Deletes ... 556

Problem ... 556

Solution ... 556

How It Works ... 557

9 -13. Retrieving Entity Subclasses ... 560

Problem ... 560

Solution ... 560

How It Works ... 561

9 -14. Joining with ON Conditions ... 562

Problem ... 562

Solution ... 562

How It Works ... 563

9 -15. Processing Query Results with Streams ... 564

Problem ... 564

Solution ... 564

How It Works ... 564

9 -16. Converting Attribute Data Types .. 566

Problem ... 566

Solution ... 566

How It Works ... 567

Chapter 10: Bean Validation ��� 569

10 -1. Validating Fields with Built-in Constraints ... 570

Problem ... 570

Solution #1 .. 570

Solution #2 .. 571

How It Works ... 572

Table of ConTenTs

xxiii

10 -2. Writing Custom Constraint Validators .. 574

Problem ... 574

Solution ... 574

How It Works ... 576

10 -3. Validating at the Class Level .. 577

Problem ... 577

Solution ... 578

How It Works ... 580

10 -4. Validating Parameters ... 581

Problem ... 581

Solution ... 581

How It Works ... 582

10 -5. Constructor Validation ... 583

Problem ... 583

Solution ... 583

How It Works ... 583

10 -6. Validating Return Values .. 584

Problem ... 584

Solution ... 584

How It Works ... 585

10 -7. Defining a Dynamic Validation Error Message ... 585

Problem ... 585

Solution ... 585

How It Works ... 586

10 -8. Manually Invoking the Validator Engine ... 588

Problem ... 588

Solution ... 588

How It Works ... 588

Table of ConTenTs

xxiv

10 -9. Grouping Validation Constraints .. 589

Problem ... 589

Solution ... 589

How It Works ... 591

Chapter 11: Contexts and Dependency Injection �� 593

11 -1. Injecting a Contextual Bean or Other Object .. 594

Problem ... 594

Solution ... 594

How It Works ... 596

11 -2. Binding a Bean to a Web View ... 598

Problem ... 598

Solution ... 598

How It Works ... 601

11 -3. Allocating a Specific Bean for Injection ... 602

Problem ... 602

Solution ... 603

How It Works ... 605

11 -4. Determining Scope of a Bean .. 606

Problem ... 606

Solution ... 606

How It Works ... 609

11 -5. Injecting Non-bean Objects ... 610

Problem ... 610

Solution ... 610

How It Works ... 613

11 -6. Ignoring Classes .. 615

Problem ... 615

Solution #1 .. 615

Solution #2 .. 615

How It Works ... 616

Table of ConTenTs

xxv

11 -7. Disposing of Producer Fields ... 617

Problem ... 617

Solution ... 617

How It Works ... 617

11 -8. Specifying an Alternative Implementation at Deployment Time 617

Problem ... 617

Solution ... 618

How It Works ... 618

11 -9. Injecting a Bean and Obtaining Metadata ... 619

Problem ... 619

Solution ... 619

How It Works ... 619

11 -10. Invoking and Processing Events .. 620

Problem ... 620

Solution ... 620

How It Works ... 624

11 -11. Intercepting Method Invocations ... 625

Problem ... 625

Solution ... 626

How It Works ... 629

11 -12. Bootstrapping Java SE Environments .. 630

Problem ... 630

Solution ... 630

How It Works ... 631

11 -13. Enhancing Business Logic of a Method ... 632

Problem ... 632

Solution ... 632

How It Works ... 634

Table of ConTenTs

xxvi

Chapter 12: Java Message Service��� 637

12 -1. Creating JMS Resources ... 638

Problem ... 638

How It Works ... 642

12 -2. Creating a Session ... 645

Problem ... 645

Solution ... 645

How It Works ... 646

12 -3. Creating and Sending a Message .. 647

Problem ... 647

How It Works ... 649

12 -4. Receiving Messages .. 652

Problem ... 652

How It Works ... 654

12 -5. Filtering Messages .. 655

Problem ... 655

Solution ... 655

How It Works ... 658

12 -6. Inspecting Message Queues .. 658

Problem ... 658

Solution ... 658

How It Works ... 660

12 -7. Creating Durable Message Subscribers .. 660

Problem ... 660

Solution ... 660

How It Works ... 665

12 -8. Delaying Message Delivery ... 667

Problem ... 667

Solution ... 667

How It Works ... 667

Table of ConTenTs

xxvii

Chapter 13: RESTful Web Services ��� 669

13 -1. Developing a RESTful Web Service .. 671

Problem ... 671

Solution #1 .. 671

Solution #2 .. 672

How It Works ... 675

13 -2. Consuming and Producing with REST ... 678

Problem ... 678

Solution ... 678

How It Works ... 681

13 -3. Writing a Jakarta RESTful Web Services Client ... 683

Problem ... 683

Solution ... 683

How It Works ... 684

13 -4. Filtering Requests and Responses .. 690

Problem ... 690

Solution ... 690

How It Works ... 691

13 -5. Processing Long-Running Operations Asynchronously ... 694

Problem ... 694

Solution ... 694

How It Works ... 696

13 -6. Pushing One-Way Asynchronous Updates from Servers ... 698

Problem ... 698

Solution ... 698

How It Works ... 701

13 -7. Receiving Server-Sent Events As a Client ... 703

Problem ... 703

Solution ... 703

How It Works ... 704

Table of ConTenTs

xxviii

Chapter 14: WebSockets and JSON �� 705

14 -1. Creating a WebSocket Endpoint .. 706

Problem ... 706

Solution ... 706

How It Works ... 707

14 -2. Sending Messages to a WebSocket Endpoint .. 707

Problem ... 707

Solution ... 707

How It Works ... 710

14 -3. Building a JSON Object .. 712

Problem ... 712

Solution ... 712

How It Works ... 714

14 -4. Writing a JSON Object to Disk ... 715

Problem ... 715

Solution ... 715

How It Works ... 716

14 -5. Reading JSON from an Input Source ... 716

Problem ... 716

Solution ... 716

How It Works ... 717

14 -6. Converting Between JSON and Java Objects .. 718

Problem ... 718

Solution ... 718

How It Works ... 720

14 -7. Custom Mapping with JSON-B .. 722

Problem ... 722

Solution ... 722

How It Works ... 723

Table of ConTenTs

xxix

14 -8. Replacing a Specified Element in a JSON Document .. 725

Problem ... 725

Solution ... 725

How It Works ... 726

Chapter 15: Security ��� 729

15 -1. Setting Up Application Users and Groups in GlassFish .. 730

Problem ... 730

Solution ... 730

How It Works ... 733

15 -2. Performing Basic Web Application Authorization... 734

Problem ... 734

How It Works ... 737

15 -3. Developing a Programmatic Login Form with Custom Authentication Validation 741

Problem ... 741

Solution ... 741

How It Works ... 758

15 -4. Authentication with the Security API Using Database Credentials 760

Problem ... 760

Solution ... 760

How It Works ... 767

15 -5. Managing Page Access Within a JSF Application .. 770

Problem ... 770

Solution ... 770

How It Works ... 772

15 -6. Configuring LDAP Authentication Within GlassFish/Payara ... 773

Problem ... 773

Solution ... 773

How It Works ... 775

Table of ConTenTs

xxx

15 -7. Configuring Custom Security Certificates Within GlassFish/Payara 776

Problem ... 776

Solution ... 776

How It Works ... 777

Chapter 16: Concurrency and Batch ��� 779

16 -1. Creating Resources for Processing Tasks Asynchronously in an Application Server 780

Problem ... 780

How It Works ... 783

16 -2. Configuring and Creating a Reporter Task ... 784

Problem ... 784

Solution ... 784

How It Works ... 789

16 -3. Running More Than One Task Concurrently ... 790

Problem ... 790

Solution ... 790

How It Works ... 793

16 -4. Utilizing Transactions Within a Task ... 794

Problem ... 794

Solution ... 795

How It Works ... 796

16 -5. Running Concurrent Tasks at Scheduled Times .. 797

Problem ... 797

Solution ... 797

How It Works ... 800

16 -6. Creating Thread Instances ... 801

Problem ... 801

Solution ... 801

How It Works ... 803

Table of ConTenTs

xxxi

16 -7. Creating an Item-Oriented Batch Process ... 804

Problem ... 804

Solution ... 804

How It Works ... 809

Chapter 17: Deploying to Containers �� 813

17 -1. Creating a Docker Image and Running Java.. 814

Problem ... 814

Solution ... 814

How It Works ... 816

17 -2. Deploying Images to Payara Server Utilizing an Official Payara Docker Image 818

Problem ... 818

Solution ... 818

How It Works ... 818

17 -3. Creating a Docker Container Running a Basic Jakarta EE Application 819

Problem ... 819

Solution ... 819

How It Works ... 820

17 -4. Enabling Communication Between Containers.. 821

Problem ... 821

Solution ... 821

How It Works ... 823

Index ��� 825

Table of ConTenTs

xxxiii

About the Author

Josh Juneau has been developing software and database systems for several years.

Database application development and sophisticated web apps have been the focus

of his career since the beginning. Early in his career, he became an Oracle database

administrator and adopted the PL/SQL language for performing administrative tasks

and developing applications for the Oracle database. In an effort to build more complex

solutions, he began to incorporate Java into his PL/SQL applications and later developed

stand-alone and web applications with Java. Josh wrote his early Java web applications

utilizing Java Database Connectivity (JDBC) to work with backend databases. Later, he

incorporated frameworks into his enterprise solutions, including Java EE, Spring, and

JBoss Seam. Today, he primarily develops enterprise web solutions utilizing Java EE.

He extended his knowledge of the JVM by developing applications with other JVM

languages such as Jython and Groovy. In 2006, Josh became the editor and publisher for

the Jython Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython

programming language. Josh was the lead author for The Definitive Guide to Jython,

Oracle PL/SQL Recipes, and Java 7 Recipes, which were published by Apress. Since then,

he has continued to author Java-related books for Apress. He is an avid contributor to

Oracle’s Java Magazine, and he speaks at Java User Groups and conferences when he has

the opportunity.

He works as an application developer and systems analyst, and he is a contributor

to Apache NetBeans, Jakarta Server Faces, and Jakarta EE Ambassadors. Josh is a Java

Champion, participates in the JCP, and is a co-host for the following podcasts: Java

Offheap, Stackd, and Breaking Into Open Source. Josh has a wonderful wife and five

children with whom he loves to spend time. To hear more from Josh, follow his blog,

which can be found at http://jj-blogger.blogspot.com. You can also follow him on

Twitter via @javajuneau.

http://jj-blogger.blogspot.com

xxxv

About the Technical Reviewer

Alexandru Jecan is a software engineer, author, trainer, and speaker residing in

Munich, Germany. He earned a degree in computer science from the Technical

University of Cluj-Napoca, Romania. Alexandru provides professional in-house

training on various software technologies across Germany. He also speaks at tech

conferences and user groups, both in Europe and the United States, on different topics

related to software development. He was awarded the title of “Author of the Month” by

the German Java Magazine. Alexandru likes to read during his free time and to spend

time with his family.

xxxvii

Acknowledgments

To my wife Angela: I am still amazed by you and always will be. Thanks again for helping

to inspire me and keep me moving forward in my endeavors. You continue to be my

rock, and I am so grateful for all you do.

To my children, Kaitlyn, Jacob, Matthew, Zachary, and Lucas: I love you all so much,

and I cherish every moment we have together. I hope that you’ll find your passion in life

and enjoy each day as much as I enjoy each day spending time with you. Wish I could

slow time down…you are growing up too fast!

I want to thank my family for their continued support in my career. I also want

to thank my coworkers for allowing me to guide the organization’s application

development efforts and build successful solutions to keep us moving forward.

To the folks at Apress, I thank you for providing me with the chance to share

my knowledge with others, once again. I especially thank Jonathan Gennick for the

continued support of my work and for providing the continued guidance to produce

useful content for our readers. I also thank Jill Balzano for doing a great job coordinating

this project and many of my others before it. To my technical reviewer, Alex Jecan, you

have become a great friend. It was great to meet at Code One, and I look forward to

future discussions on Java and Jakarta EE. You have done an excellent job of solidifying

the book content. Thanks again for your hard work and technical expertise. Lastly, I’d

like to thank everyone else at Apress who had a hand in this book.

To the Java community: Thanks again for helping to make the Java platform such

an innovative and effective realm for application development. I especially want to

thank those in the Jakarta EE community who have a hand in helping to move things

forward via Eclipse Enterprise for Java (EE4J), the Eclipse Working Group, Jakarta EE

Ambassadors, and other speakers, writers, and evangelists of Java EE and Jakarta EE. To

the members of the Chicago Java Users Group, I want to thank you for helping Chicago to

be one of the best locations for Java expertise. I also want to thank my close friends of the

Java Offheap podcast: Freddy Guime, Bob Paulin, and Michael Minella—you help me to

remain engaged in all of Java technologies, and it is a privilege to have the opportunity

to meet and discuss Java each month. I’m also grateful to my fellow hosts of the Stackd

podcast with Java experts Kito Mann, Daniel Hinojosa, and Ian Hlavats—it is always

great recording with you.

xxxix

Introduction

The Java platform is one of the most widely used platforms for application development

in the world. The platform is so popular that there are several different flavors of Java

that can be used for developing applications that run on different mediums. From

development of desktop, mobile, or web applications and hardware operating systems,

Java can be utilized for development of just about any solution. As such, Java has become

a very popular platform for development of web and enterprise applications, offering

web services, reliability, security, and much more.

Java Enterprise Edition was originally released in 1999 as Java 2 Platform, Enterprise

Edition (J2EE). Although several enterprise frameworks were available for development

of reliable and secure applications on the Java platform, it made sense to standardize

some solutions in order to minimize customization and help provide standards around

Java Enterprise development to make it more prevalent in the industry. The platform

originally included a terse number of specifications for standardization, including Java

Servlet, JavaServer Pages (JSP), RMI, Java Database Connectivity (JDBC), Java Message

Service (JMS) API, Java Transaction API (JTA), and Enterprise JavaBeans (EJBs). Early

development of J2EE applications had a large learning curve, and it was cumbersome

because it required lots of XML configuration. Even with these setbacks, it became

popular among larger organizations and companies due to the prevalence of Java and its

well-known security benefits. In 2001, J2EE 1.3 was released, adding more specifications

to the platform, including the JavaServer Pages Standard Tag Library (JSTL) and Java

Authentication and Authorization Service (JAAS). Other specifications, such as Java

Servlet, also gained enhancements under the J2EE 1.3 release, making evolutionary

enhancements to the platform. The release of J2EE 1.4 in 2003 marked a major milestone

for Java Enterprise, as many new specifications were added to the platform, providing

standards for even more Java technologies. The release of J2EE 1.4 marked the first

iteration of web services for J2EE 1.1, JavaServer Faces (JSF), and Java APIs for XML

solutions such as JAXP, JAXR, and more. Although the release of J2EE 1.4 included

many specifications, it was still deemed as “difficult to learn,” “cumbersome,” and “not

productive.”

xl

Over the next few years, J2EE was reworked in an attempt to make it easier to learn

and utilize for the construction of modern web applications. Although XML is an

excellent means for configuration, it can be cumbersome and difficult to manage, so

configuration was a big item that was being addressed for the next release. Technologies

such as Enterprise JavaBeans (EJBs) included some redundant characteristics, making

EJB coding time consuming and difficult to manage, so an overhaul of EJB was also in

order. In May of 2006, Java EE 5 was released, leaving the J2EE acronym behind and

changing to simply Java EE instead. The Java EE 5 platform was significantly easier

to use and maintain because features such as annotations were introduced, cutting

down the amount of XML configuration significantly, as configuration could now

be injected via annotations. EJBs were made easier to develop, and Java Persistence

API (JPA) became a marketable technology for object-relational mapping (ORM).

Java Enterprise Edition has since become a widely adopted and mature platform for

enterprise development. Java EE 6 was released in 2009, making configuration and

APIs even easier and adding more specifications to the platform. Specifications such

as Contexts and Dependency Injection (CDI) and Bean Validation were introduced,

vastly changing the landscape of the platform and streamlining development. Java EE

7 (released in 2013) continued to strengthen and modernize the platform, adding the

WebSockets and JavaScript Object Notation (JSON)-P specifications. In the Java EE

7 release, specifications such as JSF and EJB were also enhanced, adding even more

features to increase productivity and functionality and allowing them to work better for

more modern web solutions.

What occurred next in the timeline was a definitive game changer for the Java EE

platform. The Java EE 8 initiative had begun in 2015, and many of the specifications

that make up the platform had begun to work. The focus of Java EE 8 was to continue

to work toward Java SE 8 compatibility throughout the APIs and also to continue

making the APIs easier to use. There was also a focus on creating new specifications

around making microservices easier to develop with Java EE. In late 2015, many of the

specifications stopped moving forward, and there was a halt in progress across the

board. A few specifications, such as JSF, CDI, and JSON-B, continued to progress, while

many of the others stalled. During this stall, the community became concerned about

the future of Java EE, and there was a perception that it was going to be dropped. Oracle

was silent on the progress of Java EE 8, and uncertainty was in the air. It was during

this same time frame that the Java EE Guardians group was formed, with the focus on

trying to make Oracle produce a statement about the future direction of the platform,

InTroduCTIon

xli

and to make open source the platform rather than dropping it. Around that same time,

the MicroProfile project was started as a collaborative effort by a number of the Java EE

container vendors, with the focus on providing a true microservices profile for the Java

EE platform.

In late 2016, Oracle changed the direction of Java EE 8 by removing some of the

previously planned specification updates and adding others. There became a renewed

effort to keep Java EE 8 moving forward in the hopes to produce a final release in 2017,

working toward a better platform for producing microservices-based applications.

The Java EE 8 release was final in the fall of 2017, and it included updates to many of

the specifications. However, even some of the specifications that were planned for

enhancing microservices development were dropped in an effort to produce a timely

release, including MVC and the Health Checking API.

In early fall 2017, just before the release of Java EE 8, Oracle announced that they

were going to open source Java EE. After a short while, it was announced that Oracle was

going to contribute all of the Java EE sources (for each of the underlying specifications),

along with all documentation and TCKs (Technology Compatibility Kits), to the Eclipse

Foundation. In late 2017, the EE4J (Eclipse Enterprise for Java) project was formed, and

the transfer of each specification began. In early 2018, it was voted that the new name for

the platform under the open source EE4J project would become Jakarta EE. Once all of

the specification sources, documentation, and TCKs were transferred, Jakarta EE 8 was

released, which was in parity with Java EE 8.

This book focuses on the Jakarta EE 8 release, as well as some portions of the

platform that are expected to be introduced in future Jakarta EE releases. The platform is

covered as a whole, touching upon each of the widely used specifications that make up

Jakarta EE. You will learn how to make use of each of the major specifications, making

use of real-world examples and solutions. This book will cover APIs that have not been

updated for Jakarta EE 8, as well as those that have been enhanced, providing complete

coverage for those who are newer to the platform. It also features recipes that cover the

newest features of the platform, so that seasoned Jakarta EE developers can skip those

introductory concepts and delve into newer material.

I work with Java EE/Jakarta EE on a daily basis, and I have a deep passion for the

technologies involved in the platform. I hope that this book increases your passion and

productivity using the platform in its entirety.

InTroduCTIon

xlii

 Who This Book Is For
This book is intended for all those who are interested in learning Jakarta EE development

and/or already know Java EE but would like some information regarding the new

features included in Jakarta EE. Those who are new to Jakarta EE development can read

this book, and it will allow them to start from scratch to get up and running quickly.

Intermediate and advanced Java developers who are looking to update their arsenal with

the latest features that Jakarta EE 8 has to offer can also read the book to quickly update

and refresh their skill set.

 How This Book Is Structured
This book is structured so that it does not have to be read from cover to cover. In fact, it

is structured so that developers can choose which topics they’d like to read about and

jump right to them. Each recipe contains a problem to solve, one or more solutions to

solve that problem, and a detailed explanation of how the solution works. Although

some recipes may build upon concepts that have been discussed in other recipes, they

will contain the appropriate references so that the developer can find other related

recipes that are beneficial to the solution. The book is designed to allow developers to

get up and running quickly with a solution so that they can be home in time for dinner.

 Conventions
Throughout the book, I’ve kept a consistent style for presenting Java code, Structured

Query Language (SQL), command-line text, and results. Where pieces of code, SQL,

reserved words, or code fragments are presented in the text, they are presented in a

fixed-width font, such as in the following example:

public class MyExample {

 public static void main(String[] args){

 System.out.println("Jakarta EE is excellent!");

 }

}

InTroduCTIon

xliii

 Downloading the Code
The code for the examples shown in this book is available on the Apress web site,

www.apress.com. A link can be found on the book’s information page under the Source

Code/Downloads tab. This tab is located underneath the Related Titles section of the page.

Note The sources for this book may change over time, to provide new
implementations that incorporate the most up-to-date features in Jakarta ee. That
said, if any issues are found within the sources, please submit them via the apress
web site “errata” form, and code will be adjusted accordingly.

 Configuring Database for the Book Sources
This book’s sources have been developed using the Apache Derby database, which ships

with NetBeans IDE and GlassFish. Please install and configure the database for use

with the book sources using either of those database choices prior to working with the

sources. The database configuration involves creation of a database schema or user, as

well as execution of the create_database.sql script (contained within the book sources)

that goes along with the database of your choice. You must also place the appropriate

database JDBC driver into the GlassFish CLASSPATH. You can do this by copying the

ojdbcx.jar (Oracle) or derbyclient.jar (Apache Derby) JAR file into your integrated

development environment (IDE) project for the book sources or into the <GlassFish-

Home>\glassfish5\domains\domain1\lib\ext directory. If copying into the GlassFish

lib directory, then once the JAR file has been copied into place, the GlassFish server will

need to be restarted, if it is already running. If using Payara, the JAR file can be placed

into the respective location.

Once the database has been installed/configured, and the SQL scripts contained

within the book sources have been executed, please log into the GlassFish administrative

console and set up a database connection pool to work with the database of your choice.

After a connection pool has been configured, please update the persistence.xml

file that is contained within the book sources accordingly, so that the data source name

aligns with the one you’ve assigned to the GlassFish JDBC resource.

InTroduCTIon

http://www.apress.com

xliv

 Setting Up the Apache NetBeans Project
∗∗ Before setting up an Apache NetBeans project for the book sources, please install and

configure GlassFish or Payara accordingly.

∗∗∗ Before setting up an Apache NetBeans project for the book sources, please install

and/or configure Apache Derby or another database accordingly.

Note regarding dependencies This project depends upon the use of the third-
party Primefaces library. at the time of this book publication, the Primefaces aPI
was used and available for free download.

Please perform the following steps to set up the Apache NetBeans Maven web

project:

 1) Open NetBeans IDE 11 or greater.

 2) Choose the File ➤ New Project ➤ Maven ➤ Web Application

menu option.

 3) Title the project “JakartaEERecipes”, and choose a desired project

location.

 4) Server and Settings:

 – If you have not yet registered your GlassFish server with NetBeans,

please click the “Add” button in this dialog and add the server. To do

so, you will need to know the location of the GlassFish server on your

file system.

 – Java EE Version: As of NetBeans 11, you only have the option to

choose “Java EE 8 Web.” However, with Apache NetBeans 11.2, Java

EE 8 is an available option.

 5) Frameworks:

 – Select JavaServer Faces, and then accept all defaults.

InTroduCTIon

xlv

 6) Click “Finish.”

 7) Go to your file system and copy the contents from within the

JakartaEERecipes- BookSources\NBProject\src directory into your

new NetBeans project “src” directory.

 8) Add the required library dependencies to your project by right-

clicking the project and choosing the “Properties” option. Once

the “Properties” dialog is open, select “Libraries,” and add the

following dependencies:

 – PrimeFaces

 – Database JDBC JAR file, if not already placed within the GlassFish

“lib” directory

InTroduCTIon

1
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_1

CHAPTER 1

Servlets and JavaServer
Pages
Java servlets were the first technology for producing dynamic Java web applications.

Sun Microsystems released the first Java Servlet specification in 1997. Since then it has

undergone tremendous change, making it more powerful and easing development more

with each release. Servlets are at the base of web content for many Java EE applications.

Servlets are Java classes that conform to the Java Servlet API, which allows a Java class to

respond to requests. Although servlets can respond to any type of request, they are most

commonly written to respond to web-based requests. A servlet must be deployed to a

Java servlet container, be it a full stack application server or a micro container, in order

to become usable. The Servlet API provides a number of objects that are used to enable

the functionality of a servlet within a web container. Such objects include the request

and response objects, pageContext, and a great deal of others, and when these objects

are used properly, they enable a Java servlet to perform just about any task a web-based

application needs to do.

As mentioned, servlets can produce not only static content but also dynamic

content. Since a servlet is written in Java, any valid Java code can be used within the body

of the servlet class. This empowers Java servlets and allows them to interact with other

Java classes, the web container, the underlying file server, and much more. Although

many developers use servlet frameworks such as JavaServer Pages (JSP) and JavaServer

Faces (JSF), both of these technologies compile pages into Java servlets behind the

scenes via the servlet container. That said, a fundamental knowledge of Java servlet

technology could be very useful for any Java web developer.

2

This chapter will get you started developing and deploying servlets. You will be

taught the basics of developing servlets, how to use them with client web sessions, and

how to link a servlet to another application. All the while, you will learn to use standards

from the latest release of the Java Servlet API under the Jakarta EE platform, which

modernizes servlet development and makes it much easier and more productive than in

years past.

The JavaServer Pages (JSP) web framework introduced a great productivity boost

for Java web developers over the Java Servlet API. Built as a façade on top of the Servlet

API, when the JSP technology was introduced in 1999, it was Sun’s answer to PHP and

ASP, which provided web developers with a quick way to create dynamic web content.

JSP contains a mix of XML and HTML but can also contain embedded Java code within

scripting elements known as scriptlets. Indeed, JSP is easy to learn and allows developers

to quickly create dynamic content and use their favorite HTML editor to lay out nice-

looking pages. JSP was introduced several years ago, and although JSP technology has

changed over the years, there are still many applications using older JSP variations in the

world today.

Over the years, the creation of dynamic web content has solidified, and the

techniques used to develop web applications have become easier to maintain down the

road. Whereas early JSP applications included a mix of Java and XML markup within

the pages, today the separation of markup from business logic is increasingly important.

Newer releases of the JSP technology have accounted for these changes in the web space,

and the most recent releases allow developers the flexibility to develop highly dynamic

content without utilizing any embedded Java code but, instead, making use of markup

and custom tags within pages.

This chapter contains a number of recipes that will show you the ins and outs of JSP

development. You will learn how to develop applications using JSP technology from the

ground up and harness the productivity and power that the technology has to offer. The

chapter also brushes upon advanced techniques such as the development of custom

JSP tags and the invocation of Java functions utilizing conditional tags. Although entire

books have been written on JSP, the recipes within this chapter will lay a solid foundation

on which you can begin to develop applications utilizing JSP.

Chapter 1 ServletS and JavaServer pageS

3

1-1. Developing a Servlet
 Problem
You wish to develop a web page that enables the use of dynamic content.

 Solution
Develop a Java Servlet class, compile it, and deploy it within a compliant Java Servlet

container, such as Eclipse GlassFish or Apache Tomcat. In this example, a simple servlet

is created, which will be used to display dynamic content onto a web page. The following

example demonstrates how to code a servlet which will display HTML content. In this

particular example, the content is hard-coded, but it could be easily modified to pull in

dynamic content from a database or external properties file:

package org.jakartaeerecipes.chapter01.recipe01_01;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class SimpleServlet extends HttpServlet {

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 // Place page output here

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet SimpleServlet</title>");

 out.println("</head>");

 out.println("<body>");

Chapter 1 ServletS and JavaServer pageS

4

 out.println("<h2>Servlet SimpleServlet at " + request.

getContextPath() + "</h2>");

 out.println("
Welcome to Java EE Recipes!");

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

To compile the servlet, use the javac command-line utility or a Java integrated

development environment (IDE) such as Apache NetBeans. The following line was

excerpted from the command line, and it compiles the SimpleServlet.java file into a

class file. First, traverse into the directory containing the SimpleServlet.java file. Next,

execute the following command:

javac -cp /JAVA_DEV/Glassfish/glassfish/modules/javax.servlet-api.jar

SimpleServlet.java

Chapter 1 ServletS and JavaServer pageS

5

Note that the path in the preceding example utilizes the javax.servlet-api.jar file

which is part of GlassFish 5.1. Once the servlet code has been compiled into a Java class

file, then it is ready to package for deployment to a servlet container.

Note You may want to consider installing a Java integrated development
environment (Ide) to increase your development productivity. there are several
very good Ides available to developers, so be sure to choose one that contains
the features you find most important and useful for development. as the author
of this book on Jakarta ee, I recommend installing apache netBeans 11 or newer
for development. apache netBeans is an open source Ide that is maintained by
apache, and it includes support for all the cutting-edge features that the Java
industry has to offer, including development with Jakarta ee, OpenJFX support, and
more. to learn more about working with apache netBeans and Jakarta ee, please
see the appendix of this book.

 How It Works
Java servlets provide developers with the flexibility to design applications using a

request-response programming model. Servlets play a key role in the development of

service-oriented and web applications on the Java platform. There are different types

of servlets that can be created, and each of them is geared toward providing a different

functionality. The first type is known as a GenericServlet, which provides services

and functionality to other resources. The second type, HttpServlet, is a subclass of

GenericServlet and provides functionality and a response utilizing HTTP. The solution

to this recipe demonstrates the latter type of servlet because it displays a result for the

user to see within a web browser.

Servlets conform to a life cycle for processing requests and posting results. First, the

Java Servlet container calls the servlet’s constructor. The constructor of every servlet

must accept no arguments. Next, the container calls the servlet init method, which is

responsible for initializing the servlet. Once the servlet has been initialized, it is ready for

use. At that point, the servlet can begin processing. Each servlet contains a service()

method, which handles the requests being made and dispatches them to the appropriate

methods for request handling. Implementing the service() method is optional. Finally,

the container calls upon the servlet destroy() method, which takes care of finalizing the

servlet and taking it out of service.

Chapter 1 ServletS and JavaServer pageS

6

Every servlet class must implement the javax.servlet.Servlet interface or extend

another class that does. In the solution to this recipe, the servlet named SimpleServlet

extends the HttpServlet class, which provides methods for handling HTTP processes. In

this scenario, a browser client request is sent from the container to the servlet; then the

servlet service() method dispatches the HttpServletRequest object to the appropriate

method provided by HttpServlet. Namely, the HttpServlet class provides the doGet(),

doPut(), doPost(), and doDelete() methods for working with an HTTP request. The

most often used methods are the doGet() and doPost(). The HttpServlet class is

abstract, so it must be subclassed, and then an implementation can be provided for its

methods. Table 1-1 describes each of the methods available to an HttpServlet.

Table 1-1. HttpServlet Methods

Method Name Description

doGet Used to process http GET requests. Input sent to the servlet must be

included in the Url address. For example: ?myName=Josh&myBook=Jakar

taEERecipes.

doPost Used to process http POST requests. Input can be sent to the servlet within

htMl form fields.

doPut Used to process http PUT requests.

doDelete Used to process http DELETE requests.

doHead Used to process http HEAD requests.

doOptions Called by the container to allow OPTIONS request handling.

doTrace Called by the container to handle TRACE requests.

getLastModified returns the time that the HttpServletRequest object was last modified.

init Initializes the servlet.

destroy Finalizes the servlet.

getServletInfo provides information regarding the servlet.

Chapter 1 ServletS and JavaServer pageS

7

A servlet generally performs some processing within the implementation of its

methods and then returns a response to the client. The HttpServletRequest object

can be used to process arguments that are sent via the request. For instance, if an

HTML form contains some input fields that are sent to the server, those fields would be

contained within the HttpServletRequest object. The HttpServletResponse object is

used to send responses to the client browser. Both the doGet() and doPost() methods

within a servlet accept the same arguments, namely, the HttpServletRequest and

HttpServletResponse objects.

Note the doGet() method is used to intercept http GET requests, and
doPost() is used to intercept http POST requests. generally, the doGet()
method is used to prepare a request before displaying for a client, and the
doPost() method is used to process a request and gather information from an
htMl form.

In the solution to this recipe, both the doGet() and doPost() methods pass the

HttpServletRequest and HttpServletResponse objects to the processRequest()

method for further processing. The HttpServletResponse object is used to set the

content type of the response and to obtain a handle on the PrintWriter object in the

processRequest() method. The following lines of code show how this is done, assuming

that the identifier referencing the HttpServletResponse object is response:

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

A GenericServlet can be used for providing services to web applications. This type

of servlet is oftentimes used for logging events because it implements the log() method.

A GenericServlet implements both the Servlet and ServletConfig interfaces, and to

write a generic servlet, only the service() method must be overridden.

Chapter 1 ServletS and JavaServer pageS

8

1-2. Packaging, Compiling, and Deploying a Servlet
 Problem
You have written a Java servlet and now want to package it and deploy it for use.

 Solution
Compile the sources, set up a deployable application, and copy the contents into the

GlassFish deployment directory. From the command line, use the javac command to

compile the sources:

javac -cp /PATH_TO_GLASSFISH/Glassfish/glassfish/modules/javax.servlet-api.

jar SimpleServlet.java

After the class has been compiled, deploy it along with the web.xml deployment

descriptor, conforming to the appropriate directory structure.

 Quick Start

To quickly get started with packaging, compiling, and deploying the example application

for the servlet recipes in this chapter on GlassFish or other servlet containers such as

Apache Tomcat, follow these steps:

 1. Create a single application named SimpleServlet by making a

directory named SimpleServlet.

 2. Create the WEB-INF, WEB-INF/classes, and WEB-INF/lib

directories inside SimpleServlet.

 3. Drag the Chapter 1 sources (beginning with the org directory)

in the WEB-INF/classes directory you created, as well as the

contents of the web folder, into the root of your SimpleServlet

directory.

 4. Copy the web.xml file that is in the source’s recipe01_01 directory

into the WEB-INF directory you created.

 5. Download the JavaMail API code from Oracle, and copy the mail.

jar file from the download into the WEB-INF/lib directory you

created. This API will be used to send mail in future recipes.

Chapter 1 ServletS and JavaServer pageS

9

 6. Set your CLASSPATH to include the mail.jar file you downloaded

in step 5.

 7. At the command prompt, change directories so that you are in

the classes directory you created in step 2. Compile each recipe

with the command javac org\jakartaeerecipes\chapter01\

recipe1_x*.java, where x is equal to the recipe number.

 8. Copy your SimpleServlet application directory to the /JAVA_DEV/

Glassfish/glassfish/domains/domain1/autodeploy directory

for Glassfish or the /Tomcat/webapps directory for Tomcat.

Test the application by launching a browser and going to http://localhost:8080/

SimpleServlet/servlet_name, where servlet_name corresponds to the servlet name

in each recipe. If using Tomcat, you may need to restart the server in order for the

application to deploy.

 How It Works
To compile the sources, you can use your favorite Java development environment such

as Apache NetBeans or Eclipse IDE, or you can use the command line. For the purposes

of this recipe, I will use the latter. If you’re using the command line, you must ensure you

are using the javac command that is associated with the same Java release that you will

be using to run your servlet container. In this example, we will say that the location of the

Java SE 11 installation is at the following path:

/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

Note the Java JdK that is used to compile is dependent upon the application
server container that is being used for deployment. at the time of this writing, most
containers were either compatible with JdK 8 or JdK 11.

This path may differ in your environment if you are using a different operating

system and/or installation location. To ensure you are using the Java runtime that is

located at this path, set the JAVA_HOME environment variable equal to this path.

Chapter 1 ServletS and JavaServer pageS

10

On OS X and *nix operating systems, you can set the environment variable by opening

the terminal and typing the following:

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

If you are using Windows, use the SET command within the command line to set up

the JAVA_HOME environment variable:

set JAVA_HOME=C:\your-java-se-path\

Next, compile your Java servlet sources, and be sure to include the javax.servlet-

api.jar file that is packaged with your servlet container (use servlet-api.jar for

Tomcat) in your CLASSPATH. You can set the CLASSPATH by using the –cp flag of the javac

command. The following command should be executed at the command line from

within the same directory that contains the sources. In this case, the source file is named

SimpleServlet.java:

javac -cp /path_to_jar/javax.servlet-api.jar SimpleServlet.java

Next, package your application by creating a directory and naming it after your

application. In this case, create a directory and name it SimpleServlet. Within that

directory, create another directory named WEB-INF. Traverse into the WEB-INF directory,

and create another directory named classes. Lastly, create directories within the classes

directory in order to replicate your Java servlet package structure. For this recipe, the

SimpleServlet.java class resides within the Java package org.jakartaeerecipes.

chapter01.recipe01_01, so create a directory for each of those packages within the

classes directory. Create a final directory within WEB-INF and name it lib; any JAR files

containing external libraries should be placed within the lib directory. In the end, your

directory structure should resemble the following:

SimpleServlet

|_WEB-INF

 |_classes

 |_org

 |_jakartaeerecipes

 |_chapter01

 |_recipe01_01

 |_lib

Chapter 1 ServletS and JavaServer pageS

11

Place your web.xml deployment descriptor within the WEB-INF directory, and

place the compiled SimpleServlet.class file within the recipe01_01 directory.

The entire contents of the SimpleServlet directory can now be copied within the

deployment directory for your application server container to deploy the application.

Restart the application server if using Tomcat, and visit the URL http://localhost:8080/

SimpleServlet/SimpleServlet to see the servlet in action.

Note If using an integrated development environment or a build tool such as
Maven, all of the manual work of generating directories and placing files into the
correct locations is done automatically. In general, the use of an Ide is greatly
recommended, as it can increase productivity and reduce the chance for errors.

1-3. Registering a Servlet Without Web.xml
 Problem
Registering servlets in the web.xml file is cumbersome, and you want to deploy servlets

without modifying web.xml at all.

 Solution
Use the @WebServlet annotation to register the servlet, and omit the web.xml

registration. This will alleviate the need to modify the web.xml file each time a servlet is

added to your application. The following adaptation of the SimpleServlet class that was

used in Recipe 1-2 includes the @WebServlet annotation and demonstrates its use:

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

Chapter 1 ServletS and JavaServer pageS

12

/**
 * Recipe 1-3 - Registering Servlets without WEB-XML

 * @author juneau

 */

@WebServlet(name = "SimpleServletNoDescriptor", urlPatterns =

{"/SimpleServletNoDescriptor"})

public class SimpleServletNoDescriptor extends HttpServlet {

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 /*
 * TODO output your page here. You may use following sample code.

 */

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet SimpleServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h2>Servlet SimpleServlet at " + request.

getContextPath() + "</h2>");

 out.println("
Look ma, no WEB-XML!");

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

Chapter 1 ServletS and JavaServer pageS

13

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

}

In the end, the servlet will be accessible via a URL in the same way that it would if the

servlet were registered within web.xml.

Note remove any existing servlet mapping within the web.xml file in order to
make use of the @WebServlet annotation.

 How It Works
There are a number of ways to register servlets with a web container. The first way is to

register them using the web.xml deployment descriptor, as demonstrated in Recipe 1-1.

The second way to register them is to use the @WebServlet annotation, which provides

an easier technique to use for mapping a servlet to a URL. The @WebServlet annotation

is placed before the declaration of a class, and it accepts the elements listed in Table 1-2.

Chapter 1 ServletS and JavaServer pageS

14

In the solution to this recipe, the @WebServlet annotation maps the servlet class

named SimpleServletNoDescriptor to the URL pattern of /SimpleServletNoDescriptor,

and it also names the servlet SimpleServletNoDescriptor:

@WebServlet(name="SimpleServletNoDescriptor", urlPatterns=

{"/SimpleServletNoDescriptor"})

1-4. Displaying Dynamic Content with a Servlet
 Problem
You want to display some content to a web page that may change depending upon

server-side activity or user input.

 Solution
Define a field within your servlet to contain the dynamic content that is to be displayed.

Post the dynamic content on the page by appending the field containing it using the

PrintWriter println() method. The following example servlet declares a Date field

and updates it with the current date each time the page is loaded:

Table 1-2. @WebServlet Annotation Elements

Element Description

description description of the servlet

displayname the display name of the servlet

initparams accepts list of @WebInitParam annotations

largeIcon the large icon of the servlet

loadOnStartup load on startup order of the servlet

name Servlet name

smallIcon the small icon of the servlet

urlpatterns Url patterns that invoke the servlet

Chapter 1 ServletS and JavaServer pageS

15

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 1-4: Displaying Dynamic Content with a Servlet

 *
 * @author juneau

 */

@WebServlet(name = "CurrentDateAndTime", urlPatterns =

{"/CurrentDateAndTime"})

public class CurrentDateAndTime extends HttpServlet {

 Date currDateAndTime;

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet CurrentDateAndTime</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet CurrentDateAndTime at " + request.

getContextPath() + "</h1>");

 out.println("
");

 synchronized(currDateAndTime){

 currDateAndTime = new Date();

 out.println("The current date and time is: " + currDateAndTime);

Chapter 1 ServletS and JavaServer pageS

16

 }

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

}

Note Servlets are multithreaded, and many client requests may be using a servlet
concurrently. When a field is declared as a servlet class member (not within a
method) as you have done with currDateAndTime, you have to assure that only one
client request can manipulate the field at any instance. You do this by synchronizing
around the use of the field, as shown in the processRequest() method. You
synchronize around the smallest block of code you can manage in order to minimize
latency. the resulting output from this servlet will be the current date and time.

synchronized(currDateAndTime) {

 currDateAndTime = new Date();

 out.println("The current date and time is: " + currDateAndTime);

}

Chapter 1 ServletS and JavaServer pageS

17

 How It Works
One of the reasons why Java servlets are so useful is because they allow dynamic

content to be displayed on a web page. The content can be taken from the server itself, a

database, another web site, or any other web-accessible resource. Servlets are not static

web pages; they are dynamic, and that is arguably their biggest strength.

In the solution to this recipe, a servlet is used to display the current time and date

on the server. When the servlet is processed, the doGet() method is called, which

subsequently makes a call to the processRequest() method, passing the request and

response objects. Therefore, the processRequest() method is where the bulk of the work

occurs. The processRequest() method creates a PrintWriter by calling the response.

getWriter() method, and the PrintWriter is used to display content on the resulting

web page. Next, the current date and time are obtained from the server by creating a

new Date and assigning it to the currDateAndTime field. Lastly, the processRequest()

method sends the web content through the out.println() method, and the contents

of the currDateAndTime field are concatenated to a String and sent to out.println() as

well. Each time the servlet is processed, it will display the current date and time at the

time in which the servlet is invoked because a new Date is created with each request.

This example just scratches the surface of what is possible with a Java servlet.

Although displaying the current date and time is trivial, you could alter that logic to

display the contents of any field contained within the servlet. Whether it be an int field

that displays a calculation that was performed by the servlet container or a String field

containing some information, the possibilities are endless.

1-5. Handling Requests and Responses
 Problem
You want to create a web form that accepts user input and supplies a response based

upon the input that has been received.

 Solution
Create a standard HTML-based web form, and when the submit button is clicked, invoke

a servlet to process the end user input and post a response. To examine this technique,

you will see two different pieces of code. The following code is HTML that is used to

Chapter 1 ServletS and JavaServer pageS

18

generate the input form. This code exists within the file recipe01_05.html. Please

browse to /SimpleServlet/recipe01_05.html to execute the example. Pay particular

attention to the <form> and <input> tags. You will see that the form’s action parameter

lists a servlet name, MathServlet:

<html>

 <head>

 <title>Simple Math Servlet</title>

 </head>

 <body>

 <h1>This is a simple Math Servlet</h1>

 <form method="POST" action="MathServlet">

 <label for="numa">Enter Number A: </label>

 <input type="text" id="numa" name="numa"/>

 <label for="numb">Enter Number B: </label>

 < input type="text" id="numb"

name="numb"/>

 <input type="submit" value="Submit Form"/>

 <input type="reset" value="Reset Form"/>

 </form>

 </body>

</html>

Next, take a look at the following code for a servlet named MathServlet. This is

the Java code that receives the input from the HTML code listed earlier, processes it

accordingly, and posts a response:

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.*;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.*;

/**
 * Recipe 1-5: Handling Requests and Responses

 */

Chapter 1 ServletS and JavaServer pageS

19

// Uncomment the following line to run example stand-alone

//@WebServlet(name="SessionServlet", urlPatterns={"/MathServlet"})

// The following will allow the example to run within the context of the

JakartaEERecipes example

// enterprise application (JakartaEERecipes.war distro or Netbeans Project

@WebServlet(name = "MathServlet", urlPatterns = {"/chapter01/MathServlet"})

public class MathServlet extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws IOException, ServletException {

 res.setContentType("text/html");

 // Store the input parameter values into Strings

 String numA = req.getParameter("numa");

 String numB = req.getParameter("numb");

 PrintWriter out = res.getWriter();

 out.println("<html><head>");

 out.println("<title>Test Math Servlet</title>");

 out.println("\t<style>body { font-family: 'Lucida Grande', "

 + "'Lucida Sans Unicode';font-size: 13px; }</style>");

 out.println("</head>");

 out.println("<body>");

 try {

 int solution = Integer.valueOf(numA) + Integer.valueOf(numB);

 /*
 * Display some response to the user

 */

 out.println("<p>Solution: "

 + numA + " + " + numB + " = " + solution + "</p>");

 } catch (java.lang.NumberFormatException ex) {

 // Display error if an exception is raised

 out.println("<p>Please use numbers only...try again.</p>");

 }

Chapter 1 ServletS and JavaServer pageS

20

 out.println("

");

 out.println("Add Two More Numbers");

 out.println("</body></html>");

 out.close();

 }

}

Note to run the example, copy the previous htMl code into an htMl file within
the web root of your JakartaEERecipes application named recipe01_05.
html, and then enter the following address into your browser: http://
localhost:8080/Jakartaeerecipes/recipe01_05.html. this assumes you are using
default port numbers for your application server installation. If using the apache
netBeans project that was packaged with the sources, you do not need to worry
about copying the code as everything should be preconfigured.

 How It Works
Servlets make it easy to create web applications that adhere to a request and response

life cycle. They have the ability to provide HTTP responses and also process business

logic within the same body of code. The ability to process business logic makes

servlets much more powerful than standard HTML code. The solution to this recipe

demonstrates a standard servlet structure for processing requests and sending

responses. An HTML web form contains parameters that are sent to a servlet. The servlet

then processes those parameters in some manner and publishes a response that can be

seen by the client. In the case of an HttpServlet object, the client is a web browser, and

the response is a web page.

Values can be obtained from an HTML form by using HTML <input> tags embedded

within an HTML <form>. In the solution to this recipe, two values are accepted as input,

and they are referenced by their id attributes as numa and numb. There are two more

<input> tags within the form; one of them is used to submit the values to the form

action, and the other is used to reset the form fields to blank. The form action is the

Chapter 1 ServletS and JavaServer pageS

21

name of the servlet that the form values will be passed to as parameters. In this case, the

action is set to MathServlet. The <form> tag also accepts a form-processing method,

either GET or POST. In the example, the POST method is used because form data is being

sent to the action; in this case, data is being sent to MathServlet. You could, of course,

create an HTML form as detailed as you would like and then have that data sent to any

servlet in the same manner. This example is relatively basic; it serves to give you an

understanding of how the processing is performed.

The <form> action attribute states that the MathServlet should be used to process

the values that are contained within the form. The MathServlet name can be mapped

back to the MathServlet class via the web.xml deployment descriptor or the @WebServlet

annotation. Looking at the MathServlet code, you can see that a doPost() method is

implemented to handle the processing of the POST form values. The doPost() method

accepts HttpServletRequest and HttpServletResponse objects as arguments. The

values contained within the HTML form are embedded within the HttpServletRequest

object. To obtain those values, call upon the request object’s getParameter() method,

passing the id of the input parameter you want to obtain. In the solution to this recipe,

those values are obtained and stored within local String fields:

String numA = req.getParameter("numa");

String numB = req.getParameter("numb");

Once the values are obtained, they can be processed as needed. In this case, those

String values are converted into int values, and then they are added together to generate

a sum and stored into an int field. That field is then presented as a response on a

resulting web page:

int solution = Integer.valueOf(numA) + Integer.valueOf(numB);

As mentioned, the HTML form could be much more complex, containing any

number of <input> fields. Likewise, the servlet could perform more complex processing

of those field values. This example is merely the tip of the iceberg, and the possibilities

are without bounds. Servlet-based web frameworks such as JavaServer Pages and

JavaServer Faces hide many of the complexities of passing form values to a servlet and

processing a response. However, the same basic framework is used behind the scenes.

Chapter 1 ServletS and JavaServer pageS

22

1-6. Listening for Servlet Container Events
 Problem
You want to have the ability to listen for application startup and shutdown events.

 Solution
Create a servlet context event listener to alert when the application has started up or

when it has been shut down. The following solution demonstrates the code for a context

listener, which will log application startup and shutdown events and send email alerting

of such events:

package org.jakartaeerecipes.chapter01.recipe01_06;

import java.util.Properties;

import javax.mail.Message;

import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;

import javax.mail.internet.MimeMessage;

import javax.servlet.ServletContextListener;

import javax.servlet.ServletContextEvent;

import javax.servlet.annotation.WebListener;

@WebListener

public class StartupShutdownListener implements ServletContextListener {

 public void contextInitialized(ServletContextEvent event) {

 System.out.println("Servlet startup...");

 System.out.println(event.getServletContext().getServerInfo());

 System.out.println(System.currentTimeMillis());

 // See error in server.log if mail is unsuccessful

 sendEmail("Servlet context has initialized");

 }

Chapter 1 ServletS and JavaServer pageS

23

 public void contextDestroyed(ServletContextEvent event) {

 System.out.println("Servlet shutdown...");

 System.out.println(event.getServletContext().getServerInfo());

 System.out.println(System.currentTimeMillis());

 // See error in server.log if mail is unsuccessful

 sendEmail("Servlet context has been destroyed...");

 }

 /**
 * This implementation uses the GMail smtp server

 * @param message

 * @return

 */

 private boolean sendEmail(String message) {

 boolean result = false;

 String smtpHost = "smtp.someserver.com";

 String smtpUsername = "username";

 String smtpPassword = "password";

 String from = "fromaddress";

 String to = "toaddress";

 int smtpPort = 587;

 System.out.println("sending email...");

 try {

 // Send email here

 //Set the host smtp address

 Properties props = new Properties();

 props.put("mail.smtp.host", smtpHost);

 props.put("mail.smtp.auth", "true");

 props.put("mail.smtp.starttls.enable", "true");

 // create some properties and get the default Session

 Session session = Session.getInstance(props);

 // create a message

 Message msg = new MimeMessage(session);

Chapter 1 ServletS and JavaServer pageS

24

 // set the from and to address

 InternetAddress addressFrom = new InternetAddress(from);

 msg.setFrom(addressFrom);

 InternetAddress[] address = new InternetAddress[1];

 address[0] = new InternetAddress(to);

 msg.setRecipients(Message.RecipientType.TO, address);

 msg.setSubject("Servlet container shutting down");

 // Append Footer

 msg.setContent(message, "text/plain");

 Transport transport = session.getTransport("smtp");

// transport.connect(smtpHost, smtpPort, smtpUsername,

smtpPassword);

 // Transport.send(msg);

 result = true;

 } catch (javax.mail.MessagingException ex) {

 ex.printStackTrace();

 result = false;

 }

 return result;

 }

}

Note to run this example, you may need additional external Jars in your
CLASSPATH. Specifically, make sure you have mail.jar and javaee.jar.

 How It Works
Sometimes it is useful to know when certain events occur within the application server

container. This concept can be useful under many different circumstances, but most

often it would be used for initializing an application upon startup or cleaning up after

an application upon shutdown. A servlet listener can be registered with an application

to indicate when it has been started up or shut down. Therefore, by listening for such

events, the servlet has the opportunity to perform some actions when they occur.

Chapter 1 ServletS and JavaServer pageS

25

To create a listener that performs actions based on a container event, you must

develop a class that implements the ServletContextListener interface. The methods

that need to be implemented are contextInitialized() and contextDestroyed().

Both of the methods accept a ServletContextEvent as an argument, and they are

automatically called each time the servlet container is initialized or shut down,

respectively. To register the listener with the container, you can use one of the following

techniques:

• Utilize the @WebListener annotation, as demonstrated by the

solution to this recipe.

• Register the listener within the web.xml application deployment

descriptor.

• Use the addListener() method defined on ServletContext.

For example, to register this listener within web.xml, you need to add the following

lines of XML:

<listener>

 < listener-class> org.jakartaeerecipes.chapter01.recipe01_06.

StartupShutdownListener</listener-class>

</listener>

Neither way is better than the other. The only time that listener registration within the

application deployment descriptor (web.xml) would be more helpful is if you had the need

to disable the listener in some cases. On the other hand, to disable a listener when it is

registered using @WebListener, you must remove the annotation and recompile the code.

Altering the web deployment descriptor does not require any code to be recompiled.

There are many different listener types, and the interface that the class implements

is what determines the listener type. For instance, in the solution to this recipe, the

class implements the ServletContextListener interface. Doing so creates a listener for

servlet context events. If, however, the class implements HttpSessionListener, it would

be a listener for HTTP session events. The following is a complete listing of listener

interfaces:

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttrbuteListener

Chapter 1 ServletS and JavaServer pageS

26

javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.http.HttpSessionListener

javax.servlet.http.HttpSessionAttributeListener

javax.servlet.http.HttpSessionIdListener

It is also possible to create a listener that implements multiple listener interfaces.

1-7. Reading and Writing with Nonblocking I/O
 Problem
You want to read and write I/O in an asynchronous, nonblocking manner.

 Solution
Use the Non-Blocking I/O API that was part of the Servlet 3.1 release. To use the

technology, implement the ReadListener interface when performing nonblocking

reads, and implement the WriteListener interface for performing nonblocking

writes. The implementation class can then be registered to a ServletInputStream or

ServletOutputStream so that reads or writes can be performed when the listener finds

that servlet content can be read or written without blocking.

The following sources are those of a ReadListener implementation that reside in the

source file org.jakartaeerecipes.chapter01.recipe01_07.AcmeReadListenerImpl.

java, and they demonstrate how to implement the ReadListener:

package org.jakartaeerecipes.chapter01.recipe01_07;

import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.AsyncContext;

import javax.servlet.ReadListener;

import javax.servlet.ServletInputStream;

public class AcmeReadListenerImpl implements ReadListener {

 private ServletInputStream is = null;

 private AsyncContext async = null;

Chapter 1 ServletS and JavaServer pageS

27

 public AcmeReadListenerImpl(ServletInputStream in, AsyncContext ac) {

 this.is = in;

 this.async = ac;

 System.out.println("read listener initialized");

 }

 @Override

 public void onDataAvailable() {

 System.out.println("onDataAvailable");

 try {

 StringBuilder sb = new StringBuilder();

 int len = -1;

 byte b[] = new byte[1024];

 while (is.isReady()

 && (len = is.read(b)) != -1) {

 String data = new String(b, 0, len);

 System.out.println(data);

 }

 } catch (IOException ex) {

 Logger.getLogger(AcmeReadListenerImpl.class.getName()).

log(Level.SEVERE, null, ex);

 }

 }

 @Override

 public void onAllDataRead() {

 System.out.println("onAllDataRead");

 async.complete();

 }

 @Override

 public void onError(Throwable thrwbl) {

 System.out.println("Error: " + thrwbl);

 async.complete();

 }

}

Chapter 1 ServletS and JavaServer pageS

28

Next, use the listener by registering it to a ServletInputStream (in the case of the

ReadListener) or a ServletOutputStream (in the case of a WriteListener). For this

example, I show a servlet that utilizes the AcmeReadListenerImpl class. The sources

for the following class reside in the org.jakartaeerecipes.chapter01.recipe01_07.

AcmeReaderExample.java file:

package org.jakartaeerecipes.chapter01.recipe01_07;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.AsyncContext;

import javax.servlet.ServletException;

import javax.servlet.ServletInputStream;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(urlPatterns = {"/AcmeReaderServlet"}, asyncSupported = true)

public class AcmeReaderServlet extends HttpServlet {

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter output = response.getWriter()) {

 AsyncContext asyncCtx = request.startAsync();

 ServletInputStream input = request.getInputStream();

 input.setReadListener(new AcmeReadListenerImpl(input, asyncCtx));

 } catch (Exception ex) {

 System.out.println("Exception Occurred: " + ex);

 }

 }

 // Http Servlet Methods ...

...

}

Chapter 1 ServletS and JavaServer pageS

29

The last piece of code that we need is the servlet that invokes the AcmeReaderServlet,

passing the message that needs to be processed. In this example, a file from the

server is passed to the AcmeReaderServlet as input, which then is asynchronously

processed via the AcmeReadListenerImpl class. The following code is taken from

org.jakartaeerecipes.chapter01.recipe01_07.ReaderExample.java:

package org.jakartaeerecipes.chapter01.recipe01_07;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "ReaderExample", urlPatterns = {"/ReaderExample"})

public class ReaderExample extends HttpServlet {

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 String filename = "/WEB-INF/test.txt";

 ServletContext context = getServletContext();

Chapter 1 ServletS and JavaServer pageS

30

 InputStream in = context.getResourceAsStream(filename);

 try (PrintWriter out = response.getWriter()) {

 String path = "http://"

 + request.getServerName()

 + ":"

 + request.getServerPort()

 + request.getContextPath()

 + "/AcmeReaderServlet";

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Intro to Java EE 7 - Servlet Reader

Example</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet ReaderExample at " + request.

getContextPath() + "</h1>");

 out.println("Invoking the endpoint: " + path + "
");

 out.flush();

 URL url = new URL(path);

 HttpURLConnection conn = (HttpURLConnection) url.openConnection();

 conn.setChunkedStreamingMode(2);

 conn.setDoOutput(true);

 conn.connect();

 if (in != null) {

 InputStreamReader inreader = new InputStreamReader(in);

 BufferedReader reader = new BufferedReader(inreader);

 String text = "";

 out.println("Beginning Read");

 try (BufferedWriter output = new BufferedWriter(new

OutputStreamWriter(conn.getOutputStream()))) {

 out.println("got the output...beginning loop");

 while ((text = reader.readLine()) != null) {

 out.println("reading text: " + text);

 out.flush();

 output.write(text);

Chapter 1 ServletS and JavaServer pageS

31

 Thread.sleep(1000);

 output.write("Ending example now..");

 out.flush();

 }

 output.flush();

 output.close();

 }

 }

 out.println("Review the Glassfish server log for messages...");

 out.println("</body>");

 out.println("</html>");

 } catch (InterruptedException | IOException ex) {

 Logger.getLogger(ReaderExample.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

// Http Servlet Methods ...

...

}

When the servlet is visited, the asynchronous, nonblocking read of the test.txt file

will occur, and its text will be displayed in the server log.

 How It Works
Servlet technology has allowed only traditional (blocking) input/output during request

processing since its inception. In the Servlet 3.1 release, the Non-Blocking I/O API was

introduced to make it possible for servlets to read or write without any blocking. This

means other tasks can be performed at the same time that a read or write is occurring,

without any wait.

To implement a nonblocking I/O solution, programming interfaces were added

to ServletInputStream and ServletOutputStream with the release of Servlet 3.1,

as well as two event listeners: ReadListener and WriteListener. ReadListener and

WriteListener interfaces make the servlet I/O processing occur in a nonblocking

manner via callback methods that are invoked when servlet content can be read or

written without blocking. Use the ServletInputStream.setReadListener

Chapter 1 ServletS and JavaServer pageS

32

(ServletInputStream, AsyncContext) method to register a ReadListener with a

ServletInputStream, and use the ServletInputStream.setWriteListener

(ServletOutputStream, AsyncContext) method for registering a WriteListener. The

following lines of code demonstrate how to register a ReadListener implementation

with a ServletInputStream:

AsyncContext context = request.startAsync();

ServletInputStream input = request.getInputStream();

input.setReadListener(new ReadListenerImpl(input, context));

Note In Servlet 3.0, AsyncContext was introduced to represent an execution
context for an asynchronous operation that is initiated on a servlet request. to
use the asynchronous context, a servlet should be annotated as a @WebServlet,
and the asyncSupported attribute of the annotation must be set to true. the
@WebFilter annotation also contains the asyncSupported() attribute.

After a listener has been registered with a ServletInputStream, the status on

a nonblocking read can be checked by calling the methods ServletInputStream.

isReady() and ServletInputStream.isFinished(). For instance, a read can begin once

the ServletInputStream.isReady() method returns a true, as shown here:

while (is.isReady() && (b = input.read()) != -1)) {

 len = is.read(b);

 String data = new String(b, 0, len);

}

To create a ReadListener or WriteListener, three methods must be overridden:

onDataAvailable(), onAllDataRead(), and onError(). The onDataAvailable()

method is invoked when data is available to be read or written, onAllDataRead() is

invoked once all the data has been read or written, and onError() is invoked if an

error is encountered. The code for AcmeReadListenerImpl in the solution to this recipe

demonstrates how to override these methods.

Chapter 1 ServletS and JavaServer pageS

33

The AsyncContext.complete() method is called in the onAllDataRead() method

to indicate that the read has been completed and to commit the response. This method

is also called in the onError() implementation so that the read will complete, so it is

important to perform any cleanup within the body of the onError() method to ensure

that no resources are leaked, and so on.

To implement a WriteListener, use the ServletOutputStream.canWrite

method, which determines whether data can be written in a nonblocking fashion.

A WriteListener implementation class must override the following methods:

onWritePossible() and onError(). The onWritePossible() method is invoked when

a nonblocking write can occur. The write implementation should take place within the

body of this method. The onError() method is much the same as its ReadListener

implementation counterpart, because it is invoked when an error occurs.

The following lines of code demonstrate how to register a WriteListener with a

ServletOutputStream:

AsyncContext context = request.startAsync();

ServletOutputStream os = response.getOutputStream();

os.setWriteListener(new WriteListenerImpl(os, context));

The WriteListener implementation class must include overriding methods for

onWritePossible() and onError(). The following is an example for a WriteListener

implementation class:

import javax.servlet.AsyncContext;

import javax.servlet.ServletOutputStream;

import javax.servlet.WriteListener;

public class WriteListenerImpl implements WriteListener {

 ServletOutputStream os;

 AsyncContext context;

 public WriteListenerImpl(ServletOutputStream out, AsyncContext ctx){

 this.os = out;

 this.context = ctx;

 System.out.println("Write Listener Initialized");

 }

Chapter 1 ServletS and JavaServer pageS

34

 @Override

 public void onWritePossible() {

 System.out.println("Now possible to write...");

 // Write implementation goes here...

 }

 @Override

 public void onError(Throwable thrwbl) {

 System.out.println("Error occurred");

 context.complete();

 }

}

Note In most cases, the ReadListener and WriteListener implementation
classes can be embedded within the calling servlet. they have been broken out
into separate classes for the examples in this book for demonstration purposes.

The Non-Blocking I/O API helps bring the Servlet API into compliance with current

web standards while making it possible to create web-based applications that perform

well in an asynchronous fashion.

1-8. Pushing Resources from a Server to a Client
 Problem
You want to push resources to your clients automatically when they visit a particular

page within your web application, rather than sending multiple requests.

 Solution
Use the Servlet HTTP/2 Push API to push the resources before the page is loaded.

This will cause all of the resources to be included with the single response, rather

than multiple responses that used to be needed for HTTP 1.1 implementations. In the

following example, a PushBuilder is created, and then a number of statically typed

resources are pushed to the client prior to loading the page:

Chapter 1 ServletS and JavaServer pageS

35

@WebServlet(name = "PushServlet", urlPatterns = {"/PushServlet"})

public class PushServlet extends HttpServlet {

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet PushServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet PushServlet at " + request.

getContextPath() + "!</h1>");

 out.println("</body>");

 out.println("</html>");

 }

 }

@Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 System.out.println("In the servlet");

 if(request.getRequestURI().equals("/Jakartaeerecipes/PushServlet")

&& request.getPushBuilder() != null) {

 System.out.println("Pushing resources");

 PushBuilder builder =

 request.getPushBuilder().path("/resources/images/

javaee9recipes.png");

 builder.path("/resources/images/javaee7recipes.png");

 builder.push();

Chapter 1 ServletS and JavaServer pageS

36

 }

 processRequest(request, response);

 }

. . .

}

 How It Works
A significant problem with serving content from the Web has always been the request

and response life cycle. HTTP 1.1 requires multiple TCP connections issuing parallel

requests in order to load page content containing various resources such as JavaScript

files and images. This can not only lead to significant performance issues but also starves

network resources. HTTP/2 is fundamentally different in that it is fully multiplexed,

rather than being ordered and blocking. It also allows a single connection to be used

for issuing requests in parallel, making performance much better and using much less

network resource. Other differences for HTTP/2 include using header compression

to help reduce overhead and allowing servers to have the ability to push resources

proactively to active clients. This latter feature of HTTP/2 is covered by the example in

this recipe, pushing resources from the server, rather than making the client fetch each

required resource.

The PushBuilder interface was introduced with Servlet 4.0, which is part of the Java

EE 8 and Jakarta EE platforms. The PushBuilder is used to build a push request based

on the HttpServletRequest. Once the PushBuilder is obtained, it can be used to add

resources via the path() method, which are subsequently pushed to the client while the

target page is being processed. In the example, a couple PNG image resources are added

using the path method. However, an application can be coded such that any resource

that is required by a specified page can be pushed preemptively to the client and loaded

into the browser cache. Once obtained, the PushBuilder can be used as many times as

required. After all resources have been loaded, initiate the PushBuilder.push() method

to perform the push action.

After the resources have been pushed, the invoked page will be loaded in an effort to

process resources, determining which resources have already been cached and which

need to be loaded from the server push. If a client browser already has the resource in

the cache, it returns an RST_STREAM to indicate that the server does not need to end it.

Chapter 1 ServletS and JavaServer pageS

37

1-9. Creating a Simple JSP Page
 Problem
You want to develop a web page using HTML markup that enables you to include

dynamic content.

 Solution
Use JavaServer Pages to create a web page that combines standard markup with

blocks of Java code that are embedded within the markup. The following JSP markup

demonstrates how to include dynamic code into a page:

<%--

 Document : recipe01_09

 Author : juneau

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page Example</title>

 </head>

 <body>

 < jsp:useBean id="dateBean" scope="application" class="org.

jakartaeerecipes.chapter02.recipe02_01.DateBean"/>

 <h1>Hello World!</h1>

 <p>

 The current date is: ${dateBean.currentDate}!

 </p>

 </body>

</html>

Chapter 1 ServletS and JavaServer pageS

38

The previous JSP code uses a JavaBean to pull the current date into the page. The

following Java code is the JavaBean that is used by the JSP code:

package org.jakartaeerecipes.chapter01.recipe01_09;

import java.util.Date;

public class DateBean {

 private Date currentDate = new Date();

 /**
 * @return the currentDate

 */

 public Date getCurrentDate() {

 return currentDate;

 }

 /**
 * @param currentDate the currentDate to set

 */

 public void setCurrentDate(Date currentDate) {

 this.currentDate = currentDate;

 }

}

The following output would result. Of course, the page will display the current date

when you run the code:

Hello World!

The current date is: Fri Dec 23 10:41:07 CST 2011!

 How It Works
The JavaServer Pages technology makes it easy to develop web pages that can utilize

both static and dynamic web content by providing a set of tags and value expressions to

expose dynamic Java fields to a web page. Using the JSP technology, a page developer

can access the underlying JavaBean classes to pass content between the client and the

server. In the example within this recipe, a JSP page is used to display the current date

and time, which is obtained from a JavaBean class on the server. Therefore, when a user

visits the JSP page in a browser, the current time and date on the server will be displayed.

Chapter 1 ServletS and JavaServer pageS

39

A JSP page should use a document extension of .jsp if it is a standard HTML-based

JSP page. Other types of JSP pages contain different extensions; one of those is the JSP

document type. A JSP document is an XML-based well-formed JSP page. This example

contains the <jsp:useBean> tag, as well as a value expression to display the content of a

field that is contained within the JavaBean. The <jsp:useBean> tag is used to include a

reference to a Java class that will be referenced in the JSP page. In this case, the class that

is referenced is named org.jakartaeerecipes.chapter01.recipe01_09.DateBean, and

it will be referenced as dateBean within the page:

<jsp:useBean id="dateBean" scope="application" class="org.jakartaeerecipes.

chapter01.recipe01_09.DateBean"/>

Since the <jsp:useBean> tag contains a reference to the DateBean Java class, the

JSP page that includes the tag can make use of any public fields or methods that are

contained within the class or private fields through public “getter” methods. This is

demonstrated by the use of the Expression Language (EL) value expression, which is

enclosed within the ${} characters. To learn more about JSP EL expressions, please

see Recipe 1-10. In the example, the value of the JavaBean field named currentDate is

displayed on the page. The value of the private field is retrieved automatically via the

public “getter” method getCurrentDate:

The current date is: ${dateBean.currentDate}!

 Life Cycle of a JSP Page

The life cycle of a JSP page is very much the same as that of a Java servlet. This is

because a JSP page is translated to a servlet (the HttpJspBase JSP servlet class) behind

the scenes by a special servlet. When a request is sent to a JSP page, the special servlet

checks to ensure that the JSP page’s servlet is not older than the page itself. If it is, the

JSP is retranslated into a servlet class and compiled. The JSP-to-servlet translation is

automatic, which is one of the most productive reasons to use JSP.

When a JSP page is translated, a servlet with a name such as 0002fjspname_jsp.

java is created, where jspname is the name of the JSP page. If errors result during the

translation, they will be displayed when the JSP page response is displayed.

Different portions of the JSP page are treated differently during the translation to a Java

servlet. Template data is translated into code. JSP scripting elements are inserted into the

JSP page’s servlet class. <jsp:XXX .../> elements are converted into method calls.

Chapter 1 ServletS and JavaServer pageS

40

After translation, the life cycle works similarly to the servlet life cycle.

If the JSP page’s servlet does not already exist, then the container does the following:

 1. Loads the servlet class

 2. Instantiates the servlet class

 3. Initializes the servlet instance with a call to the jspInit method

This recipe contains only beginning knowledge of what is possible with the JSP

technology. To learn more regarding the technology and best practices when using JSP,

please continue reading the recipes in this chapter.

1-10. Embedding Java into a JSP Page
 Problem
You want to embed some Java code into a standard JSP web page.

 Solution
Use JSP scripting elements to embed Java code into the page and then display Java fields.

The following JSP code demonstrates how to import the Java Date class and then use it to

obtain the current date without using a server-side JavaBean class:

<%@page import="java.util.Date"%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<%! Date currDate = null; %>

<% currDate = new Date(); %>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Recipe 2-2: Embedding Java in a JSP</title>

 </head>

 <body>

 <h1>Hello World!</h1>

Chapter 1 ServletS and JavaServer pageS

41

 The current date and time is: <%= currDate %>

 </body>

</html>

This page will display the current system date from the server that hosts the JSP

application.

 How It Works
Using scripting elements (<% %>) within a JSP page allows you to embed Java code

directly in a web page. However, it should be noted that this is not the best approach to

web development. Scripting element programming used to be one of the best ways to

code web applications using JSP technology. However, when it came time to perform

maintenance activities on a JSP page or to introduce new developers to a code base that

used scripting elements in JSP, nightmares ensued because in order to debug a problem,

the developer had to search through scripts embedded within HTML, as well as Java

classes themselves. Sometimes it is still nice to have the ability to embed Java code

directly into a page, even if for nothing more than testing, so that is why I show how it is

done in this recipe. A better approach would be to separate the business logic from the

view code, which you will see in Recipe 1-11.

In the example, the current date is pulled into the JSP page via the use of the Java

Date class. A new Date instance is assigned to a field that is named currDate. An import

page directive is used to import the java.util.Date class into the JSP page using the

following line:

<%@page import="java.util.Date"%>

The declaration of currDate is done within a declaration scripting element.

Declaration scripting elements begin with the character sequence <%! and end with the

character sequence %>. Excerpted from the example, the currDate field is declared in the

following line of code:

<%! Date currDate = null; %>

Anything that is contained inside declarations goes directly to the jspService()

method of the generated JSP servlet class, creating a global declaration for the entire

servlet to make use of. Any variable or method can be declared within declarations’

character sequences.

Chapter 1 ServletS and JavaServer pageS

42

Note declarations are executed only once for the JSp page, when it is initially
converted into a servlet. If any code on the JSp page changes, it will be translated
to a servlet again, and the declaration will be evaluated again at that time. If you
want for code to be executed each time the JSp page is loaded by the browser, do
not place it in a declaration.

In the example for this recipe, you can see that there are no JSP tags used to reference

a server-side JavaBean class to create a new instance of the Date class, and that is

because the instantiation is done directly within the JSP code in between character

sequences known as scriptlets, <% %>.

Scriptlets basically have the same syntax as declarations, except that they do not

include the exclamation point in the first character sequence. Scriptlets are used to

embed any Java code that you want to have run each time the JSP is loaded, at request-

processing time. At translation time, anything contained within a scriptlet is placed

into a method named _jspService within the translated JSP servlet, and that method

is executed with each request on the JSP page. Scriptlets are the most common place to

use embedded Java in a JSP page. Since in this example you want the current date to be

displayed each time the page is loaded, the new Date class is instantiated and assigned

to the currDate variable within a scriptlet:

<% currDate = new Date(); %>

Later in the JSP page, the currDate field is displayed using an expression, which is

enclosed using the <%= and %> character sequences. Expressions are used to display content,

and anything that is contained within an expression is automatically converted to a String

when a request is processed. After the String conversion, it is displayed as output on the page:

The current date and time is: <%= currDate %>

Note If the code within an expression is unable to be converted into a String, an
exception will occur, and it will be displayed on the page.

While embedding Java code in a JSP page is possible to do, it is frowned upon within

the Java community since the Model-View-Controller (MVC) paradigm makes coding

much cleaner. To learn more about coding JSP applications without using scripting

elements, please see the next recipe, Recipe 1-11.

Chapter 1 ServletS and JavaServer pageS

43

1-11. Separating Business Logic from View Code
 Problem
You want to separate the business logic from the code that is used to create a view within

your web application.

 Solution
Separate the business logic into a JavaBean class, and use JSP tags to incorporate the

logic into the view. In the following example, a JavaBean is referenced from within a

JSP page, and one of the JavaBean fields is displayed on the page. Each time the page

is refreshed, the field value is updated because the page calls the underlying JavaBean

field’s getter method, where the field is initialized.

The following JSP markup contains a reference to a JavaBean named RandomBean and

displays a field from the bean on the page:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Recipe 1-11: Separating Business Logic from View Code</title>

 </head>

 <body>

 < jsp:useBean id="randomBean" scope="session" class="org.

jakartaeerecipes.chapter01.recipe01_11.RandomBean" />

 <h1>Display a Random Number</h1>

 <p>

 Your random number is ${randomBean.randomNumber}. Refresh page

to see another!

 </p>

 </body>

</html>

Chapter 1 ServletS and JavaServer pageS

44

The next code is that of the JavaBean class referenced in the JSP code, known as

RandomBean:

package org.jakartaeerecipes.chapter01.recipe01_11;

import java.util.Random;

public class RandomBean implements java.io.Serializable {

 Random randomGenerator = new Random();

 private int randomNumber = 0;

 /**
 * @return the randomNumber

 */

 public int getRandomNumber() {

 randomNumber = randomGenerator.nextInt();

 return randomNumber;

 }

}

The resulting output for the page resembles the following, although the random

number will be different every time the page is loaded:

Your random number is -1200578984. Refresh page to see another!

 How It Works
Sometimes embedding Java code directly into a JSP page can be helpful, and it can

satisfy the requirement. However, in most cases, it is a good idea to separate any

Java code from markup code that is used to create the web view. Doing so makes

maintenance easier, and it allows a page developer to focus on creating nice-looking web

pages rather than wading through Java code. In some organizations, a Java developer

can then write the server-side business logic code, and a web developer can focus on the

view. In many organizations today, the same person is performing both tasks, and using

the MVC methodology can help separate the logic and increase productivity.

In the early days of JSP, embedding Java directly into a JSP page was the only way to go,

but as time went on, the MVC paradigm caught on, and JSP has been updated to follow

suit. As a best practice, it is good to use JSP tags to separate Java code from page markup.

Chapter 1 ServletS and JavaServer pageS

45

In the example, the <jsp:useBean> element is used to reference a server- side JavaBean

class so that the public fields and methods from that class, as well as private fields via

public “getter” methods, can be incorporated into the JSP page. The jsp:useBean element

requires that you provide an ID and a scope, along with a class name or a beanName. In

the example, the id attribute is set to randomBean, and this id is used to reference the bean

within the JSP page. The scope attribute is set to application, which means that the bean

can be used from any JSP page within the application. Table 1-3 displays all the possible

scopes and what they mean. The class attribute is set to the fully qualified name of the

Java class that will be referenced via the name that is set with the id attribute, in this case

randomBean.

Table 1-3. jsp:useBean Element Scopes

Scope Description

page (default) the bean can be used within the same JSp page that contains the

jsp:useBean element.

request the bean can be used from any JSp page processing the same request.

session the bean can be used from any JSp page within the same session as the JSp

page that contains the jsp:useBean element that created the bean. the page

that creates the bean must have a page directive with session="true".

application the bean can be used from any JSp within the same application as the JSp

page that created it.

After the jsp:useBean element has been added to a page, JavaBean properties can

be used in the JSP page, and public methods from the bean can also be called upon from

the page. The example demonstrates how to display the value of a JavaBean property

using the ${ } notation. Any variable that contains a “getter” and a “setter” method in

the JavaBean can be accessed from a JSP page by referencing the class member field in

between the ${ and } character sequences, better known as an Expression Language

expression. The following excerpt from the example demonstrates how to display the

randomNumber field from the JavaBean:

Your random number is ${randomBean.randomNumber}. Refresh page to see another!

Chapter 1 ServletS and JavaServer pageS

46

The key to separating business logic from view logic in the JSP technology is the

jsp:useBean element. This will allow you to use JavaBean classes from within the JSP

page, without embedding the code directly in the page. Separating business logic from

view code can help make it easier to maintain and reuse code in the future, as well as

make the code easier to follow.

1-12. Yielding or Setting Values
 Problem
You want to display values from a JavaBean in a JSP page. Furthermore, you want to have

the ability to set values in a JSP page.

 Solution
Expose the values from a JavaBean in a JSP page using EL expressions with the ${bean.

value} syntax. In the following JSP code, a Java class by the name of EasyBean will be

used to hold the value that is entered into a text field by a user. The value will then be

read from the bean and displayed on the page using EL expressions.

The following code shows a JSP page that contains an input form and displays the

value that is entered into the text box:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Recipe 1-12: Yielding and Setting Values</title>

 </head>

 <body>

 < jsp:useBean id="easyBean" scope="page" class="org.

jakartaeerecipes.chapter01.recipe01_12.EasyBean"/>

 <jsp:setProperty name="easyBean" property="*"/>

 <form method="post">

 Use the input text box below to set the value, and then hit submit.

Chapter 1 ServletS and JavaServer pageS

47

 Set the field value:

 <input id="fieldValue" name="fieldValue" type="text" size="30"/>

 The value contained within the field is currently: ${easyBean.

fieldValue}

 <input type="submit">

 </form>

 </body>

</html>

Next, the JavaBean class, which is used to hold the value that is used by the page,

looks like the following:

package org.jakartaeerecipes.chapter01.recipe01_12;

public class EasyBean implements java.io.Serializable {

 private String fieldValue;

 public EasyBean(){

 fieldValue = null;

 }

 /**
 * @return the fieldValue

 */

 public String getFieldValue() {

 return fieldValue;

 }

 /**
 * @param fieldValue the fieldValue to set

 */

 public void setFieldValue(String fieldValue) {

 this.fieldValue = fieldValue;

 }

}

This simple example demonstrates how to enter a value, “set” it into the JavaBean

variable, and then display it on the page.

Chapter 1 ServletS and JavaServer pageS

48

 How It Works
Perhaps one of the most useful web constructs is the input form, which allows a user to

enter information into text boxes on the page and submit them to a server for processing.

JSP makes it easy to submit values from an HTML form, and it is equally easy to display

them back on a page. To do so, a field is declared in a Java class, and accessor methods

(aka getters and setters) are provided so that other classes can save values to the field

and obtain values that are currently stored in it. Sometimes Java classes that contain

fields with accessor methods are referred to as JavaBean classes. The classes can also

contain other methods that can be used to perform tasks, but it is a best practice to

keep JavaBeans as simple as possible. JavaBean classes should also implement java.

io.Serializable so that they can be easily serialized and deserialized.

In the example for this recipe, a Java class named EasyBean contains a private field

named fieldValue. The accessor methods getFieldValue() and setFieldValue()

can be used to obtain and store the value in fieldValue, respectively. Those accessor

methods are declared as public, and thus they can be used from another Java class or JSP

page. The JSP page uses the jsp:useBean element to obtain a reference to the EasyBean

class. The scope is set to page so that the class can be used only within the JSP page that

contains the jsp:useBean element. Table 1-2, which can be found in the previous recipe,

lists the different scopes available for use with the jsp:useBean element:

<jsp:useBean id="easyBean" scope="page" class="org.jakartaeerecipes.

chapter01.recipe01_12.EasyBean"/>

Next, an HTML form is defined in the JSP page with the POST method, and it contains

an input field named fieldValue, which allows a user to enter a String of text that will be

submitted as a request parameter when the form is submitted. Note that the form in the

example does not have an action specified; this means that the same URL will be used for

form submission, and the same JSP will be used for form submission and will be displayed

again once the form is submitted. Since the JSP has a jsp:useBean element specified on

the page, all request parameters will be sent to that bean when the page is submitted.

The key to ensuring that the value entered into the fieldValue input text field is

stored into the fieldValue variable within the Java class is using the jsp:setProperty

element within the form. The jsp:setProperty element allows one or more properties

to be set in a JavaBean class using the corresponding setter methods. In the example,

<jsp:useBean> is used to instantiate the EasyBean Java class, and <jsp:setProperty>

is used to set the value that is entered within the fieldValue input text box to the

Chapter 1 ServletS and JavaServer pageS

49

fieldValue variable within the EasyBean class. The jsp:setProperty name attribute

must equal the value of the jsp:useBean id attribute. The jsp:setProperty property

attribute can equal the name of the field within the Java class that you want to set in the

bean, or it can be a wildcard * character to submit all input fields to the bean. The value

attribute of jsp:setProperty can be used to specify a static value for the property. The

following excerpt from the example shows how the jsp:setProperty tag is used:

<jsp:setProperty name="easyBean" property="*"/>

Note: The ordering of the JSP elements is very important. <jsp:useBean> must

come before <jsp:setProperty> because the jsp:useBean element is responsible for

instantiating its corresponding Java class. Since the JSP page is executed from the top

of the page downward, the bean would be unavailable for use to any elements prior to

when jsp:useBean is specified.

When the user enters a value into the input field and submits the request, it is

submitted as a request parameter to the Java class that corresponds to the jsp:useBean

element for that page. There are a couple of different ways to display the data that

has been populated in the JavaBean field. The example demonstrates how to use

the jsp:getProperty element to display the value of the fieldValue variable. The

<jsp:getProperty> element must specify a name attribute, which corresponds to the id

of the Java class that was specified within the jsp:useBean element. It must also specify

a property attribute, which corresponds to the name of the JavaBean property that you

want to display. The following excerpt from the example demonstrates the use of the

jsp:getProperty tag:

<jsp:getProperty name="easyBean" property="fieldValue"/>

It is also possible to display the value of a JavaBean property using EL expressions,

using the id of the bean specified in the jsp:useBean element, along with the property

name you wish to display. To try this, you can replace the jsp:getProperty element with

the following EL expression:

${easyBean.fieldValue}

The JSP framework makes the development of web applications using Java

technology much easier than using servlets. Input forms such as the one demonstrated

in this example show how much more productive JSP is compared to standard servlet

coding. As with anything, both servlets and JSP technology have their place in your

toolbox. For creating simple data entry forms, JSP definitely takes the cake.

Chapter 1 ServletS and JavaServer pageS

50

1-13. Invoking a Function in a Conditional
Expression
 Problem
You want to use a Java function to perform a conditional evaluation within your

JSP. However, you do not want to embed Java code into your JSP page.

 Solution
Code the function in a JavaBean class and then register the bean with the JSP via the

<jsp:useBean> tag. You will then need to register the function within a tag library

descriptor (TLD) so that it can be made usable on the JSP page via a tag. A TLD is a

document that contains information about an XML document and its associated tags.

Finally, set up a page directive for the TLD in which the function is registered, and

use the function tag within the page. In the example that follows, a JSP page will use

a function to tell the user whether a given Java type is a primitive type. The user will

enter a String value into a text box, and that value will be submitted to a JavaBean field.

The contents of the field will then be compared against a list of Java primitive types

to determine whether it is a match. If the value entered into the field is a primitive, a

message will be displayed to the user.

The following code is the Java class that contains the implementation of the function

which is going to be used from within the JSP. The bean also contains a field that will be

used from the JSP page for setting and getting the value that is entered by the user:

package org.jakartaeerecipes.chapter01.recipe01_13;

public class ConditionalClass implements java.io.Serializable {

 private String typename = null;

 public static String[] javaTypes = new String[8];

 public ConditionalClass(){

 javaTypes[0] = "byte";

 javaTypes[1] = "short";

 javaTypes[2] = "int";

 javaTypes[3] = "long";

 javaTypes[4] = "float";

Chapter 1 ServletS and JavaServer pageS

51

 javaTypes[5] = "double";

 javaTypes[6] = "boolean";

 javaTypes[7] = "char";

 }

 public static boolean isPrimitive(String value){

 boolean returnValue = false;

 for(int x=0; x<=javaTypes.length-1; x++){

 if(javaTypes[x].equalsIgnoreCase(value)){

 returnValue = true;

 }

 }

 return returnValue;

 }

 // Getter and Setter for typename

}

The field typename will be used from the JSP page to set the value that is entered by

the user and to retrieve it for passing to the function named isPrimitive();, which is

used to compare the given value to a list of Java primitives. Next is a listing of the TLD

that is used to register the function so that it can be used as a tag within the JSP. For

simplicity, the TLD file is named functions.tld:

<?xml version="1.0" encoding="UTF-8"?>

<taglib version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/

javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-jsptaglibrary_2_1.xsd">

 <tlib-version>1.0</tlib-version>

 <short-name>fct</short-name>

 <uri>functions</uri>

 <function>

 <name>isPrimitive</name>

 < function-class>org.jakartaeerecipes.chapter01.recipe01_13.

ConditionalClass</function-class>

Chapter 1 ServletS and JavaServer pageS

52

 < function-signature>boolean isPrimitive(java.lang.String)</function-

signature>

 </function>

</taglib>

Last is the JSP code that contains the page directive for using the TLD and the

conditional call to the function isPrimitive() via a tag:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"

 prefix="c" %>

<%@ taglib uri="/WEB-INF/tlds/functions.tld" prefix="fct" %>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Recipe 1-13: Invoking a Function in an Expression</title>

 </head>

 <body>

 <form method="get">

 <p>Name one of the primitive Java types:

 <input type="text" id="typename" name="typename" size="40"/>

 </p>

 <input type="submit">

 </form>

 < jsp:useBean id="conditionalBean" scope="page" class="org.

jakartaeerecipes.chapter01.recipe01_13.ConditionalClass"/>

 <jsp:setProperty name="conditionalBean" property="typename"/>

 <c:if test="${fct:isPrimitive(conditionalBean.typename)}" >

 ${ conditionalBean.typename } is a primitive type.

 </c:if>

 < c:if test="${conditionalBean.typename ne null and !fct:isPrimitive

(conditionalBean.typename)}" >

Chapter 1 ServletS and JavaServer pageS

53

 ${ conditionalBean.typename } is not a primitive type.

 </c:if>

 </body>

</html>

Following the strategy used in this solution, you can create a conditional test that is

usable via a JSP tag for your pages.

 How It Works
You need to take a few different steps before a Java function can become accessible from

a JSP page. One of the most commonly overlooked conditions is that the function must

be declared with a static modifier in the Java class. In the example for this recipe, the

function isPrimitive() is declared as static, and it returns a boolean value indicating

whether the web page user types the name of a Java primitive type.

The next step toward making a function accessible via a JSP page is to register it with a

TLD. In the example, a TLD named functions.tld is created, although if there is already

a custom TLD in your application, then you could register the function with it rather

than creating an additional one if you want. The TLD in this example has a short- name

attribute of fct, which will be used from within JSP tags. To actually register the function,

you must create a function element within the TLD, provide a function name, indicate the

class that the function resides within, and, finally, specify the function signature:

<function>

 <name>isPrimitive</name>

 <function-class>org.jakartaeerecipes.chapter01.recipe01_13.

ConditionalClass</function-class>

 <function-signature>boolean isPrimitive(java.lang.String)</function-

signature>

 </function>

The function is now ready for use within the JSP. To make the function accessible

via the JSP, register the TLD that contains the function element by including a taglib

directive specifying the uri and prefix for the TLD. The uri is the path to the TLD, and

the prefix should match the name given in the short-name element of the TLD. The

following excerpt from the JSP in this example shows the taglib directive:

<%@ taglib uri="/WEB-INF/tlds/functions.tld" prefix="fct" %>

Chapter 1 ServletS and JavaServer pageS

54

The function will now be accessible via an EL expression within the JSP by specifying

the taglib prefix along with the name of the function as it is registered in the TLD. The

EL expression in the example calls the function, passing the typename parameter. The

isPrimitive() function is used to determine whether the text contained within the

typename bean field is equal to one of the Java primitive types:

<c:if test="${fct:isPrimitive(conditionalBean.typename)}" >

The solution in this recipe also uses the Java Standard Tag Library (JSTL) core.

Depending upon the server environment being used, this may be a separate download.

The JSTL provides an extension to the standard set of tags provided with the JSP API. For

more information regarding JSTL, please refer to the online documentation, which can

be found at www.oracle.com/technetwork/java/index-jsp-135995.html.

The JSTL <c:if> tag can be used to test conditions, executing the directives between

its opening and closing tags if the condition test returns a true value. Not surprisingly,

the <c:if> tag includes a test attribute that specifies an EL expression that indicates the

test that needs to be performed. In the example, the isPrimitive function is called within

the EL expression, passing the bean value. If the test returns a true, then a message is

printed indicating that the given value is equal to a Java primitive type. Another <c:if>

test follows the first in the example, and this time it tests to ensure that the property value

is not equal to null and also that it is not a Java primitive type. Expression Language is

used to determine whether the property value is equal to null via the ne expression. The

and expression ties both the first and second conditional expressions together within the

EL expression, meaning that both of the expressions must evaluate to a value of true in

order for the condition to be met. If both conditions are met, then the value specified by

the user is not a Java primitive type, and a corresponding message is printed:

<c:if test="${conditionalBean.typename ne null and !fct:isPrimitive

(conditionalBean.typename)}" >

 ${ conditionalBean.typename } is not a primitive type.

</c:if>

It takes only a few easy steps to create a conditional function for use within JSPs.

First, in the JavaBean class, you must create a public static function, which returns a

Boolean value. Second, create a TLD, which will make the function available via a JSP

tag. Lastly, use the custom tag from within the JSP page along with JSTL conditional test

tags to display the content conditionally.

Chapter 1 ServletS and JavaServer pageS

http://www.oracle.com/technetwork/java/index-jsp-135995.html

55

1-14. Creating a JSP Document
 Problem
Rather than using standard HTML format, you want to ensure that your JSP code follows

the XML standard and contains only valid HTML and JSP tags.

 Solution
Create a JSP document rather than a standard JSP. A JSP document is an XML-based

representation of a standard JSP document that conforms to the XML standard. The

following JSP document contains the same code that is used in the JSP code for Recipe 1-13,

but it uses the JSP document format instead. As you can see, not much is different

because well-formed tags were already used to create the standard JSP document. The

page is also saved with an extension of jspx rather than jsp:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page" version="2.0"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 xmlns:fct="/WEB-INF/tlds/functions.tld">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <body>

 <form method="get">

 <p>Name one of the primitive Java types:

 <input type="text" id="typename" name="typename" size="40"/>

 </p>

 <input type="submit"/>

 </form>

 < jsp:useBean id="conditionalBean" scope="request" class="org.

jakartaeerecipes.chapter01.recipe01_13.ConditionalClass"/>

 <jsp:setProperty name="conditionalBean" property="typename"

 value="${param.typename}" />

 <c:if test="${fct:isPrimitive(conditionalBean.typename)}" >

 ${ conditionalBean.typename } is a primitive type.

 </c:if>

Chapter 1 ServletS and JavaServer pageS

56

 < c:if test="${fn.length(conditionalBean.typename) > 0 and !fct:

isPrimitive(conditionalBean.typename)}" >

 ${ conditionalBean.typename } is not a primitive type.

 </c:if>

 </body>

</html>

This JSP document will yield the same output as the one in Recipe 1-13. However,

a well-formed document will be enforced, and this will exclude the use of scripting

elements within the page.

 How It Works
As foreshadowed in previous recipes, separating business logic from markup code can be

important for many reasons. Standard JSP pages can adhere to the MVC paradigm, but

they are not forced into doing so. Sometimes it makes sense to enforce the separation of

business logic, by strictly adhering to a well-formed XML document using only JSP tags

to work with server-side Java classes. Well-formed means that there should be only one

root element and each starting tag must have a corresponding ending tag. Creating a JSP

document is one answer because such documents enforce well-formed XML and do not

allow scripting elements to be used within the JSP page.

Several JSP tags can be used to communicate with Java classes, perform JSP-specific

functionality, and make markup easy to follow. As such, modern JSP-based applications

should make use of well-formed JSP documents utilizing such JSP tags, rather than

embedding scripting elements throughout markup. Table 1-4 describes what the

different JSP tags do.

Chapter 1 ServletS and JavaServer pageS

57

Table 1-4. JSP Tags

Tag Description

<jsp:attribute> defines attributes for a JSp page.

<jsp:body> defines an element body.

<jsp:declaration> defines page declarations.

<jsp:directive> defines page includes and page directives.

<jsp:doBody> executes the body of the JSp tag that is used by the calling JSp page to

invoke the tag.

<jsp:element> generates an XMl element dynamically.

<jsp:expression> Inserts the value of a scripting language expression, converted into a

string.

<jsp:forward> Forwards a request to another page. the new page can be htMl,

JSp, or servlet.

<jsp:getProperty> Obtains the value of a bean property and places it in the page.

<jsp:include> Includes another JSp or web resource in the page.

<jsp:invoke> Invokes a specified JSp fragment.

<jsp:output> Specifies the document type declaration.

<jsp:plugin> executes an applet or bean with the specified plug-in.

<jsp:root> defines standard elements and tag library namespaces.

<jsp:scriptlet> embeds code fragment into a page if necessary.

<jsp:setProperty> Sets specified value(s) into a bean property.

<jsp:text> encloses template data.

<jsp:useBean> references and instantiates (if needed) a JavaBean class using a name

and providing a scope.

Creating a well-formed JSP can lead to easier development, ease of maintenance,

and better overall design. Since it is so important, the remaining recipes in this chapter

will use the JSP document format.

Chapter 1 ServletS and JavaServer pageS

58

1-15. Embedding Expressions in EL
 Problem
You want to use some conditional and/or arithmetic expressions within your JSP without

embedding Java code using scripting elements.

 Solution
Use EL expressions within JSP tags to perform conditional and/or arithmetic expressions.

This solution will look at two examples of EL expressions. The first example demonstrates

how to perform conditional logic using EL expressions. Note that the JSTL is also used in

this case, to conditionally display a message on the page if the expression results to true.

Note the JSp pages in this example and all remaining examples in this chapter
make use of JSp documents (.jspx extension). a JSp document is an XMl-based
representation of a standard JSp document that conforms to the XMl standard.

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <head>

 <title>Recipe 1-15: Embedding Expressions in EL</title>

 </head>

 <body>

 <h1>Conditional Expressions</h1>

 <p>

 The following portion of the page will only display conditional

expressions which result in a true value.

 </p>

Chapter 1 ServletS and JavaServer pageS

59

 <c:if test="${1 + 1 == 2}">

 The conditional expression (1 + 1 == 2) results in TRUE.

 </c:if>

 <c:if test="${'x' == 'y'}">

 The conditional expression (x == y) results in TRUE.

 </c:if>

 <c:if test="${(100/10) gt 5}">

 The conditional expression ((100/10) > 5) results in TRUE.

 </c:if>

 <c:if test="${20 mod 3 eq 2}">

 The conditional expression (20 mod 3 eq 2) results in TRUE.

 </c:if>

 </body>

</html>

This JSP page will result in the following output being displayed:

...

The conditional expression (1 + 1 == 2) results in TRUE.

The conditional expression ((100/10) > 5) results in TRUE.

The conditional expression (20 mod 3 eq 2) results in TRUE.

...

Arithmetic expressions can also be evaluated using EL. The following JSP code

demonstrates some examples of using arithmetic within EL:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

Chapter 1 ServletS and JavaServer pageS

60

 <head>

 <title>Recipe 1-15: Embedding Expressions in EL</title>

 </head>

 <body>

 < jsp:useBean id="expBean" class="org.jakartaeerecipes.chapter01.

recipe01_15.Expressions"/>

 <h1>Arithmetic Expressions</h1>

 <p>

 The following expressions demonstrate how to perform arithmetic using EL.

 </p>

 10 - 4 = ${10 - 4}

 85 / 15 = ${85 / 15}

 847 divided by 6 = ${847 div 6}

 ${expBean.num1} * ${expBean.num2} = ${expBean.num1 * expBean.num2}

 </body>

</html>

The code contained within the Expressions class is as follows:

public class Expressions implements java.io.Serializable {

 private int num1 = 5;

 private double num2 = 634.324;

 private float num3 = 98.4f;

// Getters and Setters

}

The preceding JSP will result in the following output being displayed:

...

10 - 4 = 6

85 / 15 = 5.666666666666667

847 divided by 6 = 141.16666666666666

5 * 634.324 = 3171.62

...

Chapter 1 ServletS and JavaServer pageS

61

 How It Works
The JSP technology makes it easy to work with expressions. Conditional page rendering

can be performed using a combination of EL value expressions, which are enclosed

within the ${ } character sequences, and JSTL tags. Arithmetic expressions can also

be performed using EL expressions. To make things easier, the Expression Language

contains keywords or characters that can be used to help form expressions. The example

for this recipe contains various expressions and conditional page rendering using the

JSTL <c:if> tag.

In the first JSP page displayed in the example, there are some examples of

conditional page rendering. To use the <c:if> tag to perform the conditional tests, you

must be sure to import the JSTL with the JSP page. To do so, add an import for the JSTL

and assign it to a character or string of characters. In the following excerpt from the

recipe, the JSTL is assigned to the character c:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

An EL value expression is contained within the ${ and } character sequences.

Anything within these characters will be treated as EL, and as such, the syntax must

be correct, or the JSP page will not be able to compile into a servlet, and it will throw

an error. All expressions using the ${ } syntax are evaluated immediately, and they

are read-only expressions. That is, no expressions using this syntax can be used to set

values into a JavaBean property. The JSP engine first evaluates the expression, and then

it converts into a String and lastly returns the value to the tag handler. Four types of

objects can be referenced within a value expression. Those are JavaBean components,

collections, enumerated types, and implicit objects. If using a JavaBean component,

the JavaBean must be registered with the JSP page using the jsp:useBean element (see

previous recipe for details). Collections or enumerated types can also be referenced from

a JavaBean that has been registered with the page. Implicit objects are those that allow

access to page context, scoped variables, and other such objects. Table 1-5 lists different

implicit objects that can be referenced from within EL expressions.

Chapter 1 ServletS and JavaServer pageS

62

Table 1-5. Implicit JSP Objects

Object Type Description

pageContext Context provides access to the context of the page and various subobjects

servletContext page context Context for JSp page servlet and web components

 session page context Session object for the client

 request page context request that invoked the execution of the page

 response page context response that is returned by the JSp

param n/a responsible for mapping parameter names to values

paramvalues n/a Maps request parameter to an array of values

header n/a responsible for mapping a header name to a value

headervalues n/a Maps header name to an array of values

cookie n/a Maps a cookie name to a single cookie

initparam n/a Maps a context initialization parameter to a value

pageScope Scope Maps page scope variables

requestScope Scope Maps request scope variables

sessionScope Scope Maps session scope variables

applicationScope Scope Maps application scope variables

The following are some examples of expressions that make use of JavaBean

components, collections, enumerated types, and implicit objects:

// Displays the value of a variable named myVar within a JavaBean

referenced as elTester

${ elTester.myVar }

// Does the same thing as the line above

${ elTester["myVar"] }

// Evaluates an Enumerated Type in which myEnum is an instance of MyEnum

${ myEnum == "myValue" }

// Reference a getter method of the Enum named getTestVal()

${ myEnum.testVal}

Chapter 1 ServletS and JavaServer pageS

63

// References a collection named myCollection within the JavaBean

referenced as elTester

${ elTester.myCollection }

// Obtain the parameter named "testParam"

${ param.testParam } // Same as: request.getParameter("testParam")

// Obtain session attribute named "testAttr"

${ sessionScope.testAttr } // Same as: session.getAttribute("testAttr")

In the recipe example, the <c:if> tag is used to test a series of value expressions and

conditionally display the page content. The test attribute of <c:if> is used to register a

test condition, and if the test condition returns a true result, then the content contained

between the <c:if> starting and ending tags is displayed. The following excerpt from the

example demonstrates how a test is performed:

<c:if test="${'x' == 'y'}">

 The conditional expression (x == y) results in TRUE.

 </c:if>

EL expressions can contain a series of reserved words that can be used to help

evaluate the expression. For instance, the following expression utilizes the gt reserved

word to return a value indicating whether the value returned from the calculation of

100/10 is greater than 5:

<c:if test="${(100/10) gt 5}">

 The conditional expression ((100/10) > 5) results in TRUE.

</c:if>

Table 1-6 lists all the JSP EL expression reserved words and their meanings.

Chapter 1 ServletS and JavaServer pageS

64

Table 1-6. EL Expression Reserved Words

Reserved Word Description

and Combines expressions and returns true if all of them evaluate to true

or Combines expressions and returns true if one of them evaluates to true

not negates an expression

eq equal

ne not equal

lt less than

gt greater than

le less than or equal

ge greater than or equal

true true value

false False value

null null value

instanceof Used to test whether an object is an instance of another object

empty determines whether a list or collection is empty

div divided by

mod Modulus

Arithmetic expressions are demonstrated by the second example in this recipe. The

following arithmetic operators can be utilized within expressions:

+ (addition), - (binary and unary), * (multiplication), / and div

(division), %, and mod (modulus)

and, &&, or, ||, not, !

==, !=, <, >, <=, >=

X ? Y : Z (ternary conditional)

Entire chapters of books have been written on the use of EL expressions within JSPs.

This recipe only touches upon the possibilities of using value expressions. The best way

to get used to expressions is to create a test JSP page and experiment with the different

options that are available.

Chapter 1 ServletS and JavaServer pageS

65

1-16. Accessing Parameters in Multiple Pages
 Problem
You want to access a parameter from within multiple pages of your web application.

 Solution
Create an input form to submit parameters to the request object, and then utilize the

request object to retrieve the values in another page. In the example that follows, a JSP

page that contains an input form is used to pass values to another JSP page by setting the

HTML form action attribute to the value of the JSP page that will utilize the parameters.

In the case of this example, the receiving JSP page merely displays the parameter values,

but other work could be performed as well.

The following JSP code demonstrates the use of an input form to save parameters

into the request object and pass them to a page named recipe01_16b.jspx:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <head>

 <title>Recipe 1-16: Passing Parameters</title>

 </head>

 <body>

 <h1>Passing Parameters</h1>

 <p>

 The following parameters will be passed to the next JSP.

 </p>

 <form method="get" action="recipe01_16b.jspx">

 Param 1: <input id="param1" name="param1" type="text" value="1"/>

 Param 2: <input name="param2" type="text" value="2 + 0"/>

 Param 3: <input id="param3" name="param3" type="text" value="three"/>

Chapter 1 ServletS and JavaServer pageS

66

 <input type="submit" value="Go to next page"/>

 </form>

 </body>

</html>

The next JSP code receives the parameters and displays their values:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <head>

 <title>Recipe 1-16: Passing Parameters</title>

 </head>

 <body>

 <h1>Passing Parameters</h1>

 <p>

 The following parameters were passed from the original JSP.

 </p>

 <form method="post" action="recipe01_16a.jspx">

 Param 1: <jsp:expression>request.getParameter("param1") </jsp:expression>

 Param 2: <jsp:expression> request.getParameter("param2") </jsp:expression>

 Param 3: <jsp:expression> request.getParameter("param3") </jsp:expression>

 OR using value expressions

 Param 1: ${ param.param1 }

 Param 2: ${ param.param2 }

 Param 3: ${ param.param3 }

Chapter 1 ServletS and JavaServer pageS

67

 <input type="submit" value="Back to Page 1"/>

 </form>

 </body>

</html>

As you can see, a couple of variations can be used to display the parameter values.

Both of the variations will display the same result.

 How It Works
Request parameters are one of the most useful features of web applications. When a

user enters some data into a web form and submits the form, the request contains the

parameters that were entered into the form. Parameters can also be statically embedded

within a web page or concatenated onto a URL and sent to a receiving servlet or JSP

page. The data contained in request parameters can then be inserted into a database,

redisplayed on another JSP page, and used to perform a calculation or a myriad of

other possibilities. The JSP technology provides an easy mechanism for using request

parameters within other JSP pages, and the example in this recipe demonstrates how to

do just that.

Note request parameters are always translated into String values.

Note that in the example, the first JSP page uses a simple HTML form to obtain values

from a user and submit them to the request. Another JSP page named recipe01_16b.

jspx is set as the form action attribute, so when the form is submitted, it will send the

request to recipe01_16b.jspx. The input fields on the first JSP page specify both an id

attribute and a name attribute, although only the name attribute is required. The name

that is given to the input field is the name that will be used to reference the value entered

into it as a request parameter.

Note It is a good programming practice to always include an id attribute. the
Id is useful for performing work with the document Object Model (dOM) and for
referencing elements via a scripting language such as JavaScript.

Chapter 1 ServletS and JavaServer pageS

68

The receiving action, recipe01_16b.jspx in this example, can make a call to

response.getParameter(), passing the name of a parameter (input field name) to obtain

the value that was entered into its corresponding text field. To adhere to JSP document

standards, the scriptlet containing the call to response.getParameter() must be enclosed

within <jsp:expression> tags. The following excerpt demonstrates how this is done:

Param 1: <jsp:expression>request.getParameter("param1") </jsp:expression>

Optionally, an EL expression can contain a reference to the implicit param object

and obtain the request parameter in the same way. When the expression ${param.

param1} is called, it is evaluated by the JSP engine, and it is translated into response.

getParameter("param1"). The following excerpt demonstrates this use of EL expressions:

Param 1: ${param.param1}

Either technique will perform the same task; the named request parameter will be

obtained and displayed on the page.

1-17. Creating a Custom JSP Tag
 Problem
You want to create a JSP tag that provides custom functionality for your application.

 Solution
Create a custom JSP tag using JSP 2.0 simple tag support. Suppose you want to create a

custom tag that will insert a signature into the JSP where the tag is placed. The custom

tag will print out a default signature, but it will also accept an authorName attribute,

which will include a given author’s name to the signature if provided. To get started,

you’ll first need to define a Java class that extends the SimpleTagSupport class. This class

will provide the implementation for your tag. The following code is the implementation

for a class named Signature, which provides the implementation for the custom tag.

Chapter 1 ServletS and JavaServer pageS

69

Note to compile the following code, you will need to add javax.servlet.
jsp-api.jar to classpath:

cd recipe01_17
javac -cp...\glassfish5\glassfish\modules\javax.servlet.jsp-
api.jar *.java

package org.jakartaeerecipes.chapter01.recipe01_17;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.PageContext;

import javax.servlet.jsp.tagext.SimpleTagSupport;

public class Signature extends SimpleTagSupport {

 private String authorName = null;

 /**
 * @param authorName the authorName to set

 */

 public void setAuthorName(String authorName) {

 this.authorName = authorName;

 }

 @Override

 public void doTag() throws JspException {

 PageContext pageContext = (PageContext) getJspContext();

 JspWriter out = pageContext.getOut();

 try {

 if(authorName != null){

 out.println("Written by " + authorName);

 out.println("
");

 }

Chapter 1 ServletS and JavaServer pageS

70

 out.println("Published by Apress");

 } catch (Exception e) {

 System.out.println(e);

 }

 }

}

Next, a TLD is created to map the Signature class tag implementation to a tag. The

TLD that includes the custom tag mapping is listed here:

<?xml version="1.0" encoding="UTF-8"?>

<taglib version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/

javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.

org/xml/ns/javaee/web-jsptaglibrary_2_1.xsd">

 <tlib-version>1.0</tlib-version>

 <short-name>cust</short-name>

 <uri>custom</uri>

 <tag>

 <name>signature</name>

 <tag-class>org.jakartaeerecipes.chapter01.recipe01_17.Signature</tag-

class>

 <body-content>empty</body-content>

 <attribute>

 <name>authorName</name>

 <rtexprvalue>true</rtexprvalue>

 <required>false</required>

 </attribute>

 </tag>

</taglib>

Chapter 1 ServletS and JavaServer pageS

71

Once the class implementation and the TLD are in place, the tag can be used from

within a JSP page. The following JSP code is an example of using the custom tag on a

page:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 xmlns:cust="custom"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <head>

 <title>Recipe 1-17: Creating a Custom JSP Tag</title>

 </head>

 <body>

 <h1>Custom JSP Tag</h1>

 <p>

 The custom JSP tag is used as the footer for this page.

 </p>

 <cust:signature/>

 </body>

</html>

The custom tag output will now be displayed in place of the cust:signature

element within the JSP page.

 How It Works
One of the most useful new features of JSP 2.0 was the inclusion of the

SimpleTagSupport class, which provides an easier way for developers to create custom

tags. Prior to the 2.0 release, custom tag creation took a good deal of more work, because

the developer had to provide much more code to implement the tag within the tag’s

implementation class. The SimpleTagSupport class takes care of much implementation

for the developer so that the only thing left to do is implement the doTag method in

order to provide an implementation for the custom tag.

Chapter 1 ServletS and JavaServer pageS

72

In the example for this recipe, a custom tag is created that will print out a signature

on the JSP page in the position where the tag is located. To create a custom tag

implementation, create a Java class that will extend the SimpleTagSupport class, and

provide an implementation for the doTag() method. The example class also contains

a field named authorName, which will be mapped within the TLD as an attribute for

the custom tag. In the doTag() method, a handle on the JSP page context is obtained

by calling the getJspContext() method. getJspContext() is a custom method that is

implemented for you within SimpleTagSupport and makes it easy to get ahold of the JSP

page context. Next, to provide the ability to write to the JSP output, a handle is obtained

on the JspWriter by calling PageContext’s getOut() method:

PageContext pageContext = (PageContext) getJspContext();

JspWriter out = pageContext.getOut();

The next lines within doTag() provide the implementation for writing to the

JSP output via a series of calls to out.println(). Any content that is passed to out.

println() will be displayed on the page. Note that in the example, the authorName field

is checked to see whether it contains a null value. If it does not contain a null value,

then it is displayed on the page; otherwise, it is omitted. Therefore, if the tag within

the JSP page contains a value for the authorName attribute, then it will be printed on

the page. The out.println() code is contained within a try-catch block in case any

exceptions occur.

Note to allow your tag to accept scriptlets, you will need to use the Classic
tag handlers. the Classic tag handlers existed before the JSp 2.0 era and can
still be used today alongside the Simple tag handlers. the Simple tag handlers
revolve around the doTag() method, whereas the Classic tag handlers deal
with a doStartTag() method and a doEndTag() method, as well as others.
Since the Simple tag handlers can be used alongside the Classic tag handlers, it
is possible to use some of the more complex Classic tag methods while utilizing
Simple tag methods in the same application. this eases the transition from the
Classic tag handlers to the Simple tag handlers. For more information regarding
the differences between the two apIs, please see some online documentation by
searching for the keywords “Simple vs. Classic tag handlers.”

Chapter 1 ServletS and JavaServer pageS

73

That’s it; the implementation for the tag is complete. To map the implementation

class to the Document Object Model (DOM) via a tag name, a TLD must contain a

mapping to the class. In the example, a TLD named custom.tld is created, and it

contains the mapping for the class. The short-name element specifies the name that

must be used within the JSP page to reference the tag. The uri element specifies the

name of the TLD, and it is used from within the JSP page to reference the TLD file itself.

The meat of the TLD is contained within the tag element. The name element is used to

specify the name for the tag, and it will be used within a JSP page in combination with

the short-name element to provide the complete tag name. The tag-class element

provides the name of the class that implements the tag, and body-content specifies a

value to indicate whether the body content for the JSP page will be made available for

the tag implementation class. It is set to empty for this example. To specify an attribute

for the tag, the attribute element must be added to the TLD, including the name,

rtexprvalue, and required elements. The name element of the attribute specifies the

name of the attribute, rtexprvalue indicates whether the attribute can contain an EL

expression, and required indicates whether the attribute is required.

To use the tag within a JSP page, the custom.tld TLD must be mapped to the page

within the <html> element in a JSP document or a taglib directive within a standard

JSP. The following lines show the difference between these two:

<!—JSP Document syntax -->

xmlns:cust="custom"

<!—JSP syntax -->

<%@taglib prefix="cust" uri="custom" %>

To use the tag within the page, simply specify the TLD short-name along with the

mapping name for the tag implementation and any attributes you want to provide:

<cust:signature authorName="Josh Juneau"/>

Creating custom tags within JSP is easier than it was in the past. Custom tags provide

developers with the ability to define custom actions and/or content that can be made

accessible from within a JSP page via a tag rather than scriptlets. Custom tags help

developers follow the MVC architecture, separating code from business logic.

Chapter 1 ServletS and JavaServer pageS

74

1-18. Including Other JSPs into a Page
 Problem
Rather than coding the same header or footer into each JSP, you want to place the

content for those page sections into a separate JSP page and then pull them into JSP

pages by reference.

 Solution
Use the <jsp:include> tag to embed other static or dynamic pages in your JSP page.

The following example demonstrates the inclusion of two JSP pages within another. One

of the JSP pages is used to formulate the header of the page, and another is used for the

footer. The following page demonstrates the main JSP page, which includes two others

using the <jsp:include> tag. The JSPX files named recipe01_18-header.jspx and

recipe01_18-footer.jspx are included within the body of the main JSP page in order to

provide the header and footer sections of the page:

<html xmlns:jsp="http://xmlns.jcp.orgm/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <head>

 <title>Recipe 1-18: Including Other JSPs into a Page</title>

 </head>

 <body>

 <jsp:include page="recipe01-18-header.jspx" />

 <h1>This is the body of the main JSP.</h1>

 <p>

 Both the header and footer for this page were created as

separate JSPs.

 </p>

 <jsp:include page="recipe01_18-footer.jspx"/>

 </body>

</html>

Chapter 1 ServletS and JavaServer pageS

75

Next is the JSP code that comprises the page header. It’s nothing fancy but is a

separate JSP page nonetheless:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page" version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <p>This is the page header</p>

</html>

The next JSP code makes up the page footer:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page" version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <p>This is the page footer</p>

</html>

In the end, these three pages create a single page that contains a header, a body, and

a footer.

 How It Works
Including other JSP pages helps increase developer productivity and reduces

maintenance time. Using this technique, a developer can extract any JSP features that

appear in multiple pages and place them into a separate JSP page. Doing so will allow a

single point of maintenance when one of these features needs to be updated.

To include another page within a JSP page, use the <jsp:include> tag. The

<jsp:include> tag allows embedding a static file or another web component. The tag

includes a page attribute, which is used to specify the relative URL or an expression that

results in another file or web component to include in the page.

Note: The tag also has an optional flush attribute, which can be set to either true or

false to indicate whether the output buffer should be flushed prior to the page inclusion.

The default value for the flush attribute is false.

Optionally, <jsp:param> clauses can be placed between the opening and closing

<jsp:include> tags to pass one or more name-value pairs to the included resource

if the resource is dynamic. An example of performing this technique would resemble

something like the following lines of code. In the following lines, a parameter with a

name of bookAuthor and a value of Juneau is passed to the header JSP page:

Chapter 1 ServletS and JavaServer pageS

76

<jsp:include page="header.jspx">

 <jsp:param name="bookAuthor" value="Juneau"/>

</jsp:include>

The ability to include other content within a JSP page provides a means to

encapsulate resources and static content. This allows developers to create content once

and include it in many pages.

1-19. Creating an Input Form for a Database Record
 Problem
You want to create a JSP page that will be used to input information that will be inserted

as a database record.

 Solution
Create an input form and use a Java servlet action method to insert the values into the

database. This solution requires a JSP document and a Java servlet in order to complete

the database input form. In the following example, an input form is created within a JSP

document to populate records within a database table named RECIPES. When the user

enters the information into the text fields on the form and clicks the submit button, a

servlet is called that performs the database insert transaction.

The following code is the JSP document that is used to create the input form for the

database application:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <head>

 <title>Recipe 1-19: Creating an Input Form</title>

 </head>

 <body>

 <h1>Recipe Input Form</h1>

Chapter 1 ServletS and JavaServer pageS

77

 <p>

 Please insert recipe details using the text fields below.

 </p>

 ${ recipeBean.message }

 <form method="POST" action="/JakartaEERecipes/RecipeServlet">

 Recipe Number: <input id="recipeNumber" name="recipeNumber"

size="30"/>

 Recipe Name: <input id="name" name="name" size="30"/>

 <input type="submit"/>

 </form>

 </body>

</html>

Next is the code for a servlet named RecipeServlet. It is responsible for reading the

request parameters from the JSP document input form and inserting the fields into the

database:

package org.jakartaeerecipes.chapter01.recipe01_19;

import org.jakartaeerecipes.common.CreateConnection;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "RecipeServlet", urlPatterns = {"/RecipeServlet"})

public class RecipeServlet extends HttpServlet {

Chapter 1 ServletS and JavaServer pageS

78

 /**
 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

 *
 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 int result = -1;

 try(PrintWriter out = response.getWriter()) {

 /*
 * TODO Perform validation on the request parameters here

 */

 result = insertRow (request.getParameter("recipeNumber"),

 request.getParameter("name"),

 request.getParameter("description"),

 request.getParameter("text"));

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet RecipeServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet RecipeServlet at " + request.

getContextPath() + "</h1>");

 out.println("

");

 if(result > 0){

 out.println("Record successfully

inserted!");

Chapter 1 ServletS and JavaServer pageS

79

 out.println("

<a href='/JakartaEERecipes/

chapter01recipe01_19.jspx'>Insert another record");

 } else {

 out.println("Record NOT inserted!");

 out.println("

<a href='/JakartaEERecipes/

chapter01recipe01_19.jspx'>Try Again");

 }

 out.println("</body>");

 out.println("</html>");

 }

 }

 public int insertRow(String recipeNumber,

 String name,

 String description,

 String text) {

 String sql = "INSERT INTO RECIPES VALUES(" +

 "RECIPES_SEQ.NEXTVAL,?,?,?,?)";

 int result = -1;

 CreateConnection createConn = new CreateConnection();

 try(Connection conn = createConn.getConnection();

 PreparedStatement stmt = (PreparedStatement) conn.

prepareStatement(sql)) {

 stmt.setString(1, recipeNumber);

 stmt.setString(2, name);

 stmt.setString(3, description);

 stmt.setString(4, text);

 // Returns row-count or 0 if not successful

 result = stmt.executeUpdate();

 if (result > 0){

 System.out.println("-- Record created --");

 } else {

Chapter 1 ServletS and JavaServer pageS

80

 System.out.println("!! Record NOT Created !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return result;

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

}

If the request is successful, the record will be inserted into the database, and the user

will be able to click a link to add another record. Of course, in a real-life application, you

would want to code some validation using JavaScript either within the input form or

within the server-side Java code to help ensure database integrity.

 How It Works
A fundamental task to almost every enterprise application is the use of a database input

form. Database input forms make it easy for end users to populate database tables

with data. When using JSP technology along with servlets, this operation can become

fairly simple. As you have seen in the example for this recipe, writing a JSP input form is

straightforward and can be coded using basic HTML. The key is to set up a Java servlet to

receive a submitted request and process the records using the servlet. This provides an

easy mechanism for separating web content from the application logic.

Chapter 1 ServletS and JavaServer pageS

81

In the example, a JSP document named recipe01_19.jspx contains a standard

HTML form with a method of POST and an action of /JakartaEERecipes/RecipeServlet.

The input form contains four fields, which map to database columns into which the data

will eventually be inserted. The input tags contain the name of four corresponding fields

(recipeNumber, name, description, and text), which will be passed to the form action

when submitted. As you can see, the only reference to the Java code is the name of the

servlet that is contained within the form action attribute.

The Java servlet named RecipeServlet is responsible for obtaining the request

parameters that were submitted via the JSP document, validating them accordingly

(not shown in the example), and inserting them into the database. When the page is

submitted, RecipeServlet is invoked, and the request is sent to the doPost() method

since the HTML action method is POST. Both the doGet and doPost() methods are really

just wrapper methods for a processing method named processRequest(), which is

responsible for most of the work.

The processRequest() method is responsible for obtaining the request parameters,

inserting them into the database, and sending a response to the client. A PrintWriter

object is declared and created by making a call to response.getWriter() first because

this object will be used later to help form the response that is sent to the client. Next,

an int value named result is set up and initialized to -1. This variable will be used for

determining whether the SQL insert worked or failed. After those declarations, a try-

catch block is opened, and the first line of the try block is a call to the insertRow()

method, passing the request parameters as values. The result variable is going to

accept the int value that is returned from the execution of the insertRows() method,

indicating whether the insert was successful:

result = insertRow (request.getParameter("recipeNumber"),

 request.getParameter("name"),

 request.getParameter("description"),

 request.getParameter("text"));

As such, a SQL insert statement is assigned to a String named sql, and it is set up

using the PreparedStatement format. Each question mark in the SQL string corresponds

to a parameter that will be substituted in the string when the SQL is executed:

String sql = "INSERT INTO RECIPES VALUES(" +

 "RECIPES_SEQ.NEXTVAL,?,?,?,?)";

Chapter 1 ServletS and JavaServer pageS

82

Next, PreparedStatement and int values are initialized, and then a try-catch-

finally block is opened, which will contain the SQL insert code. Within the block,

a Connection object is created by calling a helper class named CreateConnection.

If you want to read more about this helper class, then you can read Chapter 5 on

JDBC. For now, all you need to know is that CreateConnection will return a database

connection that can then be used to work with the database. If for some reason the

connection fails, the catch block will be executed, followed by the finally block. A

PreparedStatement object is created from the successful connection, and the SQL

string that contains the database insert is assigned to it. Each of the request parameter

values, in turn, is then set as a parameter to the PreparedStatement. Lastly, the

PreparedStatement’s executeUpdate() method is called, which performs an insert to

the database. The return value of executeUpdate() is assigned to the result variable

and then returned to the processRequest() method. Once the control is returned

to processRequest(), the servlet response is created using a series of PrintWriter

statements. If the insert was successful, then a message indicating success is displayed.

Likewise, if unsuccessful, then a message indicating failure is displayed.

Developing database input forms with JSP is fairly easy to do. To preserve the MVC

structure, using a Java servlet for handing the request and database logic is the best choice.

1-20. Looping Through Database Records Within
a Page
 Problem
You want to display the records from a database table on your JSP page.

 Solution
Encapsulate the database logic in a Java class and access it from the JSP page. Use the

JSTL c:forEach element to iterate through the database rows and display them on the

page. Two Java classes would be used for working with the data in this situation. One of

the classes would represent the table, which you are querying from the database, and

it would contain fields for each column in that table. Another JavaBean class would be

used to contain the database business logic for querying the database.

Chapter 1 ServletS and JavaServer pageS

83

The example for this recipe will display the first and last names of each author

contained within the AUTHORS database table. The following code is used to create the

JSP document that will display the data from the table using a standard HTML-based

table along with the JSTL <c:forEach> tag to loop through the rows:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 < jsp:useBean id="authorBean" scope="session" class="org.

jakartaeerecipes.chapter01.recipe01_20.AuthorBean"/>

 <head>

 <title>Recipe 1-20: Looping Through Database Records within a Page

</title>

 </head>

 <body>

 <h1>Authors</h1>

 <p>

 The authors from the books which Josh Juneau has worked on are

printed below.

 </p>

 <table border="1">

 <c:forEach items="${authorBean.authorList}" var="author">

 <tr>

 <td> ${ author.first } ${ author.last }</td>

 </tr>

 </c:forEach>

 </table>

 </body>

</html>

As you can see, <c:forEach> is used to loop through the items contained within

${authorBean.authorList}. Each item within the list is an object of type Author.

The following Java code is that of the Author class, which is used for holding the data

contained within each table row:

Chapter 1 ServletS and JavaServer pageS

84

package org.jakartaeerecipes.chapter01.recipe01_20;

public class Author implements java.io.Serializable {

 private int id;

 private String first;

 private String last;

 public Author(){

 id = -1;

 first = null;

 last = null;

 }

...

 // Getters And Setters

...

}

Lastly, the JSP document makes reference to a JavaBean named AuthorBean, which

contains the business logic to query the data and return it as a list to the JSP page. The

following code is what is contained within the AuthorBean class:

package org.jakartaeerecipes.chapter01.recipe01_20;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.ArrayList;

import java.util.List;

import org.jakartaeerecipes.common.CreateConnection;

import org.jakartaeerecipes.entity.BookAuthor;

public class AuthorBean implements java.io.Serializable {

 public static Connection conn = null;

 private List<Author> authorList = null;

 public AuthorBean(){

 }

Chapter 1 ServletS and JavaServer pageS

85

 public List queryAuthors(){

 String sql = "SELECT ID, FIRSTNAME, LASTNAME FROM BOOK_AUTHOR";

 List <Author> authorList = new ArrayList<Author>();

 PreparedStatement stmt = null;

 ResultSet rs = null;

 int result = -1;

 try {

 CreateConnection createConn = new CreateConnection();

 conn = createConn.getConnection();

 stmt = (PreparedStatement) conn.prepareStatement(sql);

 // Returns row-count or 0 if not successful

 rs = stmt.executeQuery();

 System.out.println("executing statement");

 while (rs.next()){

 Author author = new Author();

 author.setId(rs.getInt("ID"));

 author.setFirst((rs.getString("FIRSTNAME")));

 author.setLast(rs.getString("LASTNAME"));

 authorList.add(author);

 System.out.println("got author: " + author);

 }

 } catch (SQLException e) {

 e.printStackTrace();

 } finally {

 if (stmt != null) {

 try {

 stmt.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

 }

 return authorList;

 }

Chapter 1 ServletS and JavaServer pageS

86

 public List getAuthorList(){

 authorList = queryAuthors();

 System.out.println("authorlist: " + authorList);

 return authorList;

 }

}

The names of the authors contained within the records in the table will be displayed

on the page.

 How It Works
Almost any enterprise application performs some sort of database querying. Oftentimes

results from a database query are displayed in a table format. The example in this recipe

demonstrates how to query a database and return the results to a JSP page for display in

a standard HTML table. The JSP page in this example makes use of the JSTL c:forEach

element to iterate through the results of the database query. Note that there is more

than one way to develop this type of database query using JSP; however, the format

demonstrated in this recipe is most recommended for use in a production enterprise

environment.

As mentioned previously, the JSP page in this recipe uses a combination of the

jsp:useBean element and the c:forEach element to iterate over the results of a database

query. The logic for querying the database resides within a server-side JavaBean class

that is referenced within the jsp:useBean element on the page. In the example, the

JavaBean is named AuthorBean, and it is responsible for querying a database table

named AUTHORS and populating a list of Author objects with the results of the query.

When the c:forEach element is evaluated with the items attribute set to ${authorBean.

authorList } , it calls upon the JavaBean method named getAuthorList() because

JSP expressions always append get() to a method call behind the scenes and also

capitalize the first letter of the method name within the call. When the getAuthorList()

method is called, the authorList field is populated via a call to queryAuthors(). The

queryAuthors() method utilizes a Java Database Connectivity (JDBC) database call to

obtain the authors from the AUTHORS table. A new Author object is created for each row

returned by the database query, and each new Author object is, in turn, added to the

authorList. In the end, the populated authorList contains a number of Author objects,

and it is returned to the JSP page and iterated over utilizing the c:forEach element.

Chapter 1 ServletS and JavaServer pageS

87

The c:forEach element contains an attribute named var, and this should be set

equal to a string that will represent each element in the list that is being iterated over.

The var is then used between the opening and closing c:forEach element tags to

reference each element in the list, printing out each author’s first and last names.

This recipe provides some insight on how to combine the power of JSTL tags with

other technologies such as JDBC to produce very useful results. To learn more about

the different JSTL tags that are part of JSP, please visit the online documentation at www.

oracle.com/technetwork/java/jstl-137486.html. To learn more about JDBC, please

read Chapter 5 of this book.

1-21. Handling JSP Errors
 Problem
You want to display a nicely formatted error page if a JSP page encounters an error.

 Solution
Create a standard error page, and forward control to the error page if an exception

occurs within the JSP page. The following JSP document, in JSP format (not JSPX),

demonstrates a standard error page to display if an error occurs within a JSP application.

If an exception occurs within any JSP page in the application, the following error page

will be displayed.

Note the example in the solution for this recipe uses the JStl fmt library, which
provides convenient access to formatting capabilities that allow for localization of text
as well as date and number formatting. text localization capabilities allow locales to
be set so that text can be formatted into different languages, depending upon the user
locale. tags used for date manipulation make it easy for developers to format dates
and times easily within a JSp page and also provide a way to parse dates and times for
data input. lastly, number-formatting tags provide a way to format and parse numeric
data within pages. to learn more about the JStl fmt tag library, please refer to the
online documentation at https://jakarta.ee/specifications/platform/8/
apidocs/javax/servlet/jsp/jstl/fmt/package-summary.html.

Chapter 1 ServletS and JavaServer pageS

http://www.oracle.com/technetwork/java/jstl-137486.html
http://www.oracle.com/technetwork/java/jstl-137486.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/servlet/jsp/jstl/fmt/package-summary.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/servlet/jsp/jstl/fmt/package-summary.html

88

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ page isErrorPage="true" %>

<%@ taglib uri="http://xmlns.jcp.org/jsp/jstl/core"

 prefix="c" %>

<%@ taglib uri="http:/xmlns.jcp.org/jsp/jstl/fmt"

 prefix="fmt" %>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Error Page</title>

 </head>

 <body>

 <h1>Error Encountered</h1>

 <p>

 The application has encountered the following error:

 < fmt:message key="ServerError"/>: ${pageContext.errorData.

statusCode}

 </p>

 </body>

</html>

For example, the following JSP would create an error (NullPointerException) if the

parameter designated as param is null. If this occurs, the indicated error page would be

displayed:

<html xmlns:jsp="http://xmlns.jcp.org/JSP/Page"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core"

 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <jsp:directive.page errorPage="recipe01_21_errorPage.jsp"/>

Chapter 1 ServletS and JavaServer pageS

89

 <head>

 <title>Recipe 1-21: Handling JSP Errors</title>

 </head>

 <body>

 <h1>There is an error on this page</h1>

 <p>

 This will produce an error:

 <jsp:scriptlet>

 if (request.getParameter("param").equals("value")) {

 System.out.println("test");

 }

 </jsp:scriptlet>

 </p>

 </body>

</html>

 How It Works
One of the most annoying issues for users while working with applications is when an

error is thrown. A nasty, long stack trace is often produced, and the user is left with no

idea how to resolve the error. It is better to display a nice and user-friendly error page

when such an error occurs. The JSP technology allows an error page to be designated

by adding a page directive to each JSP page that may produce an error. The directive

should designate an error page that will be displayed if the page containing the directive

produces an error.

The second JSP document in the solution to this recipe demonstrates a JSP page

that will throw an error if the parameter being requested within the page is null. If this

were to occur and there was no error page specified, then a NullPointerException error

message would be displayed. However, this JSP indicates an error page by designating it

within a page directive using the following syntax:

<jsp:directive.page errorPage="recipe01_21_errorPage.jsp"/>

When an error occurs on the example page, recipe01_21.errorPage.jsp is

displayed. The first JSP document listed in the solution to this recipe contains the

Chapter 1 ServletS and JavaServer pageS

90

sources for the recipe01_21.errorPage.jsp page. It is flagged as an error page because

it includes a page directive indicating as such:

<%@ page isErrorPage="true" %>

An error page is able to determine the error code, status, exception, and an array

of other information by using the pageContext implicit object. In the example, the

${pageContext.errorData.statusCode} expression is used to display the status code

of the exception. Table 1-7 displays the other possible pieces of information that can be

gleaned from the pageContext object.

Table 1-7. pageContext Implicit Object Exception Information

Expression Value

pageContext.errorData provides access to the error information

pageContext.exception returns the current value of the exception object

pageContext.errorData.requestURI returns the request UrI

pageContext.errorData.servletName returns the name of the servlet invoked

pageContext.errorData.statusCode returns the error status code

pageContext.errorData.throwable returns the throwable that caused the error

Providing user-friendly error pages in any application can help create a more

usable and overall more functional experience for the end user. JSP and Java technology

provide robust exception handling and mechanisms that can be used to help users and

administrators alike when exceptions occur.

Chapter 1 ServletS and JavaServer pageS

91

1-22. Disabling Scriptlets in Pages
 Problem
You want to ensure that Java code cannot be embedded into JSP pages within your web

application.

 Solution
Set the scripting-invalid element within the web deployment descriptor to true. The

following excerpt from a web.xml deployment descriptor demonstrates how to do so:

<jsp-config>

 <jsp-property-group>

 <scripting-invalid>true</scripting-invalid>

 </jsp-property-group>

</jsp-config>

 How It Works
When working in an environment that encourages the use of the Model-View-Controller

architecture, it can be useful to prohibit the use of scriptlets within JSP pages and

documents. When JSP 2.1 was released, it provided solutions to help developers move

Java code out of JSP pages and into server-side Java classes where it belonged. In the

early years of JSP, pages were cluttered with scriptlets and markup. This made it difficult

for developers to separate business logic from content, and it was hard to find good tools

to help develop such pages effectively. JSP 2.1 introduced tags, which make it possible

to eliminate the use of scriptlets within JSP pages, and this helps maintain the use of the

MVC architecture.

To prohibit the use of scriptlets within JSP pages in an application, add the jsp-

config element within the web.xml file of the application of which you want to enforce

the rule. Add a subelement of jsp-property-group along with the scripting-invalid

element. The value of the scripting-invalid element should be set to true.

Chapter 1 ServletS and JavaServer pageS

92

1-23. Ignoring EL in Pages
 Problem
You want to turn off EL expression translation within your JSP page so that older

applications will be able to pass through expressions verbatim.

 Solution #1
Escape the EL expressions within the page by using the \ character before any

expressions. For instance, the following expressions will be ignored because the

\ character appears before them:

\${elBean.myProperty}

\${2 + 4}

 Solution #2
Configure a JSP property group within the web.xml file for the application. Within

the web.xml file, a <jsp-property-group> element can contain child elements

that characterize how the JSP page evaluates specified items. By including an

<el- ignored>true</el-ignored> element, all EL within the application’s JSP

documents will be ignored and treated as literals. The following excerpt from web.xml

demonstrates this feature:

<jsp-property-group>

 <el-ignored>true</el-ignored>

 </jsp-property-group>

 Solution #3
Include a page directive including the isELIgnored attribute, and set it to true. The

following page directive can be placed at the top of a given JSP document to allow each

EL expression to be treated as a literal:

<jsp:directive.page isELIgnored="true"/>

Chapter 1 ServletS and JavaServer pageS

93

or in a standard JSP:

<%@ page isELIgnored="true" %>

 How It Works
There may be a situation in which the evaluation of JSP EL expressions should be turned

off. This occurs most often in cases of legacy applications using older versions of JSP

technology; EL expressions were not yet available. There are a few different ways to turn

off the evaluation of EL expressions, and this recipe demonstrates each of them.

In the first solution to this recipe, the escape technique is demonstrated. An EL

expression can be escaped by placing the \ character directly before the expression, as

shown in the example. Doing so will cause the JSP interpreter to treat the expression as

a string literal, and the output on the page will be the expression itself, rather than its

evaluation. The second solution to this recipe demonstrates adding a jsp-property-

group to the web.xml deployment descriptor in order to ignore EL. All EL within an

application will be ignored by including the isELIgnored element and providing a true

value for it. Lastly, the final solution demonstrates how to ignore EL on a page-by-page

basis by including a page directive with the isELIgnored attribute set to true.

Each of the different solutions for ignoring EL allows coverage to different parts of

the application. The solution you choose should depend upon how broadly you want to

ignore EL throughout an application.

Chapter 1 ServletS and JavaServer pageS

95
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_2

CHAPTER 2

JavaServer Faces
Fundamentals
In 2004 Sun Microsystems introduced a Java web framework called JavaServer Faces

(JSF) in an effort to help simplify web application development. It is an evolution of the

JavaServer Pages (JSP) framework, adding a more organized development life cycle and

the ability to more easily utilize modern web technologies.

JSF uses XML files for view construction and uses Java classes for application logic,

making it adhere to the Model-View-Controller (MVC) architecture. JSF is request-

driven, and each request is processed by a special servlet named the FacesServlet.

The FacesServlet is responsible for building the component trees, processing events,

determining which view to process next, and rendering the response. JSF 1.x used a

special resource file named the faces-config.xml file for specifying application details

such as navigation rules, registering listeners, and so on. While the faces-config.xml

file can still be used in JSF 2.x, the more modern releases of JSF have focused on being

easy to use, minimizing the amount of XML configuration, and utilizing annotations in

place of XML where possible.

The framework is very powerful, including easy integration with technologies

such as Ajax and making it effortless to develop dynamic, and even stateless, content.

JSF works well with databases, using JDBC, EJB, or REST technology to work with the

backend. Java classes known as JSF controllers are used for application logic and support

the dynamic content within each view. They can adhere to different life spans depending

upon the scope that is used. Views can invoke methods within the controllers to

perform actions such as data manipulation and form processing. Utilizing Contexts and

Dependency Injection (CDI), properties can also be declared within the controllers and

96

exposed within the views, providing a convenient way to pass request values. JSF allows

developers to customize their applications with preexisting validation and conversion

tags that can be used on components with the view. It is also easy to build custom

validators, as well as custom components.

This chapter includes recipes that will be useful for those who are getting started

with JSF and also those who are looking to beef up their basic knowledge using the latest

features of the framework. You will learn how to create controllers, work with standard

components, and handle page navigation. There are also recipes that cover useful

techniques such as building custom validators and creating bookmarkable URLs. The

recipes are refined to include the most current techniques and provide the most useful

methodologies for using them. After studying the recipes in this chapter, you will be

ready to build standard JSF applications, sprinkling in some custom features as well.

Note Many people prefer to work within an integrated development environment
(IDE) for increased productivity. To get started with learning how to create a new
JSF project and manage it with the Apache NetBeans IDE, please see the appendix
of this book.

2-1. Writing a Simple JSF Application
 Problem
You want to get up and running quickly by creating a simple JSF application.

 Solution #1
Create a simple JSF web application that is comprised of a single XHTML page and a

single JSF controller. The application in this recipe simply displays a message that is

initialized within a JSF controller.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

97

Note It is recommended that you utilize a Java IDE to make life easier. If you
have not yet created a JSF application and are interested in learning how to create
one from scratch with an IDE, then please see Solution #2 to this recipe. This book
features the Apache NetBeans IDE, a cutting-edge Java development environment
that is usually the first to support new Java features. however, there are many
excellent IDE choices. You can choose the IDE you want and follow along with its
instructions for working with JSF.

 Displaying a JSF Controller Field Value

The following code makes up the XHTML view that will be used to display the JSF

managed bean field value:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 2-1: A Simple JSF Application</title>

 </h:head>

 <h:body>

 <p>

 This simple application utilizes a request-scoped JSF managed bean

 to display the message below. If you change the message within the

 managed bean's constructor and then recompile the application, the

 new message appears.

 #{helloWorldController.hello}

 or

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

98

 <h:outputText id="helloMessage" value="#{helloWorldController.

hello}"/>

 </p>

 </h:body>

</html>

As you can see, the JSF page utilizes a JSF expression, #{helloWorldController.hello}.

Much like JSP technology, a backing JavaBean, originally referred to as a JSF managed bean,

but since JSF 2.0+ as the controller class, is referenced in the expression along with the field

to expose.

 Examining the JSF Controller

The following code is that of HelloWorldController, the JSF controller for this recipe

example:

package org.jakartaeerecipes.chapter02.recipe02_01;

import java.io.Serializable;

import javax.annotation.PostConstruct;

import javax.inject.Named;

import javax.enterprise.context.RequestScoped;

@Named(value = "helloWorldController")

@RequestScoped

public class HelloWorldController implements Serializable {

 private String hello;

 /**

 * Creates a new instance of HelloWorldController

 */

 public HelloWorldController() {

 }

 @PostConstruct

 public void init(){

 System.out.println ("Instantiated helloWorldController");

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

99

 hello = "Hello World";

 }

 /**

 * @return the hello

 */

 public String getHello() {

 return hello;

 }

 /**

 * @param hello the hello to set

 */

 public void setHello(String hello) {

 this.hello = hello;

 }

}

Note prior to JSF 2.0, in order to enable the JSF servlet to translate the XhTMl
page, you needed to ensure that the web.xml file contained a servlet element
indicating the javax.faces.webapp.FacesServlet class and its associated
servlet-mapping url. Since the release of JSF 2.0, if using a Servlet 3.x container,
the FacesServlet is automatically mapped for you, so there is no requirement to
adjust the web.xml configuration.

The listing that follows is an excerpt taken from the web.xml file for the sources to

this book, and it demonstrates the features that must be added to the web.xml file in

order to make the JSF application function properly in a pre–JSF 2.0 environment:

...

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 ...

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

100

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>/faces/*</url-pattern>

 </servlet-mapping>

...

 <welcome-file-list>

 <welcome-file>faces/index.xhtml</welcome-file>

 </welcome-file-list>

Let’s take a deeper look at the web.xml configuration for a JSF application. It is

not very complex, but a few elements could use some explanation. The javax.faces.

webapp.FacesServlet servlet can optionally be declared within the web.xml file. If

declared, the declaration must contain a servlet-name; the servlet-class element,

which lists the fully qualified class name; and a load-on-startup value of 1 to ensure

that the servlet is loaded when the application is started up by the container. The web.

xml file must then map that servlet to a given URL within a servlet-mapping element.

The servlet-mapping element must include the servlet-name, which is the same value

as the servlet-name element that is contained in the servlet declaration, and a url-

pattern element, which specifies the URL that will be used to map JSF pages with the

servlet. When a URL is specified that contains the /faces/ mapping, the FacesServlet

will be used to translate the view.

To load the application in your browser, visit http://localhost:8080/

JakartaEERecipes/faces/chapter02/recipe02_01.xhtml, and you will see the

following text:

This simple application utilizes a request-scoped JSF controller class to display

the message below. If you change the “hello” variable within the controller class's

constructor and then recompile and run the application, the new message appears.

Hello World

or

Hello World

 Solution #2
Use an IDE, such as Apache NetBeans, to create a JSF application. To get started with Apache

NetBeans, first download the most recent release from the https://netbeans.apache.org

web site. The examples in this solution make use of Apache NetBeans 11.x. For more

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

https://netbeans.apache.org

101

information about downloading and installing Apache NetBeans, please see the appendix of

this book. Once installed, create a new project by clicking the “File” ➤ “New Project” menu.

Follow the directions in the book’s appendix (in the “Creating an Apache NetBeans

Java Web Project” section). Once completed, the index.xhtml file will open in the

editor, which will be the default landing page for your application. Modify the index.

xhtml file by making the page the same as the JSF view that is listed in Solution #1’s

“Displaying a JSF Controller Field Value” section. Once done, add the controller class to

your application that will be used to supply the business logic for the index.xhtml page.

To create the controller class, right-click the Source Packages navigation menu for your

project, and choose “New” ➤ “JSF Controller Class” from the context menu. This will

open the “New JSF Controller Class” dialog (Figure 2-1), which will allow you to specify

several options for your controller, including the name, location, and scope.

Figure 2-1. New JSF controller class via the “New JSF Controller Class” dialog

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

102

For the purposes of this recipe, change the name of the class to

HelloWorldController, and leave the rest of the options at their defaults; then click

Finish. Copy and paste the code from Solution #1’s “Examining the JSF Controller”

section into the newly created controller class. Once finished, right-click the application

project from the Project navigation menu and choose Deploy to deploy your application.

To load the application in your browser, visit http://localhost:8080/

WebApplication1/faces/index.xhtml, and you will see the following text:

This simple application utilizes a request-scoped JSF controller to

display the message below. If you change the "hello" variable within the

controller's constructor and then recompile and run the application, the

new message appears.

Hello World

or

Hello World

 How It Works
This recipe merely scratches the surface of JSF, but it is meant as a starting point to guide

you along the path of becoming a JSF expert. The example in this recipe demonstrates

how closely related JSF and JSP technologies are. In fact, the main differences between

the two view pages include the use of the JSF expression #{} rather than the standard

JSP value expression ${} and the use of some JSF tags. Thanks to the JSP 2.0 Unified

Expression Language, Java web developers now have an easy transition between the two

technologies, and they now share many of the same expression language features.

Note JSF 2.x can make use of Facelets view technology to produce even
more sophisticated and organized designs. To learn more about Facelets view
technology, please refer to Chapter 3.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

103

 Breaking Down a JSF Application

Now for the real reason you are reading this recipe...the explanation for building a JSF

application! A JSF application is comprised of the following parts:

• If using or maintaining JSF applications written using JSF 1.x, the

web.xml deployment descriptor that is responsible for mapping the

FacesServlet instance to a URL path.

• One or more web pages on which JSF components are used to

provide the page layout (may or may not utilize Facelets view

technology). Typically these web pages are referred to as “views.”

• JSF component tags within the views.

• One or more controller classes, which are simple, lightweight

container-managed objects that are responsible for supporting page

constructs and basic services.

• Optionally, one or more configuration files such as faces-config.

xml that can be used to define navigation rules and configure beans

and other custom objects.

• Optionally, supporting objects such as listeners, converters, or

custom components.

• Optionally, custom tags for use on a JSF view.

LIFE CYCLE OF A JSF APPLICATION

The JSF view processing life cycle contains six stages. These stages are as follows:

 1. restore view

 2. Apply request values

 3. process validations

 4. update Model values

 5. Invoke Application

 6. render response

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

104

restore view is the first phase in the JSF life cycle, and it is responsible for constructing the

view. The component tree then applies the request parameters to each of the corresponding

component values using the component tree’s decode method. This occurs during the Apply

request values phase. During this phase, any value conversion errors will be added to

FacesContext for display as error messages during the render response phase. Next, all

of the validations are processed. During the process validations phase, each component that

has a registered validator is examined, and local values are compared to the validation rules. If

any validation errors arise, the render response phase is entered, rendering the page with the

corresponding validation errors.

If the process validations phase exits without errors, the update Model values phase begins.

During this phase, controller class properties are set for each of the corresponding input

components within the tree that contains local values. Once again, if any errors occur, then

the render response phase is entered, rendering the page with the corresponding errors

displayed. After the successful completion of the update Model values phase, the application-

level events are handled during the Invoke Application phase. Such events include page

submits or redirects to other pages. Finally, the render response phase occurs, and the page

is rendered to the user. If the application is using JSp pages, then the JSF implementation

allows the JSp container to render the page.

The example in this recipe uses the minimum number of these parts. To run

the example, you will need to ensure that the web.xml file contains the proper JSF

configuration if running in a pre–JSF 2.x environment. You will need to have a controller

declaring the field that is exposed on the JSF view along with the necessary accessor

methods to make it work properly. And lastly, you will need to have the XHTML JSF

view page containing the JSF expression that exposes the field that is declared within the

controller class.

A JSF controller class is a lightweight, container-managed object that is associated

with a JSF view. The controller class is much like a JSP JavaBean in that it provides the

application logic for a particular page so that Java code does not need to be embedded

into the view code. Components (aka JSF tags) that are used within a JSF view are

mapped to server-side fields and methods contained within the JSF controller. Controller

classes are indeed the controllers for the view logic. In the example, the JSF controller

class is named HelloWorldController, and a field named hello is declared, exposing

itself to the public via the getHello() and setHello() methods. The JSF controller

class is instantiated and initialized when a view that contains a reference to the bean

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

105

is requested, and the controller class scope determines the life span of the bean. In

the case of this example, the controller class contains a request scope, via the javax.

enterprise.context.RequestScoped annotation. Therefore, its life span is that of a

single request, and it is re-instantiated each time a request is made. In this case, when

the page in the example is reloaded. To learn more about the scope and annotations that

are available for a controller class, please see Recipe 2-2.

JSF technology utilizes a web view declaration framework known as Facelets.

Facelets uses a special set of XML tags, similar in style to the standard JSF tags, to help

build componentized web views. While this example does not use Facelets, it is a vital

part of JSF view technology. Facelets pages typically use XHTML, which is an HTML

page that is comprised of well-formed XML components. The example JSF view in this

recipe is well structured, and it contains two JSF EL expressions that are responsible for

instantiating the controller class and displaying the content for the hello field. When the

EL expression #{helloWorldController.hello} is translated by the FacesServlet, it

makes the call to the HelloWorldController’s getHello() method.

Lots of information was thrown at you within this introductory recipe. The simple

example in this recipe provides a good starting point for working with JSF technology.

Continue with the recipes in this chapter to gain a broader knowledge of each

component that is used for developing JavaServer Faces web applications.

2-2. Writing a Controller Class
 Problem
You want to reference field values contained within a server-side Java class from your JSF

application web views.

 Solution
Develop a JSF controller class, a lightweight container-managed component, which will

provide the application logic for use within your JSF application web pages. The example

in this recipe is comprised of a JSF view and a JSF controller class. The application

calculates two numbers that are entered by the user and then adds, subtracts, multiplies,

or divides them depending upon the user’s selection. The following code is the

controller class that is responsible for declaring fields for each of the numbers that will

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

106

be entered by the user, as well as a field for the result of the calculation. The controller

class is also responsible for creating a list of Strings that will be displayed within an

h:selectOneMenu element within the JSF view and retaining the value that is chosen by

the user.

Although it may seem as though this controller class is doing a lot of work, it actually

is very simple to make it happen! The controller class is really a beefed-up Plain Old Java

Object (POJO) that includes some methods that can be called from JSF view components.

 Controller Class

The following code is for the controller class that is used for the calculation example. The

class is named CalculationController, and it is referenced as calculationController

from within the JSF view.

Note JSF uses convention over configuration for its naming conventions. By
default, JSF views can contain El that references a controller class by specifying
the class name with the first character in lowercase.

package org.jakartaeerecipes.chapter02.recipe02_02;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.faces.model.SelectItem;

import javax.inject.Named;

@Named

@SessionScoped

public class CalculationController implements Serializable {

 private int num1;

 private int num2;

 private int result;

 private String calculationType;

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

107

 private static final String ADDITION = "Addition";

 private static final String SUBTRACTION = "Subtraction";

 private static final String MULTIPLICATION = "Multiplication";

 private static final String DIVISION = "Division";

 List<SelectItem> calculationList;

 /**

 * Creates a new instance of CalculationController

 */

 public CalculationController() {

 // Initialize variables

 num1 = 0;

 num2 = 0;

 result = 0;

 calculationType = null;

 // Initialize the list of values for the SelectOneMenu

 populateCalculationList();

 System.out.println("initialized the bean!");

 }

 . . .

 /**

 * Getters and Setters

 */

 . . .

 public List<SelectItem> getCalculationList(){

 return calculationList;

 }

 private void populateCalculationList(){

 calculationList = new ArrayList<>();

 calculationList.add(new SelectItem(ADDITION));

 calculationList.add(new SelectItem(SUBTRACTION));

 calculationList.add(new SelectItem(MULTIPLICATION));

 calculationList.add(new SelectItem(DIVISION));

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

108

 public void performCalculation() {

 switch (getCalculationType()) {

 case ADDITION:

 setResult(num1 + num2);

 break;

 case SUBTRACTION:

 setResult(num1 - num2);

 break;

 case MULTIPLICATION:

 setResult(num1 * num2);

 break;

 case DIVISION:

 try{

 setResult(num1 / num2);

 } catch (Exception ex){

 FacesMessage facesMsg = new FacesMessage(FacesMessage.

SEVERITY_ERROR, "Invalid Calculation", "Invalid

Calculation");

 FacesContext.getCurrentInstance().addMessage(null,

facesMsg);

 } break;

 default:

 break;

 }

 }

}

Next is the view, which is composed within an XHTML document and is well-formed

XML.

 JSF View

The view contains JSF components that are displayed as text boxes into which the user

can enter information, a pick-list of different calculation types for the user to choose

from, a component responsible for displaying the result of the calculation, and an

h:commandButton component for submitting the form values:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

109

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 2-2: Writing a JSF Managed Bean</title>

 </h:head>

 <h:body>

 <f:view>

 <h2>Perform a Calculation</h2>

 <p>

 Use the following form to perform a calculation on two

numbers.

 Enter

 the numbers in the two text fields below, and select a

calculation to

 perform, then hit the "Calculate" button.

 <h:messages errorStyle="color: red" infoStyle="color:

green" globalOnly="true"/>

 <h:form id="calculationForm">

 Number1:

 <h:inputText id="num1" value="#{calculationController.

num1}"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

110

 Number2:

 <h:inputText id="num2" value="#{calculationController.

num2}"/>

 Calculation Type:

 <h:selectOneMenu id="calculationType"

value="#{calculationController.calculationType}">

 <f:selectItems value="#{calculationController.

calculationList}"/>

 </h:selectOneMenu>

 Result:

 <h:outputText id="result"

value="#{calculationController.result}"/>

 <h:commandButton action="#{calculationController.

performCalculation()}" value="Calculate"/>

 </h:form>

 </p>

 </f:view>

 </h:body>

</html>

The resulting JSF view looks like Figure 2-2 when displayed to the user.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

111

 How It Works
The JSF CDI controller class is responsible for providing the application logic for a

JSF-based web application. Much like the JavaBean is to a JSP, the controller class is

the backbone for a JSF view. They may also be referred to as backing beans or managed

beans, because there is typically one JSF controller class per JSF view. Controller

classes have changed a bit since the JSF technology was first introduced. There used

to be configuration required for each controller class within a faces-config.xml

configuration file and also within the web.xml file for use with some application servers.

Starting with the release of JSF 2.0, the controller class became easier to use, and coding

powerful JSF applications is easier than ever. This book, and Jakarta EE, focuses on

newer controller class technology.

The example for this recipe demonstrates many of the most important features

of a JSF controller class. The view components refer to the controller class as

calculationController. By default, a JSF controller class can be referred to within a

JSF view using the name of the bean class with a lowercase first letter. A controller class

must be annotated with @Named in order to mark it as an injectable CDI bean. Using the

@Named annotation, the string that is used to reference the bean from within a view can

be changed. In the example, calculationController is also used as the name passed

to the @Named annotation, but it could have easily been some other string. The @Named

annotation should be placed before the class declaration:

@Named(value="calculationController")

Figure 2-2. Resulting JSF view page

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

112

 Scopes

The bean in the example will be initialized when it is first accessed by a session and

destroyed when the session is terminated. It is a controller class that “lives” with the

session. The scope of the bean is configured by an annotation on the class, just before

the class declaration. There are different annotations that can be used for each available

scope. In this case, the annotation is @SessionScoped, denoting that the controller class

is session scoped. All of the possible controller class scopes are listed within Table 2-1.

Table 2-1. Controller Class Scopes

Scope Annotation Description

@ApplicationScoped Specifies that a bean is application scoped. Initialized when the

application is started up. Destroyed when the application is shut

down. Controller classes with this scope are available to all application

constructs within the same application.

@RequestScoped Specifies that a bean is request scoped in a web application context.

Initialized when an hTTp request to the bean is made and destroyed

when the request is complete.

@SessionScoped Specifies that a bean is session scoped in a web application context.

Initialized when first accessed within a session. Destroyed when the

session ends. Available to all servlet requests that are made within the

same session.

@ConversationScoped Specifies that a bean is conversation scoped. A conversation is a series

of hTTp requests and responses that occur in a step-by-step manner,

in order to complete a process. This application scope is specific to

web application contexts. Initialized when a conversation is started and

destroyed when the conversation ends. Controllers with this scope

are available throughout the life cycle of a conversation and belong

to a single hTTp session. If the hTTp session ends, all conversation

contexts that were created during the session are destroyed.

(continued)

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

113

The @Named annotation specifies to the application server container that the class is a CDI

bean. Prior to JSF 2.0, a controller class had to be declared within the faces- config.xml file,

and they were annotated with @ManagedBean until JSF 2.2+. The addition of annotations has

made JSF controller class XML configuration-free. It is important to note that the controller

class implements java.io.Serializable; all controller classes should be specified as

serializable so that they can be persisted to disk by the container if necessary.

Fields declared within a controller should be specified as private in order to adhere

to object-oriented methodology. To make a field accessible to the public and usable from

JSF views, accessor methods should be declared for it. Any field that has a corresponding

“getter” and “setter” is known as a JSF controller class property. Properties are available

for use within JSF views by utilizing lvalue JSF EL expressions, meaning that the

expression is contained within the #{ and } character sequences and that it is readable

and writable. lvalue expressions can specify targets, whereas rvalue expressions cannot.

For instance, to access the field num1 that is declared within the controller class, the JSF

view can use the #{calculationController.num1} expression, as you can see in the JSF

view code for the example.

Table 2-1. (continued)

Scope Annotation Description

@Singleton This is a pseudo-scope, meaning that it is not proxied as with other CDI

scopes. This scope specifies that only one instance of the bean will

exist for the entire application.

@Dependent This is a pseudo-scope, meaning that it is not proxied as with other CDI

scopes. Beans that use this scope behave differently than a controller

class containing any of the other scopes.

@TransactionScoped life of a bean annotated with this scope indicates that the life span will

exist for the duration of an active transaction. The first time a CDI bean

uses a controller with this annotation in a session, the same instance

will be used throughout the transaction.

@FlowScoped Beans of this scope are used within the context of a JSF flow. The bean

will be instantiated the first time it is accessed within the scope of a

flow, and it will be destroyed once the flow is complete.

@ViewScoped This scope indicates that the bean will remain available throughout the

life of the JSF view.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

114

Any public method contained within a JSF controller class is accessible from within a JSF

view using the same EL expression syntax, that is, by specifying #{beanName.methodName}

as the expression. In the example for this recipe, the performCalculation method of the

controller class is invoked from within the JSF view using a h:commandButton JSF component.

The component action is equal to the EL expression that will invoke the JSF controller

class method. To learn more about JSF components and how to use them in view, please

see Recipe 2-3 and Chapter 3:

<h:commandButton action="#{calculationController.performCalculation}"

value="Calculate"/>

Note The input form tag for this example contains no action attribute. JSF
forms do not contain action attributes since JSF components within the view are
responsible for specifying the action method, rather than the form itself.

JSF controller classes are a fundamental part of the JSF web framework. They provide

the means for developing dynamic, robust, and sophisticated web applications with the

Java platform.

2-3. Building Sophisticated JSF Views with
Components
 Problem
You want to create a sophisticated user interface comprised of pre-bundled components.

 Solution
Make use of bundled JSF components within your JSF views. JSF components contain

bundled application logic and view constructs, including styles and JavaScript actions,

that can be used within applications by merely adding tags to a view. In the following

example, several JSF components are used to create a view that displays the authors for

an Apress book and allows for a new author to be added to the list. The following code is

the XHTML for the JSF view:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

115

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 2-3: Building Sophisticated JSF Views with

Components</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Components, Creating a Sophisticated Page</h1>

 <p>

 The view for this page is made up entirely of JSF standard

components.

As you can see, there are many useful components

bundled with JSF out of the box.

 </p>

 <p>Book Recommendation: Java 9 Recipes

 <h:graphicImage id="java9recipes" library="image"

name="java9recipes.png"/>

 <h:dataTable id="authorTable" value="#{authorController.

authorList}"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:outputText id="authorName" value="#{author.first}

#{author.last}"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

116

 </h:column>

 </h:dataTable>

 <p>

 Use the following form to add an author to the list.

 </p>

 <h:outputLabel for="newAuthorFirst" value="New Author

First Name: "/>

 <h:inputText id="newAuthorFirst" value="#{authorController.

newAuthorLast}"/>

 <h:outputLabel for="newAuthorLast" value="New Author Last

Name: "/>

 <h:inputText id="newAuthorLast" value="#{authorController.

newAuthorLast}"/>

 <h:inputTextarea id="bio" cols="20" rows="5"

 value="#{authorController.bio}"/>

 <h:commandButton id="addAuthor" action="#{authorController.

addAuthor}"

 value="Add Author"/>

 </p>

 </h:form>

 </h:body>

</html>

This example utilizes a JSF controller class named AuthorController. The controller

class declares a handful of properties that are exposed in the view, and it also declares

and populates a list of authors that is displayed on the page within a JSF h:dataTable

component:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

117

package org.jakartaeerecipes.chapter02.recipe02_03;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

@Named(value = "authorController")

@SessionScoped

public class AuthorController implements Serializable {

 private String newAuthorFirst;

 private String newAuthorLast;

 private String bio;

 private List <Author> authorList;

 /**

 * Creates a new instance of RecipeController

 */

 public AuthorController() {

 populateAuthorList();

 }

 private void populateAuthorList(){

 System.out.println("initializing authors");

 authorList = new ArrayList<>();

 authorList.add(new Author("Josh", "Juneau", null));

 authorList.add(new Author("Carl", "Dea", null));

 authorList.add(new Author("Mark", "Beaty", null));

 authorList.add(new Author("John", "O'Conner", null));

 authorList.add(new Author("Freddy", "Guime", null));

 System.out.println("AuthorList size:" + authorList.size());

 }

 public void addAuthor() {

 getAuthorList().add(

 new Author(this.getNewAuthorFirst(),

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

118

 this.getNewAuthorLast(),

 this.getBio()));

 }

 /**

 * @return the authorList

 */

 public List<Author> getAuthorList() {

 return authorList;

 }

 /**

 * @param authorList the authorList to set

 */

 public void setAuthorList(List<Author> authorList) {

 this.authorList = authorList;

 }

 /**

 * @return the newAuthorFirst

 */

 public String getNewAuthorFirst() {

 return newAuthorFirst;

 }

 /**

 * @param newAuthorFirst the newAuthorFirst to set

 */

 public void setNewAuthorFirst(String newAuthorFirst) {

 this.newAuthorFirst = newAuthorFirst;

 }

 /**

 * @return the newAuthorLast

 */

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

119

 public String getNewAuthorLast() {

 return newAuthorLast;

 }

 /**

 * @param newAuthorLast the newAuthorLast to set

 */

 public void setNewAuthorLast(String newAuthorLast) {

 this.newAuthorLast = newAuthorLast;

 }

 /**

 * @return the bio

 */

 public String getBio() {

 return bio;

 }

 /**

 * @param bio the bio to set

 */

 public void setBio(String bio) {

 this.bio = bio;

 }

}

Finally, the Author class is used to hold instances of Author objects that are loaded

into the authorList. The following code is for the Author class:

package org.jakartaeerecipes.chapter02.recipe02_03;

public class Author implements java.io.Serializable {

 private String first;

 private String last;

 private String bio;

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

120

 public Author(){

 this.first = null;

 this.last = null;

 this.bio = null;

 }

 public Author(String first, String last, String bio){

 this.first = first;

 this.last = last;

 this.bio = bio;

 }

 /**

 * Getters and Setters

 */

}

The resulting web page would resemble the page shown in Figure 2-3.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

121

Figure 2-3. Sophisticated JSF view example

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

122

 How It Works
JSF views are comprised of well-formed XML, being a mixture of HTML and JSF

component tags. Any well-formed HTML can be used within a JSF view, but the

components are the means by which JSF communicates with controller class instances.

There are components shipped with JSF that can be used for adding images to views,

text areas, buttons, checkboxes, and much more. Moreover, there are several very good

component libraries that include additional JSF components, which can be used within

your applications. This recipe is meant to give you an overall understanding of JSF

components and how they work. You can learn more details regarding JSF components

and the use of external component libraries by reading the recipes in Chapter 3.

The first step toward using a component within a JSF view is to declare the tag

library on the page. This is done within the HTML element at the top of the page. The

example in this recipe declares both the JSF core component library and the JSF HTML

component library within the HTML element near the top of the page. These two

libraries are standard JSF component libraries that should be declared in every JSF view:

...

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

...

Once a library is declared, a component from within that library can be used in the

view by specifying the library namespace, along with the component you want to use.

For instance, to specify an HTML element for displaying text, use the JSF h:outputText

component tag, along with the various component attributes.

Prior to JSF 2.0, it was important to enclose a JSF view along with all of the

components within the f:view tag. As of JSF 2.0, the tag is no longer required because

the underlying Facelets view technology is part of every JSF view by default, so it takes

care of specifying the view automatically. However, the f:view element can still be useful

for specifying locale, content type, or encoding. Please see the online documentation

for more information regarding the use of those features: https://javaserverfaces.

github.io/docs/2.3/vdldoc/index.html.

The <h:head> and <h:body> tags can be used to specify the header and body for a JSF

web view. However, using the standard HTML <head> and <body> tags is fine also. Some

Java IDEs will automatically use <h:head> and <h:body> in place of the standard HTML

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

https://javaserverfaces.github.io/docs/2.3/vdldoc/index.html
https://javaserverfaces.github.io/docs/2.3/vdldoc/index.html

123

tags when writing JSF views. An important note is that you must enclose any content that

will be treated as an HTML input form with the <h:form> JSF tag. This tag encloses a JSF

form and renders an HTML form using a POST method if none is specified. No action

attribute is required for a JSF form tag because typically the JSF controller class action

method is invoked using one of the JSF action components such as h:commandButton or

h:commandLink.

Tip Always specify an id for the h:form tag because the form id is added as a
prefix to all JSF component tag ids when the page is rendered. For instance, if a
form with an id of myform contained a component tag with an id of mytag, the
component id will be rendered as myform:mytag. If you do not specify an id,
then one will be generated for you automatically. If you want to use JavaScript to
work with any of the page components, you will need to have an id specified for
h:form, or you will never be able to access them programmatically.

The standard JSF component library contains a variety of components, and a few

of them are utilized in the example. The h:graphicImage tag can be used to place an

image on the page and utilize a JSF controller class if needed. The h:graphicImage tag

is rendered into an HTML component, and as with all of the other JSF components,

it accepts JSF EL expressions within its attributes, which allows for the rendering of

dynamic images. In this recipe, a static image is specified with the nameattribute, but

an expression could also be used, making use of a JSF controller class field. The library

attribute is used to specify the directory in which the resource, in this case an image,

resides:

<h:graphicImage id="java9recipes" library="image" name="java9recipes.png"/>

The h:outputLabel tag is useful for reading controller class properties and

displaying their values when the view is rendered. They are rendered as a label for

a corresponding field within the view. The example utilizes static values for the

h:outputLabel component, but they could include JSF expressions if needed. The

h:outputText component is also useful for reading controller class properties and

displaying their values. This component renders basic text on the page. The difference

between h:outputLabel and h:outputText is that they are rendered into different

HTML tags. Both components can accept JSF controller class expressions for their value

attributes.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

124

In the example, a couple of text fields are displayed on the page using the

h:inputText component, which renders an input field. The value attribute for

h:inputText can be set to a JSF controller class field, which binds the text field to

the corresponding controller class property. For instance, the example includes an

h:inputText component with a value of #{authorController.newAuthorFirst}, which

binds the component to the newAuthorFirst property within the AuthorController

class. If the field contains a value, then a value will be present within a text field when

the page is rendered. If a value is entered into the corresponding text field and the form

is submitted, the value will be set into the newAuthorFirst field using its setter method.

The h:inputText tag allows for both reading and writing of controller class properties

because it uses lvalue JSF EL expressions. The h:inputTextarea tag is very similar to

h:inputText in that it works the same way, but it renders a text area instead of a text

field.

The h:commandButton component is used to render a submit button on a page.

Its action attribute can be set to a JSF controller class method. When the button is

pressed, the corresponding controller class method will be executed, and the form

will be submitted. The request will be sent to the FacesServlet controller, and any

properties on the page will be set. Please see Recipe 2-1 for more details regarding the

JSF life cycle. The h:commandButton used in the example has an action attribute of

#{authorController.addAuthor}, which will invoke the addAuthor method within the

AuthorController class. As you can see from the method, when invoked it will add a

new Author object to the authorList, utilizing the values that were populated within the

corresponding h:inputText components for the newAuthorFirst, newAuthorLast, and

bio fields. The following excerpt from the example’s JSF view lists the h:commandButton

component:

<h:commandButton id="addAuthor" action="#{authorController.addAuthor}"

 value="Add Author"/>

The last component in the example that bears some explanation is the

h:dataTable. This JSF component is rendered into an HTML table, and it enables

developers to dynamically populate tables with collections of data from a controller

class. In the example, the value attribute is set to the controller class property of

#{authorController.authorList}, which maps to a List instance that is populated

with Author objects. The var attribute contains a String that will be used to reference

the different objects contained within each row of the table. In the example, the var

attribute is set to author, so referencing #{author.first} within the dataTable will

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

125

return the value for the current Author object’s first property. The dataTable in the

example effectively prints out the first and last names of each Author object within the

authorList. This is just a quick overview of how the JSF dataTable component works.

For more details, please refer to Recipe 2-12.

As you work more with constructing JSF views, you will become very familiar

with the component library. The tags will become second nature, and you will be

able to construct highly sophisticated views for your application. Adding external JSF

component libraries into the mix along with using Ajax for updating components is the

real icing on the cake!

2-4. Displaying Messages in JSF Pages
 Problem
You have the requirement to display an information message on the screen for your

application users.

 Solution
Add the h:messages component to your JSF view and create messages as needed within

the view’s controller class using FacesMessage objects. The following JSF view contains

an h:messages component tag that will render any messages that were registered with

FacesContext within the corresponding page’s controller class. It also includes an

h:message component that is bound to an h:inputText field. The h:message component

can display messages that are specific to the corresponding text field:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 2-4: Displaying Messages in JSF Pages</title>

 </h:head>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

126

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Messages</h1>

 <p>

 This page contains a JSF message component below. It will

display messages from a JSF managed bean once the bean has

been initialized.

 </p>

 <h:messages errorStyle="color: red" infoStyle="color: green"

globalOnly="true"/>

 Enter the word Java here:

 <h:inputText id="javaText" value="#{messageController.

javaText}"/>

 <h:message for="javaText" errorStyle="color: red"

infoStyle="color: green"/>

 <h:commandButton id="addMessage" action="#{messageController.

newMessage}"

 value="New Message"/>

 </h:form>

 </h:body>

</html>

The controller class in this example is named MessageController. It will create a

JSF message upon initialization, and then each time the newMessage method is invoked,

another message will be displayed. Also, if the text java is entered into the text field

that corresponds to the h:inputText tag, then a success message will be displayed for

that component. Otherwise, if a different value is entered into that field or if the field

is left blank, then an error message will be displayed. The following listing is that of

MessageController:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

127

package org.jakartaeerecipes.chapter02.recipe02_04;

import java.util.Date;

import javax.enterprise.context.SessionScoped;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.inject.Named;

@Named

@SessionScoped

public class MessageController implements java.io.Serializable {

 int hitCounter = 0;

 private String javaText;

 /**

 * Creates a new instance of MessageController

 */

 public MessageController() {

 javaText = null;

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,

"Managed Bean Initialized", null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

 public void newMessage(){

 String hitMessage = null;

 hitCounter++;

 if(hitCounter > 1){

 hitMessage = hitCounter + " times";

 } else {

 hitMessage = hitCounter + " time";

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

128

 Date currDate = new Date();

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_

ERROR,

 "You've pressed that button " + hitMessage + "!

The current date and time: "

 + currDate, null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 if (getJavaText().equalsIgnoreCase("java")){

 FacesMessage javaTextMsg = new FacesMessage(FacesMessage.

SEVERITY_INFO, "Good Job, that is the correct text!", null);

 FacesContext.getCurrentInstance().addMessage("componentForm:

javaText", javaTextMsg);

 } else {

 FacesMessage javaTextMsg = new FacesMessage(FacesMessage.

SEVERITY_ERROR, "Sorry, that is NOT the correct text!", null);

 FacesContext.getCurrentInstance().addMessage("componentForm:

javaText", javaTextMsg);

 }

 }

 /**

 * Getters and Setters

 */

}

The message will be displayed on the page in red text if it is an error message and in

green text if it is an informational message. In this example, the initialization message is

printed green, and the update message is printed in red.

 How It Works
It is always a good idea to relay messages to application users, especially in the event that

some action needs to be taken by the user. The JSF framework provides an easy API that

allows messages to be added to a view from the JSF controller class. To use the API, add

the h:message component to a view for displaying messages that are bound to specific

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

129

components, and add the h:messages component to a view for displaying messages that

are not bound to specific components. The h:message component contains a number

of attributes that can be used to customize message output and other things. It can be

bound to a component within the same view by specifying that component’s id in the

for attribute of h:message. The most important attributes for the h:message component

are as follows:

• id: Specifies a unique identifier for the component

• rendered: Specifies whether the message is rendered

• errorStyle: Specifies the CSS styles to be applied to error messages

• errorClass: Indicates the CSS class to apply to error messages

• infoStyle: Specifies the CSS styles to be applied to informational

messages

• infoClass: Indicates the CSS class to apply to informational

messages

• for: Specifies the component for which the message belongs

For a list of all attributes available for the h:message component, please refer to

the online documentation. In the example for this recipe, the h:message component

is bound to the h:inputText component with an id of javaText. When the page is

submitted, the newMessage method within the MessageController class is invoked. That

method is used in this example for generating messages to display on the page. If the text

entered within the javaText property matches Java, then a successful message will be

printed on the page. To create a message, an instance of the javax.faces.application.

FacesMessage class is generated, passing three parameters that correspond to message

severity, message summary, and message detail. A FacesMessage object can be created

without passing any parameters, but usually it is more productive to pass the message

into the constructor at the time of instantiation. The general format for creating a

FacesMessage object is as follows:

new FacesMessage(FacesMessage.severity severity, String summary, String

detail)

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

130

Passing a static field from the FacesMessage class specifies the message severity.

Table 2-2 shows the possible message severity values along with their descriptions.

Table 2-2. FacesMessage Severity Values

Severity Description

SEVERITY_ERROR Indicates that an error has occurred

SEVERITY_FATAL Indicates that a serious error has occurred

SEVERITY_INFO Indicates an informational message rather than an error

SEVERITY_WARN Indicates that an error may have occurred

In the example, if the value entered for the javaText property equals Java, then

an informational message is created. Otherwise, an error message is created. In either

case, once the message is created, then it needs to be passed into the current context

using FacesContext.getCurrentInstance().addMessage(String componentId,

FacesMessage message). In the example, the method is called, passing a component ID

of componentForm:javaText. This refers to the component within the JSF view that has

an ID of javaText (h:inputText component). The componentForm identifier belongs to

the form (h:form component) that contains the h:inputText component, so in reality

the h:inputText component is nested within the h:form component. To reference a

nested component, combine component IDs using a colon as a delimiter. The following

is an excerpt from the example, demonstrating how to create a message and send it to

the h:message component:

FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,

 "Sorry, that is NOT the correct text!", null);

FacesContext.getCurrentInstance().addMessage("componentForm:javaText",

javaTextMsg);

The h:messages component can be used for displaying all messages that pertain

to a view, or it can be used for displaying only non–component-related messages by

using the globalOnly attribute. All other attributes for h:messages are very similar to

the h:message component. By indicating a true value for the globalOnly attribute, you

are telling the component to ignore any component-specific messages. Therefore, any

FacesMessage that is sent to a specific component will not be displayed by h:messages.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

131

In the example, the message that is displayed by h:messages is generated in the same

manner as the component-specific message, with the exception of specifying a specific

component to which the message belongs. The following excerpt demonstrates sending

an error message to the h:messages component. Note that the last argument that is

sent to the FacesMessage call is a null value. This argument should be the clientId

specification, and by setting it to null, you are indicating that there is no specified

client identifier. Therefore, the message should be a global message rather than tied to a

specific component:

FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,

 "You've pressed that button " + hitMessage + "! The

current date and time: " + currDate, null);

FacesContext.getCurrentInstance().addMessage(null, facesMsg);

Displaying the appropriate message at the right time within an application is very

important. By utilizing FacesMessages objects and displaying them using either the

h:message or h:messages component, you can ensure that your application users will be

well informed of the application state.

2-5. Updating Messages Without Recompiling
 Problem
Rather than hard-coding messages into your controller classes, you want to specify the

messages within a properties file so that they can be edited on the fly.

 Solution
Create a resource bundle or properties file, and specify your messages within it. Then

retrieve the messages from the bundle and add them to the FacesMessages objects

rather than hard-coding a String value. In the example that follows, a resource bundle

is used to specify a message that is to be displayed on a page. If you need to change the

message at any time, simply modify the resource bundle and reload the page in the

browser without the need to redeploy the entire application or change any code.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

132

The following code is for a JSF view that contains the h:messages component for

displaying the message from a corresponding controller class:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-5: Specifying Updatable Messages</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>Utilizing a resource bundle</h1>

 <p>

 The message below is displayed from a resource bundle.

The h:outputText component has been added to the page only

to instantiate the bean for this example. To change the

message, simply modify the corresponding message within the

bundle and then refresh the page.

 </p>

 <h:outputText id="exampleProperty" value="#{exampleController.

exampleProperty}"/>

 <h:messages errorStyle="color: red" infoStyle="color: green"

globalOnly="true"/>

 </h:form>

 </h:body>

</html>

Next, the controller class is responsible for creating the message and sending

it to the h:messages component via the FacesContext. The following source is for

ExampleController, which is the controller class for the JSF view in this example:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

133

package org.jakartaeerecipes.chapter02.recipe02_05;

import java.util.ResourceBundle;

import javax.enterprise.context.RequestScoped;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.inject.Named;

@Named(value="exampleController")

@RequestScoped

public class ExampleController {

 private String exampleProperty;

 /**

 * Creates a new instance of ExampleController

 */

 public ExampleController() {

 exampleProperty = "Used to instantiate the bean.";

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,

 ResourceBundle.getBundle("/org/jakartaeerecipes/chapter02/

Bundle").getString("ExampleMessage"), null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

 . . .

}

The resource bundle, which contains the message, is read by the controller class

to obtain the message. If you want to update the message, you can do so without

recompiling any code.

This file is an example resource bundle

ExampleMessage=This message can be changed by updating the message bundle!

When the page is loaded, the h:outputText component instantiates

ExampleController, which in turn creates the FacesMessage object that is used to

display the message on the screen.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

134

 How It Works
Oftentimes it is useful to have the ability to update custom system or user messages

rather than hard-coding them. This could be useful in the case that some custom

information that is contained within a particular message may have the possibility of

changing in the future. It’d be nice to simply update the message in text format rather

than editing the code, recompiling, and redeploying your application. It is possible to

create undateable messages using a resource bundle. A resource bundle is simply a

properties file, which contains name-value pairs. When adding custom messages to

a bundle, name the message appropriately and then add the custom message as the

value portion of the property. An application can then look up the property by name

and utilize its value. In this case, the value is a String that will be used to create a

FacesMessage instance.

In the example, the bundle contains a property named ExampleMessage, along

with a corresponding value. When the JSF view is loaded into the browser, the

ExampleController class is instantiated, causing its constructor to be executed.

A FacesMessage instance is created, generating a message of type FacesMessage.

SEVERITY_INFO, and it reads the resource bundle and obtains the value for the

ExampleMessage property. The following excerpt demonstrates how to obtain a specified

message value from the resource bundle:

ResourceBundle.getBundle("/org/jakartaeerecipes/chapter02/Bundle").

getString("ExampleMessage"), null);

After the message is created, it is added to the current instance of FacesContext and,

subsequently, displayed on the page when it is rendered. Using a resource bundle to

specify your messages can make life much easier because you’ll no longer be required to

recompile code in order to update such messages.

2-6. Navigation Based upon Conditions
 Problem
Your JSF application contains multiple pages, and you want to set up navigation between

them.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

135

 Solution
Utilize one of the following techniques for performing navigation within JSF

applications:

• Utilize explicit navigation through the use of a JSF controller class

method along with a corresponding faces-config.xml configuration

file to control the navigation for your application.

• Use implicit navigation for specifying the next view to render from

within the controller class, returning the name of the view in String

format from an action method.

• Use implicit navigation by specifying the name of the view to render

as the action attribute of a component tag, bypassing the controller

class altogether.

The example in this recipe consists of four JSF views, and each one contains

h:commandButton components that invoke navigation to another view. The

h:commandButton components are linked to controller class methods that are present

within the view’s corresponding controller class named NavigationController. The

first view listed here contains two h:commandButton components, each of which invokes

a method within the controller class named NavigationController. The first button

utilizes explicit JSF navigation, and the second uses implicit navigation:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-6</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Navigation - Page 1</h1>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

136

 <p>

 Clicking the submit button below will take you to Page #2.

 </p>

 <h:commandButton id="navButton" action="#{navigationController.

pageTwo}"

 value="Go To Page 2"/>

 <h:commandButton id="navButton2" action="#{navigationController.

nextPage}"

 value="Implicitly Navigate to Page 3"/>

 </h:form>

 </h:body>

</html>

The source for the second JSF view is very similar, except that a different controller

class method is specified within the action attribute of the view’s h:commandButton

component:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-6 JSF Navigation</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Navigation - Page 2</h1>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

137

 <p>

 Clicking the submit button below will take you to Page #1.

 </p>

 <h:commandButton id="navButton" action="#{navigationController.

pageOne}"

 value="Go To Page 1"/>

 </h:form>

 </h:body>

</html>

The third JSF view contains a h:commandButton component that invokes a controller

class action and utilizes conditional navigation, rendering pages depending upon a

conditional outcome within the faces-config.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-6 JSF Navigation</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Navigation - Page 3</h1>

 <p>

 The button below will utilize conditional navigation to

take a user to the next page. The application will use

authentication to test conditional navigation.

 </p>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

138

 <h:commandButton id="loginButton"

action="#{navigationController.login}"

 value="Login Action"/>

 </h:form>

 </h:body>

</html>

Lastly, the fourth JSF view in the navigational example application contains an

h:commandButton that invokes a method and uses implicit navigation to return to

the third JSF view, specifying the view name within the action attribute directly and

bypassing the controller class altogether:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 2-6 JSF Navigation</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Navigation - Page 4</h1>

 <p>

 Clicking the submit button below will take you to Page #1

using conditional navigation rules.

 </p>

 <h:commandButton id="navButton2" action="recipe02_06c"

 value="Implicitly Navigate to Page 3"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

139

 </h:form>

 </h:body>

</html>

Now let’s take a look at the source listing for NavigationController. It contains the

methods that are specified within each page’s h:commandButton action attribute. Some

of the methods return a String value, and others do not. However, after the methods

are invoked, then the FacesServlet processes the request, and the faces-config.xml

configuration file is traversed, if needed, to determine the next view to render:

package org.jakartaeerecipes.chapter02.recipe02_06;

import javax.inject.Named;

import javax.enterprise.context.RequestScoped;

@Named(value = "navigationController")

@RequestScoped

public class NavigationController implements java.io.Serializable{

 private boolean authenticated = false;

 /**

 * Creates a new instance of NavigationController

 */

 public NavigationController() {

 }

 public String pageOne(){

 return "PAGE_1";

 }

 public String pageTwo(){

 return "PAGE_2";

 }

 /**

 * Utilizing implicit navigation, a page name can be returned from an

 * action method rather than listing a navigation-rule within faces-

config.xml

 * @return

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

140

 */

 public String nextPage(){

 // Perform some task, then implicitly list a page to render

 return "recipe02_06c";

 }

 /**

 * Demonstrates the use of conditional navigation

 */

 public void login(){

 // Perform some tasks, if needed, and then

 // set the Authenticated boolean

 setAuthenticated(true);

 System.out.println("Here");

 }

 /**

 * @return the authenticated

 */

 public boolean isAuthenticated() {

 return authenticated;

 }

 /**

 * @param authenticated the authenticated to set

 */

 public void setAuthenticated(boolean authenticated) {

 this.authenticated = authenticated;

 }

}

At the heart of navigation is the faces-config.xml file. It specifies which view should

be displayed after a corresponding outcome. Two of the navigation-rules use standard

JSF navigation, and the last navigation-rule makes use of conditional navigation:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

141

<?xml version='1.0' encoding='UTF-8'?>

<!-- =========== FULL CONFIGURATION FILE ============================== -->

<faces-config version="2.3"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd">

 <navigation-rule>

 <from-view-id>/chapter02/recipe02_06a.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>PAGE_2/from-outcome>

 <to-view-id>/chapter02/recipe02_06b.xhtml</to-view-id>

 </navigation-case>

 </navigation-rule>

 <navigation-rule>

 <from-view-id>/chapter02/recipe02_06b.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>PAGE_1</from-outcome>

 <to-view-id>/chapter02/recipe02_06a.xhtml</to-view-id>

 </navigation-case>

 </navigation-rule>

 <navigation-rule>

 <navigation-case>

 <from-action>#{navigationController.login}</from-action>

 <if>#{navigationController.authenticated}</if>

 <to-view-id>/chapter02/recipe02_06d.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 </navigation-rule>

</faces-config>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

142

 How It Works
One of the most daunting tasks when building a web application is to determine the

overall page navigation. Many web frameworks have instituted XML configuration files

for organizing page navigation. This is one technique used by the JavaServer Faces web

framework, and the navigational XML is placed within a JSF application’s faces-config.

xml configuration file. When using standard navigation, JSF utilizes navigation rules

to determine which view to render based upon the outcome of page actions. If using

standard JSF navigation, when a page action occurs, the controller class method that is

associated with the action can return a String value. That value is then evaluated using

the navigational rules that are defined within the faces-config.xml file and used to

determine which page to render next.

The standard navigation infrastructure works well in most cases, but in some

instances it makes more sense to directly list the next page to be rendered within the

controller class, rather than making a navigation rule in the configuration file. When a

controller class action is invoked, it can return the name of a view, without the .xhtml

suffix. Such navigation was introduced with the release of JSF 2.0, and it is known as

implicit navigation. As shown in the fourth example for the solution, you can also

perform implicit navigation by specifying the name of a view without the suffix for an

action attribute of the component tag.

Yet another type of navigation was introduced with JSF 2.0, taking navigation to

the next level by allowing the use of JSF EL expressions within the faces-config.xml

navigation rules. Conditional navigation allows for an <if> element to be specified

within the navigational rule, which corresponds to a JSF EL condition. If the condition

evaluates to true, then the specified view is rendered.

Navigation rules are constructed in XML residing within the faces-config.xml

descriptor, and each rule has a root element of navigation-rule. Within each rule

construct, the from-view-id element should contain the name of the view from which

the action method was invoked. A series of navigation-cases should follow the from-

view- id element. Each navigation-case contains a from-outcome element, which

should be set to a String value corresponding to the String value that is returned from

a subsequent action method. For instance, when the pageOne method is invoked in the

example, the String "PAGE_1" is returned, and it should be specified within the from-

outcome element within a navigation-case in the faces-config.xml file. Lastly, the to-

view- id element should follow the from-outcome element within the navigation-case,

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

143

and it should specify which view to render if the String in from-outcome is returned

from the action method. The following excerpt shows the standard navigation rule that

allows for navigation from page 1 to page 2 of the application:

<navigation-rule>

 <from-view-id>/chapter02/recipe02_06a.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>PAGE_1</from-outcome>

 <to-view-id>/chapter02/recipe02_06b.xhtml</to-view-id>

 </navigation-case>

</navigation-rule>

Implicit navigation does not require any XML navigation rules to be declared. The

action method that is invoked via an h:commandButton returns a String that is equal

to the name of the view that should be rendered next. In the example, the second

h:commandButton on view 1 invokes the nextPage controller class method, which returns

the name of the next view that should be rendered:

public String nextPage(){

 // Perform some task, then implicitly list a page to render

 return "recipe02_06c";

}

If you want to use implicit navigation, you can bypass the controller class altogether

and specify the name of the view that you want to render directly within the action

attribute of h:commandButton or h:commandLink. The fourth JSF view in the example

demonstrates this technique.

The third view in the example, named recipe02_06c.xhtml, demonstrates

conditional navigation. Its h:commandButton action invokes the login method within

the NavigationController class. That method does not contain much business logic

in this example, but it does set the bean’s authenticated field equal to true. Imagine

that someone entered an incorrect password and failed to authenticate; in such a case,

the authenticated field would be set to false. After the login method is executed, the

faces-config.xml file is parsed to determine the next view to render, and the conditional

navigation rule utilizes JSF EL to specify the navigation condition. The from- action

element is set equal to the JSF EL that is used to invoke the login method, and an <if>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

144

element is specified, referencing the navigationController.authenticated field via JSF

EL. If that field is equal to true, then the view specified within the to-view-id element

will be rendered. Note that the <redirect/> is required to tell JSF to redirect to the view

listed in the <to-view-id> element since JSF uses a redirect rather than a forward:

<navigation-rule>

 <navigation-case>

 <from-action>#{navigationController.login}</from-action>

 <if>#{navigationController.authenticated}</if>

 <to-view-id>/chapter02/recipe02_06d.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 </navigation-rule>

</faces-config>

Standard JSF navigation allows enough flexibility for most cases, and its architecture

is much more sophisticated than other web frameworks. However, in JSF 2.0, two new

navigational techniques known as implicit and conditional navigation were introduced. With

the addition of the new techniques, JSF navigation is more robust and easier to manage.

2-7. Validating User Input
 Problem
You want to add the ability for your application to validate any data that is entered into a

JSF form.

 Solution
Register a JSF validator on any text field components or other input components that

need to be validated. Use predefined JSF validators where applicable, and create

custom validator classes when needed. The example for this recipe utilizes predefined

validators for two h:inputText components in order to ensure that the values entered

into them are of proper length. A custom validator is added to a third text field, and

it is responsible for ensuring that the text contains a specified String. The three

fields make up an employee input form, and when an employee is entered and the

data validates successfully, a new Employee object is created and added to a list of

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

145

employees. An h:dataTable element in the view is used to display the list of employees

if there are any. This is perhaps not the most true-to-life example, but you can apply

the basic philosophy to validate real-world needs within your own applications.

The following listing is for the JSF view that constructs the employee input form,

including the validation tags for each input text field:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-7: Validating Data</title>

 </h:head>

 <h:body>

 <h:form id="employeeForm">

 <h1>Java Developer Employee Information</h1>

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:dataTable id="empTable" var="emp"

 border="1" value="#{employeeController.employeeList}"

 rendered="#{employeeController.employeeList.

size() > 0}">

 <f:facet name="header">

 Current Employees

 </f:facet>

 <h:column id="empNameCol">

 <f:facet name="header">Employee</f:facet>

 <h:outputText id="empName" value="#{emp.employeeFirst}

#{emp.employeeLast}"/>

 </h:column>

 <h:column id="titleCol">

 <f:facet name="header">Title</f:facet>

 <h:outputText id="title" value="#{emp.employeeTitle}"/>

 </h:column>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

146

 </h:dataTable>

 <p>

 Please use the form below to insert employee information.

 </p>

 <h:panelGrid columns="3">

 <h:outputLabel for="employeeFirst" value="First: " />

 <h:inputText id="employeeFirst"

value="#{employeeController.employeeFirst}">

 <f:validateLength minimum="3" maximum="30"/>

 </h:inputText>

 <h:message for="employeeFirst" errorStyle="color:red"/>

 <h:outputLabel for="employeeLast" value="Last: " />

 <h:inputText id="employeeLast" value="#{employeeController.

employeeLast}">

 <f:validateLength minimum="3" maximum="30"/>

 </h:inputText>

 <h:message for="employeeLast" errorStyle="color:red"/>

 <h:outputLabel for="employeeTitle" value="Title (Must be a

Java Position): "/>

 <h:inputText id="employeeTitle"

value="#{employeeController.employeeTitle}">

 <f:validator validatorId="employeeTitleValidate" />

 </h:inputText>

 <h:message for="employeeTitle" errorStyle="color:red"/>

 </h:panelGrid>

 <h:commandButton id="employeeInsert"

action="#{employeeController.insertEmployee}"

 value="Insert Employee"/>

 </h:form>

 </h:body>

</html>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

147

The third h:inputText component in the view utilizes a custom validator. The

f:validator tag is used to specify a custom validator, and its validatorId attribute is

used to specify a corresponding validator class. The following listing is the Java code for a

class named EmployeeTitleValidate, the custom validation class for the text field:

package org.jakartaeerecipes.chapter02.recipe02_07;

import java.util.Date;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;

import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator("employeeTitleValidate")

public class EmployeeTitleValidate implements Validator {

 @Override

 public void validate(FacesContext facesContext, UIComponent

uiComponent, Object value)

 throws ValidatorException {

 checkTitle(value);

 }

 private void checkTitle(Object value) {

 String title = value.toString();

 if (!title.contains("Java")) {

 String messageText = "Title does not include the word Java";

 throw new ValidatorException(new FacesMessage(FacesMessage.

SEVERITY_ERROR, messageText, messageText));

 }

 }

}

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

148

Note As of JSF 2.3, it has been possible to inject resources such as FacesContext
into validator classes. user-generated validator classes are also injectable into other
resources.

Now let’s take a look at the JSF controller class for the JSF view that contains the

validation tags. The controller class is named EmployeeController, and the action

method, insertEmployee, is used to add new Employee objects containing valid data to

an ArrayList:

package org.jakartaeerecipes.chapter02.recipe02_07;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.inject.Named;

@Named(value="employeeController")

@SessionScoped

public class EmployeeController implements Serializable {

 private String employeeFirst;

 private String employeeLast;

 private String employeeTitle;

 private List <Employee> employeeList;

 public EmployeeController(){

 employeeFirst = null;

 employeeLast = null;

 employeeTitle = null;

 employeeList = new ArrayList();

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

149

 public void insertEmployee(){

 Employee emp = new Employee(employeeFirst,

 employeeLast,

 employeeTitle);

 employeeList.add(emp);

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,

"Employee Successfully Added", null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

 . . .

 /**

 * Getters and Setters

 */

 . . .

}

In the end, the validators will raise exceptions if a user attempts to enter an employee

first or last name using an invalid length or a title that does not contain the word Java.

When user input validation fails, error messages are displayed next to the components

containing the invalid entries.

 How It Works
The JSF framework contains many features that make it more convenient for developers

to customize their applications. Validators are one of those features, because they can be

used to solidify application data and ensure data is correct before storing in a database

or other data stores. The JSF framework ships with a good deal of validators that are

already implemented. To use these predefined validators, simply embed the appropriate

validator tag within a component tag in a view to validate that component’s data values.

Sometimes there are cases where the standard validators will not do the trick. In such

cases, JSF provides a means for developing custom validator classes that can be used

from within a view in the same manner as the predefined validators.

In the example for this recipe, two of the h:inputText components contain standard

JSF validators used to validate the length of the values entered. The f:validateLength

tag can be embedded into a component for String length validation, and the tag’s

minimum and maximum attributes can be populated with the minimum and maximum

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

150

String length, respectively. As mentioned previously, JSF ships with a good number

of these predefined validators. All that the developer is required to do is embed the

validator tags within the components that they want to validate. Table 2-3 lists all

standard validator tags and what they do. For a detailed look at each of the validator

attributes, please see the online documentation.

Table 2-3. Standard Validators

Validator Tag Description

validateLength Checks the length of a String

validateLongRange Checks the range of a numeric value

validateDoubleRange Checks the range of a floating-point value

validateRequired Ensures the input field is not empty (also an alternative to using the

required attribute on an input field component tag)

validateRegex validates the component against a given regular expression pattern

Oftentimes, there is a need for some other type of validation to take place for a

specified component. In such cases, developing a custom validator class may be the best

choice. Many developers shy away from writing their own validators because it seems

to be a daunting task at first glance. However, JSF 2.0 took great strides toward making

custom validator classes easier to write and understand.

To create a custom validator class, implement the javax.faces.validator.

Validator interface. Annotate the validator class with the @FacesValidator

annotation, specifying the string you want to use for registering your validator within

the f:validator tag. In the example, the name used to reference the validator class

is employeeTitleValidate. The only requirement is that the validator class overrides

the validate method, which is where the custom validation takes place. The validate

method contains the following signature:

public void validate(FacesContext facesContext, UIComponent uiComponent,

Object value)

 throws ValidatorException

Utilizing the parameters that are passed into the method, you can obtain the current

FacesContext, a handle on the component being validated, as well as the component’s

value. In the example, a helper method is called from within the validate method, and

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

151

it is used to check the component’s value and ensure that the word Java is contained

somewhere within it. If it does not validate successfully, a ValidatorException is

created and thrown. The message that is placed within the ValidatorException is

what will appear next to the component being validated if the validation fails. The

following excerpt from the validation class demonstrates creating and throwing a

ValidatorException:

throw new ValidatorException(new FacesMessage(FacesMessage.SEVERITY_ERROR,

 messageText, messageText));

So when does the validation occur? That is the key to the validator, isn’t it? The

answer is immediately, before the request is sent to the controller class action method.

Any validation occurs during the Process Validations phase, and if one or more

components being validated within a view throw a ValidatorException, then the

processing stops, and the request is not sent to the action method. When the user clicks

the submit button, the validation takes place first, and if everything is OK, then the

request is passed to the action method.

Note A means of validating that an input component simply contains a value is to
use the required attribute. The required attribute of input component tags can
be set to true in order to force a value to be entered for that component.

The validation of components within a JSF view using standard validators can really

save a developer some time and increase the usability and precision of an application’s

data. The ability to create custom validators allows validation to be performed for

any scenario. Be constructive, use validation on all of your application’s input forms,

and create custom validators to perform validation using unique techniques. Your

application users will appreciate it!

2-8. Evaluation of Page Expressions Immediately
 Problem
You want to have some of your JSF component values evaluated immediately, rather

than waiting until the form is submitted.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

152

 Solution
Specify true for the component tag’s immediate attribute, and also specify the

component’s onchange attribute and set it equal to submit(). This will cause the input

form to be submitted immediately when the value for the component is changed, and

JSF will skip the Render Response phase when doing so and execute all components that

specify an immediate attribute set to true during the Apply Request Values JSF life-cycle

phase. The example for this recipe uses an employee form. Instead of waiting until the

form is submitted, the first and last h:inputText components will be evaluated and

validated during the Apply Request Values phase immediately when their values change.

The following source is for the JSF view named recipe02_08.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-8 Immediate View Evaluation</title>

 </h:head>

 <h:body>

 <h:form id="employeeForm">

 <h1>Java Developer Employee Information</h1>

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:dataTable id="empTable" var="emp"

 border="1" value="#{employeeController.employeeList}"

 rendered="#{employeeController.employeeList.

size() > 0}">

 <f:facet name="header">

 Current Employees

 </f:facet>

 <h:column id="empNameCol">

 <f:facet name="header">Employee</f:facet>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

153

 <h:outputText id="empName" value="#{emp.employeeFirst}

#{emp.employeeLast}"/>

 </h:column>

 <h:column id="titleCol">

 <f:facet name="header">Title</f:facet>

 <h:outputText id="title" value="#{emp.employeeTitle}"/>

 </h:column>

 </h:dataTable>

 <p style="width: 40%;">

 Please use the form below to insert employee information.

The first and last text fields will result in immediate

evaluation during the apply request values phase, whereas

the text field in the middle will result in standard

evaluation and be validated during the invoke application

phase.

 To test, try inserting just one character in the first text

field and then tab to the next field. You should see an

immediate result.

 </p>

 <h:panelGrid columns="3">

 <h:outputLabel for="employeeFirst" value="First: " />

 <h:inputText id="employeeFirst" immediate="true"

onchange="submit()" value="#{employeeController.

employeeFirst}">

 <f:validateLength minimum="3" maximum="30"/>

 </h:inputText>

 <h:message for="employeeFirst" errorStyle="color:red"/>

 <h:outputLabel for="employeeLast" value="Last: " />

 <h:inputText id="employeeLast" value="#{employeeController.

employeeLast}">

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

154

 <f:validateLength minimum="3" maximum="30"/>

 </h:inputText>

 <h:message for="employeeLast" errorStyle="color:red"/>

 <h:outputLabel for="employeeTitle" value="Title (Must be a

Java Position): "/>

 <h:inputText id="employeeTitle" immediate="true"

value="#{employeeController.employeeTitle}">

 <f:validator validatorId="employeeTitleValidate" />

 </h:inputText>

 <h:message for="employeeTitle" errorStyle="color:red"/>

 </h:panelGrid>

 <h:commandButton id="employeeInsert"

action="#{employeeController.insertEmployee}"

 value="Insert Employee"/>

 </h:form>

 </h:body>

</html>

As you can see, the h:inputText components with ids of employeeFirst and

employeeTitle specify both the immediate="true" and the onchange="submit()"

attributes. These two attributes cause the components to be validated and evaluated

immediately rather than when the h:commandButton action is invoked.

 How It Works
Event handling that occurs immediately can be useful in cases where you do not want

to validate the entire form in order to process input but, rather, when you want chosen

components to be validated immediately. As mentioned in Recipe 2-1, when a JSF view

is processed, a number of phases are executed. As such, when a form is submitted,

the Invoke Application phase initiates the event handlers for view components, and

validation occurs. When the immediate attribute for a component is set to true, the

event handlers for that component execute during the Apply Request Values phase,

which occurs before the Process Validations phase, where component validation

normally occurs. This allows for an immediate validation response for the specified

components, resulting in immediate error messages if needed.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

155

As mentioned previously, specify the immediate attribute for a component and set it

to true if you want to have that component evaluated immediately. This will cause the

component to be evaluated and validated during the Apply Request Values phase. The

real fun comes into play when you also specify the onclick attribute and set it equal to

submit(), causing the form to be submitted when the value for the component changes.

Specifying attributes as such will cause any component within the view that has an

immediate attribute set to true to be validated when the component value changes.

Note The immediate attribute can also be useful when used on a
commandButton component in such instances where you do not want any form
processing to take place, such as if you want to set up a cancel button or another
button to bypass form processing.

2-9. Passing Page Parameters to Methods
 Problem
You want to pass parameters to controller class methods from within a JSF view via

Expression Language (EL).

 Solution
Use a standard JSF EL expression to invoke a controller class method, and enclose the

parameters that you want to pass to the method within parentheses. In the example for

this recipe, an h:dataTable component is used to display a list of Author objects in a

view. Each row within the h:dataTable contains an h:commandLink component, which

invokes a JSF controller class method when selected. The h:commandLink displays the

current row’s author name and invokes the AuthorController class displayAuthor

method when clicked, passing the last name for the author being displayed in the

current row. In the displayAuthor method, the list of authors is traversed, finding the

element that contains the same last name as the parameter, which is passed into the

method. The current author is then displayed in a subsequent page, which is rendered

using implicit navigation.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

156

The following source is for the JSF view entitled recipe02_09a.xhtml, which displays

the list of authors using an h:dataTable component:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-9: Passing Page Parameters to Methods</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>Author List</h1>

 <p>

 Below is the list of authors. Click on the author's last

name for more information regarding the author.

 </p>

 <h:graphicImage id="java9recipes" style="width: 10%; height:

20%" library="image" name="java9recipes.png"/>

 <h:dataTable id="authorTable" border="1"

value="#{authorTableController.authorList}"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName" action=

"#{authorTableController.displayAuthor(author.last)}"

 value="#{author.first} #{author.last}"/>

 </h:column>

 </h:dataTable>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

157

 </h:form>

 </h:body>

</html>

The next listing is that of the controller class for the preceding JSF view. The

controller class populates an ArrayList with Author objects upon instantiation:

package org.jakartaeerecipes.chapter02.recipe02_09;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

@Named(value = "authorTableController")

@SessionScoped

public class AuthorController implements Serializable {

 private List<Author> authorList = null;

 private final String juneauBio = "This is Josh Juneau's Bio";

 private final String deaBio = "This is Carl Dea's Bio";

 private final String beatyBio = "This is Mark Beaty's Bio";

 private final String oConnerBio = "This is John O'Connor's Bio";

 private final String guimeBio = "This is Freddy Guime's Bio";

 private Author current;

 private String authorLast;

 /**

 * Creates a new instance of AuthorController

 */

 public AuthorController() {

 super();

 authorLast = null;

 populateAuthorList();

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

158

 private void populateAuthorList() {

 if(authorList == null){

 System.out.println("initializing authors list");

 authorList = new ArrayList<>();

 authorList.add(new Author("Josh", "Juneau", juneauBio));

 authorList.add(new Author("Carl", "Dea", deaBio));

 authorList.add(new Author("Mark", "Beaty", beatyBio));

 authorList.add(new Author("John", "O'Conner", oConnerBio));

 authorList.add(new Author("Freddy", "Guime", guimeBio));

 }

 }

 public String displayAuthor(String last){

 for(Author author:authorList){

 if(author.getLast().equals(last)){

 current = author;

 break;

 }

 }

 return "recipe02_09b";

 }

 . . .

 /**

 * Getters and Setters

 */

 . . .

}

The Author class is the same Author Plain Old Java Object (POJO) that was utilized

in Recipe 2-3. For the source of the Author class, please refer to that recipe. Lastly, the

following code is for a JSF view entitled recipe02_09b.xhtml, the detail view for each

author. When an author name is clicked from the h:dataTable component in the first

view, the component’s corresponding controller class method is invoked, and then this

view is rendered to display the selected author’s information:

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

159

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 2-9: Passing Page Parameters to Methods</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>#{authorTableController.current.first}

#{authorTableController.current.last}</h1>

 <p>

 <h:graphicImage id="java9recipes" library="image"

style="width: 10%; height: 20%" name="java9recipes.png"/>

 #{authorTableController.current.bio}

 </p>

 <h:link value="Go Back to List" outcome="recipe02_09a"/>

 </h:form>

 </h:body>

</html>

 How It Works
The release of JSF 2.0 contained many enhancements that made the life of JSF

developers much easier than before. The ability to pass parameters to controller class

methods from within JSF views is one such enhancement. As you can see from the

example for this recipe, it is possible to pass parameters to a method within a JSF EL

construct in the same manner that you would call any method with parameters in Java:

by enclosing the argument(s) within parentheses after the method name. It cannot get

much simpler than that!

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

160

Let’s take a look at the lines of code that make this example work. The first JSF view

displays a table of author names, and each name is displayed using an h:commandLink

component. The value attribute for the h:commandLink component is set to the author

name, and the action attribute is set to the JSF EL, which invokes a controller class

action method named displayAuthor. Notice that within the call to the controller class

method, the EL for the author’s last name is passed as a String parameter:

<h:dataTable id="authorTable" border="1" value="#{authorTableController.

authorList}"

 var="author">

 <f:facet name="header">

 Java 9Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName" action="#{authorTable

Controller.displayAuthor(author.last)}"

 value="#{author.first} #{author.last}"/>

 </h:column>

 </h:dataTable>

The displayAuthor method within the controller class accepts a String parameter

value, which is the author’s last name, and then finds an Author object within the list of

authors that contains the same last name. When found, a class field named current is

set equal to the Author object for the matching List element. The subsequent JSF view

then displays content utilizing the current Author information.

Note The h:link component can be used to add an hTMl anchor element to
the view. The outcome attribute should list the name of the view to which the
anchor element should point.

Prior to JSF 2.0, developers were unable to pass parameters to controller class

methods from within a view. This made it a bit more difficult to perform such techniques

and usually involved a bit more code.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

161

2-10. Operators and Reserved Words in Expressions
 Problem
You want to perform some arithmetic and combine expressions within your JSF views.

 Solution
JSF EL expressions can contain arithmetic using standard arithmetic operators. It

is also possible to combine two or more expressions utilizing some of the JSF EL

reserved words. In the following example, some JSF EL expressions are used to display

mathematical results on a page. The usage of both arithmetic and reserved words is

within the expressions:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-10: Arithmetic and Reserved Words</title>

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <h1>JSF Arithmetic and Reserved Words in EL</h1>

 <p>

 The following examples use JSF EL to perform some arithmetic.

 </p>

 1 + 1 = #{1 + 1}

 <h:outputText value="20 / 5 = #{20 / 5}"/>

 <h:outputText rendered="#{1 + 1 eq 2}" value="1 + 1 DOES equal 2"/>

 <h:outputText rendered="#{5 * 4 != 20}" value="Is 5 * 4 equal

to 20?"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

162

 <h:outputText rendered="#{5 * 5 eq 25 and 1 + 1 eq 2}"

value="Combining some expressions"/>

 <c:if test="#{evaluationController.expr1()}">

 This will be displayed if expr1() evaluates to true.

 </c:if>

 <c:if test="#{evaluationController.expr2() or

evaluationController.field1}">

 This will be displayed if expr2() or field1 evaluates to true.

 </c:if>

 </h:form>

 </h:body>

</html>

Some of the expressions contain controller class references for a bean named

EvaluationController. The listing for this controller class is as follows:

package org.jakartaeerecipes.chapter02.recipe02_10;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named(value = "evaluationController")

@RequestScoped

public class EvaluationController {

 private boolean field1 = true;

 /**

 * Creates a new instance of EvaluationController

 */

 public EvaluationController() {

 }

 public boolean expr1(){

 return true;

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

163

 public boolean expr2(){

 return false;

 }

 /**

 * @return the field1

 */

 public boolean isField1() {

 return field1;

 }

 /**

 * @param field1 the field1 to set

 */

 public void setField1(boolean field1) {

 this.field1 = field1;

 }

}

The resulting page will look as follows:

The following examples use JSF EL to perform some arithmetic.

1 + 1 = 2

20 / 5 = 4.0

1 + 1 DOES equal 2

Combining some expressions

This will be displayed if expr1() evaluates to true.

This will be displayed if expr1() or field1 evaluates to true.

 How It Works
It is possible to use standard arithmetic and combine expressions using reserved

words within JSF EL expressions. All standard arithmetic operators are valid within EL,

but a couple of things are different. For instance, instead of writing an expression such

as #{1 + 1 = 2}, you could use the eq reserved characters so that the expression reads

#{1 + 1 eq 2}. Similarly, the != symbol could be used to specify that some value is

not equal to another value, but rather, in this example, the ne reserved word is used.

Table 2-4 describes all such reserved words.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

164

Table 2-4. JSF EL Reserved Words

Reserved Word Description

and Combines two or more expressions

div used to divide

empty used to refer to an empty list

eq Equal to

false Boolean false

ge Greater than or equal to

gt Greater than

instanceof used to evaluate whether an object

is an instance of another

le less than or equal to

lt less than

mod Modulus

ne Not equal

not used for negation

null Evaluates a null value

or Combines two or more expressions

true Boolean true

Table 2-5 lists the available operators that can be used within JSF EL expressions, in

order of precedence.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

165

2-11. Creating Bookmarkable URLs
 Problem
You want to enable your application to allow URLs that will be linked to display specific

objects. For instance, you want to use a GET URL such as http://myserver.com/

JakartaEERecipes/chapter02/chapter02_11.xhtml?last=juneau in order to display a

page containing information on the author with the specified last name.

 Solution
Add view parameters to a JSF view for which you want to create a bookmarkable URL

by defining the parameter in an f:viewParam tag, which is a sub-tag of the f:metadata

tag. Doing so will allow a page to become accessible via a URL that contains request

parameters which can be used for record identification. In this example, the view

contains a view parameter, via the f:viewParam tag, that allows for the specification of an

author’s last name when the view is requested. In the following example, the controller

class that was created in Recipe 2-9 has been modified to include a new property named

authorLast in order to accommodate the new view parameter.

Table 2-5. Operators for Use in Expressions

Operator

[]

()

- (unary), not, !, empty

*, /, div, %, mod

+, - (binary)

<, >, <=, >=, lt, gt, le, ge

==, !, eq, ne

&&, and

||, or

?, :

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

http://myserver.com/JakartaEERecipes/chapter02/chapter02_11.xhtml?last=juneau
http://myserver.com/JakartaEERecipes/chapter02/chapter02_11.xhtml?last=juneau

166

The sources for the view named recipe02_11.xhtml are listed next. They are very

similar to the view named recipe02_09b.xhtml, except that they include an f:viewParam

element, which is enclosed between opening and closing f:metadata elements:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-11: Creating Bookmarkable URLs</title>

 </h:head>

 <h:body>

 <f:metadata>

 <f:viewParam name="authorLast" value="#{authorTableController.

authorLast}"/>

 </f:metadata>

 <h:form id="componentForm">

 <h1>#{authorTableController.current.first}

#{authorTableController.current.last}</h1>

 <p>

 <h:graphicImage id="java9recipes" library="image"

style="width: 10%; height: 20%" name="java9recipes.png"/>

 #{authorTableController.current.bio}

 </p>

 <h:link value="Go Back to List" outcome="recipe02_09a"/>

 </h:form>

 </h:body>

</html>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

167

The code for the AuthorController class which is pertinent to this example is listed

next:

...

public class AuthorController implements Serializable {

 ...

 private String authorLast;

 ...

 /**

 * Getters and Setters

 */

}

As mentioned previously, a property named authorLast has been included in this

controller. This property makes it possible for the JSF view listed in the example to accept

a request parameter named authorLast via a GET URL and pass it to the bean when the

page is requested. In the end, the URL for accessing the view and requesting the details

for the author Josh Juneau would be as follows:

http://my-server.com/JakartaEERecipes/chapter02/chapter02_11.

xhtml?authorLast=Juneau

 How It Works
JSF 2.0 introduced the ability to include view parameters, adding the ability for views

to accept request parameters. Utilizing a GET-based URL, a request parameter can be

appended to the end along with its value, and a view containing the new view parameter

can then pass the parameter to a controller class before the response is rendered. The

bean can then accept the parameter value and query a database or search through some

other collection of data to find a record that matches the given value before rendering

the response.

To include one or more view parameters within a view, you must add opening

and closing f:metadata elements to the view and embed the number of f:viewParam

elements between them. The f:viewParam element includes two attributes that must

have values, those being the name and value attributes. The name attribute specifies the

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

168

name of the request parameter as you would like it to appear within the bookmarkable

URL, and the value attribute specifies the controller class field that should be mapped

to that request parameter. In the example for this recipe, the JSF view contains a view

parameter named authorLast, and the associated authorLast field within the controller

class contains a setter method, which is invoked when the page is requested. The

following excerpt from the view demonstrates the lines for adding the metadata and view

parameter:

<f:metadata>

 <f:viewParam name="authorLast" value="#{authorTableController.

authorLast}"/>

</f:metadata>

With the addition of the view parameter, the page can be requested with a URL

containing the authorLast request parameter as follows:

http://my-server.com/JakartaEERecipes/chapter02/chapter02_11.

xhtml?authorLast=Juneau

When the page is requested, the view parameter’s value invokes the setAuthorLast

method within the controller class, which then searches for an author record that

contains a last name equal to the given request parameter value:

...

public void setAuthorLast(String authorLast) {

 displayAuthor(authorLast);

 }

...

The addition of view parameters to JSF 2.0 made it easy to create bookmarkable

URLs. This allows applications to be more flexible and produce results immediately

without requiring a user to navigate through several pages before producing a result.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

169

2-12. Displaying Lists of Objects
 Problem
You want to display a list of objects within your rendered JSF page.

 Solution
Use a JSF h:dataTable component to display the list of objects, iterating over each

object in the list and displaying the specified values. The h:dataTable component is

very customizable and can be configured to display content in a variety of layouts. The

following JSF view contains two h:dataTable components that are used to display

the authors for the Java 9 Recipes book using controller classes developed in previous

recipes. The first table in the view is straightforward and displays the names of each

author. It has been formatted to display alternating row colors. The second table

contains two rows for each corresponding list element, displaying the author names on

the first row and their bios on the second:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-12: Displaying Lists of Objects</title>

 <link href="#{facesContext.externalContext.requestContextPath}/css/

styles.css"

 rel="stylesheet" type="text/css" />

 </h:head>

 <h:body>

 <h:form id="componentForm">

 <p>

 <h:graphicImage id="java9recipes" style="width: 10%;

height: 20%" library="images" name="java9recipes.png"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

170

 #{authorTableController.current.bio}

 </p>

 <h:dataTable id="authorTable" border="1"

 value="#{authorTableController.authorList}"

 styleClass="authorTable"

 rowClasses="authorTableOdd, authorTableEven"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:outputText id="authorName" value="#{author.first}

#{author.last}"/>

 </h:column>

 </h:dataTable>

 <h:dataTable id="authorTable2" border="1"

value="#{authorTableController.authorList}"

 var="author" width="500px;">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:panelGrid columns="2" border="1" width="100%">

 <h:outputText id="authorFirst" value="#{author.

first}" style="width: 50%"/>

 <h:outputText id="authorLast" value="#{author.

last}" style="width:50%"/>

 </h:panelGrid>

 <h:outputText id="authorBio" value="#{author.bio}"/>

 </h:column>

 </h:dataTable>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

171

 </h:form>

 </h:body>

</html>

The example utilizes a cascading style sheet (CSS) to help format the colors on the

table. The source for the style sheet is as follows:

.authorTable{

 border-collapse:collapse;

}

.authorTableOdd{

 text-align:center;

 background:none repeat scroll 0 0 #CCFFFF;

 border-top:1px solid #BBBBBB;

}

.authorTableEven{

 text-align:center;

 background:none repeat scroll 0 0 #99CCFF;

 border-top:1px solid #BBBBBB;

}

The resulting page should look similar to Figure 2-4.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

172

Figure 2-4. JSF DataTable component examples

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

173

 How It Works
A JSF h:dataTable component can be used to display lists of objects within a page.

When rendered, an HTML table is constructed, populating the cells of the table with the

data for each list element or record of data. The h:dataTable can iterate over a collection

of data, laying it out in a columnar format including column headers and the ability

to customize the look using cascading style sheets (CSSs). The component contains a

number of important attributes, as listed in Table 2-6. Perhaps the most important of

them are the value and var attributes. The value attribute specifies the collection of

data to iterate, and the var attribute lists a String that will be used to reference each

individual row of the table. The collection usually comes from the controller class, such

as in the example for this recipe. The legal data types for the value attribute are Array,

DataModel, List, and Result. The var attribute is used within each column to reference

a specific field within an object for the corresponding row.

Table 2-6. DataTable Attributes

Attribute Description

id ID for the component.

border An integer indicating border thickness; 0 is

default.

bgcolor Background color of the table.

cellpadding padding between the cell wall and its contents.

cellspacing Spacing within the cells.

width Overall width of the table, specified in pixels or

percentages.

first The first entry in the collection to display.

rows Total number of rows to display.

styleClass, captionClass, headerClass,

footerClass, rowClasses, columnClasses

CSS attributes.

rendered Boolean value indicating whether the component

will be rendered.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

174

The h:dataTable can contain any number of columns, and each is specified within

the h:dataTable component in the JSF view. The h:column nested element encloses

the output for each column. A column can contain just about any valid component or

HTML, even embedded dataTables. An h:column normally does not have any attributes

specified, but it always contains an expression or hard-coded value for display.

Normally, columns within an HTML table contain headers. You can add headers

to the h:dataTable or individual columns by embedding an f:facet element within

the h:dataTable and outside of the column specifications or within each h:column by

specifying the name attribute as header. The f:facet element can also specify caption

for the name attribute in order to add a caption to the table. The following excerpt from

the example demonstrates an h:dataTable that includes each of these features:

<h:dataTable id="authorTable" border="1"

 value="#{authorTableController.authorList}"

 styleClass="authorTable"

 rowClasses="authorTableOdd, authorTableEven"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:outputText id="authorName" value="#{author.first} #{author.last}"/>

 </h:column>

</h:dataTable>

In the example, you can see that the h:dataTable value attribute is listed as

#{authorTableController.authorList}, a List of Author objects declared within the

controller class. The var attribute establishes a variable named author that refers to the

current author who is being processed from the author list. The author variable can then

be accessed from within each h:column, displaying the data associated with the current

list element.

An important piece of the puzzle to help make tables easier to read and follow is

the CSS that can be used to style the table. The h:dataTable supports various attributes

that allow you to apply externally defined CSS classes to your table, specifically, the

styleClass, captionClass, headerClass, footerClass, rowClasses, and columnClasses

attributes. Each of them can contain a CSS class specification for formatting. The

example demonstrates this feature.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

175

2-13. Developing with HTML5
 Problem
You would like to develop your view composed using standard HTML5 markup, rather

than JSF tags. Furthermore, you would like to take advantage of the JSF life cycle and

managed bean/controller class architecture.

 Solution
Utilize the HTML-friendly markup for use within JSF views. By using HTML5 within JSF

views directly, you can take advantage of the entire JSF stack while coding views in pure

HTML5. To use this solution, HTML5 tags have the ability to access the JSF infrastructure

via the use of a new taglib URI specification jsf="http://xmlns.jcp.org/jsf", which

can be utilized within JSF views beginning with JSF 2.2 and beyond. In views that specify

the new taglib URI, HTML tags can utilize attributes that expose the underlying JSF

architecture.

In the following example view, HTML5 tags are used to compose an input form that

is backed by a JSF managed bean. To visit the sources for this example, please visit the

view recipe02_13.xhtml within the sources for the book:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:jsf="http://xmlns.jcp.org/jsf">

 <head jsf:id="head">

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 </head>

 <body jsf:id="body">

 <form jsf:id="form" jsf:prependId="false">

 <input type="email" jsf:id="value1" value="#{ajaxBean.value1}">

 </input>

 <input type="text" jsf:id="value2" value="#{ajaxBean.value2}">

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

176

 </input>

 <input type="submit" jsf:id="status" jsf:value="#{ajaxBean.status}"

 jsf:action="#{ajaxBean.process()}" value="Process"/>

 <label for="status">Message: </label>

 <output jsf:id="status">#{ajaxBean.status}</output>

 </form>

 </body>

</html>

Note This feature is only available to views written in Facelets. It is not available
to views written in JSp.

 How It Works
The JSF 2.2 release added the ability to utilize HTML5 markup within JSF views. As a

matter of fact, the markup is not limited to HTML5; it can also include HTML4 and so

on. The addition of a taglib URI makes this possible, because it allows existing HTML

tags to be bound to the JSF life cycle via the use of new namespace attributes. It is now

possible to develop entire JSF views without using any JSF tags at all.

To utilize the new namespace attributes, your JSF view must import the taglib URI

jsf="http://xmlns.jcp.org/jsf". The new taglib can then be referenced as attributes

within existing HTML tags, setting the underlying JSF attributes that are referenced. For

instance, to utilize an HTML input tag with JSF, you would add the jsf:id attribute and

set it equal to the JSF ID that you want to assign to that component. You would then set

an attribute of jsf:value equal to the managed bean value.

Note There is no need to import the http://xmlns.jcp.org/jsf/html
taglib because you are no longer utilizing JSF component tags in the view.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

http://xmlns.jcp.org/jsf/html

177

2-14. Creating Page Templates
 Problem
You want to make each of the JSF views within your application follow the same

structure. Moreover, you want to have the ability to reuse the same layout for each view.

 Solution
Create a page template using the Facelets view definition language. Facelets ships as part

of JavaServer Faces, and you can use it to create highly sophisticated layouts for your

views in a proficient manner. The template demonstrated in this recipe will be used to

define the standard layout for all pages within an application. The demo application for

this chapter is for a bookstore web site. The site will display a number of book titles on

the left side of the screen, a header at the top, a footer at the bottom, and a main view

in the middle. When a book title is clicked in the left menu, the middle view changes,

displaying the list of authors for the selected book.

To create a template, you must develop an XHTML view file and then add the

appropriate HTML/JSF/XML markup to it. Content from other views will displace the

ui:insert elements in the template once the template has been applied to one or more

JSF views. The following source is that of a template named custom_template.xhtml;

this is the template that will be used for all views within the application:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

 <h:outputStylesheet library="css" name="default.css"/>

 <h:outputStylesheet library="css" name="cssLayout.css"/>

 <h:outputStylesheet library="css" name="styles.css"/>

 <title>#{faceletsAuthorController.storeName}</title>

 </h:head>

 <h:body>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

178

 <div id="top">

 <h2>#{faceletsAuthorController.storeName}</h2>

 </div>

 <div>

 <div id="left">

 <h:form id="navForm">

 <h:commandLink action="#{faceletsAuthorController.

populateJavaRecipesAuthorList}" >Java 9 Recipes

</h:commandLink>

 <h:commandLink action="#{faceletsAuthorController.

populateJakartaEERecipesAuthorList}">Java EE 8 Recipes

</h:commandLink>

 </h:form>

 </div>

 <div id="content" class="left_content">

 <ui:insert name="content">Content</ui:insert>

 </div>

 </div>

 <div id="bottom" style="position: absolute;width: 100%;bottom: 20px;">

 Written by Josh Juneau, Apress Author

 </div>

 </h:body>

</html>

The template defines the overall structure for the application views. However, it uses

a CSS to declare the formatting for each of the <div> elements within the template. The

style sheet, entitled default.css, should be contained within a resources directory in

the application so that it will be accessible to the views. Please refer to Recipe 2-16 for

more details on the resources directory.

Note The CSSs can be automatically generated for you if using the NetBeans IDE.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

179

There are also a couple of JSF EL expressions utilized within the template. The EL

references a JSF controller by the name of AuthorController, which is referenced by

faceletsAuthorController. While the source for this class is very important for the

overall application, you’ll wait to look at that code until Recipe 2-15 since it does not play

a role in the application template layout.

 How It Works
To create a unified application experience, all of the views should be coherent in that

they look similar and function in a uniform fashion. The idea of developing web page

templates has been around for a number of years, but unfortunately many template

implementations contain duplicate markup on every application page. While duplicating

the same layout for every separate web page works, it creates a maintenance nightmare.

What happens when there is a need to update a single link within the page header? Such

a conundrum would cause a developer to visit and manually update every web page for

an application if the template was duplicated on every page. The Facelets view definition

language provides a robust solution for the development of view templates, and it is one

of the major bonuses of working with the JSF technology.

Facelets provides the ability for a single template to be applied to one or more views

within an application. This means a developer can create one view that constructs the

header, footer, and other portions of the template, and then this view can be applied to

any number of other views that are responsible for containing the main view content.

This technique mitigates issues such as changing a single link within the page header,

because now the template can be updated with the new link, and every other view within

the application will automatically reflect the change.

To create a template using Facelets, create an XHTML view, declare the required

namespaces, and then add HTML, JSF, and Facelets tags accordingly to design the layout

you desire. The template can be thought of as an “outer shell” for a web view in that it

can contain any number of other views within it. Likewise, any number of JSF views

can have the same template applied, so the overall look and feel of the application will

remain constant. Figure 2-5 provides a visual representation, demonstrating the concept

of an application template.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

180

You may have noticed from the view listing in the solution to this recipe that there

are some tags toting the ui: prefix. Those are the Facelets tags that are responsible for

controlling the view layout. To utilize these Facelets tags, you’ll need to declare the XML

namespace for the Facelets tag library in the <html> element within the template. Note

that the XML namespace for the standard JSF tag libraries is also specified here:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

...

Note The Facelets template must include the <html>, <head> or <h:head>,
and <body> or <h:body>, elements because they are what define the overall
layout for each view that uses it. Each view that makes use of a Facelets template
is known as a composition. One template can be used by multiple compositions
or views. In actuality, everything outside of the <ui:composition> opening and
closing tags within a composition is ignored. You’ll learn more about that in the
next recipe!

Figure 2-5. Visual representation of a Facelets template and client

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

181

Facelets contains a number of special tags that can be used to help control page flow

and layout. Table 2-7 in Recipe 2-15 lists the Facelets tags that are useful for controlling

page flow and layout. The only Facelets tag that is used within the template for this

recipe example is ui:insert. The ui:insert tag contains a name attribute, which is set

to the name of the corresponding ui:define element that will be included in the view.

Taking a look at the source for this recipe, you can see the following ui:insert tag:

<ui:insert name="content">Content</ui:insert>

If a view that uses the template, aka template client, specifies a ui:define tag

with the same name as the ui:insert name, then any content that is placed between

the opening and closing ui:define tags will be inserted into the view in that location.

However, if the template client does not contain a ui:define tag with the same name

as the ui:insert tag, then the content between the opening and closing ui:insert tags

within the template will be displayed.

In summary, a Facelets template consists of HTML and JSF markup, and it is used

to define a page layout. Sections of the template can specify where page content will be

displayed through the usage of the ui:insert tag. Any areas within the template that

contain a ui:insert tag can have content inserted into them from a template client.

2-15. Applying Templates
 Problem
You have created a template for use within your JSF web views, and you want to apply it

to the views of your application.

 Solution
Use the ui:composition tag within each view that will utilize the template. The

ui:composition tag should be used to invoke the template, and ui:define tags should

be placed where content should be inserted. The following listings demonstrate how

Facelets templates are applied to various views.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

182

 View #1: recipe02_15a.xhtml

recipe02_15a.xhtml is the markup for a view within the bookstore application that is

used to display the authors for the Java 9 Recipes book. The template that was created

in Recipe 2-14 is applied to the view, and individual ui:define tags are used within the

view to specify the content that should be inserted into the page/view:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="./layout/custom_template.xhtml">

 <ui:define name="top">

 </ui:define>

 <ui:define name="left">

 </ui:define>

 <ui:define name="content">

 <h:form id="componentForm">

 <h1>Author List for Java 9 Recipes</h1>

 <p>

 Below is the list of authors. Click on the

author's last name for more information regarding

the author.

 </p>

 <h:graphicImage id="javarecipes" style="width: 100px;

height: 120px" library="image" name="java9recipes.png"/>

 <h:dataTable id="authorTable" border="1" value=

"#{faceletsAuthorController.authorList}"

 var="author">

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

183

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName" action="#{facele

tsAuthorController.displayAuthor(author.last)}"

 value="#{author.first} #{author.

last}"/>

 </h:column>

 </h:dataTable>

 </h:form>

 </ui:define>

 <ui:define name="bottom">

 bottom

 </ui:define>

 </ui:composition>

 </body>

</html>

 View #2: recipe02_15b.xhtml

recipe02_15b.xhtml contains the sources for the second view within the bookstore

application. It is used to list the authors for the Java EE 8 Recipes book. Again, note that

the template has been applied to the view by specifying the template attribute within the

ui:composition tag:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

184

 <body>

 <ui:composition template="./layout/custom_template.xhtml">

 <ui:define name="top">

 </ui:define>

 <ui:define name="left">

 </ui:define>

 <ui:define name="content">

 <h:form id="componentForm">

 <h1>Author List for Java EE 8 Recipes</h1>

 <p>

 Below is the list of authors. Click on the

author's last name for more information regarding

the author.

 </p>

 <h:graphicImage id="javarecipes" library="image" style=

"width: 100px; height: 120px" name="java9recipes.png"/>

 <h:dataTable id="authorTable" border="1" value=

"#{faceletsAuthorController.authorList}"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName" action="#{facele

tsAuthorController.displayAuthor(author.last)}"

 value="#{author.first}

#{author.last}"/>

 </h:column>

 </h:dataTable>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

185

 </h:form>

 </ui:define>

 <ui:define name="bottom">

 bottom

 </ui:define>

 </ui:composition>

 </body>

</html>

 View #3: recipe02_15c.xhtml

Recipe02_15c.xhtml contains the sources for another view listing that is part of the

bookstore application. This view is responsible for displaying the individual author

detail. Again, the template is applied to this page:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-15: Facelets Page Template</title>

 </h:head>

 <h:body>

 <ui:composition template="./layout/custom_template.xhtml">

 <ui:define name="top">

 </ui:define>

 <ui:define name="left">

 </ui:define>

 <ui:define name="content">

 <h:form id="componentForm">

 <h1>#{faceletsAuthorController.current.first}

#{faceletsAuthorController.current.last}</h1>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

186

 <p>

 <h:graphicImage id="java9recipes" library="image"

style="width: 100px; height: 120px"

name="java9recipes.png"/>

 #{faceletsAuthorController.current.bio}

 </p>

 </h:form>

 </ui:define>

 <ui:define name="bottom">

 bottom

 </ui:define>

 </ui:composition>

 </h:body>

</html>

 Managed Bean Controller: AuthorController

Of course, all the business logic and navigation is occurring from within a JSF

controller class. AuthorController is the bean that handles all the logic for the

bookstore application. Note that the @Named annotation specifies a String value of

faceletsAuthorController, which is used to reference the bean from within the views:

package org.jakartaeerecipes.chapter02.recipe02_15;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

@Named(value = "faceletsAuthorController")

@SessionScoped

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

187

public class AuthorController implements Serializable {

 private List<Author> authorList;

 private String storeName = "Acme Bookstore";

 private final String juneauBio =

 "Josh Juneau has been developing software"

 . . .";

 private final String deaBio = "This is Carl Dea's Bio";

 private final String beatyBio = "This is Mark Beaty's Bio";

 private final String oConnerBio = "This is John O'Connor's Bio";

 private final String guimeBio = "This is Freddy Guime's Bio";

 private Author current;

 private String authorLast;

 /**

 * Creates a new instance of RecipeController

 */

 public AuthorController() {

 }

 /**

 * Methods that are annotated with @PostConstruct are invoked when the

 * controller class is created.

 */

 @PostConstruct

 public void init(){

 populateJavaRecipesAuthorList();

 }

 public String populateJavaRecipesAuthorList() {

 authorList = null;

 authorList = new ArrayList<>();

 authorList.add(new Author("Josh", "Juneau", juneauBio));

 authorList.add(new Author("Carl", "Dea", deaBio));

 authorList.add(new Author("Mark", "Beaty", beatyBio));

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

188

 authorList.add(new Author("John", "O'Conner", oConnerBio));

 authorList.add(new Author("Freddy", "Guime", guimeBio));

 return "recipe02_15a;

 }

 public String populateJakartaEERecipesAuthorList() {

 System.out.println("initializing authors list");

 authorList = new ArrayList<>();

 authorList.add(new Author("Josh", "Juneau", juneauBio));

 return "recipe02_15b";

 }

 public String displayAuthor(String last) {

 for (Author author : authorList) {

 if (author.getLast().equals(last)) {

 current = author;

 }

 }

 return "recipe02_15c";

 }

 /**

 * Getters and Setters

 */

}

In the end, the overall application will look like Figure 2-6. To run the application

from the sources, deploy the web archive (WAR) file distribution to your application

server, and then load the following URL into your browser: http://your-server:port_

number/JakartaEERecipes/faces/chapter02/chapter02_15a.xhtml.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

189

 How It Works
Applying a Facelets template to individual views within a JSF application is quite

easy. Views that make use of a template are known as template clients. As mentioned

in Recipe 2-14, a view template can specify individual ui:insert tags, along with the

name attribute, in any location on the template where view content could be inserted.

The name attribute within the ui:insert tag will pair up with the name attribute

within the ui:define tag in the template client in order to determine what content is

inserted.

Figure 2-6. Application using a Facelets template

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

190

Note As noted in recipe 2-14, each view that uses a Facelets template can be
referred to as a composition. It can also be referred to as a template client. It is
important to note that a template client, or composition, contains opening and
closing <ui:composition> tags. Everything outside of those tags is actually
ignored at rendering time because the template body is used instead. You can also
omit the <html> tags within a template client and just open and close the view
using the <ui:composition> tags instead. please see the “Opening/Closing
Template Clients with <ui:composition>” sidebar for an example.

OPENING/CLOSING TEMPLATE CLIENTS WITH <UI:COMPOSITION>

It is common to see template client views using opening and closing <html> tags, as

demonstrated with the example views in the solution to this recipe. however, since everything

outside of the <ui:composition> tags is ignored at rendering time, you can omit

those tags completely. It is sometimes useful to open and close a template client with the

<ui:composition> tag. however, some page editors will be unable to work with the code

or errors will be displayed because the view does not include the <html> element at its root.

here’s an example of using <ui:composition> as the opening and closing elements of a

template client:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h=http://xmlns.jcp.org/jsf/html

 template="./layout/custom_template.xhtml">

<<same as code per the view samples in the solution to this recipe>>

 </ui:composition>

use the technique that suits your application the best! remember, JSF and Facelets will treat

each view the same, and you can save a few lines of code specifying <ui:composition> as

the root.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

191

 Applying Templates

A template can be applied to a view by specifying it within the template attribute within

the view’s ui:composition tag. For instance, all the views within this example specify the

same template, as you can see in the following excerpt:

<ui:composition template="./layout/custom_template.xhtml">

The name of the template in the example is custom_template.xhtml, and the path

to the template is ./layout/. The ui:composition tag should encapsulate all other

markup within a Facelets view. All views that are to use the template must specify the

ui:composition tag. A number of other useful Facelets template tags come along with

Facelets, as described in Table 2-7.

Table 2-7. Facelets Page Control and Template Tags

Tag Description

ui:component Defines a template component and specifies a file name for the component

ui:composition Defines a page composition and encapsulates all other JSF markup

ui:debug Creates a debug component, which captures debugging information, namely,

the state of the component tree and the scoped variables in the application,

when the component is rendered

ui:define Defines content that is inserted into a page by a template

ui:decorate Decorates pieces of a page

ui:fragment Defines a template fragment, much like ui:component, except that all

content outside of tag is not disregarded

ui:include Allows another XhTMl page to be encapsulated and reused within a view

ui:insert Inserts content into a template

ui:param passes parameters to an included file or template

ui:repeat Iterates over a collection of data

ui:remove removes content from a page

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

192

The ui:define tag encloses content that will be inserted into the template at the

location of the template’s ui:insert tags. The ui:define tag is matched to a template’s

ui:insert tag based on the value of the name attribute that is common to each tag. As

you can see from the first view listing in this example, the first ui:define tag specifies

top for the name attribute, and this will correspond to the template ui:insert tag with

a name attribute equal to top. But the template does not specify such a tag! That is OK;

there does not have to be a one-to-one match between the ui:define and ui:insert

tags. A view can specify any number of ui:define tags, and if they do not correspond

to any of the ui:insert tags within the template, then they are ignored. Likewise, a

template can specify any number of ui:insert tags, and if they do not correspond to a

ui:define tag within the template client view, then the content that is defined within the

template in that location will be displayed.

Looking at the same view, another ui:define tag contains a name attribute value

equal to content, and this tag does correspond with a ui:insert tag within the template

that also has a name attribute value of content. The following excerpt is taken from the

template, and it shows the ui:insert tag that corresponds to the view’s ui:define tag

with the same name attribute. You can see the full listing for the template in Recipe 2-14.

<div id="content" class="left_content">

 <ui:insert name="content">Content</ui:insert>

</div>

The following excerpt, taken from recipe02_01a.xhtml, is the corresponding

ui:define tag that will be inserted into the template at this location:

<ui:define name="content">

 <h:form id="componentForm">

 <h1>Author List for Java 9 Recipes</h1>

 <p>

 Below is the list of authors. Click on the

author's last name for more information regarding

the author.

 </p>

 <h:graphicImage id="javarecipes" style="width: 10%;

height: 20%" library="image" name="java9recipes.png"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

193

 <h:dataTable id="authorTable" border="1" value=

"#{faceletsAuthorController.authorList}"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName" action="#{facele

tsAuthorController.displayAuthor(author.last)}"

 value="#{author.first}

#{author.last}"/>

 </h:column>

 </h:dataTable>

 </h:form>

 </ui:define>

As you can see, it can be very powerful to define a view template that can be applied

to several views within an application. Facelets templating provides a very powerful

solution for defining such a template, allowing for consistent page layout and reusable

page code.

2-16. Adding Resources into the Mix
 Problem
You want to include resources, such as CSS, images, and JavaScript code, within

your views that are accessible for use from every view within your application.

For instance, rather than hard-coding a URL to an image, you want to reference the

image location and have the application dynamically create the URL to the image

location at runtime.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

194

 Solution
Create a resources directory and, optionally, subfolders within the resources directory

to contain the resources that your application will utilize. Any CSS files, images, and so on

that are placed within subdirectories in the resources folder can be referenced within a

JSF view via a JSF component’s library attribute, rather than specifying the full path to

the resource. In the following example, a cascading style sheet is used to style the table

of authors within the application. For this recipe, you will use the styles.css sheet that

was applied to the h:dataTable in an earlier recipe. The style sheet declaration will reside

within the custom_template.xhtml template, and you will use an h:outputStylesheet

component rather than a <link> tag. As a matter of fact, all of the <link> tags will be

removed and replaced with h:outputStylesheet components to take advantage of the

resources folder. The directory structure should look like Figure 2-7 when set up correctly.

Figure 2-7. Utilizing the resources directory

The following listing is the updated custom_template.xhtml, because it now utilizes

the h:outputStylesheet component rather than the <link> tag. Note that the library

attribute is specified as css:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="./layout/custom_template.xhtml">

 <ui:define name="content">

 <h:form id="componentForm">

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

195

 <h1>Author List for Java 9 Recipes</h1>

 <p>

 Below is the list of authors. Click on the author's

last name for more information regarding the

author.

 </p>

 <h:graphicImage id="javarecipes"

 library="image" style="width: 100px;

height: 120px"

 name="java9recipes.png"/>

 <h:dataTable id="authorTable" border="1"

value="#{faceletsAuthorController.authorList}"

 styleClass="authorTable"

 rowClasses="authorTableOdd, authorTableEven"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName" action="#{facele

tsAuthorController.displayAuthor(author.last)}"

 value="#{author.first}

#{author.last}"/>

 </h:column>

 </h:dataTable>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

196

The h:dataTable component that is used to list the authors within the views of

the Acme Bookstore application can now make use of the styles that are listed within

styles.css. The following excerpt from the XHTML document named recipe02_16.

xhtml demonstrates the h:dataTable component with the styles applied:

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorController.

authorList}"

 styleClass="authorTable"

 rowClasses="authorTableOdd,

authorTableEven"

 var="author">

 <f:facet name="header">

 Java 9 Recipes Authors

 </f:facet>

 <h:column>

 <h:commandLink id="authorName"

 action="#{faceletsAuthorController.

displayAuthor(author.last)}"

 value="#{author.first} #{author.last}"/>

 </h:column>

 </h:dataTable>

The table should now look like Figure 2-8 when rendered on a page.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

197

 How It Works
It is easy to add a resource to a JSF application because there is no need to worry about

referring to a static path when declaring the resource. Since the release of JSF 2.0, the

resources folder can be used to list subfolders, also known as libraries, into which the

resources can be placed. The JSF components that can use resources now have the

library attribute baked into them. This allows a specific library to be specified for such

components so that the component will know where to find the resources that it requires.

To use the new resources folder, create a folder at the root of an application’s web

directory and name it resources. That resources folder can then contain subfolders,

which will become the libraries that can be utilized within the JSF components. For

instance, subfolders can be named css and images, and then those names can be

specified for the library attribute of JSF components that utilize such resources. In the

example, cascading style sheets are placed into the resources/css folder, and then they

are referenced utilizing the h:outputStylesheet component and specifying the css

library as follows:

<h:outputStylesheet library="css" name="default.css"/>

Figure 2-8. Author table with styles applied

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

198

Other resources can be placed within such libraries. The h:graphicImage

component also contains the library attribute, so the images for the books can be

moved into a folder named resources/image, and then the h:graphicImage tag can

reference the image as such:

<h:graphicImage id="javarecipes"

 library="image" style="width: 100px;

height: 120px"

 name="java9recipes.png"/>

It has always been a challenge referencing resource files from the pages of a web

application. To do so, a developer needs to know the exact path to the resource, and

sometimes the path can be broken if folder names are changed or if the application is

deployed in a different server environment. The use of the resources folder in JSF 2.0

along with the new library attribute has greatly reduced the complexity of managing

such resources.

2-17. Handling Variable-Length Data
 Problem
You are interested in iterating over a collection of data using a technique other than an

h:dataTable component because you want to use standard HTML table markup for

each row and column of the table.

 Solution
Use the Facelets ui:repeat tag for iterating over a collection of data rather than the

h:dataTable component. Doing so allows for the same style of collection iteration, but

it does not force the use of the h:dataTable component elements. For this recipe, the

Acme Bookstore application has been rewritten so that it now contains the ability to list

each author’s books separately on their bio page. When an author name is chosen from

the book listing or when an author is searched, then the bio page will appear, and the

author’s bio is displayed along with each of the books that the author has written.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

199

Note The example for this recipe has been rewritten to make the application
more robust. A new Book class has been created so that each book is now its
own object. The Author class has been rewritten so that one or more Book
objects can now be added to each Author object. The AuthorController
has been rewritten so that the new Book and Author objects can be used to
populate the author listing tables, and a new method has been added that allows
for the initialization of each Book and Author object. To use the new classes, the
application template (custom_template_neworg.xhtml), search component
(search_neworg.xhtml), and each of the application views have been rewritten.
please refer to the sources in the org.jakartaeerecipes.chapter02.
recipe02_17 package and the recipe’s corresponding XhTMl documents for
complete listings.

The ui:repeat tag is used to iterate over a collection of the selected author’s books

within the author bio view, named recipe02_05c.xhtml. The author bio page can be

reached by selecting an author from a listing of authors or searching for an author using

the search component. The following code shows the view, recipe02_17c.xhtml, which

is the bio view:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 2-17: Facelets Page Template</title>

 </h:head>

 <h:body>

 <ui:composition template="./layout_enhanced/custom_template_search_

neworg.xhtml">

 <ui:define name="content">

 <h:form id="componentForm">

 <h1>#{uiRepeatAuthorController.current.first}

#{uiRepeatAuthorController.current.last}</h1>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

200

 <p>

 #{uiRepeatAuthorController.current.bio}

 </p>

 <h1>Author's Books</h1>

 <table>

 <ui:repeat id="bookList" var="book" value="#{uiRepeat

AuthorController.current.books}">

 <tr>

 <td>

 <h:graphicImage id="bookImage"

 library="image"

 style="width: 100px;

height: 120px"

name="#{book.image}"/>

 </td>

 </tr>

 <tr>

 <td>

 #{book.title}

 </td>

 </tr>

 </ui:repeat>

 </table>

 </h:form>

 </ui:define>

 </ui:composition>

 </h:body>

</html>

Each Author object contains a list of books that an author has written, and when the

bio page is rendered, it looks like Figure 2-9, displaying the list of books that the author

has written using the ui:repeat tag.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

201

 How It Works
The Facelets ui:repeat tag is a nice alternative to the h:dataTable component if you

need to have more control over the HTML table that is rendered. The h:dataTable

component is powerful in that it makes it easy to iterate over a collection of objects and

display them within a page. However, sometimes it is useful to control the layout a bit

more, and ui:repeat provides that level of control.

The ui:repeat tag has a handful of attributes that need to be specified in order to

bind the tag to a collection of data within a managed bean. Specifically, the value and

var attributes, much like those of the h:dataTable component, are used to specify

the collection to iterate over and the variable that will be used to refer to a single

object within the collection, respectively. In the example, the value attribute is set to

#{uiRepeatAuthorController.current.books}, which is a collection of Book objects that

is attached to the currently selected Author, and the var attribute is set to the value book.

The markup and JSF tags placed between the opening and closing ui:repeat tags

will be processed for each iteration over the collection of objects. In the example, two

table rows are placed inside ui:repeat; one row contains the book cover image, and

the other contains the name of the book. The Book object fields are referenced within

ui:repeat using the value of the var attribute, book.

Figure 2-9. Displaying a collection of objects with ui:repeat

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

202

In the example for this recipe, the views that display the complete author list for

each of the books use a List named authorList. The authorList is declared within the

AuthorController managed bean and populated with Author objects. When an author

is selected from the list, the displayAuthor method within AuthorController is invoked,

which populates the current Author object. Let’s take a look at the AuthorController for

this recipe, which has been rewritten since its use within previous recipes:

package org.jakartaeerecipes.chapter02.recipe02_17;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

@Named(value = "uiRepeatAuthorController")

@SessionScoped

public class AuthorController implements Serializable {

 private List<Author> authorBookList;

 private List<Author> authorList;

 private List<Author> completeAuthorList;

 private String storeName = "Acme Bookstore";

 private String juneauBio =

 "Josh Juneau has been developing software"

 . . .;

 private String deaBio = "This is Carl Dea's Bio";

 private String beatyBio = "This is Mark Beaty's Bio";

 private String oConnerBio = "This is John O'Connor's Bio";

 private String guimeBio = "This is Freddy Guime's Bio";

 private Author current;

 private String authorLast;

 /**

 * Creates a new instance of RecipeController

 */

 public AuthorController() {

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

203

 }

 @PostConstruct

 public void init(){

 populateAuthors();

 populateJavaRecipesAuthorList();

 populateCompleteAuthorList();

 }

 private void populateAuthors(){

 Book book1 = new Book("Java 9 Recipes", "java9recipes.png");

 Book book2 = new Book("Java EE 8 Recipes", "jakartaeerecipes.png");

 Book book3 = new Book("Java FX 2.0: Introduction By Example",

"javafx.png");

 authorBookList = new ArrayList<Author>();

 Author author1 = new Author("Josh", "Juneau", juneauBio);

 author1.addBook(book1);

 author1.addBook(book2);

 authorBookList.add(author1);

 Author author2 = new Author("Carl", "Dea", deaBio);

 author2.addBook(book1);

 author2.addBook(book3);

 authorBookList.add(author2);

 Author author3 = new Author("Mark", "Beaty", beatyBio);

 author3.addBook(book1);

 authorBookList.add(author3);

 Author author4 = new Author("John", "O'Conner", oConnerBio);

 author4.addBook(book1);

 authorBookList.add(author4);

 Author author5 = new Author("Freddy", "Guime", guimeBio);

 author5.addBook(book1);

 authorBookList.add(author5);

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

204

 /**

 * Searches through all Author objects and populates the authorList

 * with only those authors who were involved with the Java 9 Recipes book

 * @return

 */

 public String populateJavaRecipesAuthorList() {

 authorList = new ArrayList<>();

 authorBookList.forEach((author) -> {

 List<Book>books = author.getBooks();

 books.stream().filter((book) -> (book.getTitle()

 .equals("Java 7 Recipes"))).forEachOrdered((_item) -> {

 authorList.add(author);

 });

 });

 return "recipe02_05a";

 }

 /**

 * Searches through all Author objects and populates the authorList

 * with only those authors who were involved with the Java EE 8 Recipes

book

 * @return

 */

 public String populateJakartaEERecipesAuthorList() {

 authorList = new ArrayList<>();

 for(Author author:authorBookList){

 List<Book>books = author.getBooks();

 for(Book book:books){

 if(book.getTitle().equals("Java EE 8 Recipes")){

 authorList.add(author);

 }

 }

 }

 return "recipe02_05b";

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

205

 /**

 * Populates completeAuthorList with each existing Author object

 * @return

 */

 private void populateCompleteAuthorList() {

 completeAuthorList = new ArrayList();

 for(Author author:authorBookList){

 completeAuthorList.add(author);

 }

 }

 public String displayAuthor(String last) {

 for (Author author : authorList) {

 if (author.getLast().equals(last)) {

 current = author;

 }

 }

 return "recipe02_05c";

 }

 /**

 * @return the authorList

 */

 public List getauthorList() {

 return authorList;

 }

 /**

 * Getters and Setters

 */

}

When displayAuthor is invoked, the current Author object is populated with the

currently selected author, and the bio page is rendered. The bio page source is listed

in the solution to this recipe. Each Author object contains a List of Book objects that

correspond to the books that particular author has written. The ui:repeat tag is used to

iterate over this list of books.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

206

The ui:repeat tag can be effective in various use cases. When deciding to use

h:dataTable or ui:repeat, it is best to determine whether customization is going to be

imperative. For those situations where more control is desired, ui:repeat is certainly the

best choice.

2-18. Invoking Controller Class Actions on
Life- Cycle Phase Events
 Problem
You want to automatically invoke a controller class action when a specific JSF life-cycle phase

event occurs. For instance, when a view is loading, you want to invoke a controller class

action that performs a conditional verification based upon the user who is visiting the page.

 Solution
Utilize a JSF view action by adding the f:viewAction facet to the JSF view. Use the facet

to specify the controller class action to invoke, as well as when to invoke the action. In

the following excerpt from the view chapter02/recipe02_18.xhtml, a controller class

method action named validateUser is invoked:

<f:metadata>

 <f:viewAction action="#{viewActionManagedBean.validateUser()}"/>

</f:metadata>

 How It Works
In JSF 2.1 and prior, it was difficult to invoke action methods within a controller class

unless they were bound to a command component. Sometimes it makes sense to

invoke a method when the page is loading, after the page has been fully loaded, and so

on. In the past, this was done by using a preRenderView event listener, which invokes

a method contained within a managed bean before the view is rendered. Utilization

of the preRenderView event listener works, but it does not provide the level of control

that is required to invoke a method during different phases of the view life cycle. The

preRenderView also requires developers to programmatically check the request type and

work with the navigation handler.

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

207

In the JSF 2.2 release, a new technique can be used to invoke action methods within

a controller class during specified life-cycle events that occur within the view. A new tag,

f:viewAction, can be bound to a view, and it can be incorporated into the JSF life cycle

in both non-JSF (initial) and JSF (postback) requests. To use the tag, it must be a child of

the metadata facet. View parameters can be specified within the metadata facet as well,

and they will become available from within the controller class when the action method

is invoked.

In the example, the action method named validateUser is invoked using the

viewAction. In the example method, a String is returned, which enables implicit

navigation based upon the action method results. If null is returned, the navigation

handler is invoked, but the same view will be rendered again so long as there are no

navigation condition expressions that change the navigation. If a String-based view

name is returned, then the navigation handler will render that view once the method

has completed. This can come in handy for situations such as authentication handling,

where an action method is used to check the user’s role and then the appropriate view is

rendered based upon the authenticated user role:

public String validateUser() {

 String viewName;

 System.out.println("Look in the server log to see this message");

 // Here we would perform validation based upon the user visiting the

 // site to ensure that they had the appropriate permissions to view

 // the selected view. For the purposes of this example, this

 // conditional logic is just a prototype.

 if (visitor.isAdmin()){

 // visit the current page

 viewName = null;

 System.out.println("Current User is an Admin");

 } else {

 viewName = "notAdmin";

 System.out.println("Current User is NOT an Admin");

 }

 return viewName;

 }

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

208

As mentioned previously, f:viewAction facet can be customized to allow the

action method to be invoked at different stages within the view life cycle. By default, the

viewAction will be initiated before postback because the specified action method is

expected to execute whether the request was Faces or non-Faces. However, this can be

changed by setting the onPostback attribute of the f:viewAction tag to true:

<f:viewAction action="#{viewActionManagedBean.validateUser()}"

onPostback="true"/>

If you need to get even more granular and invoke a view action during a specified

life-cycle phase, it is possible by setting the phase attribute to the phase required.

Table 2-8 specifies the different phases along with their phase value.

Table 2-8. JSF Life-Cycle Phases

Phase Tag Value

restore view RESTORE_VIEW

Apply request values APPLY_REQUEST_VALUES

process validations PROCESS_VALIDATIONS

update Model values UPDATE_MODEL_VALUES

Invoke Application INVOKE_APPLICATION

render response RENDER_RESPONSE

The following example demonstrates the f:viewAction facet that will cause the

action to be invoked during the Process Validations phase:

<f:viewAction action="#{viewActionManagedBean.validateUser()}"

 phase="PROCESS_VALIDATIONS"/>

ChApTEr 2 JAvASErvEr FACES FuNDAMENTAlS

209
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_3

CHAPTER 3

Advanced JavaServer
Faces
The JSF framework allows developers to build applications utilizing a series of views, and

each view consists of a series of components. The framework is kind of like a puzzle in

that each piece must fit into its particular place in order to make things work smoothly.

Sprinkled into those pieces of the puzzle are advanced capabilities that are used for

helping to create a seamless user interface experience.

Components are just one piece of the puzzle. Components are the building

blocks that make up JSF views. One of the strengths of using the JSF framework is

the abundance of components that are available for use within views. To developers,

components can be tags that are placed within the XHTML views. Components resemble

standard HTML tags; they contain a number of attributes, an opening tag and a closing

tag, and sometimes components that are to be embedded inside of others. Components

can also be written in Java code, and their tags can be bound to Java code that resides

within a JSF CDI controller.

A number of components come standard with the JSF framework. Some of the

recipes in this chapter will cover some widely used standard components in detail, and

the chapter will provide examples that will allow you to begin using components in your

applications right away.

Another important piece of the JSF user interface puzzle is seamless integration with

the backend business logic. A task that can be run in the background, independent of

other running tasks, is known as an asynchronous task. JavaScript is the most popular

modern browser language that is used to implement asynchronous tasking in web

applications. Ajax is a set of technologies that allows you to perform asynchronous

tasks using JavaScript in the background, sending responses from the client browser

to the server and then sending a response back to the client. That response is used to

210

update the page’s Document Object Model (DOM). Enhancing an application to make

use of such asynchronous requests and responses can greatly improve the overall

user experience. The JSF framework allows developers to create rich user experiences

via the use of technologies such as Ajax and HTML5. Much of the implementation

detail behind these technologies can be abstracted away from the JSF developer using

JSF components. As such, the developer needs to worry only about how to use a JSF

component tag and relate it to a server-side property.

This chapter delves into using Ajax with the JSF web framework. Along the way,

you will learn how to spruce up applications and make the user interface richer and

more user-friendly so that it behaves more like that of a desktop application. You’ll also

learn how to listen to different component phases and system events, allowing further

customization of application functionality.

Note This chapter contains examples using the third-party component library
PrimeFaces. It is recommended to use the most recent releases of third-party
libraries in order to ensure that your application contains stable and secure
sources.

Before tackling the recipes, though, the following section provides a brief overview

of the standard JSF components and associated common component tags. This will help

you get the most out of the recipes.

Component and Tag Primer
Table 3-1 lists the components that are available with a clean install of the JSF

framework.

ChaPTer 3 advanCed JavaServer FaCeS

211

Table 3-1. JSF HTML Components

Component Tag Description

UIColumn h:column represents a column of data in the

dataTable component

UICommand h:commandButton Submits a form

h:commandLink Links pages or actions

h:commandScript Provides ability to call an arbitrary

server-side method via ajax from a

JSF view

UIData h:dataTable represents a table used for iterating

over collections of data

UIForm h:form represents an input form

UIGraphic h:graphicImage displays an image

UIInput h:inputHidden Includes a hidden variable in a form

h:inputSecret allows text entry without displaying

the actual text

h:inputText allows text entry

h:inputTextarea allows multiline text entry

UIOutcomeTarget h:link Links to another page or location

UIMessage h:message displays a localized message

UIMessages h:messages displays localized messages

UIOutput h:outputFormat displays a formatted localized

message

h:outputLabel displays a label for a specified field

h:outputLink displays text and links to another page

or location

UIPanel h:panelGrid displays a table

h:panelGroup Groups components

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

212

JSF provides a number of core tags that can be used to provide more functionality

for the components. For example, these tags can be embedded inside JSF component

tags and specify rules that can be used to convert the values that are displayed or used

as input for the component. Other uses of the core tags are to provide a list of options

for a select component, validate input, and provide action and event listeners. Table 3-2

describes the JSF core tags.

Table 3-1. (continued)

Component Tag Description

UISelectBoolean h:selectBooleanCheckbox displays a (Boolean) checkbox choice

UISelectItem h:selectItem represents one item in a list of items

for selection

UISelectItems h:selectItems represents a list of items for selection

UISelectMany h:selectManyCheckbox displays a group of checkboxes that

allow multiple user choices

h:selectManyListbox allows a user to select multiple items

from a list

h:selectManyMenu allows a user to select multiple items

from a drop- down menu

UISelectOne h:selectOneListbox allows a user to select a single item

from a list

h:selectOneMenu allows a user to select a single item

from a drop- down menu

h:selectOneRadio allows a user to select one item from

a set

ChaPTer 3 advanCed JavaServer FaCeS

213

Table 3-2. JSF Core Tags

Tag Function

f:actionListener registers an action listener method with a component

f:phaseListener registers a PhaseListener to a page

f:setPropertyAction

Listener

registers a special form submittal action listener

f:valueChangeListener registers a value change listener with a component

f:converter registers an arbitrary converter with a component

f:convertDateTime registers a DateTimeConverter instance with a component

f:convertNumber registers a NumberConverter with a component

f:facet adds a nested component to particular enclosing parents

f:metadata registers a particular facet with a parent component

f:selectItem encapsulates one item in a list

f:selectItems encapsulates all items of a list

f:websocket Provides ability to receive messages into a view via WebSockets

f:validateDoubleRange registers a DoubleRangeValidator with a component

f:validateLength registers a LengthValidator with a component

f:validateLongRange registers a LongRangeValidator with a component

f:validator registers a custom validator with a component

f:validateRegex registers a RegExValidator with a component (JSF 2.0)

f:validateBean delegates validation of a local value to a BeanValidator (JSF 2.0)

f:validateWholeBean delegates validation of an entire bean or class

f:validateRequired ensures that a value is present in a parent component

Note The common sources and the completed classes to run the application
for this chapter are contained within the org.jakartaeerecipes.chapter03
package, and one or more recipes throughout this chapter will utilize classes
contained within that package.

ChaPTer 3 advanCed JavaServer FaCeS

214

 Common Component Tag Attributes
Each standard JSF component tag contains a set of attributes that must be specified in

order to uniquely identify it from the others, register the component to a controller class,

and so on. There is a set of attributes that are common across each component tag, and

this section lists those attributes, along with a description of each. All attributes besides

id can be specified using JSF EL:

• binding: A controller class property can be specified for this attribute,

and it can be used to bind the tag to a component instance within a

controller class. Doing so allows you to programmatically control the

component from within the controller class.

• id: This attribute can be set to uniquely identify the component.

If you do not specify a value for the id attribute, then JSF will

automatically generate one. Each component within a view must

have a unique id attribute, or an error will be generated when the

page is rendered. I recommend you manually specify a value for the

id attribute on each component tag, because then it will be easy to

statically reference the tag from a scripting language or a controller

class if needed. If you let JSF automatically populate this attribute,

it may be different each time, and you will never be able to statically

reference the tag from a scripting language.

• immediate: This attribute can be set to true for input and command

components in order to force the processing of validations,

conversions, and events when the request parameter values are

applied.

• rendered: The rendered attribute can be used to specify whether the

component should be rendered onscreen. This attribute is typically

specified as a JSF EL expression that is bound to a controller class

property yielding a Boolean result. The EL expression must be an

rvalue expression, meaning that it is read-only and cannot set a

value.

• style: This attribute allows a CSS style to be applied to the

component. The specified style will be applied when the component

is rendered as output.

ChaPTer 3 advanCed JavaServer FaCeS

215

• styleClass: This attribute allows a CSS style class to be applied

to the component. The specified style will be applied when the

component is rendered as output.

• value: This attribute identifies the value of a given component. For

some components, the value attribute is used to bind the tag to a CDI

property. In this case, the value specified for the component will be

read from, or set within, the CDI property. Other components, such

as the commandButton component, use the value attribute to specify a

label for the given component.

 Common JavaScript Component Tags
Table 3-3 lists a number of attributes that are shared by many of the components, which

enable JavaScript functionality to interact with the component.

Table 3-3. Common Component Attributes

Attribute Description

onblur JavaScript code that should be executed when the component loses focus

onchange JavaScript code that should be executed when the component loses focus

and the value changes

ondblclick JavaScript code that should be executed when the component has been

clicked twice

onfocus JavaScript code that should be executed when the component gains focus

onkeydown JavaScript code that should be executed when the user presses a key down

and the component is in focus

onkeypress JavaScript code that should be executed when the user presses a key and

the component is in focus

onkeyup JavaScript code that should be executed when key press is completed and

the component is in focus

onmousedown JavaScript code that should be executed when the user clicks the mouse

button and the component is in focus

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

216

 Binding Components to Properties
All JSF components can be bound to controller class properties. Do so by declaring a

property for the type of component you want to bind within the CDI controller class and

then by referencing that property using the component’s binding attribute. For instance,

the following dataTable component is bound to a CDI property and then manipulated

from within the bean:

In the view:

<h:dataTable id="myTable" binding="#{myBean.myTable}" value="#{myBean.

myTableCollection}"/>

In the controller:

// Provide getter and setter methods for this property

private javax.faces.component.UIData myTable;

...

myTable.setRendered(true);

...

Binding can prove to be very useful in some cases, especially when you need to

manipulate the state of a component programmatically before re-rendering the view.

Table 3-3. (continued)

Attribute Description

onmouseout JavaScript code that should be executed when the user moves mouse away

from the component

onmouseover JavaScript code that should be executed when the user moves mouse onto

the component

onmousemove JavaScript code that should be executed when the user moves mouse within

the component

onmouseup JavaScript code that should be executed when the mouse button click is

completed and the component is in focus

onselect JavaScript code that should be executed when the component is selected by

the user

ChaPTer 3 advanCed JavaServer FaCeS

217

3-1. Creating an Input Form
 Problem
You want to add input fields to a form within your application.

 Solution
Create an input form by enclosing child input components within a parent form

component. There are four JSF components that will allow for text entry as input. Those

components are inputText, inputSecret, inputHidden, and inputTextarea. Any or all

of these components can be placed within a form component in order to create an input

form that accepts text entry.

In the example for this recipe, you will create an input form that will be used to sign

up for the Acme Bookstore newsletter. The user will be able to enter their first and last

names, an email address, a password, and a short description of their interests.

 The View: recipe03_01.xhtml

The following code is for the view recipe03_01.xhtml, which constructs the layout for

the input form:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

ChaPTer 3 advanCed JavaServer FaCeS

218

 <p>

 Enter your information below in order to be added

to the Acme Bookstore newsletter.

 </p>

 <label for="first">First: </label>

 <h:inputText id="first" size="40"

value="#{contactController1.current.first}"/>

 <label for="last">Last: </label>

 <h:inputText id="last" size="40"

value="#{contactController1.current.last}"/>

 <label for="email">Email: </label>

 <h:inputText id="email" size="40"

value="#{contactController1.current.email}"/>

 <label for="password">Enter a password for site

access:</label>

 <h:inputSecret id="password" size="40"

value="#{contactController1.current.password}"/>

 <label for="description">Enter your book interests

</label>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController1.current.description}"/>

 <h:commandButton id="contactSubmit"

action="#{contactController1.subscribe}" value="Save"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

ChaPTer 3 advanCed JavaServer FaCeS

219

Note as you can see from the example, hTML can be mixed together with
JSF component tags. an hTML label tag is used to specify a label for each input
component in this recipe. In recipe 3-3, you will learn about the JSF component
that is used to render a label.

To learn more about how the commandButton component works, please see
recipe 3-2.

 Controller Class: ContactController.java

Each view that contains an input form needs to have an associated controller class,

right? The controller class in this case is RequestScoped, and the name of the class is

ContactController. An excerpt from the listing for the ContactController class is as

follows:

import java.util.*;

import javax.enterprise.context.RequestScoped;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.event.ValueChangeEvent;

import javax.faces.model.SelectItem;

import javax.faces.validator.ValidatorException;

import javax.inject.Inject;

import javax.inject.Named;

@RequestScoped

@Named(value = "contactController")

public class ContactController implements java.io.Serializable {

 private Contact current;

 /**
 * Creates a new instance of ContactController

 */

 public ContactController() {

 }

ChaPTer 3 advanCed JavaServer FaCeS

220

 /**
 * Obtains the current instance of the Contact object

 * @return Contact

 */

 public Contact getCurrent(){

 if (current == null){

 current = new Contact();

 }

 return current;

 }

 /**
 * Adds a subscriber to the newsletter

 * @return String

 */

 public String subscribe(){

 // No implementation yet, will add to a database table in Chapter 7

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_

INFO,

 "Successfully Subscribed to Newsletter for " +

getCurrent().getEmail(), null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 return "SUBSCRIBE";

 }

 /**
 * Navigational method

 * @return String

 */

 public String add(){

 return "ADD_SUBSCRIBER";

 }

}

ChaPTer 3 advanCed JavaServer FaCeS

221

Note at this time, nothing happens when the submit button is clicked other than
a nice “Success” message being displayed on the screen. Later in the book, you
will revisit the subscribe method and add the code for creating a record within an
underlying database. The input screen should look like Figure 3-1 when rendered.

 How It Works
The JavaServer Faces framework ships with a slew of standard components that can

be utilized within JSF views. There are four standard components that can be used

for capturing text input: inputText, inputSecret, inputHidden, and inputTextarea.

These component tags, as well as all of the other standard JSF component tags, share

a common set of attributes and some attributes that are unique to each specific tag.

To learn more about the common attributes, please see the related section in the

introduction to this chapter. In this recipe, I will go over the specifics for each of these

input components. The form component, specified via the h:form tag, is used to create

an input form within a JSF view. Each component that is to be processed within the form

should be enclosed between the opening and closing h:form tags. Each form typically

contains at least one command component, such as a commandButton. A view can

contain more than one form component, and only those components that are contained

within the form will be processed when the form is submitted.

Figure 3-1. JSF input form for subscribing to the Acme Bookstore newsletter

ChaPTer 3 advanCed JavaServer FaCeS

222

Each of the input tags supports the list of attributes that is shown in Table 3-4, in

addition to those already listed as common component attributes in the introduction to

this chapter.

The inputText component is used to generate a single-line text box within a rendered

page. The inputText component value attribute is most commonly bound to a controller

class property so that the values of the property can be retrieved or set when a form is

processed. In the recipe example, the first inputText component is bound to the controller

class property named first. The EL expression #{contactController.current.first}

Table 3-4. Input Component Tag Attributes

Attribute Description

converter allows a converter to be applied to the component’s data.

converterMessage Specifies a message that will be displayed when a registered converter

fails.

dir Specifies the direction of text displayed by the component. (LTR is
used to indicate left-to-right, and RTL is used to indicate right-to-left.)

immediate Flag indicating that, if this component is activated by the user,

notifications should be delivered to interested listeners and actions

immediately (i.e., during the apply request values phase) rather than

waiting until the Invoke application phase.

label Specifies a name that can be used for component identification.

lang allows a language code to be specified for the rendered markup.

required accepts a Boolean to indicate whether the user must enter a value for

the given component.

requiredMessage Specifies an error message to be displayed if the user does not enter a

value for a required component.

validator allows a validator to be applied to the component.

valueChangeListener allows a controller class method to be bound for event-handling

purposes. The method will be called when there is a change made to

the component.

ChaPTer 3 advanCed JavaServer FaCeS

223

is specified for the component value, so if the controller class’s first property contains a

value, then it will be displayed within the inputText component. Likewise, when the form is

submitted, then any value that has been entered within the component will be saved within

the first property in the controller class.

The inputSecret component is used to generate a single-line text box within a

rendered page, and when text is entered into the component, then it is not displayed;

rather, asterisks are displayed in place of each character typed. This component

makes it possible for a user to enter private text, such as a password, without it being

displayed on the screen for others to read. The inputSecret component works

identically to the inputText component, other than hiding the text with asterisks. In

the example, the value of the inputSecret component is bound to a controller class

property named password via the #{contactController.current.password} EL

expression.

The inputTextarea component is used to generate a multiline text box within a

rendered page. As such, this component has a couple of additional attributes that can be

used to indicate how large the text area should be. The inputTextarea has the rows and

cols attributes, which allow a developer to specify how many rows (height) and how many

columns (wide) of space the component should take up on the page, respectively. Other

than those two attributes, the inputTextarea component works in much the same manner

as the inputText component. In the example, the value attribute of the inputTextarea

component is specified as #{contactController.current.description}, so the

description property will be populated with the contents of the component when the

form is submitted.

The input component I have not yet discussed is the inputHidden component. This

component is used to place a hidden input field into the form. It works in the same

manner as the inputText component, except that it is not rendered on the page for the

user to see. The value for an inputHidden component can be bound to a controller class

property in the same way as the other components. You can use such a component for

passing a hidden token to and from a form.

As you can see, the days of passing and receiving request parameters within JSP

pages are over. Utilizing the JSF standard input components, it is possible to bind values

to controller class properties using JSF EL expressions. This makes it much easier for

developers to submit values from an input form for processing. Rather than retrieving

parameters from a page, assigning them to variables, and then processing, the JSF

framework takes care of that overhead for you.

ChaPTer 3 advanCed JavaServer FaCeS

224

3-2. Invoking Actions from Within a Page
 Problem
You want to trigger a server-side method to be invoked from a button or link on one of

your application pages.

 Solution
Utilize the commandButton or commandLink component within your view to invoke

action methods within a controller class. The command components allow for the user

invocation of actions within controller classes. Command components bind buttons

and links on a page directly to action methods, allowing developers to spend more time

thinking about the development of the application and less time thinking about the Java

servlet-processing life cycle.

In the example for this recipe, a button and a link are added to the newsletter page

for the Acme Bookstore. The button that will be added to the page will be used to submit

the input form for processing, and the link will allow a user to log into the application

and manage their subscription and bookstore account.

Note This recipe will not cover any authentication or security features; it focuses
only on invoking actions within controller classes. For more information regarding
authentication, please see Chapter 16.

 The View: recipe03_02.xhtml

The following code is for the newsletter subscription view including the command

components. The sources are for the file named recipe03_02.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

ChaPTer 3 advanCed JavaServer FaCeS

225

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 Enter your information below in order to be added

to the Acme Bookstore newsletter.

 </p>

 <label for="first">First: </label>

 <h:inputText id="first" size="40"

value="#{contactController.current.first}"/>

 <label for="last">Last: </label>

 <h:inputText id="last" size="40"

value="#{contactController.current.last}"/>

 <label for="email">Email: </label>

 <h:inputText id="email" size="40"

value="#{contactController.current.email}"/>

 <label for="password">Enter a password for site

access:</label>

 <h:inputSecret id="password" size="40"

value="#{contactController.current.password}"/>

 <label for="description">Enter your book interests

</label>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController.current.description}"/>

ChaPTer 3 advanCed JavaServer FaCeS

226

 <h:commandButton id="contactSubmit"

action="#{contactController.subscribe}" value="Save"/>

 <h:commandLink id="manageAccount"

action="#{contactController.manage}" value="Manage

Subscription"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

 Controller Class: ContactController.java

The controller class that contains the action methods is named ContactController,

which was created in Recipe 3-1. The following code excerpt is taken from the

ContactController class, and it shows the updates that have been made to the methods

for this recipe:

Note The complete implementation of ContactController resides within the
package org.jakartaeerecipes.chapter03.

...

 /**
 * Adds a subscriber to the newsletter

 * @return String

 */

 public String subscribe(){

 // Using a list implementation for now,

 // but will add to a database table in Chapter 7

ChaPTer 3 advanCed JavaServer FaCeS

227

 // Add the current contact to the subscription list

 subscriptionController.getSubscriptionList().add(current);

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_

INFO,

 "Successfully Subscribed to Newsletter for " +

getCurrent().getEmail(), null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 return "SUBSCRIBE";

 }

 /**
 * Navigational method

 * @return String

 */

 public String add(){

 return "ADD_SUBSCRIBER";

 }

 /**
 * This method will allow a user to navigate to the manageAccount view.

 * This method will be moved into another controller class that focuses

on

 * authentication later on.

 * @return

 */

 public String manage(){

 return "/chapter03/manageAccount";

 }

...

When the view is rendered, the resulting page looks like Figure 3-2.

ChaPTer 3 advanCed JavaServer FaCeS

228

 How It Works
The command components make working with JSF vastly different from using JSP

technology. In many of the other technologies, form actions are used to handle request

parameters and perform any required business logic with them. With the JSF command

components, Java methods can be bound directly to a button or a link and invoked when

the components are activated (button or link clicked). In the example for this recipe,

both the commandButton and commandLink components are utilized. The commandButton

component is used to submit the form request parameters for processing, and the

commandLink component is bound to an action method that performs a redirect to

another application page.

The command components have a handful of attributes that are of note. Those

attributes, along with a description of each, are listed in Table 3-5 and Table 3-6.

Figure 3-2. Utilizing command components within a view

ChaPTer 3 advanCed JavaServer FaCeS

229

Table 3-5. commandButton Component Additional Attributes

Attribute Description

action eL that specifies a controller class action method that will be invoked when

the user activates the component.

actionListener eL that specifies a controller class action method that will be notified

when this component is activated. The action method should be public and

accept an ActionEvent parameter, with a return type of void.

class CSS style class that can be applied to the component.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

disabled a Boolean to indicate whether the component is disabled.

image absolute or relative UrL to an image that will be displayed on the button.

immediate Flag indicating that, if this component is activated by the user, notifications

should be delivered to interested listeners and actions immediately (i.e.,

during the apply request values phase) rather than waiting until the Invoke

application phase.

label name for the component.

lang Code for the language used for generating the component markup.

readonly Boolean indicating whether the component is read-only.

rendererType Identifier of renderer instance.

tabindex Index value indicating the number of tab button presses it takes to bring

the component into focus.

title Tooltip that will be displayed when the mouse hovers over the component.

transient Boolean indicating whether the component should be included in the state

of the component tree.

type Indicates type of button to create. values are submit (default), reset, and

button.

ChaPTer 3 advanCed JavaServer FaCeS

230

Table 3-6. commandLink Component Additional Attributes

Attribute Description

action eL that specifies a controller class action method that will be invoked when the

user activates the component.

accessKey access key value that will transfer the focus to the component.

cords Position and shape of the hotspot on the screen.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

disabled Specifies a Boolean to indicate whether the component is disabled.

hreflang Language code of the resource designated by the hyperlink.

immediate Flag indicating that, if this component is activated by the user, notifications

should be delivered to interested listeners and actions immediately (i.e., during

the apply request values phase) rather than waiting until the Invoke application

phase.

lang Code for the language used for generating the component markup.

rel relationship from the current document to the anchor specified by the

hyperlink.

rev reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating the number of tab button presses it takes to bring the

component into focus.

target name of a frame where the resource retrieved via the hyperlink will be

displayed.

title Tooltip that will be displayed when the mouse hovers over the component.

type Indicates type of button to create. values are submit (default), reset, and

button.

charset Character encoding of the resource designated by the hyperlink.

ChaPTer 3 advanCed JavaServer FaCeS

231

The commandButton and commandLink components in the example for this recipe

specify only a minimum number of attributes. That is, they both specify id, action, and

value attributes. The id attribute is used to uniquely identify each of the components.

The action attribute is set to the JSF EL, which binds the components to their controller

class action methods. The commandButton component has an action attribute of

#{contactController.subscribe}, which means that the ContactController class’s

subscribe method will be invoked when the button on the page is clicked. The

commandLink has an action attribute of #{contactController.manage}, which means

that the ContactController class’s manage method will be invoked when the link is

clicked. Each of the components also specifies a value attribute, which is set to the text

that is displayed on the button or link when rendered.

As you can see, only a handful of the available attributes are used within the

example. However, the components can be customized using the additional attributes

that are available. For instance, an actionListener method can be specified, which

will bind a controller class method to the component, and that method will be invoked

when the component is activated. JavaScript functions can be specified for each of

the attributes beginning with the word on, providing the ability to produce client-side

functionality.

Command components vastly changed the landscape of Java web application

development. They allow the incorporation of direct Java method access from within

user pages and provide an easy means for processing request parameters.

3-3. Displaying Output
 Problem
You want to display text from a controller class property within your application pages.

 Solution
Incorporate JSF output components into your views. Output components are used to

display static or dynamic text on a page, as well as the results of expression language

arithmetic. The standard JSF component library contains five components that render

output: outputLabel, outputText, outputFormat, outputLink, and link. The Acme

Bookstore utilizes each of these components within the bookstore newsletter application

façade.

ChaPTer 3 advanCed JavaServer FaCeS

232

 The View: recipe03_03.xhtml

In the following example, the newsletter subscription view has been rewritten to utilize

some of the output components:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{contactController.

newsletterDescription}"/>

 </p>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{contactController.current.first}">

 <f:validateRequired/>

 <f:validateLength minimum="2" maximum="40"/>

 </h:inputText>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{contactController.current.last}">

 <f:validateRequired/>

 <f:validateLength minimum="2" maximum="40"/>

 </h:inputText>

ChaPTer 3 advanCed JavaServer FaCeS

233

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{contactController.current.email}">

 <f:validateRequired/>

 <f:validateRegex pattern=""/>

 </h:inputText>

 <h:outputLabel for="password" value="Enter a password

for site access: "/>

 <h:inputSecret id="password" size="40"

value="#{contactController.current.password}">

 <f:validateRegex pattern=""/>

 </h:inputSecret>

 <h:outputLabel for="description" value="Enter your

book interests"/>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController.current.description}"/>

 <h:commandButton id="contactSubmit"

action="#{contactController.subscribe}" value="Save"/>

 <h:commandLink id="manageAccount"

action="#{contactController.manage}" value="Manage

Subscription"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

ChaPTer 3 advanCed JavaServer FaCeS

234

 Controller Class: ContactController.java

The ContactController controller class has been modified throughout the recipes

within this chapter to incorporate new functionality as the recipes move forward. In

this recipe, a new property has been added to the ContactController that contains the

description of the newsletter.

Note The hard-coded newsletter description is not a good idea for use in a
production application. It is used in this example for demonstration purposes only.
For a production application, utilization of resource bundles or database storage
would be a more viable approach for storing Strings of text.

The following source excerpt from the ContactController class shows the code that

is of interest in this example:

...

 private String newsletterDescription;

 public ContactController() {

 current = null;

 newsletterDescription = "Enter your information below in order to

be " + "added to the Acme Bookstore newsletter.";

 }

...

 public String getNewsletterDescription() {

 return newsletterDescription;

 }

 public void setNewsletterDescription(String newsletterDescription) {

 this.newsletterDescription = newsletterDescription;

 }

...

The resulting page looks like Figure 3-3. Note that the text is the same, because it is

merely reading the same text from a controller class property. Also note that there is now

an additional link added to the bottom of the page, which reads Home.

ChaPTer 3 advanCed JavaServer FaCeS

235

 How It Works
Output components can be used to display output that is generated within a controller

class or to render a link to another resource. They can be useful in many cases for

displaying dynamic output to a web view. The example for this recipe demonstrates

three out of the five different output component types: outputText, outputLink, and

outputLabel. Each of the components shares a common set of attributes, which are

listed in Table 3-7.

Note The outputText component has become a bit less important since
the release of JSF 2.0 because the Facelets view definition language implicitly
wraps inline content with a similar output component. Therefore, the use of the
outputText tag within JSF 2.0 is necessary only if you want to utilize some of
the tag attributes for rendering, JavaScript invocation, or the like.

Figure 3-3. Utilizing output components within a view

ChaPTer 3 advanCed JavaServer FaCeS

236

Table 3-7. Common Output Component Attributes (Not Listed in Introduction)

Attribute Description

class CSS class for styling

converter Converter that is registered with the component

dir direction of text (LTR, left-to-right; RTL, right-to-left)

escape Boolean value to indicate whether XML- and hTML-sensitive characters are

escaped

lang Code for language used when generating markup for the component

parent Parent component

title Tooltip text for the component

transient Boolean indicating whether the component should be included in the state of

the component tree

The outputText component in the example contains a value of

#{contactController.newsletterDescription}, which displays the contents of the

newsletterDescription property within ContactController. Only the common output

component attributes can be specified within the h:outputText tag. Therefore, an

attribute such as class or style can be used to apply styles to the text displayed by the

component. If the component contains HTML or XML, the escape attribute can be set to

true to indicate that the characters should be escaped.

The outputFormat component shares the same set of attributes as the outputText

component. The outputFormat component can be used to render parameterized text.

Therefore, if you require the ability to alter different portions of a String of text, you

can do so via the use of JSF parameters (via the f:param tag). For example, suppose you

wanted to list the name of books that someone has purchased from the Acme Bookstore;

you could use the outputFormat component like in the following example:

<h:outputFormat value="Cart contains the books {0}, {1}, {2}"/>

 <f:param value="Java 9 Recipes"/>

 <f:param value="JavaFX 2.0: Introduction by Example"/>

 <f:param value="Java EE 8 Recipes"/>

</h:outputFormat>

ChaPTer 3 advanCed JavaServer FaCeS

237

The outputLink and outputLabel components can each specify a number of other

attributes that are not available to the previously discussed output components. The

additional attributes are listed in Table 3-8 (outputLink) and Table 3-9 (outputLabel).

The outputLink component can be used to create an anchor or link that will redirect an

application user to another page when the link is clicked. In the following example, the

outputLink component is used to redirect a user to a view named home.xhtml. The value

for the outputLink component can be set to a static page name, as per the example, or

it can contain a JSF EL expression corresponding to a controller class property. It is also

possible to pass parameters to another page using the outputLink component by nesting

f:param tags between opening and closing h:outputLink tags as follows:

<h:outputLink id="homeLink" value="home.xhtml">

 <h:outputText value="User Home Page"/>

 <f:param name="username" value="#{contactController.current.email}"/>

 </h:outputLink>

The previous example would produce a link with the text User Home Page when

rendered on the page. It would produce the following HTML link, where emailAddress

corresponds to the EL expression of #{contactController.current.email}:

Home Page

Similarly, rather than displaying a link as text on the page, an image can be used by

embedding a graphicImage component.

The outputLabel component renders an HTML <label> tag, and it can be

used in much the same way as the outputText component. In the example, the

outputLabel component values are all using static text, but they could also utilize JSF

EL expressions to make use of controller class property values if that is more suitable

for the application.

ChaPTer 3 advanCed JavaServer FaCeS

238

Table 3-8. outputLink Additional Attributes

Attribute Description

accessKey access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

charset The character encoding of the resource designated by this hyperlink.

cords Position and shape of the hotspot on the screen.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

disabled Specifies a Boolean to indicate whether the component is disabled.

fragment Identifier for the page fragment that should be brought into focus when the

target page is rendered.

hreflang Language code of the resource designated by the hyperlink.

lang Code for the language used for generating the component markup.

rel relationship from the current document to the anchor specified by the hyperlink.

rev reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating the number of tab button presses it takes to bring the

component into focus.

target name of a frame where the resource retrieved via the hyperlink will be displayed.

title Tooltip that will be displayed when the mouse hovers over the component.

type Type of button to create. values are submit (default), reset, and button.

ChaPTer 3 advanCed JavaServer FaCeS

239

Table 3-9. outputLabel Additional Attributes

Attribute Description

accessKey access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

dir direction indication for text (LTR, left-to-right; RTL, right-to-left).

escape Flag indicating that characters that are sensitive in hTML and XML markup

must be escaped.

for Client identifier of the component for which this element is a label.

lang Code for the language used for generating the component markup.

tabindex Index value indicating the number of tab button presses it takes to bring the

component into focus.

title Tooltip that will be displayed when the mouse hovers over the component.

type Type of button to create. values are submit (default), reset, and button.

The last output component that I’ll cover in this recipe is the link component. It was

introduced to JSF in release 2.0, and it makes the task of adding links to a page just a bit

easier. Both the outputLink and link components produce similar results, but link has

just a couple of different attributes that make it react a bit differently. The value attribute

of the h:link tag specifies the label or text that should be used when the link is rendered

on the page, and the outcome attribute specifies the page that should be linked to. The

following example of the link component produces the same output as the outputLink

component in the example for this recipe:

<h:link id=""homeLink"" value=""Home"" outcome=""home""/>

Parameters and images can also be embedded within the h:link tag, in the same

manner as with outputLink. The link component also contains some custom attributes,

as listed in Table 3-10.

ChaPTer 3 advanCed JavaServer FaCeS

240

This recipe provided a high-level overview of the JSF standard output components.

In JSF 2.0+, it is important to note that you can simply include a JSF EL expression

without using an output component to display text within a page. However, these

components can still be quite useful under certain circumstances, making them an

important set of components to have within your arsenal.

3-4. Adding Form Validation
 Problem
To ensure that valid data is being submitted via your form, you need to incorporate some

validation on your input fields.

Table 3-10. link Component Additional Attributes

Attribute Description

charset Character encoding of the resource that is designated by the hyperlink.

cords Position and shape of the hotspot on the screen, usually used when

generating maps or images containing multiple links.

disabled Flag to indicate that the component should never receive focus.

fragment Identifier for the page fragment that should be brought into focus when

the link is clicked. The identifier is appended to the # character.

hreflang Language of the resource designated by this link.

includeviewparams Boolean indicating whether to include page parameters when

redirecting.

outcome Logical outcome used to resolve a navigational case.

rel relationship from the current document to the resource specified by link.

rev reverse link from the anchor specified from this link to the current

document.

shape Shape of the hotspot on the screen.

target name of the frame in which the resource linked to is to be displayed.

type Content type of resource that is linked to.

ChaPTer 3 advanCed JavaServer FaCeS

241

 Solution #1
Utilize prebuilt JSF validator tags on the view’s input components where possible. JSF

ships with a handful of prebuilt validators that can be applied to components within a

view by embedding the validator tag within the component you want to validate. The

following code excerpt is taken from a JSF view that defines the layout for the newsletter

subscription page of the Acme Bookstore application. The sources can be found in

the view named recipe03_04.xhtml, and the excerpt demonstrates applying prebuilt

validators to some inputText components:

...

<h:outputLabel for="first" value="First: "/>

<h:inputText id="first" size="40" value="#{contactController.current.first}">

 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>

<h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

<h:outputLabel for="last" value="Last: "/>

<h:inputText id="last" size="40" value="#{contactController.current.last}">

 <f:validateLength minimum="1" maximum="40"/>

</h:inputText>

<h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

...

In the preceding code excerpt, you can see that the f:validateLength validator tags

have been embedded in different inputText components. When the form is submitted,

these validators will be applied to the values within the inputText component fields and

will return an error message if the constraints have not been met.

ChaPTer 3 advanCed JavaServer FaCeS

242

 Solution #2
Utilize JSF bean validation by annotating controller class fields with validation

annotations. It is possible to perform validation from within the controller class by

annotating the property field declaration with the validation annotations that are

needed. When the form is submitted, then the bean validation will be performed.

Note an f:validateBean tag can be embedded within the component in the
view if making use of validationGroups in order to delegate the validation
of the local value to the Bean validation aPI. If using f:validateBean, the
validationGroups attribute will serve as a filter that instructs which constraints
should be enforced.

The following code excerpt is taken from the JSF view that defines the layout for the

newsletter subscription page of the Acme Bookstore application. The sources can be

found in the view named recipe03_04.xhtml:

...

<h:outputLabel for="email" value="Email: "/>

<h:inputText id="email" size="40" value="#{contactController.current.

email}"/>

<h:message id="emailError"

 for="email"

 errorStyle="color:red"/>

...

Next is an excerpt from the ContactController controller class that demonstrates

applying a validator annotation to the email property field declaration:

...

@Pattern(regexp = "[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-zA-Z0-9]+", message =

"Email format is invalid.")

 private String email;

...

ChaPTer 3 advanCed JavaServer FaCeS

243

When the form is submitted, the validation on the email field will occur. If the

value entered into the inputText component does not validate against the regular

expression noted in the annotation, then the error message will be displayed within the

corresponding messages component.

 Solution #3
Create a custom validator method within a controller class, and register that method

with an input component by specifying the appropriate EL for the component’s

validator attribute. In this scenario, the controller class does not need to implement the

Validator interface. The following code excerpt is taken from the JSF view that defines

the layout for the newsletter subscription page of the Acme Bookstore application.

The sources can be found in the view named recipe03_04.xhtml, and the excerpt

demonstrates a custom validator method to a component by specifying it for the

validator attribute:

 ...

<h:outputLabel for="password" value="Enter a password for site access: "/>

<h:inputSecret id="password" size="40" redisplay="true"

value="#{contactController.current.password}"/>

<h:outputLabel for="passwordConfirm" value="Confirm Password: "/>

<h:inputSecret id="passwordConfirm" size="40" redisplay="true"

 validator="#{contactController.

validatePassword}"/>

<h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

...

Note If you are thinking outside of the box, you’ll see that the previous code
fragment would be an excellent choice for creating into a composite component!
If a composite component is created, then it would be as simple as adding a tag
such as <custom:passwordValidate> to your form.

ChaPTer 3 advanCed JavaServer FaCeS

244

The validator attribute specifies the validatePassword method within

the ContactController controller class. The following excerpt is taken from

ContactController, and it shows the validator method’s implementation:

...

/**
 * Custom validator to ensure that password field contents match

 * @param context

 * @param component

 * @param value

 */

 public void validatePassword(FacesContext context,

 UIComponent component,

 Object value){

 Map map = context.getExternalContext().getRequestParameterMap();

 String passwordText = (String) map.get(("contactForm:password"));

 String confirmPassword = value.toString();

 if (!passwordText.equals(confirmPassword)) {

 throw new ValidatorException(new FacesMessage("Passwords do not

match"));

 }

 }

...

When the form is submitted, the validatePassword method will be invoked during

the Process Validations phase. The method will read the values of both the password

and passwordConfirm fields, and an exception will be thrown if they do not match. For

example, if the input form for the newsletter subscription page is submitted without any

values, then the page should be re-rendered and look like Figure 3-4.

ChaPTer 3 advanCed JavaServer FaCeS

245

 How It Works
There are a few different ways in which to apply validation to form input fields. The

easiest way to apply validation to an input component is to utilize the prebuilt validator

tags that ship with JSF. There are prebuilt tags for validating data for a specified length,

range, and so on. Please see Table 3-2 in the introduction to this chapter for the complete

list of validator tags. You can also choose to apply validation to input components using

bean validation. Bean validation requires validation annotations to be placed on the

property declaration within the controller class. Yet another possible way to perform

validation is to create a custom validation method and specify the method within the

input component’s validator attribute. This section will provide a brief overview of

each prebuilt validation tag, cover the basics of bean validation, and demonstrate how to

build a custom validation method.

Note It is possible to create a class that implements the Validator interface to
perform validation.

Figure 3-4. Validation errors on input fields

ChaPTer 3 advanCed JavaServer FaCeS

246

No matter which validation solution you choose to implement, the validation occurs

during the Process Validations phase of the JSF life cycle. When a form is submitted,

via a command component or an Ajax request, all validators that are registered on

the components within the tree are processed. The rules that are specified within the

attributes of the component are compared against the local value for the component. At

this point, if any of the validations fails, the messages are returned to the corresponding

message components and displayed to the user.

To utilize the prebuilt validation tags, they must be embedded between opening

and closing input component tags and specify attributes according to the validation

parameters you wish to set. In Solution #1 for this recipe, you learned how to use the

f:validateLength validator tag, which allows validation of component data for a

specified length. The minimum and maximum attributes are set to the minimum string

length and maximum string length, respectively.

The f:validateLongRange validator can be used to check the range of a

numeric value that has been entered. The minimum and maximum attributes of

f:validateLongRange are used to determine whether the value entered falls within the

lower and upper bounds, respectively.

Similar to f:validateLongRange is the f:validateDoubleRange validator, which is

used to validate the range of a floating-point value. Again, the minimum and maximum

attributes of f:validateDoubleRange are used to determine whether the value entered

falls within the lower and upper bounds, respectively.

The f:validateRequired validator is used to ensure that an input field is not empty.

No attributes are needed with this validator; simply embed it within a component tag to

ensure that the component will not contain an empty value.

Another validator that ships with JSF is the f:validateRegex validator. This validator

uses a regular expression pattern to determine whether the value entered matches

the specified pattern. The validator’s pattern attribute is used to specify the regular

expression pattern, as shown in the example for Solution #1 to this recipe.

In Solution #2, JSF bean validation is demonstrated. Bean validation allows you

to annotate a controller class field with constraint annotations that indicate the type

of validation that should be performed. The validation automatically occurs on the

annotated fields when a form that contains input components referencing them is

submitted. A handful of standard constraint annotations can be applied to bean fields,

as listed in Table 3-11. Each annotation accepts different attributes; please see the online

documentation at https://docs.jboss.org/hibernate/beanvalidation/spec/2.0/api/

for more details.

ChaPTer 3 advanCed JavaServer FaCeS

https://docs.jboss.org/hibernate/beanvalidation/spec/2.0/api/

247

Table 3-11. Constraint Annotations Used for Bean Validation

Annotation Description

@AssertFalse The annotated element must be false.

@AssertTrue The annotated element must be true.

@DecimalMax The annotated element must be a decimal that has a value less than or equal

to the specified maximum.

@DecimalMin The annotated element must be a decimal that has a value greater than or

equal to the specified minimum.

@Digits The annotated element must be a number within the accepted range.

@Email The annotated element must adhere to the format of an email address.

@Future The annotated element must be a date in the future.

@Max The annotated element must be a number that has a value less than or equal

to the specified maximum.

@Min The annotated element must be a number that has a value greater than or

equal to the specified minimum.

@Negative The annotated element must be a negative number.

@NotBlank The annotated element must not be null or blank after removing any trailing

or leading whitespace.

@NotEmpty The annotated element must not be null or empty.

@NotNull The annotated element must not be null.

@Null The annotated element must be null.

@Past The annotated element must be a date in the past.

@Pattern The annotated element must match the pattern specified in the annotation’s

regular expression.

@Positive The annotated element must be a positive number.

@Size The annotated element must be between the specified boundaries.

ChaPTer 3 advanCed JavaServer FaCeS

248

When using bean validation, the input component that references an annotated

bean field can contain an f:validateBean tag to customize behavior. The

f:validateBean tag’s validationGroups annotation can be used to specify validation

groups that can be used for validating the component. For instance, such a solution may

resemble something like the following:

<h:inputText id="email" value="#{contactController.email}">

 <f:validateBean validationGroups="org.jakartaeerecipes.validation.

groups.EmailGroup"/>

</h:inputText>

Note validation groups define a subset of constraints that can be applied for
validation. a validation group is represented by an empty Java interface. The
interface name can then be applied to annotation constraints within a bean class
in order to assign such constraints to a particular group. For instance, the following
field that is annotated with @Size specifies a group of EmailGroup.class:

@Size(min=2, max=30, groups=EmailGroup.class)
private String email;

When utilizing the f:validateBean tag, any constraint annotations that are
contained within the specified group will be applied to the field for validation.

When using bean validation, a custom error message can be displayed if the

validation for a field fails. To add a custom message, include the message attribute within

the annotation, along with the error message that you want to have displayed. As a

best practice, error messages should be pulled from a message bundle (https://docs.

oracle.com/javase/tutorial/i18n/resbundle/concept.html) so that they can be

updated without the need to change code.

The example for Solution #3 demonstrates the use of a custom validator method in

order to perform validation on an input component. The input component’s validator

attribute can reference a controller class method that has no return type and accepts a

FacesContext, a UIComponent, and an Object. The method can utilize the parameters

to gain access to the current FacesContext, the UIComponent that is being validated,

and the current value that is contained in the object, respectively. The validation logic

can throw a javax.faces.validator.ValidatorException if the value does not pass

validation and then return a message to the user via the exception. In the example, the

ChaPTer 3 advanCed JavaServer FaCeS

https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

249

method named validatePassword is used to compare the two password field

contents to ensure that they match. The first two lines of code within the method are

used to obtain the value of the component with the id of password and save it into a

local variable. The actual validation logic compares that value against the incoming

parameter’s Object value, which is the current value of the component being validated,

to determine whether there is a match. If not, then a ValidationException is thrown

with a corresponding message. That message will then be displayed within the messages

component that corresponds to the component being validated.

As mentioned at the beginning of this recipe, there are a few ways to validate input.

None of them is any better than the other; their usage depends upon the needs of your

application. If you are going to be changing validation patterns often, then you may want

to stick with the prebuilt validator tags so that you do not need to recompile code in

order to change the validation. On the other hand, if you know that your validation will

not change, then it may be easier for you to work with the bean validation technique.

3-5. Validating Input with Ajax
 Problem
You want to validate the values that are entered into text fields of a form, but you want

them to be evaluated immediately, rather than after the form is submitted.

 Solution
Perform validation on the field(s) by embedding the f:ajax tag within each component

whose values you want to validate. Specify appropriate values for the event and render

attributes so that the Ajax validation will occur when the field(s) loses focus, and any

validation errors will be identified immediately. The following listing is the JSF view for

the newsletter subscription page of the Acme Bookstore application. It has been updated

to utilize Ajax validation so that the validation occurs immediately, without the need to

submit the form before corresponding errors are displayed:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

ChaPTer 3 advanCed JavaServer FaCeS

250

 template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{ch3ContactController.

newsletterDescription}"/>

 </p>

 <h:panelGrid columns="2" bgcolor="" border="0">

 <h:panelGroup>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{ch3ContactController.current.first}">

 <f:validateLength minimum="1" maximum="40"/>

 <f:ajax event="blur" render="firstError"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{ch3ContactController.current.last}">

 <f:validateLength minimum="1" maximum="40"/>

 <f:ajax event="blur" render="lastError"/>

 </h:inputText>

 </h:panelGroup>

 <h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

ChaPTer 3 advanCed JavaServer FaCeS

251

 <h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

 <h:panelGroup>

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{ch3ContactController.current.email}">

 <f:ajax event="blur" render="emailError"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup/>

 <h:message id="emailError"

 for="email"

 errorStyle="color:red"/>

 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"

value="#{ch3ContactController.current.gender}">

 <f:selectItem itemValue="M" itemLabel="Male"/>

 <f:selectItem itemValue="F" itemLabel="Female"/>

 </h:selectOneRadio>

 <h:panelGroup>

 <h:outputLabel for="occupation" value="Occupation: "/>

 <h:selectOneMenu id="occupation"

value="#{ch3ContactController.current.occupation}">

 <f:selectItems value="#{ch3ContactController.

occupationList}"/>

 </h:selectOneMenu>

 </h:panelGroup>

 <h:message id="genderError"

 for="gender"

 errorStyle="color:red"/>

ChaPTer 3 advanCed JavaServer FaCeS

252

 </h:panelGrid>

 <h:outputLabel for="description" value="Enter your book

interests"/>

 <h:inputTextarea id="description" rows="5" cols="75"

value="#{ch3ContactController.current.description}"/>

 <h:panelGrid columns="2">

 <h:outputLabel for="password" value="Enter a password for

site access: "/>

 <h:inputSecret id="password" size="40"

value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="blur" render="passwordError"/>

 </h:inputSecret>

 <h:outputLabel for="passwordConfirm" value="Confirm

Password: "/>

 <h:inputSecret id="passwordConfirm" size="40"

value="#{ch3ContactController.passwordConfirm}"

 validator="#{ch3ContactController.

validatePassword}">

 <f:ajax event="blur" render="passwordConfirmError"/>

 </h:inputSecret>

 </h:panelGrid>

 <h:message id="passwordError"

 for="password"

 style="color:red"/>

 <h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

 <hr/>

ChaPTer 3 advanCed JavaServer FaCeS

253

 <h:panelGrid columns="3">

 <h:panelGroup>

 <h:outputLabel for="newsletterList"

value="Newsletters:" style=" "/>

 <h:selectManyListbox id="newsletterList"

value="#{ch3ContactController.current.newsletterList}">

 <f:selectItems value="#{ch3ContactController.

newsletterList}"/>

 </h:selectManyListbox>

 </h:panelGroup>

 <h:panelGroup/>

 <h:panelGroup>

 <h:panelGrid columns="1">

 <h:panelGroup>

 <h:outputLabel for="notifyme" value="Would you

like to receive other promotional email?"/>

 <h:selectBooleanCheckbox id="notifyme"

value="#{ch3ContactController.current.

receiveNotifications}"/>

 </h:panelGroup>

 <h:panelGroup/>

 <hr/>

 <h:panelGroup/>

 <h:panelGroup>

 <h:outputLabel for="notificationTypes"

value="What type of notifications are you

interested in receiving?"/>

 <h:selectManyCheckbox id="notifyTypes"

value="#{ch3ContactController.current.

notificationType}">

 <f:selectItems value="#

{ch3ContactController.notificationTypes}"/>

ChaPTer 3 advanCed JavaServer FaCeS

254

 </h:selectManyCheckbox>

 </h:panelGroup>

 </h:panelGrid>

 </h:panelGroup>

 </h:panelGrid>

 <hr/>

 <h:commandButton id="contactSubmit" action="#{ch3Contact

Controller.subscribe}" value="Save"/>

 <h:panelGrid columns="2" width="400px;">

 <h:commandLink id="manageAccount" action="#{ch3Contact

Controller.manage}" value="Manage Subscription"/>

 <h:outputLink id="homeLink" value="home.xhtml">Home</

h:outputLink>

 </h:panelGrid>

 </h:form>

 </ui:define>

</ui:composition>

Once the input components have been “Ajaxified” by embedding the f:ajax tag

within them, then tabbing through the fields (causing the onBlur event to occur for each

field) will result in a form that resembles Figure 3-5.

ChaPTer 3 advanCed JavaServer FaCeS

255

 How It Works
In releases of JSF prior to 2.0, performing immediate validation required the manual

coding of JavaScript or a third-party component library. The f:ajax tag was added to the

JSF arsenal with the release of 2.0, bringing with it the power to easily add immediate

validation (and other asynchronous processes) to JSF views using standard or third-

party components. The f:ajax tag can be embedded within any JSF input component

in order to immediately enhance the component, adding Ajax capabilities to it. This

provides many benefits to the developer in that there is no longer a need to manually

code JavaScript to perform client-side validation. It also allows validation to occur on the

server (in Java code within a JSF controller class) asynchronously, providing seamless

interaction between the client and server and generating an immediate response to

the client. The result is a rich modern web application that behaves in much the same

manner as a native desktop application. Validation can now occur instantaneously in

front of an end user’s eyes without the need to perform several page submits in order to

repair all of the possible issues.

Figure 3-5. Ajax validation using the f:ajax tag

ChaPTer 3 advanCed JavaServer FaCeS

256

To use the f:ajax tag, simply embed it within any JSF component. There are a

number of attributes that can be specified with f:ajax, as described in Table 3-12. If

an attribute is not specified, then the default values are substituted. It is quite possible

to include no attributes in an f:ajax tag, and if this is done, then the default attribute

values for the component in which the f:ajax tag is embedded will take effect.

Table 3-12. f:ajax Tag Attributes

Attribute Description

delay a value that is specified in milliseconds, corresponding to the amount of

delay between sending ajax requests from the client-side queue to the server.

The value none can be specified to disable this feature.

disabled Boolean value indicating the tag status. a value of true indicates that the

ajax behavior should not be rendered, and a value of false indicates that

the ajax behavior should be rendered. The default value is false.

event a String that identifies the type of event to which the ajax action shall apply.

If specified, it must be one of the supported component events. The default

value is the event that triggers the ajax request for the parent component

of the ajax behavior. The default event is action for ActionSource

components and is valueChange for EditableValueHolder components.

execute a collection that identifies a list of components to be executed on the server.

a space- delimited String of component identifiers can be specified as the

value for this attribute, or a ValueExpression (JSF eL) can be specified.

The default value is @this, meaning the parent component of the ajax

behavior.

immediate Boolean value indicating whether the input values are processed early in the

life cycle. If true, then the values are processed, and their corresponding

events will be broadcast during the apply request values phase; otherwise,

the events will be broadcast during the Invoke application phase.

listener name of the listener method that is called when an AjaxBehaviorEvent

has been broadcast for the listener.

onevent name of the JavaScript function used to handle UI events.

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

257

Attribute Description

onerror name of the JavaScript function used to handle errors.

resetValues If true, then this particular ajax transaction will reset the values.

render Collection that identifies the components to be rendered on the client

when the ajax behavior is complete. a space-delimited String of

component identifiers can be specified as the value for this attribute, or a

ValueExpression (JSF eL) can be specified. The default value is @none,

meaning that no components will be rendered when the ajax behavior is

complete.

Table 3-12. (continued)

The execute and render attributes of the f:ajax tag can specify a number of

keywords to indicate which components are executed on the server for the Ajax behavior

or which are rendered again after the Ajax behavior is complete, respectively. Table 3-13

lists the values that can be specified for both of these two attributes.

Table 3-13. f:ajax Tag execute and render Attribute Values

Attribute Value Description

@all all component identifiers are executed on the server, and all component

identifiers are re-rendered once ajax behavior is complete.

@form The form that encloses the component.

@none no component identifiers (default for the render attribute).

@this The ajax behavior parent component.

@child(n) The nth child of the base component.

@composite Closest composite component ancestor of the base component.

@id(id) all component descendants of the base component with the specified id.

@namingcontainer Closest namingContainer ancestor of the base component.

@next next component in view after the base component.

(continued)

ChaPTer 3 advanCed JavaServer FaCeS

258

In the example for this recipe, an f:ajax tag has been embedded inside many of

the input components within the form. Each of those components has been Ajaxified,

in that the data entered as the values for the components will now have the ability

to be processed using the JavaScript resource library associated with JSF. Behind

the scenes, the jsf.ajax.request() method of the JavaScript resource library will

collect the data for each component that has been Ajaxified and post the request to

the JavaServer Faces life cycle. In effect, the data is sent to the controller class property

without submitting the page in a traditional fashion. Notice that the event attribute

specifies a JavaScript event that will be used to trigger the Ajax behavior. The JavaScript

events that can be specified for the event attribute are those same JavaScript event

attributes that are available on the parent component’s tag, but the on prefix has been

removed. For instance, if you want to perform an Ajax behavior on an inputText

component when it loses focus, you would specify blur for the f:ajax event attribute

rather than onBlur. Applying this concept to the example, when a user leaves the

first or last name field, they will be validated using their associated f:validate tags

immediately because the f:ajax tag has been embedded in them and the event on the

f:ajax tag is specified as blur. When the Ajax behavior (the validation in this case) is

complete, then the components whose identifiers are specified in the f:ajax render

attribute will be re-rendered. In the case of the first and last inputText fields, their

associated message components will be re- rendered, displaying any errors that may

have occurred during validation.

Attribute Value Description

@parent Parent of the base component.

@previous Previous component to the base component.

@root UIviewroot.

Component Ids Space-separated list of individual component identifiers.

JSF eL expression that resolves to a collection of string identifiers.

Table 3-13. (continued)

ChaPTer 3 advanCed JavaServer FaCeS

259

UTILIZING AN ACTION LISTENER

It is possible to bind an action listener to an f:ajax tag so that when the invoking action

occurs, the listener method is invoked. Why would you want to bind an action listener?

There are any reasons to do so. For instance, suppose you wanted to capture the text

that a user is typing into a text field. You could do so by binding an action method within

a controller class to the listener attribute of an inputText field’s corresponding f:ajax

tag and then obtaining the current component’s value from the AjaxBehaviorEvent

object within the action method. For instance, suppose that you wanted to test a password

for complexity and display a corresponding message indicating whether a password was

strong enough. The inputSecret component for the password could be modified to

include an f:ajax tag with an event specification of keyup and a listener specified as

#{ch3ContactController.passwordStrength}, as the following listing demonstrates:

Within the view:

<h:outputLabel for="password" value="Enter a password for site access: "/>

<h:inputSecret id="password" size="40"

 value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="keyup" listener="#{ch3ContactController.passwordStrength}"

 render="passwordStrengthMessage"/>

</h:inputSecret>

...

Within the controller:

. . .

private String passwordStrengthMessage;

. . .

public void passwordStrength(AjaxBehaviorEvent event){

 UIInput password = (UIInput) event.getComponent();

 boolean isStrong = false;

 String input = password.getValue().toString();

 if(input.matches("((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).{6,})")) {
 isStrong = true;

 }

ChaPTer 3 advanCed JavaServer FaCeS

260

 if(isStrong == true){

 setPasswordStrengthMessage("Password is strong");

 } else {

 setPasswordStrengthMessage("Password is weak");

 }

 }

The code in this example would create a listener event that, when a user types a value, would

check the present entry to determine whether it met the given criteria for a secure password.

a message would then be displayed to the user to let them know whether the password was

secure.

Using the f:ajax tag makes it easy to add Ajax behavior to a JSF component. Before

the f:ajax tag, special third-party JavaScript libraries were often used to incorporate

similar behaviors within JSF views. f:ajax adds the benefit of allowing the developer

to choose between using Ajax behaviors, without the need for coding a single line of

JavaScript.

3-6. Submitting Pages Without Page Reloads
 Problem
You want to enable your input form to have the ability to submit input fields for

processing without reloading the page. In essence, you want your web application input

form to react more like that of a desktop application rather than navigating from page to

page in order to process data.

 Solution
Embed an <f:ajax/> tag within the command component in the view so that the CDI

controller class action is invoked without the page being submitted. Enable f:ajax to

update the messages component in the view so that any errors or success messages that

result from the processing can be displayed. In this example, the newsletter subscription

page for the Acme Bookstore will be changed so that the form is submitted using Ajax,

and the commandButton component is processed without submitting the form in a

ChaPTer 3 advanCed JavaServer FaCeS

261

traditional manner. The following excerpt from the newsletter subscription form sources

from recipe03_06.xhtml, which demonstrates how to add Ajax functionality to the

action components within the form:

<h:commandButton id="contactSubmit" action="#{ch3ContactController.

subscribe}"

 value="Save">

 <f:ajax event="action" execute="@form" render="@all"/>

</h:commandButton>

<h:panelGrid columns="2" width="400px;">

When the button or link is clicked, JavaScript will be used in the background to

process the request so that the results will be displayed immediately without needing to

refresh the page.

 How It Works
The user experience for web applications has traditionally involved a point, click, and

page refresh mantra. While this type of experience is not particularly a bad one, it is not

as nice as the immediate response that is oftentimes presented within a native desktop

application. The use of Ajax within web applications has helped create a more unified

user experience, allowing a web application the ability to produce an “immediate”

response much like that of a native desktop application. Field validation (covered

in Recipe 3-5) is a great candidate for immediate feedback, but another area where

immediate responses work well is when forms are being submitted.

The f:ajax tag can be embedded in an action component in order to invoke the

corresponding action method using JavaScript behind the scenes. The f:ajax tag

contains a number of attributes, covered in Table 3-12 (see Recipe 3-5), that can be used

to invoke Ajax behavior given a specified event and re-render view components when

that Ajax behavior is complete. Please refer to Table 3-13 to see the values that can be

specified for the execute and render attributes of the f:ajax tag.

In the example for this recipe, the commandButton component with an identifier of

contactSubmit contains an f:ajax tag that specifies the event attribute as action, the

execute attribute as @form, and the render attribute as @all. This means that when

the button is invoked, the ch3ContactController.subscribe method will be called

asynchronously using JavaScript, and it will send all the input component values

ChaPTer 3 advanCed JavaServer FaCeS

262

from the form to the server (controller class) for processing. When the Ajax behavior

(subscribe method) is complete, all of the components within the view will be re-

rendered. By re-rendering all the components in the view, this allows those message

components to display any messages that have been queued up as a result of failed

validation or a successful form submission. It is possible to process or render only

specified components during an Ajax behavior; to learn more about doing so, please see

Recipe 3-7.

Note The event attribute has a default value of action when the f:ajax tag
is embedded within a UICommand component. however, it is specified in the code
for this example for consistency.

3-7. Making Partial-Page Updates
 Problem
You want to execute only a section of a page using an Ajax event and then render the

corresponding section’s components when the Ajax behavior is complete.

 Solution
Use the f:ajax tag to add Ajax functionality to the components that you want to execute

and render when the Ajax behavior is completed. Specify only the component identifiers

corresponding to those components, or @form, @this, or one of the other execute

keywords, for the f:ajax tag execute attribute. Likewise, specify only the component

identifiers for the corresponding message components within the render attribute.

Suppose that the Acme Bookstore wants to execute the submission of the

newsletter subscription form values and update the form’s global message only when

the submission is complete. The following commandButton component would execute

only the form in which it is placed and the component corresponding to the identifier

newsletterSubscriptionMsgs:

ChaPTer 3 advanCed JavaServer FaCeS

263

<h:commandButton id="contactSubmit" action="#{ch3ContactController.

subscribe}" value="Save">

 <f:ajax event="action" execute="@form" render="newsletterSubscription

Msgs"/>

</h:commandButton>

When the button is clicked, the current form component values will be processed

with the request, and the ContactController controller class subscribe() method will

be invoked. Once the subscribe() method is complete, the component within the form

that contains an identifier of newsletterSubscriptionMsgs (in this case a messages

component) will be re-rendered.

Note In the case of the newsletter subscription form for the acme Bookstore, a
partial-page render upon completion is a bad idea. This is because the form will
never be submitted if the values within the form do not validate correctly. In this
case, if some of the form values do not validate correctly, then nothing will be
displayed on the page when the save button is clicked because the subscribe
method will never be invoked. If the f:ajax tag’s render attribute is set to
@all, then all of the components that failed validation will have a corresponding
error message that is displayed. This example should demonstrate how important
it is to process the appropriate portions of the page for the result you are trying to
achieve.

 How It Works
The f:ajax tag makes it simple to perform partial-page updates. To do so, specify the

identifiers for those components that you want to execute for the f:ajax execute

attribute. As mentioned in the example for this recipe, suppose you want to execute only

a portion of a page, rather than all of the components on the given page. You could do so

by identifying the components that you want to execute within the view, specifying them

within the f:ajax execute attribute, and then rendering the corresponding message

components when the Ajax behavior was completed. If nothing is specified for an

f:ajax execute attribute, then the f:ajax tag must be embedded inside a component,

in which case the parent component would be executed. Such is the default behavior

ChaPTer 3 advanCed JavaServer FaCeS

264

for the f:ajax execute attribute. In the example, the execute attribute of the f:ajax

tag specifies the @form keyword, rather than a specific component id. As mentioned

previously, a number of keywords can be specified for both the execute and render

attributes of the f:ajax tag. Those keywords are listed in Table 3-13, which describes

that the @form keyword indicates that all components within the same form as the given

f:ajax tag will be executed when the Ajax behavior occurs. Therefore, all fields within

the newsletter subscription form in this example will be sent to the controller class for

processing when the button is clicked.

The same holds true for the render attribute, and once the Ajax behavior has

completed, any component specified for the render attribute of the f:ajax tag will be

re-rendered. Thus, if a validation occurs when a component is being processed because

of the result of an f:ajax method call, a corresponding validation failure message can be

displayed on the page after the validation fails. Any component can be rendered again,

and the same keywords that can be specified for the execute attribute can also be used

for the render attribute. In the example, the newsletterSubscriptonMsgs component is

rendered once the Ajax behavior is completed.

3-8. Applying Ajax Functionality to a Group
of Components
 Problem
You want to apply Ajax functionality to a group of input components, rather than to each

component separately.

 Solution
Enclose any components to which you want to apply Ajax functionality within an

f:ajax tag. The f:ajax tag can be the parent to one or more JSF components, in

which case each of the child components inherits the given Ajax behavior. Applying

Ajax functionality to multiple components is demonstrated in the following code

listing. In the following example excerpt, the newsletter subscription view of the Acme

Bookstore application is adjusted so that each of the inputText components that

contains a validator is enclosed by a single f:ajax tag. Given that each of the inputText

ChaPTer 3 advanCed JavaServer FaCeS

265

components is embodied within the same f:ajax tag, the f:ajax render attribute has

been set to specify the message component for each of the corresponding inputText

fields in the group:

<ui:define name="content">

 <h:form id="contactForm">

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{ch3ContactController.

newsletterDescription}"/>

 </p>

 <h:messages id="newsletterSubscriptionMsgs" global Only="true"

errorStyle="color: red" infoStyle="color: green"/>

 <f:ajax event="blur" render="firstError lastError emailError

genderError passwordError passwordConfirmError">

 <h:panelGrid columns="2" bgcolor="" border="0">

 <h:panelGroup>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{ch3ContactController.current.first}">

 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{ch3ContactController.current.last}">

 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>

 </h:panelGroup>

ChaPTer 3 advanCed JavaServer FaCeS

266

 <h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

 <h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

 <h:panelGroup>

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{ch3ContactController.current.email}">

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup/>

 <h:message id="emailError"

 for="email"

 errorStyle="color:red"/>

 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"

value="#{ch3ContactController.current.gender}">

 <f:selectItem itemValue="M" itemLabel="Male"/>

 <f:selectItem itemValue="F" itemLabel="Female"/>

 </h:selectOneRadio>

 <h:panelGroup>

 <h:outputLabel for="occupation" value="Occupation: "/>

 <h:selectOneMenu id="occupation"

value="#{ch3ContactController.current.occupation}">

 <f:selectItems value="#{ch3ContactController.

occupationList}"/>

 </h:selectOneMenu>

 </h:panelGroup>

 <h:message id="genderError"

 for="gender"

 errorStyle="color:red"/>

 </h:panelGrid>

ChaPTer 3 advanCed JavaServer FaCeS

267

 <h:outputLabel for="description" value="Enter your book

interests"/>

 < h:inputTextarea id="description" rows="5" cols="75"

value="#{ch3ContactController.current.description}"/>

 <h:panelGrid columns="2">

 <h:outputLabel for="password" value="Enter a password for

site access: "/>

 <h:inputSecret id="password" size="40"

value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="keyup" listener="#{ch3ContactController.

passwordStrength}" render="passwordStrengthMessage"/>

 </h:inputSecret>

 <h:outputLabel for="passwordConfirm" value="Confirm

Password: "/>

 <h:inputSecret id="passwordConfirm" size="40"

value="#{ch3ContactController.passwordConfirm}"

 validator="#{ch3ContactController.

validatePassword}">

 </h:inputSecret>

 </h:panelGrid>

 <h:panelGroup>

 <h:outputText id="passwordStrengthMessage"

value="#{ch3ContactController.passwordStrengthMessage}"/>

 <h:message id="passwordError"

 for="password"

 style="color:red"/>

 </h:panelGroup>

ChaPTer 3 advanCed JavaServer FaCeS

268

 <h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

 <hr/>

 <h:panelGrid columns="3">

 <h:panelGroup>

 <h:outputLabel for="newsletterList"

value="Newsletters:" style=" "/>

 <h:selectManyListbox id="newsletterList"

value="#{ch3ContactController.current.newsletterList}">

 <f:selectItems value="#{ch3ContactController.

newsletterList}"/>

 </h:selectManyListbox>

 </h:panelGroup>

 <h:panelGroup/>

 <h:panelGroup>

 <h:panelGrid columns="1">

 <h:panelGroup>

 <h:outputLabel for="notifyme" value="Would you

like to receive other promotional email?"/>

 <h:selectBooleanCheckbox id="notifyme"

value="#{ch3ContactController.current.

receiveNotifications}"/>

 </h:panelGroup>

 <h:panelGroup/>

 <hr/>

 <h:panelGroup/>

 <h:panelGroup>

 <h:outputLabel for="notificationTypes"

value="What type of notifications are you

interested in recieving?"/>

ChaPTer 3 advanCed JavaServer FaCeS

269

 <h:selectManyCheckbox id="notifyTypes"

value="#{ch3ContactController.current.

notificationType}">

 <f:selectItems value="#{ch3Contact

Controller.notificationTypes}"/>

 </h:selectManyCheckbox>

 </h:panelGroup>

 </h:panelGrid>

 </h:panelGroup>

 </h:panelGrid>

 <hr/>

 </f:ajax>

 <h:commandButton id="contactSubmit" action="#{ch3ContactController.

subscribe}" value="Save">

 <f:ajax event="action" execute="@form" render="@all"/>

 </h:commandButton>

 <h:panelGrid columns="2" width="400px;">

 <h:commandLink id="manageAccount" action="#{ch3Contact

Controller.manage}" value="Manage Subscription">

 <f:ajax event="action" execute="@this" render="@all"/>

 </h:commandLink>

 <h:outputLink id="homeLink" value="home.xhtml">Home

</h:outputLink>

 </h:panelGrid>

 </h:form>

</ui:define>

When the page is rendered, each component will react separately given their

associated validations. That is, if validation fails for one component, only the message

component that corresponds with the component failing validation will be displayed,

although each component identified within the f:ajax render attribute will be

re- rendered.

ChaPTer 3 advanCed JavaServer FaCeS

270

Note as a result of specifying a global f:ajax tag, the password component can
now execute two ajax requests. One of the ajax requests for the field is responsible
for validating to ensure that the field is not blank, and the other is responsible for
ensuring that the given password String is strong.

 How It Works
Grouping multiple components with the same Ajax behavior has its benefits. For one,

if the behavior needs to be adjusted for any reason, one change can now be made to

the Ajax behavior, and each of the components in the group can benefit from the single

adjustment. However, the f:ajax tag is smart enough to enable each component to

still utilize separate functionality, such as validation or actions, so each can still have

their own customized Ajax behavior. To group components under a single f:ajax tag,

they must be added to the view as subelements of the f:ajax tag. That is, any child

components must be enclosed between the opening and closing f:ajax tags. All of the

enclosed components will then use Ajax to send requests to the server using JavaScript

in an asynchronous fashion.

In the example for this recipe, a handful of the inputText components within the

newsletter subscription view have been embodied inside an f:ajax tag so that their

values will be validated using server-side bean validation when they lose focus. The

f:ajax tag that is used to group the components has an event attribute set to blur,

and its render attribute contains the String-based identifier for each of the message

components corresponding to the components that are included in the group. The

space-separated list of component ids is used to re-render each of the message

components when the Ajax behavior is complete, displaying any errors that occur as a

result of the validation.

3-9. Custom Processing of Ajax Functionality
 Problem
You want to customize the Ajax processing for JSF components within a view in your

application.

ChaPTer 3 advanCed JavaServer FaCeS

271

 Solution
Write the JavaScript that will be used for processing your request, and utilize the

jsf.ajax.request() function along with one of the standard JavaScript event-handling

attributes for a JSF component. The following example is the JSF view for the newsletter

subscription page for the Acme Bookstore application. All of the f:ajax tags that were

previously used for validating inputText fields (Recipe 3-1) have been removed, and the

onblur attribute of each inputText component has been set to use the

jsf.ajax.request() method in order to Ajaxify the component. The following excerpt

is taken from the view named recipe03_09.xhtml, representing the updated newsletter

subscription JSF view:

...

 <h:outputScript name="jsf.js" library="javax.faces"

target="head"/>

 <h1>Subscribe to Newsletter</h1>

 <p>

 <h:outputText id="newsletterSubscriptionDesc"

 value="#{ch3ContactController.

newsletterDescription}"/>

 </p>

 <h:messages id="newsletterSubscriptionMsgs"

globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:panelGrid columns="2" bgcolor="" border="0">

 <h:panelGroup>

 <h:outputLabel for="first" value="First: "/>

 <h:inputText id="first" size="40"

value="#{ch3ContactController.current.first}"

 onblur="jsf.ajax.request(this,

event, {execute: 'first', render:

'firstError'});

ChaPTer 3 advanCed JavaServer FaCeS

272

 return false;">

 <f:validateLength minimum="1"

maximum="40"/>

 </h:inputText>

 </h:panelGroup>

 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>

 <h:inputText id="last" size="40"

value="#{ch3ContactController.current.last}"

 onblur="jsf.ajax.request(this,

event, {execute: 'last', render:

'lastError'});

 return false;">

 <f:validateLength minimum="1"

maximum="40"/>

 </h:inputText>

 </h:panelGroup>

 <h:message id="firstError"

 for="first"

 errorStyle="color:red"/>

 <h:message id="lastError"

 for="last"

 errorStyle="color:red"/>

 <h:panelGroup>

 <h:outputLabel for="email" value="Email: "/>

 <h:inputText id="email" size="40"

value="#{ch3ContactController.current.email}"

 onblur="jsf.ajax.request(this,

event, {execute: 'email', render:

'emailError'});

 return false;"/>

 </h:panelGroup>

 <h:panelGroup/>

 <h:message id="emailError"

ChaPTer 3 advanCed JavaServer FaCeS

273

 for="email"

 errorStyle="color:red"/>

 <h:panelGroup/>

...

Note The <h:panelGroup/> tag is used to add a placeholder panel group to
the grid for spacing purposes.

Using this technique, the inputText components that specify Ajax behavior for the

onblur event will asynchronously have their values validated when they lose focus. If any

custom JavaScript code needs to be used, it can be added to the same inline JavaScript

call to jsf.ajax.request().

Note Method calls to CdI controllers cannot be made using the jsf.ajax.
request() technique, so it is not possible to invoke a listener explicitly with the
ajax request.

 How It Works
The JavaScript API method jsf.ajax.request() can be accessed directly by a

Facelets application, enabling a developer to have slightly more control than using

the f:ajax tag. Behind the scenes, the f:ajax tag is converted into a call to jsf.

ajax.request(), sending the parameters as specified via the tag’s attributes. To

use this technique, you must include the jsf.js library within the view. A JSF

outputScript tag should be included in the view, specifying jsf.js as the script

name and javax.faces as the library. The jsf.js script within this example

will be placed in the head of the view, which is done by specifying head for the

target attribute of the outputScript tag. The following excerpt from the example

demonstrates what the tag should look like:

<h:outputScript name="jsf.js" library="javax.faces" target="head"/>

ChaPTer 3 advanCed JavaServer FaCeS

274

Note To avoid nested Ids, it is a good idea to specify the h:form attribute of
prependId=“false” when using jsf.ajax.request() manually. For instance,
the form tag should look as follows:

<h:form prependId="false">

The jsf.ajax.request() method can be called inline, as is the case with the

example for this recipe, and it can be invoked from within any of the JavaScript event

attributes of a given component. The format for calling the JavaScript method is as

follows:

jsf.ajax.request(component, event,{execute:'id or keyword', render:'id or

keyword'});

Usually when the request is made using an inline call, the this keyword is specified

for the first parameter, signifying that the current component should be passed. The

event keyword is passed as the second parameter, and it passes with it the current event

that is occurring against the component. Lastly, a map of name-value pairs is passed,

specifying the execute and render attributes along with the component identifiers

or keywords that should be executed and rendered after the execution completes,

respectively. For a list of the valid keywords that can be used, please refer to Table 3-2

within the introduction to this chapter.

Note You can also utilize the jsf.ajax.request method from within a
controller class by specifying the @ResourceDependency annotation
(https://jakarta.ee/specifications/faces/2.3/apidocs/javax/
faces/application/ResourceDependency.html) as follows:

@ResourceDependency(name="jsf.js" library="javax.faces"
target="head")

ChaPTer 3 advanCed JavaServer FaCeS

https://jakarta.ee/specifications/faces/2.3/apidocs/javax/faces/application/ResourceDependency.html
https://jakarta.ee/specifications/faces/2.3/apidocs/javax/faces/application/ResourceDependency.html

275

3-10. Listening for System-Level Events
 Problem
You want to invoke a method within your application whenever a system-level event

occurs.

 Solution
Create a system event listener class by implementing the SystemEventListener

interface and overriding the processEvent(SystemEvent event) and

isListenerForSource(Object source) methods. Implement these methods

accordingly to perform the desired event processing. The following code listing is for a

class named BookstoreAppListener, and it is invoked when the application is started up

or when it is shutting down:

public class BookstoreAppListener implements SystemEventListener {

 @Override

 public void processEvent(SystemEvent event) throws

AbortProcessingException {

 if(event instanceof PostConstructApplicationEvent){

 System.out.println("The application has been constructed...");

 }

 if(event instanceof PreDestroyApplicationEvent){

 System.out.println("The application is being destroyed...");

 }

 }

 @Override

 public boolean isListenerForSource(Object source) {

 return(source instanceof Application);

 }

}

ChaPTer 3 advanCed JavaServer FaCeS

276

Next, the system event listener must be registered in the faces-config.xml file.

The following excerpt is taken from the faces-config.xml file for the Acme Bookstore

application:

...

<application>

 <system-event-listener>

 <system-event-listener-class>

 org.jakartaeerecipes.

chapter03.recipe03_10.

BookstoreAppListener

 </system-event-listener-class>

 <system-event-class>

 javax.faces.event.

PostConstructApplicationEvent

 </system-event-class

 </system-event-listener>

 <system-event-listener>

 <system-event-listener-class>

 org.jakartaeerecipes.

chapter03.recipe03_10.

BookstoreAppListener

 </system-event-listener-class>

 <system-event-class>

 javax.faces.event.

PreDestroyApplicationEvent

 </system-event-class

 </system-event-listener>

 </application>

...

When the application is started, the message “The application has been

constructed…” will be displayed in the server log. When the application is shutting down,

the message “The application is being destroyed…” will be displayed in the server log.

ChaPTer 3 advanCed JavaServer FaCeS

277

 How It Works
The ability to perform tasks when an application starts up can sometimes be useful. For

instance, let’s say you’d like to have an email sent to the application administrator each time

the application starts. You can do this by performing the task of sending an email within

a class that implements the SystemEventListener interface. A class that implements

SystemEventListener must then override two methods, processEvent(SystemEvent

event) and isListenerForSource(Object source). The processEvent() method is where

the real action occurs, because it is the method into which your custom code should be

placed. Whenever a system event occurs, the processEvent() method is invoked. In this

method, you will need to perform a check to determine what type of event has occurred

so that you can process only those events that are pertinent. To determine the event that

has occurred, perform an instanceof() check on the SystemEvent object. In the example,

there are two if statements used to determine the type of event that is occurring and to

print a different message for each. If the event type is of PostConstructApplicationEvent,

then that means the application is being constructed. Otherwise, if the event type

is of PreDestroyApplicationEvent, the application is about to be destroyed. The

PostConstructApplicationEvent event is called just after the application has been

constructed, and PreDestroyApplicationEvent is called just prior to the application

destruction.

The other method that must be overridden within the SystemEventListener class is

named isListenerForSource(). This method must return true if this listener instance

is interested in receiving events from the instance referenced by the source parameter.

Since the example class is built to listen for system events for the application, a true

value is returned if the source parameter is an instance of Application.

After the system event listener class has been written, it needs to be registered with the

application. In the example, you want to listen for both the PostConstructApplicationEvent

and the PreDestroyApplicationEvent, so there needs to be a system-event-listener

element added to the faces-config.xml file for each of these events. Within the system-

event-listener element, specify the name of the event listener class within a system-

event-listener-class element and the name of the event within a system-event-

class element.

ChaPTer 3 advanCed JavaServer FaCeS

278

3-11. Listening for Component Events
 Problem
You want to invoke a listener method when a specified component event is occurring.

For instance, you want to listen for a component render event.

 Solution
Embed an f:event tag within the component for which you want to listen for events.

The f:event tag allows components to invoke controller class listener methods based

upon the current component state. For instance, if a component is being rendered or

validated, a specified listener method could be invoked. In the example for this recipe,

an outputText component is added to the book view of the Acme Bookstore application

to specify whether the current book is in the user’s shopping cart. When the outputText

component is being rendered, a component listener is invoked that checks the current

state of the cart to see whether the book is contained within it. If it is in the cart, then

the outputText component will render a message stating so; if not, then the outputText

component will render a message stating that it is not in the cart.

The following excerpt is taken from a view named recipe03_10.xhtml, a derivative

of the book view for the application. It demonstrates the use of the f:event tag within a

component. Note that the outputText component contains no value attribute because

the value will be set within the event listener:

...

<h:outputText id="isInCart" style="font-style: italic; color: ">

 <f:event type="preRenderComponent" listener="#{ch3CartController.

isBookInCart}"/>

</h:outputText>

...

The CartController class contains a method named isBookInCart(Compone

ntSystemEvent). The f:event tag in the view references this listener method via

the CartController controller name ch3CartController. The listener method

is responsible for constructing the text that will be displayed in the outputText

component:

ChaPTer 3 advanCed JavaServer FaCeS

279

public void isBookInCart(ComponentSystemEvent event) {

 UIOutput output = (UIOutput) event.getComponent();

 if (cart != null) {

 if (searchCart(authorController.getCurrentBook()

.getTitle()) > 0) {

 output.setValue("This book is currently in your cart.");

 } else {

 output.setValue("This book is not in your cart.");

 }

 } else {

 output.setValue("This book is not in your cart.");

 }

 }

 How It Works
Everything that occurs within JSF applications is governed by the JSF application life

cycle. As part of the life cycle, JSF components go through different phases throughout

their lifetimes. Listeners can be added to JSF components to perform different tasks

when a given phase is beginning or ending. There are two pieces to the puzzle for

creating a component listener: the tag that is embedded within the component for

which your listener will perform tasks and the listener method itself. To add a listener

to a component, the f:event tag should be embedded within the opening and closing

tags of the component that will be interrogated. The f:event tag contains a handful of

attributes, but only two of them are mandatory for use: type and listener. The type

attribute specifies the type of event that will be listened for, and the listener attribute

specifies the controller class listener method that will be invoked when that event occurs.

The valid values that could be specified for the name attribute are preRenderComponent,

postAddToView, preValidate, and postValidate. In addition to these event values, any

Java class that extends javax.faces.event.ComponentSystemEvent can also be specified

for the name attribute.

The listener method must accept a ComponentSystemEvent object. In the example,

the listener checks to see whether the shopping cart is null, and if it is, then a message

indicating an empty cart will be set for the outputText component’s value. Otherwise,

if the cart is not empty, then the method looks through the List of books in the cart to

ChaPTer 3 advanCed JavaServer FaCeS

280

see whether the currently selected book is in the cart. A message indicating whether

the book is in the cart is then added to the value of the outputText component. Via the

listener, the actual value of the component was manipulated. Such a technique could be

used in various ways to alter components to suit the needs of the situation.

3-12. Developing a Page Flow
 Problem
You want to develop a flow of pages within your application that share information with

one another.

 Solution
Define a page flow using the faces flow technology, a solution that allows a defined set

of views to be interrelated with one another to share a common set of data, and views

outside of the flow do not have access to the flow’s data. Flows also have their own set of

navigational logic, so they are almost like a subprogram within an application. To enable

an application to utilize faces flow, a <flow-definition> section should be added to the

faces-config.xml file. The section can be empty, because the navigational logic can

instead reside in a separate configuration file for the flow. The following faces-config.

xml file demonstrates how to enable faces flow for an application:

<faces-config version="2.3"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd">

 ...

<flow-definition>

 </flow-definition>

 ...

</faces-config>

ChaPTer 3 advanCed JavaServer FaCeS

281

The views belonging to a flow should be separated from the rest of the application

views and placed into a folder at the root of the application’s web directory. The folder

containing the flow views should be named the same as the flow identifier. Navigation

and configuration code is contained within a separate XML configuration file that

resides within the flow view directory, and the file is named flowname-flow.xml,

where flowname is the flow identifier. The following configuration file demonstrates

the configuration for a very basic flow identified by exampleFlow. You can find

more information regarding the different elements that can be used within the flow

configuration in the “How It Works” section:

<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

 <flow-definition id="exampleFlow">

 </flow-definition>

</faces-config>

The views belonging to the flow should reside within the flow folder alongside the

flow configuration file. Each of the views can access a controller class that is dedicated

to facilitating the flow. The flows share a context that begins when the flow is accessed

and ends when the flow exits. The following view demonstrates the entry point to a flow

named exampleFlow. This example view can be found in the book sources in the file

recipes03_12.xhtml:

<ui:composition xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

ChaPTer 3 advanCed JavaServer FaCeS

282

 <h:form id="flowForm">

 <p>

 Faces Flow Example

 </p>

 <h:commandButton value="Begin Flow" action="exampleFlow"/>

 <h:commandButton value="Stay Here" action="stay"/>

 </h:form>

 </ui:define>

</ui:composition>

Next, let’s take a look at a view that is accessing the controller class that is dedicated

to the flow. In the following view, the controller class named FlowBean is accessed

to invoke a method, which will return an implicit navigational String directing

the application to the next view in the flow. Notice that this view also accesses the

facesContext.application.flowHandler, which I will discuss more in the “How It

Works” section:

<h:body>

 <f:view>

 <h:form>

 <p>

 This is the first view of the flow.

 Flow ID: #{facesContext.application.flowHandler.currentFlow.id}

 <h:commandLink value="Go to another view in the flow"

action="#{flowBean.navMethod()}"/>

 </p>

 </h:form>

 </f:view>

 </h:body>

ChaPTer 3 advanCed JavaServer FaCeS

283

Each subsequent view within the flow can also access the resources of the

flow’s controller class. Lastly, you’ll look at the code that is contained within org.

jakartaeerecipes.chapter03.FlowBean, which is the controller class that is dedicated

to the flow:

import javax.faces.flow.FlowScoped;

import javax.inject.Named;

@Named

@FlowScoped("exampleFlow")

public class FlowBean implements java.io.Serializable {

 private String flowValue;

 private String parameter1;

 /**
 * Creates a new instance of FlowBean

 */

 public FlowBean() {

 }

 /**
 * Initializes the flow

 */

 public void initializeIt(){

 System.out.println("Initialize the flow...");

 }

 /**
 * Finalizes the flow

 */

 public void finalizeIt(){

 System.out.println("Finalize the flow...");

 }

 public String navMethod(){

 return "intermediateFlow";

 }

ChaPTer 3 advanCed JavaServer FaCeS

284

 public String testMethod(){

 return "intermediate";

 }

 public String endFlow(){

 return "endingFlow";

 }

 /**
 * @return the flowValue

 */

 public String getFlowValue() {

 return flowValue;

 }

 /**
 * @param flowValue the flowValue to set

 */

 public void setFlowValue(String flowValue) {

 this.flowValue = flowValue;

 }

 /**
 * @return the parameter1

 */

 public String getParameter1() {

 return parameter1;

 }

 /**
 * @param parameter1 the parameter1 to set

 */

 public void setParameter1(String parameter1) {

 this.parameter1 = parameter1;

 }

}

ChaPTer 3 advanCed JavaServer FaCeS

285

This solution provided a quick overview of the files that are required for creating a

flow within a JSF application. In the next section, I’ll cover the features in more detail.

 How It Works
The concept of session management has been a difficult feat to tackle since the

beginning of web applications. A web flow refers to a grouping of web views that are

related and must have the ability to share information with each view within the

flow. Many web frameworks have attempted to tackle this issue by creating different

solutions that would facilitate the sharing of data across multiple views. Oftentimes,

a mixture of session variables, request parameters, and cookies are used as a

patchwork solution.

Since JSF 2.2, a solution has been adopted for binding multiple JSF views to each

other, allowing them to share information among each other. This solution is referenced

as faces flow; and it allows a group of interrelated views to belong to a flow instance,

and information can be shared across all the views belonging to a flow instance. Flows

contain separate navigation that pertains to the flow itself and not the entire application.

As such, flow navigation can be defined in an XML format or via code. A flow contains a

single point of entry, and it can be called from any point within an application.

 Defining a Flow

As mentioned in the solution to this recipe, the faces-config.xml file for a JSF

application that will utilize the flow feature must contain a <flow-definition> section.

This section of the faces-config.xml file can contain information specific to one or

more flows residing within an application. However, for the purposes of this recipe, the

solution utilizes a separate XML configuration file for use with the flow. Either way will

work; the syntax does vary just a bit because the XML configuration file that is flow-

specific uses a new JSF taglib for accessing the flow-specific configuration tags.

Note To learn more about using the faces-config.xml file for flow
configuration, please refer to the online documentation (https://docs.oracle.
com/javaee/7/tutorial/jsf-configure003.htm).

ChaPTer 3 advanCed JavaServer FaCeS

https://docs.oracle.com/javaee/7/tutorial/jsf-configure003.htm
https://docs.oracle.com/javaee/7/tutorial/jsf-configure003.htm

286

Even if a flow is not using the faces-config.xml file for defining the flow

configuration, the <flow-definition> section must exist to tell the JSF runtime that

flows are utilized within the application.

The flow-specific configuration file and all flow-related views should reside within

the same folder, at the root of the application’s web directory. The name of the folder

should be the same as the flow identifier. As mentioned in the solution, the flow

configuration file should be named flowname-flow.xml, where flowname is the same as

the flow identifier.

 The Flow Controller Class

A flow contains its own controller class annotated as @FlowScoped, which differs from

@SessionScoped because the data can be accessed only by other views (ViewNodes)

belonging to the flow. The @FlowScoped annotation relies upon Contexts and

Dependency Injection (CDI), because FlowScoped is a CDI scope that causes the

runtime to consider classes with the @FlowScoped annotation to be in the scope of the

specified flow. A @FlowScoped bean maintains a life cycle that begins and ends with a

flow instance. Multiple flow instances can exist for a single application, and if a user

begins a flow within one browser tab and then opens another, a new flow instance will

begin in the new tab. This solution resolves many lingering issues around sessions and

standard browsers that allow users to open multiple tabs. To maintain separate flow

instances, the ClientId is used by JSF to differentiate among multiple instances.

Each flow can contain an initializer and a finalizer (i.e., a method that will be

invoked when a flow is entered and a method that will be invoked when a flow is exited,

respectively). To declare an initializer, specify a child element named <initializer>

within the flow configuration <flow-definition>. The initializer element can be an EL

expression that declares the controller class initializer method, as such:

...

<initializer>#{flowBean.initializeIt}></initializer>

...

Similarly, a <finalizer> element can be specified within the flow configuration

to define the method that will be called when the flow is exited. The following

demonstrates how to set the finalizer to an EL expression declaring the controller class

finalizer method:

ChaPTer 3 advanCed JavaServer FaCeS

287

...

<finalizer>#{flowBean.finalizeIt}></finalizer>

...

Flows can contain method calls and variable values that are accessible only via

the flow nodes. These methods and variables should be placed within the FlowScoped

bean and used the same as standard controller class methods and variables. The main

difference is that any method or variable that is defined within a FlowScoped bean is

available only for a single flow instance.

 Navigating Flow View Nodes

Flows contain their own navigational rules, which can be defined within the

faces-config.xml file or the individual flow configuration files. These rules can be

straightforward and produce a page-by-page navigation, or they can include conditional

logic. There are a series of elements that can be specified within the navigation rules,

which will facilitate conditional navigation. Table 3-14 lists the different elements, along

with an explanation of what they do.

Table 3-14. Flow Navigational Elements

Element Description

view navigates to a standard JSF view.

switch represents one or more eL expressions that conditionally evaluate to true

or false. If true, then navigation occurs to the specified view node.

flow- return Outcome determined by the caller of the flow.

flow- call represents a call to another flow; creates a nested flow.

method- call arbitrary method call that can invoke a method that returns a navigational

outcome.

ChaPTer 3 advanCed JavaServer FaCeS

288

The following navigational sequence is an example of a flow navigation that contains

conditional logic using the elements listed in Table 3-14:

<flow-definition>

 <start-node>exampleFlow</j:start-node>

 <switch id="startNode">

 <navigation-case>

 <if>#{flowBean.someCondition}</if>

 <from-outcome>newView</from-outcome>

 </navigation-case>

 </switch>

 <view id="oneFlow">

 <vdl-document>oneFlow.xhtml</vdl-document>

 </view>

 <flow-return id="exit">

 <navigation-case>

 <from-outcome>exitFlow</from-outcome>

 </navigation-case>

 </flow-return>

 <finalizer>#{flowBean.finalizeIt}</finalizer>

 </flow-definition>

 Flow EL

Flows contain a new EL variable named facesFlowScope. This variable is associated

with the current flow, and it is a map that can be used for storing arbitrary values for use

within a flow. The key-value pairs can be stored and read via a JSF view or through Java

code within a controller class. For example, to display the content for a particular map

key, you could use the following:

The content for the key is: #{facesFlowScope.myKey}

ChaPTer 3 advanCed JavaServer FaCeS

289

3-13. Broadcasting Messages from the Server to
All Clients
 Problem
Your organization has constructed a Jakarta EE application, and it is in use by a number

of clients. You wish to have the ability to send a message from the server and have that

message distributed to all of the clients at once.

 Solution
Make use of the f:websocket tag, which was new with the release of JSF 2.3, to send

a message to all listening clients. The following example includes a client view which

contains a text box, a send button, and a f:websocket tag. The user can type a message

into the text box and click the send button, and the typed message will be sent to all

other clients that are currently listening on the same channel:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <head>

 </head>

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:messages globalOnly="true" errorStyle="color: red"

infoStyle="color: green"/>

 <h:form id="webSocketForm">

 <script type="text/javascript">

 function messageListener(message) {

 document.getElementById("messageDiv").innerHTML

+= message + "
";

 }

 </script>

ChaPTer 3 advanCed JavaServer FaCeS

290

 <p>

 Websocket Integration Example

 </p>

 <p>

 Enter text into the box below and press send

button. This will send

 a message to all connected clients.

 </p>

 <h:inputText id="websocketMessageText"

value="#{bookstoreController.messageText}"/>

 <h:commandButton id="sendMessage"

action="#{bookstoreController.sendMessage}"

value="Send">

 <f:ajax/>

 </h:commandButton>

 <f:websocket channel="messagePusher"

onmessage="messageListener" />

 <div id="messageDiv"/>

 </h:form>

 </ui:define>

 </ui:composition>

 </body>

</html>

The following code shows the server-side code behind the messagePusher channel

and the bookstoreController.sendMessage() method:

import java.util.Date;

import javax.enterprise.context.ApplicationScoped;

import javax.faces.push.Push;

import javax.faces.push.PushContext;

import javax.inject.Inject;

import javax.inject.Named;

ChaPTer 3 advanCed JavaServer FaCeS

291

@Named("bookstoreController")

@ApplicationScoped

public class BookstoreController {

 private Date dayAndTime = null;

 private int counter;

 @Inject

 @Push(channel="messagePusher")

 private PushContext push;

 private String messageText;

. . .

/**
 * Initiates a notification to all Websocket clients. This method is

used

 * for example 3-12.

 */

 public void sendMessage(){

 System.out.println("sending message");

 push.send(messageText);

 messageText = null;

 }

. . .

}

The resulting solution looks like the following. If one types and clicks send, all

listening clients (on the same view) will receive the message.

 How It Works
Websockets have become a standard protocol for client and server communication.

There are a couple of different ways in which to implement Websocket solutions.

One can utilize a framework such as Atmosphere to develop Websockets, or since the

release of Java EE 7, the native Websocket support can be utilized. Both approaches are

supported by the JSF Websocket. The support in JSF 2.3 includes both implementations,

ChaPTer 3 advanCed JavaServer FaCeS

292

so it provides some flexibility. To enable this support, one must specify the javax.faces.

ENABLE_WEBSOCKET_ENDPOINT context parameter in the web.xml deployment descriptor

with a value of true, as follows:

<context-param>

 <param-name>javax.faces.ENABLE_WEBSOCKET_ENDPOINT</param-name>

 <param-value>true</param-value>

</context-param>

The f:websocket tag enables support for Websockets within JSF client views. The

tag includes a required channel attribute, which is a ValueExpression used to list the

channel on which the Websocket client will listen. The tag also includes a required

onmessage attribute, which is also a ValueExpression, and it is used to list the name of

a JavaScript function that is to be executed when the Websocket message is received.

In the example, you can see that the channel is set to messagePusher, meaning that

the server must send message(s) to the channel named messagePusher in order to

successfully send to this client. The message attribute is set to messageListener, and

if you look at the JavaScript source that has been added to the view, you can see that

it contains a function named messageListener. This function is executed when the

message is received. In this example, the function merely prints a message to the div

with an ID of messageDiv in the view. The signature of the JavaScript function in this

example accepts the message only. However, a JavaScript function could also accept a

channel name and event argument, if needed.

The f:websocket tag contains a number of other useful attributes as well. While

optional, the following parameters may be of use in certain circumstances:

• onclose: Specifies a JavaScript function to invoke when the message

is closed.

• scope: Used to specify a limit as to where messages are propagated.

If set to session, this attribute limits the messages to all client views

with the same websocket channel in the current session only.

• port: Specifies the TCP port number other than the HTTP port, if

needed.

ChaPTer 3 advanCed JavaServer FaCeS

293

Now let’s take a look at the server-side implementation. The solution to this recipe

uses a new PushContext, which is injected into an ApplicationScoped bean. This

PushContext is used to send the message to all listening clients, and it can be injected

into any CDI bean by including the @Push annotation, along with the context. The

name of the channel can be specified via an optional channel attribute on the @Push

annotation; otherwise, it will assume the same name as the PushContext identifier. In

the example, the PushContext is simply named “push.” This is the channel on which all

clients must listen.

To send a message, call upon the send() method of the PushContext, passing

the message to be broadcast. The message will be encoded as JSON and delivered to

the message argument of the JavaScript function on the client which corresponds to

the function named in the f:websocket onmessage attribute. The message can be

composed of any number of containers, including a plain String, List, Map, Object,

and so on.

3-14. Programmatically Searching for Components
 Problem
You wish to use Expression Language or Java code to find a particular component or a

set of components within a JSF view. There are a number of reasons why you may wish

to obtain access to components, such as invoking the component programmatically or

referencing them from another component within the view.

 Solution #1
Make use of the JSF component search framework via the use of expression language or

programmatically from Java code. In the following example, a JSF panelGrid component

is updated via expression language using key JSF search terms. The f:ajax tag contains a

render attribute that specifies @parent, indicating that the parent component should be

re-rendered once the Ajax process is complete:

<h:panelGrid columns="2">

 <h:outputLabel for="password" value="Enter a password for

site access: "/>

ChaPTer 3 advanCed JavaServer FaCeS

294

 <h:inputSecret id="password" size="40"

value="#{ch3ContactController.current.password}">

 <f:validateRequired/>

 <f:ajax event="blur" render="@parent"/>

 </h:inputSecret>

 <h:panelGroup/>

 <h:message id="passwordError"

 for="password"

 style="color:red"/>

 <h:outputLabel for="passwordConfirm" value="Confirm

Password: "/>

 <h:inputSecret id="passwordConfirm" size="40"

value="#{ch3ContactController.passwordConfirm}"

 validator="#{ch3ContactController.

validatePassword}">

 <f:ajax event="blur" render="@parent"/>

 </h:inputSecret>

 <h:panelGroup/>

 <h:message id="passwordConfirmError"

 for="passwordConfirm"

 style="color:red"/>

 </h:panelGrid>

 Solution #2
Utilize the programmatic API to search for components from within a server-side CDI

controller class. In the following solution, a button from a JSF view is used to invoke an action

method in the CDI bean. The action method merely demonstrates the programmatic search

expression API. In the action method, a component is looked up by explicit ID:

public void findById() {

 FacesContext context = FacesContext.getCurrentInstance();

 SearchExpressionContext searchContext = SearchExpressionContext.

createSearchExpressionCo

ntext(context, context.

getViewRoot());

ChaPTer 3 advanCed JavaServer FaCeS

295

 context.getApplication()

 .getSearchExpressionHandler()

 .resolveComponent(

 searchContext,

 "passwordConfirm",

 (ctx, target) -> out.print(target.getId()));

 }

 How It Works
For years, JSF developers had difficulty referencing JSF components within a view

by ID. There are a couple of problems that can be encountered if attempting to

simply look up a component by ID. First, if an ID is not explicitly assigned to a JSF

component, then the FacesServlet assigns one automatically. In this situation, the

ID is unknown until runtime, and therefore it is almost impossible to reference the

component using EL or from within Java code. Second, even if a JSF component

is assigned a static ID, then the nesting architecture of JSF views and the JSF

component tree causes the IDs of each parent component to be prepended to the ID

of the child component. This can cause for long and sometimes difficult to maintain

component IDs. Moreover, even if a specified component is easy to identify by

prepending parent IDs, some components, such as those nested in tables, will still

have a dynamic ID assigned at runtime.

There have been a number of third-party libraries that have developed solutions

to combat this problem. OmniFaces and PrimeFaces are some of the most widely

used. The addition of the JSF search expression API to JSF proper significantly

reduces the work that needs to be done in order to gain access to JSF components

within a view. This is especially the case in the event that a component is nested

deep within other components in a view or part of a dataTable as mentioned

previously. The search expression API allows one to utilize keywords to help search

the component tree in a dynamic manner, rather than hard-coding static IDs that

may change down the road.

ChaPTer 3 advanCed JavaServer FaCeS

296

Prior to JSF 2.3, there were four abstract search keywords that could be used to

obtain reference to components, those being "@all", "@this", "@form", and "@none".

Moreover, one could only perform EL search expressions in the f:ajax tag. This was

quite a limitation, and JSF 2.3 greatly expands this functionality. Please refer to Table 3- 15

for the search keywords. The following features have been added to the search

expression API:

• Keywords and search expressions can be used programmatically.

• Many more keywords have been added.

• Keywords accept arguments.

• Keywords are extendible and can be chained.

Table 3-15. Search Keywords

Keyword Description

@child(n) The nth child of the base component

@composite nearest composite component of the base

@id(id) nearest descendant of the base component with an id

matching a specified value

@namingcontainer nearest naming container of the base component

@next next component in view following the base component

@parent Parent of the base component

@previous Previous component to the base

@root The UIviewroot

The solution demonstrates how to find components using the @parent keyword, but

any of the others can be used and strung together in order to find desired components.

Another new feature with JSF 2.3 is the programmatic search expression API. This

makes it possible to gain access to components from within the controller class. The

second listing in the solution demonstrates how to use the programmatic API. To use the

API, first create a SearchExpressionContext, which will later be passed as a parameter

ChaPTer 3 advanCed JavaServer FaCeS

297

to help find the component. Second, call upon the FacesContext to gain reference to

the application via getApplication(), and then invoke getSearchExpressionHandler().

resolveComponent(), passing the SearchExpressionContext, the search expression

string, and the function to call when the component is found. This can be used to search

for any component via a programmatic API.

ChaPTer 3 advanCed JavaServer FaCeS

299
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_4

CHAPTER 4

Eclipse Krazo
Java EE has progressed over the years from a servlet-centric platform to one that

provides a number of different options for building web and enterprise applications.

In the early days of Java EE, in those days referred to as J2EE, one would focus on

developing servlets for building the frontend, as well as the integration and business

layers. Things got a bit more dynamic when JavaServer Pages (JSP) came to fruition,

as developers could begin to divide the workload between teams that would focus on

the HTML markup and JSP tags to compose the frontend and those who would focus

on the application logic. JavaServer Faces took it one step further by adhering to the

Model-View-Controller pattern, whereby code logic was completely separated from page

markup, creating three different tiers. This pattern makes development more logical and

long-term maintenance much easier.

Although JSF provides a robust and mature environment for development of

enterprise applications, the framework is somewhat rigid in that you must adhere to

many of the JavaServer Faces philosophies. One example is that JSF contains a life cycle

that must be followed. One can choose to bypass certain phases of that life cycle, but in

the end there is still some level of control given to the Faces servlet. The Eclipse Krazo

framework, formerly known as “MVC,” was introduced during the same time frame as

Java EE 8 was being developed. The framework takes the Model-View-Controller focus

one step further. It allows developers to adhere to the three-tier architecture without

forcing certain behavior.

The MVC framework was originally intended to be included with Java EE 8 under

JSR 371, but later in an effort to minimize the number of new specifications for inclusion,

it was removed from the platform. However, Oracle handed off the ownership of MVC 1.0

to the community, which later transferred the specification to the Eclipse Foundation.

As mentioned previously, the project name was also changed to Eclipse Krazo.

300

Throughout this chapter, I will discuss the configuration for an Eclipse Krazo

application; how to develop controllers, models, and views; and how to tie it all together.

The framework was built on top of JAX-RS, so many of the key components are the same.

Therefore, you’ll learn a bit about the fundamentals of the JAX-RS API in this chapter

as well. As part of Eclipse EE4J, Krazo is a key framework for building applications on

the Jakarta EE platform. As I always state, if you have more tools in the shed, you will

be able to accomplish a larger variety of tasks. The same holds true about application

development, and frameworks such as JSF are great for development of some

applications, but Eclipse Krazo may be even better for developing others. After reading

this chapter, you will have a better understanding of the differences that Eclipse Krazo

has to offer. You should be able to dive in developing with the Eclipse Krazo framework

as I will walk through the development of an Eclipse Krazo application from start to

finish, using the Apache NetBeans IDE for development.

4-1. Configure an Application for the
Eclipse Krazo Framework
 Problem
You wish to create an Eclipse Krazo application project. Therefore, you need to configure

the project to work with the Eclipse Krazo API.

 Solution
Add the appropriate configuration files to the project and configure JAX-RS accordingly.

In this chapter, I will cover the use of Maven as the project build system, but you could

easily configure using another build system, such as Gradle. Configuration of an Eclipse

Krazo application is very much similar to that of an application that uses the JAX-RS

specification. To begin, let’s create a new project in Apache NetBeans. Create a Maven

web application project, and name it Bookstore, as shown in Figure 4-1.

Chapter 4 eClipse Krazo

301

Next, be sure to choose a Java EE 7–, Java EE 8–, or Jakarta EE–compliant application

server for deployment, and then select Java EE 7 or Java EE 8 as the Java EE version. Click

“Finish” to create the project. Once the project has been created, generate a beans.xml

file. To do this, right-click the project, click “New” ➤ “beans.xml (CDI Configuration

File),” accept the defaults to create it within WEB-INF and keep the name beans.xml, and

finally click “Finish.”

Next, add the required dependencies to the POM file. To do so, right-click the project

and choose “Open POM” from the contextual menu. Once the POM file opens, add the

dependencies for the Eclipse Krazo API:

<dependency>

 <groupId>javax.mvc</groupId>

 <artifactId>javax.mvc-api</artifactId>

 <version>1.0-pfd</version>

 <scope>provided</scope>

</dependency>

Figure 4-1. New Maven web application

Chapter 4 eClipse Krazo

302

<dependency>

 <groupId>org.glassfish.ozark</groupId>

 <artifactId>ozark</artifactId>

 <version>1.0.0-m02</version>

 <scope>provided</scope>

</dependency>

Lastly, the application will need to be configured for use with JAX-RS. To do so, create

an ApplicationConfig class within the org.jakartaeerecipes.bookstore package by

selecting File ➤ New ➤ “Java Class”, as seen in Figure 4-2.

Figure 4-2. Create ApplicationConfig class

The ApplicationConfig class is used to map the RESTful web services to a URI. The

@ApplicationPath annotation is used to configure the path for URI. The following code

shows the sources for this class:

import java.util.HashMap;

import java.util.Map;

import javax.mvc.security.Csrf;

Chapter 4 eClipse Krazo

303

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("controller")

public class ApplicationConfig extends Application {

 @Override

 public Map<String, Object> getProperties() {

 final Map<String, Object> map = new HashMap<>();

 map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.EXPLICIT);

 return map;

 }

}

Once these configurations are complete, you are ready to begin coding an Eclipse

Krazo application.

 How It Works
The Eclipse Krazo framework requires a number of easy configurations made to a project

in order to pull in the required dependencies and to configure CDI and JAX-RS properly.

In this recipe, I showed how to make these configurations, so now let’s see why we need

to make them. As mentioned previously, the JAX-RS configuration should reside within

a class that extends javax.ws.rs.core.Application, which defines components and

metadata for a JAX-RS application. The Eclipse Krazo framework builds upon the JAX-

RS API, so this configuration is mandatory in order to provide the ability to generate

controller classes (see Recipe 4-3 for more details).

In the solution, I named the class which extends the javax.ws.rs.core.

Application class ApplicationConfig. As you see from the code, by extending

the Application class, we can override the getProperties() method to provide

application-specific configuration. In this case, I added CSRF (Cross-Site Request

Forgery) Protection, which is a standard Eclipse Krazo security feature (see Recipe 4-8).

The getProperties() method should return a Map<String, Object>. Lastly, the class

should be annotated with @ApplicationPath, and the URI mapping for the controllers

(or JAX-RS classes) should be passed as a String. In this case, the path is “controller,” and

the URL for accessing controller classes should translate to http://localhost:8080/

BookStore/controller/.

Chapter 4 eClipse Krazo

304

The dependencies for Eclipse Krazo must be referenced within the Maven POM file.

In this case, there are two dependencies, with the expectation that the Java EE 7 or Java

EE 8 full or web profile is also a dependency.

Note there are different profiles available for Java ee 7 and Java ee 8, and there
will also be different profiles available for Jakarta ee. the web profile contains a
smaller number of dependencies for developing web projects, whereas the full
profile contains all Java ee or Jakarta ee dependencies.

The required dependencies for Eclipse Krazo are javax.mvc-api and krazo, which is

the reference implementation. Lastly, ensure that you create a beans.xml configuration

file for CDI. This configuration file allows one to specify how CDI beans are discovered.

For the purposes of this example, accept the default discovery mode of annotated, as

follows:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.

jcp.org/xml/ns/javaee/beans_1_1.xsd"

 bean-discovery-mode="annotated">

</beans>

This recipe walked through the configurations required to create an Eclipse Krazo

project. In the following recipes, I will cover how to build out the project into a fully

functional web application.

4-2. Making Data Available for the Application
 Problem
You need to obtain existing data for your application, and you’d like to easily make the

data available for your web views.

Chapter 4 eClipse Krazo

305

 Solution #1
Utilize the Java Persistence API (JPA) along with Enterprise JavaBeans (EJBs) to provide

data to your application. First, create entity classes which will map each of your

database tables to a corresponding Java object. Please see Chapter 8 for more details on

generating entity classes. For the purposes of the application that is being developed

for this chapter, entity classes will be generated for a number of the tables being used

throughout this book. In this solution, only a single entity class will be generated in order

to demonstrate. However, if you look at the sources for the example application, then you

will find an entity class for each of the tables that are used within the application.

Since the application will be used for the purposes of an online bookstore, the

database tables that are used along with the application pertain to authors and books.

In this solution, we will generate the entity class for the AUTHOR database table. As a brief

primer, an entity class maps each column of a database table to a corresponding class

member. The following code is for the BookAuthor entity class:

package org.jakartaeerecipes.bookstore.entity;

import java.io.Serializable;

import java.math.BigDecimal;

import java.util.List;

import java.util.Set;

import javax.persistence.*;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

@Entity

@Table(name = "BOOK_AUTHOR")

public class BookAuthor implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @Column(name = "ID")

 private BigDecimal id;

Chapter 4 eClipse Krazo

306

 @Size(max = 30)

 @Column(name = "LASTNAME")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRSTNAME")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 @ManyToMany

 @JoinTable(name="AUTHOR_WORK",

 joinColumns=

 @JoinColumn(name="AUTHOR_ID", referencedColumnName="ID"),

 inverseJoinColumns=

 @JoinColumn(name="BOOK_ID", referencedColumnName="ID"))

 private Set<Book> books;

 public BookAuthor() {

 }

 public BookAuthor(BigDecimal id) {

 this.id = id;

 }

. . .

 // getters and setters

. . .

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (id != null ? id.hashCode() : 0);

 return hash;

 }

Chapter 4 eClipse Krazo

307

 @Override

 public boolean equals(Object object) {

 if (!(object instanceof BookAuthor)) {

 return false;

 }

 BookAuthor other = (BookAuthor) object;

 if ((this.id == null && other.id != null) || (this.id != null &&

!this.id.equals(other.id))) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return "org.jakartaeerecipes.bookstore.entity.BookAuthor[id="

+ id + "]";

 }

}

Once the entity classes for each database table have been created, develop EJB

façade (session bean) classes for each of them. To do this, first generate a package

to hold all of the EJB session bean classes. In this case, create a package named org.

jakartaeerecipes.bookstore.session. Next, create a session bean class for each of

the entity classes that have been created. To create the session bean for the BookAuthor

class, create a class within the newly created package, or if using Apache NetBeans, right-

click the new package and select “New” ➤ “Session Beans from Entity Classes.” Name

the bean BookAuthorFacade. If using Apache NetBeans, two classes will be generated,

one of them is an abstract class named AbstractFacade. This abstract class will be

extended by each of the session beans that are created for the application. It contains a

set of common methods that can be used throughout all of the session beans. If creating

a session bean from scratch, you’ll need to create these methods for each bean or use a

similar technique to provide a common implementation for beans to use, similar to the

AbstractFacade.

Chapter 4 eClipse Krazo

308

No matter which technique you choose, you will need to generate a persistence unit

for your application. This is an XML configuration file that is used to contain connection

configuration for your database. Typically, the persistence unit contains Java Naming

and Directory Interface (JNDI) information for connecting to a data source that has been

defined within an application server container. In this case, create a persistence unit

by right-clicking your project and choosing “Create Persistence Unit” if using Apache

NetBeans. Choose an existing data source that has been configured for your database

within Apache NetBeans.

The following code is that of the AbstractFacade, which is automatically generated

by Apache NetBeans:

package org.jakartaeerecipes.bookstore.session;

import java.util.List;

import javax.persistence.EntityManager;

public abstract class AbstractFacade<T> {

 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {

 this.entityClass = entityClass;

 }

 protected abstract EntityManager getEntityManager();

 public void create(T entity) {

 getEntityManager().persist(entity);

 }

 public void edit(T entity) {

 getEntityManager().merge(entity);

 }

 public void remove(T entity) {

 getEntityManager().remove(getEntityManager().merge(entity));

 }

 public T find(Object id) {

 return getEntityManager().find(entityClass, id);

 }

Chapter 4 eClipse Krazo

309

 public List<T> findAll() {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 return getEntityManager().createQuery(cq).getResultList();

 }

 public List<T> findRange(int[] range) {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 javax.persistence.Query q = getEntityManager().createQuery(cq);

 q.setMaxResults(range[1] - range[0] + 1);

 q.setFirstResult(range[0]);

 return q.getResultList();

 }

 public int count() {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 javax.persistence.criteria.Root<T> rt = cq.from(entityClass);

 cq.select(getEntityManager().getCriteriaBuilder().count(rt));

 javax.persistence.Query q = getEntityManager().createQuery(cq);

 return ((Long) q.getSingleResult()).intValue();

 }

}

Next, let’s take a look at the code that is generated for the BookAuthorFacade. This

code is also automatically generated by Apache NetBeans, or it could be manually

created if you wish:

@Stateless

public class BookAuthorFacade extends AbstractFacade<BookAuthor> {

 @PersistenceContext(unitName = "BookStore_1.0PU")

 private EntityManager em;

Chapter 4 eClipse Krazo

310

 @Override

 protected EntityManager getEntityManager() {

 return em;

 }

 public BookAuthorFacade() {

 super(BookAuthor.class);

 }

}

 Solution #2
Utilize RESTful web services to obtain data for your application. As mentioned in

Solution #1, create entity classes which will map each of your database tables to a

corresponding Java object. Once the entity classes have been created, develop REST

service classes for each of them. If using an IDE such as Apache NetBeans, it will only

take a few clicks to generate these RESTful web services, as most IDEs provide an auto-

generation option. Otherwise, simply create a Plain Old Java Object (POJO) and annotate

it accordingly to develop a RESTful service class.

To begin, create a new package and name it org.jakartaeerecipes.bookstore.

service. Next, create the RESTful class inside the newly created package. In Apache

NetBeans IDE, right-click the package and select “New…” ➤ “Web Services” ➤ “RESTful

Web Services from Entity Classes” and then choose “Next.” When the “New RESTful Web

Services from Entity Classes” dialog is displayed, select the org.jakartaeerecipes.

entity.BookAuthor class. On the next screen, change the Resource Package such that it

is org.jakartaeerecipes.bookstore.service, as shown in Figure 4-3. Lastly, choose

“Finish” to create the class.

Chapter 4 eClipse Krazo

311

Similar to creation of an EJB, creation of a RESTful web service provides methods

that can be used to perform create, read, update, and delete actions against a database.

Furthermore, since these methods are annotated as REST services, they can be invoked

via a REST client. The following code shows the RESTful web service class for the

BookAuthor entity. This class is named BookAuthorFacadeREST by NetBeans IDE, or you

can name it differently if generating from scratch:

package org.jakartaeerecipes.bookstore.service;

import java.math.BigDecimal;

import java.util.List;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

Figure 4-3. Creating RESTful web service from entity class in Apache NetBeans IDE

Chapter 4 eClipse Krazo

312

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import org.jakartaeerecipes.bookstore.entity.BookAuthor;

@Stateless

@Path("org.jakartaeerecipes.bookstore.entity.bookauthor")

public class BookAuthorFacadeREST extends AbstractFacade<BookAuthor> {

 @PersistenceContext(unitName = "BookStore_1.0PU")

 private EntityManager em;

 public BookAuthorFacadeREST() {

 super(BookAuthor.class);

 }

 @POST

 @Override

 @Consumes({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

 public void create(BookAuthor entity) {

 super.create(entity);

 }

 @PUT

 @Path("{id}")

 @Consumes({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

 public void edit(@PathParam("id") BigDecimal id, BookAuthor entity) {

 super.edit(entity);

 }

 @DELETE

 @Path("{id}")

 public void remove(@PathParam("id") BigDecimal id) {

 super.remove(super.find(id));

 }

Chapter 4 eClipse Krazo

313

 @GET

 @Path("{id}")

 @Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

 public BookAuthor find(@PathParam("id") BigDecimal id) {

 return super.find(id);

 }

 @GET

 @Override

 @Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

 public List<BookAuthor> findAll() {

 return super.findAll();

 }

 @GET

 @Path("{from}/{to}")

 @Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

 public List<BookAuthor> findRange(@PathParam("from") Integer from,

@PathParam("to") Integer to) {

 return super.findRange(new int[]{from, to});

 }

 @GET

 @Path("count")

 @Produces(MediaType.TEXT_PLAIN)

 public String countREST() {

 return String.valueOf(super.count());

 }

 @Override

 protected EntityManager getEntityManager() {

 return em;

 }

}

Chapter 4 eClipse Krazo

314

To learn more about generating RESTful web services and the respective

annotations, please see Chapter 13. Once a RESTful web service has been created, it can

be called upon from other applications to obtain data in various formats, being XML,

JSON, plain text, or some other medium. An Eclipse Krazo application can utilize a JAX-

RS client to call upon RESTful web services to obtain data for the application. This can

be achieved by generating a service class that contains the JAX-RS client and web service

calls to obtain the data.

To begin, create a class within the org.jakartaeerecipes.bookstore.service

package, and name it BookAuthorService. This will be a session-scoped CDI bean (see

Chapter 11 for details on CDI), which will create a client upon bean construction, and

then load data for use within the application, as needed. In the next recipe which covers

Eclipse Krazo controllers, I’ll demonstrate how to call upon this service class from within

a controller class to obtain data. The following code shows the finished product for the

BookAuthorService class:

package org.jakartaeerecipes.bookstore.service;

import java.util.List;

import javax.annotation.PostConstruct;

import javax.ejb.EJB;

import javax.enterprise.context.SessionScoped;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.core.GenericType;

import org.jakartaeerecipes.bookstore.entity.BookAuthor;

@SessionScoped

public class BookAuthorService implements java.io.Serializable {

 Client jaxRsClient;

 private List<BookAuthor> bookAuthorList;

 final String hostUri = "http://localhost:8080/BookStore/bookstore";

 public BookAuthorService(){

 }

Chapter 4 eClipse Krazo

315

 @PostConstruct

 public void init(){

 // Construct a JAX-RS Client

 jaxRsClient = ClientBuilder.newClient();

 loadData();

 }

 private void loadData(){

 bookAuthorList = jaxRsClient.target(hostUri + "/org.

jakartaeerecipes.bookstore.entity.bookauthor/findAll")

 .request("application/xml")

 .get(new GenericType<List<BookAuthor>>() {

 }

);

 }

 /**

 * @return the bookAuthorList

 */

 public List<BookAuthor> getBookAuthorList() {

 if(bookAuthorList == null){

 loadData();

 }

 return bookAuthorList;

 }

 /**

 * @param bookAuthorList

 */

 public void setBookAuthorList(List<BookAuthor> bookAuthorList) {

 this.bookAuthorList = bookAuthorList;

 }

}

The service class can be used to load the data and obtain the set of data for our

application. This class could be modified at a later time to provide RESTful web service

methods for creating, updating, and removing data, as needed.

Chapter 4 eClipse Krazo

316

 How It Works
Most enterprise applications do some work with data. Eclipse Krazo applications are

no different, as data typically plays an important role. The way to obtain data for an

Eclipse Krazo application is very much the same as it would be for many other Java web

applications, and RESTful web services or EJBs are some great options. Keep in mind that

these are not the only options for pulling data into an Eclipse Krazo application. Since

the Eclipse Krazo framework provides a very fluid design pattern, it allows the developer

to make many choices along the way. To that end, one could certainly use another

methodology such as JDBC or a homegrown data access object (DAO) to orchestrate work

with the database. This recipe shows two of the most standard approaches.

In Solution #1, I showed how one could create entity classes based upon existing (or

new) database tables and then write an EJB façade used in tandem with the entity classes

to work with the data. This is, by far, one of the most standard approaches for coercing

data into Java objects, dating back to the J2EE days. Back in the days of J2EE, developers

were required to write heavyweight EJB solutions and lots of XML in order to pull off the

same feat that can be resolved nowadays using simple POJOs with annotations.

The use of EJBs goes hand in hand with the use of entity classes for mapping

database tables to Java objects. To learn more about the use of entity classes, please refer

to Chapter 6 where object-relational mapping is discussed. Once an entity class has been

constructed, it is easy to create an EJB that can be used to work with the entity class to

orchestrate the data. Since Chapter 8 is dedicated to the use of EJBs, you can look there

for more information on creating and using them. The point of this particular recipe is

to show how to use these options within an Eclipse Krazo application. One can bind the

use of EJBs with the Eclipse Krazo controller classes to obtain data and manipulate it, as

needed. In the next recipe, you will learn more about Eclipse Krazo controller classes.

Solution #2 shows how to also make use of entity classes for mapping Java objects to

database tables, but instead uses RESTful service classes to obtain the data. The solution

demonstrates how to create the RESTful web services that will provide the data, and it

also shows how to create a JAX-RS client service class that can be used to call upon the

RESTful web services to obtain data. Most likely with these two JAX-RS solutions, the JAX-

RS web service and the JAX-RS client will not be part of the same application. Typically, one

application or microservice will obtain the data from the database and provide it to other

consumers via the JAX-RS web service, and other applications or microservices will act as

consumers, using JAX-RS clients to obtain the data from the web service. I only demonstrated

both the web service and the client in this application for the purposes of example.

Chapter 4 eClipse Krazo

317

Since Chapter 13 covers RESTful web services in entirety, I will point you to that

chapter for more information. Let’s focus on how we can glean the data from the web

services using a JAX-RS client for our MVC application. Typically, an MVC controller (see

the next recipe) will call upon the JAX-RS client to obtain the data for the application. In

Solution #2, a simple client is created to obtain the list of BookAuthor entities from the

web service and load them into a local list. The BookAuthorService class is a session-

scoped CDI bean, so it is annotated with @SessionScoped (javax.enterprise.context.

SessionScoped). Since this class may need to be saved to disk to store the session

data, it must be made serializable. Next, declare a javax.ws.rs.client.Client and a

List<BookAuthor> so that the client can be created and the list of BookAuthor objects

can be stored in the session. The class should create the client and load the data when

the bean is created, so one of the methods should be annotated with @PostConstruct so

that it is automatically invoked upon bean construction. In this case, the init() method

is invoked upon construction, allowing the client to make a RESTful service call to the

org.jakartaeerecipes.bookstore.entity.bookauthor web service to obtain all of the

records and store them into the bookAuthorList.

Although this recipe does not directly pertain to the Eclipse Krazo application

methodology, it is an important piece of the puzzle for obtaining data for use with the

application. In the next recipe, I will dive directly into the Eclipse Krazo controller class,

which is the heart of the business logic for an Eclipse Krazo application.

4-3. Writing a Controller Class
 Problem
You would like to orchestrate the navigation and business logic for an Eclipse Krazo

application.

 Solution
Develop Eclipse Krazo controller classes to provide the business logic and navigation

logic behind the application. To get started, create a new package in which to store

the controllers for the application. In this example, I’ve named the package org.

jakartaeerecipes.bookstore.controller. Also create a package to hold classes

that will be used as objects for transporting data within the application. Name this

Chapter 4 eClipse Krazo

318

package org.jakartaeerecipes.bookstore.container. Before the controller

class can be created, a container needs to be created within the newly created org.

jakartaeerecipes.bookstore.container package, and name it BookAuthorContainer.

This class is merely a SessionScoped CDI bean that will be used to hold instances of the

BookAuthor objects and expose them to the web views of the application. The sources for

BookAuthorContainer should look as follows:

package org.jakartaeerecipes.bookstore.container;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Inject;

import javax.inject.Named;

import org.jakartaeerecipes.bookstore.entity.BookAuthor;

@Named

@SessionScoped

public class BookAuthorContainer implements java.io.Serializable {

 private BookAuthor bookAuthor;

 private List<BookAuthor> bookAuthorList;

 public BookAuthorContainer(){

 }

 . . .

 // Getters and Setters

 . . .

}

Next, create a class named BookAuthorController inside of the

org.jakartaeerecipes.bookstore.controller package, and annotate the controller

class with the @Path("/bookAuthor") and @Controller annotations. Next, create a

public method with a return type of String and name it getBookAuthors, accepting

no arguments. Annotate the method with @GET and within this method query data for

loading the BookAuthor list, and return a String of "bookAuthor.jsp". The following

sources show the code for the BookAuthorController class:

Chapter 4 eClipse Krazo

319

import java.util.List;

import javax.inject.Inject;

import javax.ws.rs.Path;

import javax.mvc.annotation.Controller;

import javax.ws.rs.GET;

import org.jakartaeerecipes.bookstore.entity.BookAuthor;

import org.jakartaeerecipes.bookstore.service.BookAuthorService;

@Path("/bookAuthor")

@Controller

public class BookAuthorController {

 @Inject

 private BookAuthorService bookAuthorService;

 public BookAuthorController(){

 }

 @GET

 public String getBookAuthors(){

 // obtain list of authors

 return "bookAuthor.jsp";

 }

}

If a URI containing the path indicated by the @Path annotation is loaded, the

bookAuthor.jsp view will be loaded.

 How It Works
An Eclipse Krazo controller class is used to bind business logic to the view, and process

requests and responses. Controller classes are CDI controllers that contain a number

of JAX-RS annotations, as the Eclipse Krazo controller façade is based upon the JAX-

RS API. Every controller class is indicated as such via the javax.mvc.annotation.

Controller annotation. The javax.ws.rs.Path annotation is applied at the controller

Chapter 4 eClipse Krazo

320

class level to indicate which URI will be used to access controller class methods via the

web application. For instance, this controller class can be accessible via a URI matching

the following format since there is only one method:

http://localhost:8080/BookStore/controller/bookAuthor

It is important to note that the controller class is annotated like a JAX-RS class.

Controllers in the Eclipse Krazo framework are implemented using the same

annotations that are used to implement a JAX-RS RESTful web service class. That said,

when the preceding URI is used to access the application, the BookAuthor CDI controller

is invoked due to the application path being /BookStore/ and the matching

@Path annotation specifying /bookAuthor as the matching path. When invoked, the GET

requests are handled by the getBookAuthors() method, as it is annotated with @GET

without a specified path. The @GET annotation is used to indicate an HTTP GET method.

Since this particular controller only has one controller method annotated with @GET, the

default path is going to invoke the single method. If there were more than one method in

the controller, each method would also need to be annotated with @Path to indicate the

sub-path to invoke each method in turn. An Eclipse Krazo controller should utilize other

HTTP methods such as @PUT and @POST for inserting or updating records in a database.

In the example, when the getBookAuthors() method is invoked, the

BookAuthorService is called upon, invoking the getBookAuthorList() method and

loading the local bookAuthors list. Next, data loaded into a list will be accessible via the

view. The data loading processes are omitted from this recipe, but they are covered in

greater detail in Recipe 4-4.

The last important detail to note is that the return value from the

getBookAuthorList() method is the next view that will be rendered when the response

is returned. The default return type for a controller method is text/html, but that can be

changed via the @Produces annotation. A String returned from a controller method is

the view path. In this case, the bookAuthor.jsp view is next to be loaded. It is possible

to provide navigation to the next view in a number of different ways, and returning the

name of the next view is the first technique.

A controller method can also have a return type of void, and in such cases the

method must be annotated with @View("returnViewName"). As seen here, the String-

based view name is passed as an attribute to the annotation. This technique makes it

easy to separate navigational logic from business logic:

Chapter 4 eClipse Krazo

321

@GET

@View("bookAuthor.jsp")

public void getBookAuthors(){

 //obtain authors

}

The next technique involves returning a Viewable, which would look like the

following lines of code. A Viewable provides flexibility, especially in cases where one

wishes to implement a non-standard view engine:

@GET

public Viewable getBookAuthors(){

 //obtain authors

 return new Viewable("bookAuthor.jsp");

}

The final technique for controlling navigation is to return a JAX-RS response object,

which provides a lot of information since it can include different response codes

depending upon certain situations:

@GET

public Response getBookAuthors(){

 // obtain authors

 return Response.status(Response.Status.OK).entity("bookAuthor.jsp").

build();

}

As mentioned previously, Eclipse Krazo controller classes are very much the same

as JAX-RS web service classes in that they use common annotations. In the example,

the controller class is utilized as an Eclipse Krazo controller only, but it is possible for a

controller class to become a hybrid class which also contains JAX-RS methods. To do this,

move the @Controller annotation to each Eclipse Krazo method, rather than at the class

level itself. The javax.mvc.annotation.View annotation can also be applied at either class

or method level. As mentioned previously, it points to the view for the controller method.

The controller method defines the business logic for an Eclipse Krazo application.

Controllers utilize JAX-RS annotations and provide plumbing for the request response

life cycle. Lastly, controllers are responsible for returning responses including data to

application views.

Chapter 4 eClipse Krazo

322

4-4. Using a Model to Expose Data to a View
 Problem
You wish to obtain data from a data source and make it available for use within an

application view.

 Solution
Inject and make use of the Models API from within your controller class. In the following

example, the method getBookAuthors(), which is invoked when the URI path to

the controller is accessed, obtains data from a web service (see Recipe 4-2 for more

information) and populates data for use in a view using a model:

import java.util.List;

import javax.inject.Inject;

import javax.mvc.Models;

import javax.ws.rs.Path;

import javax.mvc.annotation.Controller;

import javax.ws.rs.GET;

import org.jakartaeerecipes.bookstore.entity.BookAuthor;

import org.jakartaeerecipes.bookstore.service.BookAuthorService;

@Path("/bookAuthor")

@Controller

public class BookAuthorController {

 @Inject

 private Models models;

 @Inject

 private BookAuthorService bookAuthorService;

 public BookAuthorController(){

 }

 @GET

 public String getBookAuthors(){

 List<BookAuthor> bookAuthors = bookAuthorService.getBookAuthorList();

Chapter 4 eClipse Krazo

323

 models.put("bookauthors", bookAuthors);

 return "bookAuthor.jsp";

 }

}

The JSP view markup that is contained within the bookAuthor.jsp JSP view looks

like the following:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Example of Eclipse Krazo Using JSP for View</title>

 </head>

 <body>

 <h1>Book Authors</h1>

 <table class="table table-striped">

 <colgroup>

 <col style="width: 80%;" />

 </colgroup>

 <thead>

 <tr>

 <th class="text-left">Author</th>

 </tr>

 </thead>

 <tbody>

 <c:forEach var="bookAuthor" items="${bookauthors}">

 <tr>

 <td class="text-center">

 ${bookAuthor.last}

 </td>

 </tr>

 </c:forEach>

Chapter 4 eClipse Krazo

324

 </tbody>

 </table>

 </body>

</html>

Given the sample dataset, the results of the simple view will look like that in

Figure 4- 4.

Figure 4-4. Example of bookAuthor.jsp results

 How It Works
The Models API must be included in every implementation of the Eclipse Krazo

framework. Essentially, the Models API provides a javax.mvc.Models map which is

used to store a dataset with a key identifier as a key/value pair that is exposed to the next

rendered view. The HashMap for the Models API adheres to the following format:

Map<String, Object> model = new HashMap<String, Object>();

In the example, the Models map is injected into the controller class using

CDI @Inject. Once injected, the model can be used to store data for exposure.

A List<BookAuthor> is placed into the Models map as follows:

models.put("bookauthors", bookAuthors);

The model is exposed to the view via the bookauthors key. In the example JSP view,

the ${bookauthors} expression is used within a JSTL c:if tag to display the records in a

table:

Chapter 4 eClipse Krazo

325

<c:forEach var="bookAuthor" items="${bookauthors}">

 <tr>

 <td class="text-center">

 ${bookAuthor.last}

 </td>

 </tr>

</c:forEach>

As seen in the example, the Models API is very easy to utilize. However, it is not the

preferred method for exposing data, as CDI is preferred. CDI is preferred in general

because it allows for more flexibility than the Models API. Recipe 4-5 delves into utilizing

CDI beans for exposing data.

4-5. Utilizing CDI for Exposing Data
 Problem
You are interested in exposing data from a controller into a view, but you’d like to not

make use of Eclipse Krazo Models to do so. Instead, you’d like to harness the power of

CDI to expose data to views.

 Solution
Utilize CDI models to return data to the view. The use of CDI is the preferred technique

for exposing data to views. In this recipe, a CDI bean is injected into the controller, and

then it is utilized to store data. This CDI bean is session scoped, so the data that is placed

within the bean will last the entire web session. The following code is that of the CDI

bean which is used to expose the data:

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

import org.jakartaeerecipes.bookstore.entity.Book;

@Named

@SessionScoped

public class BookContainer implements java.io.Serializable {

Chapter 4 eClipse Krazo

326

 private Book book;

 private List<Book> bookList;

 public BookContainer(){

 }

 . . .

 // Getters and setters

 . . .

}

Next, the controller class utilizes the CDI bean to store data and make it available to

the view:

@Path("/book")

@Controller

public class BookController {

 @Inject

 private BookContainer bookContainer;

 public BookController() {

 }

 /**

 * Queries all books using the <code>BookService</code> and then

 * returns to the <code>book.jsp</code> JSP page.

 * @return

 */

 @GET

 public String getBooks(){

 Book book = new Book();

 book.setTitle("Jakarta EE Recipes");

 bookContainer.setBook(book);

 return "book.jsp";

}

The following markup is that of the book.jsp view. As you can see from the example,

the view simply displays the name of the book that was loaded into the CDI bean:

Chapter 4 eClipse Krazo

327

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Jakarta EE Recipes: Recipe 4-5</title>

 </head>

 <body>

 <h1>Book List</h1>

 The book that was loaded in BookController: ${bookContainer.book.

title}

 </body>

</html>

 How It Works
The preferred technique for exposing data to the web views of an Eclipse Krazo

application is to utilize Contexts and Dependency Injection (CDI) beans. CDI is a

specification that binds many of the Java EE and Jakarta EE technologies together. CDI

is a large specification that includes many details, but in-depth explanations of the

specification are out of scope for this recipe. For more details on CDI, please refer to

Chapter 11. One of the functions of CDI is to wire beans together, effectively making it

possible for data and scope to be shared between classes and between the backend and

front-facing views of an application.

For the purposes of the Eclipse Krazo framework, one of the core focuses is the

ability to share contextual objects between the backend code and the frontend views.

In this simple example, the CDI bean is merely a SessionScoped container named

BookContainer. As seen in the code, the BookContainer class is annotated with @Named,

which marks the class as a CDI bean and makes it available for injection into other

classes using the class name with the first letter in lowercase. In this case, the bean

will be injectable via the name bookContainer. The @Named annotation does accept a

String-based alias, which can be used to call upon the class at injection time from a

view. The BookContainer class is also annotated with @SessionScoped, which defines

the scope of the bean. The other available scope possibilities are @RequestScoped,

@ApplicationScoped, and @ConversationScoped.

Chapter 4 eClipse Krazo

328

The BookController utilizes a contextual proxy to the bean by injecting an instance

of it using the @Inject annotation. The bean is used within the getBooks() method, as

it accepts a Book instance for which the title and description have been populated. It is

also possible to define different class fields within the CDI bean and populate them with

data directly to expose it to a view or other classes. Once the data has been populated,

the BookController bean can be accessed from a view using expression language, or the

same instance of the bean can be injected into another class and made accessible. In this

example, the controller method getBooks() simply returns the name of the next view to

be loaded, books.jsp. The books.jsp JSP view accesses the title of the book by referring

to the bean via the injection name ${bookController.book.title}.

CDI can be very powerful for managing contextual instances of classes within a

Jakarta EE application. Using CDI to expose data to a view within an Eclipse Krazo

application brings forth the same functionality as the use of the Models API, and it also

allows data to be utilized in other classes, if needed.

4-6. Supplying Message Feedback to the User
 Problem
You wish to display feedback to a user after a transaction occurs.

 Solution
Utilize CDI beans to easily provide feedback to users in the form of messages displayed

onscreen. In the following scenario, all books in a bookstore are loaded and displayed in

the book.jsp view. A RequestScoped CDI bean entitled Messages is used to encapsulate

the logic for storing informative or error messages. In the controller class, a message

indicating the number of books that are loaded is set into the bean using the info field.

This bean is then available for display within the view.

First, here is a look at the CDI bean named Messages:

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import java.util.ArrayList;

Chapter 4 eClipse Krazo

329

import java.util.Collections;

import java.util.List;

/**

 * This class encapsulates messages displayed to the users. There can be a

 * single info message and multiple error messages. Controllers can use this

 * class to queue messages for rendering. The class shows how named CDI beans

 * can be used as a model for the view. Whether to include some class like

 * this in the spec is not decided yet.

 */

@Named

@RequestScoped

public class Messages {

 private String info;

 private final List<String> errors = new ArrayList<>();

 public Messages addError(String error) {

 errors.add(error);

 return this;

 }

 public List<String> getErrors() {

 return Collections.unmodifiableList(errors);

 }

 public String getInfo() {

 return info;

 }

 public void setInfo(String info) {

 this.info = info;

 }

}

Chapter 4 eClipse Krazo

330

The code for the controller class used to load the book listing and provide the

message is as follows:

@Inject

private Messages messages;

. . .

@GET

@Path("/books")

public String displayBookListing() {

 bookList = bookService.getBookList();

 bookContainer.setBookList(bookList);

 messages.setInfo("There are " + bookList.size() + " books in the

library.");

 return "book.jsp";

}

The subsequent book.jsp view markup is as follows:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <link href="${pageContext.request.contextPath}/webjars/

bootstrap/3.3.4/dist/css/bootstrap.css" rel="stylesheet">

 <script src="${pageContext.request.contextPath}/webjars/

bootstrap/3.3.4/dist/js/bootstrap.js"></script>

 <title>Jakarta EE Recipes</title>

 </head>

 <body>

 <h1>Book List</h1>

 The book that was loaded in BookController: ${bookContainer.book.

title}

 <c:if test="${messages.info != null}">

 <div class="alert alert-success" role="alert">

 ${messages.info}

Chapter 4 eClipse Krazo

331

 </div>

 </c:if>

 <c:if test="${not empty messages.errors}">

 <div class="alert alert-danger" role="alert">

 <ul class="list-unstyled">

 <c:forEach var="error" items="${messages.errors}">

 ${error}

 </c:forEach>

 </div>

 </c:if>

 <table class="table table-striped">

 <colgroup>

 <col style="width: 80%;" />

 </colgroup>

 <thead>

 <tr>

 <th class="text-left">Book</th>

 </tr>

 </thead>

 <tbody>

 <c:forEach var="book" items="${bookContainer.bookList}">

 <tr>

 <td class="text-center">

 ${book.title}

 </td>

 </tr>

 </c:forEach>

 </tbody>

 </table>

 </body>

</html>

Chapter 4 eClipse Krazo

332

 How It Works
CDI beans can be leveraged to easily display messages from a controller. As seen in

Recipe 4-5, the CDI bean can be injected into a controller class, data can be set into the

controller, and then it can be made available in subsequent views. In the example for this

recipe, a message containing the number of books within the bookList is created as a

String, and then it is assigned to the info field of the Messages bean:

messages.setInfo("There are " + bookList.size() + " books in the

library.");

When the book.jsp view is loaded, the message is displayed within the view using

expression language in the ${messages.info} format. In the view, a <c:if> tag is used

to conditionally display the informative message if it exists, or if the error message

exists, then it will be displayed instead. If users are seeing an error message, it usually

helps to have that message stand out in red text or bold text. If a user is seeing helpful

information within a message, it may be helpful to see that message in green text or

something of the like. In such cases, the Eclipse Krazo framework can leverage existing

JavaScript APIs to provide nice message formatting. The example utilizes the Bootstrap

JavaScript library to display messages nicely depending upon type.

Figure 4-5. Messages displayed nicely using Bootstrap

4-7. Inserting and Updating Data
 Problem
You wish to utilize a form to insert or update data.

Chapter 4 eClipse Krazo

333

 Solution
Create controller methods that are annotated with @PUT or @POST, depending upon

whether the methods will be utilized for inserting or updating, respectively. The

following markup, excerpted from book.jsp, contains a form that is used to create a new

book record. Make note that in the following example, the action invoked upon submit

will initiate the RESTful web service that contains the "/create" path:

<form action="${pageContext.request.contextPath}/bookstore/book/create"

method="POST" class="form-inline">

 <div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">Book Information</h3>

 </div>

 <div class="panel-body">

 <div class="form-group">

 <label for="subject">Title</label>

 <input type="text" class="form-control"

id="title" name="title" placeholder="Title"

 value="${book.title}" autofocus>

 </div>

 </div>

 </div>

 <div class="form-group">

 <label for="description">Description:</label>

 <textarea cols="100" rows="4" class="form-control"

id="description" name="description"

placeholder="Description">

 ${book.description}

 </textarea>

 </div>

 <button type="submit" class="btn btn-primary">Create</button>

 </form>

Chapter 4 eClipse Krazo

334

The submit action in the form invokes the controller method named createItem(),

which obtains data that was submitted via a form and utilizes JAX-RS to insert into the

database:

@POST

@Path("/create")

@Controller

public String createItem(@BeanParam @Valid Book form) {

 // Create new book

 // Obtain issue list to count records for ID population

 bookList = bookService.getBookList();

 form.setId(new BigDecimal(bookList.size() + 1));

 Book entity = new Book();

 entity.setId(form.getId());

 entity.setTitle(form.getTitle());

 entity.setDescription(form.getDescription());

 bookService.create(entity);

 return displayBookListing();

}

Once the method has been executed, the book listing is refreshed because the

final line of createItem() invokes displayBookListing(), which executes the code as

follows:

@GET

@Path("/books")

public String displayBookListing() {

 bookList = bookService.getBookList();

 bookContainer.setBookList(bookList);

 messages.setInfo("There are " + bookList.size() + " books in the

library.");

 System.out.println("Issue count: " + bookList.size());

 return "book.jsp";

}

Chapter 4 eClipse Krazo

335

The resulting view, book.jsp, will display the newly created book within the listing of

books, as seen in the previous recipe in Figure 4-5.

 How It Works
The overall mantra of the Eclipse Krazo framework is complete control and ease of

use. This example demonstrates exactly those ideals, as it demonstrates how the entire

request-processing life cycle is handled by the developer, and the framework makes

it easy to achieve. In order to create or update data, an HTML form is used to submit

form data to a controller method. In this case, the form is written in JSP markup, and

the submit action invokes a RESTful controller method entitled createItem(). The

createItem() method contains a signature that returns a String for the next view

to render after completion, and it accepts a parameter of type Book. Note that the

parameter is annotated with @BeanParam and @Valid. The @BeanParam annotation

indicates that the Book class contains some form parameter annotations to specify for

fields. Specifically, in this case the Book entity class contains the following:

public class Book implements Serializable {

 private static final long serialVersionUID = 1L;

 // @Max(value=?) @Min(value=?)//if you know range of your decimal

fields consider using these annotations to enforce field validation

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE,

 generator = "book_s_generator")

 @SequenceGenerator(name = "book_s_generator", sequenceName = "book_s",

allocationSize = 1)

 @Basic(optional = false)

 // @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 //@Size(max = 150)

 @FormParam(value="title")

 @Column(name = "TITLE")

 protected String title;

 //@Size(max = 500)

 @Column(name = "IMAGE")

Chapter 4 eClipse Krazo

336

 private String image;

 @FormParam(value="description")

 @Lob

 @Column(name = "DESCRIPTION")

 private String description;

Therefore, the @BeanParam annotation will introspect the Book object for injection

annotations and set them appropriately. The @Valid annotation indicates that Bean

Validation processing should be invoked for this object. At method invocation time

(form submit), the bean validation will take place and help to prevent erroneous data

from being submitted.

Once initiated, the book listing is obtained from the BookService, which will be used

to count the number of books. This number is used to increment a number to produce

the primary key for the new record being created. The new Book entity is then created,

values are set accordingly, and then the create() method is called to persist the data.

Once persisted, the database is queried again via the call to displayBookListing(), and

then the response is returned and the book.jsp view is displayed.

4-8. Applying a Different View Engine
 Problem
Rather than utilizing a standard Eclipse Krazo view engine, you’d like to make use of

another view type that is either already supported or not yet officially supported.

 Solution #1
Make use of another view engine that has already been implemented for the MVC

framework. There have been many different view engines already generated that are

ready for use, and this example will demonstrate Facelets. Since Facelets ships with

Eclipse Krazo, it is easy to add to a project. In order to do so, modify the web.xml to

contain the Faces Servlet mapping by adding the following:

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

Chapter 4 eClipse Krazo

337

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.xhtml</url-pattern>

</servlet-mapping>

Next, simply make use of .xhtml views within the application. The following method

in BookController sends a response to hello.xhtml, which is written in Facelets:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:c="http://java.sun.com/jsp/jstl/core">

 <h:head>

 <title>Facelets View</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 </h:head>

 <h:body>

 <h:dataTable var="book" value="#{bookContainer.bookList}">

 <h:column>

 ${book.title}

 </h:column>

 </h:dataTable>

 </h:body>

</html>

 Solution #2
Generate a new view engine by implementing the javax.mvc.engine.ViewEngine

interface and incorporating logic to load and process the views of your choice. A

ViewEngine is responsible for finding and loading views for an application, preparing

Chapter 4 eClipse Krazo

338

models, and rendering views to return control to the client. In the following code, a

ViewEngine has been implemented for the Pebble templating engine (https://github.

com/PebbleTemplates/pebble):

package org.jakartaeerecipes.bookstore.engine;

import com.mitchellbosecke.pebble.PebbleEngine;

import com.mitchellbosecke.pebble.error.PebbleException;

import com.mitchellbosecke.pebble.template.PebbleTemplate;

import java.io.IOException;

import java.io.StringWriter;

import java.io.Writer;

import java.net.URL;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.mvc.engine.ViewEngine;

import javax.mvc.engine.ViewEngineContext;

import javax.mvc.engine.ViewEngineException;

import javax.servlet.ServletContext;

@ApplicationScoped

public class PebbleViewEngine implements ViewEngine {

 @Inject

 private ServletContext servletContext;

 @Override

 public boolean supports(String view) {

 return view.endsWith(".html");

 }

 @Override

 public void processView(ViewEngineContext context) throws

ViewEngineException {

 try {

 String viewName = "/WEB-INF/views/" + context.getView();

 URL template = servletContext.getResource(viewName);

Chapter 4 eClipse Krazo

https://github.com/PebbleTemplates/pebble
https://github.com/PebbleTemplates/pebble

339

 PebbleEngine engine = new PebbleEngine.Builder()

 .loader(new ServletLoader(servletContext)).build();

 PebbleTemplate compiledTemplate = engine.getTemplate(viewName);

 Writer writer = new StringWriter();

 compiledTemplate.evaluate(writer, context.getModels());

 context.getResponse().getWriter().write(writer.toString());

 } catch (IOException|PebbleException e) {

 throw new IllegalStateException(e);

 }

 }

}

Once the ViewEngine is created, simply begin generating views (or templates) using

the markup for your view engine. The following sources are taken from the simple view

pebbleTest.html:

<!DOCTYPE html>

<html>

 <head>

 <title>{{ websiteTitle }}</title>

 </head>

 <body>

 {{ content }}

 </body>

</html>

 How It Works
The Eclipse Krazo framework is very flexible, allowing the developer to customize just

about any of the functionality. One area where this comes in very handy is the choice of

view (template) engine. Utilizing the ViewEngine interface, a developer can easily create

a new ViewEngine to support just about any templating engine available. There are also

a number of template engines that have already been implemented, supporting many of

Chapter 4 eClipse Krazo

340

the most well-known templating engines in use. For example, there are engines available

for download from Maven Central (http://search.maven.org/#search%7Cga%7C1%7Cg%

3A%22com.oracle.ozark.ext%22), including the following:

• Thymeleaf

• Apache Velocity

• Mustache

• Handlebars

• FreeMarker

In order to utilize one or more of these engines (yes, you can use more than one

in a single application), download the artifact from Maven Central and include it in

your project. Then you can simply begin using the template engine of your choice, so

long as the template pages adhere to the format that is specified within the ViewEngine

implementation. In Solution #1, the Facelets view engine is used by simply modifying the

web.xml to include a mapping to the Faces Servlet when a view file containing the suffix of

.xhtml is loaded. The ViewEngine implementation for Facelets is automatically invoked

when views containing that suffix are loaded, so no additional configuration is needed.

If interested in creating a new custom view engine, simply implement the

ViewEngine interface. In Solution #2, a ViewEngine implementation for the Pebble

templating engine is created. To implement this interface, one must override two

methods, supports() and processView(). The supports() method is used to determine

the path or file extension that must be supported by this engine. In this case, any file

with the .html suffix will utilize the PebbleViewEngine. The processView() method

is where much of the customization will occur, as this is where each view engine

will perform customized processing in order to render the view. In the case of this

example, the view name is first determined by calling upon the context.getView()

method and appending the returned name to the String-based view path. Next, the

PebbleEngine is created by utilizing the PebbleEngine builder API to load the injected

ServletContext. This essentially allows the PebbleEngine to gain access to the views

within the application. Once created, the engine is used to compile the currently visited

view, returning a PebbleTemplate. Finally, the compiled template is evaluated using a

StringWriter and passing in any Model values from the ViewEngineContext. Therefore,

if anything has been loaded via the Models API in the controller, it is evaluated at this

time and merged with the view. Lastly, the response writer is used to render the view.

Chapter 4 eClipse Krazo

http://search.maven.org/#search|ga|1|g:"com.oracle.ozark.ext"
http://search.maven.org/#search|ga|1|g:"com.oracle.ozark.ext"

341
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_5

CHAPTER 5

JDBC with Jakarta EE
The Java Database Connectivity (JDBC) API is a standard for accessing Relational

Database Management Systems (RDBMSs) via Java. It has been in use for years and

can be used when developing all types of Java applications, including desktop, stand-

alone, and web. Almost every nontrivial application utilizes an RDBMS for storing and

retrieving data. Therefore, it is important for application developers of all types to learn

how to work with JDBC.

Enterprise application development has proven to be more productive for

developers when working directly with Java objects as opposed to database access. While

the JDBC API is still very mainstream for the development of enterprise applications

and microservices, many developers have begun to adopt object-relational mapping

programming interfaces as a standard. One of the easiest ways to map Java objects to

database tables is to encapsulate JDBC logic into classes containing private methods

for performing database access and exposing those methods using public methods that

work with objects instead of SQL. This chapter contains recipes to demonstrate the

technique of abstracting JDBC logic from ordinary business logic, sometimes referred to

as creating data access objects.

The JDBC 4.2 release, included with Java SE 8, introduced some new features into

the JDBC API to make working with databases a bit easier, and this chapter includes a

recipe that covers one of those new features as well, the use of the REF_CURSOR. For a

full list of the new features and enhancements with the JDBC 4.2 release, please visit the

online documentation: http://docs.oracle.com/javase/8/docs/technotes/guides/

jdbc/jdbc_42.html. After reviewing the recipes included in this chapter, you should be

comfortable using JDBC within your Java web applications.

http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

342

Note The Acme Bookstore application has been completely rewritten for this
chapter in order to utilize an Oracle database rather than simple Java lists of
data. Please run the create_database.sql script within your database prior
to working with the examples from this chapter. Also, you will need to provide
the necessary database connection properties for your database within the
db_props.properties file and/or within the code examples for this chapter.
If you are utilizing another database vendor, you should be able to adjust the SQL
accordingly to work with that database. To access the Acme Bookstore application
utilizing the database, be sure to deploy the JakartaEERecipes web application
to your Eclipse GlassFish or Payara application server, and visit the URL http://
localhost:8080/JakartaEERecipes/faces/chapter05/home.xhtml.
This chapter will typically reference the Eclipse GlassFish server (aka GlassFish),
although most of the references will be the same for the Payara server.

5-1. Obtaining Database Drivers and Adding Them
to the CLASSPATH
 Problem
You need to have the ability to utilize a database from your application, so you need to

obtain drivers and configure the databases for your application.

 Solution
Download the appropriate drivers for the database that you will be working with, and

add them to the CLASSPATH for your application. In this solution, I will assume you are

going to develop an enterprise-level web application and deploy it to the GlassFish

application server. The application will utilize the Oracle database for persistence. In

this case, it is recommended to download the most current Oracle database driver for

Java Database Connectivity (JDBC). At the time of this writing, the driver is ojdbc8.jar,

but you can find the latest online at www.oracle.com/database/technologies/jdbc-

ucp- 122-downloads.html. Optionally, it can be used as a Maven dependency via the

following coordinates:

ChAPTER 5 JDBC wITh JAkARTA EE

http://www.oracle.com/database/technologies/jdbc-ucp-122-downloads.html
http://www.oracle.com/database/technologies/jdbc-ucp-122-downloads.html

343

<!-- https://mvnrepository.com/artifact/com.oracle.jdbc/ojdbc8 -->

<dependency>

 <groupId>com.oracle.jdbc</groupId>

 <artifactId>ojdbc8</artifactId>

 <version>12.2.0.1</version>

</dependency>

The driver for your application may be different, depending upon which database

you plan to use. For instance, to work with a PostgreSQL database, you would need to

download the driver from the location https://jdbc.postgresql.org/.

Once you have downloaded the required drivers for your database, add them to the

application CLASSPATH. If using an IDE, you can adjust the project properties for your

application project accordingly to include the JAR that contains your database driver.

If you are working from the command line or terminal, you can add the driver to your

CLASSPATH by issuing one of the following commands, depending upon the OS platform

you are using:

Use the following on Unix-based systems or OS X:

export CLASSPATH=/path-to-jar/ojdbc8.jar

Use the following on Windows:

set CLASSPATH=C:\path-to-jar\ojdbc8.jar

You should now be able to work with the database from your application, but in

order to deploy to the GlassFish application server, you will need to make the database

driver available for GlassFish. You can do this by copying the JAR containing the

database driver into the GlassFish lib directory. The database driver JAR should be

placed within a domain rather than at the application server level. Therefore, if your

domain is named domain1 (the default), then the path to where the JAR should be placed

would be as follows:

GlassFish_Home/glassfish5/glassfish/domains/domain1/lib/databases

Restart the application server instance, and you are ready to deploy your database

application.

ChAPTER 5 JDBC wITh JAkARTA EE

https://jdbc.postgresql.org/

344

 How It Works
The first step to working with any database from an application is to configure the

database driver for the specific vendor of your choice. Whether you decide to use

MySQL, PostgreSQL, Oracle, Microsoft SQL, or another database, most enterprise-level

databases have a JDBC driver available. This driver must be added to the application

CLASSPATH and integrated development environment (IDE) project CLASSPATH if using

one. If working from the command line or terminal, you will need to set the CLASSPATH

each time you open a new session. If using an IDE, your settings can usually be saved

so that you need to configure them only one time. After the driver for your database has

been added to the application or project CLASSPATH, you are ready to begin working with

the database.

When it comes time to deploy the application to a server, you will need to ensure that

the server has access to the database driver. You can simply add the driver JAR for your

database to the domain’s lib directory and restart the server. Once you’ve done this,

then you can either deploy your JDBC-based application or set up a database connection

pool for your database. Please see Recipe 5-2 for more information on how to connect to

your database from within an application using standard JDBC connectivity or how to

set up a JDBC connection pool via the GlassFish or Payara application server.

5-2. Connecting to a Database
 Problem
You need to connect to a database so that your application can perform database

transactions.

 Solution #1

Perform a JDBC connection to the database from within your application. Do this by

creating a new Connection object, and then load the driver that you need to use for

your particular database. Once the Connection object is ready, call its getConnection()

method. The following code demonstrates how to obtain a connection to an Oracle

database:

ChAPTER 5 JDBC wITh JAkARTA EE

345

public final static class OracleConnection {

 private final String hostname = "myHost";

 private final String port = "1521";

 private final String database = "myDatabase";

 private final String username = "user";

 private final String password = "password";

 public static Connection getConnection() throws SQLException {

 Connection conn = null;

 String jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":"

 + this.port + ":" + this.database;

 conn = DriverManager.getConnection(jdbcUrl, username, password);

 System.out.println("Successfully connected");

 return conn;

 }

}

The method portrayed in this example returns a Connection object that is ready to

be used for database access.

 Solution #2

Configure a database connection pool within an application server, and connect

to it from your application. Use a DataSource object to create a connection pool.

The DataSource object must have been properly implemented and deployed to an

application server environment. After a DataSource object has been implemented and

deployed, it can be used by an application to obtain a connection to a database.

Note A connection pool is a cluster of identical database connections that are
allocated by the application server (container-managed connection pool) to be
utilized by applications for individual client sessions.

To create a connection pool using the GlassFish administrative console, first log

into the console using the credentials that were specified upon installation, by visiting

http://localhost:4848 (assuming you are on the same machine as the server and that

ChAPTER 5 JDBC wITh JAkARTA EE

346

your GlassFish installation is using the default port numbers). Once successfully logged

into the console, click the JDBC menu under Resources, and then expand the JDBC

Connection Pools menu, as shown in Figure 5-1.

Figure 5-1. Displaying the JDBC connection pools within GlassFish administrative
console

Figure 5-2. Creating a GlassFish JDBC connection pool

Click the New button on the JDBC Connection Pools screen, and it will then navigate

you to the New JDBC Connection Pool (Step 1 of 2) screen. There, you can name the

pool, select a resource type, and select a database driver vendor. For this example, I am

using Oracle Database 12c. Therefore, the entries should be specified like those shown in

Figure 5-2, although you could change the pool name to something you like better.

ChAPTER 5 JDBC wITh JAkARTA EE

347

When the next screen opens, it should automatically contain the mappings for your

Oracle database DataSource Classname as oracle.jdbc.pool.OracleDataSource. If it

does not look like Figure 5-3, then you may not yet have the ojdbc8.jar database driver

in the application server lib directory. Be sure to check the Enabled checkbox next to the

Ping option.

Figure 5-3. Data source class name automatically populates

Lastly, go down to the bottom of the second screen, and check all the properties

within the Additional Properties table with the exception of User, Password, and

URL. Please specify the information for these properties according to the database

you will be connecting against, as shown in Figure 5-4. Once you populated them

accordingly, click the Finish button.

ChAPTER 5 JDBC wITh JAkARTA EE

348

After clicking Finish, you should see a message indicating that the “ping” has

succeeded. Now you can set up your JDBC resource by clicking the JDBC Resources

menu within the left tree menu. When the JDBC Resources screen appears, click the

New... button. Enter a JNDI name for your resource, beginning with jdbc/, and then

select the pool name for the database connection pool you just created. The screen

should resemble Figure 5-5. Once you’ve populated it accordingly, click the OK button to

complete the creation of the resource.

Note JNDI is the communication technology that allows applications to
communicate with services by name within an application server container
 (https://jakarta.ee/specifications/platform/8/platform-spec-8.
html#java-naming-and-directory-interface-jndi).

Figure 5-4. Populating the additional properties for your database

ChAPTER 5 JDBC wITh JAkARTA EE

https://jakarta.ee/specifications/platform/8/platform-spec-8.html#java-naming-and-directory-interface-jndi
https://jakarta.ee/specifications/platform/8/platform-spec-8.html#java-naming-and-directory-interface-jndi

349

You can use the following code to obtain a database connection via a DataSource

object:

public static Connection getDSConnection() {

 Connection conn = null;

 try {

 Context ctx = new InitialContext();

 DataSource ds = (DataSource)ctx.lookup("jdbc/OracleConnection");

 conn = ds.getConnection();

 } catch (NamingException | SQLException ex) {

 ex.printStackTrace();

 }

 return conn;

 }

Notice that the only information required in the DataSource implementation is

the name of a valid DataSource object. All the information that is required to obtain a

connection with the database is managed within the application server.

 How It Works
You have a couple of options for creating database connections for use within Java

applications. If you are writing a stand-alone or desktop application, usually a standard

JDBC connection is the best choice. However, if working with an enterprise-level or

Figure 5-5. Creating a JDBC resource

ChAPTER 5 JDBC wITh JAkARTA EE

350

web-based application, DataSource objects may be the right choice. Solution #1 for this

recipe covers the former option, and it is the easiest way to create a database connection

in a stand-alone environment. I will cover the creation of a JDBC Connection via

Solution #1 first.

Once you’ve determined which database you are going to use, you will need to

obtain the correct driver for the database vendor and release of your choice. Please see

Recipe 5-1 for more information on obtaining a driver and placing it into your CLASSPATH

for use. Once you have the JAR file in your application CLASSPATH, you can use a JDBC

DriverManager to obtain a connection to the database.

Note As of JDBC version 4.0, drivers that are contained within the CLASSPATH
are automatically loaded into the DriverManager object. If you are using a JDBC
version prior to 4.0, the driver will have to be manually loaded.

To obtain a connection to your database using the DriverManager, you need to

pass a String containing the JDBC URL to it. The JDBC URL consists of the database

vendor name, along with the name of the server that hosts the database, the name of

the database, the database port number, and a valid database username and password

that has access to the schema you want to work with. Many times, the values used to

create the JDBC URL can be obtained from a properties file so that the values can be

easily changed if needed. To learn more about using a properties file to store connection

values, please see Recipe 5-4. The code that is used to create the JDBC URL for Solution

#1 looks like the following:

String jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":" +

this.port + ":" + this.database;

Once all the variables have been substituted into the String, it will look something

like the following:

jdbc:oracle:thin:@hostname:1521:database

Once the JDBC URL has been created, it can be passed to the DriverManager.

getConnection() method to obtain a java.sql.Connection object. If incorrect

information has been passed to the getConnection() method, a java.sql.

SQLException will be thrown; otherwise, a valid Connection object will be returned.

ChAPTER 5 JDBC wITh JAkARTA EE

351

Note The prefix of the jdbcurl connection string in the example,
jdbc:oracle:thin, indicates that you will be using the Oracle drivers, which are
located within the ojdbc8.jar. DriverManager makes the association.

If running on an application server, such as GlassFish, the preferred way to obtain

a connection is to use a DataSource. To work with a DataSource object, you need to

have an application server to deploy it to. Any compliant Java application server such as

Apache TomEE, GlassFish, Oracle WebLogic, or Open Liberty will work. Microservices

containers such as Payara Micro will also work with the DataSource. Most of the

application servers contain an administrative web interface that can be used to easily

deploy a DataSource object, such as demonstrated via GlassFish in Solution #2 to this

recipe. However, you can manually deploy a DataSource object by using code that will

look like the following:

org.jakartaeerecipes.chapter5.recipe05_02.FakeDataSourceDriver ds =

new org.jakartaeerecipes.chapter5.recipe05_02.FakeDataSourceDriver();

ds.setServerName("my-server");

ds.setDatabaseName("JakartaEERecipes");

ds.setDescription("Database connection for Jakarta EE 8 Recipes");

This code instantiates a class that represents a new DataSource driver class, and

then it sets properties based upon the database you want to register. DataSource code

such as that demonstrated here is typically used when registering a DataSource in an

application server or with access to a JNDI server. Application servers usually do this

work behind the scenes if you are using a web-based administration tool to deploy a

DataSource. Most database vendors will supply a DataSource driver along with their

JDBC drivers, so if the correct JAR resides within the application or server CLASSPATH, it

should be recognized and available for use. Once a DataSource has been instantiated

and configured, the next step is to register the DataSource with a JNDI naming service.

The following code demonstrates the registration of a DataSource with JNDI:

try {

 Context ctx = new InitialContext();

 DataSource ds =

 (DataSource) ctx.bind("jdbc/OracleConnection");

ChAPTER 5 JDBC wITh JAkARTA EE

352

} catch (NamingException ex) {

 ex.printStackTrace();

}

Once the DataSource has been deployed, any application that has been deployed

to the same application server will have access to it. The beauty of working with a

DataSource object is that your application code doesn’t need to know any connection

information, such as user credentials, for the database; it needs to know only the name

of the DataSource. By convention, the name of the DataSource begins with a jdbc/

prefix, followed by an identifier. To look up the DataSource object, an InitialContext

object is used. The InitialContext looks at all the DataSources available within the

application server, and it returns a valid DataSource if it is found; otherwise, it will

throw a java.naming.NamingException exception. In Solution #2, you can see that the

InitialContext returns an object that must be cast as a DataSource:

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("jdbc/OracleConnection");

If the DataSource is a connection pool cache, the application server will send one of

the available connections within the pool when an application requests it. The following

line of code returns a Connection object from the DataSource:

Connection conn = ds.getConnection();

Of course, if no valid connection can be obtained, a java.sql.SQLException is

thrown. The DataSource technique is preferred over manually specifying all details

and passing to the DriverManager because database connection information is stored

in only one place: the application server or microservices container, not within each

application. Once a valid DataSource is deployed, it can be used by many applications.

After a valid connection has been obtained by your application, it can be used

to work with the database. To learn more about working with the database using a

Connection object, please see the recipes within this chapter regarding working with the

database.

ChAPTER 5 JDBC wITh JAkARTA EE

353

5-3. Handling Database Connection Exceptions
 Problem
A database activity in your application has thrown an exception. You need to handle that

SQL exception so your application does not crash.

 Solution
Use a try-catch block to capture and handle any SQL exceptions that are thrown

by your JDBC connection or SQL queries. The following code demonstrates how to

implement a try-catch block in order to capture SQL exceptions:

try {

// perform database tasks

} catch (java.sql.SQLException){

// perform exception handling

}

 How It Works
A standard try-catch block can be used to catch java.sql.SQLException exceptions.

Your code will not compile if these exceptions are not handled, and it is a good idea

to handle them in order to prevent your application from crashing if one of these

exceptions is thrown. Almost any work that is performed against a java.sql.Connection

object will need to perform error handling to ensure that database exceptions are

handled correctly. In fact, nested try-catch blocks are often required to handle all the

possible exceptions. You need to ensure that connections are closed once work has been

performed and the Connection object is no longer used. Similarly, it is a good idea to

close java.sql.Statement objects for memory allocation cleanup.

Because Statement and Connection objects need to be closed, it is common to see

try-catch-finally blocks used to ensure that all resources have been tended to as

needed. It is not unlikely that you will see JDBC code that resembles the following style:

try {

 // perform database tasks

} catch (java.sql.SQLException ex) {

 // perform exception handling

ChAPTER 5 JDBC wITh JAkARTA EE

354

} finally {

 try {

 // close Connection and Statement objects

 } catch (java.sql.SQLException ex){

 // perform exception handling

 }

}

As shown in the previous pseudo-code, nested try-catch blocks are often required

in order to clean up unused resources. Proper exception handling sometimes makes

JDBC code rather laborious to write, but it will also ensure that an application requiring

database access will not fail, causing data to be lost.

5-4. Simplifying Connection Management
 Problem
Your application requires the use of a database. To work with the database, you need to

open a connection. Rather than code the logic to open a database connection every time

you need to access the database, you want to simplify the connection process.

 Solution
Write a class to handle all the connection management within your application. Doing

so will allow you to call that class in order to obtain a connection, rather than setting

up a new Connection object each time you need access to the database. Perform

the following steps to set up a connection management environment for your JDBC

application:

 1. Create a class named CreateConnection.java that will

encapsulate all the connection logic for your application.

 2. Create a properties file to store your connection information.

Place the file in a designated location so that the

CreateConnection class can load it.

 3. Use the CreateConnection class to obtain your database

connections.

ChAPTER 5 JDBC wITh JAkARTA EE

355

Note If utilizing an application server, you can handle a similar solution via a
container-managed connection pool. however, if the application is not deployed
to an application server container, then building a connection management utility
such as the one in this solution is a good alternative.

The following code is the org.jakartaeerecipes.chapter05.CreateConnection

class that can be used for centralized connection management:

package org.jakartaeerecipes.chapter05;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.FileSystems;

import java.nio.file.Files;

import java.sql.Connection;

import javax.sql.DataSource;import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public final class CreateConnection {

 static Properties props = new Properties();

 static String hostname = null;

 static String port = null;

 static String database = null;

 static String username = null;

 static String password = null;

 static String jndi = null;

 public CreateConnection() {

 }

ChAPTER 5 JDBC wITh JAkARTA EE

356

 public static void loadProperties() {

 // Return if the host has already been loaded

 if(hostname != null){

 return;

 }

 try(InputStream in = Files.newInputStream(FileSystems.getDefault().

getPath(System.getProperty("user.dir")

 + File.separator + "db_props.properties"));) {

 // Looks for properties file in the root of the src directory

in project

 System.out.println(FileSystems.getDefault().getPath(System.

getProperty("user.dir")

 + File.separator + "db_props.properties"));

 props.load(in);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 hostname = props.getProperty("host_name");

 port = props.getProperty("port_number");

 database = props.getProperty("db_name");

 username = props.getProperty("username");

 password = props.getProperty("password");

 jndi = props.getProperty("jndi");

 System.out.println(hostname);

 }

 public static Connection getConnection() throws SQLException {

 Connection conn = null;

 String jdbcUrl = "jdbc:oracle:thin:@" + hostname + ":"

 + port + ":" + database;

 conn = DriverManager.getConnection(jdbcUrl, username, password);

 System.out.println("Successfully connected");

 return conn;

 }

ChAPTER 5 JDBC wITh JAkARTA EE

357

 public static Connection getDSConnection() {

 Connection conn = null;

 try {

 Context ctx = new InitialContext();

 DataSource ds = (DataSource) ctx.lookup(jndi);

 conn = ds.getConnection();

 } catch (NamingException | SQLException ex) {

 ex.printStackTrace();

 }

 return conn;

 }

 public static void main(String[] args) {

 Connection conn = null;

 try {

 CreateConnection.loadProperties();

 System.out.println("Beginning connection..");

 conn = CreateConnection.getConnection();

 //performDbTask();

 } catch (java.sql.SQLException ex) {

 ex.printStackTrace();

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

 }

 }

}

ChAPTER 5 JDBC wITh JAkARTA EE

358

Next, the following lines of code are an example of what should be contained in the

properties file that is used for obtaining a connection to the database. For this example,

the properties file is named db_props.properties:

host_name=your_db_server_name

db_name=your_db_name

username=db_username

password=db_username_password

port_number=db_port_number

jndi=jndi_connection_string

Finally, use the CreateConnection class to obtain connections for your application.

The following code demonstrates this concept:

 Connection conn = null;

 try {

 CreateConnection.loadProperties();

 System.out.println("Beginning connection..");

 conn = CreateConnection.getConnection();

 //performDbTask();

 } catch (java.sql.SQLException ex) {

 System.out.println(ex);

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

 }

Note You could update this code to use the try-with-resources syntax in
order to get rid of the finally block requirement. however, I’m showing this
syntax to demonstrate how to ensure that a Connection object is closed, if you’re
not using try-with-resources.

ChAPTER 5 JDBC wITh JAkARTA EE

359

To run the code for testing, execute the class org.jakartaeerecipes.chapter05.

CreateConnection.java because it contains a main method for testing purposes.

 How It Works
Obtaining a connection within a database application can be code intensive. Moreover,

the process can be prone to error if you retype the code each time you need to obtain a

connection. By encapsulating database connection logic within a single class, you can

reuse the same connection code each time you require a connection to the database.

This increases your productivity, reduces the chances of typing errors, and also enhances

manageability because if you have to make a change, it can occur in one place rather

than in several different locations.

Creating a strategic connection methodology is beneficial to you and others who

might need to maintain your code in the future. Although data sources are the preferred

technique for managing database connections when using an application server or

JNDI, the solution to this recipe demonstrates how to use standard JDBC DriverManager

connections. One of the security implications of using the DriverManager is that you will

need to store the database credentials somewhere for use by the application. It is not safe

to store those credentials in plain text anywhere, and it is also not safe to embed them in

application code, which might be decompiled at some point in the future. As seen in the

solution, a properties file that resides on disk is used to store the database credentials.

Assume that this properties file will be encrypted at some point before deployment to a

server.

As shown in the solution, the code reads the database credentials, host name,

database name, and port number from the properties file. That information is then

pieced together to form a JDBC URL that can be used by DriverManager to obtain a

connection to the database. Once obtained, that connection can be used anywhere and

then closed. Similarly, if using a DataSource that has been deployed to an application

server, the properties file can be used to store the JNDI connection. That is the only

piece of information that is needed to obtain a connection to the database using the

DataSource. To the developer, the only difference between the two types of connections

would be the method name that is called in order to obtain the Connection object, those

being getDSConnection() or getConnection() in the example.

ChAPTER 5 JDBC wITh JAkARTA EE

360

You could develop a JDBC application so that the code that is used to obtain a

connection needs to be hard-coded throughout. Instead, this solution enables all

the code for obtaining a connection to be encapsulated by a single class so that the

developer does not need to worry about it. Such a technique also allows the code to be

more maintainable. For instance, if the application was originally deployed using the

DriverManager but then later had the ability to use a DataSource, very little code would

need to be changed.

5-5. Querying a Database
 Problem
You have a table that contains authors within the company database, and you want to

query that table to retrieve the records.

 Solution
Obtain a JDBC connection using one of the techniques covered in Recipe 5-2 or Recipe 5-4;

then use the java.sql.Connection object to create a Statement object. A java.sql.

Statement object contains the executeQuery method, which can be used to parse a

String of text and use it to query a database. Once you’ve executed the query, you

can retrieve the results of the query into a ResultSet object. The following example,

excerpted from the org.jakartaeerecipes.chapter05.dao.AuthorDAO class, queries a

database table named BOOK_AUTHOR and prints the results to the server log:

public void queryBookAuthor() {

 final String qry = "select id, first, last, bio from book_author";

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

ChAPTER 5 JDBC wITh JAkARTA EE

361

 String bio = rs.getString("BIO");

 System.out.println(author_id + "\t" + first_name

 + " " + last_name + "\t" + bio);

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

Executing this method against the database schema that ships with this book will

produce the following results, considering that the BIO column is null for each author

record:

Successfully connected

2 JOSH JUNEAU null

3 CARL DEA null

4 MARK BEATY null

5 FREDDY GUIME null

6 OCONNER JOHN null

 How It Works
One of the most commonly performed operations against a database is a query.

Performing database queries using JDBC is quite easy, although there is a bit of

boilerplate code that needs to be used each time a query is executed. First, you need to

obtain a Connection object for the database and schema that you want to run the query

against. You can do this by using one of the solutions in Recipe 5-2. Next, you need to

form a query and store it in String format. The CreateConnection properties are then

loaded via a call to the loadProperties() method, which ensures that the db_props.

properties file is used to populate database connection information. Next, a try-

with- resources clause is used to create the objects that are necessary for querying the

database. Since the objects are instantiated within the try-with-resources, then they

will be closed automatically once they are no longer being used. The Connection object

is then used to create a Statement. Your query String will be passed to the Statement

object’s executeQuery method in order to actually query the database:

ChAPTER 5 JDBC wITh JAkARTA EE

362

String qry = "select id, first, last, bio from book_author";

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(qry);) {

. . .

As you can see, the Statement object’s executeQuery method accepts a String and

returns a ResultSet object. The ResultSet object makes it easy to work with the query

results so that you can obtain the information you need in any order. If you take a look

at the next line of code, a while loop is created on the ResultSet object. This loop will

continue to call the ResultSet object’s next method, obtaining the next row that is

returned from the query with each iteration. In this case, the ResultSet object is named

rs, so while rs.next() returns true, the loop will continue to be processed. Once all the

returned rows have been processed, rs.next() will return a false to indicate that there

are no more rows to be processed.

Within the while loop, each returned row is processed. The ResultSet object is

parsed to obtain the values of the given column names with each pass. Notice that if

the column is expected to return a String, you must call the ResultSet getString()

method, passing the column name in String format. Similarly, if the column is expected

to return an int, you’d call the ResultSet getInt() method, passing the column name

in String format. The same holds true for the other data types. These methods will

return the corresponding column values. In the example in the solution to this recipe,

those values are stored into local variables:

int author_id = rs.getInt("ID");

String first_name = rs.getString("FIRST");

String last_name = rs.getString("LAST");

String bio = rs.getString("BIO");

Once the column value has been obtained, you can do what you want to do with the

values you have stored within local variables. In this case, they are printed out using the

System.out.println() method. Notice that there is a try-catch-finally block used in

this example. A java.sql.SQLException could be thrown when attempting to query a

database (for instance, if the Connection object has not been properly obtained or if the

database tables that you are trying to query do not exist). You must provide exception

handling to handle errors in these situations. Therefore, all database-processing code

ChAPTER 5 JDBC wITh JAkARTA EE

363

should be placed within a try block. The catch block then handles a SQLException,

so if it is thrown, the exception will be handled using the code within the catch block.

Sounds easy enough, right? It is, but you must do it each time you perform a database

query. That means lots of boilerplate code. Inside the finally block, you will see that the

Statement and Connection objects are closed if they are not equal to null.

Note Performing these tasks also incurs the overhead of handling java.sql.
SQLException when it is thrown. They might occur if an attempt is made to close
a null object. It is always a good idea to close statements and connections if they
are open. This will help ensure that the system can reallocate resources as needed
and act respectfully on the database. It is important to close connections as soon
as possible so that other processes can reuse them.

5-6. Performing CRUD Operations
 Problem
You need to have the ability to perform standard database operations from within your

enterprise application. That is, you need to have the ability to create, retrieve, update,

and delete (CRUD) database records.

 Solution
Create a Connection object and obtain a database connection using one of the solutions

provided in Recipe 5-2; then perform the CRUD operation using a java.sql.Statement

object that is obtained from the java.sql.Connection object. The following code, taken

from org.jakartaeerecipes.chapter05.recipe05_06.AuthorDAOStandard.java,

demonstrates how to perform each of the CRUD operations against the BOOK_AUTHORS

table using JDBC, with the exception of the query (retrieve) since that is already covered

in Recipe 5-5.

ChAPTER 5 JDBC wITh JAkARTA EE

364

Note This recipe demonstrates the use of String concatenation for creating
SQL statements rather than substitution variables with PreparedStatements.
This is not a safe practice because the variables could potentially contain
malicious values that may compromise your database. The solution to this
recipe demonstrates the practice of creating SQL statements using String
concatenation so that you can see the different options that are available. For
information on using PreparedStatement objects and a safer alternative to
String concatenation, please see Recipe 5-7.

private void performCreate(String first, String last, String bio) {

 String sql = "INSERT INTO BOOK_AUTHOR VALUES("

 + "BOOK_AUTHOR_S.NEXTVAL, "

 + "'" + last.toUpperCase() + "', "

 + "'" + first.toUpperCase() + "', "

 + "'" + bio.toUpperCase() + "')";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 // Returns row-count or 0 if not successful

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record created --");

 } else {

 System.out.println("!! Record NOT Created !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private void performUpdate(String first, String last, String bio) {

 String sql = "UPDATE BOOK_AUTHOR "

 + "SET bio = '" + bio.toUpperCase() + "' "

 + "WHERE last = '" + last.toUpperCase() + "' "

 + "AND first = '" + first.toUpperCase() + "'";

ChAPTER 5 JDBC wITh JAkARTA EE

365

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record Updated --");

 } else {

 System.out.println("!! Record NOT Updated !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private void performDelete(String first, String last) {

 String sql = "DELETE FROM BOOK_AUTHOR WHERE LAST = '" + last.

toUpperCase() + "' "

 + "AND FIRST = '" + first.toUpperCase() + "'";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record Deleted --");

 } else {

 System.out.println("!! Record NOT Deleted!!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

Note If you follow the code, you will notice that whenever a String of data is
passed to the database, it is first changed to uppercase by calling the toUpperCase
method on it. This is to help maintain a standard uppercase format for all data
within the database.

ChAPTER 5 JDBC wITh JAkARTA EE

366

Executing the following main method will produce the results that follow:

public static void main(String[] args) {

 AuthorDAO authorDao = new AuthorDAO();

 authorDao.queryBookAuthor();

 authorDao.performCreate("Joe", "Blow", "N/A");

 authorDao.performUpdate("Joe", "Blow", "Joes Bio");

 authorDao.queryBookAuthor();

 authorDao.performDelete("Joe", "Blow");

}

The results from running the main method should be similar to the following:

Successfully connected

2 JOSH JUNEAU null

3 CARL DEA null

4 MARK BEATY null

5 FREDDY GUIME null

6 OCONNER JOHN null

Successfully connected

-- Record created --

Successfully connected

-- Record Updated --

Successfully connected

2 JOSH JUNEAU null

3 CARL DEA null

4 MARK BEATY null

5 FREDDY GUIME null

6 OCONNER JOHN null

105 JOE BLOW JOES BIO

Successfully connected

-- Record Deleted --

ChAPTER 5 JDBC wITh JAkARTA EE

367

 How It Works
The same basic code format is used for performing just about every database task. The

format is as follows:

 1. Obtain a connection to the database within the try clause.

 2. Create a statement from the connection within the try clause.

 3. Perform a database task with the statement.

 4. Do something with the results of the database task.

 5. Close the statement (and database connection if finished using it).

This step is done automatically for you if using the try-with-resources clause, as

demonstrated in the solution to this recipe.

The main difference between performing a query using JDBC and using Data

Manipulation Language (DML) is that you will call different methods on the Statement

object, depending on which operation you want to perform. To perform a query, you

need to call the Statement executeQuery method. To perform DML tasks, such as

insert, update, and delete, call the executeUpdate method.

The performCreate method in the solution to this recipe demonstrates the operation

of inserting a record into a database. To insert a record in the database, you will construct

a SQL insert statement in String format. To perform the insert, pass the SQL string to

the Statement object’s executeUpdate method. If the insert is performed, an int value

will be returned that specifies the number of rows that have been inserted. If the insert

operation is not performed successfully, either a zero will be returned or a SQLException

will be thrown, indicating a problem with the statement or database connection.

The performUpdate method in the solution to this recipe demonstrates the operation

of updating record(s) within a database table. First, you will construct a SQL update

statement in String format. Next, to perform the update operation, you will pass the

SQL string to the Statement object’s executeUpdate method. If the update is successfully

performed, an int value will be returned, which specifies the number of records that

were updated. If the update operation is not performed successfully, either a zero will be

returned or a SQLException will be thrown, indicating a problem with the statement or

database connection.

ChAPTER 5 JDBC wITh JAkARTA EE

368

The last database operation that is covered in the solution is the delete operation. The

performDelete method in the solution to this recipe demonstrates how to delete records

from the database. First, you will construct a SQL delete statement in String format. Next, to

execute the deletion, you will pass the SQL string to the Statement object’s executeUpdate

method. If the deletion is successful, an int value specifying the number of rows deleted

will be returned. Otherwise, if the deletion fails, a zero will be returned, or a SQLException

will be thrown, indicating a problem with the statement or database connection.

Almost every database application uses at least one of the CRUD operations at some

point. This is foundational JDBC that you need to know if you are working with databases

within Java applications. Even if you will not work directly with the JDBC API, it is good

to know these basics.

5-7. Preventing SQL Injection
 Problem
Your application performs database tasks. To reduce the chances of a SQL injection

attack, you need to ensure that no unfiltered Strings of text are being appended to SQL

statements and executed against the database.

Tip Prepared statements provide more than just protection against SQL injection
attacks. They also provide a way to centralize and better control the SQL used within
an application, and performance benefits. Instead of creating multiple and possibly
different versions of the same query, you can create the query once as a prepared
statement and invoke it from many different places within your code. Any change to
the query logic needs to happen only at the point that you prepare the statement.

Note There have been data access objects (DAOs) created for each database
table used by the Acme Bookstore application for this recipe. The DAO classes
are used to perform CRUD operations against each of the tables for the Acme
Bookstore application. The CRUD operations utilize PreparedStatements in
order to add security and enhance the performance of the application.

ChAPTER 5 JDBC wITh JAkARTA EE

369

 Solution
Utilize PreparedStatements for performing the database tasks. PreparedStatements

send a precompiled SQL statement to the DBMS rather than a clear-text String.

The following code demonstrates how to perform a database query and a database

update using a java.sql.PreparedStatement object. The following code excerpts are

taken from a new data access object named org.jakartaeerecipes.chapter05.dao.

AuthorDAO, which utilizes PreparedStatement objects rather than String concatenation

for executing SQL statements:

. . .

 public Author performFind(int id) {

 String qry = "SELECT ID, LAST, FIRST, BIO "

 + "FROM BOOK_AUTHOR "

 + "WHERE ID = ?";

 Author author = null;

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 stmt.setInt(1, id);

 try (ResultSet rs = stmt.executeQuery();) {

 if (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 author = new Author(author_id,

 first_name,

 last_name,

 bio);

 }

 }

ChAPTER 5 JDBC wITh JAkARTA EE

370

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return author;

 }

 public List<Author> performFind(String first, String last) {

 String qry = "SELECT ID, LAST, FIRST, BIO "

 + "FROM BOOK_AUTHOR "

 + "WHERE LAST = ? "

 + "AND FIRST = ?";

 List authorList = new ArrayList();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 stmt.setString(1, last.toUpperCase());

 stmt.setString(2, first.toUpperCase());

 try (ResultSet rs = stmt.executeQuery();) {

 while (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 Author author = new Author(author_id,

 first_name,

 last_name,

 bio);

 authorList.add(author);

 }

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return authorList;

 }

ChAPTER 5 JDBC wITh JAkARTA EE

371

 private void performCreate(String first, String last, String bio) {

 String sql = "INSERT INTO BOOK_AUTHOR VALUES("

 + "BOOK_AUTHOR_S.NEXTVAL, ?, ?, ?)";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setString(1, last.toUpperCase());

 stmt.setString(2, first.toUpperCase());

 stmt.setString(3, bio.toUpperCase());

 // Returns row-count or 0 if not successful

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record created --");

 } else {

 System.out.println("!! Record NOT Created !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private void performUpdate(int id, String first, String last, String

bio) {

 String sql = "UPDATE BOOK_AUTHOR "

 + "SET bio = ?,"

 + " last = ?,"

 + " first = ? "

 + "WHERE ID = ?";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setString(1, bio.toUpperCase());

 stmt.setString(2, last.toUpperCase());

 stmt.setString(3, first.toUpperCase());

 stmt.setInt(4, id);

ChAPTER 5 JDBC wITh JAkARTA EE

372

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record Updated --");

 } else {

 System.out.println("!! Record NOT Updated !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private void performDelete(int id) {

 String sql = "DELETE FROM BOOK_AUTHOR WHERE ID = ?";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setInt(1, id);

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record Deleted --");

 } else {

 System.out.println("!! Record NOT Deleted!!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 ...

The methods displayed previously exhibit the use of PreparedStatement objects

rather than using standard JDBC Statement objects and String concatenation for

appending variables into SQL statements.

ChAPTER 5 JDBC wITh JAkARTA EE

373

 How It Works
While standard JDBC statements will get the job done, the harsh reality is that they can

be insecure and difficult to work with. For instance, bad things can occur if a dynamic

SQL statement is used to query a database and a user-accepted String is assigned to a

variable and concatenated with the intended SQL String. In most ordinary cases, the

user-accepted String would be concatenated, and the SQL String would be used to

query the database as expected. However, an attacker could decide to place malicious

code inside the String (aka SQL injection), which would then be inadvertently sent to

the database using a standard Statement object. Using PreparedStatements prevents

malicious Strings from being concatenated into a SQL string and passed to the DBMS.

PreparedStatements use substitution variables rather than concatenation to make

SQL strings dynamic. They are also precompiled, which means that a valid SQL string

is formed prior to the SQL being sent to the DBMS. Moreover, PreparedStatements

can help your application perform better because if the same SQL has to be run more

than one time, it has to be compiled only once per session. After that, the substitution

variables are interchangeable, but the PreparedStatement can execute the SQL very

quickly.

Let’s take a look at how a PreparedStatement works in practice. If you look at the

example in the solution to this recipe, you can see that the database table BOOK_AUTHOR

is being queried in the performFind() method, sending the author’s ID as a substitution

variable and retrieving the results for the matching record. The SQL string looks like the

following:

String qry = "SELECT ID, LAST, FIRST, BIO "

 + "FROM BOOK_AUTHOR "

 + "WHERE ID = ?";

Everything looks standard with the SQL text except for the question mark (?) at

the end of the string. Placing a question mark within a string of SQL signifies that

a substitution variable will be used in place of that question mark when the SQL is

executed.

The next step for using a PreparedStatement is to declare a variable of type

PreparedStatement. You can see this with the following line of code:

PreparedStatement stmt = null;

ChAPTER 5 JDBC wITh JAkARTA EE

374

Now that a PreparedStatement has been declared, it can be put to use. However,

using a PreparedStatement may or may not cause an exception to be thrown. Therefore,

any use of a PreparedStatement should occur within a try-catch block so that any

exceptions can be handled gracefully. For instance, exceptions can occur if the database

connection is unavailable for some reason or if the SQL string is invalid. Rather than

crashing an application because of such issues, it is best to handle the exceptions wisely

within a catch block. The following try-catch block includes the code that is necessary

to send the SQL string to the database and retrieve results:

try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 stmt.setInt(1, id);

 try (ResultSet rs = stmt.executeQuery();) {

 if (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 author = new Author(author_id,

 first_name,

 last_name,

 bio);

 }

 }

} catch (SQLException e) {

 e.printStackTrace();

}

First, you can see that the Connection object is used to instantiate a

PreparedStatement object. The SQL string is passed to the PreparedStatement object’s

constructor upon creation. Next, the PreparedStatement object is used to set values for

any substitution variables that have been placed into the SQL string. As you can see, the

PreparedStatement setString() method is used in the example to set the substitution

variable at position 1 equal to the contents of the id variable. The positioning of the

substitution variable is associated with the placement of the question mark (?) within

the SQL string. The first question mark within the string is assigned to the first position,

ChAPTER 5 JDBC wITh JAkARTA EE

375

the second one is assigned to the second position, and so forth. The number of question

marks must be equal to the number of substitution variables, or an error will be thrown.

If there were more than one substitution variable to be assigned, there would be more

than one call to the PreparedStatement setter methods, assigning each of the variables

until each one has been accounted for. PreparedStatements can accept substitution

variables of many different data types. For instance, if a Date value were being assigned

to a substitution variable, a call to the setDate(position, variable) method would

be in order. Please see the online documentation or your IDE’s code completion for

a complete set of methods that can be used for assigning substitution variables using

PreparedStatement objects.

It is also possible to utilize named parameters, rather than indexes. To use this

technique, provide a name prefixed with a colon for each substitution variable, rather

than a question mark. The following lines of code demonstrate named parameters:

String qry = "SELECT ID, LAST, FIRST, BIO "

 + "FROM BOOK_AUTHOR "

 + "WHERE LAST = :last "

 + "AND FIRST = :first";

 List authorList = new ArrayList();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 stmt.setString("last", last.toUpperCase());

 stmt.setString("first", first.toUpperCase());

 try (ResultSet rs = stmt.executeQuery();) {

. . .

Once all the variables have been assigned, the SQL string can be executed. The

PreparedStatement object contains an executeQuery() method that is used to execute a

SQL string that represents a query.

The executeQuery() method returns a ResultSet object, which contains the

results that have been fetched from the database for the particular SQL query. Next, the

ResultSet can be traversed to obtain the values retrieved from the database. There are

two different ways to retrieve the results from the ResultSet. Positional assignments

can be used to retrieve the results by calling the ResultSet object’s corresponding

getter methods and passing the position of the column value, or the String identifier

ChAPTER 5 JDBC wITh JAkARTA EE

376

of the column value that you want to obtain can be passed to the getter methods. If

passing the position, it is determined by the order in which the column names appear

within the SQL string. In the example, String-based column identifiers are used to

obtain the values. As you can see from the example, passing the column identifier to

the appropriate getter method will retrieve the value. When the record values from the

ResultSet are obtained, they are stored into local variables. Once all the variables have

been collected for a particular author, they are stored into an Author object, which will

eventually be returned from the method. Of course, if the substitution variable is not

set correctly or if there is an issue with the SQL string, an exception will be thrown. This

would cause the code that is contained within the catch block to be executed.

If you do not use the try-with-resources clause, as demonstrated in the solution,

you should be sure to clean up after using PreparedStatements by closing the statement

when you are finished using it. It is a good practice to put all the cleanup code within a

finally block to be sure that it is executed even if an exception is thrown. For example,

a finally block that is used to clean up unused Statement and Connection objects may

look like the following:

finally {

 if (stmt != null) {

 try {

 stmt.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

 if (conn != null) {

 try {

 conn.close();

 conn = null;

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

 return author;

}

ChAPTER 5 JDBC wITh JAkARTA EE

377

You can see that the PreparedStatement object that was instantiated, stmt, is

checked to see whether it is NULL. If not, it is closed by calling the close() method.

Working through the code in the solution to this recipe, you can see that similar code is

used to process database insert, update, and delete statements. The only difference in

those cases is that the PreparedStatement executeUpdate() method is called rather

than the executeQuery() method. The executeUpdate() method will return an int

value representing the number of rows affected by the SQL statement.

The use of PreparedStatement objects is preferred over JDBC Statement objects.

This is because they are more secure and perform better. They can also make your code

easier to follow and easier to maintain.

5-8. Utilizing Java Objects for Database Access
 Problem
Your application works with an underlying database for storing and retrieving data. You

would prefer to code your business logic using Java objects, rather than working directly

with JDBC and SQL for performing database activities.

 Solution
Create a data access object (DAO) for each database table that will be used to perform the

mundane JDBC and SQL work. Within the DAO, create façade methods that accept Java

objects to represent a single record of data for the database table for which the DAO has

been created. Use the Java objects to pass record data to and from the DAO, while the DAO

breaks the objects apart and utilizes the data fields within standard SQL statements.

The following class excerpts demonstrate a data access object for the AUTHOR

database table, which is used for storing book author data (a main method has been

included merely for testing purposes within this DAO):

Note For the full source listing, please refer to the org.jakartaeerecipes.
chapter05.dao.AuthorDAO class, located in the JakartaEERecipes NetBeans
project. Repetitive portions of the sources (finally blocks) have been removed
from the following listing for brevity.

ChAPTER 5 JDBC wITh JAkARTA EE

378

...

public class AuthorDAO implements java.io.Serializable {

 public AuthorDAO() {

 }

 public void queryBookAuthor() {

 String qry = "select id, first, last, bio from book_author";

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 System.out.println(author_id + "\t" + first_name

 + " " + last_name + "\t" + bio);

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public List<Author> obtainCompleteAuthorList() {

 String qry = "select id, first, last, bio from book_author";

 List<Author> authors = new ArrayList();

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

ChAPTER 5 JDBC wITh JAkARTA EE

379

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 Author author = new Author(author_id, first_name,

 last_name, bio);

 authors.add(author);

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return authors;

 }

 public Author performFind(int id) {

 String qry = "SELECT ID, LAST, FIRST, BIO "

 + "FROM BOOK_AUTHOR "

 + "WHERE ID = ?";

 Author author = null;

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 stmt.setInt(1, id);

 try (ResultSet rs = stmt.executeQuery();) {

 if (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 author = new Author(author_id,

 first_name,

 last_name,

 bio);

 }

 }

ChAPTER 5 JDBC wITh JAkARTA EE

380

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return author;

 }

 public List<Author> performFind(String first, String last) {

 String qry = "SELECT ID, LAST, FIRST, BIO "

 + "FROM BOOK_AUTHOR "

 + "WHERE LAST = ? "

 + "AND FIRST = ?";

 List authorList = new ArrayList();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 stmt.setString(1, last.toUpperCase());

 stmt.setString(2, first.toUpperCase());

 try (ResultSet rs = stmt.executeQuery();) {

 while (rs.next()) {

 int author_id = rs.getInt("ID");

 String first_name = rs.getString("FIRST");

 String last_name = rs.getString("LAST");

 String bio = rs.getString("BIO");

 Author author = new Author(author_id,

 first_name,

 last_name,

 bio);

 authorList.add(author);

 }

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return authorList;

 }

ChAPTER 5 JDBC wITh JAkARTA EE

381

 private void performCreate(String first, String last, String bio) {

 String sql = "INSERT INTO BOOK_AUTHOR VALUES("

 + "BOOK_AUTHOR_S.NEXTVAL, ?, ?, ?)";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setString(1, last.toUpperCase());

 stmt.setString(2, first.toUpperCase());

 stmt.setString(3, bio.toUpperCase());

 // Returns row-count or 0 if not successful

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record created --");

 } else {

 System.out.println("!! Record NOT Created !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private void performUpdate(int id, String first, String last,

String bio) {

 String sql = "UPDATE BOOK_AUTHOR "

 + "SET bio = ?,"

 + " last = ?,"

 + " first = ? "

 + "WHERE ID = ?";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setString(1, bio.toUpperCase());

 stmt.setString(2, last.toUpperCase());

 stmt.setString(3, first.toUpperCase());

 stmt.setInt(4, id);

 int result = stmt.executeUpdate();

ChAPTER 5 JDBC wITh JAkARTA EE

382

 if (result > 0) {

 System.out.println("-- Record Updated --");

 } else {

 System.out.println("!! Record NOT Updated !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private void performDelete(int id) {

 String sql = "DELETE FROM BOOK_AUTHOR WHERE ID = ?";

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setInt(1, id);

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record Deleted --");

 } else {

 System.out.println("!! Record NOT Deleted!!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 /**

 * Returns the next ID in the BOOK_AUTHOR_S sequence

 *

 * @return

 */

 public int getNextId() {

 String qry = "select book_author_s.currval as ID from dual";

ChAPTER 5 JDBC wITh JAkARTA EE

383

 int returnId = -1;

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {

 int author_id = rs.getInt("ID");

 returnId = author_id + 1;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return returnId;

 }

 /**

 * Facade method for inserting Author objects into the BOOK_AUTHOR table

 *

 * @param author

 */

 public void insert(Author author) {

 performCreate(author.getFirst(),

 author.getLast(),

 author.getBio());

 }

 /**

 * Facade method for updating Author objects in the BOOK_AUTHOR table

 *

 * @param author

 */

 public void update(Author author) {

 this.performUpdate(author.getId(), author.getFirst(), author.

getLast(), author.getBio());

 }

ChAPTER 5 JDBC wITh JAkARTA EE

384

 /**

 * Facade method for deleting Author objects from the BOOK_AUTHOR table

 *

 * @param args

 */

 public void delete(Author author) {

 performDelete(author.getId());

 }

 public static void main(String[] args) {

 AuthorDAO authorDao = new AuthorDAO();

 authorDao.queryBookAuthor();

 authorDao.performCreate("Joe", "Blow", "N/A");

 // Find any author named Joe Blow and store in authList

 List<Author> authList = authorDao.performFind("Joe", "Blow");

 // Update the BIO for any author named Joe Blow

 for (Author auth : authList) {

 auth.setBio("New Bio");

 authorDao.update(auth);

 }

 authorDao.queryBookAuthor();

 // Delete any author named Joe Blow

 for (Author auth : authList) {

 authorDao.delete(auth);

 }

 }

}

 How It Works
It can be advantageous for developers to separate different types of work into different

classes within an application code base. In the same way that you separate web views

from Java code within a Java web application, you should also separate JDBC from

classes that are used to perform business logic. Have you ever had to maintain or

debug a class that was riddled with business logic and SQL statements? It can be a

ChAPTER 5 JDBC wITh JAkARTA EE

385

nightmare! Simplifying code by breaking it down into smaller, more manageable pieces

can oftentimes make maintenance and debugging much easier on a developer. The

idea of separating JDBC and database-specific code from other business logic within

an application falls within this same concept. Creating data access objects that are used

solely for accessing the database can allow developers to code against Java objects rather

than database tables.

A DAO is not a standard Java enterprise object. There is no framework that is used for

creating DAOs. A DAO is simply a class that contains all of the JDBC code that is relevant

for working with a single database table for your application. If there are twenty database

tables that are required for use, then there should be that same number of DAOs. A

DAO should contain minimally eight different methods. There should be at least one

method for each of the four possible database transactions that could take place, those

being CREATE, READ, UPDATE, and DELETE. These methods would contain specific JDBC

code for connecting to the database, performing JDBC calls, and then closing the

connection. The DAO should also contain four façade methods that will be used directly

by classes containing the business logic. These methods should accept Java objects that

correspond to the database table for which the DAO was written, and they should break

down the object into separate fields and pass them to the JDBC methods to perform the

actual database transaction.

In the solution to this recipe, the AuthorDAO class contains more than eight methods.

This is because there is more than one way to search for author records within the

database, and therefore, there is more than one find method within the class. A couple of

different performFind() methods are available, each with a different method signature.

These methods allow one to find an author based upon ID or by name. Once a matching

author record is found in the database, the values for that record are retrieved using

standard JDBC methods, and they are stored into the corresponding fields within a

new Author object. In the end, either a list of Author objects or a single Author object

is returned to the caller. These finder methods contain public modifiers, so a managed

bean can call them directly to retrieve a list of Author objects or a single Author object.

The performCreate(), performUpdate(), and performDelete() methods are

private, and therefore they can be accessed only by other methods within the same class.

A CDI managed bean should not work directly with these private methods, nor will it be

allowed to do so. Instead, there are public methods named insert, update, and delete,

which are to be used by the CDI managed beans in order to access the private methods.

The insert, update, and delete methods accept Author objects, and they perform the task

ChAPTER 5 JDBC wITh JAkARTA EE

386

of breaking down the Author object by field and passing the appropriate fields to their

corresponding private methods in order to perform database activities. For instance,

a bean can call the AuthorDAO insert method, passing an Author object. The insert

method then calls the performCreate method, passing the fields of the Author object in

their respective positions. Each of the CRUD operations can be performed in the same

manner, allowing the business logic to interact directly with Author objects rather than

deal with SQL.

5-9. Calling PL/SQL Stored Procedures
 Problem
Some logic that is required for your application is written as a stored procedure residing

in the database. You require the ability to invoke the stored procedure from within your

application.

 Solution
The following block of code shows the PL/SQL that is required to create the stored

procedure that will be called by Java. The functionality of this stored procedure is very

minor; it simply accepts a value and assigns that value to an OUT parameter so that the

program can display it:

create or replace procedure dummy_proc (text IN VARCHAR2,

msg OUT VARCHAR2) as

begin

-- Do something, in this case the IN parameter value is assigned to the OUT

parameter

msg :=text;

end;

The CallableStatement in the following code executes this stored procedure that is

contained within the database, passing the necessary parameters. The results of the OUT

parameter are then displayed to the user:

ChAPTER 5 JDBC wITh JAkARTA EE

387

CallableStatement cs = null;

try {

 cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");

 cs.setString(1, "This is a test");

 cs.registerOutParameter(2, Types.VARCHAR);

 cs.executeQuery();

 System.out.println(cs.getString(2));

} catch (SQLException ex){

 ex.printStackTrace();

}

Running the example class for this recipe will display the following output, which

is the same as the input. This is because the DUMMY_PROC procedure simply assigns the

contents of the IN parameter to the OUT parameter:

This is a test

 How It Works
It is not uncommon for an application to use database stored procedures for

logic that can be executed directly within the database. To call a database stored

procedure from Java, you must create a CallableStatement object, rather than using

a PreparedStatement. In the solution to this recipe, a CallableStatement is used

to invoke a stored procedure named DUMMY_PROC. The syntax for instantiating the

CallableStatement is similar to that of using a PreparedStatement. Use the Connection

object’s prepareCall() method, passing the call to the stored procedure. The solution

to this recipe demonstrates one technique for making a stored procedure call, that is,

enclosing it in curly braces: {}.

cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");

Once the CallableStatement has been instantiated, it can be used just like a

PreparedStatement for setting the values of parameters. However, if a parameter is

registered within the database stored procedure as an OUT parameter, you must call a

special method, registerOutParameter, passing the parameter position and database

type of the OUT parameter that you want to register. In the solution to this recipe, the OUT

parameter is in the second position, and it has a VARCHAR type:

cs.registerOutParameter(2, Types.VARCHAR);

ChAPTER 5 JDBC wITh JAkARTA EE

388

To execute the stored procedure, call the executeQuery() method on the

CallableStatement. Once this has been done, you can see the value of the OUT

parameter by making a call to the CallableStatement getXXX() method that

corresponds to the data type:

System.out.println(cs.getString(2));

A NOTE REGARDING STORED FUNCTIONS

Calling a stored database function is essentially the same as calling a stored procedure.

however, the syntax to prepareCall() is slightly modified. To call a stored function, change

the call within the curly braces to entail a returned value using a ? character. For instance,

suppose that a function named DUMMY_FUNC accepted one parameter and returned a value.

The following code would be used to make the call and return the value:

cs = conn.prepareCall("{? = call DUMMY_FUNC(?)}");

cs.registerOutParameter(1, Types.VARCHAR);

cs.setString(2, "This is a test");

cs.execute();

A call to cs.getString(1) would then retrieve the returned value.

5-10. Querying and Storing Large Objects
 Problem
The application you are developing requires the storage of Strings of text that can

include an unlimited number of characters.

 Solution
Because the size of the Strings that need to be stored is unlimited, it is best to use

a character large object (CLOB) data type to store the data. The code in the following

example demonstrates how to load a CLOB into the database and how to query it. The

following excerpts are two methods from the org.jakartaeerecipes.chapter5.dao.

ChapterDAO class.

ChAPTER 5 JDBC wITh JAkARTA EE

389

Let’s take a look at how to read a CLOB column value from the database. The

readClob() method queries the database, reading the CHAPTER_NUMBER, TITLE, and

DESCRIPTION columns from the CHAPTER database table. The length of the DESCRIPTION,

which is the CLOB column, is printed to the command line along with the chapter

number, title, and description:

public void readClob() {

 String qry = "select chapter_number, title, description from chapter";

 Clob theClob = null;

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(qry)) {

 try (ResultSet rs = stmt.executeQuery();) {

 while (rs.next()) {

 int chapterNumber = rs.getInt(1);

 String title = rs.getString(2);

 theClob = rs.getClob(3);

 System.out.println("Clob length: " + theClob.length());

 System.out.println(chapterNumber + " - " + title + ": ");

 java.io.InputStream in =

 theClob.getAsciiStream();

 int i;

 while ((i = in.read()) > -1) {

 System.out.print((char) i);

 }

 System.out.println();

 }

 }

 } catch (IOException ex) {

 ex.printStackTrace();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

ChAPTER 5 JDBC wITh JAkARTA EE

390

The resulting output from running the method would look similar to the following,

depending upon which records are stored in the database:

Clob length: 19

1 - Getting Started with Java 5:

chapter description

Clob length: 19

2 - Strings:

chapter description

Clob length: 19

3 - Numbers and Dates:

chapter description

Clob length: 19

4 - Data Structures, Conditionals, and Iteration:

chapter description

Clob length: 19

5 - Input and Output:

chapter description

Clob length: 19

6 - Exceptions, Logging, and Debugging:

chapter description

Clob length: 19

5 - Object-Oriented Java:

chapter description

Clob length: 19

8 - Concurrency:

chapter description

Clob length: 19

9 - Debugging and Unit Testing:

chapter description

Clob length: 19

10 - Unicode, Internationalization, and Currency Codes:

chapter description

ChAPTER 5 JDBC wITh JAkARTA EE

391

What about inserting CLOB values into the database? The next method accepts values

for each field within a record of the CHAPTER table, and it constructs the CLOB contents

and lastly performs the insert:

private void performCreate(int chapterNumber, int bookId, String title,

String description) {

 String sql = "INSERT INTO CHAPTER VALUES("

 + "CHAPTER_S.NEXTVAL, ?, ?, ?, ?)";

 Clob textClob = null;

 CreateConnection.loadProperties();

 try (Connection conn = CreateConnection.getConnection();

 PreparedStatement stmt = conn.prepareStatement(sql)) {

 textClob = conn.createClob();

 textClob.setString(1, description);

 stmt.setInt(1, chapterNumber);

 stmt.setString(2, title.toUpperCase());

 stmt.setClob(3, textClob);

 stmt.setInt(4, bookId);

 // Returns row-count or 0 if not successful

 int result = stmt.executeUpdate();

 if (result > 0) {

 System.out.println("-- Record created --");

 } else {

 System.out.println("!! Record NOT Created !!");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

ChAPTER 5 JDBC wITh JAkARTA EE

392

 How It Works
If your application requires the storage of String values, you need to know how large

those Strings might possibly become. Most databases have an upper boundary when it

comes to the storage size of VARCHAR fields. For instance, Oracle database has an upper

boundary of 4,000 bytes, and anything exceeding that length will be cut off. If you have

large amounts of text that need to be stored, use a CLOB field in the database.

A CLOB is handled a bit differently from a String within Java code. In fact, it is

actually a bit odd to work with the first couple of times you use it because you have to

create a CLOB from a Connection.

Note In reality, CLOBs and BLOBs (binary large objects) are not stored in the
Oracle table where they are defined. Instead, a large object (LOB) locator is stored
in the table column. Oracle might place the CLOB in a separate file on the database
server. when Java creates the Clob object, it can be used to hold data for update
to a specific LOB location in the database or to retrieve the data from a specific
LOB location within the database.

Let’s take a look at the performCreate() method that is contained in the solution

to this recipe. As you can see, a Clob object is created using the Connection object’s

createClob() method. Once the Clob has been created, you set its contents using the

setString() method by passing the position, which indicates where to place the String,

and the String of text itself:

textClob = conn.createClob();

textClob.setString(1, "This will be the recipe text in clob format");

Once you have created and populated the Clob, you simply pass it to the database

using the PreparedStatement setClob() method. In the case of this example, the

PreparedStatement performs a database insert into the CHAPTER table by calling the

executeUpdate() method as usual. Querying a Clob is fairly straightforward as well.

As you can see in the readClob() method that is contained within the solution to

this recipe, a PreparedStatement query is set up, and the results are retrieved into a

ResultSet. The only difference between using a Clob and a String is that you must load

ChAPTER 5 JDBC wITh JAkARTA EE

393

the Clob into a Clob type. Calling the Clob object’s getString() method will pass you

a strange-looking String of text that denotes a Clob object. Therefore, calling the Clob

object’s getAsciiStream() method will return the actual data that is stored in the Clob.

This technique is used in the solution to this recipe.

Although Clobs are fairly easy to use, they take a couple of extra steps to prepare. It

is best to plan your applications accordingly and try to estimate whether the database

fields you are using might need to be CLOBs because of size restrictions. Proper planning

will prevent you from going back and changing standard String-based code to work

with Clobs later.

5-11. Querying with a REF_CURSOR
 Problem
Your database has implemented a REF_CURSOR datatype, which holds a query cursor

value. You would like to have the ability to call upon a REF_CURSOR from your application

and use the results just like a standard query.

 Solution
Utilize a CallableStatement to call upon the database function or procedure that

returns a REF_CURSOR, and register the returned value as Types.REF_CURSOR. The result

will be returned as a ResultSet.class type, which can then be called upon like an

ordinary query ResultSet to obtain the results. In the following example, a procedure

named AUTHOR_PROC is called upon, which returns a REF_CURSOR. The results are then

registered and parsed accordingly:

CallableStatement cstmt = conn.prepareCall("{AUTHOR_PROC(?)}");

cstmt.registerOutParameter(1, Types.REF_CURSOR);

cstmt.executeQuery();

ResultSet rs = cstmt.getObject(1, ResultSet.class);

while(rs.next()){

 System.out.println("Name="+ rs.getString(1));

}

ChAPTER 5 JDBC wITh JAkARTA EE

394

 How It Works
A REF_CURSOR is a database construct that allows one to generate a query string that

can be passed by reference and called upon when needed. Oftentimes these constructs

are returned from functions or procedures, and they allow for the ability to generate

dynamic queries. As such, it can be quite useful to call upon a REF_CURSOR from within

a Java application. The JDBC 4.2 release added the ability to call upon and work with

REF_CURSORs.

The solution to this recipe demonstrates how to call upon a REF_CURSOR and obtain

a ResultSet. The ResultSet can then be used to obtain access to the record data that

is returned. Return a CallableStatement to call upon the REF_CURSOR by invoking the

Connection prepareCall() method and passing a String containing the name of the

database procedure or function that returns the REF_CURSOR using the following syntax:

CallableStatement cstmt = conn.prepareCall("{AUTHOR_PROC(?)}");

Once the CallableStatement has been generated, call upon the

registerOutParameter(int) method and pass the REF_CUROR positional index, which in

this case is 1, and the data type of the value being returned at that index. In this case, the

data type is Types.REF_CURSOR:

cstmt.registerOutParameter(1, Types.REF_CURSOR);

Lastly, call upon the CallableStatment executeQuery() method, which will

execute the query and return the result. The CallableStatement getObject(int)

method can then be called upon, once again passing the position of the value being

returned. In this case the position is 1 and the type is ResultSet.class, and this can be

assigned to a ResultSet which can then be used to return the results of the REF_CURSOR

query. As you can see from the example, a String value is expected:

ResultSet rs = cstmt.getObject(1, ResultSet.class);

while(rs.next()){

 System.out.println("Name="+ rs.getString(1));

}

The support for REF_CURSOR is a great addition for the JDBC API with release 4.2.

REF_CURSORs provide the ability to create dynamic queries within SQL, and with the

addition of the JDBC support, these dynamic SQL statements can now be utilized from

Java applications.

ChAPTER 5 JDBC wITh JAkARTA EE

395
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_6

CHAPTER 6

Object-Relational Mapping
For years, the Java Database Connectivity (JDBC) API was the standard for working with

databases both web and desktop Java applications alike. Over the years, techniques for

obtaining access to data stores and working with data within applications have evolved,

and many organizations began to develop their own strategies for working with data in

a more convenient way. Developers often find it easier to work with Java objects rather

than Structured Query Language (SQL) for relational data. This chapter discusses some

techniques that have been used in order to encapsulate SQL into separate utility classes

and abstract it from developers so that they can work with Java objects rather than the

SQL. Such strategies are known as object-relational mapping (ORM) strategies, and there

are several well-known ORM strategies available from a multitude of organizations today.

Among the most well-known ORM strategies are Hibernate (http://hibernate.org),

Oracle’s TopLink (www.oracle.com/technetwork/middleware/toplink/overview/

index.html), and EclipseLink (http://wiki.eclipse.org/EclipseLink/UserGuide/

JPA/Basic_JPA_Development).

In an effort to standardize the industry, the Java Persistence API (JPA) has been

deemed the strategy to use for moving forward with Java and Jakarta EE. JPA includes

many features that were first introduced in ORM strategies such as Hibernate and

TopLink. In fact, some of the top representatives from many of the different ORM projects

formulated the Java Specification Requests (JSRs) for producing JPA, providing Java

enterprise developers with a standard, efficient, and highly productive way to work with

an underlying RDBMS from within Java applications. JPA allows developers to choose

from a variety of Java persistence providers to utilize the configuration with which they

are most comfortable, without the need to include multiple third-party libraries or

customizations within the application. Some of the possible providers are as follows:

• EclipseLink (JPA default)

• Hibernate

• TopLink Essentials

http://hibernate.org
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development

396

• KODO

• OpenJPA

Object-relational mapping is the process of mapping a Java object to a database

table, such that each column of the database table maps to a single field or property

within the Java object. Java objects that are used to map against database tables are

referred to as entity classes, and this chapter will focus on the creation and use of entity

classes. Recipes will cover areas such as creating classes and performing standard

database transactions. You will learn how to configure a connection against a database,

how to utilize JPA to persist and retrieve objects without using SQL, and how to relate

objects to one another in a meaningful and productive manner.

Not only does ORM programming abstract the implementation details of working

directly with a database from a developer, but it also provides a standard mechanism for

deploying applications on databases from multiple vendors. JPA takes care of translating

code into SQL statements, so once an application is written using JPA, it can be deployed

using almost any underlying database.

Note The recipes within this chapter may or may not be available for your use
depending upon which JPA provider you choose. For instance, providers may
include a different set of metadata annotations to use. Rather than list each
annotation that is available for use in each recipe, I will direct you to very good
resources for learning about all of the possible annotations that can be used along
with each of the most widely used providers. While most of the annotations are
common among all providers, there are a handful of custom annotations for each.

EclipseLink (use 2.7+ with Jakarta EE 8): www.eclipse.org/eclipselink/
api/2.7/org/eclipse/persistence/annotations/package-summary.
html

Hibernate (use 5.3+ with Jakarta EE 8): https://docs.jboss.org/
hibernate/orm/5.3/javadocs/

TopLink JPA (Java Persistence API): www.oracle.com/technetwork/
middleware/ias/toplink-jpa-annotations-096251.html

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

http://www.eclipse.org/eclipselink/api/2.7/org/eclipse/persistence/annotations/package-summary.html
http://www.eclipse.org/eclipselink/api/2.7/org/eclipse/persistence/annotations/package-summary.html
http://www.eclipse.org/eclipselink/api/2.7/org/eclipse/persistence/annotations/package-summary.html
https://docs.jboss.org/hibernate/orm/5.3/javadocs/
https://docs.jboss.org/hibernate/orm/5.3/javadocs/
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html

397

The sources for this chapter reside within the org.jakartaeerecipes.
chapter06 package. To run the examples from this chapter, deploy the
application to the application server, and then visit the URL http://
localhost:8080/JakartaEERecipes/faces/chapter06/home.xhtml.
It should be noted that the examples for this chapter cannot be run within a web
application without the use of other technologies such as Enterprise Javabeans,
which will be covered in Chapter 8. For that reason, many of the examples in this
chapter utilize stand-alone Java classes for testing purposes.

6-1. Creating an Entity
 Problem
You want to create a Java object that can be mapped to a database table such that the

class can be used for persistence, rather than using JDBC.

 Solution
Create an entity class against a particular database table. Declare persistent fields or

properties for each of the columns in the underlying data table and use annotations to

map the fields to a given column. Provide getters and setters for each of the persistent

fields or properties that are declared within the entity so that other classes can access the

contents.

The following code is an entity class named BookAuthor, which maps the BOOK_

AUTHOR database table to a standard Java object for use within the application:

package org.jakartaeerecipes.chapter06.entity;

import java.io.Serializable;

import java.math.BigDecimal;

import javax.persistence.*;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

398

/**

 * Chapter 6

 * Entity class for the BOOK_AUTHOR database table of the Acme Bookstore

application

 * @author juneau

 */

@Entity

public class BookAuthor implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "LAST")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRST")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 public BookAuthor() {

 }

 public BookAuthor(BigDecimal id) {

 this.id = id;

 }

 public BigDecimal getId() {

 return id;

 }

 public void setId(BigDecimal id) {

 this.id = id;

 }

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

399

 public String getLast() {

 return last;

 }

 public void setLast(String last) {

 this.last = last;

 }

 public String getFirst() {

 return first;

 }

 public void setFirst(String first) {

 this.first = first;

 }

 public String getBio() {

 return bio;

 }

 public void setBio(String bio) {

 this.bio = bio;

 }

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (id != null ? id.hashCode() : 0); return hash;

 }

 @Override

 public boolean equals(Object object) {

 // TODO: Warning - this method won't work in the case the id fields

are not set

 if (!(object instanceof BookAuthor)) {

 return false;

 }

 BookAuthor other = (BookAuthor) object;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

400

 if ((this.id == null && other.id != null) || (this.id != null &&

!this.id.equals(other.id))) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return "org.jakartaeerecipes.chapter06.entity.BookAuthor

[id=" + id + "]";

 }

}

The entity itself cannot be used alone to access the database. Minimally, a

persistence unit is required in order to connect with a database and perform

transactions with the entity classes. To learn more about creating a persistence unit,

please refer to Recipe 6-3.

 How It Works
As an object-oriented developer, it sometimes makes more sense to work with objects that

represent data, rather than working with variables of data and writing SQL to work directly

with the underlying data store. The concept of mapping objects to database tables is better

known as object-relational mapping. The Java Persistence API utilizes ORM for storing and

retrieving data from a database via the usage of object classes known as entity classes. An

entity class is a Java object that represents an underlying database table.

Note Prior to EJb 3.0, XML files were used instead of annotations in order to
manage metadata for entity classes. You can still use XML descriptors to manage
metadata today, but I will not cover how to do so in this book. Most annotations
can be used to selectively override default values within a class.

The entity class is usually named the same as the underlying database table, using

camel-case lettering (capitalized first letters for all words) to separate different words

within the table name. For instance, the BOOK_AUTHOR database table has a Java entity

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

401

class named BookAuthor. The name of the entity can differ from the name of the

underlying database table. However, it is a standard practice to name the entity class the

same. In such cases where the name of the entity class has to differ from the database

table, the @Table annotation can be used to annotate the entity class, providing the name

of the underlying data table. Every entity class must be annotated as such by specifying

the javax.persistence.Entity annotation. In the example, the BookAuthor entity

class specifies only those annotations that are required. If the entity were to be named

differently than the database table, the @Table annotation could be utilized as follows:

...

@Entity

@Table(name = "BOOK_AUTHOR")

...

An entity class must have a public or protected no-argument constructor. It is

always a good idea to make an entity class Serializable by implementing the java.

io.Serializable interface because doing so ensures that the entity class may be

passed by value and persisted to disk, if needed. All entity classes must contain private

or protected instance variables for each of the columns within the underlying database

table, as well as variables for each relationship that the entity may have with other

entities. (To read more about entity relationships, please take a look at Recipes 6-6, 6-7,

and 6-8.) All database tables that will be mapped to Java entity classes must contain a

primary key field, and the corresponding instance variable within the entity class that

maps to the primary key column must be annotated with @Id. Each of the instance

variables that maps to a database column can be annotated with @Column, specifying

the name of the underlying database column. However, if no @Column annotation is

specified, the name of the variable should match the database column name exactly,

using camel-case lettering to separate words within the column name. To signify that

a particular database column and its mapped instance variable cannot contain a NULL

value, the variable can be annotated with @NotNull.

Another annotation worth mentioning that is used within the example for this recipe

is @Size, which is used to specify the maximum size for a String variable. The size

value should correspond to the database column size for the corresponding column. In

addition, the @Lob annotation can be used to signify that the underlying database data

type is a large object. There are other annotations that can be used to further customize

an entity class; please see the link within the introduction to this chapter for the JPA

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

402

provider that you are using in order to learn more about all of the annotations that can

be used. Table 6-1 summarizes the most commonly used annotations when creating an

entity class. Those annotations are covered within the solution to this recipe.

Table 6-1. Commonly Used Annotations for Creating Entity Classes

Annotation Description

@Entity Designates a Plain Old Java Object (POJO) class as an entity so that it can be used

with JPA services

@Table Specifies the name of the primary table associated with an entity (optional)

@Id Designates one or more persistent fields or properties of the entity’s primary key

@Basic Configures the fetch type to LAZY

@Column Associates a persistent attribute with a different name if the column name is

awkward, incompatible with a preexisting data model, or invalid as a column name

in your database

As mentioned in the solution for this recipe, an entity class cannot be used by itself.

It is part of an overall solution for working with an underlying data source. Entity classes

make it easy to map Java objects to database tables. They should be used in tandem

with Enterprise JavaBean (EJB) classes (Chapter 7) and Contexts and Dependency

Injection (CDI) or stand-alone with a persistence unit (Recipe 6-3) to perform database

operations. A full Java EE solution utilizing the JSF framework can also use JSF managed

beans to work directly with EJBs, or JAX-RS RESTful clients, which in turn conduct work

via the entity classes.

Note You may be wondering why the hashCode() and equals() methods are
overridden in the example. The equals() method is present in every Java object,
and it is used to determine object identity. Every entity class needs to contain an
implementation of these methods in order to differentiate objects from one another.
It is very possible for two entity objects to point to the same row in a database
table. The equals() method can determine whether two entities both point to the
same row. Moreover, all Java objects that are equal to one another should contain
the same hashCode. In entity classes, it is important to override these methods to
determine whether objects represent the same database table row.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

403

6-2. Mapping Data Types
 Problem
You are interested in mapping database table columns with entity class fields, but you

are unsure which data types to declare for the fields within the class.

Note Transient fields or properties cannot contain mapping annotations.
A transient field or property is not persisted to the database.

 Solution
Map database table column data types with their equivalent data types in the Java

language specification when declaring instance variables for the columns within an

entity class. The Jakarta EE container will convert the database value accordingly so

long as the database column data type matches up to a Java data type that will contain

the specified column’s value. To demonstrate data type mapping, an entity class will

be written for the Acme Bookstore’s CONTACT database table. The CONTACT table has the

following description:

SQL> desc contact

 Name Type

 --- ----------------------------

 ID NOT NULL NUMBER

 FIRST VARCHAR2(50)

 LAST VARCHAR2(50)

 EMAIL VARCHAR2(150)

 PASSWORD VARCHAR2(30)

 DESCRIPTION CLOB

 OCCUPATION VARCHAR2(150)

 RECEIVENOTIFICATIONS VARCHAR2(1)

 GENDER VARCHAR2(1)

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

404

The corresponding entity class is named Contact, and its class listing, shown next,

demonstrates how to match each database column type to an appropriate Java data type:

package org.jakartaeerecipes.chapter06.entity;

...

@Entity

@Table(name = "CONTACT")

public class Contact implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 50)

 @Column(name = "FIRST")

 private String first;

 @Size(max = 50)

 @Column(name = "LAST")

 private String last;

 @Size(max = 150)

 @Column(name = "EMAIL")

 private String email;

 @Size(max = 30)

 @Column(name = "PASSWORD")

 private String password;

 @Lob

 @Column(name = "DESCRIPTION")

 private String description;

 @Size(max = 150)

 @Column(name = "OCCUPATION")

 private String occupation;

 @Size(max = 1)

 @Column(name = "RECEIVENOTIFICATIONS")

 private String receivenotifications;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

405

 @Size(max = 1)

 @Column(name = "GENDER")

 private String gender;

 public Contact() {

 }

 ...

// getters and setters

 ...

 @Override

 public int hashCode() {

 ...

 }

 @Override

 public boolean equals(Object object) {

 ...

 }

 @Override

 public String toString() {

 return "org.jakartaeerecipes.chapter06.entity.Contact[id=" + id + "]";

 }

}

It is important to specify the correct mapping data types because errors can occur

down the line if not done correctly. Such is often the case with numerical data types.

 How It Works
To create a Java class that will be used to represent a database table, you must map each of

the table’s columns to a class instance variable. In doing so, the variable must be assigned

a data type that corresponds to that database column’s data type. In some cases, more than

one Java data type will map to a single database column’s data type. In other cases, however,

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

406

a database column’s data type must match up to a specific Java data type. Table 6-2 lists the

different Java data types and their associated database data types. If you are using another

database for your work besides Oracle, please see the documentation for the database to

rectify any discrepancies between the data types from those used by Oracle.

MySQL Data Mapping Documentation: https://dev.mysql.com/doc/

connector-j/5.1/en/connector-j-reference-type-conversions.html

Table 6-2. Oracle Database and Java Data Type Mapping

Oracle Data Type Java Data Type

BINARY_INTEGER, NATURAL, NATURALN, PLS_INTEGER,

POSITIVE, POSITIVEN, SIGNTYPE, INT, INTEGER

int

CHAR, CHARACTER, VARCHAR2 LONG, STRING, VARCHAR java.lang.String

RAW, LONG RAW byte[]

DEC, DECIMAL, NUMBER java.math.BigDecimal

DOUBLE PRECISION, FLOAT double

SMALLINT int

REAL float

DATE java.sql.Timestamp

java.sql.Date

TIMESTAMP (or derivative) java.sql.Timestamp

BOOLEAN boolean

CLOB java.sql.Clob

BLOB java.sql.Blob

VARRAY java.sql.Array

REF CURSOR java.sql.ResultSet

Mapping data types correctly is a very important step in the creation of an entity

class because an incorrect mapping can result in incorrect precision for numerical

values and so forth. Utilizing the correct data types when mapping entity classes to the

database table may vary depending upon database vendor, but Table 6-2 should be

easily translated from Oracle data types to the data types for the RDBMS of your choice.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-type-conversions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-type-conversions.html

407

6-3. Creating a Persistence Unit
 Problem
You want to use an entity class to perform database transactions. Therefore, you need to

configure your application’s database connectivity.

 Solution
Create a persistence unit to configure a database connection, and then use the

persistence unit to perform transactions with a given entity class. A persistence unit can

use a database connection pool configured within an application server, or it can utilize

a local JDBC configuration in order to obtain a database connection. In this example, I

will demonstrate the use of the local JDBC configuration since the example will be run as

a stand-alone application, rather than being deployed to an application server.

The following persistence unit is configured to create local JDBC connections,

rather than using JPA for connections. However, you can learn more about configuring

a persistence unit to work with database connection pools that are configured within

an application server in the “How It Works” section of this recipe. The following code is

from a file named persistence.xml, which is located in the src\conf directory for this

chapter:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/

persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.

com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="JakartaEERecipesLOCAL" transaction-

type="RESOURCE_LOCAL">

 <class>org.jakartaeerecipes.chapter06.entity.BookAuthor</class>

 <properties>

 <property name="javax.persistence.jdbc.user" value="username"/>

 <property name="javax.persistence.jdbc.password"

value="password"/>

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

408

 <property name="javax.persistence.jdbc.url"

value="jdbc:oracle:thin:@hostname:port_number:dbname"/>

 </properties>

 </persistence-unit>

</persistence>

 How It Works
To work with a database, an application needs to have the ability to connect to it. Usually

a database connection pertains to a single username/password within a database.

The persistence context XML file is where the connection information for the Java

Persistence API resides, in our case a persistence.xml file. A persistence context can

contain configuration for more than one connection to the database. Each connection

configuration is referred to as a persistence unit, and each has a unique name that is

used to identify the connection from within the application classes. The persistence.

xml file can be packaged as part of a web archive (WAR) or enterprise archive (EAR)

file, or it can be packed into a JAR file, which is, in turn, packaged with a WAR or EAR.

If packaged with an EAR file, it should reside within the META-INF directory. If using a

WAR file, the persistence.xml file should be packaged within the resources/META-INF

directory. Lastly, if packaging into a JAR file, the JAR should reside within the WEB-INF/

lib directory of a WAR or the library directory of an EAR.

As mentioned previously, each persistence.xml file can contain more than one

database configuration, or persistence unit. Each persistence unit contains the type of

JPA provider that will be used for the connection, the transaction type (JTA or RESOURCE_

LOCAL), classes to be used for persistence (entity classes), and database connection

specifics. In this section, I will break down the persistence unit that is configured for the

recipe solution and describe each piece.

At the root of each persistence unit is the persistence-unit element, which

contains the name and transaction-type attributes. Each persistence unit has a name;

in the case of the example, it is JakartaEERecipesLOCAL, and this name is used to obtain

a reference to the persistence unit from within application code. The transaction-type

attribute of a persistence unit indicates whether Java Transaction API entity managers

will be created (for use within an application server) or Resource-Local entity managers

will be created (for use with stand-alone applications).

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

409

Next in the example you will see a series of classes listed within separate class

elements. Within the persistence-unit element, zero or more classes can be identified

for use with the persistence unit. These classes are the entity classes that will be mapped

to the underlying database table. If using the RESOURCE_LOCAL transaction type, each

entity class must be listed within the persistence unit. If using JTA (deployed to an

application server within a WAR or EAR file), then the container takes care of identifying

the entity classes, and they do not need to be listed in the persistence unit. If an entity

class is not identified in the persistence unit and the transaction type is RESOURCE_LOCAL,

then that entity class will not be available for use within the application.

Note A persistence unit may also include an <exclude-unlisted-classes>
element, which should be set to a boolean value. This element is used to indicate
whether classes must be listed using a <class> element within the persistence
unit when using JTA, and it is FALSE by default. It may make sense to set this
element to TRUE if two or more data sources are being used within an application
and only specified entity classes should be used for each.

The properties element should contain subelements that define the connection to

the database. Specifically, the user, password, and database URL are identified within

sub-properties of the properties element. For RESOURCE_LOCAL persistence units, the

following points are true:

• The property javax.persistence.jdbc.username should be used to

identify the database username for the connection.

• The property javax.persistence.jdbc.password should identify the

database user password for the connection.

• The property javax.persistence.jdbc.url should identify the

database URL for the connection.

The properties for a Java Transaction API connection are different. In fact, for JTA,

there can be no properties specified. Instead, an element named jta-data-source

can be used to specify a JNDI name of a database connection that has been configured

within the application server for use. For example, let’s say the database connection is

configured as jdbc/OracleConnection within the application server. Furthermore, let’s

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

410

assume you are deploying a WAR file to the GlassFish application server and you will use

JTA instead of RESOURCE_LOCAL. If this is the case, the persistence unit may look like the

following:

<persistence-unit name="JakartaEERecipesJTA" transaction-type="JTA">

 <jta-data-source>jdbc/OracleConnection</jta-data-source>

 <properties/>

</persistence-unit>

Note There are no classes listed in the JTA example because the application
server automatically identifies the entity classes for use with the persistence unit.
However, there are circumstances for which it may be useful to list classes, as
mentioned in the preceding note.

To use a persistence unit, an EntityManagerFactory object must first be

obtained. An EntityManagerFactory object can be obtained by calling the

Persistence.createEntityManagerFactory method and passing the string-based

name of the persistence unit for which you want to obtain a connection. Once an

EntityManagerFactory object has been obtained, an EntityManager object can

be created and used to begin a database transaction. Obtaining a connection via a

persistence unit would look similar to the following:

...

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JakartaE

ERecipesLOCAL");

EntityManager em = emf.createEntityManager();

try {

 EntityTransaction entr = em.getTransaction();

 entr.begin();

 Query query = em.createNamedQuery("BookAuthor.findAll");

...

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

411

Note The preceding example uses the createNamedQuery method in order to
substitute a named query rather than writing the Java Persistence Query Language
(JPQL) inline. For more information, please see Recipe 6-9.

The persistence.xml configuration file contains the database connection

information that will be utilized by an application to work with database(s). If you

are working with JPA, you will become very familiar with creating a persistence unit,

whether using local JDBC connections or an application server connection pool.

6-4. Using Database Sequences to Create
Primary Key Values
 Problem
Your database contains sequences that are used to generate primary key values for your

database table records. Your application needs to use those database sequences in order

to assign primary key values when creating and persisting objects.

 Solution
Annotate an entity class’s primary key field with a SequenceGenerator and then

associate it with an entity generator in order to utilize a database sequence for

populating a database table column value. In the following example, the BookAuthor

entity has been updated to utilize the BOOK_AUTHOR_S database sequence for creating

primary key values. As such, the id field has been annotated accordingly:

package org.jakartaeerecipes.chapter06.entity;

import java.io.Serializable;

import java.math.BigDecimal;

import javax.persistence.*;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

412

@Entity

@Table(name = "BOOK_AUTHOR")

public class BookAuthor implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)@SequenceGenerator(name="book_author_s_

generator",sequenceName="book_author_s",initialValue=1,

allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="book_author_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "LAST")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRST")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 public BookAuthor() {

 }

 ...

When a new BookAuthor object is persisted to the database, the next sequence value

for BOOK_AUTHOR_S will be used as the primary key value for the new database record.

The class org.jakartaeerecipes.chapter06.recipe06_04.SequenceTest.java can

be run to test the sequence-generated primary key once the persistence context has

been configured for the local JDBC database connection (see Recipe 6-3 for details). The

following excerpt is taken from the SequenceTest class, and it demonstrates how to add

a new BookAuthor object to the database:

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

413

...

EntityManagerFactory emf = Persistence.createEntityManagerFactory

("JakartaEERecipesLOCAL");

EntityManager em = emf.createEntityManager();

try {

 EntityTransaction entr = em.getTransaction();

 entr.begin();

 BookAuthor author = new BookAuthor();

 author.setFirst("JOE");

 author.setLast("TESTER");

 author.setBio("An author test account.");

 boolean successful = false;

 try {

 em.persist(author);

 successful = true;

 } finally {

 if (successful){

 entr.commit();

 } else {

 entr.rollback();

 }

 }

 Query query = em.createNamedQuery("BookAuthor.findAll");

 List authorList = query.getResultList();

 Iterator authorIterator = authorList.iterator();

 while (authorIterator.hasNext()) {

 author = (BookAuthor) authorIterator.next();

 System.out.print("Name:" + author.getFirst() + " " + author.getLast());

 System.out.println();

 }

} catch (Exception ex){

 ex.printStackTrace();;

} finally {

 em.close();

}

...

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

414

Note This example demonstrates the use of database transactions. Transactions
allow for an entire sequence of processes to be performed at once. If a failure
occurs in one of the processes, then all processes in the transaction fail, and
changes to the database are rolled back. Otherwise, if all processes in the
transaction complete successfully, then they are committed to the database.
Transactions are very useful in situations where multiple database events depend
upon one another.

 How It Works
In many cases, it makes sense to generate primary key values for database table records

via a database sequence. Utilizing JPA allows you to do so by incorporating the use of

the @SequenceGenerator and @GeneratedValue annotations into an entity class. Every

database table that is mapped to an entity class must have a primary key value, and

using database sequences to obtain those values makes sense for many reasons. For

instance, in some cases an application administrator will need to know what the next

number, current number, or last number used for a primary key value might be. By using

a database sequence, gathering information regarding the next, current, or last numbers

is just a query away.

The @SequenceGenerator annotation should be placed directly before the

declaration of the primary key field or property within the entity class, or it can be

placed before the entity class declaration. Note that other annotations may be placed

between the @SequenceGenerator annotation and the actual variable declaration. The

@SequenceGenerator annotation accepts values regarding the database sequence that

is to be used for primary key generation. More specifically, the annotation accepts the

following attributes:

• name (required): The name of the generator (this name can be an

arbitrary value)

• sequenceName (optional): The name of the database sequence from

which to obtain the primary key value

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

415

• initialValue (optional): The initial value of the sequence object

• allocationSize (optional): The amount of increment when

allocating numbers from the sequence

The @GeneratedValue annotation provides for the specification of the primary key

generation strategy for the entity. Similar to the @SequenceGenerator attribute, it can be

placed before the declaration of the primary key field or property within the entity class,

or it can be placed before the entity class declaration. It is used to specify the means for

which the entity class primary key will be generated. The three options are as follows:

• The entity class will generate its own primary key value before

inserting a new record.

• The entity class will use a database sequence for the key generation.

• The entity class will generate keys via some other means.

The attributes that can be specified for the @GeneratedValue annotation are as

follows:

• generator (optional): This is the name of the primary key generator

to use as specified by the @SequenceGenerator annotation.

This must match the name attribute that was supplied for the

@SequenceGenerator annotation unless using a @TableGenerator.

This defaults to the ID generator supplied by the persistence provider.

• strategy (optional): This is the primary key generation strategy that

will be used by the persistence provider to generate the primary key

for the annotated field or entity class. This defaults to AUTO if not

supplied.

The strategy attribute of @GeneratedValue can accept four different javax.

persistence.GenerationType Enum values:

• AUTO: Indicates that the persistence provider should choose an

appropriate strategy for a particular database

• IDENTITY: Indicates that the persistence provider must assign

primary keys for the entity using the database identity column

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

416

• SEQUENCE: Indicates that the persistence provider must assign

primary keys for the entity using the database sequence column

• TABLE: Indicates that the persistence provider must assign primary

keys for the entity using an underlying database table to ensure

unique values are provided.

In the example for this recipe, the BOOK_AUTHOR_S database sequence is specified for

the sequenceName attribute of the @SequenceGenerator annotation, and the name of the

generator is book_author_s_generator. Note that the @GeneratedValue name attribute

matches that of the @SequenceGenerator annotation; this is very important! Once

specified, the entity class will automatically obtain the next value from the database

sequence when a new object is persisted.

Note There are other options for generating key values, such as AUTO, IDENTITY,
and TABLE. These strategies can be valid in different situations. For more
information on using other options, please refer to the online Jakarta EE
documentation at https://javaee.github.io/.

6-5. Generating Primary Keys Using More Than
One Attribute
 Problem
A particular database table does not contain a primary key. Since use of the Java

Persistence API (JPA) requires a primary key for mapping entity classes to database

tables, you need to join the values of two or more of the table columns in order to create

a primary key for each record.

 Solution #1
Create a composite primary key by developing an embedded composite primary

key class and denoting the composite key field within an entity using the javax.

persistence.EmbeddedId and javax.persistence.IdClass annotations. Consider the

AUTHOR_WORK database table that is used for the Acme Bookstore application. Suppose

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

https://javaee.github.io/

417

that the AUTHOR_WORK database table did not contain a primary key column. It would be

possible to generate a primary key for each record based upon its BOOK_ID and AUTHOR_

ID columns. The following entity class is that for the AuthorWork entity. Instead of using

the ID column as a primary key, it uses both the bookId and authorId columns together

to formulate a composite primary key:

package org.jakartaeerecipes.chapter06.entity;

import java.io.Serializable;

import java.math.BigDecimal;

import java.math.BigInteger;

import javax.persistence.*;

import javax.validation.constraints.NotNull;

import org.jakartaeerecipes.chapter06.entity.key.AuthorWorkPKEmbedded;

import org.jakartaeerecipes.chapter06.entity.key.AuthorWorkPKNonEmbedded;

@Entity

@Table(name = "AUTHOR_WORK")

// (Named queries are covered in Recipe 6-9)

@NamedQueries({

 @NamedQuery(name = "AuthorWork.findAll", query = "SELECT a FROM

AuthorWork a")})

public class AuthorWorkEmbedded implements Serializable {

 private static final long serialVersionUID = 1L;

 // You can use an embedded ID in-place of a standard Id if a table

 // contains more than one column to compose a primary key. Comment

 // out along with the getters and setters to use a non-embeddable

primary key.

 @EmbeddedId

 private AuthorWorkPKEmbedded embeddedId;

 public AuthorWorkEmbedded() {

 }

 public AuthorWorkEmbedded(BigInteger bookId, BigInteger authorId) {

 this.embeddedId = new AuthorWorkPKEmbedded(bookId, authorId);

 }

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

418

 /**

 * @return the embeddedId

 */

 public AuthorWorkPKEmbedded getEmbeddedId() {

 return embeddedId;

 }

 /**

 * @param embeddedId the embeddedId to set

 */

 public void setEmbeddedId(AuthorWorkPKEmbedded embeddedId) {

 this.embeddedId = embeddedId;

 }

}

To utilize an embedded primary key, you must create a class that contains the logic

for mapping the primary key ID to the columns that are used to compose it. For this

example, the AuthorWorkPKEmbedded class serves this purpose, which is shown here:

package org.jakartaeerecipes.chapter06.entity.key;

import java.io.Serializable;

import java.math.BigInteger;

import javax.persistence.Embeddable;

/**

 * Embeddable Primary Key class for AuthorWork

 *

 * @author juneau

 */

@Embeddable

public class AuthorWorkPKEmbedded implements Serializable {

 private BigInteger bookId;

 private BigInteger authorId;

 public AuthorWorkPKEmbedded() {

 }

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

419

 public AuthorWorkPKEmbedded(BigInteger bookId, BigInteger authorId){

 this.bookId = bookId;

 this.authorId = authorId;

 }

. . .

 // getters and setters

. . .

 public int hashCode() {

 return bookId.hashCode() + authorId.hashCode();

 }

 public boolean equals(Object obj) {

 if (obj == this) {

 return true;

 }

 if (!(obj instanceof AuthorWorkPKEmbedded)) {

 return false;

 }

 if (obj == null) {

 return false;

 }

 AuthorWorkPKEmbedded pk = (AuthorWorkPKEmbedded) obj;

 return (((bookId == ((AuthorWorkPKEmbedded) obj).getBookId()))

 && ((authorId == ((AuthorWorkPKEmbedded) obj).

getAuthorId())));

 }

}

Note Although the preceding example is not an entity class, its member values
are persisted. Even if the members are not designated as @Basic, they are still
persisted.

both the hashCode() and equals() methods must be present in composite key
classes.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

420

 Solution #2
Create a composite primary key by developing a non-embedded composite primary

key class, and denote two or more of the columns within the entity class with the @Id

annotation. Also, if using a non-embedded primary key class, the entity class must

be designated as such by utilizing the @IdClass annotation and specifying the non-

embedded primary key class.

Consider the AUTHOR_WORK database table that is used for the Acme Bookstore

application. Suppose that the AUTHOR_WORK database table did not contain a primary key

column. It would be possible to generate a primary key for each record based upon its

BOOK_ID and AUTHOR_ID columns since together they would formulate a unique value for

each record. The following entity class is that for the AuthorWork entity. Instead of using

the ID column as a primary key, it uses both the bookId and authorId columns together

to formulate a composite primary key:

package org.jakartaeerecipes.chapter06.entity;

import java.io.Serializable;

import java.math.BigDecimal;

import java.math.BigInteger;

import javax.persistence.*;

import javax.validation.constraints.NotNull;

import org.jakartaeerecipes.chapter06.entity.key.AuthorWorkPKEmbedded;

import org.jakartaeerecipes.chapter06.entity.key.AuthorWorkPKNonEmbedded;

/**

 * Chapter 6 - Example of Non-Embedded Primary Key

 * @author juneau

 */

@IdClass(AuthorWorkPKNonEmbedded.class)

@Entity

@Table(name = "AUTHOR_WORK_LEGACY")

@NamedQueries({

 @NamedQuery(name = "AuthorWork.findAll", query = "SELECT a FROM

AuthorWork a")})

public class AuthorWorkNonEmbedded implements Serializable {

 private static final long serialVersionUID = 1L;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

421

 @Id

 @Column(name = "BOOK_ID")

 private BigInteger bookId;

 @Id

 @Column(name= "AUTHOR_ID")

 private BigInteger authorId;

 public AuthorWorkNonEmbedded() {

 }

 public AuthorWorkNonEmbedded(BigInteger bookId, BigInteger authorId) {

 this.bookId = bookId;

 this.authorId = authorId;

 }

. . .

// getters and setters

. . .

}

The associated non-embeddable primary key class is named AuthorWorkPKNonEmbedded.

The code for this class is as follows:

package org.jakartaeerecipes.chapter06.entity.key;

import java.io.Serializable;

import java.math.BigInteger;

/**

 * Non-Embeddable Primary Key class for AuthorWork

 *

 * @author juneau

 */

public class AuthorWorkPKNonEmbedded implements Serializable {

 private BigInteger bookId;

 private BigInteger authorId;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

422

 public AuthorWorkPKNonEmbedded() {

 }

. . .

// getters and setters

. . .

 public int hashCode() {

 return bookId.hashCode() + authorId.hashCode();

 }

 public boolean equals(Object obj) {

 if (obj == this) {

 return true;

 }

 if (!(obj instanceof AuthorWorkPKEmbedded)) {

 return false;

 }

 if (obj == null) {

 return false;

 }

 AuthorWorkPKEmbedded pk = (AuthorWorkPKEmbedded) obj;

 return (((bookId == ((AuthorWorkPKEmbedded) obj).getBookId()))

 && ((authorId == ((AuthorWorkPKEmbedded) obj).getAuthorId())));

 }

}

Note Although the AuthorWorkPKNonEmbedded class is not an entity, its
member values are persisted.

 How It Works
There can be situations in which a database table may not contain a single primary key

value to uniquely identify each row. Oftentimes this can be the case when working with

legacy databases. In the Java Persistence API, all entity classes must contain a primary

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

423

key that can be used to uniquely identify an object. To get around this obstacle when

working with tables that do not contain a single primary key value, a composite primary

key can be used to uniquely identify an object.

A composite primary key is composed of two or more fields or properties within an

entity class that can be combined together to create a unique identifier. Think in terms of

performing a database query and attempting to return a record that matches only certain

criteria. In such a case, you often need to include multiple relationships within the SQL

WHERE clause. Creating a composite primary key within an entity class is basically the

same concept in that you are telling JPA to use all of the fields or properties designated

within the composite key in order to uniquely identify an object.

There are a couple of different techniques, embeddable and non-embeddable, that

can be used to develop a composite primary key. The two techniques are similar in that

they each require the creation of a separate class to compose the primary key, but they

differ by the way in which the primary key is denoted within the entity class. In fact,

the separate primary key class in both techniques can be created almost identically,

except that an embeddable primary key class must be annotated using @Embeddable, as

demonstrated in Solution #1 to this recipe. An entity with an embeddable primary key

class should contain only a single primary key, and the data type for the primary key

should be the same as the embeddable primary key class. That is, the primary key class

should be declared within the entity using a private modifier, along with all of the other

persistent properties and fields, and it should be annotated with @Id to indicate that it is

the primary key. The following excerpt from Solution #1 shows how this is done:

@EmbeddedId

private AuthorWorkPKEmbedded embeddedId;

The entity class containing an embedded primary key should contain a constructor

that accepts one parameter for each of the persistent fields or properties used for the

primary key. Within the constructor, a new instance of the embeddable primary key class

should then be instantiated using the passed-in arguments. The entity class using an

embeddable primary key should contain accessor methods for the primary key field or

property. However, unlike most entity classes, the hashCode() and equals() methods

are not present because they are within the primary key class instead. Now that I’ve gone

over the logistics of an entity class that uses an embeddable primary key, let’s take a look

at the embeddable primary key class itself to see how it works.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

424

A primary key class that is used for creating an embeddable primary key should

contain declarations for each of the persistent fields or properties that will be used

to compose the primary key for the associated entity class. Of course, these fields or

properties should be made private, and there should be corresponding getters and

setters for accessing the fields. The embeddable primary key class should be annotated

with @Embeddable. It can contain two constructors: one that accepts no arguments and

another optional constructor that accepts an argument for each of the persistent fields

or properties that compose the primary key. Remember how the entity class that uses

the embeddable primary key contains no hashCode() method? That is because it resides

within the primary key class, and it simply adds together the hashCodes for each of the

fields used to compose the primary key, and it returns the sum.

The most important piece of the primary key class is the equals() method since

it is used to determine whether an object or database record uniquely matches the

associated primary key. The equals() method should accept an argument of type

Object, which will be the object that is being compared against the current primary

key object. The object is then compared to determine whether it is equal to the current

primary key object, and if so, a true is returned. If not equal, then the object is compared

to determine whether it is the same type of class as the embeddable primary key class,

and a false is returned if it is not the same type. A false is also returned if the object is

NULL. Finally, if a Boolean has not yet been returned based upon the conditionals that

have been tested, then the object is casted into the same type of object as the primary

key class, and each of its fields or properties is compared against those in the current

primary key class. If equal, then a true is returned; if not equal, then a false is returned.

The following lines of code demonstrate the equals() method:

public boolean equals(Object obj) {

 if (obj == this) {

 return true;

 }

 if (!(obj instanceof AuthorWorkPKEmbedded)) {

 return false;

 }

 if (obj == null) {

 return false;

 }

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

425

 AuthorWorkPKEmbedded pk = (AuthorWorkPKEmbedded) obj;

 return (((bookId == ((AuthorWorkPKEmbedded) obj).getBookId()))

 && ((authorId == ((AuthorWorkPKEmbedded) obj).getAuthorId())));

}

Solution #2 covers the use of a non-embedded primary key. The generation of a

non-embeddable primary key is sometimes preferred over the use of an embedded

primary key because some believe that the resulting entity class is easier to read. The

overall construction of a non-embeddable primary key is basically the same, although

there are a few subtle differences. For instance, when developing the primary key class

for the non-embeddable primary key, there is no @Embeddable annotation on the class.

Another difference that you may notice from the code in Solution #2 is that there is only

one constructor used. Of course, an optional second constructor can still be created,

accepting an argument for each of the persistent fields or properties that are used to

compose the primary key.

Most differences take place within the entity class itself. To use a non-embedded

composite primary key, the entity class must be annotated with @IdClass, naming the

class that is used to construct the composite primary key. In the case of Solution #2, the

@IdClass is as follows:

@IdClass(AuthorWorkPKNonEmbedded.class)

Another big difference in an entity class that uses a non-embeddable composite

primary key is that instead of declaring one persistent field or property as an ID using

the @Id annotation, the two or more fields or properties that are used to compose the

primary key for the entity are declared directly within the entity, and each of them is

annotated accordingly. The rest of the implementation is the same as an entity that uses

an embedded composite primary key.

Which type of composite key you decide to use is completely a personal preference.

Many people use a non-embeddable primary key to make the entity class easier to

follow, in that it resembles a standard entity class more closely than an entity class using

an embeddable composite primary key. In the end, both will produce the same result

and allow entity classes to be created for those database tables that do not contain a

single primary key field.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

426

6-6. Defining a One-to-One Relationship
 Problem
A database table that is used by your application contains data that has a one-to-one

reference with data records from another table. As such, you want to create a one-to-one

relationship between two entity objects within your application.

 Solution
Create an association between the two tables that have a one-to-one relationship by

declaring each of the entity classes themselves as persistent fields or properties within

each other using an “owned” relationship, and annotate those fields with @OneToOne.

For instance, let’s say that each record within the AUTHOR database table can be associated

to a record in another table named AUTHOR_DETAIL and vice versa. The AUTHOR_DETAIL

table contains contact information for the author, so, in fact, these tables have a one-

to- one relationship. To correlate them to each other from within the entity classes,

specify the @OneToOne annotation on the field or property that is associated with the

corresponding entity class. To have the ability to obtain the full author information from

either table, a bidirectional one-to-one relationship needs to be created.

Note A one-to-one mapping could be unidirectional or bidirectional.
A unidirectional mapping contains only an @OneToOne annotation on the owning
entity for the corresponding entity class, whereas a bidirectional mapping contains
a @ManyToOne, @OneToMany, or @ManyToMany annotation, depending upon the
association.

A relationship is referred to as owned if one entity contains a reference to another
entity object referring to the entity itself. On the other hand, a relationship where
an entity refers to another entity by primary key value is known as an unowned
relationship.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

427

In this solution, the Author entity would contain a @OneToOne reference for the

AuthorDetail entity to create a bidirectional one-to-one mapping. In this code excerpt

from the Author entity, the Author entity is the owning entity:

...

@Entity

@Table(name = "AUTHOR")

public class Author implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="author_s_generator",

sequenceName="author_s", initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="author_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "LAST")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRST")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 @OneToOne

 private AuthorDetail authorId;

 public Author() {

 }

 ...

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

428

An excerpt for the entity class for the AUTHOR_DETAIL table is shown next. Of course, it

has the name of AuthorDetail, and it contains a reference to the Author entity class:

...

@Entity

@Table(name = "AUTHOR_DETAIL")

public class AuthorDetail implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="author_detail_s_generator",sequenceName=

"author__detail_s", initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="author_detail_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 200)

 @Column(name = "ADDRESS1")

 private String address1;

 @Size(max = 200)

 @Column(name = "ADDRESS2")

 private String address2;

 @Size(max = 250)

 @Column(name = "CITY")

 private String city;

 @Size(max = 2)

 @Column(name = "STATE")

 private String state;

 @Size(max = 10)

 @Column(name = "ZIP")

 private String zip;

 @Column(name = "START_DATE")

 @Temporal(TemporalType.DATE)

 private Date startDate;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

429

 @Lob

 @Column(name = "NOTES")

 private String notes;

 @OneToOne(optional=false, mappedBy="authorDetail")

 private Author authorId;

 public AuthorDetail() {

 }

 ...

 How It Works
It is not uncommon in the world of relational databases to have one table that

depends upon another table. In the case where a record from a table has a one-to-one

correspondence to a record from another table, an entity class for one table should

be configured to have a one-to-one correspondence with the entity class for the other

table. Working with objects is a bit different from working with database records,

but the concept is basically the same. Within the database, a unique identifier is

used to correlate one table to another. For instance, in the case of this example, the

AUTHOR_DETAIL table contains a field named AUTHOR_ID, and it must contain an ID

from the AUTHOR database table in order to map the two records together. Owned entity

relationships work a bit differently in that the entity object itself is used to map to

another entity, rather than an ID number.

When creating a bidirectional one-to-one relationship between entity classes, each

entity class must declare the other entity class as a persistent field or property and then

designate the type of relationship using the @OneToOne annotation. The @OneToOne

annotation is used to designate a one-to-one relationship between the entities.

The @OneToOne annotation contains the following optional attributes:

• cascade: The operations (e.g., delete) that must be cascaded to the

target of the association. Default: no operations.

• fetch: Whether the association should be lazily loaded or must be

eagerly fetched. Default: EAGER.

• optional: Whether the association is optional. For instance, can the

entity be persisted without the association? Default: true.

• mappedBy: The field that owns the relationship. Default: "".

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

430

In the solution to this recipe, the AuthorDetail entity specifies the @OneToOne

annotation prior to the declaration of the Author field specifying the mappedBy and

optional attributes. The mappedBy attribute is set to authorDetail, because this will

be the mapping field, and the optional attribute is set to false. On the other hand,

the Author entity specifies the @OneToOne annotation prior to the declaration of the

AuthorDetail field, and there are no attributes specified. In practice, when these entities

are used, a bidirectional mapping will be enforced. This means that an AuthorDetail

object cannot exist without a corresponding Author object.

6-7. Defining One-to-Many and Many-to-One
Relationships
 Problem
You want to associate two entity classes to each other, such that one entity object can

contain a reference to many of the other entity objects.

 Solution
Define a relationship between the two entities by specifying the @OneToMany annotation

on a field or property referencing the other entity class within the owning object and

by specifying the @ManyToOne annotation on a field or property referencing the owning

object within the non-owning entity. For instance, let’s say you allow an Author object

to contain many different addresses or AuthorDetail objects. In fact, an Author can

contain as many addresses as needed. That being the case, there would be one Author

object for every AuthorDetail object. Likewise, there could be many AuthorDetail

objects for every Author object.

In the following code listings, I will demonstrate the one-to-many relationship

between the Author and AuthorDetail objects. First, let’s take a look at the Author

object, which is otherwise referred to as the owning object. This entity class can contain

a reference to many different AuthorDetail objects:

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

431

@Entity

@Table(name = "AUTHOR")

public class Author implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="author_s_generator",sequenceName="author_s",

initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="author_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "LAST")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRST")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 @OneToMany(mappedBy="author")

 private Set<AuthorDetail> authorDetail;

 public Author() {

 }

...

Next, I’ll show the non-owning object, also known as the AuthorDetail class. There

may be many AuthorDetail objects within a single Author object:

public class AuthorDetail implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

432

 @SequenceGenerator(name="author_detail_s_generator",sequenceName=

"author__detail_s", initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="author_detail_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 200)

 @Column(name = "ADDRESS1")

 private String address1;

 @Size(max = 200)

 @Column(name = "ADDRESS2")

 private String address2;

 @Size(max = 250)

 @Column(name = "CITY")

 private String city;

 @Size(max = 2)

 @Column(name = "STATE")

 private String state;

 @Size(max = 10)

 @Column(name = "ZIP")

 private String zip;

 @Column(name = "START_DATE")

 @Temporal(TemporalType.DATE)

 private Date startDate;

 @Lob

 @Column(name = "NOTES")

 private String notes;

 @ManyToOne

 private Author author;

 public AuthorDetail() {

 }

...

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

433

Note To run the org.jakartaeerecipes.chapter06.recipe06_07.
RecipeTest.java example, please be sure to add both entity classes for this
example to the persistence.xml context file. Also, be sure to comment out any
other entities within the persistence context by the same name, because there
cannot be duplicate entities within a single persistence context.

 How It Works
The most common database table relationship is the one-to-many or many-to-one

relationship, whereby a record in one table may relate to one or more records within

another table. Consider the scenario from the solution to this recipe, being that a single

AUTHOR table record may have one or more address records within the AUTHOR_DETAIL

table. Defining this relationship within the entity classes is easy, because annotations are

used to indicate the relationship.

When creating a one-to-many relationship within an entity, the entity that

corresponds to the table where one record can correlate to many in another table is

known as the owning entity. The entity that correlates to the database table that may

contain more than one record relating to the single record in the other table is known

as the non-owning entity. The owning entity class should declare a persistent field or

property for the entity to which it relates and may have more than one related object.

Since there may be more than one non-owning entity object, the owning entity must

declare a Set of the non-owning objects and indicate as such using the @OneToMany

annotation. The mappedBy attribute of the @OneToMany annotation should be set to the

name, which is used within the non-owning entity for declaration of the many-to-one

relationship. In the example, the Author entity contains a one-to-many relationship with

AuthorDetail. Therefore, the Author entity declares the relationship as follows:

@OneToMany(mappedBy="author")

private Set<AuthorDetail> authorDetail;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

434

On the other end of the spectrum is the many-to-one relationship. In the example,

more than one AuthorDetail object may relate to one Author object. Therefore, a

many-to-one relationship should be defined within the AuthorDetail entity class for

the Author entity. This is done by declaring a persistent field or property for the Author

entity and signifying the relationship with the @ManyToOne annotation as follows:

@ManyToOne

private Author author;

When working with the entities, a Set containing one or more AuthorDetail objects

should be persisted within a single Author object. The following code demonstrates how

to use a one-to-many relationship within an application:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JakartaE

ERecipesLOCAL");

EntityManager em = emf.createEntityManager();

try {

 em.getTransaction().begin();

 Author author = new Author();

 author.setFirst("JOE");

 author.setLast("TESTER");

 author.setBio("An author test account.");

 Set detailSet = new HashSet<AuthorDetail>();

 AuthorDetail detail = new AuthorDetail();

 detail.setAddress1("Address 1");

 detail.setAddress2("Address 2");

 detail.setCity("NoMansLand");

 detail.setState("ZZ");

 detail.setZip("12345");

 detail.setNotes("This is a test detail");

 detailSet.add(detail);

 AuthorDetail detail2 = new AuthorDetail();

 detail.setAddress1("Address 1");

 detail.setAddress2("Address 2");

 detail.setCity("NoMansLand");

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

435

 detail.setState("ZZ");

 detail.setZip("12345");

 detail.setNotes("This is a test detail");

 detailSet.add(detail2);

 em.persist(author);

 em.getTransaction().commit();

} catch (Exception ex){

 ex.printStackTrace();

} finally{

 if (em != null){

 em.close();

 }

}

The @OneToMany annotation contains the following optional attributes:

• cascade: The operations (e.g., delete) that must be cascaded to the

target of the association. Default: no operations.

• fetch: Whether the association should be lazily loaded or must be

eagerly fetched. Default: EAGER.

• orphanRemoval: Whether to apply the remove operation to entities

that have been removed from the relationship and to cascade the

remove operation to those entities. Default: false.

• targetedEntity: The entity class that is the target of the association.

Default: "".

The @ManyToMany annotation contains the following optional attributes:

• cascade: The operations (e.g., delete) that must be cascaded to the

target of the association. Default: no operations.

• fetch: Whether the association should be lazily loaded or must be

eagerly fetched. Default: EAGER.

• targetedEntity: The entity class that is the target of the association.

Default: "".

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

436

6-8. Defining a Many-to-Many Relationship
 Problem
There are tables within your database that contain cases where multiple records from

one table may correlate to multiple records from another. You want to define entity

relationships for these tables.

 Solution
Create a many-to-many association between the two tables by declaring a field or

property within each entity class for a Set of objects corresponding to the entity class

on the opposite end. Utilize the @ManyToMany annotation to specify the relationship, and

mark the owning side of the relationship by specifying a mappedBy attribute on the non-

owning entity’s @ManyToMany annotation. Therefore, the class org.jakartaeerecipes.

chapter06.recipe06_08.Book is the entity class corresponding to the BOOK database

table, and it will contain the @ManyToMany annotation on a declaration for a Set of

BookAuthor objects. A mapping table in the database will be “automagically” populated

with the associated mappings from the entities. Shown next is the partial code for the

Book class, the “owning” entity:

@Entity

@Table(name = "BOOK")

@NamedQueries({

 @NamedQuery(name = "Book.findAll", query = "SELECT b FROM Book b"),

})

public class Book implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="book_s_generator",sequenceName="book_s",

initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="book_s_generator")

 @NotNull

 @Column(name = "ID")

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

437

 private BigDecimal id;

 @Size(max = 150)

 @Column(name = "TITLE")

 private String title;

 @Size(max = 500)

 @Column(name = "IMAGE")

 private String image;

 @Lob

 @Column(name = "DESCRIPTION")

 private String description;

 @ManyToMany

 private Set<BookAuthorMany> bookAuthors;

The BookAuthor class is mapped to the Book class using the same concept. The only

difference is that it contains a mappedBy attribute within the @ManyToOne annotation to

signify the owning table relation:

@Entity

@Table(name = "BOOK_AUTHOR")

@NamedQueries({

 @NamedQuery(name = "BookAuthor.findAll", query = "SELECT b FROM

BookAuthor b"),

 @NamedQuery(name = "BookAuthor.findById", query = "SELECT b FROM

BookAuthor b WHERE b.id = :id"),

 @NamedQuery(name = "BookAuthor.findByLast", query = "SELECT b FROM

BookAuthor b WHERE b.last = :last"),

 @NamedQuery(name = "BookAuthor.findByFirst", query = "SELECT b FROM

BookAuthor b WHERE b.first = :first")})

public class BookAuthorMany implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="book_author_s_generator",sequenceName=

"book_author_s", initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="book_author_s_generator")

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

438

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "LAST")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRST")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 @ManyToMany(mappedBy="bookAuthors")

 private Set<Book> books;

Note The BookAuthor entity has been named BookAuthorMany so that there
are no conflicting entity classes within the JakartaEERecipes sources. no entities
with duplicate names can exist within the same application.

 How It Works
It is possible for databases to contain a many-to-many relationship between two or

more different tables. In the case of the example in this recipe, a book may have many

authors, and an author may have written many books. On that note, both the database

table containing books and the database table containing authors are associated to

each other via a many-to-many relationship. It is easy to associate entity classes to one

another to form a many-to-many relationship via the use of the @ManyToMany annotation.

The @ManyToMany annotation is used to signify that an entity contains a many-to-many

association with the annotated persistent field or property.

To create the association, each entity within the many-to-many relationship should

declare a field or property for a Set of the associated entity objects. In the case of the

example, the Book entity should declare a Set of BookAuthor objects and vice versa. That

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

439

declaration is then annotated with @ManyToMany, using any attributes that are deemed

necessary to make the association. The @ManyToMany annotation contains the following

optional attributes:

• targetEntity: The entity class that is the target of the association.

This is necessary only if the collection-valued relationship property is

not defined using Java generics.

• cascade: The operations that must be cascaded to the target of the

association.

• fetch: Whether the association should be lazily loaded or eagerly

fetched. The default is javax.persistence.FetchType.LAZY.

• mappedBy: The field that owns the relationship. This is not required if

the relationship is unidirectional.

As such, when creating an object of either type, one may persist a Set of the

associated entity objects using the persistent field or property that has been annotated

with @ManyToMany. The following example demonstrates how to create an entity with

a many-to-many relationship (excerpt from the org.jakartaeerecipes.chapter06.

recipe06_08.RecipeTest class):

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JakartaE

ERecipesLOCAL");

EntityManager em = emf.createEntityManager();

try {

 em.getTransaction().begin();

 Book book1 = new Book();

 book1.setTitle("New Book 1");

 Book book2 = new Book();

 book2.setTitle("New Book 2");

 BookAuthorMany author1 = new BookAuthorMany();

 author1.setFirst("JOE");

 author1.setLast("AUTHOR 1");

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

440

 BookAuthorMany author2 = new BookAuthorMany();

 author2.setFirst("MARYJJOE");

 author2.setLast("AUTHOR 2");

 Set authors = new HashSet();

 authors.add(author1);

 authors.add(author2);

 Set books = new HashSet();

 books.add(book1);

 books.add(book2);

 book1.setBookAuthor(authors);

 author1.setBooks(books);

 em.persist(author1);

 em.persist(book1);

 em.getTransaction().commit();

} catch (Exception ex){

 // Please use a logging framework, such as log4j in production

 System.err.println(ex);

} finally{

 if (em != null){

 em.close();

 }

}

When an entity object that contains a many-to-many association with another is

created, a record is populated into a mapping table that contains the primary key from

each associated table record. You can optionally specify the name of the mapping

table by using the annotation @JoinTable and specifying the name of the table. If

no @JoinTable annotation is used, then the mapping table name is derived from a

concatenation of the two entity classes, beginning with the owning entity. Therefore, in

the example, the mapping table name is BOOK_BOOK_AUTHOR, and it contains a field for

storing the primary key from the associated records of each table.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

441

6-9. Querying with Named Queries
 Problem
Rather than issue SQL or Java Persistence Query Language (JPQL) queries to a

persistence unit, you want to define one or more predefined queries for an entity class

that can be called by name.

 Solution
Specify a single named query or a group of named queries for an entity class. Provide

a name for each of the named queries so that they can be called by that name. In this

example, a group of named queries will be added to the BookAuthor entity class, and

then a separate class may be used to query the entity class using the named queries.

We will create an EntityManagerFactory and database connection based upon a

 persistence.xml file that obtains a local JDBC connection to the database. The

following excerpt is taken from the BookAuthor entity, and it demonstrates how to

associate named queries with an entity class:

@Entity

@Table(name = "BOOK_AUTHOR")

@NamedQueries({

 @NamedQuery(name = "BookAuthor.findAll", query = "SELECT b FROM

BookAuthor b"),

 @NamedQuery(name = "BookAuthor.findById", query = "SELECT b FROM

BookAuthor b WHERE b.id = :id"),

 @NamedQuery(name = "BookAuthor.findByLast", query = "SELECT b FROM

BookAuthor b WHERE b.last = :last"),

 @NamedQuery(name = "BookAuthor.findByFirst", query = "SELECT b FROM

BookAuthor b WHERE b.first = :first")})

public class BookAuthor implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="book_author_s_generator",sequenceName="book_

author_s", initialValue=1, allocationSize=1)

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

442

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="book_author_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "LAST")

 private String last;

 @Size(max = 30)

 @Column(name = "FIRST")

 private String first;

 @Lob

 @Column(name = "BIO")

 private String bio;

 public BookAuthor() {

 }

...

In another class, the named queries that have been registered with the BookAuthor

entity can be called by name. The following excerpt from the org.jakartaeerecipes.

chapter06.recipe06_09.RecipeTest class demonstrates how to invoke a named query:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JakartaE

ERecipesLOCAL");

EntityManager em = emf.createEntityManager();

try {

 EntityTransaction entr = em.getTransaction();

 entr.begin();

 Query query = em.createNamedQuery("BookAuthor.findAll");

 List authorList = query.getResultList();

 Iterator authorIterator = authorList.iterator();

 while (authorIterator.hasNext()) {

 BookAuthor author = (BookAuthor) authorIterator.next();

 System.out.print("Name:" + author.getFirst() + " " + author.getLast());

 System.out.println();

 }

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

443

} catch (Exception ex){

 System.err.println(ex);

}

 How It Works
A named query is contained within an entity class, and it consists of a static JPQL query

that is specified via metadata. A given entity class can include zero or more named

queries or a group of named queries. A named query is expressed via the @NamedQuery

annotation, which contains two attributes: name and query. The name attribute of the

@NamedQuery annotation is used to specify a String-based name for the query, and the

query attribute is used to specify the static JPQL query against the entity. If an entity

contains a group of named query annotations, they can be grouped together using the

 @NamedQueries annotation. One or more @NamedQuery annotation specifications can

exist within a single @NamedQueries annotation, separated by commas.

The JPQL within a named query can contain zero or more bind variables that can

have values substituted when the named query is called. To utilize a named query, you

must first obtain an active connection to the database. To learn more about obtaining an

active connection to the database via an EntityManagerFactory, please refer to Recipe

6-3. Once an active database connection has been obtained, the EntityManager object’s

createNamedQuery method can be called, passing the string-based name of the named

query that you would like to issue. A Query object is returned from the call, and it can be

used to obtain the query results.

In the example for this recipe, you can see that the BookAuthor entity is queried,

returning a List of BookAuthor objects. A simple while loop is used to iterate through

the List of objects, printing the first and last names from each BookAuthor object

to System.out (the server log), although use of a logging framework such as Log4j is

encouraged.

6-10. Performing Validation on Entity Fields
 Problem
You want to specify validation rules for specific fields within an entity class to prevent

invalid data from being inserted into the database.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

444

 Solution
Include bean validation constraints within an entity class. Bean validation constraints

are annotations that are applied to persistent fields or properties of an entity class. The

bean validation mechanism provides a number of annotations that can be placed on

fields or properties in order to validate data in different ways. In the following example,

the AuthorWork entity has been enhanced to include bean validation for the id,

address1, state, and zip fields:

...

@Entity

@Table(name = "AUTHOR_DETAIL")

public class AuthorDetailBeanValidation implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @SequenceGenerator(name="author_detail_s_generator",sequenceName=

"author__detail_s", initialValue=1, allocationSize=1)

 @GeneratedValue(strategy=GenerationType.SEQUENCE,

 generator="author_detail_s_generator")

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 200)

 @Pattern(regexp="", message="Invalid Address")

 @Column(name = "ADDRESS1")

 private String address1;

 @Size(max = 200)

 @Column(name = "ADDRESS2")

 private String address2;

 @Size(max = 250)

 @Column(name = "CITY")

 private String city;

 @Size(max = 2)

 @Column(name = "STATE")

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

445

 @Pattern(regexp="^(?-i:A[LKSZRAEP]|C[AOT]|D[EC]|F[LM]|G[AU]|HI|I[ADLN]|

K[SY]|LA|M[ADEHINOPST]|N[CDEHJMVY]|O[HKR]|P[ARW]|RI|S[CD]|T[NX]|UT|V[AI

T]|W[AIVY])$",

 message="Invalid State")

 private String state;

 @Size(max = 10)

 @Column(name = "ZIP")

 @Pattern(regexp="^\\d{5}\\p{Punct}?\\s?(?:\\d{4})?$",

 message="Invalid Zip Code")

 private String zip;

 @Column(name = "START_DATE")

 @Temporal(TemporalType.DATE)

 private Date startDate;

 @Lob

 @Column(name = "NOTES")

 private String notes;

 @ManyToOne

 private AuthorBeanValidation author;

...

In an attempt to insert a value that does not conform to the validation rules,

the object will not be persisted, and the message correlating to the bean validation

annotation will be displayed.

 How It Works
It is always a good idea to utilize a data validation strategy when working with user input,

especially if the data will be persisted into a database or other data stores for later use.

The Java Persistence API allows bean validation to occur within an entity class, whereby

a developer can place validation rules directly on a persistent field or property. By

default, the persistence provider automatically invokes validation processes on entities

containing bean validation annotation constraints after the PrePersist, PreUpdate,

and PreRemove life-cycle events occur. At that time, any value that does not adhere to

the given validation constraint will cause the entity to stop persistence and display an

associated message.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

446

The details of bean validation are the same, whether it be on a Plain Old Java Object

(POJO) or an entity class. In the case of an entity class, either the persistent field or

property can be annotated with the desired bean validation constraint. To see a list of

possible bean validation constraint annotations, please refer to Chapter 10.

In the example for this recipe, the @NotNull and @Pattern annotations are

specified on persistent properties of the AuthorDetail entity. Specifically, the id field

is annotated with @NotNull, and validation will fail in an attempt to enter a NULL value

for that field. The state and zip fields contain a @Pattern annotation, along with a

corresponding regular expression and failure message. If the values for those fields do

not adhere to the regular expression that has been specified, then the message that

is assigned to the message attribute of the @Pattern annotation will be displayed via

a JSF view by the h:message component corresponding to the validated field. What

if you want to apply a set of regular expression patterns to a given field or property?

Such a feat can be done using the @Pattern.List syntax, whereby the list would

contain a comma-separated list of @Pattern annotations. The following lines of code

demonstrate this technique:

@Pattern.List({

 @Pattern(regexp="regex-pattern", message="Error Message"),

 @Pattern(regexp="another regex-pattern", message("Error Message 2")

})

Bean validation is a good way to ensure that invalid data is not submitted to a data

store. However, most advanced desktop or web applications today use a couple tiers of

validation to make the user experience more convenient. Many times, web applications

use JavaScript field validation first so that users do not have to submit a page in

order to see their validation errors displayed on the screen. If using JSF or other web

frameworks, some components allow direct access to bean validation, in which cases an

Ajax submission of a given field or property will occur behind the scenes, allowing the

bean validation to take place without page submission. Whatever tact you take, bean

validation within entity classes is important and should become a handy tool to add to

your arsenal.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

447

6-11. Generating Database Schema Objects
Automatically
 Problem
You are developing an application and want to automatically have your entity classes

generated into tables within the underlying database.

 Solution
Use the automatic schema generation that was introduced in EJB 3.2. Schema

generation is determined by the object-relational metadata of the persistence.xml

unit, unless custom scripts are provided for the generation. The application developer

can package scripts as part of the persistence unit or can supply URLs to the location

of the scripts for schema generation. The execution of such scripts can be carried

out by the container itself, or the container may direct the persistence provider to

take care of script execution. Table 6-3 in the “How It Works” section of this recipe

lists the different persistence.xml or EntityManagerFactory properties that are

used to configure schema generation. These properties are passed as a Map argument

from the container to the PersistenceProvider generateSchema method or the

createContainerEntityManagerFactory method.

To define the different objects that need to be generated, annotate entity classes

accordingly. The standard entity class annotations (@Table, @Id, etc.) determine what

objects are created and how they are structured. For more information regarding the

specification of annotations within entity classes in order to generate schema objects,

please refer to the annotations listed in Table 6-4 within the “How It Works” section of

this recipe.

 How It Works
Schema generation refers to the creation of underlying database tables, views,

constraints, and other database artifacts. Prior to the Java EE 7 release, schema

generation had been automated only via the use of an IDE such as NetBeans or Eclipse.

However, the EE 7 release took a step toward breaking this dependency on an IDE

by allowing schema generation to become automated by configuring an appropriate

persistence.xml file for an application.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

448

Schema generation can be applied directly to the database, or it can generate

SQL scripts that can be manually applied to the database (or both), depending upon

which options are configured for the application. Schema generation may occur prior

to application deployment or when an EntityManagerFactory is created as part of

the application deployment and initialization. To perform schema generation, the

container may call the PersistenceProvider generateSchema method separately

from and/or prior to the entity manager factory for the persistence unit. The

createContainerEntityManagerFactory call can accept additional information to

cause the generation of schema constructs to occur as part of the entity manager factory

creation or initialization process. Furthermore, this information can determine whether

the database is manipulated directly or whether SQL scripts are created, or both.

Note Schema generation is also available outside of a managed container
(e.g., web application server) in Java SE environments. To perform
schema generation in a Java SE environment, the application may call the
Persistence generateSchema method separately from and/or prior to
the creation of the entity manager factory or may pass information to the
createEntityManagerFactory method to cause schema generation to occur
as part of the entity manager factory creation.

Table 6-3 lists the different schema generation properties that can be specified in the

persistence.xml file in order to automate schema generation.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

449

Table 6-3. Schema Generation Properties

Property Purpose

schema-generation- action Controls the action to be taken by the persistence provider

with regard to object generation and destruction. Values:

none, create, drop- and- create, and drop.

schema-generation- target Controls whether schema is to be created within the

database, whether Data Definition Language (DDL) scripts

are to be created, or both. Values: database, scripts,

and database-and-scripts.

ddl-create-script- target,

ddl-drop- script-target

Controls target locations for writing scripts if the schema-

generation- target specifies script generation. Writers are

preconfigured for the persistence provider. Values: java.

io.Writer (e.g., MyWriter.class) or URL strings.

ddl-create-script- source,

ddl-drop- script-source

Specifies locations from which DDL scripts are to be read.

Readers are preconfigured for the persistence provider.

Values: java.io.Reader (e.g., MyReader.class) or

URL strings.

sql-load-script- source Specifies the file location of the SQL bulk load script.

Values: java.io.Reader (e.g., MyReader.class) or

URL string.

schema-generation- connection JDbC connection to be used for performing schema

generation.

database-product- name,

database-major- version,

database- minor- version

needed if scripts are to be generated. Values are those

obtained from JDbC DatabaseMetaData.

create-database- schemas Whether the persistence provider needs to create schema

in addition to creating database objects such as tables,

sequences, constraints, and so on. Values: true and

false.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

450

Table 6-4. Schema Generation Annotations

Annotation Description Elements

@Table Used for generating tables. by default,

the table name is generated from the

entity name, and the entity name is

defaulted from the class name.

@SecondaryTable A secondary table is created to

partition the mapping of entity state

across multiple tables.

@CollectionTable A collection table is created for

mapping of an element collection.

The Column, AttributeOverride,

and AssociationOverride

annotations may be used to override

CollectionTable mappings.

@JoinTable Used in mapping of associations.

by default, join tables are created

for the mapping of many-to-many

relationships and unidirectional one-

to-many relationships.

(continued)

Programmatically, schema generation is determined by a series of annotations that

are placed in entity classes. The @Table annotation denotes an entity mapping to an

underlying database table. By default, a table is generated for each top-level entity and

includes columns based upon the specified attributes for that entity. Therefore, the @

Column and @JoinColumn annotations are used for generating such columns for a table.

Column ordering is not determined based upon the ordering of @Column or @JoinColumn

annotations. If column ordering is important, then a Data Definition Language (DDL)

script must be supplied for generating the table. Other annotations and annotation

attributes, such as @Id, also play important roles in schema generation. Table 6-4

lists the different annotations that are involved in schema generation, along with a

brief description and the elements that can be populated for further control over the

generated schema.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

451

Table 6-4. (continued)

Annotation Description Elements

@TableGenerator Used to store generated primary key

values.

@Column Determines the name and

configuration for a column within a

table.

unique, nullable,

columnDefinition,

table, length,

precision, scale, name

@MapKeyColumn Specifies the mapping name of a key

column of a map when the key is of

basic type.

unique, nullable,

columnDefinition,

table, length,

precision, scale

@Enumerated, @

MapKeyEnumerated

Controls whether string- or integer-

valued columns are generated for

basic attributes of enumerated types

and therefore impact the default

column mapping of these types.

@Temporal, @

MapKeyTemporal

Controls whether date-, time-, or

timestamp-valued columns are

generated for basic attributes of

temporal types and therefore impact

the default column mappings for these

types.

@Lob Specifies that a persistent attribute

is to be mapped to a database large

object type.

@OrderColumn Specifies the generation of a column

that is used to maintain the persistent

ordering of a list that is represented in

an element collection, one-to-many, or

many-to-many relationship.

name, nullable,

columnDefinition

(continued)

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

452

Table 6-4. (continued)

Annotation Description Elements

@DiscriminatorColumn generated for the SINGLE_TABLE

mapping strategy and may optionally

be generated by the provider for use

with the JOINED inheritance strategy.

@Version Specifies the generation of a column

to serve as an entity's optimistic lock.

@Id Specifies a database primary key

column. Use of the @Id annotation

results in the creation of a primary key

which consists of the corresponding

column or columns.

@EmbeddedId Specifies an embedded attribute

whose corresponding columns

formulate a database primary key.

Use of the @EmbeddedId annotation

results in the creation of a primary

key consisting of the corresponding

columns.

@GeneratedValue Indicates a primary key that should

have an automatically generated

value. If a strategy is indicated, the

provider must use it if it is supported

by the target database.

@JoinColumn The @JoinColumn annotation is

typically used for specifying a foreign

key mapping.

name,

referencedColumnName,

unique, nullable,

columnDefinition, table,

foreignKey

(continued)

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

453

Table 6-4. (continued)

Annotation Description Elements

@MapKeyJoinColumn Specifies foreign key mappings to

entities that are map keys in element

collections or relationships that

consist of map values.

name,

referencedColumnName,

unique, nullable,

columnDefinition, table,

foreignKey

@PrimaryJoinKeyColumn Specifies that a primary key column

is to be used as a foreign key. This

annotation is used in the specification

of the JOINED mapping strategy

and for joining a secondary table

to a primary table in a one-to-one

relationship mapping.

@ForeignKey Used within the JoinColumn,

JoinColumns, MapKeyJoinColumn,

MapKeyJoinColumns,

PrimaryKeyJoinColumn, and

PrimaryKeyJoinColumns

annotations to specify or override a

foreign key constraint.

@SequenceGenerator Creates a database sequence to be

used for ID generation.

@Index generates an index consisting of the

specified columns.

@UniqueConstraint generates a unique constraint for the

given table.

As per Table 6-4, there are a couple of annotations that have been created

specifically to facilitate schema generation. The new annotations are @Index and

@ForeignKey, where @Index is responsible for generating an index of the specified

columns. @ForeignKey is used to define a foreign key on a table.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

454

6-12. Mapping Date-Time Values
 Problem
You wish to utilize the Date-Time API to persist Java LocalDate values to the database.

 Solution
Use JPA 2.2 support for the Date-Time API to work with the LocalDate. Since the JPA 2.2

maintenance release supports the Java Date-Time API, it is possible to make use of the

date and time objects that were introduced in Java 8 to persist without the need for the

@Temporal annotation. The following entity class demonstrates how to achieve this feat:

public class Book implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 150)

 @Column(name = "TITLE")

 protected String title;

 @Size(max = 500)

 @Column(name = "IMAGE")

 private String image;

 @Lob

 @Column(name = "DESCRIPTION")

 private String description;

 @Column(name = "PUBLISH_DATE")

 private LocalDate publishDate;

 @ManyToMany(mappedBy="books")

 private Set<BookAuthor> authors;

 @OneToMany(mappedBy="book", cascade=CascadeType.ALL)

 private List<Chapter> chapters = null;

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

455

 public Book() {

 }

. . .

}

As you can see, the entity class contains a LocalDate field that includes no special

annotations.

 How it Works
When Java 8 was initially released, Java EE and JPA did not have support for the updated

Date-Time API. Therefore, in order to utilize the newer date and time objects, one had

to develop a converter to perform automatic conversion between the new date and time

objects and java.util.Date. Since JPA maintenance release 2.2, this issue has been

mitigated, as the Java Date-Time API is officially supported, making it easier than ever

before to persist fields that contain date and time values.

In order to map a database column that contains a date to a Java object, simply

annotate the column with the @Column annotation, specifying the column name if you

wish. The @Temporal annotation is no longer required. Apply one of the following data

types to the class field:

• java.time.LocalDate

• java.time.LocalTime

• java.time.LocalDateTime

• java.time.OffsetTime

• java.time.OffsetDateTime

It is as simple as that! The JPA Date-Time support has provided the ability to utilize

the API within Java EE applications without the requirement of a converter. It is also cut

down on code because @Temporal is no longer required.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

456

6-13. Using the Same Annotation Many Times
 Problem
You wish to utilize the same annotation a number of different times within a given class.

For instance, suppose that you would like to use more than one @PersistenceContext

annotation within a single class.

 Solution
Take advantage of the Java 8 repeatable annotation support that has been provided

with JPA 2.2. This added support provides the ability to use repeatable annotations for a

number of situations. In the following example, the @NamedQuery annotation is utilized

more than one time in the same class. Prior to JPA 2.2, this would not work without first

grouping the annotations together into a single container annotation:

@Entity

@Table(name = "EMPLOYEE")

@XmlRootElement

@NamedQuery(name = "Employee.findAll", query = "SELECT e FROM Employee e")

@NamedQuery(name = "Employee.findById", query = "SELECT e FROM Employee

e WHERE e.id = :id")

@NamedQuery(name = "Employee.findByFirst", query = "SELECT e FROM Employee

e WHERE e.first = :first")

@NamedQuery(name = "Employee.findByLast", query = "SELECT e FROM Employee

e WHERE e.last = :last")

@NamedQuery(name = "Employee.findByAge", query = "SELECT e FROM Employee

e WHERE e.age = :age")

@NamedStoredProcedureQuery(name = "createEmp", procedureName = "CREATE_EMP")

public class Employee implements Serializable {

 private static final long serialVersionUID = 1L;

 // @Max(value=?) @Min(value=?)//if you know range of your decimal

fields consider using these annotations to enforce field validation

 @Id

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

457

 @Basic(optional = false)

 //@NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 30)

 @Column(name = "FIRSTNAME")

 private String first;

 @Size(max = 30)

 @Column(name = "LASTNAME")

 private String last;

 @Column(name = "AGE")

 private BigInteger age;

 @ManyToOne(optional = false)

 @JoinColumn(name = "JOB_ID", nullable = false)

 private Jobs job;

 @Column(name = "STATUS")

 private String status;

 public Employee() {

 }

. . .

}

 How It Works
Repeatable annotation support came to the Java platform with the release of Java 8. This

enables one to utilize the same annotation more than once within a portion of code.

Annotations are not repeatable by default; the annotation class must be designated as

such with the @Repeatable annotation. Therefore, not all annotations will be usable

more than once within a class. The following annotations were made repeatable for the

Java EE 8 release:

• AssociationOverride

• AttributeOverride

• Convert

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

458

• JoinColumn

• MapKeyJoinColumn

• NamedEntityGraph

• NamedNativeQuery

• NamedQuery

• NamedStoredProcedureQuery

• PersistenceContext

• PersistenceUnit

• PrimaryKeyJoinColumn

• SecondaryTable

• SqlResultSetMapping

As mentioned previously, annotations must be designated as repeatable by marking

them with the @Repeatable annotation. Therefore, if you have created a custom

annotation and you would like to make it repeatable, then you can do so.

CHAPTER 6 ObJECT-RELATIOnAL MAPPIng

459
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_7

CHAPTER 7

Jakarta NoSQL
Microservices and applications built for the cloud sometimes benefit from a non-

centralized database, and many of the most commonly used are NoSQL databases.

NoSQL means “Not Only SQL,” and such databases do not follow the conventional

Relational Database Management System (RDBMS) model. The first new specification

that was created as part of the Eclipse Jakarta EE Specification Process is Jakarta

NoSQL. Although Jakarta NoSQL was not released as part of Jakarta EE 8, it is quite stable

and expected to be a part of the platform within the coming releases. Please keep track

of the project on https://projects.eclipse.org/proposals/jakarta-nosql. This

chapter provides a sneak preview of the Jakarta NoSQL specification, which includes two

communication APIs: Diana and, a driver for most of the well-known NoSQL databases,

the Jakarta NoSQL Database Driver.

There are a few different types of NoSQL databases that can be used. The API

supports key-value, column, document, and graph database types. The Diana API

consists of three different modules for working with these database types:

• diana-key-value

• diana-column

• diana-document

The diana-core module provides common functionality for each of these three APIs.

This chapter will not dive deep into the functionality of these APIs, but rather, it will

provide a brief overview for utilization of Jakarta NoSQL with one of the most widely

used NoSQL databases, MongoDB. It will also briefly touch upon the use of key-value–

oriented databases such as Hazelcast.

https://projects.eclipse.org/proposals/jakarta-nosql

460

Note MongoDB is a document database, and it is helpful to know that while working
with a document database, we refer to collections of data. A collection in a document
database is analogous to a table in an RDBMS. To learn more about MongoDB, please
refer to the online documentation: https://docs.mongodb.com/manual/.

This chapter will cover some high-level basics for using the Jakarta NoSQL

specification. As the specification is not part of the Jakarta EE 8 release, portions of it are

subject to change prior to its inclusion with the Jakarta EE platform.

7-1. Configuring for Jakarta NoSQL
 Problem
You would like to configure your Jakarta EE application to work with a NoSQL database,

rather than a traditional Relational Database Management System.

 Solution
Add the appropriate dependencies to your project, depending upon the type of NoSQL

database that you wish to utilize. Next, create a class to load the database and enable it

for use within the application. In this example, a document database will be configured

using MongoDB.

The first dependency that is required for working with Jakarta NoSQL is Artemis,

which is the core API.

Note Please refer to the Artemis documentation at https://github.com/
eclipse/jnosql-artemis.

<dependency>

 <groupId>org.jnosql.artemis</groupId>

 <artifactId>artemis-core</artifactId>

 <version>version</version>

</dependency>

ChAPTeR 7 JAkARTA NoSQL

https://docs.mongodb.com/manual/
https://github.com/eclipse/jnosql-artemis
https://github.com/eclipse/jnosql-artemis

461

The Artemis dependency that pertains to the type of database in use is also required.

There are four Artemis dependency types:

• artemis-document

• artemis-key-value

• artemis-column

• artemis-graphing

Next, the API for the database type will need to be added to the project. The

following excerpts show the Maven dependencies for each of the Diana APIs. Only one

of the following dependencies is required to work with the API in a project, depending

upon which type of NoSQL database is being used:

<--diana-document -->

<dependency>

 <groupId>org.jnosql.diana</groupId>

 <artifactId>diana-document</artifactId>

 <version>0.0.5</version>

</dependency>

<!-- diana-key-value -->

<dependency>

 <groupId>org.jnosql.diana</groupId>

 <artifactId>diana-key-value</artifactId>

 <version>0.0.5</version>

</dependency>

<!-- diana-column -->

<dependency>

 <groupId>org.jnosql.diana</groupId>

 <artifactId>diana-column</artifactId>

 <version>0.0.5</version>

</dependency>

There is a required driver dependency for supporting most NoSQL databases, and it

is provided by Eclipse Jakarta NoSQL. Depending upon which type of database is being

used, the correct driver needs to be pulled into the project. A list of each driver is located

on GitHub: https://github.com/eclipse/jnosql-diana-driver.

ChAPTeR 7 JAkARTA NoSQL

https://github.com/eclipse/jnosql-diana-driver

462

In the following POM excerpt, the mongodb driver is being utilized:

<dependency>

 <groupId>org.jnosql.diana</groupId>

 <artifactId>diana-document</artifactId>

 <version>0.0.5</version>

</dependency>

<dependency>

 <groupId>org.jnosql.diana</groupId>

 <artifactId>mongodb-driver</artifactId>

 <version>0.0.5</version>

</dependency>

Lastly, provide the appropriate configuration via a properties file on the CLASSPATH

or as hard-coded values. The configuration should include the host name, port

number, and possibly credentials. In this case, hard-coded values are added to

configure the database within a class. In the following source code, a class named

DocumentCollectionManagerProducer is used to get the database configured and

generate a DocumentCollectionManager, which can be used to work with the data:

import java.util.Collections;

import java.util.Map;

import javax.annotation.PostConstruct;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

import org.jnosql.diana.api.Settings;

import org.jnosql.diana.api.document.DocumentCollectionManager;

import org.jnosql.diana.api.document.DocumentCollectionManagerFactory;

import org.jnosql.diana.api.document.DocumentConfiguration;

import org.jnosql.diana.mongodb.document.MongoDBDocumentConfiguration;

@ApplicationScoped

public class DocumentCollectionManagerProducer {

 // Set the name of the database

 private static final String COLLECTION = "acmepools";

 private DocumentConfiguration configuration;

ChAPTeR 7 JAkARTA NoSQL

463

 private DocumentCollectionManagerFactory managerFactory;

 @PostConstruct

 public void init() {

 configuration = new MongoDBDocumentConfiguration();

 Map<String, Object> settings = Collections.singletonMap("mongodb-

server- host-1", "localhost:27017");

 managerFactory = configuration.get(Settings.of(settings));

 }

 @Produces

 public DocumentCollectionManager getManager() {

 return managerFactory.get(COLLECTION);

 }

}

The DocumentCollectionManagerProducer can be injected into a class, and the

DocumentCollectionManager can then be called upon to work with the data.

 How It Works
As with any database configuration for an application, a NoSQL database requires a bit

of setup. The configuration that is necessary for a NoSQL application can be equated to

the DriverManager or EntityManager configuration for JDBC or JPA.

To begin, there are a number of dependencies, but the nice thing is that the Jakarta

NoSQL specification contains all of them, so there is no need to rummage around

the Web or Maven Central to find them. In order to incorporate the appropriate

dependencies for use with NoSQL, you must also know which type of database is

being used. There are different dependencies for each of the NoSQL database types, as

mentioned in the previous section.

The communication layer (aka the Diana API) defines three modules: diana-key-

value, diana-column, and diana-document. Each of these modules corresponds to the

respective NoSQL database type. The NoSQL mapping databases are not covered by the

Diana module, as they are already handled by Apache TinkerPop (https://tinkerpop.

apache.org/).

ChAPTeR 7 JAkARTA NoSQL

https://tinkerpop.apache.org/
https://tinkerpop.apache.org/

464

Note Apache TinkerPop is a graph computing framework for both graph
databases and graph analytic systems.

Each of the database types requires a necessary setting to be put into place, such as

database host and port. In a document-, column-, or key-value–oriented database, these

settings can be placed into a configuration file and then put onto the CLASSPATH. They

can also be hard-coded within an application, as follows:

Map<String, Object> map = new HashMap<>();

map.put("mongodb-server-host-1", "localhost:27017");

The next API, also known as Artemis, is used for mapping NoSQL database data

to Java classes, much like object-relational mapping with standard databases. The

artemis-configuration dependency is required to use the mapping API, as well as the

corresponding Artemis driver for the database type that is in use. In the case of using a

document database, the artemis-document dependency is used. The important piece of

the configuration is to initialize the database by providing the host, port, username, and

password (if required). There are various methodologies which could be followed for

initializing the database, from using a main method in a Java SE application to using an

@ApplicationScoped CDI bean in an enterprise application.

In the example, an @ApplicationScoped bean contains the initialization of the

database within a method annotated with @PostConstruct. Any methods designated as

@PostConstruct are executed directly after the bean has been initialized. Since the bean

in the example is application scoped, it is started up when the application starts. In this

case, a DocumentConfiguration is instantiated from MongoDbDocumentConfiguration.

A Map is then used to store some configuration settings, which could alternatively be

placed into a properties file on the CLASSPATH. The Map of settings is then set into the

DocumentConfiguration, and a DocumentCollectionManagerFactory is returned. This

manager will be used by the application to perform database interactions.

7-2. Writing a Query for a Document Database
 Problem
You have configured an application to utilize a document-based NoSQL database, and

now you wish to obtain data by creating a query.

ChAPTeR 7 JAkARTA NoSQL

465

 Solution
Utilize the DocumentCollectionManager or a DocumentTemplate that was generated

as part of the configuration (Recipe 7-1) to initiate a query against a collection. In this

example, the DocumentTemplate is injected into a managed bean, and it is used to query

the collection of Pool within the acmepools database. The following example shows an

excerpt of the code for a query within the managed bean:

import org.jnosql.artemis.document.DocumentTemplate;

import org.jnosql.diana.api.document.Document;

import org.jnosql.diana.api.document.DocumentEntity;

import org.jnosql.diana.api.document.DocumentQuery;

import static org.jnosql.diana.api.document.query.DocumentQueryBuilder.

select;

. . .

@Inject

 DocumentTemplate documentTemplate;

. . .

DocumentQuery query = select().from("Pool")

 .where("_id").eq(id).build();

This particular query selects from the Pool collection where the _id is equal to

the provided value. To obtain the value from the query, it can be passed to an injected

DocumentTemplate instance, which will return an optional result:

. . .

Optional<Customer> customerOptional = documentTemplate.singleResult(query);

 System.out.println("Entity found: " + customerOptional.get());

 How It Works
When querying with the Jakarta NoSQL API, it has a very similar feel to utilizing the

CriteriaQuery API. To create a DocumentQuery, use the DocumentQueryBuilder by

importing the static org.jnosql.diana.api.document.query.DocumentQueryBuilder.

select and then “building” a query by calling upon the builder methods. In the

example, the query simply selects from the Pool collection where the _id is equal to the

id parameter. Tables 7-1 and 7-2 show the various builder methods that can be utilized

to help generate queries for a document database.

ChAPTeR 7 JAkARTA NoSQL

466

Table 7-1. DocumentQuery.DocumentFrom Methods

Builder Method Description

limit Defines max number of results to retrieve

orderBy(String name) Determines the order by which results will be displayed

skip(long skip) Defines position of the first retrieved result

where(String name) Starts new condition defining the column name

Table 7-2. DocumentQuery.DocumentWhere Methods

Builder Method Description

between Creates between condition

eq Creates an equal condition

gt Creates greater than condition

gte Creates greater than or equal condition

in Creates in condition

like Creates like condition

lt Creates less than condition

lte Creates less than or equal condition

not Creates the not equal condition

Given the number of different builders that can be used to obtain information, there

are plenty of ways to retrieve the data that is required from your collection. If no builder

methods are applied to a query at all, then all records of the collection will be retrieved.

Such a case is presented with the following example:

DocumentQuery query = select().from("Pool").build();

List<DocumentEntity> entities = manager.getManager().select(query);

ChAPTeR 7 JAkARTA NoSQL

467

Note If using a different type of NoSQL database, there are similar builder
techniques that can be used for retrieving the data. For more information on using
Jakarta NoSQL to query each of the types of NoSQL databases, please refer to the
documentation: www.jnosql.org/getting_started.html.

One can either inject a DocumentTemplate into a CDI bean as shown in the example

or obtain it from an SeContainer if using in a Java SE environment. Taking a look at the

latter, one can obtain an SeContainer by calling upon an SeContainerInitializer and

then obtain a DocumentTemplate from that container by passing DocumentTemplate.

class to the container select() method:

try (SeContainer se = SeContainerInitializer.newInstance().initialize()){

 DocumentTemplate documentTemplate = se.select(DocumentTemplate.class).

get();

 DocumentQuery query = select().from("Pool").build();

 List<Pool> results = documentTemplate.select(query);

 . . .

}

The Jakarta NoSQL specification allows one to query document-oriented NoSQL

databases, as well as other types of NoSQL databases, in a standardized manner.

7-3. Inserting, Updating, and Deleting from a
Document-Oriented Database
 Problem
You wish to utilize your application to perform standard CRUD operations against a

document-oriented NoSQL database.

 Solution
Utilize the DocumentCollectionManagerFactory that was generated as part of the

configuration (Recipe 7-1) to obtain a manager which can be used for creating, reading,

updating, or deleting data from the document-oriented database.

ChAPTeR 7 JAkARTA NoSQL

http://www.jnosql.org/getting_started.html

468

 Inserting

There are a couple of different techniques that can be used for generating new entities

within a document-oriented database: utilization of the DocumentTemplate or utilization

of a DocumentEntity.

When using a DocumentTemplate to create an entity, the workflow is very similar

to that of the Jakarta Persistence API along with the Criteria API. Taking a look at the

following code, which was excerpted from the AcmePoolsService class within the

AcmePoolsNoSql project, one can see that objects are created using plain Java, and

then they are inserted into the database using the document template. In this case, the

DocumentTemplate has been injected into the CDI bean:

Random random = new Random();

Long id = random.nextLong();

Customer customer = new Customer("Josh", "Juneau", "123 AcmeWay",

"JavaLand", "JJ", "12345");

Pool pool = new Pool(id, 32.0, 16.0, customer);

Pool savedPool = documentTemplate.insert(pool);

Use the DocumentEntity construct along with a DocumentCollectionManager

Factory to generate a new entity for addition to an existing collection of data, and then

use the manager to insert the entity. In the following example, a new entity is created

and added to the existing pool collection of data:

DocumentEntity documentEntity = DocumentEntity.of("Pool");

documentEntity.add(Document.of("_id", id));

documentEntity.add(Document.of("length", 30.0));

documentEntity.add(Document.of("width", 15.0));

DocumentEntity saved = manager.getManager().insert(documentEntity);

 Updating

To update an entity, modify the DocumentEntity instance and then pass it to the

DocumentCollectionManagerProducer update() method:

DocumentEntity saved = manager.getManager().insert(documentEntity);

ChAPTeR 7 JAkARTA NoSQL

469

//Update Document

saved.add(Document.of("Customer", "Juneau"));

DocumentEntity updated = manager.getManager().update(saved);

 Deleting

The DocumentDeleteQuery interface can be used to easily delete an entity from a

collection of data:

DocumentDeleteQuery delete = delete().from("Pools").where("length").

gte(36.0).build();

 manager.getManager().delete(delete);

 How It Works
Whether utilizing a DocumentTemplate or a DocumentCollectionManager, the Jakarta

NoSQL API is a pleasure to use for performing CRUD operations against a NoSQL

database. The DocumentTemplate can be used to perform transactions against org.

jnosql.artemis.Entity classes, much like the Java Persistence API. When utilizing

a DocumentCollectionManager, persistence methods can be called upon to invoke

behavior, passing DocumentEntity objects or DocumentQuery objects.

A DocumentTemplate can either be injected via CDI or created from an SEContainer

instance. Once created, it can be used to perform operations with entity classes. In

the example for inserting, the Pool entity was created and then inserted using the

DocumentTemplate.insert() method. Table 7-3 shows the different methods available

via a DocumentTemplate.

ChAPTeR 7 JAkARTA NoSQL

470

The remainder of the examples in this recipe demonstrated various persistence

transactions utilizing a DocumentCollectionManager. This, too, can be injected via

CDI or created from an SeContainer instance. In a Jakarta EE application, typically the

configuration will take place within a single @ApplicationScoped bean, which

@Produces a DocumentCollectionManager (see Recipe 7-1).

When using a DocumentCollectionManager, call upon the various persistence

methods, passing either DocumentQuery or DocumentEntity objects.

Table 7-3. Methods of the DocumentTemplate Interface

Method Description

insert(T entity) Inserts an entity into a collection

insert(T entity, Duration) Inserts an entity with time to live

insert(Iterable<T> entities) Saves a collection of entities

insert(Iterable<T> entities,

Duration)

Saves a collection of entities with time to live

update(T entity) Updates an entity

update(Iterable<T> entities) Updates a collection of entities

delete(DocumentDeleteQuery) Deletes an entity obtained via query

select(DocumentQuery) Selects entities from a query

query(String query) executes a query

singleResult(String query) executes a query and returns a single unique result

prepare(String query) Creates a PreparedStatement from a query.

find(T entity, ID) Find an entity class by ID

delete(T entity, ID) Delete an entity class by ID

count(String

documentCollection)

Returns the number of elements in a document collection

count(T entityType) Returns the number of elements in a document collection

singleResult(DocumentQuery) executes a query and returns a single unique result

ChAPTeR 7 JAkARTA NoSQL

471

In the examples, a DocumentEntity for a Pool is constructed, and inserted using

the DocumentCollectionManager. Taking a different approach in the next example,

a DocumentDeleteQuery is constructed to delete an entity from the Pool collection.

The DocumentCollectionManager delete() method is then invoked, passing

the DocumentDeleteQuery object. Table 7-4 shows the methods available on a

DocumentCollectionManager.

Table 7-4. Methods of the DocumentCollectionManager Interface

Method Description

close() Closes a resource

delete(DocumentDeleteQuery) Deletes an entity obtained via a query

insert(DocumentEntity) Inserts an entity

insert(DocumentEntity, Duration) Inserts an entity with time to live

insert(Iterable<DocumentEntity>) Inserts a collection of DocumentEntity

insert(Iterable<DocumentEntity>,

Duration)

Inserts a collection of DocumentEntity with time

to live

select(DocumentQuery) Selects one or more entities from a collection using

a DocumentQuery

singleResult(DocumentQuery) Selects a single unique result from a collection using

a DocumentQuery

update(DocumentEntity) Updates an entity

update(Iterable<DocumentEntity>) Updates a collection of DocumentEntity

Either way you choose to perform CRUD operations, the API is straightforward. The

choice of which option to use is in the hands of the developer. It is time to choose the

best tool for the job.

ChAPTeR 7 JAkARTA NoSQL

472

7-4. Working with a Key-Value Database
 Problem
You wish to place values into a key-value database and also retrieve them at a later point.

For example, you wish to utilize Hazelcast with the Jakarta NoSQL API.

 Solution
Configure your application to work with a key-value NoSQL database. Once configured,

utilize a KeyValueConfiguration to generate a BucketManagerFactory. The

BucketManagerFactory can then be used to work with key/value pairs.

The following dependency will need to be added to your project in order to support

Hazelcast with Jakarta NoSQL, along with the standard artemis-core dependency:

<dependency>

 <groupId>org.jnosql.diana</groupId>

 <artifactId>hazelcast-driver</artifactId>

 <version>version</version>

</dependency>

Note hazelcast is an open source in-memory data grid based on Java.

Once the dependency has been added, configuration can take place. The following

sample source code demonstrates key-value database configuration:

KeyValueConfiguration configuration = new HazelcastKeyValueConfiguration();

BucketManagerFactory managerFactory = configuration.get();

BucketManager bucketManager = managerFactory.getBucketManager("Pools");

A Plain Old Java Object (POJO) can be used to contain the data, and the

BucketManager is used to perform the transactions. In the following case, a Pool object

has been populated, and a BucketManager is being used to insert the object into the

database:

KeyValueEntity entity = KeyValueEntity.of(pool.getLength(), pool.Id);

bucketManager.put(entity);

ChAPTeR 7 JAkARTA NoSQL

473

 How It Works
To refer back to Recipe 7-2, the key-value–oriented database configuration is very

similar to document oriented. Typically in a Jakarta EE application, one would

create an @ApplicationScoped bean in which to place the configuration of type

KeyValueConfiguration. The bean also contains a manager, just like the document-

oriented database. However, this manager is a BucketManager, and it will be the

basis for performing transactions against the database. In a Java SE environment,

the BucketManager can be obtained from the SEContainer instance. In an enterprise

environment, the BucketManager can be injected via CDI.

In order to perform transactions against a key-value NoSQL database, utilize the

various methods that are available when calling upon the BucketManager. Table 7-5 lists

some methods of the BucketManager interface.

Method Description

close() Close the resource

delete(Iterable keys) Removes entities from keys

delete(K key) Remofes entity from a key

get(Iterable keys) Finds a list of values, given keys

get(K key) Finds a value, given a key

prepare(String query) executes a query and returns the result

put(Iterable entities) Saves the iterable of keys

put(KeyValueEntity entity) Saves the keyValueentity

put(K key, V value) Associates the specified value with a key

Table 7-5. BucketManager Methods

Utilization of a key-value NoSQL database can prove to make code easy to maintain

and provides for a well-performing application. The Jakarta NoSQL API is a powerful

means for working with key-value databases.

ChAPTeR 7 JAkARTA NoSQL

475
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_8

CHAPTER 8

Enterprise JavaBeans
Enterprise JavaBeans were created in order to separate the view layer from the database

access and business layers. EJBs are where all of the database (EntityManager) access

and business logic can take place within a Jakarta EE application, and they have become

significantly easier to use over the past few releases. EJBs are used to coordinate

database tasks with entities, and JSF CDI controllers (aka controller classes) are used to

interact directly with the JSF views or web pages. CDI beans are used to provide a façade

between the view layer and the business layer.

EJBs are deployed to an application server container, which manages the bean

life cycle. The container also provides features such as transaction management and

security for EJBs. EJBs are portable, meaning that they can be deployed to different

application server containers. This adds benefit for EJB developers because a single EJB

can be utilized across multiple applications. EJBs also alleviate the issue of modifying

applications to work with multiple databases due to the use of Java Persistence Query

Language (covered in Chapter 9) rather than routine SQL is used to perform database

operations. Therefore, if an application is developed on one database, it can be ported to

another without the need to rewrite any SQL.

There are three types of EJBs that can be used: stateless, stateful, and message-

driven. This chapter will cover the first two, and message-driven beans (MDBs) will be

covered in Chapter 12 where the Java Message Service (JMS) is covered. Stateless session

beans are used most often, because they are used for quick transactions and do not

maintain any conversational state. Stateful beans, on the other hand, are to be used in

situations where a conversational state across multiple client requests is required.

This chapter includes recipes to familiarize you with stateful and stateless session

beans. You will learn how to access EJBs from a JSF CDI controller client and display

content within a JSF view or web page that the EJB has queried from the database. There

are also recipes covering useful tactics such as using bean Timers and creating singleton

session beans.

476

Note In recent times, EJBs may be considered older technology because CDI
beans can now be used in their place. However, EJBs are a widely adopted
technology that remains a viable option. At the time of the Jakarta EE 8 release,
EJB usage is still dominant as CDI is not yet a complete replacement.

8-1. Obtaining an Entity Manager
 Problem
You have created a persistence unit for your database connection, and you want to use it

to obtain a connection for working with the database.

 Solution #1
Create an EntityManagerFactory object utilizing a local JDBC connection by calling the

javax.persistence.Persistence createEntityManagerFactory method and passing

the name of the JakartaEERecipesLOCAL persistence unit. Obtain an EntityManager

object from the factory object that has been created, and then utilize the EntityManager

object as needed to work with the database entities. The following lines of code

demonstrate how to accomplish the creation of an EntityManager object using a local

JDBC connection:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JakartaE

ERecipesLOCAL");

 EntityManager em = emf.createEntityManager();

Note For further reference regarding the creation of a persistence unit, please
see Recipe 8-3.

CHAptER 8 EntERpRIsE JAvABEAns

477

 Solution #2
Inject EntityManager into EJB when using a database connection within an environment

utilizing Java Naming and Directory Interface (JNDI), such as an application server. To

do so, declare a private field of the EntityManager type, and annotate it using

@PersistenceContext. Pass the name of the relevant persistence unit to the

@PersistenceContext annotation. The following lines of code demonstrate how this

technique is performed. In an application, these lines of code would reside within an EJB

for an entity class:

@PersistenceContext(unitName = "JakartaEERecipes")

 private EntityManager em;

How It Works
Before an entity class can be used to persist an object or obtain query results, an entity

manager must be created from the persistence unit database connection configuration.

The way in which you achieve the creation of an entity manager will differ depending

upon the type of database connection you are using. For instance, if you are creating an

entity manager from a local JDBC connection, then there is a little more work to be done

because an EntityManagerFactory must be used to obtain the EntityManager object.

On the other hand, if you are creating a container-managed entity manager from a

database connection that is registered with an application server via JNDI, then much of

the work is done for you behind the scenes via metadata annotations.

In the first solution to this recipe, a persistence unit pertaining to a local JDBC

connection is used to obtain an EntityManager object. As mentioned previously,

within an EJB, an EntityManagerFactory object must first be obtained by calling

the javax.persistence.Persistence class’s createEntityManagerFactory method

and passing the string-based persistence unit name to the method. From there, an

EntityManager object can be instantiated by invoking the EntityManagerFactory’s

createEntityManager method.

In the second solution to this recipe, a container-managed EntityManager object

instance is obtained. If an application is deployed to an enterprise application server

container such as Oracle’s GlassFish or Payara, this is the preferred way to obtain an

EntityManager. Utilizing container-managed entity managers makes JPA development

easier because a Jakarta EE container manages the life cycle of container-managed entity

CHAptER 8 EntERpRIsE JAvABEAns

478

managers. Moreover, container-managed entity managers are automatically propagated

to all application components within a single Java Transaction API (JTA) transaction. To

obtain a container-managed entity manager, declare an EntityManager field within an

EJB and simply annotate it with @PersistenceContext, passing the string-based name

of the persistence unit to the annotation. Doing so injects the entity manager into the

application component.

After performing either of these solutions, the newly obtained EntityManager object

is ready to be utilized. The most often used EntityManager methods are createQuery,

createNamedQuery, find, and persist. You will learn more about utilizing the

EntityManager in the following recipes.

8-2. Developing a Stateless Session Bean
 Problem
You want to create a class that can be used to perform tasks for a client, but the

application does not require the bean to retain any state between transactions.

Additionally, you want to have the ability to interact with a database from within the class.

 Solution #1
Create a stateless session bean for the entity class for which you’d like to perform tasks.

Create an EntityManager object from a persistence unit, and initiate tasks against the

database using the entity classes. In the following solution, a stateless session bean is

created for working with the Book entity:

package org.jakartaeerecipes.chapter08.session;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import org.jakartaeerecipes.chapter08.entity.Book;

/**
 * Stateless Session Bean for the Book entity

 * @author juneau

 */

CHAptER 8 EntERpRIsE JAvABEAns

479

@Stateless

public class BookFacade {

 @PersistenceContext(unitName = "JakartaEERecipes")

 private EntityManager em;

 protected EntityManager getEntityManager() {

 return em;

 }

 public BookFacade() {

 }

 /**
 * Create a book object

 * @param book

 */

 public void create(Book book){

 em.persist(book);

 }

 /**
 * Update a book object

 * @param book

 */

 public void edit(Book book){

 em.merge(book);

 }

 /**
 * Remove a book object

 * @param book

 */

 public void remove(Book book){

 em.remove(book);

 }

CHAptER 8 EntERpRIsE JAvABEAns

480

 /**
 * Return a Book object based upon a given title. This assumes that

there are no duplicate titles in the database.

 * @param title

 * @return

 */

 public Book findByTitle(String title){

 Book returnValue = null;

 try{

 returnValue = (Book) em.createQuery("select object(o) from Book o " +

 "where o.title = :title")

 .setParameter("title", title.toUpperCase())

 .getSingleResult();

 } catch (NoResultException ex){

 ex.printStackTrace();

 }

 return returnValue;

 }

}

In the example session bean, the create, edit, and remove methods can be called via

a client to perform CRUD operations with the database. The findByTitle() method can

be called via a client to obtain a Book object from the database.

 Solution #2
Create a stateless session bean for the entity class for which you’d like to perform tasks,

and extend an abstract class that encapsulates standard operations from the session

bean. Create an EntityManager object from a persistence unit, and initiate tasks against

the database using the entity classes. In the following solution, a stateless session bean

is created for working with the Book entity. It extends a class named AbstractFacade,

which contains implementations for most of the commonly used tasks within EJBs.

First, let’s take a look at the BookFacade class, the stateless session bean:

CHAptER 8 EntERpRIsE JAvABEAns

481

package org.jakartaeerecipes.chapter08.session;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import org.jakartaeerecipes.chapter08.entity.Book;

/**
 * Stateless Session Bean for the Book entity

 * @author juneau

 */

@Stateless

public class BookFacade extends AbstractFacade<Book> {

 @PersistenceContext(unitName = "JakartaEERecipes")

 private EntityManager em;

 @Override

 protected EntityManager getEntityManager() {

 return em;

 }

 public BookFacade() {

 super(Book.class);

 }

 /**
 * Return a Book object based upon a given title. This assumes that there

 * are no duplicate titles in the database.

 * @param title

 * @return

 */

 public Book findByTitle(String title){

 return (Book) em.createQuery("select object(o) from Book o " +

 "where o.title = :title")

 .setParameter("title", title.toUpperCase())

 .getSingleResult();

 }

}

CHAptER 8 EntERpRIsE JAvABEAns

482

As you can see, there is only a single method implemented within the EJB, which

is the findByTitle() method. However, other CRUD functionality such as create,

update, and remove for the Book entity can also be performed via the BookFacade session

bean because it extends AbstractFacade. The AbstractFacade class is an abstract class

that implements the most commonly used EJB methods. It accepts an entity class type

specified as a generic, and its implementation is as follows.

Note the following code was automatically generated via the Apache netBeans
IDE along with the BookFacade session bean after creating a stateless session
bean for the Book entity class.

package org.jakartaeerecipes.chapter08.session;

import java.util.List;

import javax.persistence.EntityManager;

/**
 * Abstract Facade for Session Beans

 */

public abstract class AbstractFacade<T> {

 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {

 this.entityClass = entityClass;

 }

 protected abstract EntityManager getEntityManager();

 public void create(T entity) {

 getEntityManager().persist(entity);

 }

 public void edit(T entity) {

 getEntityManager().merge(entity);

 }

CHAptER 8 EntERpRIsE JAvABEAns

483

 public void remove(T entity) {

 getEntityManager().remove(getEntityManager().merge(entity));

 }

 public T find(Object id) {

 return getEntityManager().find(entityClass, id);

 }

 public List<T> findAll() {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 return getEntityManager().createQuery(cq).getResultList();

 }

 public List<T> findRange(int[] range) {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 javax.persistence.Query q = getEntityManager().createQuery(cq);

 q.setMaxResults(range[1] - range[0]);

 q.setFirstResult(range[0]);

 return q.getResultList();

 }

 public int count() {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 javax.persistence.criteria.Root<T> rt = cq.from(entityClass);

 cq.select(getEntityManager().getCriteriaBuilder().count(rt));

 javax.persistence.Query q = getEntityManager().createQuery(cq);

 return ((Long) q.getSingleResult()).intValue();

 }

}

CHAptER 8 EntERpRIsE JAvABEAns

484

All of the methods declared in the AbstractFacade are available to the BookFacade

since it extends the class. One of the biggest benefits of using an abstract class to

implement the standard CRUD functionality is that it can be applied across many

different EJBs, rather than written from scratch each time.

 How It Works
A Java class that is used to encapsulate the business logic and data access for an

application is also known as a session bean. More specifically, session beans typically

correspond to entity classes, whereas there is usually one bean per entity, although this

is not a requirement and there are instances in which such an implementation does

not work well. Any database transactions for an application should be encapsulated

within a session bean class that is responsible for business process implementations,

and clients should then make calls to the session beans in order to invoke those business

processes. A stateless session bean does not retain any state, meaning that variables

within the bean are not guaranteed to retain their values across invocations. An

application server container maintains a pool of session beans for use by its clients, and

when a client invokes a bean, then one is taken from the pool for use. Beans are returned

to the pool immediately after the client is finished with the invoking task. Therefore,

stateless session beans are thread-safe, and they work very well within a concurrent user

environment.

Stateless session beans should contain a no-argument constructor, and they are

instantiated by an application server container at application startup. To signify that

a session bean is stateless, the class should be annotated with @Stateless, optionally

passing a String-based name parameter for the bean. If no name parameter is specified

within the @Stateless annotation, then the name of the bean is used. A stateless

session bean should not be final or abstract; therefore, all methods within the bean

should contain an implementation. They can extend other session beans or POJOs in

order to extend functionality. In pre–EJB 3.1 environments, there was a requirement

for session beans to implement business interfaces that contained method signatures

for those methods that were to be made public for client use. However, it is no longer

a requirement for a session bean to implement a business interface, and indeed the

solutions to this recipe do not demonstrate the use of business interfaces (see Recipe 8-4

for a concrete example).

CHAptER 8 EntERpRIsE JAvABEAns

485

Zero or more variables can be declared within a stateless session bean, although

the contents of those variables are not guaranteed for retention across client calls. It is

typical for a stateless session bean to contain at least one EntityManager connection,

although it is possible for a bean to contain zero or more connections. For instance,

in some cases session beans do not have a need to persist data, and in such cases

no database connection would be needed. In other instances, there may be a need

for a session bean to have the ability to work with multiple databases, in which case

multiple database connections would be necessary. In the example for this recipe, a

single database connection is declared as an EntityManager object, corresponding to

the JakartaEERecipes persistence unit. It is possible to make use of standard JDBC

persistence units, as well as standard JDBC DataSource objects within a session bean.

The use of a standard JDBC DataSource declaration may look like the following:

@Resource(name="jdbc/MyDataSource")

private DataSource dataSource;

As mentioned previously, stateless session beans can implement business interfaces,

although it is not required. The business interfaces that can be implemented via a

stateless session bean can be local, remote, or web service endpoints. A local business

interface is designed for clients of stateless session beans that exist within the same

container instance as the session bean itself. Designating a business interface with the

@Local annotation specifies a local interface. Remote business interfaces are designed

for use by clients that reside outside of the session bean’s container instance. A remote

business interface is denoted by the @Remote annotation.

Stateless session beans contain “callback methods” that will be invoked by the

container automatically when certain life-cycle events occur. Specifically, stateless

session beans can make use of two callbacks: PostConstruct and PreDestroy. After

the container constructs a stateless session bean and resources have been injected,

any method within the bean that is denoted with a @PostConstruct annotation will

be invoked. Similarly, when the container decides that a bean should be removed

from the pool or destroyed, then any method denoted with a @PreDestroy annotation

will be invoked before the bean is destroyed. Callback methods can be very useful for

instantiating database connections and so forth.

CHAptER 8 EntERpRIsE JAvABEAns

486

LIFE CYCLE OF A STATELESS SESSION BEAN

stateless session beans have the following life cycle:

 1. A container creates a stateless session bean using the default no-argument

constructor.

 2. Resources are injected as necessary (i.e., database connections).

 3. A managed pool of beans is generated, and multiple instances of the session

bean are placed into the pool.

 4. An idle bean is taken from the pool when the invocation request is received

from a client. If all beans in a pool are currently in use, more beans are

instantiated until the maximum specified amount of beans has been reached.

 5. the business method invoked by the client is executed.

 6. the bean is returned to the pool after the business method process is complete.

 7. the bean is destroyed from the pool on an as-needed basis.

In the first solution to this recipe, a stateless session bean is listed that does not

implement any interfaces or extend any other classes. Such a stateless session bean

is very typical, and it is not uncommon to see it in EJB 3.1+ applications. The bean in

the solution declares an EntityManager object, and the application server container

performs the creation of the EntityManager automatically and injects it into the bean

since the @PersistenceContext annotation is specified. The annotation must designate

a persistence unit name to tell the container the type of EntityManager to inject. In the

case where a bean needs access to multiple database connections, then more than one

EntityManager object may be declared, specifying different names for each persistence

unit corresponding to the different connections that are required by the bean. A no-

argument constructor is specified as per the guidelines for stateless session beans. The

solution also contains one business method implementation, findByTitle(), which

accepts a String argument and queries the Book entity for the specified book title. If

found, the matching Book object is returned to the caller. The findByTitle() method

demonstrates the typical usage of an EntityManager object for working with a database

from within a session bean.

CHAptER 8 EntERpRIsE JAvABEAns

487

In the second solution to the recipe, the BookFacade stateless session bean extends a

class named AbstractFacade. The AbstractFacade class contains a number of method

implementations that are commonly used within session bean classes. For instance, the

create method within AbstractClass can be used to persist an object (insert into the

database), and the edit method can be used to update an object. Solution #2 demonstrates

a good technique that can be used to encapsulate commonly used business logic into a

separate class so that it can be extended to multiple different beans. Consider that the

application may contain several different stateless session beans that corresponded to

several different entity classes, and each of those beans would need to contain create,

edit, and remove methods. It is much easier to simply extend a single class that contains

this functionality, rather than rewriting in each separate session bean class.

Stateless session beans are highly performant objects that are used to encapsulate

the business logic and data access corresponding to an application entity. While most

times a single session bean is written for each entity class, this is not a mandatory

rule. Stateless session beans should be considered first when deciding upon which

type of bean to use for encapsulating the logic for a particular application process. If a

conversational state between the client and the bean is not required (no state needs to

be maintained), then stateless session beans are the best choice since they provide the

most concurrency and best performance. If, however, state is required, then consider the

use of stateful session beans.

8-3. Developing a Stateful Session Bean
 Problem
You want to develop a session bean that has the capability of maintaining a conversational

state with the client. For instance, you want the client to have the ability to perform a

multistep process without the state of the session bean being lost between requests.

 Solution
Create a stateful session bean and implement the business logic pertaining to the

entity class of your choice. Consider that a customer is browsing the pages of the Acme

Bookstore application and wants to add a book to a shopping cart. The cart would need to

be maintained within a stateful session bean since it would be required to maintain state

until the customer decides to make a purchase, cancel an order, or close the browser.

CHAptER 8 EntERpRIsE JAvABEAns

488

The following class is that of OrderFacade, the stateful session bean that maintains a

visitor’s shopping cart and purchases:

package org.jakartaeerecipes.chapter08.session;

import java.util.concurrent.TimeUnit;

import javax.ejb.PostActivate;

import javax.ejb.PrePassivate;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import javax.ejb.StatefulTimeout;

import org.jakartaeerecipes.chapter08.object.Cart;

@Stateful

@StatefulTimeout(unit = TimeUnit.MINUTES, value = 30)

public class OrderFacade {

 private Cart cart;

 @SuppressWarnings("unused")

 @PrePassivate

 private void prePassivate() {

 System.out.println("In PrePassivate method");

 }

 @SuppressWarnings("unused")

 @PostActivate

 private void postActivate() {

 System.out.println("In PostActivate method");

 }

 public Cart getCart() {

 if(cart == null)

 cart = new Cart();

 return cart;

 }

 public void setCart(Cart cart) {

 this.cart = cart;

 }

CHAptER 8 EntERpRIsE JAvABEAns

489

 public void completePurchase() {

 System.out.println("Not yet implemented..");

 }

 @Remove

 public void destroy() {

 System.out.println("Destroying OrderFacade...");

 }

}

A client can make calls to a stateful session bean in the same manner as with a

stateless session bean (see Recipe 8-2). That is, a client can access the methods of

the stateful session bean via a business interface or controller class/CDI bean. In this

example, the CartController JSF CDI bean will access the stateful session bean. The

following code for CartController demonstrates how to access the OrderFacade. The

main point of access to the EJB takes place within the getCart() method:

@Named(name = "cartController") // Specifies a CDI bean

@SessionScoped // Specifies a session scoped bean

public class CartController implements Serializable {

 private Item currentBook = null;

 @EJB // Injects EJB

 OrderFacade orderFacade;

 @Inject // Injects specified CDI bean controller

 private AuthorController authorController;

 /**
 * Creates a new instance of CartController

 */

 public CartController() {

 }

 public String addToCart() {

 if (getCart().getBooks() == null) {

 getCart().addBook(getAuthorController().getCurrentBook(), 1);

 } else {

CHAptER 8 EntERpRIsE JAvABEAns

490

 getCart().addBook(getAuthorController().getCurrentBook(),

 searchCart(getAuthorController().getCurrentBook().

getTitle()) + 1);

 }

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,

 "Succesfully Updated Cart", null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 return null;

 }

 /**
 * Determines if a book is already in the shopping cart

 * If no book with the specified title is present, then

 * 0 is returned.

 *
 * @param title

 * @return

 */

 public int searchCart(String title) {

 int count = 0;

 for (Item item : getCart().getBooks()) {

 if (item.getBook().getTitle().equals(title)) {

 count++;

 }

 }

 return count;

 }

 public String viewCart() {

 if (getCart() == null) {

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_

INFO,

 "No books in cart...", null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

CHAptER 8 EntERpRIsE JAvABEAns

491

 return "/chapter08/cart";

 }

 public String continueShopping() {

 return "/chapter08/book";

 }

 public String editItem(String title) {

 for (Item item : getCart().getBooks()) {

 if (item.getBook().getTitle().equals(title)) {

 currentBook = item;

 }

 }

 return "/chapter08/reviewItem";

 }

 public String updateCart(String title) {

 Item foundItem = null;

 if (currentBook.getQuantity() == 0) {

 for (Item item : getCart().getBooks()) {

 if (item.getBook().getTitle().equals(title)) {

 foundItem = item;

 }

 }

 }

 getCart().getBooks().remove(foundItem);

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,

 "Succesfully Updated Cart", null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 return "/chapter08/cart";

 }

 /**
 * @return the cart

 */

CHAptER 8 EntERpRIsE JAvABEAns

492

 public Cart getCart() {

 return orderFacade.getCart();

 }

 /**
 * @return the currentBook

 */

 public Item getCurrentBook() {

 return currentBook;

 }

 /**
 * @param currentBook the currentBook to set

 */

 public void setCurrentBook(Item currentBook) {

 this.currentBook = currentBook;

 }

 public void isBookInCart(ComponentSystemEvent event) {

 UIOutput output = (UIOutput) event.getComponent();

 if (getCart() != null) {

 if (searchCart(getAuthorController().getCurrentBook().

getTitle()) > 0) {

 output.setValue("This book is currently in your cart.");

 } else {

 output.setValue("This book is not in your cart.");

 }

 } else {

 output.setValue("This book is not in your cart.");

 }

 }

 public void updateRowData(RowEditEvent e) {

 System.out.println("Perform editing logic here...");

 currentBook = (Item)e.getObject();

 // Call the updateCart method, passing the title of the current book.

 updateCart(((Item)e.getObject()).getBook().getTitle());

 }

CHAptER 8 EntERpRIsE JAvABEAns

493

 /**
 * @return the authorController

 */

 public AuthorController getAuthorController() {

 return authorController;

 }

 /**
 * @param authorController the authorController to set

 */

 public void setAuthorController(AuthorController authorController) {

 this.authorController = authorController;

 }

}

 How It Works
A stateful session bean is a Java class that is used to encapsulate business logic for an

application. In most cases, a stateful bean has a one-to-one correspondence with an

entity class, in that the bean handles all of the database calls regarding one particular

entity. Programmatically, a stateful session bean is very similar to a stateless session

bean in that regard. However, stateful session beans are guaranteed to maintain a

conversational state with a client, whereas a stateless session bean is not. That said, the

application server container handles stateful session beans differently, and they have a

much different life cycle than stateless session beans. The application server container

maintains a pool of the stateful session beans for client use, but there is a one-to-one

mapping between a client and a bean in that when a client invokes a stateful bean, it will

not release that bean back to the pool while it is still active. Therefore, stateful session

beans can be less efficient than stateless, and they can take up a larger memory footprint

than stateless session beans because if there are a large number of active sessions using

a stateful bean, then there will be a large number of stateful beans retained in memory

remaining active for those sessions.

To make a stateful session bean, the class must be designated as such by annotating

it with @Stateful. The optional name parameter of the @Stateful annotation can be

used to specify a string-based name for the bean. Similar to stateless session beans,

a stateful session bean can implement a business interface, but as of EJB 3.1, it is not

CHAptER 8 EntERpRIsE JAvABEAns

494

mandatory. In the example for this recipe, no business interface is used; therefore, any

method within the bean that has a public modifier will be available for use by a client.

Any variables that are used to store conversational state must be Java primitive types

or Serializable. When an instance variable is used to store data, it will be maintained

throughout the life cycle of the conversation.

Every stateful session bean must also contain a method that will be called when

the bean client removes it. The state of the bean will be maintained until the @Remove

method is called. The container will invoke the method annotated with @Remove when

this occurs, and the bean will be removed after the @Remove method completes.

LIFE CYCLE OF STATEFUL SESSION BEANS

stateful session beans have the following life cycle:

 1. the container creates new bean instances utilizing the default constructor

whenever a new client session is started.

 2. Resources are injected into the bean.

 3. the bean instance is stored in memory.

 4. the method invoked by the client is executed.

 5. the bean waits and executes any subsequent requests.

 6. the bean is passivated or removed from active memory into temporary storage

if the client remains idle for a period of time.

 7. the client invocation of a passivated bean will bring it back into memory from

temporary storage.

 8. Failure of the client to invoke a passivated bean instance for a period of time

will cause the bean to be destroyed.

 9. If a client requests the removal of a bean instance, then it is activated if

necessary and then destroyed.

Stateful session beans are stored in memory for a period of time. If the client does

not request a stateful bean for use again after a period of time, then the container

passivates it. Passivation is the process of taking a stateful session bean out of active

memory and storing it into a temporary location on disk. The container does this by

CHAptER 8 EntERpRIsE JAvABEAns

495

serializing the entire bean instance and moving it into permanent storage on disk.

A bean is then activated later if a client invokes it, and activation is the opposite of

passivation.

Another way to passivate a stateful session bean on a timed basis is by annotating the

class using @StatefulTimeout. This annotation allows the developer to choose how long

to maintain the state of the bean. In the case of the example for this recipe, the state is

maintained for 30 minutes before the bean is passivated:

@StatefulTimeout(unit = TimeUnit.MINUTES, value = 30)

Stateful session beans have more callback methods than stateless session beans.

Callback methods can be used to perform operations at a certain point in the bean’s life

cycle. Specifically, the following annotations can be placed before method signatures in

order to mark them for execution when the given bean life-cycle event occurs:

@PostConstruct, @PrePassivate, @PostActivate, and @PreDestroy. The @PostConstruct

annotation denotes that the annotated method will be executed by the container as an

instance is created. @PrePassivate denotes that the annotated method will be executed

by the container before passivation occurs. @PostActivate denotes that the annotated

method should be executed after activation or, in other words, once a bean becomes

active again. Lastly, methods annotated with @PreDestroy will be executed by the

container just before the bean is destroyed.

If your session bean needs the ability to retain state throughout a conversation, then

you will need to make use of a stateful session bean. However, it is important to make

use of stateful session beans sparingly since they are less efficient than stateless session

beans and they require a larger memory footprint on the application server.

8-4. Utilizing Session Beans with JSF
 Problem
You want to develop a web-based client for a session bean that resides within the same

container as the session bean itself.

 Solution
Write a Java client and work directly with the session bean of your choice. The following

code demonstrates a JSF CDI controller that interacts directly with a stateless session

bean. The JSF CDI bean, named BookController, is the client class for the BookFacade

CHAptER 8 EntERpRIsE JAvABEAns

496

EJB session bean. You will see from the code that the bean is able to interact directly with

the EJB session bean public methods via the declaration of a property pertaining to the

BookFacade class:

package org.jakartaeerecipes.chapter08.jsf;

import java.math.BigDecimal;

import java.util.List;

import java.util.Map;

import javax.ejb.EJB;

import javax.enterprise.context.SessionScoped;

import javax.inject.Inject;

import javax.inject.Named;

import org.jakartaeerecipes.chapter08.entity.Book;

import org.jakartaeerecipes.chapter08.entity.BookAuthor;

import org.jakartaeerecipes.chapter08.session.BookFacade;

@Named(value="bookController")

@SessionScoped

public class BookController implements java.io.Serializable {

 @EJB

 BookFacade ejbFacade;

 private List<Book> completeBookList = null;

 private List<Map> customBookList = null;

 private List<Book> booksByAuthor = null;

 private List<Book> nativeBookList = null;

 private List<Book> namedNativeBookList = null;

 @Inject

 private AuthorController authorController;

 public BookController(){

 }

CHAptER 8 EntERpRIsE JAvABEAns

497

 public List<Book> getCompleteBookList() {

 completeBookList = ejbFacade.findAll();

 return completeBookList;

 }

 public List<Map> getCustomBookList(){

 customBookList = ejbFacade.obtainCustomList();

 return customBookList;

 }

 public void setCompleteBookList(List<Book> completeBookList) {

 this.completeBookList = completeBookList;

 }

 public String populateBookList(BigDecimal bookId){

 String returnValue = authorController.populateAuthorList(bookId);

 return returnValue;

 }

 public String findBooksByAuthor(BookAuthor author){

 setBooksByAuthor(ejbFacade.findBooksByAuthor(author));

 return "/chapter08/recipe08_2b.xhtml";

 }

 /**
 * @return the booksByAuthor

 */

 public List<Book> getBooksByAuthor() {

 return booksByAuthor;

 }

 /**
 * @param booksByAuthor the booksByAuthor to set

 */

 public void setBooksByAuthor(List<Book> booksByAuthor) {

 this.booksByAuthor = booksByAuthor;

 }

CHAptER 8 EntERpRIsE JAvABEAns

498

 public List<Book> getNativeBookList() {

 nativeBookList = ejbFacade.obtainNativeList();

 return nativeBookList;

 }

 /**
 * @param nativeBookList the nativeBookList to set

 */

 public void setNativeBookList(List<Book> nativeBookList) {

 this.nativeBookList = nativeBookList;

 }

 /**
 * @return the namedNativeBookList

 */

 public List<Book> getNamedNativeBookList() {

 namedNativeBookList = ejbFacade.obtainNamedNativeList();

 return namedNativeBookList;

 }

 /**
 * @param namedNativeBookList the namedNativeBookList to set

 */

 public void setNamedNativeBookList(List<Book> namedNativeBookList) {

 this.namedNativeBookList = namedNativeBookList;

 }

}

As you can see from the example, it is also possible for one JSF CDI controller

client to work with another JSF CDI controller client because the BookController class

declares a variable for the AuthorController CDI controller and injects it into the class.

The JSF view can interact directly with the methods within the bean, making it easy to

form the complete cycle for a web view utilizing information from a database.

CHAptER 8 EntERpRIsE JAvABEAns

499

 How It Works
An EJB is the class within an application that is used to work directly with database

objects. JSF web views and desktop Java clients cannot work directly with EJB methods

since they reside on the application server. For this reason, EJBs must provide a way for

clients to communicate with their methods, whether that client resides within the same

container as the EJB itself or in a remote location. Prior to the release of EJB 3.1, if an EJB

was going to be exposed to a client within the same container, such as a JSF controller

class, the EJB would need to implement a business interface denoted as a local interface

with the @Local annotation.

On the other hand, if an EJB were to be made accessible to a client running within

a remote environment under pre-EJB 3.1, then the EJB would need to implement a

business interface denoted as a remote interface with the @Remote annotation. In the

majority of Jakarta EE applications that are developed, a web framework such as JSF is

used to work with the EJB in order to manipulate or read data from an RDBMS or other

data sources. Such clients are local to the container in which the EJB pools reside, and

therefore they would access the EJB via a local business interface.

Note At first, the concept of a local client may be difficult to understand, so I will
try to explain in a bit more detail. A typical JsF application utilizes local clients,
those being JsF CDI controller classes, to work directly with the EJBs. Although
the user of the web application is sitting in a remote location from the EJB server
container, they are working with HtML pages that are generated by JsF views
within a browser, and those views interact directly with the JsF controllers. It is
almost as if the JsF views are bound directly to the JsF CDI controllers, which
usually reside within the same container as the EJB. Figure 8-1 shows how this
relationship works.

Figure 8-1. HTML client (JSF view) to EJB relationship

CHAptER 8 EntERpRIsE JAvABEAns

500

Since EJB 3.1+, it has been possible for local clients to utilize “no-interface” business

views for access to public EJB methods, thereby alleviating the need for the EJB to

implement an interface. Using the no-interface view technique enables developers to

be more productive because there is one less Java file to maintain (no interface needed),

and the workflow becomes easier to understand since the local client can interact

directly with the EJB, rather than via an interface. Remote clients, such as Java classes

running in a remote application server container, cannot use the no-interface view, and

therefore a @Remote business interface is still needed in such situations.

The solution demonstrates the use of the no-interface view to allow JSF CDI

controllers to work with publicly declared EJB methods. To obtain a reference to the

no-interface view of an EJB through dependency injection, use the javax.naming.EJB

annotation, along with a declaration of the enterprise bean’s implementation class. The

following code excerpt taken from the CDI controller in the solution demonstrates the

dependency injection technique:

@EJB

BookFacade ejbFacade;

It is possible to use JNDI to perform a lookup on the EJB rather than using

dependency injection, although such situations are rarely required. To do so, use the

javax.naming.InitialContext interface’s lookup method in order to perform the JNDI

lookup as follows:

BookFacade ejbFacade = (BookFacade)

 InitialContext.lookup("java:module/BookFacade");

Note Many people still have a bad taste in their mouth because of the complexity
of EJBs prior to the release of EJB 3.0. Development of EJB 2.x required much
XML configuration, which made EJBs difficult to understand and maintain, even
though they were still robust and very viable for the development of enterprise
applications. Moreover, the container manages the life cycle and resources for
EJBs, which allows developers to focus on other application features rather than
worry about life-cycle and resource handling.

CHAptER 8 EntERpRIsE JAvABEAns

501

8-5. Persisting an Object
 Problem
You want to persist an object in your Java enterprise application. In other words, you want

to create a new database record within one of the database tables used by your application.

 Solution
Create an EntityManager object using one of the solutions provided in Recipe 8-1,

and then call its persist() method, passing the object you want to persist. The

following lines of code demonstrate how to persist an object to the database using an

EntityManager. In this case, a Book object is being persisted into the BOOK database table.

This excerpt is taken from the BookFacade session bean:

...

@PersistenceContext(unitName = "JakartaEERecipes")

 private EntityManager em;

...

em.persist(book);

...

 How It Works
The persistence of entity objects takes place within EJB classes. To persist an object to

the underlying data store and manage it, call the EntityManager object’s persist()

method. You must pass a valid entity object to the persist() method, and the object

should not yet exist in the database, meaning that it must have a unique primary key.

A few different exceptions may be thrown when working with the persist() method

that will help you determine what issues are occurring. The EntityExistsException is

self-explanatory, and it is thrown if the primary key for the entity that you are persisting

already exists. However, in some cases a PersistenceException will be thrown instead

at flush or commit time, so you should catch each of these exceptions when issuing

a call to persist. If the object that you are trying to persist is not an entity, then the

IllegalArgumentException will be thrown. Lastly, the TransactionRequiredException

will be thrown if invoked on a container-managed entity manager of type

PersistenceContextType.TRANSACTION and there is no transaction made.

CHAptER 8 EntERpRIsE JAvABEAns

502

8-6. Updating an Object
 Problem
The contents of an entity object have been changed, and you want to persist the updates

to the underlying data source.

 Solution
Create an EntityManager object using one of the solutions provided in Recipe 8-1, and

then call the EntityManager object’s merge() method, passing a populated entity object

that you want to update. The following lines of code demonstrate how to persist an object

to the database using an EntityManager. In this case, a Book object is being updated in

the BOOK database table. This excerpt is taken from the BookFacade session bean:

...

@PersistenceContext(unitName = "JakartaEERecipes")

 private EntityManager em;

...

em.merge(book);

...

Note If the entity object (database record) being persisted does not already exist
within the table, it will be stored as a newly persisted object rather than updated.

 How It Works
The code implementation that is responsible for updating entity objects within the

underlying data store resides within EJB classes. A valid EntityManager object must be

available for use, and then the EntityManager’s merge() method can be called, passing

a valid entity object for update within the underlying data store. When this is done, the

state of the entity object will be merged into the data store, and the underlying data will

be updated accordingly.

CHAptER 8 EntERpRIsE JAvABEAns

503

Two possible exceptions may be thrown when attempting to merge data.

An IllegalArgumentException may be thrown if the instance being merged

is not an entity (the database table does not exist) or is a removed entity. A

TransactionRequiredException may be thrown if the merge() method is invoked on a

container-managed entity manager of type PersistenceContextType.TRANSACTION and

there is no transaction.

8-7. Returning Data to Display in a Table
 Problem
You want to display the contents of a database table via a JSF dataTable.

 Solution #1
Return a List of entity objects from the underlying table containing the contents you

want to display. Map a JSF dataTable component value to a CDI controller property that

contains a List of objects. In this case, the CDI controller property would be the List

of the entity objects corresponding to the database table. Within the CDI controller, the

List of entity objects can be obtained via an EJB call.

The following code excerpt is taken from the JSF CDI controller named

BookController. The CDI controller property named completeBookList will be

referenced from a dataTable component within a JSF view, displaying the data from the

underlying table:

@Named(value="bookController")

@SessionScoped

public class BookController implements java.io.Serializable {

 @EJB

 BookFacade ejbFacade;

 private List<Book> completeBookList;

 @Inject

 private AuthorController authorController;

. . .

CHAptER 8 EntERpRIsE JAvABEAns

504

 public List<Book> getCompleteBookList() {

 completeBookList = ejbFacade.findAll();

 return completeBookList;

 }

 public void setCompleteBookList(List<Book> completeBookList) {

 this.completeBookList = completeBookList;

 }

. . .

}

Next, let’s take a look at an excerpt from the EJB named BookFacade. It is a stateless

session bean that contains the method, which is invoked by the BookController in order

to obtain the List of entity objects.

Note the findAll() method that is called by BookController is inherited
from the AbstractFacade class.

...

@Stateless

public class BookFacade extends AbstractFacade<Book> {

 @PersistenceContext(unitName = "JakartaEERecipes")

 private EntityManager em;

 @Override

 protected EntityManager getEntityManager() {

 return em;

 }

 public BookFacade() {

 super(Book.class);

 }

...

CHAptER 8 EntERpRIsE JAvABEAns

505

In the AbstractFacade, the findAll() method is implemented in a generic manner:

public abstract class AbstractFacade<T> {

 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {

 this.entityClass = entityClass;

 }

 protected abstract EntityManager getEntityManager();

 public List<T> findAll() {

 javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

 Root<T> root = cq.from(entityClass);

 cq.select(root);

 return getEntityManager().createQuery(cq).getResultList();

 }

...

}

The List<Book> is returned from the findAll() method in the EJB, which is

contained within the AbstractFacade abstract class. This list is used to populate the

completeBookList property within the BookController. Since the BookController

communicates directly with the view layer, the JSF view will be able to utilize the

completeBookList property to display the data.

 Solution #2
Return a List of Map objects containing the results of a native SQL query against the

underlying table. The JSF CDI controller can contain a property that is a List of Map

objects, and it can be referenced from within a JSF dataTable component. In this case,

the EJB method that is invoked by the controller will make a native SQL query against the

database, returning certain columns of data from the table and populating map objects

with those column values.

In the following excerpt, the BookController.getCustomBookList() method

populates a CDI controller property named customBookList via a call to the EJB method

named obtainCustomList. Excerpts including both of these methods are shown next.

CHAptER 8 EntERpRIsE JAvABEAns

506

Here’s the excerpt from org.jakartaeerecipes.chapter08.BookController:

...

public List<Map> getCustomBookList(){

 customBookList = ejbFacade.obtainCustomList();

 return customBookList;

 }

...

Here are the excerpts from org.jakartaeerecipes.chapter08.session.BookFacade:

...

 protected EntityManager getEntityManager() {

 return em;

 }

...

public List<Map> obtainCustomList(){

 List<Object[]> results = em.createNativeQuery(

 "select id, title, description " +

 "FROM BOOK " +

 " ORDER BY id").getResultList();

 List data = new ArrayList<HashMap>();

 if (!results.isEmpty()) {

 for (Object[] result : results) {

 HashMap resultMap = new HashMap();

 resultMap.put("id", result[0]);

 resultMap.put("title", result[1]);

 resultMap.put("description", result[2]);

 data.add(resultMap);

 }

 }

 return data;

 }

CHAptER 8 EntERpRIsE JAvABEAns

507

The customBookList property of the BookController class is populated by the EJB

method, making the data available to the view.

 How It Works
One of the most often required tasks of a web application is to display content. What’s

more, displaying database content is key to just about every enterprise application.

Displaying content in table format provides the user with the ability to see the data

because it is stored within the underlying table, in columnar format. The JSF dataTable

component provides Jakarta EE applications utilizing the JSF framework with an efficient

and powerful way to display entity data in a table format.

The JSF dataTable component is capable of taking a List, DataModel, or Collection

of objects and displaying them to the user. This recipe covers two different variations of

retrieving data and storing it within a List for use in a dataTable component. The first

solution is the most common situation. In both solutions, a CDI controller property is

used to store the List of entity objects. However, the first solution stores a List of entity

objects themselves, whereas the second solution stores a List of Map objects. Let’s walk

through each a little more closely.

In Solution #1 to this recipe, the completeBookList field within the

BookController CDI controller class is used to store the List of Book entities. The

getCompleteBookList() method populates the List by invoking the BookFacade session

bean's findAll() method to return all of the rows within the BOOK database table. Each

database row is stored in a separate Book entity object, and in turn, each Book entity

object is stored in the List. Finally, that list is returned to the BookController and

assigned to the completeBookList field. In the end, the JSF dataTable component

references the completeBookList to display the content.

In Solution #2, the BookController field named customBookList is used to

populate a JSF dataTable. The customBookList field is a List of Map objects. As far as

the BookController method of population goes, the customBookList field is populated

in much the same manner as the completeBookList in Solution #1. An EJB method

is called, which returns the populated List of objects. In this case, the EJB named

BookFacade returns a List of Map objects from a native SQL query. The BookFacade

session bean class method obtainCustomList is responsible for creating the native

SQL query and then storing the results within Map objects. In this case, the native query

returns only a subset of the columns that are present within the BOOK database table in

CHAptER 8 EntERpRIsE JAvABEAns

508

each row as a resultList and stores them into a List<Object[]>. A new ArrayList of

HashMaps is then created and populated with the contents of the List from the database

query. To populate the ArrayList, the List<Object[]> is traversed using a for loop. A

HashMap object is created for each object that is returned from the database. The HashMap

object is populated with name-value pairs, with the name of the column being the first

part and the value from the entity object being the second part in each element. Each

column that was retrieved via the query is stored into the HashMap, and the HashMap itself

is then added to a List. In the end, the List of HashMap objects is returned to the CDI

controller and stored into the customBookList field. In the JSF view, the names that were

associated with each of the database columns in the HashMap are used to reference the

values for display within the dataTable.

Both of the solutions showcased in this recipe offer valid options for displaying

database data JPA within a JSF dataTable component. I recommend using the first

solution where possible because it is less error prone than Solution #2, which will

require manual mapping of the database columns to Map indices. There is also native

SQL hard-coded into the EJB for Solution #2, which is OK when necessary but never

the best option. It is always much better when you can utilize an EJB method, such as

the findAll() method that is available in AbstractFacade (Recipe 8-2), because if the

underlying database table changes, then there is no need to alter the application code.

8-8. Creating a Singleton Bean
 Problem
You want to develop a session bean in which all application clients will use the same.

Only one instance of the bean should be allowed per application so that there is always a

single site visitor counter for the number of visitors.

Note In this recipe, the counter is not cumulative. that is, it is not persisted
across application startups. to create a cumulative counter, the current count
must be persisted to the database before the application or server is restarted and
restored when the application is resumed.

CHAptER 8 EntERpRIsE JAvABEAns

509

 Solution
Develop a singleton session bean that allows concurrent access by all application clients.

The bean will keep track of the number of visitors who have been to the bookstore and

display the number within the footer of the Acme Bookstore application. The following

bean named BookstoreSessionCounter is a singleton session bean for the Acme

Bookstore that is responsible for keeping track of an active session count:

package org.jakartaeerecipes.chapter08.session;

import javax.ejb.Singleton;

import javax.ejb.ConcurrencyManagement;

import static javax.ejb.ConcurrencyManagementType.CONTAINER;

@Singleton

@ConcurrencyManagement(CONTAINER)

public class BookstoreSessionCounter {

 private int numberOfSessions;

 /**
 * Initialize the Bean

 */

 @PostConstruct

 public void init(){

 // Initialize bean here

 System.out.println("Initalizing bean...");

 }

 // Resets the counter on application startup

 public BookstoreSessionCounter(){

 numberOfSessions = 0;

 }

 /**
 * @return the numberOfSessions

 */

CHAptER 8 EntERpRIsE JAvABEAns

510

 public int getNumberOfSessions() {

 numberOfSessions++;

 return numberOfSessions;

 }

 /**
 * @param numberOfSessions the numberOfSessions to set. This could be set

* from the database if the current counter were persisted before the application

* was shutdown

 */

 public void setNumberOfSessions(int numberOfSessions) {

 this.numberOfSessions = numberOfSessions;

 }

}

Next, let’s look at the JSF CDI controller that invokes the singleton session bean

method for updating the site counter. The following excerpt is taken from a session-

scoped CDI controller named BookstoreSessionController, and the counter property

is used to update the number of visitors within the EJB:

...

@Named("bookstoreSessionController")

@SessionScoped

public class BookstoreSessionController {

 @EJB

 BookstoreSessionCounter bookstoreSessionCounter;

 private int counter;

 private boolean flag = false;

 /**
 * @return the counter

 */

 public int getCounter() {

 if (!flag) {

CHAptER 8 EntERpRIsE JAvABEAns

511

 counter = bookstoreSessionCounter.getNumberOfSessions();

 flag = true;

 }

 return counter;

 }

 /**
 * @param counter the counter to set

 */

 public void setCounter(int counter) {

 this.counter = counter;

 }

}

Lastly, the counter is bound to a JSF EL expression within the Acme Bookstore

Facelets template. The following line of code is excerpted from the template named

custom_template_search.xhtml, which resides in the chapter08/layout directory of

the book sources:

Number of Vistors: #{bookstoreSessionController.counter}

 How It Works
A class that is specified as a singleton is created once per application. There is only one

instance of a singleton class at any given time, and all client sessions interact with that

same instance. To generate a singleton session bean, denote a bean as such by specifying

the javax.ejb.Singleton annotation. Programmatically, the annotation specification is

one of the main differences between the coding of a standard stateless session bean and

a singleton session bean. However, functionally, the bean is treated much different by

the container than a standard stateless session bean.

Singleton session beans are instantiated by the container at an arbitrary point in

time. To force the instantiation of a singleton instance at application startup, the javax.

ejb.Startup annotation can be specified. In the case of the example, there is no

@Startup annotation specified, so the singleton instance could be instantiated by the

container at any given point. However, a singleton will be started up before any of the

application EJBs begin to receive requests. In the example, you can see that the

@PostConstruct callback annotation is being used. This causes the method on which

CHAptER 8 EntERpRIsE JAvABEAns

512

the annotation is specified to be executed directly after instantiation of the bean.

Singletons share the same callback methodology as standard stateless session beans. To

read more about callback methods, please refer to Recipe 8-2.

Note If one or more singleton beans depend upon other singleton beans for
initialization, the @DependsOn annotation can be specified for the bean to denote
which bean it depends upon. A chain of dependencies can be set up using this
annotation if needed.

By default, singletons are concurrent, meaning that multiple clients can access them

at the same time (also known as thread-safe). There are two different ways in which to

control concurrent access to singleton beans. The @ConcurrencyManagement annotation

can be specified along with a given ConcurrentManagementType in order to tell the bean

which type of concurrency to use. The two types of concurrency are CONTAINER, which is

the default type if nothing is specified, and BEAN. In the example, the bean is annotated

to specify container-managed concurrency. When container-managed concurrency is

specified, the EJB container manages the concurrency. The @Lock annotation can be

specified on methods of the singleton to tell the container how client access should be

managed on the method. To use the @Lock annotation, specify a lock type of LockType.

READ or LockType.WRITE (default) within the annotation to tell the container that many

clients can access the annotated method concurrently or that the method should

become locked to others when a client is accessing it. The entire class can also be

annotated with @Lock, in which case the designated lock type will be used for each of

the methods within the class unless they contain their own lock type designation. For

example, the following lines specify a method within a singleton class that should be

locked when accessed by a client so that only one client at a time has access:

@Lock(LockType.WRITE)

public void setCounter(int counter){

 this.counter = counter;

}

Bean concurrency is different in that it allows full concurrent, thread-safe locking

access to all clients on all methods within the class. The developer can use Java

synchronization techniques such as synchronized and volatile to help manage the state

of concurrency within those singletons designated with bean-managed concurrency.

CHAptER 8 EntERpRIsE JAvABEAns

513

8-9. Scheduling a Timer Service
 Problem
You want to schedule a task that performs database transactions on a recurring interval.

 Solution #1
Use the Timer service to schedule a task within a bean using an automatic timer. The

timer will specify a required interval of time, and the method used to perform the task

will be invoked each time the interval of time expires. The following session bean is

set up to create an automatic timer, which will begin upon application deployment.

The following code is contained within the Java file named org.jakartaeerecipes.

chapter08.timer.TimerBean:

import javax.ejb.Singleton;

import javax.ejb.Schedule;

/**
 * Recipe 8-9 : The EJB Timer Service

 * @author juneau

 */

@Singleton

public class TimerBean {

@Schedule(minute="*/5", hour="*")

 public void automaticTimer(){

 System.out.println("*** Automatic Timeout Occurred ***");

 }

}

The automatic timer will begin when the class is deployed to the application server

and the application server starts. Every five minutes, the automaticTimer() method will

be invoked as will any processes that are performed within that method.

CHAptER 8 EntERpRIsE JAvABEAns

514

 Solution #2
Create a programmatic timer and specify it to start when it is deployed to the application

server. Configure an initialization method within the timer bean that will create the

timer automatically when the bean is initialized. The following example class is named

org.jakartaeerecipes.chapter08.timer.ProgrammaticTimerExample, and it will be

automatically started when the application is deployed:

package org.jakartaeerecipes.chapter08.timer;

import javax.annotation.PostConstruct;

import javax.annotation.Resource;

import javax.ejb.Singleton;

import javax.ejb.Timer;

import javax.ejb.Timeout;

import javax.ejb.TimerService;

@Singleton

@Startup

public class ProgrammaticTimerExample {

 @Resource

 TimerService timerService;

 @PostConstruct

 public void createTimer(){

 System.out.println("Creating Timer...");

 Timer timer = timerService.createTimer(100000, "Timer has been

created...");

 }

 @Timeout

 public void timeout(Timer timer){

 System.out.println("Timeout of Programmatic Timer Example...");

 }

}

CHAptER 8 EntERpRIsE JAvABEAns

515

After deployment, you should see a message in the server log indicating Creating

Timer..., and then once the timer expires, the Timeout of Programmatic Timer

Example... message will be displayed in the logs.

 How It Works
Timer solutions make it easy to incorporate scheduled or timed tasks into an application

process. The EJB Timer service helps make such solutions possible because it offers

applications a method for scheduling tasks that will be performed by the application over a

specified interval of time. There are two different types of timers: programmatic and automatic.

In Solution #1 to this recipe, an automatic timer is demonstrated. Although the solution does

not perform any actual work, the method annotated with the @Schedule annotation is where

the work takes place. An automatic timer is created when an EJB contains one or more

methods that are annotated with @Schedule or @Schedules. The @Schedule takes a

calendar-based timer expression to indicate when the annotated method should be executed.

Note One or more @Schedule annotations can be grouped within
@Scheduled{ ... }, separating each @Schedule with a comma.

Calendar-based timer expressions can contain one or more calendar attributes

paired with values to indicate a point in time for invocation of the method. Table 8-1 lists

the different calendar-based timer expressions, along with a description of each.

Table 8-1. Calendar-Based Timer Expressions

Attribute Description

dayOfWeek One or more days in a week: (0–7) or (sun, Mon, tue, Wed, thu, Fri, sat)

dayOfMonth One or more days in a month: (1–31) or (Last) or (1st, 2nd, 3rd, 4th, 5th, Last) along

with any of the dayOfWeek values

month One or more months in a year: (1–12) or month abbreviation

year Four-digit calendar year

hour One or more hours within a day: (0–23)

minute One or more minutes within an hour: (0–59)

second One or more seconds within a minute: (0–59)

CHAptER 8 EntERpRIsE JAvABEAns

516

When creating a calendar-based timer expression, the asterisk (*) can be specified as

a wildcard. The forward slash (/) can be used to indicate an interval in time. An interval

in time follows this pattern:

beginning time (larger unit) / frequency

Therefore, specifying /5 in the example (minute="*/5" hour="*") indicates that

you want the timer to be executed every five minutes within the hour because the

wildcard indicates which hour to begin the timer and the 5 indicates how often.

Timer expression attributes can contain more than one value, and a comma should

separate each value. To indicate that you want to execute a timer at 3:00 a.m. and again

at 6:00 a.m., you could write the following:

@Schedule(hour="3,6")

A range of values can also be specified for timer attributes. To indicate that you want

to have the timer executed every hour between the hours of 4:00 and 7:00 a.m., you could

specify the following:

@Schedule(hour"4-7")

Multiple timer expressions can be combined to tune the timer in a more fine-grained

fashion. For instance, to specify a timer schedule that will execute at 1:00 a.m. every

Sunday morning, you could write the following:

@Schedule(dayOfWeek="Sun", hour="1")

Programmatic timers are the second option that can be used when developing a

timed process, as demonstrated in Solution #2. A programmatic timer is different from

an automatic timer because there is no schedule involved. Rather, a client can invoke

a timer, or it can be initialized with the construction of a bean. A programmatic timer

contains one method that is denoted using the @Timeout annotation. The @Timeout

method will be executed when the timer expires. The timeout method must return void,

and it can optionally accept a javax.ejb.Timer object. A timeout method must not

throw an application exception.

To create a programmatic timer, invoke one of the create methods of the

TimerService interface. Table 8-2 indicates the different create methods that can be

used.

CHAptER 8 EntERpRIsE JAvABEAns

517

In Solution #2 of this recipe, a standard timer is created, passing an interval of

100,000 milliseconds. This means that the method annotated with @Timeout will be

executed once after 100,000 milliseconds has passed. The following is another syntax

that could be used to create a timer that has the same schedule:

long duration = 100000;

Timer timer = timerService.createSingleActionTimer(duration, new

TimerConfig());

Similarly, a date can be passed to the create method in order to specify a given date

and time when the timer should expire. The following timer will expire 30 days from the

date on which the application is deployed:

Calendar cal = Calendar.getInstance();

cal.add(Calendar.DATE, 30);

Timer timer = timerService.createSingleActionTimer(cal.getTime(), new

TimerConfig());

To create a programmatic calendar-based timer, you must create a new schedule

using the ScheduleExpression helper class. Doing so will allow you to utilize the

calendar-based expressions that are listed in Table 8-1 to specify the timer expiration

date. The following example demonstrates a timer that will expire every Sunday at 1:00

a.m. by the application server clock:

ScheduleExpression schedule = new ScheduleExpression();

schedule.dayOfWeek("Sun");

schedule.hour("1");

Timer timer = timerService.createCalendarTimer(schedule);

Table 8-2. Programmatic Timer Create Methods

Method Description

createTimer standard timer creation

createSingleActionTimer Creates a timer that expires once

createIntervalTimer Creates a timer that expires based upon a given time interval

createCalendarTimer Creates a timer based upon a calendar

CHAptER 8 EntERpRIsE JAvABEAns

518

Timers do not need to be created in singleton session beans; they can be used in

stateless session beans as well.

Note timers cannot be specified in stateful session beans.

Timers are a topic that cannot be discussed within the boundaries of a single recipe.

However, this brief introduction to timers should give you enough to get started using

this technology within your applications. To learn more about timers, please refer to the

online documentation at https://eclipse-ee4j.github.io/jakartaee-tutorial/

ejb-basicexamples005.html#BNBOY.

Note All timers are persistent by default, meaning that if the server is shut
down for some reason, the timer will become active again when the server is
restarted. In the event that a timer should expire while the server is down, the
timer will expire (or the @Timeout method will be called) once the server is
functioning normally again. to indicate that a timer should not be persistent, call
TimerConfig.setPersistent(false), and pass it to a timer creation method.

8-10. Performing Optional Transaction Life-Cycle
Callbacks
 Problem
You are interested in beginning a transaction when a bean is instantiated and ending the

transaction when it is destroyed.

 Solution
Choose to utilize the optional transaction life-cycle callbacks built into EJB. To begin a

transaction during the @PostConstruct or @PreDestroy callbacks, annotate the methods

accordingly with @TransactionAttribute, passing the TransactionAttributeType.

REQUIRES_NEW attribute. In the following example, a transaction is started when the bean

CHAptER 8 EntERpRIsE JAvABEAns

https://eclipse-ee4j.github.io/jakartaee-tutorial/ejb-basicexamples005.html#BNBOY
https://eclipse-ee4j.github.io/jakartaee-tutorial/ejb-basicexamples005.html#BNBOY

519

named AcmeFacade is created. Another transaction is started when the bean is being

destroyed:

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import javax.ejb.Stateful;

import javax.ejb.TransactionAttribute;

import javax.ejb.TransactionAttributeType;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.PersistenceContextType;

@Stateful

public class AcmeFacade {

 @PersistenceContext(unitName = "JakartaEERecipesPU", type =

PersistenceContextType.EXTENDED)

 private EntityManager em;

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)

 @PostConstruct

 public void init() {

 System.out.println("The Acme Bean has been created");

 }

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)

 @PreDestroy

 public void destroy() {

 System.out.println("The Acme Bean is being destroyed...");

 em.flush();

 }

}

 How It Works
Session beans can contain callback methods that are invoked when certain stages of

a bean’s life cycle occur. For instance, a method can be registered within a session

bean via annotation to invoke after the bean is constructed (@PostConstruct), before

CHAptER 8 EntERpRIsE JAvABEAns

520

it is destroyed (@PreDestroy), and so on. Sometimes it makes sense to start a new

transaction when one of these events occurs. It is possible to specify the transactional

status of an annotated life-cycle callback method within a session bean when using

container-managed transactions.

The annotation accepts a transaction type as per the values listed in Table 8-3.

Table 8-3. Container-Managed Transaction Demarcation

Attribute Description

MANDATORY the container must invoke an enterprise bean method whose transaction is set

to this attribute in the client’s transaction context. the client is required to call

with a transaction context.

REQUIRED the container must invoke an enterprise bean method whose transaction is set

to this attribute in the client’s transaction context. the client is required to call

with a transaction context. If the client invokes the enterprise bean's method

while the client is not associated with a transaction context, the container

automatically starts a new transaction before delegating the method call to the

enterprise bean method.

REQUIRES_NEW the container must invoke an enterprise bean method whose transaction is set

to this attribute value with a new transaction context.

SUPPORTS If the client calls with a transaction context, then the container treats it as

REQUIRED. If the client calls without a transaction context, the container treats it

as NOT_SUPPORTED.

NOT_SUPPORTED the container invokes an enterprise bean method whose transaction attribute is

set to this value with an unspecified transaction context.

NEVER the container invokes an enterprise bean method whose transaction is set to this

value without a transaction context defined by the EJB specification.

By default, the life-cycle callback methods are not transactional in order to

maintain backward compatibility. By annotating the callback method with the

@TransactionAttribute and the preferred demarcation type, the callback method has

opted in to be transactional.

CHAptER 8 EntERpRIsE JAvABEAns

521

8-11. Ensuring a Stateful Session Bean Is Not
Passivated
 Problem
Rather than have your inactive stateful session bean passivated, you want to keep it in

memory.

 Solution
Specify to the container that the bean is not to be passivated by indicating as such

within the @Stateful annotation. To opt out of passivation, set the passivationCapable

attribute of the @Stateful annotation to false, as demonstrated in the following

excerpt:

@Stateful(passivationCapable=false)

public class AcmeFacade {

 ...

}

 How It Works
When a stateful session bean has been inactive for a period of time, the container may

choose to passivate the bean in an effort to conserve memory and resources. Typically, the

EJB container will passivate stateful session beans using a least recently used algorithm.

When passivation occurs, the bean is moved to secondary storage and removed from

memory. Prior to the passivation of a stateful session bean, any methods annotated with

@PrePassivate will be invoked. When a stateful session bean that has been passivated

needs to be made active again, the EJB container activates the bean, then calls any

methods annotated with @PostActivate, and finally moves the bean to the ready stage.

In EJB 3.2, stateful session beans can opt out of passivation so that they will remain

in memory instead of being transferred to secondary storage if inactive. This may be

helpful in situations where a bean needs to remain active for application processes or if

the bean contains a non-serializable field, since these fields cannot be passivated and

are made null upon passivation. To indicate that a bean is not to be passivated, set the

passivationCapable attribute of the @Stateful annotation to false, as per the solution

to this recipe.

CHAptER 8 EntERpRIsE JAvABEAns

522

8-12. Denoting Local and Remote Interfaces
 Problem
You want to explicitly designate a local or remote interface for an EJB.

 Solution
A business interface cannot be declared as both a local and remote business interface

for a bean. Therefore, the EJB specification contains an API to specify whether a

business interface is intended as local or remote. The following rules pertain to business

interfaces implemented by enterprise bean classes:

The java.io.Serializable, java.io.Externalizable, and interfaces defined

by the package are always excluded when determination of local or remote business

interfaces is declared for a bean.

If a bean class contains the @Remote annotation, then all implemented interfaces are

assumed to be remote.

If a bean class contains no annotation or if the @Local annotation is specified, then

all implemented interfaces are assumed to be local.

Any business interface that is explicitly defined for a bean that contains the no- interface

view must be designated as @Local.

Any business interface must be explicitly designated as local or remote if the bean

class explicitly specifies the @Local or @Remote annotation with a nonempty value.

Any business interface must be explicitly designated as local or remote if the

deployment descriptor specifies as such.

 How It Works
The release of EJB 3.0 greatly simplified development with EJBs because it introduced

the no-interface view for making local business interfaces optional. The no-interface

view automatically exposes all public methods of a bean to the caller. By default,

a no- interface view is automatically exposed by any session bean that does not include

an implements clause and has no local or remote client views defined. The EJB 3.2

provided further granularity for those situations where local and remote interfaces need

to be explicitly specified.

CHAptER 8 EntERpRIsE JAvABEAns

523

Let’s break down the rules that were defined within the solution to this recipe. First, if

an EJB exposes local interfaces, then there is no need to explicitly denote a bean as such.

For instance, the following bean contains a local interface, although it is not explicitly

denoted:

@Stateless

public class AcmeSession implements interfaceA {

 ...

}

public interfaceA { ... }

If a bean class is annotated with @Remote, then any interfaces that it implements are

assumed to be remote. For instance, the following bean class implements two interfaces,

and both are assumed to be remote, although they do not contain any annotation to

indicate as such:

@Remote

@Stateless

public class AcmeSession implements interfaceA, interfaceB {

 ...

}

If a bean class contains the @Local annotation, then any interfaces that it

implements are assumed to be local. For instance, the following bean class implements

two interfaces, and both are assumed to be local although they do not contain any

annotation to indicate as such:

@Local

@Stateless

public class AcmeSession implements interfaceA, interfaceB {

 ...

}

If a bean class contains the @Local or @Remote annotation and specifies an interface

name within the annotation, then the same designation is applied as the annotation

specifies. For instance, the following bean is annotated to include a local business

CHAptER 8 EntERpRIsE JAvABEAns

524

interface, and the name of the interface is specified in the annotation, thereby making

the interface local:

@Local(interfaceA.class)

@Stateless

public class AcmeSession implements interfaceA {

 ...

}

These new designation rules make it easier to designate and determine the type of

business interface that is implemented by a bean.

8-13. Processing Messages Asynchronously
from Enterprise Beans
 Problem
You want to have the ability to process messages from session beans in an

asynchronous manner.

 Solution
Develop a message-driven bean to perform the message processing for your application.

To develop a message bean, create an EJB that is annotated with @MessageDriven,

passing the appropriate configuration options. In the bean, code a method named

onMessage that will perform all of the message processing. The following example,

org.jakartaeerecipes.chapter08.jsf.AcmeMessageBean, demonstrates how to code

a message-driven bean that processes messages from a javax.jms.Queue that has been

configured within the application server container:

Note prior to running these examples, you must create the JMs resources within
GlassFish or payara. please refer to Recipe 14-1 for more details.

CHAptER 8 EntERpRIsE JAvABEAns

525

@MessageDriven(mappedName="jms/Queue", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType",

 propertyValue = "javax.jms.Queue")

})

public class AcmeMessageBean implements MessageListener {

 public AcmeMessageBean(){

 }

 @Override

 public void onMessage(Message msg) {

 if(msg != null){

 performExtraProcessing();

 System.out.println("Message has been received: " + msg);

 } else {

 System.out.println("No message received");

 }

 }

 public void performExtraProcessing(){

 System.out.println("This method could perform extra processing");

 }

}

 How It Works
Message-driven beans (MDBs) are Enterprise JavaBeans that are utilized for processing

messages in an asynchronous manner. Most often MDBs are JMS message listeners,

receiving messages and processing accordingly. A message-driven bean is created by

annotating a bean with the @MessageDriven annotation and optionally implementing

the MessageListener interface. When a message is received in the container queue, the

container invokes the bean’s onMessage() method, which contains the business logic

that is responsible for processing the message accordingly.

Note Any session bean can be used for processing messages, but only
message- driven beans can do so in an asynchronous manner.

CHAptER 8 EntERpRIsE JAvABEAns

526

MDBs must be made public, and not static or final. An MDB must contain a public,

no-argument constructor, and it must contain a method named onMessage that accepts a

javax.jms.Message argument. The onMessage method is responsible for performing all

message processing, and it can utilize other methods within the bean to help out, where

needed.

Bean providers may provide special configurations for MDBs to the deployers, such

as information regarding message selectors, acknowledgment modes, and so on, by

means of the activationConfig element of the @MessageDriven annotation. A standard

list of activationConfig properties exists to provide JMS 2.0 alignment. Table 8-4 lists

the new properties along with a description of what they do.

Table 8-4. JMS 2.0 Aligned activationConfig Properties

Property Description

destinationLookup provides advice to the deployer regarding whether the message-driven

bean is intended to be associated with a Queue or Topic. values for this

property are javax.jms.Queue and javax.jms.Topic.

connectionFactoryLookup specifies the lookup name of an administratively defined

ConnectionFactory object that will be used for a connection to

the JMs provider from which a message-driven bean will send JMs

messages.

clientId specifies the client identifier that will be used for a connection to the JMs

provider from which a message-driven bean will send JMs messages.

subscriptionName If the message-driven bean is intended to be used with a Topic, then

the bean provider can specify the name of a durable subscription with

this property and set the subscriptionDurability property to

Durable.

shareSubscriptions this property is only to be used when a message-driven bean is

deployed to a clustered application server, and the value for this

property can be either true or false. A value of true means that

the same durable subscription name or nondurable subscription will

be used for each instance in the cluster. A value of false means that

a different durable subscription name or nondurable subscription will

be used for each instance in the cluster.

CHAptER 8 EntERpRIsE JAvABEAns

527
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_9

CHAPTER 9

Java Persistence Query
Language
The Java Persistence API (JPA) utilizes a query language for communicating with

underlying data stores. Although Jakarta EE uses entities rather than SQL for database

access, it provides a query language so that developers can obtain the required

information via the entities. The Java Persistence Query Language (JPQL) does just that

because it provides a facility for querying and working with Jakarta EE entity objects.

Although it is very similar to SQL, it is an object-relational query language, so there are

some minor differences of which developers should be aware. Using JPQL along with

Jakarta EE entities allows developers to create versatile applications because JPQL is not

database-specific and applications can be written once and deployed to run on top of a

myriad of databases.

The release of Jakarta EE 8 introduced with it a maintenance release of JPA 2.2, and

that means added and enhanced features. Some of the major improvements with

Java EE 8 and Jakarta EE 8 include support for stored procedures and built-in functions,

downcasting support, and outer join support with ON conditions. The release also

includes support for the Java 8 Date-Time API, the ability to stream query results, and

repeatable annotation support. The recipes in this chapter will not attempt to cover

all of the features that JPQL has to offer because there are many. However, the recipes

contain enough information to introduce beginners to the world of JPQL and to get

intermediate developers up to date with the latest that JPQL has to offer. To review the

entire set of documentation for using JPQL, please see the online resources available at

 https://projects.eclipse.org/projects/ee4j.jpa.

https://projects.eclipse.org/projects/ee4j.jpa

528

9-1. Querying All Instances of an Entity
 Problem
You want to retrieve all the instances for a particular entity. That is, you want to query the

underlying database table associated with the entity and retrieve all rows.

 Solution #1
Call the EntityManager’s createQuery method, and use JPQL to formulate a query that

will return all instances of a given entity. In the following example, a JPQL query is used

to return all objects within the BookAuthor entity:

public List<BookAuthor> findAuthor(){

 return em.createQuery("select object(o) from BookAuthor o").

getResultList();

}

When the findAuthor() method is called, a List containing all of the BookAuthor

entity instances in the entity (all records in the underlying database table) will be

returned.

 Solution #2
Create a CriteriaQuery object by generating a criteria builder from the EntityManager

object and calling its createQuery() method. Once a CriteriaQuery object has been

created, generate a query by calling a series of the CriteriaBuilder methods against the

entity that you want to query. Finally, call the EntityManager’s createQuery() method,

passing the query that you have previously built. Return the ResultList from the query

to return all the rows from the table. In the following lines of code, you can see this

technique performed:

javax.persistence.criteria.CriteriaQuery cq = getEntityManager().

getCriteriaBuilder().createQuery();

Root<BookAuthor> bookAuthor = cq.from(BookAuthor);

cq.select(bookAuthor);

return getEntityManager().createQuery(cq).getResultList();

Chapter 9 Java persistenCe Query Language

529

 How It Works
An entity instance can be referred to as a record in the underlying data store. That is,

there is an entity instance for each record within a given database table. That said,

sometimes it is handy to retrieve all of the instances for a given entity. Some applications

may require all objects in order to perform a particular task against each, or perhaps

your application needs to simply display all of the instances of an entity for the user.

Whatever the case, there are a couple of ways to retrieve all of the instances for a given

entity. Each of the techniques can take place within an EJB or RESTful service class.

In Solution #1, JPQL can be used to query an entity for all instances. To create a

dynamic query, call the EntityManager’s createQuery method, to which you can pass

a string-based query that consists of JPQL syntax, or a javax.persistence.Query

instance. The Query interface has a sizable number of methods that can be used to work

with the query object. Table 9-1 describes what these methods do.

Table 9-1. javax.persistence.Query Interface Methods

Method Description

executeUpdate executes an update or delete statement (returns: int)

getFirstResult specifies the position of the first result the query object was set to

retrieve (returns: int)

getFlushMode gets the flush mode in effect for the query execution (returns:

FlushModeType)

getHints gets the properties and hints and associated values that are in

effect for the query instance (returns: java.util.Map<String,

Object>)

getLockMode gets the current lock mode for the query (returns: LockModeType)

getMaxResults specifies the maximum number of results the query object was set to

retrieve (returns: int)

getParameter gets the parameter object corresponding to the declared positional

parameter (returns: Parameter<?>)

getParameters gets the parameter objects corresponding to the declared parameters

of the query (returns: java.util.Set<Parameter<?>>)

(continued)

Chapter 9 Java persistenCe Query Language

530

In the example, a query string is passed to the method, and it reads as follows:

select object(o) from BookAuthor o

To break this down, the query is selecting all objects from the BookAuthor entity. Any

letter could have been used in place of the o character within the query, but o is a bit of a

standard since JPQL is referring to objects. All queries contain a SELECT clause, which is

used to define the types of entity instances that you want to obtain. In the example, the

entire instance is selected from the BookAuthor entity, as opposed to single fields that

are contained within the instance. Since JPA works with objects, queries should always

return the entire object; if you want to use only a subset of fields from the object, then

you can call upon those fields from the instance(s) returned from the query. The object

keyword is optional and is purposeful mainly for readability. The same JPQL could be

written as follows:

select o from BookAuthor o

The FROM clause can reference one or more identification variables that can refer to the

name of an entity, an element of a single-valued relationship, an element of a collection

relationship, or a member of a collection that is the multiple side of a one-to- many

relationship. In the example, the BookAuthor variable refers to the entity itself.

Note For more information regarding the full query language syntax, please
refer to the online documentation: https://eclipse-ee4j.github.io/
jakartaee-tutorial/persistence-querylanguage006.html#BNBUF.

Method Description

getParameterValue(int) returns the value bound to the positional parameter (returns: Object)

getResultList executes a SELECT query and then returns the query results as an

untyped List (returns: java.util.List)

getSingleResult executes a SELECT query and then returns a single untyped result

(returns: java.lang.Object)

isBound returns a Boolean indicating whether a value has been bound to the

parameter

Table 9-1. (continued)

Chapter 9 Java persistenCe Query Language

https://eclipse-ee4j.github.io/jakartaee-tutorial/persistence-querylanguage006.html#BNBUF
https://eclipse-ee4j.github.io/jakartaee-tutorial/persistence-querylanguage006.html#BNBUF

531

The example in Solution #2 demonstrates the use of the CriteriaQuery, which is

used to construct queries for entities by creating objects that define query criteria. To

obtain a CriteriaQuery object, you can call the EntityManager’s getCriteriaBuilder()

method and, in turn, call the createQuery() method of the CriteriaBuilder. The

CriteriaQuery object allows you to specify a series of options that will be applied to a

query so that an entity can be queried using native Java, without hard-coding any string

queries. In the example, the CriteriaQuery instance is obtained by the chaining of

subsequent method calls against the EntityManager and CriteriaBuilder instances.

Once the CriteriaQuery is obtained, its from() method is called, passing the name of

the entity that will be queried. A javax.persistence.criteria.Root object is returned

from the call, which can then be passed to the CriteriaQuery instance select method to

return a TypedQuery object to prepare the query for execution, which can then return the

ResultList of entity instances. In the example, the final line of code chains method calls

again, so you do not see the TypedQuery object referenced at all. However, if the chaining

were to be removed, the code would look as follows:

cq.select(bookAuthor);

TypedQuery<BookAuthor> q = em.createQuery(cq);

return q.getResultList();

Both the JPQL and CriteriaQuery techniques can provide similar results. Neither

technique is any better than the other, unless you prefer that the JPQL is written in code

that is more like native SQL or that CriteriaQuery is written in native Java.

9-2. Setting Parameters to Filter Query Results
 Problem
You want to query an entity and retrieve only a subset of its instances that match

specified criteria.

 Solution #1
Write a JPQL dynamic query, and specify parameters that can be bound to the query

using bind variables. Call the query object’s setParameter() method to assign a

parameter value to each bind variable. In the following example, a query is written to

Chapter 9 Java persistenCe Query Language

532

search the Book entity for all Book instances that were written by a specified author. The

BookAuthor object in this example is a named parameter that will be bound to the query

using a bind variable:

public List<Book> findBooksByAuthor(BookAuthor authorId){

 return em.createQuery("select o from Book o " +

 "where :bookAuthor MEMBER OF o.authors")

 .setParameter("bookAuthor", authorId)

 .getResultList();

 }

The matching Book instances for the given author will be returned.

 Solution #2
Write a Criteria API query, and specify parameters that can be bound to the query using

bind variables:

public List<Book> findBooksByAuthorCriteria(BookAuthor authorId){

 CriteriaBuilder cb = em.getCriteriaBuilder();

 CriteriaQuery<Book> cq = cb.createQuery(Book.class);

 Root<Book> book = cq.from(Book.class);

 cq.where(book.get(Book_.bookAuthor).in(authorId));

 TypedQuery<Book> tq = em.createQuery(cq);

 return tq.getResultList();

}

As you can see, the Criteria API allows one to generate a statically typed query. This

can be beneficial for helping to reduce errors in typing Strings and also for promoting

efficiency as Criteria API queries are not compiled each time they are executed.

 How It Works
It is often desirable to return a refined list of results from a query, rather than returning

the entire list of records within a database table. In standard SQL, the WHERE clause

allows one or more expressions to be specified, which will ultimately refine the results of

the query. Using JPQL, the WHERE clause works in the same manner, and the process of

refining results of a query is almost identical to doing so with standard JDBC.

Chapter 9 Java persistenCe Query Language

533

In the solution for this recipe, the JPQL technique is used to refine the results of

a query against the Book entity such that only instances pertaining to books written

by a specified author will be returned. The findBooksByAuthor() method within the

org.jakartaeerecipes.chapter09.session.BookFacade class accepts a BookAuthor

object as an argument, and the argument will then be specified to refine the results

of the query. As you’ll see in the code, a single line of code (using the effective Java

builder pattern) within the findBooksByAuthor() method performs the entire task.

The EntityManager’s createQuery() method is called, passing a string-based JPQL

query that includes a bind variable named :bookAuthor. The MEMBER OF construct in

the following query tests to see if the value of the bind variable is contained within the

o.authors list. The JPQL string is as follows:

select o from Book o where :bookAuthor MEMBER OF o.authors

Note the Java builder pattern is explained in the following reference: https://
en.wikipedia.org/wiki/Builder_pattern.

After creating the query object, the Query interface’s setParameter method can be

called, passing the name of the bind variable for which you want to substitute a value,

along with the value you want to substitute it with. In this case, the String bookAuthor

is passed along with the Author object you want to match against for obtaining Book

instances. If more than one parameter needs to be specified, more than one call to

setParameter() can be strung together so that each bind variable has a matching

substitute. Finally, once all of the parameters have been set, the getResultList()

method can be called against the Query, returning the matching objects.

Note two types of parameters can be used with JpQL: named and positional.
the example in this recipe, along with many of the others in this book, uses named
parameters. positional parameters are written a bit differently in that they are
denoted within JpQL using a question mark (?) character, and a positional number
is used instead of passing the variable name to the setParameter() method.
the same query that is used in this recipe can be rewritten as follows to make use
of positional parameters:

Chapter 9 Java persistenCe Query Language

https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern

534

return em.createQuery("select o from Book o " +

 "where ? MEMBER OF o.authors")

 .setParameter(1, authorId)

 .getResultList();

Both named and positional parameters achieve the same results. However, I

recommend against using positional parameters because it makes code harder to

manage, especially if there are more than a handful of parameters in use. It is also easier

to mistype the setParameter() calls, and if the wrong positional number is passed with

an incorrect parameter value, then issues can arise.

In Solution #2 to this recipe, the Criteria API is used to construct the same query and

return the same results as those from Solution #1. To build the criteria query, first obtain

a CriteriaBuilder from the entity manager. Next, use the CriteriaQuery to create a

CriteriaQuery<Object> by calling upon the createQuery() method and passing the

entity class type.

9-3. Returning a Single Object
 Problem
You have specified JPQL for a given query that will return exactly one matching entity

instance, and you want to store it within a local object so that tasks can be performed

against it.

 Solution
Create a dynamic query, specifying the JPQL that is necessary for obtaining the entity

instance that matches the given criteria. The JPQL will include a bind variable that will

bind the parameter to the query in order to obtain the desired instance. The method in

the following code excerpt can be found in the org.jakartaeerecipes.jpa.session.

chapter09.BookFacade class within the sources:

 public Book findByTitle(String title){

 return (Book) em.createQuery("select object(o) from Book o " +

 "where o.title = :title")

Chapter 9 Java persistenCe Query Language

535

 .setParameter("title", title.toUpperCase())

 .getSingleResult();

 }

To invoke the method and return results, the previous method, which resides within

an EJB, can be invoked from within a CDI controller. The method that is defined within the

controller can subsequently be referenced from within a JSF view to display the results.

 How It Works
A single entity instance can be retrieved by specifying a query, along with the necessary

parameters to refine the possible matches to a single object. The javax.persistence.

Query interface’s getSingleResult() method allows just one instance to be returned,

given that there is only one instance that matches the given query specification. In the

example for this recipe, assume that each Book instance has a unique name to identify

it. Therefore, you can be sure that when a name is bound to the query, it will return a

single result.

Problems can arise if more than one instance matches the criteria. An attempt to

call getSingleQuery() using a query that returns more than one instance will result in a

NonUniqueResultException being thrown. It is a good idea to catch this exception within

your applications to avoid ugly error messages being displayed to the user if more than

one matching instance exists. Another case to watch out for is when a query returns no

result at all. If no result is returned, then a NoResultException will be thrown.

9-4. Creating Native Queries
 Problem
The query you want to use against an entity contains some SQL functionality that

pertains to the specific database vendor that your application is using, or you are more

comfortable working with standard SQL than using JPQL. That said, you want to use

standard SQL to query one of your entity objects.

Chapter 9 Java persistenCe Query Language

536

Note When using native queries, you will be forced to work against database
records, rather than Java objects. For this reason, it is recommended to use JpQL
unless necessary.

 Solution #1
Create a native query by calling the EntityManager object’s createNativeQuery()

method, and pass a SQL query as the first parameter and pass the entity class that you

want to return the results of the query into as the second parameter. Once the query

has been created, call one of the corresponding javax.persistence.Query methods

(see Table 9-1) to return the results. The following example taken from the org.

jakartaeerecipes.jpa.session.BookFacade EJB demonstrates the use of a native

query on the Book entity:

public List<Book> obtainNativeList(){

 Query query = em.createNativeQuery(

 "select id, title, description " +

 "FROM BOOK " +

 " ORDER BY id", org.jakartaeerecipes.jpa.entity.Book.class);

 return query.getResultList();

}

In the preceding example, each of the database attributes will map to a field within

the Book class.

 Solution #2
Specify a @NamedNativeQuery within the entity class for the entity class that you want

to query. Provide a name, query, and mapping class for the @NamedNativeQuery

via the annotation. Within the EJB method, call the EntityManager object’s

createNativeQuery() method, and provide the name that was specified as a named

native query rather than a SQL string. The following code excerpt demonstrates the

creation of a named native query for the org.jakartaeerecipes.jpa.entity.Book

entity:

Chapter 9 Java persistenCe Query Language

537

...

@Entity

@Table(name="BOOK")

@NamedNativeQuery(

 name="allBooks",

 query = "select id, title, description " +

 "FROM BOOK " +

 "ORDER BY id",

 resultClass=Book.class)

...

Next, let’s take a look at how the named native query is invoked from within the

EJB. The following excerpt of code is taken from the org.jakartaeerecipes.jpa.

session.BookFacade bean, and it demonstrates the invocation of the allBooks named

native query:

public List<Book> obtainNamedNativeList(){

 Query query = em.createNamedQuery(

 "allBooks", org.jakartaeerecipes.jpa.entity.Book.class);

 return query.getResultList();

 }

 How It Works
Native queries provide a way to utilize native SQL code for retrieving data from an

underlying data store. Not only do they allow an inexperienced JPQL developer to

write in native SQL, but they also allow native SQL syntax, such as Oracle-specific

PL/SQL functions, or stored procedure calls to be made. On the downside, however,

native queries do not return results in an entity-oriented manner, but rather as plain old

objects. For this reason, the named native query provides the option to specify an entity

class into which the results should be returned.

There are a handful of ways to work with native queries, and I’ve covered a couple of

the most commonly used tactics in this recipe. A javax.persistence.Query is generated

either by calling the EntityManager’s createNativeQuery() method or by calling the

EntityManager’s createNamedQuery() method and passing a named native query.

Chapter 9 Java persistenCe Query Language

538

In Solution #1, a String-based SQL query is used to retrieve results into an entity

class. For starters, the createNativeQuery() method accepts a query in String

format or a named native query for the first parameter. In Solution #1, a query is used

to obtain all the records from the BOOK database table. The second argument to the

createNativeQuery() method is an optional mapping class into which the results of the

query will be stored. Solution #1 specifies Book.class as the second parameter, which

will map the columns of the database table to their corresponding fields within the Book

entity. Once the Query instance is created, then its methods can be invoked in order to

execute the query. In this case, the getResultSet() method is invoked, which will return

a List of the matching records and bind each of them to a Book entity class instance.

In Solution #2, a named native query is demonstrated. Named native queries allow

the SQL string to be specified once within the corresponding entity class, and then they

can be executed by simply passing the String-based name that has been assigned to

the named native query. To utilize a named native query, add the @NamedNativeQuery

annotation to the entity class that you want to query, and then specify values for

the three parameters of the annotation: name, query, and resultClass. For the name

parameter of the @NamedNativeQuery annotation, a String-based name that will be used

to reference the query must be specified, the query parameter must be the native SQL

string, and the resultClass must be the entity class that the query results will be stored

into. The @NamedNativeQuery also includes the resultSetMapping parameter that can be

optionally used to specify a SqlResultSetMapping for those queries involving more than

one table. To execute the named native query, use the same technique as demonstrated

in Solution #1, but instead call the EntityManager object’s createNamedQuery() method.

Instead of specifying a SQL String, pass the name that was specified within the

@NamedNativeQuery annotation for the respective query.

Note if the named query involves more than one database table, then a
SqlResultSetMapping must be defined. please see recipe 9-5 for more details.

In some cases, using a native SQL query is the only solution for retrieving the data

that your application requires. In all cases, it is recommended that JPQL be used, rather

than native SQL, if possible. However, for those cases where native SQL is the only

solution, then creating a native query using one of the techniques provided in this recipe

is definitely the way to go. Which technique is better? Well, that depends on what you

need to do. If you are trying to create a dynamic query, whereas the actual SQL String

Chapter 9 Java persistenCe Query Language

539

for the query may change dynamically, then the standard native query is the solution

for you. However, if the SQL query that you are specifying will not change in a dynamic

manner, then perhaps the named native query is the best choice for two reasons. First,

the named native query allows SQL to be organized and stored within a single location,

which is the entity class on which the SQL is querying. Second, named native queries

can achieve better performance because they are cached after the first execution.

Therefore, the next time the named native query is called, the SQL does not have to be

recompiled. Such is not the case with a standard native query. Each time a standard

native query is called, the SQL must be recompiled, which ultimately means that it will

not be executed as fast.

9-5. Querying More Than One Entity
 Problem
The JPQL or native SQL query being used references more than one entity or underlying

database table. Since there are attributes from more than one table, the results cannot be

stored into a single entity object.

 Solution #1
Use a SqlResultSetMapping, which allows the specification of more than one entity class

for returning query results. The @SqlResultSetMapping annotation can be specified in

order to map a result set to one or more entities, allowing the joining of database tables

to become a nonissue. In the following example, the BOOK and BOOK_AUTHOR database

tables are joined together using a native SQL query, and the results are returned using a

SqlResultSetMapping. The following @SqlResultSetMapping can be found within the

org.jakartaeerecipes.entity.BookAuthor entity class:

@SqlResultSetMapping(name="authorBooks",

 entities= {

 @EntityResult(entityClass=org.jakartaeerecipes.entity.Book.

class, fields={

 @FieldResult(name="id", column="BOOK_ID"),

 @FieldResult(name="title", column="TITLE")

 }),

Chapter 9 Java persistenCe Query Language

540

 @EntityResult(entityClass=org.jakartaeerecipes.entity.

BookAuthor.class, fields={

 @FieldResult(name="id", column="AUTHOR_ID"),

 @FieldResult(name="first", column="FIRST"),

 @FieldResult(name="last", column="LAST")

 })

 })

Next, let’s look at how the SqlResultSetMapping is used. The following method is

taken from the org.jakartaeerecipes.session.BookAuthorFacade session bean:

public List findAuthorBooksMapping(){

 Query qry = em.createNativeQuery(

 "select b.id as BOOK_ID, b.title as TITLE, " +

 "ba.id AS AUTHOR_ID, ba.first as FIRST, ba.last as LAST " +

 "from book_author ba, book b, author_work aw " +

 "where aw.author_id = ba.id " +

 "and b.id = aw.book_id", "authorBooks");

 return qry.getResultList();

 }

The resulting List can then be referenced from within a JSF dataTable or another

client data iteration device, in order to display the results of the query.

 Solution #2
Utilize a native query to return the necessary fields from more than one database table,

and return the results to a HashMap, rather than to an entity class. In the following

method taken from the org.jakartaeerecipes.session.BookAuthorFacade session

bean, this technique is demonstrated:

public List<Map> findAuthorBooks(){

 Query qry = em.createNativeQuery(

 "select ba.id, ba.last, ba.first, ba.bio, b.id, b.title,

b.image, b.description " +

 "from book_author ba, book b, author_work aw " +

Chapter 9 Java persistenCe Query Language

541

 "where aw.author_id = ba.id " +

 "and b.id = aw.book_id");

 List<Object[]> results = qry.getResultList();

 List data = new ArrayList<HashMap>();

 if (!results.isEmpty()) {

 for (Object[] result : results) {

 HashMap resultMap = new HashMap();

 resultMap.put("authorId", result[0]);

 resultMap.put("authorLast", result[1]);

 resultMap.put("authorFirst", result[2]);

 resultMap.put("authorBio", result[3]);

 resultMap.put("bookId", result[4]);

 resultMap.put("bookTitle", result[5]);

 resultMap.put("bookImage", result[6]);

 resultMap.put("bookDescription", result[7]);

 data.add(resultMap);

 }

 }

 return data;

 }

Using this solution, no SqlResultSetMapping is required, and the results are

manually stored into a Map that can be referenced from a client, such as a JSF view.

 How It Works
The SqlResultSetMapping can come in handy when you need to map your ResultSet to

two or more entity classes. As demonstrated in the first solution to this recipe, configure

the mapping by specifying a @SqlResultSetMapping annotation on the entity class

of which you are querying. SqlResultSetMapping is useful when working with native

queries and joining underlying database tables.

In the example, the @SqlResultSetMapping annotation is used to create a mapping

between the Book and BookAuthor entity classes. The @SqlResultSetMapping annotation

accepts a few different parameters, as described in Table 9-2.

Chapter 9 Java persistenCe Query Language

542

To use a SqlResultSetMapping, simply specify its name rather than an entity class

when creating the native query. In the following excerpt taken from the solution, the

query results are mapped to the authorBooks SqlResultSetMapping:

Query qry = em.createNativeQuery(

 "select b.id as BOOK_ID, b.title as TITLE, " +

 "ba.id AS AUTHOR_ID, ba.first as FIRST, ba.last as LAST " +

 "from book_author ba, book b, author_work aw " +

 "where aw.author_id = ba.id " +

 "and b.id = aw.book_id", "authorBooks");

The List of results that is returned from this query can be utilized within a client,

such as a JSF view, in the same manner as any List containing a single entity’s results.

The SqlResultSetMapping allows fields of an entity class to be mapped to a given name

so that the name can then be specified in order to obtain the value for the mapped

field. For instance, the following JSF dataTable source is taken from the chapter09/

recipe09_05a.xhtml view, and it displays the List of results from the query in the

solution:

<h:dataTable id="table" value="#{authorController.authorBooks}"

 var="authorBook">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Book ID"/>

 </f:facet>

 <h:outputText value="#{authorBook.id}"/>

 </h:column>

 <h:column>

Table 9-2. SqlResultSetMapping Parameters

Parameter Description

name String-based name for the SqlResultSetMapping

entities One or more @EntityResult annotations, denoting entity classes for the mapping

columns One or more columns against which to map a resultSet, designated by

@FieldResult or @ColumnResult annotations

Chapter 9 Java persistenCe Query Language

543

 <f:facet name="header">

 <h:outputText value="Title"/>

 </f:facet>

 <h:outputText value="#{authorBook.title}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Author"/>

 </f:facet>

 <h:outputText value="#{authorBook.first} #{authorBook.last}"/>

 </h:column>

 </h:dataTable>

As mentioned previously, entity fields can be mapped to a specified field returned

from the database within the native SQL query. You can do so by specifying either the

@FieldResult or @ColumnResult annotation for the columns parameter of a

@SqlResultSetMapping annotation. For instance, in the example, you return only the

TITLE and BOOK_ID columns from the BOOK database table, as well as the AUTHOR_ID,

FIRST, and LAST columns from the BOOK_AUTHOR table. You include the SQL in the

native query to join the tables and retrieve the values from these columns and return a

SqlResultSetMapping that corresponds to the following:

@SqlResultSetMapping(name="authorBooks",

 entities= {

 @EntityResult(entityClass=org.jakartaeerecipes.entity.Book.

class, fields={

 @FieldResult(name="id", column="BOOK_ID"),

 @FieldResult(name="title", column="TITLE")

 }),

 @EntityResult(entityClass=org.jakartaeerecipes.entity.

BookAuthor.class, fields={

 @FieldResult(name="id", column="AUTHOR_ID"),

 @FieldResult(name="first", column="FIRST"),

 @FieldResult(name="last", column="LAST")

 })

 })

Chapter 9 Java persistenCe Query Language

544

In Solution #2, no SqlResultSetMapping is used, and instead the results of the query

are returned into a List of HashMap objects, rather than entity objects. The query returns

a list of Object[], which can then be iterated over in order to make the data accessible

to the client. As shown in the example, after the list of Object[] is obtained, a for loop

can be used to iterate over each Object in the list obtaining the data for each returned

database record field and storing it into a HashMap. To access the field data, specify a

positional index that corresponds to the position of the database field data that you

want to obtain. The positional indices correlate to the ordering of the returned fields

within the SQL query, beginning with an index of 0. Therefore, to obtain the data for the

first field returned in the query, specify an index of 0 on the Object for each row. As the

Object[] is traversed, each database record can be parsed, in turn obtaining the data for

each field in that row. The resulting data is then stored into the HashMap, and a String-

based key that corresponds to the name of the returned field is specified so that the data

can be made accessible to the client.

When accessing a HashMap of results from a client, such as a JSF view, the data can be

accessed in the same manner as if a standard entity list were being used. This is because

each HashMap element contains a key field that corresponds to the name of the data field.

The following excerpt, taken from chapter09/recipe09_05b.xhtml, demonstrates how to

use the results of a native query that have been stored into a HashMap using this technique:

<h:dataTable id="table" value="#{authorController.authorBooks}"

 var="authorBook">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Title"/>

 </f:facet>

 <h:outputText value="#{authorBook.bookTitle}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Author"/>

 </f:facet>

 <h:outputText value="#{authorBook.authorFirst} #{authorBook.

authorLast}"/>

 </h:column>

</h:dataTable>

Chapter 9 Java persistenCe Query Language

545

As of JPA 2.2 (Jakarta EE 8), the SqlResultSetMapping is a repeatable annotation,

so you may use more than one of them in the same entity class without encapsulating

it within a container annotation. The SqlResultSetMapping makes it possible to use

customized queries and joins into returning results via entity class objects. It is one more

of the techniques that help complete the object-relational mapping (ORM) experience

when using JPA.

9-6. Calling JPQL Aggregate Functions
 Problem
You want to return the total number of records from a database table that match

specified filtering criteria. For example, you want to return the total count of BookAuthor

instances for a specified book.

 Solution
Use the JPQL aggregate function COUNT to return the total number of objects that

match the given query. The following method, which resides within the org.

jakartaeerecipes.session.AuthorWorkFacade class, uses the COUNT aggregate function:

public Long findAuthorCount(Book book){

 Query qry = em.createQuery("select COUNT(o.authorId) from

AuthorWork o " +

 "where o.bookId = :book")

 .setParameter("book", book.id);

 return (Long) qry.getSingleResult();

 }

The function will return a Long result, which will be the count of matching

AuthorWork results.

 How It Works
Aggregate functions are those that can group values of multiple rows together on certain

criteria to form a single value. Native SQL contains aggregate functions that can be useful

Chapter 9 Java persistenCe Query Language

546

for calculating the sum of all rows in a particular table, maximum values of a column,

first values within a column, and so on. JPQL contains a number of aggregate functions

that can be used within queries.

In this recipe, the example demonstrates the use of the COUNT function, which returns

the total number of rows in an underlying data store table. The value is calculated and

returned as a Long data type, which can be cast from a call to the javax.persistence.

Query object’s getSingleResult method. However, there are a number of other

functions at your disposal. Table 9-3 lists those functions and their return type.

If a particular database record contains a NULL value for a column to which an

aggregate function is being applied, then that NULL value is eliminated before the

function is applied. The DISTINCT keyword can be used to specify that any duplicate

values should be eliminated before the function is applied. The following line of code

demonstrates the use of DISTINCT:

Query qry = em.createQuery("select DISTINCT(COUNT(o.title)) from Book o");

The important thing to remember when using aggregate functions is that they are

applied to the same field within all objects that satisfy the query. This is analogous to the

function being applied to all values returned for a single column’s results within a query.

Table 9-3. JPQL Aggregate Functions

Function Description Return Type

COUNT total number of records Long

MAX record with largest numeric value same as the field to which applied

MIN record with lowest numeric value same as the field to which applied

AVG average of all numeric values in a column Double

SUM sum of all values in a column Long when applied to integral types

Double when applied to floating-point

BigInteger when applied to BigInteger

BigDecimal when applied to BigDecimal

Chapter 9 Java persistenCe Query Language

547

9-7. Invoking Database Stored Procedures Natively
 Problem
The application you are writing uses JPQL and relies on one or more database stored

procedures to perform tasks on the data. You need to have the ability to call those stored

procedures from within the business logic of your Java application code.

 Solution
Create a native query, and write a SQL String that executes the database stored

procedure. Suppose you have a database procedure named CREATE_USER and it accepts

two arguments: username and password. You can invoke the CREATE_USER procedure

by calling it via a native SQL query. The following method, named createUser, accepts

a username and password as arguments and passes them to the underlying database

procedure and executes it:

public void createUser(String user, String pass){

 Query qry = (Query) em.createNativeQuery(

 "select CREATE_USER('" + user + "','" + pass + "') from dual");

 qry.getSingleResult();

 }

 How It Works
Historically, the only way to work with database stored procedures from JPA was to

utilize a native query. The solution to this recipe demonstrates this tactic because a

native query is used to invoke a database stored procedure. In the example, a method

named createUser accepts two parameters, username and password, which are both

passed to the database stored procedure named CREATE_USER via the native query.

The EntityManager’s createNativeQuery() method is called, and a SQL String that

performs a SELECT on the stored procedure is passed to the method. In SQL, performing

a SELECT on a stored procedure will cause the procedure to be executed. Notice that the

DUAL table is being referenced in the SQL. The DUAL is a dummy table that can be used

when you need to apply SELECT statements to different database constructs, such as a

stored procedure.

Chapter 9 Java persistenCe Query Language

548

Execution of native SQL is an acceptable solution for invoking stored procedures

that have no return values or when you have only a limited number of SQL statements

to maintain. However, in most enterprise situations that require an application with

multiple stored procedure calls or calls that require a return value, the

@NamedStoredProcedure solution in Recipe 9-10 can be advantageous.

9-8. Joining to Retrieve Instances from Multiple
Entities
 Problem
You want to create joins between entities in order to return fields from more than one

underlying database table.

 Solution
Use JPQL to create a join between two entities that share a one-to-many and many-to-

one relationship with each other. In this example, a one-to-many relationship is set up

against the Book and Chapter entities such that one book can contain many chapters.

The following excerpt from the org.jakartaeerecipes.entity.Book class demonstrates

the one-to-many relationship declaration:

@OneToMany(mappedBy="book", cascade=CascadeType.ALL)

private List<Chapter> chapters = null;

The Chapter entity contains a many-to-one relationship with the Book entity, such

that many chapters can be related to one book. The following excerpt from the org.

jakartaeerecipes.chapter09.entity.Chapter class demonstrates the many-to-one

relationship:

@ManyToOne

@JoinColumn(name = "BOOK_ID")

private Book book;

Chapter 9 Java persistenCe Query Language

549

Ultimately, the join query is contained within a method named

findBookByChapterTitle(), which resides in the org.jakartaeerecipes.session.

Chapter session bean. The following code excerpt contains the lines of code that make

up that method:

public List<Book> findBookByChapterTitle(String chapterTitle){

 return em.createQuery("select b from Book b INNER JOIN b.chapters c " +

 "where c.title = :title")

 .setParameter("title", chapterTitle)

 .getResultList();

}

Note to return several different properties within the SELECT clause, rather
than an object, the result will be returned in an Object[]. to find out more about
working with such a solution, please refer to solution #2 of recipe 9-5.

 How It Works
The most common type of database table join operation is known as an inner join.

When performing an inner join, all of the columns from each table will be available to

be returned as if it were a single, combined table. To create a join between two entities,

they must be related to each other via a one-to-many relationship. This means that one

of the entities could contain an instance that possibly contains many references to the

other entity, whereas the other entity could have many instances that would reference

only one instance of the former entity. In the example for this recipe, the Book entity has

a one-to-many relationship with the Chapter entity. This means that a single book may

contain many chapters.

The example for this recipe demonstrates a join between the Book and Chapter

entities. The method findBookByChapterTitle() contains a JPQL query that will return

any Book objects that contain a matching chapter title. To generate an inner join query,

invoke the EntityManager object’s createQuery() method, passing the String-based

Chapter 9 Java persistenCe Query Language

550

JPQL query that contains the join syntax. A JPQL string for performing an inner join

should be written in the following format, where INNER is an optional (default) keyword:

SELECT a.col1, a.col2 from Entity1 a [INNER] JOIN a.collectionColumn b

WHERE expressions

In the example, an entire Book instance will be returned for each Book entity that

contains a Chapter instance, which has a title matching the parameter. Typically, the join

occurs over a foreign key, and in the case of the one-to-many relationship, it occurs on

the field that is a collection of the related entity’s instances.

9-9. Joining to Retrieve All Rows Regardless
of Match
 Problem
You want to create joins between entities in order to produce results that will include

all objects of the left entity listed and matching results or NULL values when there is no

match from the right entity listed.

 Solution
In this example, a one-to-many relationship is set up against the Book and Chapter

entities such that one book can contain many chapters. The following excerpt from the

org.jakartaeerecipes.entity.Book class demonstrates the one-to-many relationship

declaration:

@OneToMany(mappedBy="book", cascade=CascadeType.ALL)

private List<Chapter> chapters = null;

The Chapter entity has a many-to-one relationship with the Book entity, such

that many chapters can be related to one book. The following excerpt from the org.

jakartaeerecipes.entity.Chapter class demonstrates the many-to-one relationship:

@ManyToOne

@JoinColumn(name = "BOOK_ID")

private Book book;

Chapter 9 Java persistenCe Query Language

551

The code that contains the left outer join query resides within the

findAllBooksByChapterNumber() method, which is contained within the org.

jakartaeerecipes.session.ChapterFacade class. The following excerpt taken from the

class lists the method implementation:

public List<Book> findAllBooksByChapterNumber(BigDecimal chapterNumber){

 return em.createQuery("select b from Book b LEFT OUTER JOIN

b.chapters c " +

 "where c.chapterNumber = :num")

 .setParameter("num", chapterNumber)

 .getResultList();

 }

 How It Works
An outer join, otherwise known as a LEFT OUTER JOIN or LEFT JOIN, is not as common

of an occurrence as an inner join. To explain an outer join in database terminology, all

rows of the table listed on the left side of the JOIN keyword are returned in a LEFT SQL

join, and only those matching rows from the table listed to the right of the keyword will

be returned in a “Left Outer” SQL join. In other words, an outer join enables the retrieval

of a set of database records where a matching value within the join may not be present.

In JPA terminology, all instances of the entity class to the left of the JOIN keyword will be

returned.

Outer joins on entities usually occur between two related entities in which there

is a one-to-many relationship or vice versa. To form an outer join JPQL query, use the

following format, where the [OUTER] keyword is optional:

SELECT a.col1, a.col2 FROM Entity1 a LEFT [OUTER] JOIN a.collectionColumn b

WHERE expression

In the example, all Book objects are returned, but only those Chapter objects that

match the specified criteria would be included in the ResultSet.

Chapter 9 Java persistenCe Query Language

552

9-10. Applying JPQL Functional Expressions
 Problem
You want to apply functions within your JPQL Strings to alter the results of the

execution. For example, you are interested in altering Strings that will be used within

the WHERE clause of your JPQL query.

 Solution
Utilize any of the built-in JPQL functions to apply functional expressions to your

JPQL. To alter Strings that are utilized within a JPQL query, develop the query

containing String functions that will be applied within the WHERE clause of the query. In

the following example, the UPPER function is utilized in order to change the case of the

given text into all uppercase letters. In this case, a search page has been set up for users

to enter an author’s last name and search the database for a match. The String that the

user enters is converted to uppercase and used to query the database.

The following lines of code are taken from the search view, which resides within the

JSF view that is composed within the chapter09/recipe09_10.xhtml file:

<ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h:form>

 <h2>Recipe 9-10: Using JPA String Functions</h2>

 <p>Enter an author's last name below to search the author

database.</p>

 <h:outputLabel value="Last Name:"/>

 <h:inputText id="last" value="#{authorController.authorLast}"

size="75"/>

 <h:commandButton value="Search" action="#{authorController.

findAuthorByLast}"/>

Chapter 9 Java persistenCe Query Language

553

 </h:form>

 </ui:define>

</ui:composition>

Next, the code for the CDI bean controller method, findAuthorByLast(), is listed.

This method resides within the org.jakartaeerecipes.jsf.AuthorController class.

This code is responsible for populating the authorList and then directing navigation to

the recipe09_10b.xhtml view:

public String findAuthorByLast(){

 authorList = ejbFacade.findAuthorByLast(authorLast);

 return "/chapter09/recipe09_10b.xhtml";

}

Lastly, the EJB method named findAuthorByLast(String) is contained within the

org.jakartaeerecipes.session.BookAuthorFacade class. The method accepts the

String value that the user entered into the web search form and uses it to query the

database for a matching author, converting the text to uppercase before performing the

comparison:

public List<BookAuthor> findAuthorByLast(String authorLast){

 return em.createQuery("select o from BookAuthor o " +

 "where o.last = UPPER(:authorLast)")

 .setParameter("authorLast", authorLast).getResultList();

}

The resulting page will display any author names that match the text that was

entered by the user.

 How It Works
The JPA query language contains a handful of functions that can be used to manipulate

Strings, perform arithmetic, and make dates easier to work with. The functions can

be specified within the WHERE or HAVING clause of JPQL query Strings. JPQL contains

a number of String functions. Table 9-4 lists the different String functions that are

available, along with a description of what they do.

Chapter 9 Java persistenCe Query Language

554

There are also a number of functions within JPQL to help perform arithmetic within

queries. Table 9-5 lists the different arithmetic functions that are available, along with a

description of what they do.

Working with dates from any programming language can sometimes be a bit tough.

The JPQL contains a handful of helpful datetime functions to make it a bit easier.

Table 9- 6 lists the different datetime functions that are available, along with a description

of what they do.

Table 9-5. JPQL Arithmetic Functions

Function Description

ABS(expr) returns the absolute value. takes a numeric argument and returns a

number of the same type.

SQRT(expr) returns the square root value. takes a numeric argument and returns

a double.

MOD(expr1, expr2) returns the modulus value in integer format.

SIZE(collection) returns the total number of elements in the given collection in integer

format. if the collection contains no elements, it evaluates to zero.

Table 9-4. JPQL String Functions

Function Description

CONCAT(string1, string2) returns a concatenated String composed of the two arguments.

SUBSTRING(string,

expr1, expr2)

returns a substring of the specified String. the first position

within the substring is denoted by expr1, and the length of the

substring is denoted by expr2.

TRIM([[spec][char]FROM]

str)

trims a specified character (spec) from a string (str).

LOWER(string) returns the given String in all lowercase letters.

UPPER(string) returns the given String in all uppercase letters.

Chapter 9 Java persistenCe Query Language

555

9-11. Forcing Query Execution Rather Than
Cache Use
 Problem
The default EntityManager is using cached results from a database query, and you want

to force a query to be executed each time a table is loaded, rather than allowing the

results of the cache to be displayed.

 Solution
After the javax.persistence.Query instance is created, set a hint, javax.persistence.

cache.retrieveMode, to bypass the cache and force the query to be executed. In the

following lines of code, the Book entity is queried, and the cache is bypassed by setting

the hint:

public List<Book> findAllBooks(){

 Query qry = em.createQuery("select o from Book o");

 qry.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.

BYPASS);

 return qry.getResultList();

}

Upon execution, the query will be forced to execute, returning the most current

results from the underlying database table.

Table 9-6. JPQL Datetime Functions

Function Description

CURRENT_DATE returns the current date

CURRENT_TIME returns the current time

CURRENT_TIMESTAMP returns the current timestamp

Chapter 9 Java persistenCe Query Language

556

Note By default, results from Jpa queries are cached in an effort to provide peak
performance. this enables the cache data to be returned in the event that the
same query is used multiple times.

 How It Works
There are often occasions when an application requires the most current table data to be

displayed or used for performing a given task. For instance, if you were to write a stock

market application, it would not make sense to cache the current market results since

stale data would not be very useful to investors. In such cases, it is imperative to force

queries to be executed and bypass any caching. This is possible via the use of hints that

can be registered with javax.persistence.Query instances.

By setting the javax.persistence.cache.retrieveMode hint to CacheRetrieveMode.

BYPASS, the JPA is told to always force the execution of a query. When the query is

executed, it will always return the most current results from the database.

9-12. Performing Bulk Updates and Deletes
 Problem
You want to update or delete a group of entity objects.

 Solution
Perform a bulk update or deletion using the Criteria API. The Criteria API allows the use

of the builder pattern for specifying entity operations. In the following example, a bulk

update is performed on the Employee entity. The following example method resides in a

session bean class for the org.jakartaeerecipes.entity.Employee entity. The session

bean class name is org.jakartaeerecipes.session.EmployeeSession.java, and the

following excerpt from that class shows how to perform a bulk update:

...

public String updateEmployeeStatusInactive() {

 String returnMessage = null;

Chapter 9 Java persistenCe Query Language

557

 CriteriaBuilder builder = em.getCriteriaBuilder();

 CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.

class);

 Root<Employee> e = q.from(Employee.class);

 q.set(e.get("status"), "ACTIVE")

 .where(builder.equal(e.get("status"), "INACTIVE"));

 Query criteriaUpd = em.createQuery(q);

 int result = criteriaUpd.executeUpdate();

 if (result > 0){

 returnMessage = result + " records updated";

 } else {

 returnMessage = "No records updated";

 }

 return returnMessage;

 }

...

Similarly, the Criteria API can be used to perform a bulk deletion. The following

method, also within the EmployeeSession bean, demonstrates how to do so:

...

 public String deleteEmployeeOnStatus(String condition) {

 CriteriaBuilder builder = em.getCriteriaBuilder();

 CriteriaDelete<Employee> q = builder.createCriteriaDelete(Employee.

class);

 Root<Employee> e = q.from(Employee.class);

 q.where(builder.equal(e.get("status"), condition));

 return null;

 }

...

 How It Works
The Criteria API was enhanced with the Java EE 8 release to support bulk updates and

deletions. As seen in earlier recipes, the Criteria API allows developers to utilize Java

language syntax in order to perform database queries and manipulations, rather than

Chapter 9 Java persistenCe Query Language

558

JPQL or SQL. A javax.persistence.criteria.CriteriaUpdate object can be used to

perform bulk update operations, and a javax.persistence.critera.CriteriaDelete

object can be used to perform bulk deletion operations. How do we obtain such

objects? The Criteria API is dependent upon the javax.persistence.criteria.

CriteriaBuilder interface, which is used to return objects that can be used to work

with specified Entity classes. In the JPA 2.1 release, the CriteriaBuilder was updated

to include the methods createCriteriaUpdate() and createCriteriaDelete(), which

will return the CriteriaUpdate or CriteriaDelete object, respectively.

To use the CriteriaBuilder, you first need to obtain a CriteriaBuilder from the

EntityManager. You can then use the CriteriaBuilder to obtain the CriteriaUpdate

or CriteriaDelete object of your choosing. In the following lines of code, a

CriteriaUpdate object is obtained for use with an Employee entity:

CriteriaBuilder builder = em.getCriteriaBuilder();

CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.class);

Once obtained, the CriteriaUpdate can be used to build a query and set values,

as desired, for making the necessary updates or deletions. In the following excerpt,

the CriteriaUpdate object is used to update all Employee objects that have a status of

INACTIVE, changing that status to ACTIVE:

Root<Employee> e = q.from(Employee.class);

q.set(e.get("status"), "ACTIVE")

 .where(builder.equal(e.get("status"), "INACTIVE"));

Let’s break this down a bit to explain what exactly is going on. First, the query root

is set by calling the q.from method and passing the entity class for which you want

to obtain the root, where q is the CriteriaUpdate object. Next, the q.set method is

invoked, passing the Path to the Employee status attribute, along with the ACTIVE

string. The q.set method is performing the bulk update. To further refine the query,

a WHERE clause is added using a chained call to the .where method and passing the

Employee objects that have a status of INACTIVE. The entire criteria can be seen in the

solution for this recipe.

Finally, to complete the transaction, you must create the Query object and then

execute it using the following lines of code:

Query criteriaUpd = em.createQuery(q);

criteriaUpd.executeUpdate();

Chapter 9 Java persistenCe Query Language

559

The bulk deletion is very similar, except instead of using the CriteriaBuilder to

obtain a CriteriaUpdate object, use it to obtain a CriteriaDelete object instead. To

obtain a CriteriaDelete object, call the CriteriaBuilder createCriteriaDelete

method, as follows:

CriteriaBuilder builder = em.getCriteriaBuilder();

CriteriaDelete<Employee> q = builder.createCriteriaDelete(Employee.class);

Once a CriteriaDelete object has been obtained, then the conditions for deletion

need to be specified by filtering the results using a call (or chain of calls) to the .where

method. When using the bulk delete, all objects that match the specified condition

will be deleted. For example, the following lines of code demonstrate how to delete all

Employee objects that have the status attribute equal to INACTIVE:

Root<Employee> e = q.from(Employee.class);

q.where(builder.equal(e.get("status"), "INACTIVE"));

Note Both the CriteriaUpdate and CriteriaDelete examples
demonstrated can be made more type-safe by using the MetaModel api. For each
entity class in a particular persistence unit, a metamodel class is created with
a trailing underscore, along with the attributes that correspond to the persistent
fields of the entity class. this metamodel can be used to manage entity classes
and their persistent state and relationships. therefore, instead of specifying an
error-prone String in the Path to obtain a particular attribute, you could specify
the metamodel attribute instead, as follows: e.get(Employee_.status).

For more information on using the MetaModel api to create type-safe queries,
please refer to the online documentation.

The Criteria API can be very detailed, and it is also very powerful. To learn more

about the Criteria API, please see the documentation online at https://eclipse-ee4j.

github.io/jakartaee-tutorial/persistence-criteria.html#GJITV.

Chapter 9 Java persistenCe Query Language

https://eclipse-ee4j.github.io/jakartaee-tutorial/persistence-criteria.html#GJITV
https://eclipse-ee4j.github.io/jakartaee-tutorial/persistence-criteria.html#GJITV

560

9-13. Retrieving Entity Subclasses
 Problem
You want to obtain the data for an entity, along with all of the data from that entity’s

subclasses.

 Solution
Utilize the downcasting feature of JPA. To do so, specify the TREAT keyword within

the FROM and/or WHERE clause of a JPA query in order to filter the specified types

and subtypes that you want to retrieve. In the following example, the query will

return all BookStore entities that are from the IT books. The assumption is that the

ItCategory entity is a subtype of the BookCategory entity. The method in the example,

named getBookCategories(), resides within the org.jakartaeerecipes.session.

BookCategoryFacade session bean:

public List getBookCategories(){

 TypedQuery<Object[]> qry = em.createQuery("select a.name, a.genre,

a.description " +

 "from BookStore s JOIN TREAT(s.categories as ItCategory) a",

Object[].class);

 List data = new ArrayList();

 if (!qry.getResultList().isEmpty()) {

 List<Object[]> tdata = qry.getResultList();

 for (Object[] t : tdata) {

 HashMap resultMap = new HashMap();

 resultMap.put("name", t[0]);

 resultMap.put("genre", t[1]);

 resultMap.put("categoryDesc", t[2]);

 data.add(resultMap);

 }

 }

 return data;

 }

Chapter 9 Java persistenCe Query Language

561

When invoked, this query will return data from the ItCategory entity, which

is a subclass of the BookCategory entity, as per the previous description. To better

understand how to relate the entities, please refer to the entire source code within the

two entities, located within the org.jakartaeerecipes.entity.BookCategory.java and

org.jakartaeerecipes.entity.ItCategory.java files in the sources for this book.

 How It Works
The act of downcasting is defined as the casting of a base type or class reference to one of

its derived types or classes. The Jakarta EE platform introduced the concept of downcasting

in JPA 2.1 by providing the ability to obtain a reference to a subclass of a specified entity

within a query. In other words, you can explicitly query one or more entities and retrieve the

attributes from each of the entities as well as any attributes from entities that are subclasses of

those that are explicitly declared. To provide this ability, the TREAT keyword was added to JPA.

The use of the TREAT operator is supported for downcasting within path expressions

in the FROM and WHERE clauses. The first argument to the TREAT operator should be a

subtype of the target type; otherwise, the path is considered to have no value, attributing

nothing to the end result. The TREAT operator can filter on the specified types and

subtypes, as well as perform a downcast.

The syntax for use of the TREAT operator is as follows:

SELECT b.attr1, b.attr2

FROM EntityA a JOIN TREAT(a.referenceToEntityB as EntityBSubType) b

In the previous JPQL, the TREAT operation contains an attribute from the specified

entity (EntityA) that relates to a joined entity (EntityB). The TREAT operation tells

the container to treat the referenced entity (EntityB) as the type of EntityBSubtype.

Therefore, the downcast takes place and allows access to those subtype entities. The

following lines of code demonstrate this technique in action:

SELECT a.name, a.genre, a.description

FROM BookStore s JOIN TREAT(s.categories AS ItCategory) a

As mentioned previously, the TREAT operator can also be used within the WHERE

clause in order to filter a query based upon subtype attribute values. Downcasting

support allows JPA to be even more flexible for developers to use, making more complex

queries possible. This technique makes it easier to obtain values from related entities or

subtypes, without the need to issue an extra query.

Chapter 9 Java persistenCe Query Language

562

9-14. Joining with ON Conditions
 Problem
You want to retrieve all the entities that match the specified criteria for joining two

entities, along with each entity that does not match on the left side of an OUTER join.

 Solution
Utilize the ON condition to specify a join of two or more entity classes based upon the

specified filtering criteria. The following method includes the JPQL for retrieving all Jobs

entities, along with a count of the number of Employee entities that belong to those Jobs.

This method, named obtainActiveEmployeeCount(), utilizes the ON condition to filter

the join based upon the Employee status:

public List obtainActiveEmployeeCount() {

 TypedQuery<Object[]> qry = em.createQuery("SELECT j.title, count(e) "

 + "FROM Jobs j LEFT JOIN j.employees e "

 + "ON e.status = 'ACTIVE' "

 + "WHERE j.salary >= 50000 "

 + "GROUP BY j.title", Object[].class);

 List data = new ArrayList();

 if (!qry.getResultList().isEmpty()) {

 List<Object[]> tdata = qry.getResultList();

 for (Object[] t : tdata) {

 HashMap resultMap = new HashMap();

 resultMap.put("title", t[0]);

 resultMap.put("count", t[1]);

 data.add(resultMap);

 }

 }

 return data;

 }

Chapter 9 Java persistenCe Query Language

563

 How It Works
When writing JPQL queries, it is sometimes beneficial to join two or more database tables

to acquire related information. Furthermore, it is usually helpful to filter information

based upon certain specified criteria so that the number of records returned can be

manageable. JPQL joins typically include INNER, OUTER, and FETCH joins. To review, an

INNER join allows retrieval from two tables such that records being returned contain at

least one match in both tables. For instance, you may want to query an Employee entity

and join it to the Jobs entity to return only those employees who have a specific job title.

An OUTER join allows retrieval from two tables such that all of the records from one of the

entities (left entity) are returned, regardless of whether they match with a record in the

other entity. Lastly, a FETCH join enables the fetching of an association as a side effect of

the query execution. In JPA 2.1, JPQL was updated to include the ON condition, which

allows you to perform an OUTER join and include a specified condition with the join. This

capability has always been available with the WHERE clause of the JPQL query, but what

about the cases when you want to return all matching records along with those that may

not match, like with an OUTER join? JPA provides this functionality in a concise manner

using ON conditions. Simply put, an ON condition modifies a join query such that it will

incorporate better control over the data that is returned in a concise manner.

To demonstrate this new syntax, let’s take a look at a SQL query, and then you will

compare it to its JPQL counterpart. The following SQL will join the EMPLOYEE table with

the JOBS table on the JOB_ID field. It will also limit the returned records to those that

include a salary of greater than or equal to 50,000 with the specification in the WHERE

clause:

SELECT J.TITLE, COUNT(E.ID)

FROM JOBS J LEFT JOIN EMPLOYEE E

 ON J.JOB_ID = E.JOB_ID and E.STATUS 'ACTIVE'

WHERE J.SALARY >= 50000

GROUP BY J.TITLE;

This SQL will return all of the JOB records and include a count of each job that

contains an Employee whose status is ACTIVE. The method in the solution of this recipe

contains the JPQL equivalent for this SQL, using the ON condition to perform the join.

In the end, the ON condition helps make JPQL outer joins more concise and easy to use.

Although the same capability has been available in previous versions of JPQL, the ON

clause helps make record filtering with joins much easier.

Chapter 9 Java persistenCe Query Language

564

9-15. Processing Query Results with Streams
 Problem
You wish to process the results of a JPA query using a concise functional style.

 Solution
Utilize streams to process the results of a JPA query. In the following example, a Stream is

returned from a JPA query. The Stream is then processed using the Stream API to retrieve

the desired results. This particular example demonstrates a Stream being used to process

author works by author:

public List<AuthorWork> performFindByAuthorStream(BookAuthor authorId){

 Stream<AuthorWork> awStream = em.createQuery("select object(o) from

AuthorWork o")

 .getResultStream();

 return awStream.filter(

 ba -> authorId.equals(ba.getAuthorId()))

 .collect(Collectors.toList());

}

Note this particular example demonstrates filtering the results of a sQL query
using streams, which may not be the most effective approach. a very large result
set may significantly increase the time it takes to process. please be sure to weigh
the performance benefits of using standard JpQL vs. using streams to ensure you
choose the best option for your situation.

 How It Works
Streams offer a powerful alternative to processing SQL result sets. The Stream API was

first introduced into the Java platform with the release of Java SE 8. The JPA 2.2 release

has brought the API into alignment with Java SE 8, allowing JPA users to benefit from

the use of the Stream API while processing results. The Stream API allows one to apply

Chapter 9 Java persistenCe Query Language

565

filters and functions to data in a functional way, making processing much more concise

and easy to follow. JPA 2.2 features a new getResultStream() method on the Query and

TypeQuery interfaces, allowing one to return a Stream of results, rather than a List or

single object result. Once the Stream has been returned, it can be processed accordingly.

Breaking down the recipe example, first the AuthorWork entity is queried without

any filters. Note that instead of calling upon getResultList(), the getResultStream()

is called upon. This will return a Stream of the objects that are being queried. Once

the Stream has been returned, it is processed by filtering the data to return only those

records that have an authorId matching what was passed into the method. Note the

notation which is used for processing is as follows:

ba -> authorId.equals(ba.getAuthorId())

First, note that the syntax is very much like that of the lambda processing syntax. The

ba -> portion is simply a local variable that is declared to represent the current object

in the Stream, and the arrow characters are used to note that the processing expression

follows. Each object in the stream is iterated, and ba changes for each one. Next, the

filter is applied, only retaining those records that have authorId equal to the one that is

passed into the method. Next, we wish to return a List of the results from that filtering

process, so the Collectors utility is used to collect the filtered results into a list:

.collect(Collectors.toList())

It is important to keep in mind that if it is possible to filter queries in the traditional

manner, via the SQL where clause, that may perform better than the Stream alternative.

The reason is that the default Stream toResultStream() implementation will fetch all

of the data from the query into an in-memory list and then process accordingly. This

could be very bad if the result set is large. It is possible for different implementations

of this process to be created. At the time of the Jakarta EE 8 release, Hibernate provides

something similar in the stream() method, whereby a scrollable ResultSet is returned,

rather than the entire list of results. Such an implementation would perform much better

in a large dataset scenario.

Chapter 9 Java persistenCe Query Language

566

9-16. Converting Attribute Data Types
 Problem
You wish to convert the data type of a particular entity class attribute when it is retrieved

from the database. In turn, you wish to convert back to the original data type when

persisting data back to the database column.

 Solution
Create an attribute converter to convert to/from different data types when retrieving

and persisting data. Suppose that you would like to convert between a Boolean-based

full employee status within a Java entity and a String-based ACTIVE or INACTIVE

value within the database. Each time the attribute is accessed, the converter is used to

automatically convert the values to/from the desired data types:

package org.jakartaeerecipes.converter;

import javax.persistence.AttributeConverter;

import javax.persistence.Converter;

@Converter

public class EmployeeStatusConverter implements AttributeConverter<Boolean,

String> {

 @Override

 public String convertToDatabaseColumn(Boolean entityValue) {

 if(entityValue){

 return "ACTIVE";

 } else {

 return "INACTIVE";

 }

 }

 @Override

 public Boolean convertToEntityAttribute(String databaseValue) {

 return databaseValue.equals("ACTIVE");

 }

}

Chapter 9 Java persistenCe Query Language

567

The converter can be applied to a single entity class attribute, as follows:

@Column(name= "STATUS")

@Convert(converter=org.jakartaeerecipes.converter.EmployeeStatusConverter.

class)

private boolean status;

In this example, when the Employee object is persisted to the database, a true would

be converted to "ACTIVE". Likewise, when an Employee object is retrieved, then an

"INACTIVE" status value is converted to false.

 How It Works
Attribute converters allow for data type conversion to occur between the database

column and an entity class attribute. Attribute converters can be created by

annotating a class with @Converter and implementing the AttributeConverter

interface. The AttributeConverter type takes two arguments, those being the

type of the entity class attribute and the type of the database column. When

implementing AttributeConverter, two methods must be overridden. The

convertToDatabaseColumn() method should provide the implementation for

conversion from the entity class attribute to the database column type. Similarly, the

convertToEntityAttribute() method should provide the opposite implementation,

conversion from the database column type to the entity class attribute.

In the example for this recipe, the attribute converter is applied to a single entity

class attribute. To do so, the @Convert annotation is applied to the attribute, passing the

converter class as an argument. The converter could also be applied to all entity class

attributes pertaining to the entity data type by changing the @Converter annotation on

the attribute converter to the following: @Converter(autoApply=true).

Chapter 9 Java persistenCe Query Language

569
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_10

CHAPTER 10

Bean Validation
One of the most important pieces of any data-using application is data validation.

It is imperative that one validates data before it is inserted into a database in order to

maintain integrity. There are a number of reasons to validate, the most important being

security purposes, data consistency, and proper formatting. Many web applications use

validation in the presentation layer via JavaScript for validation of form data and also in

the persistence layer. However, sometimes JavaScript can become problematic in that

the code can become unwieldy and there is also no guarantee that it will execute. It is

oftentimes found to be a good idea to perform validation within the domain model,

although this can cause code clutter.

In this chapter, we will take a look at the Bean Validation API, which is used to apply

validation to a JavaBean. In the context of Jakarta EE, since JPA entity classes are Plain

Old Java Objects (POJOs), this allows developers to make use of Bean Validation on

entity classes and entity class attributes. A Java controller class may have validation logic

to ensure that only specific data passes through to the database. The Bean Validation

API is another means of performing data validation in either the domain model or

presentation layer via metadata, using an annotation-based approach. To validate

with this API, one simply applies validation constraint annotations on the entity class

attribute(s), as needed, and the constraint validators will automatically enforce the

validation. Bean Validation was first introduced into Jakarta EE platform with Java EE 6,

and it had been given a face-lift in Java EE 8, introducing a number of new features for

the Bean Validation 2.0 release. Although this chapter will focus on the use of Bean

Validation with Jakarta EE, it can be used in JavaBeans across all different flavors of

Java, be it Java FX, previous Java EE releases, or Java SE. Bean validation contains an API

that can be used to manually invoke validation, but in most cases the validation occurs

automatically because of the integration that has been made across the various Jakarta

EE specifications.

570

Bean Validation annotation constraints can be applied on types, fields, methods,

constructors, parameters, container elements, and other container annotations.

Validation is applied not only to the object level, but it can also be inherited from

superclasses. Entire object graphs can be validated, meaning that if a class declares a

field which has the type of a separate class containing validation, cascading validation

can occur.

This chapter will demonstrate examples of each validation type, explaining the

strongholds for each of the different methodologies. In the end, you will have a good

understanding of how the Bean Validation API works, and you should be able to apply

Bean Validation strategies to your applications.

Note Bean Validation allows one to declare constraints via XML, rather
than annotations. For the purposes of brevity, this chapter will not cover this
feature. For more information, please see the Bean Validation 2.0 specification
(https://jakarta.ee/specifications/bean-validation/2.0/bean-
validation_2.0.html).

10-1. Validating Fields with Built-in Constraints
 Problem
Imagine that you create a Chapter entity class, which will be used to store the contents

regarding a book chapter. In doing so, you wish to apply validation to specified fields

of the entity class such that only compliant data is allowed to be inserted or updated in

the database. In this case, suppose that there are a number of fields that must contain

values, and you also want to be certain that Strings of text are within the size limits of the

underlying database field.

 Solution #1
Apply the pertinent Bean Validation constraints to field(s) that you wish to validate. In

this example, the standard @NotNull and @Size constraint annotations are placed on

specific fields of the Chapter entity. Namely, the id attribute is marked as @NotNull so

Chapter 10 Bean VaLidation

https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.html
https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.html

571

that it must contain a value, and the title attribute is marked to have a maximum size of

150 characters:

@Entity

@Table(name = "CHAPTER")

public class Chapter implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Column(name = "CHAPTER_NUMBER")

 private BigDecimal chapterNumber;

 @Size(max = 150)

 @Column(name = "TITLE")

 private String title;

 @Lob

 @Column(name = "DESCRIPTION")

 private String description;

. . .

 Solution #2
Apply the pertinent Bean Validation constraint annotations to the getter methods

(accessor methods) of the field(s) you wish to validate. In this case, the following

example shows the getId() and getTitle() methods. Each of these accessor methods is

annotated accordingly:

@NotNull

private BigDecimal getId(){

 return this.id;

}

Chapter 10 Bean VaLidation

572

. . .

@Size(max=150)

private String getTitle(){

 return this.title;

}

 How It Works
The Bean Validation API provides a number of built-in constraint definitions that are

ready to use. These standard constraints span the array of common use cases for data

validation. Table 10-1 lists each of the standard validation constraint annotations along

with a description of each.

Table 10-1. Standard Built-In Constraints

Annotation Description

@null the annotated element must be null.

@notnull the annotated element must not be null.

@asserttrue the annotated element must be true.

@assertFalse the annotated element must be false.

@Min the annotated element must be a number with a value that is higher or equal

to the specified minimum.

@Max the annotated element must be a number with a value that is lower or equal

to the specified maximum.

@decimalMin the annotated element must be a decimal with a value that is higher or equal

to the specified minimum.

@decimalMax the annotated element must be a decimal with a value that is lower or equal

to the specified maximum.

@negative the annotated element must be a strictly negative number.

@negativeorZero the annotated element must be a negative number or zero.

@positive the annotated element must be a strictly positive number.

(continued)

Chapter 10 Bean VaLidation

573

Annotation Description

@positiveorZero the annotated element must be strictly positive or zero.

@Size the annotated element size must fall within the specified boundaries.

@digits the annotated element must be a number in the accepted range.

@past the annotated element must be an instant, date, or time in the past.

@pastorpresent the annotated element must be an instant, date, or time in the past or present.

@Future the annotated element must be an instant, date, or time in the future.

@Futureorpresent the annotated element must be an instant, date, or time in the future or

present.

@pattern the annotated element must fall within the constraints of the specified

regular expression.

@notempty the annotated element must not be empty or null.

@notBlank the annotated element must not be null and must contain at least one

character.

@email the annotated string must be a well-formed email address.

Table 10-1. (continued)

To apply validation to a field, simply specify the built-in or custom Bean Validation

annotation to the field declaration, along with the appropriate constraint attribute(s).

You also have the option of annotating a field’s corresponding getter method, rather

than the field declaration itself. Any single field may have more than one annotation

constraint applied to it. You are welcome to combine constraints to suit the requirement.

If an annotated class extends another class that contains Bean Validation constraints,

then those constraints are applied to all annotated fields, whether the field belongs to

the extended class or the class that extends.

Attributes are used to associate metadata with the annotations for specifying

information such as the error message that is to be displayed should the validation fail

or the number of characters to be validated. Table 10-2 lists the common constraint

annotation attributes that you’ll find across each of the different constraints. These are

all considered reserved names.

Chapter 10 Bean VaLidation

574

Most of the constraint attributes are optional. However, in some cases, an attribute

should be specified. For instance, when applying the @Size constraint, if the max

attribute is not specified, the default is 2147483647. Therefore, given that someone will

likely never enter a value that large, one should specify a maximum size using the max

attribute. The groups attribute is used to specify if a particular annotation constraint

is part of a processing group. A validation group defines a subset of constraints, and

a group can simply be an empty interface. Groups are used to control the order of

evaluation for constraints or to perform partial state validation for a JavaBean. To learn

more about applying groups, please refer to Recipe 10-8. The payload attribute is used

to assign a payload to a validation annotation. Payloads are typically used by bean

validation clients to associate some kind of metadata information. A payload is usually

defined as a class that implements the Payload interface. Payloads can be seen in more

detail with Recipe 10-9.

10-2. Writing Custom Constraint Validators
 Problem
Your application requires a specific validation that is not provided among the built-in

Bean Validation constraints. For example, you wish to validate that a book title includes

the word “Java” in the title.

 Solution
Implement a custom constraint validator for the application. A custom constraint can

be created by developing a constraint annotation along with a validator implementation

class and a default error message. The example that follows demonstrates a custom

Table 10-2. Common Constraint Annotation Attributes

Attribute Description

message allows a String for specifying an error message to display

groups Specifies processing groups with which the constraint declaration is associated

payload Specifies the payload with which the constraint declaration is associated

validationappliesto Used to specify which constraint targets a validation constraint will apply to

Chapter 10 Bean VaLidation

575

constraint that is used to compare whether a String contains the text “Java”. The

annotation class for such a constraint may resemble the following:

import java.lang.annotation.Documented;

import static java.lang.annotation.ElementType.ANNOTATION_TYPE;

import static java.lang.annotation.ElementType.FIELD;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Target;

import javax.validation.Payload;

@Target({ FIELD, ANNOTATION_TYPE})

@Retention(RUNTIME)

@Documented

public @interface JavaBookTitle {

 String message() default "{org.jakartaeerecipes.annotation." +

 "message}";

 Class<?>[] groups() default { };

 Class<? extends Payload>[] payload() default { };

}

The implementation for the validator should look like that of the

BookTitleValidator class:

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class BookTitleValidator implements ConstraintValidator<JavaBookTit

le, String> {

 @Override

 public void initialize(JavaBookTitle constraintAnnotation) {

 }

 @Override

 public boolean isValid(String title, ConstraintValidatorContext cvc) {

Chapter 10 Bean VaLidation

576

 if(title.toUpperCase().contains("JAVA")){

 return true;

 } else {

 return false;

 }

 }

}

Now that the constraint annotation has been created, it can be applied to a

field as follows:

@JavaBookTitle(message = "Book Title Should Contain The Word Java")

@Column(name = "TITLE")

protected String title;

 How It Works
Creating a custom validation constraint annotation is quite easy, although the

implementation may look a bit daunting at first glance. A validation constraint consists

of the following pieces:

• Constraint annotation

• Validator implementation class

• Default error message

The constraint annotation is created just like any standard Java annotation. The

annotation declaration is a standard Java interface. The interface must be annotated

with @Target, passing a list in curly brackets, which specifies the types that the

annotation can be applied to. The @Retention annotation can also be specified on the

declaration, passing a value to specify how long the annotation will be retained. Valid

values include SOURCE, CLASS, and RUNTIME. An annotation declaration may also include

the @Documented annotation, which indicates whether an annotation declaration will be

documented by JavaDoc by default.

Annotation declaration interfaces can contain elements to associate metadata to a

validation constraint. A constraint annotation must contain three elements: a message

element of type String, a groups() method, and a payload() method. Each of the

elements can be declared within the annotation constraint with a default value,

Chapter 10 Bean VaLidation

577

as seen in the example. The message element is used to create a default error message for

the validator. The message may include String interpolation, and it may also be loaded

from a resource bundle to take advantage of features such as internationalization. The

groups() method is used to specify any processing groups to which the constraint will

belong. The Default group is declared if no group is specified and the array is empty.

The payload() method is typically used to associate metadata with a given validation

constraint.

A validationAppliesTo element can be used to specify which targets the constraint

associates against. Lastly, one may choose to declare a custom element to assist in the

validation of values.

The next piece of required code is the constraint implementation class. This class

should implement CustomValidator<AnnotationType, Type>. In doing so, this class

must override the initialize() and isValid() methods. If there is any data that

needs to be initialized prior to validation, then it should be done within the initialize

method. The isValid() method should accept the data to be validated, along with

ConstraintValidatorContext as arguments. The implementation of the method should

validate the data and return a Boolean to indicate whether or not the data complies with

the constraint.

Once these pieces of code are in place, the annotation can be specified on the targets

for validation. The annotation should specify additional elements to associate metadata,

if needed. In the example, the annotation specifies the message element, which allows a

default error message to be declared.

10-3. Validating at the Class Level
 Problem
You wish to validate some or all of the fields within an object to ensure that those fields

of the object contain valid data as a whole. For instance, you must validate that a field

declared as numChapters contains the same number of chapters as those in a field of type

List<Chapter>.

Chapter 10 Bean VaLidation

578

 Solution
Specify class-level constraints to perform the validation. In the example for this recipe,

the Book entity contains a number of fields that must validate against one another in

order to constitute a valid object:

@ValidNumChapters

public class Book implements Serializable {

 private static final long serialVersionUID = 1L;

 // @Max(value=?) @Min(value=?)//if you know range of your decimal

fields consider using these annotations to enforce field validation

 @Id

 @Basic(optional = false)

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @Size(max = 150)

 @Column(name = "TITLE")

 protected String title;

 @Size(max = 500)

 @Column(name = "IMAGE")

 private String image;

 @Column(name = "NUM_CHAPTERS")

 private int numChapters;

 @Column(name = "NUM_PAGES")

 private int numPages;

 @Lob

 @Column(name = "DESCRIPTION")

 private String description;

 @Column(name = "PUBLISH_DATE")

 private LocalDate publishDate;

 @ManyToMany(mappedBy="books")

 private Set<BookAuthor> authors;

 @OneToMany(mappedBy="book", cascade=CascadeType.ALL)

 private List<Chapter> chapters = null;

Chapter 10 Bean VaLidation

579

The @ValidateNumChapters annotation is used to validate that the numChapters value

is greater than or equal to the chapters List. Following this logic, a Book may be in progress

and more Chapter objects can be added to the list as completed, but there cannot be more

Chapter objects than the numChapters value. As covered in Recipe 10-2, in order to create

the @ValidateNumChapters annotation, there must be an annotation declaration class and a

constraint implementation class. The following class is used to declare the annotation:

import java.lang.annotation.Documented;

import static java.lang.annotation.ElementType.ANNOTATION_TYPE;

import static java.lang.annotation.ElementType.TYPE;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Target;

import javax.validation.Payload;

@Target({ TYPE, ANNOTATION_TYPE})

@Retention(RUNTIME)

@Documented

public @interface ValidNumChapters {

 String message() default "{org.jakartaeerecipes.annotation." +

 "message}";

 Class<?>[] groups() default { };

 Class<? extends Payload>[] payload() default { };

}

The annotation class contains the default error message as well as the declaration for

the annotation itself. The following class is the constraint validation implementation for

validating the number of chapters in the book:

public class NumChaptersValidator implements ConstraintValidator<Valid

NumChapters, Book> {

 @Override

 public void initialize(ValidNumChapters constraintAnnotation) {

 }

Chapter 10 Bean VaLidation

580

 @Override

 public boolean isValid(Book book, ConstraintValidatorContext cvc) {

 if (book == null){

 return true;

 }

 return book.getChapters().size() <= book.getNumChapters();

 }

}

Once these classes have been created, the annotation can be placed onto the

class(es) accordingly.

 How It Works
The class-level validation constraint is one that can be quite powerful, as it can pose a

validation on one or more fields of the class. Applying a validation constraint to the class

level means that one or more of the fields must adhere to the validation constraint. In the

cases where a built-in validation constraint is applied at the class level, all fields of the

class must adhere to the constraint. For instance, if @NotNull were applied, then each

field within the class must be populated for each instance. On the other hand, applying

a constraint such as @Size at the class level would not work if the class contained fields

that were of a type other than String. More often, class-level constraints are custom

created and apply only to a specified subset of the class fields.

In the recipe example, the @ValidNumChapters constraint is placed at the class level,

which means that this particular constraint has access to each of the fields within the

class. However, the constraint implementation only actually validates the numChapters

and chapters fields to determine if the number of Chapter objects within the array is

less than or equal to the numChapters value. Recipe 10-2 covers the declaration of an

annotation in detail, so I won’t cover that here.

The important piece of the puzzle for this recipe is to look closely at the annotation

implementation within the NumChaptersValidator class. To create this implementation,

the class must implement ConstraintValidator<A extends Annotation, T>. The

ConstraintValidator interface utilizes generics to specify the constraint along with an

object which will be validated. In the signature of the interface, A must be the name of

an annotation declaration class, so in this case ValidNumChapters. T is any given object

Chapter 10 Bean VaLidation

581

that must resolve to a non-parameterized type, or generic parameters of T must be

unbounded wildcard types. In the example, the Book entity class is specified as T.

The interface enforces the implementation of the initialize(A

constraintAnnotation) and isValid(T value, ConstraintValidatorContext

context) methods. Many times, the initialize method can be empty, but if needed, it

should contain code to initialize the validator in preparation for call to isValid. The

isValid method contains the actual validation logic. The Book object that is passed into

the method is first checked to ensure that it is not null. If it is null, then true is returned;

otherwise, the number of Chapter objects in the chapters List is compared against the

numChapters value to return a Boolean result.

Class-level validation can be very powerful, as it allows validation of class fields in a

custom manner. It is also very easy to implement, making it even more powerful when

validating complex objects such as those that contain Lists of other objects.

10-4. Validating Parameters
 Problem
You want to specify some preconditions on a method such that the parameters adhere to

a specified constraint.

 Solution
Apply validation constraint annotations to method parameter(s) such that the

parameter(s) will be validated by either built-in or custom constraints. This will enforce

constraint logic at the time of a method call such that only arguments that meet the

specified constraints will be acceptable as parameters to a given method. In the

following example, a method that accepts a parameter is demonstrated including a

validation constraint:

public void submitEmailAddress(@Email String emailAddress){

 System.out.println("Do something with the address: " + emailAddress);

}

Chapter 10 Bean VaLidation

582

In this particular example, a single parameter is being validated. However, it is

possible to include more than one parameter containing a validation constraint. It is also

possible to include a cross-parameter constraint at the method level, which can be used

to apply validation across all of the method parameters.

 How It Works
Bean Validation makes it possible to include validation constraints on non-static method

parameters for the purposes of applying preconditions that will ensure invalid data

cannot be passed into the method. Either built-in or custom validation constraints

can be applied to method parameters. If an invalid value is passed into a method that

contains a parameter constraint, a validation error will be thrown, and the method will

not be executed.

In the example, the submitEmailAddress method accepts a single parameter,

emailAddress. If the emailAddress parameter does not adhere to a valid email format, as

specified via the @Email validation constraint, the method call will fail. It is also possible

to validate more than a single method parameter by applying a constraint validation on

the method itself. Doing so is much the same as applying a class-level constraint (Recipe

10-3) in that the constraint can be either built-in or custom. Built-in constraints applied

at the method level, such as @NotNull, would be applied to each of the parameters

of the method. Custom constraints can be created in the same manner as previously

shown in Recipe 10-3 whereby one or more parameters can be validated. Constraints

that are placed at the method level must be configured within the ConstraintValidator

implementation using the @SupportedValidationTarget annotation to indicate that the

constraint is to be placed on the method level. This is because return-type constraints

are also placed at the method level, so the @SupportedValidationTarget helps to

distinguish which validation type shall occur. The following code example demonstrates

how to write a constraint validation implementation targeted for use at the method level:

@SupportedValidationTarget(value = ValidationTarget.PARAMETERS)

public class ValidEmployeeEmailValidator implements ConstraintValidator

<ValidEmployeeEmail, Object[]> {

 @Override

 public void initialize(final ValidEmployeeEmail constraintAnnotation) {

 // no-op

 }

Chapter 10 Bean VaLidation

583

 @Override

 public boolean isValid(final Object[] parameters, final

ConstraintValidatorContext context) {

 // Ensure employee email is from our organization

 return parameters == null || parameters[0].toString().contains

("@acme.com");

 }

}

10-5. Constructor Validation
 Problem
You wish to validate the instantiation of a class through the validation of constructor

parameters.

 Solution
Apply validation constraint annotations to the individual constructor parameters or at

the constructor level itself to perform validation. In the following example, a constructor

is annotated with @NotNull at the constructor level. Therefore, the @NotNull validation

constraint is applied across each of the constructor parameters:

@NotNull

public ConstructorValidationController(String parameterOne,

 String parameterTwo){

 this.p1 = parameterOne;

 this.p2 = parameterTwo;

}

 How It Works
In some cases, it makes sense to validate parameters that are passed into a class at

the time of instantiation. Bean Validation makes this easy by allowing one to apply

constraint annotations to parameters of a class constructor or to the constructor itself.

When an annotation is placed on the parameters of a class constructor, the class cannot

Chapter 10 Bean VaLidation

584

be instantiated if the validations fail. Similarly, if a constraint annotation is placed

on the constructor declaration itself, then it will be applied across all of the

constructor parameters. Such a constraint that is applied at the constructor level is called

a cross- parameter constraint.

In the example, a cross-parameter @NotNull annotation is applied to the constructor

of a class. Each of the parameters of the constructor must contain a value; otherwise, the

validation will fail, and the class will not be instantiated. As mentioned previously, if a

custom annotation were placed on the constructor, it could validate one or more of the

parameters, just like a method-level constraint.

Note take special care to ensure that unintended behavior does not occur
as a result of subtype constructor constraints. it is important to keep the object
hierarchy in mind when applying validation constraints on a class or class
constructor.

10-6. Validating Return Values
 Problem
You wish to validate the return value of a method, such that the returning value must

adhere to a constraint. If the return value does not adhere, then a validation exception

shall be thrown.

 Solution
Place a validation constraint on the return type of a method signature to ensure that the

result will conform to the validation constraint. In the following example, the return type

of the method is validated by the annotation which is placed at the method level. In this

case, the returned value must be in an email address format:

@Email

public String getEmailAddress(){

 return emailAddress;

}

Chapter 10 Bean VaLidation

585

 How It Works
Validation constraint annotations that are placed at the method level can be targeted

toward return value validation. In doing so, a method must return a valid value per the

constraint; otherwise, a bean validation exception is thrown. In order to ensure that the

constraint being placed at the method level is targeted toward a return type validation,

the validator implementation must contain the @SupportedValidationTarget

annotation, which specifies whether the validator applies to parameters or to the

method itself. If a validation constraint implementation does not include this

specification, there is no way for the Bean Validation API to determine where the

validation should be applied. In this case, the implementation would specify the

following:

@SupportedValidationTarget(value = ValidationTarget.ANNOTATED_ELEMENT)

As with many of the other validation types, return-type validation can utilize both

standard and custom constraints.

10-7. Defining a Dynamic Validation Error Message
 Problem
You wish to supply a dynamic error message containing information that is pertinent to

the validated value for a constraint.

 Solution
Utilize String interpolation within the Bean Validation message attribute. String

interpolation allows one to place message parameters and message expressions into

a message String, thereby creating a dynamic String-based message. In the following

example, the actual length of the String value will be substituted into the message to

provide more feedback:

@Size(max = 150, message="The title cannot exceed {max} characters, current

title is $'{validatedValue}'")

@Column(name = "TITLE")

protected String title;

Chapter 10 Bean VaLidation

586

 How It Works
Providing a clear error message for the user can make or break the success of an

application. Utilizing String interpolation within an error message can help one to

provide a specific message to the user to help indicate the cause of the validation failure.

In much the same way that substitution variables work, an error message can contain

zero or more variables that can be substituted.

Note String interpolation requires expression language libraries to be available
within your project. if the expression language api and an implementation library
are not added to the project, errors will be thrown at runtime. the following Maven
dependencies can be added to fulfil this requirement:

<dependency>
 <groupId>javax.el</groupId>
 <artifactId>javax.el-api</artifactId>
 <version>3.0.0</version>
</dependency>

<dependency>
 <groupId>org.glassfish.web</groupId>
 <artifactId>javax.el</artifactId>
 <version>2.2.6</version>
</dependency>

To utilize String interpolation, curly braces can be used to surround the variable

that will be substituted with dynamic values. Constraint attributes can be interpolated

by placing the attribute inside of curly braces. In the example, the max attribute will be

substituted for the {max} String interpolation. The validated value or custom expression

variables can be specified to substitute values within a message by utilizing the EL

notation, thereby enclosing within curly braces and proceeded with a $. In the example,

the $'{validatedValue}' variable is one such example. When the error message is

produced, $'{validatedValue}' is replaced with the current validated value.

Chapter 10 Bean VaLidation

587

Message interpolation occurs in phases, outlined in the following order:

 1) Resolve any message parameters using them as a key for a

resource bundle named ValidationMessages.properties.

 2) Resolve any message parameters using them as a key for a

resource bundle that contains the standard error messages for

built-in constraints.

 3) Utilize a value constraint annotation member to substitute the

message parameter. As such, the message parameters will simply

be replaced by the value constraint annotation member of the

same name.

 4) Resolve any message parameters using evaluations as expressions

of the Unified Expression Language. This allows us to formulate

error messages based upon conditional logic and enables us to

achieve advanced formatting.

The characters {,} and $ are special characters for message descriptors. Therefore, if

one wishes to utilize one of these characters within a validation error message, it must be

escaped by proceeding it with a \. Therefore, to escape a $, one would use \$.

It is possible to define a custom message interpolation algorithm, if needed, by

plugging in a custom MessageInterplator implementation. To develop a custom

interpolator, implement the javax.validation.MessageInterpolator interface.

The interpolator must be thread-safe, and it is recommended to delegate the final

implementation to the default interpolator. The default interpolator is available

by calling upon Configuration.getDefaultMessageInterpolator(). For more

information, please refer to the Bean Validation specification.

Chapter 10 Bean VaLidation

588

10-8. Manually Invoking the Validator Engine
 Problem
You wish to call upon the Bean Validation validator engine programmatically, rather

than relying upon automatic invocation.

 Solution
Utilize the Validator API to perform validation. The Validator API allows one to create an

executable validator from a number of different validation types, those being parameter,

return, class, and so on. The following example demonstrates how to manually validate

the data for a given entity class. In the following example, a Book entity class that is

annotated with Bean Validation constraints is manually instantiated and validated using

the Validator API:

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

Validator validator = factory.getValidator();

Book book = new Book();

book.setId(BigDecimal.ONE);

book.setTitle("The Best Java Book");

Set<ConstraintViolation<Book>> violations = validator.validate(book);

for(ConstraintViolation<Book> violation: violations){

 System.out.println(violation.getMessage());

}

 How It Works
Bean Validation is typically automatically invoked within a Jakarta EE environment.

For instance, if using JSF, the validation occurs during the “Process Validations”

phase automatically when a form is submitted either synchronously or asynchronously

via Ajax. In some cases, it is useful to have the option to call upon the Validator

API manually. This can be useful in a Java SE environment or perhaps when writing

unit tests.

Chapter 10 Bean VaLidation

589

To invoke the Validator API, first create a ValidatorFactory by calling upon

Validation.buildValidatorFactory(). Next, use the factory to generate a Validator.

Lastly, validate a bean by calling upon the validator’s validate() method, passing the

bean to be validated. This method will return a Set of ConstraintViolation objects. You

can then iterate over each of the returned validation errors, obtaining each by calling

upon the ConstraintViolation.getMessage() method.

10-9. Grouping Validation Constraints
 Problem
You wish to group a number of validation constraints together, such that an entire group

of validations can occur at the same time.

 Solution
Groups can be applied to constraint annotations by specifying the group(s) to which

the annotation belongs via the groups annotation attribute. Groups themselves are

generated via Java interfaces. The following interface defines the BookGroup:

public interface BookGroup {

}

The BookGroup group can be applied to one or more constraint annotations by

specifying the interface within the groups annotation attribute, as seen in the following

example:

. . .

@Entity

@Table(name = "BOOK")

@NamedNativeQuery(

 name="allBooks",

 query = "select id, title, description " +

 "FROM BOOK " +

 "ORDER BY id",

 resultClass=Book.class)

@NamedQueries({

Chapter 10 Bean VaLidation

590

 @NamedQuery(name = "Book.findAll", query = "SELECT b FROM Book b")})

@XmlRootElement

@ValidNumChapters

public class Book implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @NotNull

 @Column(name = "ID")

 private BigDecimal id;

 @JavaBookTitle(message = "Book Title Should Contain The Word Java")

 @Size(max = 150, message="The title cannot exceed {max} characters,

current title is $'{validatedValue}'",

 groups={BookGroup.class})

 @Column(name = "TITLE")

 protected String title;

 @Size(max = 500)

 @Column(name = "IMAGE")

 private String image;

 @NotNull(groups={BookGroup.class})

 @Column(name = "NUM_CHAPTERS")

 private int numChapters;

 @Column(name = "NUM_PAGES")

 private int numPages;

 @Lob

 @NotNull(groups={BookGroup.class})

 @Column(name = "DESCRIPTION")

 private String description;

 @Column(name = "PUBLISH_DATE")

 private LocalDate publishDate;

 @ManyToMany(mappedBy="books")

 private Set<BookAuthor> authors;

 @OneToMany(mappedBy="book", cascade=CascadeType.ALL)

 private List<Chapter> chapters = null;

Chapter 10 Bean VaLidation

591

 public Book() {

 }. . .

Once the group has been put into place, validation can occur against a group, which

would cause every constraint annotation that is assigned to that group to be validated.

The following is a brief example of how one could utilize the Validation API to validate

on a group basis:

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

Validator validator = factory.getValidator();

. . .

Set<ConstraintViolation<Book>> violations = validator.validate(book,

"bookGroup");

for(ConstraintViolation<Book> violation: violations){

 System.out.println(violation.getMessage());

}

 How It Works
Applying a group to a constraint annotation allows that annotation to become part of

a grouping with other annotations to which the same group is applied. Formulating

groups of annotations can be beneficial when performing tasks in which a specified

set of constraints should always be validated. Validation can occur at the group level,

thereby validating constraint groups as needed.

To create a group, one must utilize an interface. The Java interface should be empty

and acts as a placeholder for the group. The group can be applied to a constraint

annotation by specifying the annotation’s groups attribute and passing a list of groups to

it. The group attribute accepts one or more groups in the list. The example demonstrates

a single group, named BookGroup, being applied to the annotation constraint:

@NotNull(groups={BookGroup.class})

@Column(name = "NUM_CHAPTERS")

To validate a group of constraints, pass the group or groups for validation to the

Validator validate() method. In the example, the single BookGroup group is validated,

but if there were more groups to be validated, the following syntax would come into play:

validator.validate(book, "group1", "group2");

Chapter 10 Bean VaLidation

593
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_11

CHAPTER 11

Contexts and Dependency
Injection
One of the most important specifications in the Jakarta EE platform is Jakarta Contexts

and Dependency Injection (CDI). As stated on the cdi-spec.org site, it is a suite of

complementary services that can improve the overall structure and design of code. The

specification provides the following features for Jakarta EE and Java SE applications, as

per the cdi-spec.org:

• Contextual objects with a well-defined life cycle providing multiple

scopes of availability

• Ability to bind directly between contextual objects and Unified

Expression Language (EL)

• Dependency injection utilizing a type-safe system that is easy to use

• Binding of interceptors to contextual objects

• Event notification model

• Portable extension SPI

Mentioned in the listing, perhaps one of the most widely used features of Jakarta

CDI is the ability to bind the web tier and the business logic or transactional tier of the

Jakarta EE platform together. Jakarta CDI makes it easy to expose business objects for use

within web views via EL so that developers can directly bind Jakarta Server Faces view

components to public JavaBean members and methods. Another widely used feature

is the injection of contextual classes and resources into other Java objects in a type-safe

and efficient manner.

594

Note Jakarta Server Faces is the Jakarta EE open source specification that was
previously JavaServer Faces.

Jakarta CDI is architected from two methodologies: contexts and dependency

injection. Contexts provide the ability to bind the life cycle and interactions of

stateful components to well-defined but extensive contexts. In the Jakarta EE 8

tutorial, dependency injection is defined as the ability to inject components into an

application in a type-safe way, including the ability to choose at deployment time

which implementation of a particular interface to inject. To make use of Jakarta CDI,

a developer should become familiar with a series of annotations that can be used

to decorate objects and injected components. This chapter covers recipes that will

demonstrate such annotations and where they should be used.

Since Jakarta CDI provides a high level of loose coupling, it is an important piece of

any Java enterprise application. Those applications that make use of Jakarta CDI in the

correct manner can become very efficient because Jakarta CDI provides a decoupling

of resources, as well as strong typing, which eliminates the requirement to use String-

based names for managed resources by using declarative Java. This chapter will

cover widely used features of this important specification, touching upon a few new

features, including asynchronous events, and an API for booting Jakarta CDI in Java SE

environments.

11-1. Injecting a Contextual Bean or Other Object
 Problem
You would like to utilize a contextual bean or other object from within another class to

take advantage of the bean’s state.

 Solution
Utilize dependency injection to make the bean or object available from within another

class. The following class represents an object that can be injected into another class:

package org.jakartaeerecipes.chapter11;

import javax.inject.Named;

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

595

@Named

public class CalculationBean {

 public int addNumbers(int[] numArray){

 int temp = 0;

 for(int x : numArray){

 temp = temp + x;

 }

 return temp;

 }

}

As you can see, the CalculationBean class represents a standard Java object. This

object can be injected into another class by using the @Inject annotation. The following

class, located in the same package as CalculationBean within the sources, demonstrates

how to inject an object. Note that CalculationBean is never specifically instantiated;

rather, it is injected:

package org.jakartaeerecipes.chapter11;

import javax.inject.Inject;

public class UsingClass {

 @Inject

 CalculationBean calcBean;

 public void performCalculation(){

 int[] intarr = new int[2];

 intarr[0] = 2;

 intarr[1] = 3;

 System.out.println("The sum of 2 + 3:" + calcBean.addNumbers(intarr));

 }

}

In the example, CalculationBean is injected into the bean. Once the bean or

resource is injected into another Java class, it can be referenced as if it were local to the

class into which it was injected.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

596

 How It Works
The concept of dependency injection greatly reduces the amount of overhead that is

necessary for a developer in order to gain reference to a contextual Java object from

within another Java class. The Jakarta EE stack makes it very easy to gain reference to

just about any Java object from within another class. Dependency injection refers to the

ability to inject components into an application in a type-safe manner, including the

ability to choose at deployment time which implementation of a particular interface to

inject. Jakarta CDI allows almost any Java object to be injected into another with very

little configuration. This ability increases the usability of resources since such resources

can be referenced from any number of different classes and maintain the same state

wherever they are being used. In reality, just about any object can be injected anywhere

with Jakarta CDI. The following are some Java objects that can be injected:

• Almost any Java class

• Session beans

• Jakarta EE resources: data sources, JMS topics, queues, connection

factories

• Persistence contexts

• Producer fields

• Objects returned by producer methods

• Web service references

• Remote EJB references

To inject a resource into another, the application module or JAR file must contain a

META-INF directory that includes a beans.xml configuration file. The beans.xml file may be

empty, or it can contain a descriptor to customize the way in which component scanning

will occur within the application. As such, configuration within beans.xml may be slightly

different depending upon the bean discovery mode for the application. However, for the

purposes of this example (and for most general Jakarta CDI use cases), the beans.xml file

specifies that bean discovery should occur for all classes within the application:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

597

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.

jcp.org/xml/ns/javaee/beans_1_1.xsd"

 version="1.1" bean-discovery-mode="all">

</beans>

The bean-discovery-mode attribute indicates how scanning shall occur. A value of

all indicates that all components are processed, annotated indicates that only those

components containing a class-level annotation are processed, and none effectively

disables Jakarta CDI.

Next, the javax.inject.Inject annotation (@Inject) must be used to denote the

class being injected by annotating a class member of the object type. For instance, if you

want to inject a Java object of TypeA, you would declare a class variable of type TypeA and

annotate it with @Inject, as follows:

@Inject

TypeA myTypeVar;

Note that the object used for injection (CalculationBean) contains a @Named

annotation at the class level. This particular annotation doesn’t need to be present

in order to make the object available for injection unless the bean-discovery-

mode="annotated". The @Named annotation allows one to provide a custom name for

the object, and it also makes the object available for reference from within Unified

Expression Language.

Once said injection is performed, the declared field can be utilized throughout the

class because it is a direct reference to the original class of the specified Java type. By

defining a specific scope to the injection bean (Recipe 11-5), you can indicate whether

an injected object will cause the instantiation of a new object of that type or whether it

will look up an existing object of that type and reuse it. By far, one of the most convenient

and useful cases for using Jakarta CDI is the ability to inject a managed bean into

another object and make use of its current state, as if its contents existed everywhere.

Jakarta CDI provides type-safe injection because there is no need to specify a

String-based name in order to instantiate or refer to another object. By maintaining

declared variables that are used as points of injection, the variable name itself provides

for strong typing and thus reduces the number of errors that may arise.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

598

11-2. Binding a Bean to a Web View
 Problem
You want to bind a JavaBean to a Jakarta Server Faces view using Unified Expression

Language (EL).

 Solution
Annotate a class with the @Named annotation, and optionally specify a name for the class

in String format. The String that is specified within the @Named annotation can be used

to gain reference to the bean from within a Jakarta Server Faces view. If no optional

String is specified, then the class name with a lowercase first letter is used to gain

reference. The following example demonstrates the binding of a bean field and method

to a Jakarta Server Faces view. The following Java class, named CalculationBean, is a

Jakarta CDI managed bean that contains the @Named annotation, specifying myBean as the

bean reference name:

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named("myBean")

@RequestScoped

public class CalculationBean implements java.io.Serializable{

 private int num1 = 1;

 private int num2 = 0;

 private int sum;

 public CalculationBean(){

 }

 public void addNumbers(){

 System.out.println("Called");

 setSum(getNum1() + getNum2());

 }

 //getters and setters ...

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

599

The bean is bound to the Jakarta Server Faces view via the String-based name

myBean, making a seamless binding between the web view and the backend business

logic. The following Jakarta Server Faces view contains three fields and a Jakarta Server

Faces commandButton component with an action that is bound to myBean via the Jakarta

Server Faces EL:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 11-2: Binding a Bean to Jakarta Server Faces Views

</title>

 </h:head>

 <h:body>

 <p>

 <h:form>

 <h:inputText value="#{myBean.num1}"/>

 <h:inputText value="#{myBean.num2}"/>

 Sum: <h:outputText id="sum" value="#{myBean.sum}"/>

 <h:commandButton value="Calculate" type="submit" action=

"#{myBean.addNumbers}">

 </h:commandButton>

 </h:form>

 </p>

 </h:body>

</html>

As mentioned previously, when the @Named annotation is specified without providing

a String-based name designation, a binding name will be derived from the class name,

converting the first letter of the class name to lowercase. For the following example,

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

600

assume that the class CalculationBean that was referenced in the preceding example is

going to be referenced from within a Jakarta Server Faces view via EL, except there will

be no String-based identifier specified within the @Named annotation. Since the @Named

annotation does not specify a name, the EL would refer to the class name as such:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 11-2: Binding a Bean to Jakarta Server Faces Views

</title>

 </h:head>

 <h:body>

 <p>

 <h:form>

 <h:inputText value="#{calculationBean.num1}"/>

 <h:inputText value="#{ calculationBean.num2}"/>

 Sum: <h:outputText id="sum" value="#{ calculationBean.sum}"/>

 <h:commandButton value="Calculate" type="submit" action="#{

calculationBean.addNumbers()}">

 </h:commandButton>

 </h:form>

 </p>

 </h:body>

</html>

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

601

@MANAGEDBEAN VS. @NAMED?

If the @Named annotation can be used to specify a binding name for a Jakarta CdI bean,

then what is the point of using the @ManagedBean annotation at all? the fact is the

@ManagedBean annotation has been carried over from previous versions of Jakarta Server

Faces. While it is still a capable mechanism of marking a bean as managed and providing a

binding identifier to Jakarta Server Faces, it is suggested for use only when Jakarta CdI is not

available for an application. If an application has full access to the entire Jakarta EE stack,

including Jakarta CdI, then the @ManagedBean annotation is not a requirement.

In reality, the Jakarta CdI technology is much more powerful than the use of @ManagedBean,

which was a customized solution for Jakarta Server Faces, and therefore Jakarta CdI is the

preferred technique to use. this is the preferred technique because Jakarta CdI allows for a

broader base of classes to be categorized as managed resources. Jakarta CdI also carries with

it many other bonuses such as transaction management and type-safe dependency injection,

of which @ManagedBean is not capable. as of Jakarta Server Faces 2.3, there are also certain

capabilities that are only available when using Jakarta CdI, and @ManagedBean has become

a deprecated technology.

 How It Works
One of the most widely used features of Jakarta CDI is that it helps provide a seamless

integration between the web views and the backend business logic for an application.

Utilizing Jakarta CDI, public bean members and methods can be made accessible to

Jakarta Server Faces views very easily. The javax.inject.Named annotation provides a

facility for referencing a JavaBean class from within a Jakarta Server Faces view, either

by accepting a String that will be used to make the reference or by simply utilizing

the JavaBean class name with a lowercase first letter. The solutions provided within

this recipe demonstrate both techniques. From a technical standpoint, the example

of not using a String to provide the reference is the most type-safe solution. However,

sometimes it is necessary to provide a String for reference, as demonstrated in the first

example, but that solution is recommended only on an as-needed basis.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

602

Note notice that the bean in the example, CalculationBean, contains a
@RequestScoped annotation. this annotation specifies the scope for the bean
state. For a fun trick, try to remove the @RequestScoped annotation and see
what happens. as it turns out, the bean will still work as prescribed, but it will not
return any results. this is because the bean will be reinitialized after each request.
therefore, the view will call the getSum method to read the current contents of the
sum field, and it will have been reinitialized to a value of 0 before the request has
been made. to learn more about bean scope, please see recipe 11-4.

By annotating a class with @Named, it becomes available for use by Jakarta Server

Faces views within the same application. Any public class member or method can be

called upon from within a Jakarta Server Faces view by specifying the name of the class

with a lowercase first letter, along with the public member or method that is needed. For

instance, the following Jakarta Server Faces EL expression calls upon a method named

myMethod that is contained within a class named MyClass. Note that this EL expression

works if the class is named MyClass and includes an empty @Named annotation and if the

class is named something different and includes the @Named("myClass") annotation:

#{myClass.myMethod}

As mentioned in the sidebar for this recipe, the @ManagedBean and @Named

annotations play similar roles in that they both make Java classes available for use within

a web view. However, it is safe to acknowledge that the @Named annotation is preferred

over using @ManagedBean; please read the preceding sidebar for more information.

11-3. Allocating a Specific Bean for Injection
 Problem
You have more than one JavaBean that implements a particular API, and you want to

specify which of the beans you wish to inject.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

603

 Solution
Utilize a qualifier for the injection. To alleviate the issues of referencing a duplicate

class, add a qualifier to each of the classes to differentiate them from one another.

In the following code example, two classes, named PaperbackController and

EbookController, each implement the Book interface. To allow client bean developers

the ability to specify which of the bean classes should be injected, qualifiers are used. In

the first listing, let’s take a look at the Book interface, which is being implemented by at

least two JavaBeans in the example:

public interface Book {

 public String title = null;

 public String description = null;

}

The class PaperbackController uses a qualifier @Paperback in order to differentiate

it from other beans that implement the Book interface. The following listing is that of the

PaperbackController class. Note that the Paperback interface (source shown next) must

already exist in order to utilize the @Paperback annotation in this example:

package org.jakartaeerecipes.chapter11.recipe11_03;

import javax.inject.Named;

import javax.enterprise.context.SessionScoped;

import java.io.Serializable;

@Named(value = "paperbackController")

@SessionScoped

@Paperback

public class PaperbackController implements Serializable, Book {

 /**
 * Creates a new instance of PaperbackController

 */

 public PaperbackController() {

 }

...

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

604

Another JavaBean, named EbookController, also implements the Book interface.

It contains a different qualifier, @Ebook, in order to differentiate it from other classes

implementing the Book interface. The EbookController class looks like the following:

package org.jakartaeerecipes.chapter11.recipe11_03;

import javax.inject.Named;

import javax.enterprise.context.SessionScoped;

import java.io.Serializable;

@Named(value = "ebookController")

@SessionScoped

@Ebook

public class EbookController implements Serializable, Book {

 /**
 * Creates a new instance of EbookController

 */

 public EbookController() {

 }

...

}

Lastly, let’s see what the @Paperback and @Ebook binding annotations actually look

like. The following two code listings show the contents of the org.jakartaeerecipes.

chapter11.recipe11_03.Paperback and org.jakartaeerecipes.chapter11.

recipe11_03.Ebook interfaces, which are used to create the two annotations:

import java.lang.annotation.*;

import javax.inject.Qualifier;

@Qualifier

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD,

ElementType.PARAMETER})

public @interface Paperback {}

import java.lang.annotation.*;

import javax.inject.Qualifier;

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

605

@Qualifier

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD,

ElementType.PARAMETER})

public @interface Ebook {}

When a client wants to make use of one or the other, it simply needs to call upon the

qualifier as follows:

@Paperback PaperbackController paperback;

@Ebook EbookController ebook;

 How It Works
When there are two or more classes that implement the same Java interface, Jakarta CDI

needs some help to determine which of them is going to be used at an injection point.

If an application that uses Jakarta CDI is deployed and an attempt is made to perform

injection on a class that implements the same interface as another class, then Weld will

throw an ambiguous dependency error. This means that it cannot determine what bean

to use for the given injection point. When Jakarta CDI attempts to determine which bean

should be used at an injection point, it takes all class types into account, and it also uses

qualifiers. A qualifier is an annotation that can be applied at the class level to indicate

the type of a bean. Qualifiers can also be used to annotate methods, or other areas of

code, to help Jakarta CDI determine what kind of bean needs to be injected.

Note Weld is the reference implementation for Jakarta CdI. therefore, you will
see references to Weld within the server logs when utilizing Jakarta CdI within a
Jakarta EE application. For more information regarding Weld, please see the online
documentation at http://seamframework.org/Weld.

Every bean without an explicit qualifier automatically becomes annotated with the

@Default qualifier. This qualifier is not needed when another qualifier type is used. In the

solution to this recipe, two qualifiers are created in order to mark two different beans of

the Book type: the @Paperback and @Ebook qualifiers. To create a qualifier, generate a Java

interface, and annotate that interface with @Qualifier, Retention(RetentionPolicy.

RUNTIME), and @Target({ElementType.TYPE, ElementType.METHOD, ElementType.

FIELD, ElementType.PARAMETER}). All qualifiers are created in the same manner, and

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

http://seamframework.org/Weld

606

once created, they can be used to annotate beans for differentiation. As you can see

from the example, both the PaperbackController and EbookController classes have

been annotated with their respective qualifiers. This makes for an easy way to allow

Jakarta CDI to determine which bean to inject since each of the two beans is a different

implementation of the Book type.

The Jakarta CDI API provides a handful of qualifiers out of the box that can be used

within your bean classes. I have already discussed the @Default qualifier, which is added

to any bean that does not explicitly contain a qualifier. Other qualifiers that are provided

by Jakarta CDI include @Named and @Any. The @Named qualifier is used to mark a bean as

EL-injectable. If a bean contains a @Named qualifier, then it can be referenced within a

Jakarta Server Faces view. The @Any qualifier is also included on all beans, and it allows

an injection point to refer to all beans or events of a certain bean type. For instance, to

refer to all of the beans of type Book, you could declare a member as follows:

@Inject @Any Instance<Book> anyBook;

Qualifiers are not used in everyday code, but they are a feature of Jakarta EE that

comes in handy on occasions where ambiguous bean injection is possible.

11-4. Determining Scope of a Bean
 Problem
You want to ensure that the scope of a particular bean within your application will be

available for a user’s entire session.

 Solution
Define the scope of the bean that you want to make available by annotating

the bean accordingly. The org.jakartaeerecipes.chapter11.recipe11_03.

PaperbackController and org.jakartaeerecipes.chapter11.recipe11_03.

EbookController that are listed in Recipe 11-3 are examples of request-scoped beans

since they are annotated as such. To make a bean available within a different scope,

annotate using one of the other scope-based annotations. For example, let’s create a bean

that has a session scope, meaning that it will retain its state for multiple HTTP requests

for the life of a web session. To create a session-scoped bean, annotate the class using

@SessionScoped. The following class, named CartBean, is a Jakarta CDI session- scoped

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

607

JavaBean that contains an integer field, which will be adjusted when a user invokes either

the addItem or removeItem method:

package org.jakartaeerecipes.chapter11.recipe11_04;

// Import and change to @RequestScoped to see a functional difference

//import javax.enterprise.context.RequestScoped;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

@Named

@SessionScoped

public class CartBean implements java.io.Serializable {

 private int orderList = 0;

 public CartBean(){}

 public void addItem(){

 setOrderList(getOrderList() + 1);

 }

 public void removeItem(){

 setOrderList(getOrderList() - 1);

 }

 /**
 * @return the orderList

 */

 public int getOrderList() {

 return orderList;

 }

 /**
 * @param orderList the orderList to set

 */

 public void setOrderList(int orderList) {

 this.orderList = orderList;

 }

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

608

Note the comment within the CartBean class indicates that if you change the
scope to @RequestScoped, you will see a functional difference. the difference is
that the orderList field will retain its state for only one http request. therefore,
the number will never increase more than 1, and it will never decrease below -1.

What fun would this bean be if you did not use it within a Jakarta Server Faces view?

Well, let’s take a look at a Jakarta Server Faces view, named recipe11_04.xhtml, which

utilizes the CartBean class to display the orderList field. The view contains two buttons,

each of which is bound to different methods that reside within the CartBean class. One

button will increase the size of the orderList int, and the other button will decrease it:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Recipe 11-4: Determining Scope of a Bean</title>

 </h:head>

 <h:body>

 <p>

 <h:form>

 <h:outputText value="#{cartBean.orderList}"/>

 <h:commandButton value="Add Order" type="submit" action=

"#{cartBean.addItem()}"/>

 <h:commandButton value="Remove Order" type="submit" action=

"#{cartBean.removeItem()}"/>

 </h:form>

 </p>

 </h:body>

</html>

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

609

 How It Works
Depending upon an application’s requirement, some beans may need to retain state

longer than others. Sometimes it makes sense for each user of an application to have

its own version of a particular bean, whereas the state of the bean lives and dies with

the user’s session. Other times it makes more sense for a bean to share its state among

all users of an application, and still other times it makes sense for a bean’s state to live

and die with each user request. To specify the amount of time that a bean will retain its

state, annotate the bean class with one of the Jakarta CDI scope annotations. Table 11-1

describes the different scope annotations.

While it is easy to define a particular scope for a bean, sometimes it takes some

practice and testing to determine the correct scope for a particular application

requirement. Moreover, as an application evolves, it makes sense to review the different

scopes that have been applied to various beans to ensure that the assigned scope is still

desirable.

Table 11-1. Jakarta CDI Bean State Annotations

Annotation Description

@RequestScoped per user and retains state for a single http request.

@SessionScoped per user and retains state across multiple http requests.

@ApplicationScoped Shared state across all user interactions within an application.

@Dependent object exists to serve one client bean and contains the same life cycle as

the bean. (this is the default scope if none is specified.)

@ConversationScoped per user scope and is utilized within servlet-based application, such as one

that utilizes Jakarta Server Faces. Boundaries of the scope are controlled

via a developer and extend the scope across multiple invocations of the

servlet life cycle. all long-running conversations are scoped to a particular

servlet session and may not cross session boundaries.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

610

Note one of the most common mistakes when working with the scope
annotations is importing the wrong annotation for use within the bean. remember
that Jakarta Server Faces has its own set of scope-based annotations for use within
managed beans (only available for backward compatibility as of JavaServer Faces
2.3). always be sure to import from the javax.enterprise.context.* package
when working with Jakarta CdI scope, or you will achieve erroneous results.

11-5. Injecting Non-bean Objects
 Problem
You want to inject an object that is not a bean into another Java class.

 Solution
Use producer fields to inject objects that are not beans, objects that require custom

initialization, or objects that may have varying values at runtime. To create a Producer

field, annotate a public class field with the javax.injection.Produces annotation,

and return the field you want to inject. In most cases, you will also need to annotate a

producer method with a Jakarta CDI qualifier so that Jakarta CDI will know what to inject

when called upon.

In this example, a JavaBean named InitalValueController contains a producer

field that will be called upon to assign an initial value to Jakarta CDI bean fields. The

following source listing is that of the IntialValueController class, which contains the

producer field declaration:

package org.jakartaeerecipes.chapter11.recipe11_05;

import javax.enterprise.inject.Produces;

public class InitialValueController implements java.io.Serializable {

 @Produces @InitValue public int initialValue = 1000;

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

611

The producer field in the class listing contains a qualifier annotation of @InitValue.

The qualifier implementation is as follows:

package org.jakartaeerecipes.chapter11.recipe11_05;

import java.lang.annotation.*;

import javax.inject.Qualifier;

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD,

ElementType.PARAMETER})

@Qualifier

public @interface InitValue {}

The producer field can be called upon from anywhere. In this case, it is injected

into a Jakarta CDI bean in order to initialize a bean field value. In the following listing,

the Jakarta CDI bean field named ProducerExample demonstrates how to inject the

producer field and make use of it:

package org.jakartaeerecipes.chapter11.recipe11_05;

import javax.enterprise.context.SessionScoped;

import javax.inject.Inject;

import javax.inject.Named;

@Named

@SessionScoped

public class ProducerExample implements java.io.Serializable {

 @Inject

 @InitValue

 private int initial;

 private int orderList = -1;

 public ProducerExample(){

 }

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

612

 public void addItem(){

 setOrderList(getOrderList() + 1);

 }

 public void removeItem(){

 setOrderList(getOrderList() - 1);

 }

 /**
 * @return the orderList

 */

 public int getOrderList() {

 if (orderList == -1)

 orderList = initial;

 return orderList;

 }

 /**
 * @param orderList the orderList to set

 */

 public void setOrderList(int orderList) {

 this.orderList = orderList;

 }

}

When the orderList field is added to a Jakarta Server Faces view, the

getOrderList() method will be invoked upon the loading of the view because the

orderList property is called upon from the view. This will, in turn, cause the orderList

field value to become initialized the first time the Jakarta Server Faces view is loaded.

The following code demonstrates the use of the field within a Jakarta Server Faces view.

To see the sources, please look at the chapter11/recipe11_05.xhtml file:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

613

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

 <title>Recipe 11-5: Injecting Non-Bean Objects</title>

 </h:head>

 <h:body>

 <p>

 <h:form>

 <h:outputText value="#{producerExample.orderList}"/>

 <h:commandButton value="Add Order" type="submit" action=

"#{producerExample.addItem()}"/>

 <h:commandButton value="Remove Order" type="submit" action=

"#{producerExample.removeItem()}"/>

 </h:form>

 </p>

 </h:body>

</html>

 How It Works
Situations may arise when it makes sense to inject an object other than a Jakarta CDI

managed bean or resource. Objects such as fields, methods, and the like can become

injection targets if they are declared as producers. In some cases, it may make sense to

declare a class field as an injectable object. To do so, annotate the field with the javax.

enterprise.inject.Produces annotation (@Produces), and the EE container will

then treat the field as a getter method for the field. In most cases, a Jakarta CDI qualifier

annotation should also be created and used to annotate the field so that the field can be

referenced via the qualifier at the injection point.

In the solution to this recipe, a field that will be used to initialize values is declared

within a Java class named IntitialValueController. The field name is initialValue,

and it will return an int type, being the number that will be used for initialization.

Looking at the code, you can see that a qualifier named @InitValue is also placed at

the field declaration. This will allow the injection point to simply refer to the qualifier to

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

614

gain a handle on the injection target. To use the initialValue field, it is injected into a

Jakarta CDI managed bean as follows:

@Inject

@InitValue

private int initial;

Once injected, the field can be utilized as if it were part of the class into which it was

injected. In the case of this example, it is used to initialize the value of the orderList

field, which is then displayed via a Jakarta Server Faces view named chapter11/

recipe11_05.xhtml.

It is also possible to create producer methods, which can return values that are

injectable to a bean or non-Java (Jakarta Server Faces) context. In doing so, the

@Produces annotation is used to annotate the method in the same manner that a field

producer is declared. For example, the following method demonstrates the declaration

of a producer method that would be used to inject an object of the Book type. The

method can be called upon in order to return the desired Book object type, depending

upon the type that is passed to it:

@Produces @BookQualifier public Book getBook(Book book){

 if(book.equals(EbookController.class))

 return new EbookController();

 else

 return new PaperbackController();

 }

In this case, the method also uses a qualifier named @BookQualifier. The producer

method result can then be injected into a bean or non-Java context. The injection

point references the qualifier in order to make the injection possible, and the producer

method is called by the container to obtain the desired instance object as follows:

@Inject

@BookQualifier

Book getBook(ebookController);

Producers can be a great way to develop injectable objects. With a bit of practice,

they can also become valuable for creating sophisticated object factories via the use of a

producer method.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

615

11-6. Ignoring Classes
 Problem
You want to mark a class as ignored by Jakarta CDI.

 Solution #1
Denote the class with the @Veto annotation. Any class containing the @Veto annotation

will be ignored by Jakarta CDI. The following example demonstrates the use of @Veto:

@Veto

public class OrderBean implements java.io.Serializable {

 public OrderBean(){

 }

 // Class Implementation

}

 Solution #2
Denote the class with the @Requires annotation to mark the class as ignored by Jakarta

CDI if it does not meet the specified requirements. The following example demonstrates

how to utilize the @Requires annotation:

@Requires("javax.persistence.EntityManager")

public class EmployeeFacade {

 ...

 @Produces

 public EntityManager getEntityManager(){

 ...

 }

 ...

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

616

In this example, the @Requires annotation has a String containing javax.

persistence.EntityManager passed to it. As such, if the specified class is not available

and/or the class is unable to fulfil the specified dependency, then it will be ignored by

Jakarta CDI.

 How It Works
To veto a bean means to mark it as ignored by Jakarta CDI. Therefore, if a bean contains

the @Veto annotation, it cannot be processed by Jakarta CDI. A vetoed class will not

contain the life cycle of a contextual instance, and it cannot be injected into other

classes. In fact, if a session bean contains the @Veto annotation, it cannot be considered

a session bean at all. In some cases, it makes sense to mark a bean as such to ensure that

it cannot become managed by Jakarta CDI. The following code demonstrates how to

apply the @Veto annotation to a class.

The @Veto annotation can also be placed on a package declaration, which will

prevent all of the beans that are contained within that package from being processed via

Jakarta CDI:

@Veto

package org.jakartaeerecipes.chapter11.*;

...

Any of the following definitions on a vetoed type will not be processed:

• Managed beans, session beans, interceptors, decorators

• Observer methods, producer methods, producer fields

The @Requires annotation can be used to conditionally mark a class to be ignored by

Jakarta CDI if it does not meet the specified required criteria. The @Requires annotation

accepts a String-based fully qualified class name of the dependency or dependencies.

If the object is able to fulfil its dependencies, then it will be managed by Jakarta

CDI. Similar to @Veto, the @Requires annotation can be placed on a package as well. If

that package is unable to fulfill the dependency that is denoted by @Requires, then all

classes contained within that package will not be managed by Jakarta CDI.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

617

11-7. Disposing of Producer Fields
 Problem
Your application uses a producer field, and you want the producer field to be destroyed

once it is no longer required for use.

 Solution
Mark the producer field with the @Disposes annotation to indicate that it should be

removed once it is no longer in use. The following code excerpt demonstrates a producer

field that will be removed once it is no longer required for use:

...

 @Produces @Disposes

 List<Book> books;

...

 How It Works
A producer method can be used to generate an object that needs to be removed once

it is no longer needed. Much like a finalizer for a class, an object that has been injected

via a producer method can contain a method that is invoked when the injected instance

is being destroyed. Such a method is known as a disposer method. To declare a method

as a disposer method, create a method defined within the same class as the producer

method. The disposer method must have at least one parameter, with the same type and

qualifiers as the producer method. That parameter should be annotated with @Disposes.

As of Jakarta CDI 1.1, this technique can be applied to producer fields.

11-8. Specifying an Alternative Implementation
at Deployment Time
 Problem
You want to have the ability to code different implementations of an interface and then

choose which implementation to utilize when an application is deployed.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

618

 Solution
Create a default implementation for an interface, and then create any alternative

implementations for that interface and denote them with the @Alternative annotation.

Specifying the javax.enterprise.inject.Alternative annotation flags a class as

an alternate, and if that class is noted in the beans.xml file, then it will be loaded at

deployment time, rather than the default interface implementation.

The following code excerpt demonstrates the use of an alternative class

implementation. For the purposes of this demonstration, let’s assume that there is already

a default implementation for the OrderType interface named BookstoreOrderBean:

@Alternative

public class WarehouseOrderBean implements OrderType {

...

}

To specify the use of the alternative implementation rather than the default, modify

the beans.xml file by listing the alternative class. The following is an example excerpt

from the beans.xml file that designates the use of the WarehouseOrderBean:

<beans ... >

 <alternatives>

 <class>org.jakartaeerecipes.chapter11.WarehouseOrderBean</class>

 </alternatives>

</beans>

 How It Works
Sometimes it makes sense to create two or more implementations of a class for use in

different environments. However, it can become a cumbersome nightmare to remove

or rename classes in order to build and distribute the correct implementation for each

environment. The use of the javax.enterprise.inject.Alternative annotation

allows more than one implementation of an interface to be used, and the appropriate

implementation can be specified by altering the file before deployment.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

619

11-9. Injecting a Bean and Obtaining Metadata
 Problem
You want to acquire metadata information about a bean from within your application

classes.

 Solution
Inject the interface of a bean into the classes that need to utilize the metadata. Once it’s

injected, call upon the bean methods to retrieve the required metadata. In the following

example, a bean named OtherBean has its metadata injected and retrieved:

@Named("OtherBean")

public class OtherBean {

 @Inject Bean<Order> bean;

 public String getBeanName(){

 return bean.getName();

 }

 public Class<? extends Annotation> getBeanScope(){

 return bean.getScope();

 }

}

 How It Works
If you need to use bean metadata, you can easily obtain it by injecting the target bean’s

metadata. To do so, specify the @Inject annotation, followed by the bean class of the

target bean type. Once the bean interface has been injected, methods can be called upon

it to obtain the desired information. Table 11-2 describes the different methods that can

be called upon the Bean class to obtain metadata.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

620

11-10. Invoking and Processing Events
 Problem
You wish to invoke an action when a particular event occurs within your application.

 Solution
Process the event in a synchronous or asynchronous manner by creating a Jakarta CDI

event, an optional qualifier, observer, and event handling method. In this scenario, a

bookstore wishes to send an alert to the book publisher each time a sale occurs. If an

online sale occurs, the publisher will receive an alert to indicate as such. Similarly, if an

in-store sale occurs, the publisher will receive a different alert to indicate a store sale has

occurred. First, create a book event object to contain data elements that need to be made

available at event invocation. In this case, some simple data regarding the book, store of

sale, number of books, and price will be included in the event object. The source of the

BookEvent class is as follows:

package org.jakartaeerecipes.chapter11.event;

import java.math.BigDecimal;

import java.time.LocalDate;

Table 11-2. Bean Metadata

Method Description

getname returns the name of the bean

getBeanClass returns the bean class

getInjectionpoints returns a Set of Injectionpoint objects for the bean

getQualifiers returns a Set of qualifier annotations for the bean

getScope returns the scope of the bean

getStereotypes returns a Set of stereotype data (common metadata) for a bean

gettypes returns a Set of the bean types

isalternative returns a Boolean to specify whether the bean is an alternative

isnullable returns a Boolean to specify whether a bean can be nullable

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

621

import java.util.List;

public class BookEvent {

 private BigDecimal book;

 private String storeName;

 private BigDecimal price;

 private int numBooks;

 private LocalDate date;

 private List<String> notifyList;

 // accessor methods (getters and setters)

}

Next, create a qualifier for each type of book event that can occur. The qualifier is

an optional step, as it is only necessary when there will be more than one event of the

same type. In this case, an online sale event or a store sale event can occur. The qualifier

source for the OnlineSale is as follows, with the qualifier for the StoreSale being the

same with only a different name:

package org.jakartaeerecipes.chapter11.qualifier;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface OnlineSale {

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

622

Next, an observer needs to be used to listen for the event invocation and act upon

it once made. In this case, two observers will need to be generated, one for the

@OnlineSale and another for @StoreSale. The observers reside within a class named

BookEventHandler:

public class BookEventHandler {

 @Inject

 private BookController bookController;

 public BookEventHandler(){

 }

 public void notifyPublisherOnline (@Observes @OnlineSale BookEvent

event) {

 for (String s : event.getNotifyList()) {

 System.out.println("Sending Notification to Publisher: " + s +

" purchase of book online: "

 + bookController.findById(event.getBook()).getTitle()

+ " from store: " + event.getStoreName()

 + " purchase price: $" + event.getPrice()

 + " on: " + event.getDate());

 }

 }

 public void notifyPublisherInStore (@Observes @StoreSale BookEvent

event) {

 for (String s : event.getNotifyList()) {

 System.out.println("Sending Notification to Publisher: " + s +

" purchase of book in store: "

 + bookController.findById(event.getBook()).getTitle()

+ " from store: " + event.getStoreName()

 + " purchase price: $" + event.getPrice()

 + " on: " + event.getDate());

 }

 }

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

623

Lastly, create an event handling method that will invoke the Jakarta CDI event when

a sale is made. For this example, a simple Jakarta Server Faces user interface will be used

to invoke a sale event, so the event handling method will be placed into a Jakarta Server

Faces controller class:

@Named

@RequestScoped

public class BookstoreSaleController {

 @Inject

 @OnlineSale

 private Event<BookEvent> onlineSaleEvent;

 private BookEvent currentEvent;

 public BookstoreSaleController() {

 }

 /**
 * Fires synchronous Jakarta CDI event BookEvent.

 */

 public void onlineSaleAction() {

 onlineSaleEvent.fire(currentEvent);

 }

 /**
 * Fires asynchronous Jakarta CDI event BookEvent.

 */

 public void storeSaleAction() {

 onlineSaleEvent.fireAsync(currentEvent)

 .whenComplete((event, throwable) -> {

 if (throwable != null) {

 FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage(

 FacesMessage.SEVERITY_ERROR, "FAIL", "Error

has occurred " + throwable.getMessage()));

 } else {

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

624

 FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage(

 FacesMessage.SEVERITY_INFO, "SUCCESS",

"Successful Brick-and-Mortar Store Sale

Processing..."));

 }

 });

 }

 /**
 * @return the currentEvent

 */

 public BookEvent getCurrentEvent() {

 return currentEvent;

 }

}

When a sale is invoked, either an online or in-store sale type is chosen. Given the

selected sale type, the corresponding Jakarta Server Faces controller method is invoked.

 How It Works
Jakarta CDI events allow for decoupled event handling to occur among a number of

beans. The bean classes do not have any binding to one another, but context can be

passed between them, allowing beans to invoke contextual events without explicit

binding. To orchestrate events, only a few annotations need to be placed, as there is no

additional configuration. In the example, a bookstore is able to complete two types of

sales, those being online and in-store. Therefore, when a book is sold, an event is to be

invoked to notify the publisher and indicate which type of sale has been made.

To begin, a contextual object is used to contain data about each event. Therefore,

a bean named BookEvent is generated as a simple Plain Old Java Object (POJO). Next,

event qualifiers are coded for differentiation between the two types of possible events.

An event qualifier is simply an annotation that can be placed on an event handler, and

it is also used to create an event of the specified type. In the example, both online and

in-store event qualifiers are created. As seen in the code for the qualifier, the annotation

declaration is marked with the javax.inject.Qualifier annotation, and it is targeted

for use with the following: METHOD, FIELD, PARAMETER, TYPE.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

625

When an event is fired, an event handler is used to process the event. Event handlers

are also known as observers, and they are simply classes that contain at least one

method that can be used to contain the processing for the event. In the example, the

BookEventHandler class contains two methods that are used to perform the actions

of the events. Event handling methods must accept an event (simply an object) that is

annotated with an optional qualifier and the @Observes annotation. The @Observes

annotation signifies that the method is observing events of the type that is passed into

the method. In the example, the BookEvent object is used as a parameter, and it is

annotated with the qualifier annotation for each of the respective methods. Therefore,

the method named notifyPublisherOnline() observes events of type @OnlineSale,

and notifyPublisherInStore() observes @StoreSale event types.

Lastly, the event initiation occurs within a Jakarta CDI controller class in this

example, although some other class type could also invoke an action. In the example,

the BookstoreSalesController contains an injected Event<BookEvent> object, which

is used for firing events of type BookEvent. The controller contains methods for firing

online sales and also in-store sales. The online sale action method fires a synchronous

event by calling upon the injected Event fire() method and passing the current

BookEvent object. The fire() method initiates a synchronous event call, so once the

event processing is completed, control is returned to the caller.

The in-store sale action method fires an asynchronous event by calling upon the

injected Event fireAsync() method and passing the current BookEvent object. However,

in this scenario, once the fireAsync() method is initiated, control is passed back to

the caller, and the event is processed in the background. The fireAsync() method was

introduced with the release of Jakarta CDI 2.0 in Jakarta EE 8.

The Jakarta CDI event model can be harnessed to provide superpowerful solutions

for applications of all kinds. Since events can be called upon with a loosely coupled

architecture, it makes event invocation easy to achieve in new applications and easy to

add into existing applications.

11-11. Intercepting Method Invocations
 Problem
You wish to intercept a method invocation in an application, such that each time the

method is called upon, special functionality will occur.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

626

 Solution
Utilize a Jakarta CDI interceptor to invoke special functionality each time a specified

method, or all methods within a specified class, is called upon. In the following scenario,

an interceptor will be utilized to send an email to an administrator each time certain

methods of an application are called upon. In this example, each time a book order is

canceled, then the email is invoked.

To begin, an annotation must be generated for the interceptor. The interceptor

annotation in this case is named Notified, and the sources are as follows:

package org.jakartaeerecipes.chapter11.interceptor;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.TYPE;

import java.lang.annotation.Inherited;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Target;

import javax.interceptor.InterceptorBinding;

@Inherited

@InterceptorBinding

@Retention(RUNTIME)

@Target({METHOD,TYPE})

public @interface Notified {

}

Next, the interceptor class can be created. The interceptor class is annotated with

@Interceptor, and it contains a method which is annotated @AroundInvoke. This

annotated method will be invoked whenever some method that is annotated with

@Notified or a method contained within a class that is annotated with @Notified is

invoked. In this case, the interceptor class is named NotificationInterceptor, and its

implementation is as follows:

package org.jakartaeerecipes.chapter11.interceptor;

import java.util.Date;

import java.util.Properties;

import javax.interceptor.AroundInvoke;

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

627

import javax.interceptor.Interceptor;

import javax.interceptor.InvocationContext;

import javax.mail.Message;

import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;

import javax.mail.internet.MimeMessage;

@Interceptor

@Notified

public class NotificationInterceptor {

 @AroundInvoke

 public Object emailNotification(InvocationContext ctx) throws Exception {

 String smtpServer = "mysmtpserver.com";

 String email = "publisherEmail@publisher.com";

 Properties props = System.getProperties();

 props.put("mail.smtp.host", smtpServer);

 Session session = Session.getInstance(props, null);

 sendEmail(session,

 email,

 "Method invocation",

 "Entering method: " + ctx.getMethod().getName());

 return ctx.proceed();

 }

 protected void sendEmail(Session session, String toEmail, String

subject, String body) {

 try {

 MimeMessage msg = new MimeMessage(session);

 //set message headers

 msg.addHeader("Content-type", "text/HTML; charset=UTF-8");

 msg.addHeader("format", "flowed");

 msg.addHeader("Content-Transfer-Encoding", "8bit");

 msg.setFrom(new InternetAddress("no_reply@jakartaeerecipes.

com", "NoReply"));

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

628

 msg.setReplyTo(InternetAddress.parse("no_reply@

jakartaeerecipes.com", false));

 msg.setSubject(subject, "UTF-8");

 msg.setText(body, "UTF-8");

 msg.setSentDate(new Date());

 msg.setRecipients(Message.RecipientType.TO, InternetAddress.

parse(toEmail, false));

 Transport.send(msg);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Lastly, a class or method(s) must be designated for interception. In this example, we

wish to notify the administrator each time someone logs into the administrative console:

@Notified

@Named

@RequestScoped

public class AdminConsoleController {

 public AdminConsoleController(){

 }

 public void login(){

 System.out.println("This is an action method which would allow one

to log into an"

 + "administrative console");

 }

}

In the preceding example code, the login() method would actually be used to

authenticate an individual to the administrative console for the bookstore. However,

since this is for demo purposes only, it merely displays a message in the system log. In

order to enable this interceptor, the following lines must be added to the beans.xml

configuration:

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

629

<interceptors>

 <class>org.jakartaeerecipes.chapter11.interceptor.NotificationInterceptor

 </class>

 </interceptors>

 How It Works
Interceptors allow cross-cutting functionality to be introduced into a new or existing

application without explicitly modifying the code of specified classes or methods. An

interceptor allows the functionality to be executed due to an invocation of the specified

methods or due to invocation of a method within a specified class. As such, interceptors

are very similar to Jakarta CDI events, except they do not require an explicit call to

fire() or fireAsync() for invocation.

An interceptor solution requires an interceptor binding type annotation and an

implementation class. The interceptor binding type annotation is a standard annotation

declaration containing the @Inherited and @InterceptorBinding annotations. The

 @Inherited annotation denotes that the annotation can be inherited from superclasses.

The interceptor binding type annotation should contain a target of METHOD and TYPE.

The interceptor implementation class can contain methods annotated with

@AroundInvoke, @PostConstruct, @PreDestroy, @PrePassivate, @PostActivate, and

@AroundTimeout. These annotations are used to specify when the interceptor method

will be invoked. When a class or a method is annotated with the interceptor binding,

then the interceptor implementation will be invoked based upon the specified

implementation. @AroundInvoke specifies that the implementation will be executed

when the intercepted method is being invoked. The life-cycle callback annotations

(@PostConstruct, @PreDestroy, @PrePassivate, and @PostActivate) specify that the

interceptor implementation will be invoked when the intercepted method or class enters

the specified state. Lastly, the @AroundTimeout annotation is used to indicate that the

implementation will be invoked when the intercepted method has an EJB timeout occur.

The @AroundInvoke annotation carries with it a couple of requirements. If an

implementation method is annotated as such, it must accept a javax.interceptor.

InvocationContext argument, and it must call upon that argument’s proceed()

method. The invocation of the proceed() method causes the target to be invoked.

An interceptor implementation class can contain one or more methods annotated

with the aforementioned annotations. However, only one of each type can be specified

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

630

within a given implementation class. In order to enable an interceptor, it must be

specified within the beans.xml, as indicated in the example.

Interceptors can be a great way to add additional functionality to a process without

modifying the existing code. They work well for performing actions such as logging

each time a method is accessed. Typically an interceptor can be reused in multiple

circumstances because the functionality is generic and not bound to a specific line of

business logic. To learn more about adding more specific business logic functionality to

existing methods, please refer to Recipe 11-13 covering decorators.

11-12. Bootstrapping Java SE Environments
 Problem
You wish to utilize the capabilities of Jakarta CDI in a Java SE environment, outside of a

Jakarta EE container.

 Solution
Bootstrap the Java SE application using the SeContainerInitializer. In this example, a

standard Java SE application named BootstrapExample has been created. A beans.xml is

added to the application’s META-INF folder using the Jakarta CDI 2.0 references:

public class BootstrapExample {

 public static void main(String[] args) {

 SeContainerInitializer initializer = SeContainerInitializer.

newInstance();

 try (SeContainer container = initializer.initialize()) {

 /**
 * work with Jakarta CDI

 */

 BookstoreBean storeBean = container.select(BookstoreBean.

class).get();

 storeBean.setStoreName("Java Gurus");

 storeBean.printStore();

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

631

 }

 }

}

When this block of code is executed, the SeContainer can be used to work with

Jakarta CDI capabilities.

 How It Works
There are oftentimes situations where a standard Java SE application would benefit

from using the utilities which Jakarta CDI has to offer. The Jakarta CDI 2.0 release has

made this possible with the addition of the Bootstrapping API. In order to bootstrap, you

must include the Jakarta CDI dependencies in the application. One must also include

a beans.xml file to indicate that Jakarta CDI will be utilized. If using a Maven project,

use coordinates for the cdi-core dependency as seen in the following (update version as

needed):

<dependency>

 <groupId>org.jboss.weld.se</groupId>

 <artifactId>weld-se-shaded</artifactId>

 <version>3.0.0.Final</version>

</dependency>

The beans.xml file should contain the Jakarta CDI configuration information. The

following beans.xml source provides the minimum configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.

jcp.org/xml/ns/javaee/beans_2_0.xsd"

 bean-discovery-mode="all" version="2.0">

</beans>

The SeContainerInitializer class can be used to return an instance of itself. It can

be used to configure the Jakarta CDI container for your application by calling upon its

many customization methods.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

632

Note please see the online documentation for full details (http://docs.
jboss.org/cdi/api/2.0/).

The SeContainerInitializer class should be utilized following the builder pattern

for configuring options, and the last method to call upon should be its initialize(),

as seen in the example. The SeContainerInitializer is auto-closable, so it works well

within a try-with-resources block. All of the Jakarta CDI usage can occur within the try

block. In the example, a contextual bean is obtained and used.

While this example is brief, it shows how easy it is to bootstrap a Jakarta CDI

configuration for a Java SE application.

11-13. Enhancing Business Logic of a Method
 Problem
You would like to enhance the functionality of an existing method, including the ability

to integrate with a bean’s business logic.

 Solution
Utilize a decorator to implement an enhancement of functionality for an existing

method. In the following example, a decorator is generated for an existing method in

order to enhance functionality by logging to a database. In this particular example, a

registration form is used to register for a bookstore event. The decorator will be used to

enhance the registration process by adding the registrant into a different database table

for entry into a drawing.

To begin, each registrant must enter their first name, last name, and email address.

This information will go into a Registration object. The object code is as follows:

public class Registration {

 private String first;

 private String last;

 private String email;

 public Registration(){

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

http://docs.jboss.org/cdi/api/2.0/)
http://docs.jboss.org/cdi/api/2.0/)

633

 }

// . . . Getters and Setters

}

Next, an interface must be generated for the registration type. In this case, each

registration type must contain a method register() that accepts a Registration object:

public interface BookstoreRegistration {

 public String register(Registration registration);

}

Now create a decorator, which is a public abstract class that takes the interface that

was created earlier as an injection point:

package org.jakartaeerecipes.chapter11.decorator;

import javax.decorator.Decorator;

import javax.decorator.Delegate;

import javax.enterprise.inject.Any;

import javax.inject.Inject;

import org.jakartaeerecipes.chapter11.recipe11_13.BookstoreRegistration;

import org.jakartaeerecipes.chapter11.recipe11_13.Registration;

@Decorator

public abstract class RegistrationDecorator implements

BookstoreRegistration {

 @Inject

 @Delegate

 @Any

 private BookstoreRegistration bookstoreRegistration;

 @Override

 public String register(Registration registration){

 // Submit to registration database table

 // Submit to promotional database table

 return registration.getEmail() + " has been entered into the

giveaway";

 }

}

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

634

Lastly, we need to invoke the register method to initiate the decorator functionality.

In this example, we invoke via a Jakarta Server Faces controller class method:

@Named

@ViewScoped

public class BookstoreRegistrationController implements

BookstoreRegistration, Serializable {

 @Inject

 private Registration current;

 public BookstoreRegistrationController(){

 }

// Getters and Setters

 public String register(){

 return register(current);

 }

 @Override

 public String register(Registration registration) {

 // Persist current registration

 return "chapter11/recipe11_13.xhtml";

 }

}

When the register() method is invoked, the enhanced decorator functionality will

also be invoked to add the registrant to the giveaway database table.

 How It Works
Decorators are another powerful component of Jakarta CDI. Much like interceptors,

decorators add enhanced functionality to existing methods. These two constructs differ

from each other in that decorators enhance functionality and have access to bean fields

and methods for which the enhanced functionality is occurring. Interceptors, on the

other hand, do not have access to bean fields and methods and therefore provide a more

generic functionality in addition to the standard functionality of an existing method.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

635

To create a decorator, one must utilize an interface as an injection point, and one or

more of the interface methods will be enhanced via implementation that is added to the

decorator class. In the example, a standard bookstore account registration is enhanced

by adding the registrant into a sweepstakes giveaway. Although the example does not

actually demonstrate the database persistence and others, if the code is executed, then

you can see the decorator being invoked.

The decorator class must be denoted with a @Decorator annotation, and it must

implement an interface and contain at least one method implementation. However, the

decorator class can be made abstract so that it does not have to implement each of the

methods contained within the interface. A decorator must contain a delegate injection

point, which is annotated with javax.decorator.Delegate. This injection point can be a

field, constructor parameter, or initializer method parameter of the decorator class.

In order to enable a decorator, it must be added to the beans.xml file. The following

beans.xml demonstrates the addition of RegistrationDecorator:

<decorators>

 <class>org.jakartaeerecipes.chapter11.decorator.RegistrationDecorator

</class>

</decorators>

An application can contain more than one decorator, of course. To manage the

order in which the decorators are fired, use the beans.xml and list in the order of

priority. Another way to manage priority is to annotate a decorator with the @Priority

annotation. Interceptors take precedence over decorators, so if a method contains both

an interceptor and a decorator, the interceptor will be fired first.

ChaptEr 11 ContExtS and dEpEndEnCy InJECtIon

637
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_12

CHAPTER 12

Java Message Service
The Java Message Service (JMS) is an API that allows software to create, edit, read, and

send messages between other software applications or components. The API allows

resources to be created within an application server that facilitates messaging capability

in various contexts. The application server houses connection factories and destination

resources, and these resources are created and maintained by the application server.

That said, different application server implementations might have minor differences in

their JMS implementations.

In addition to the basic messaging facilities, JMS also provides the ability to send

messages to destinations and publish messages to subscriptions. This chapter contains

recipes that focus on basic concepts of JMS, as well as some advanced techniques and

additions that were made available to the Java EE platform with the release of Java

EE 7. When following along with the examples in this chapter, it should be noted that

JMS could be used in various situations for creating many different types of messages.

For brevity, this chapter will cover essential concepts and make use of TextMessage

objects only. The examples will be invoked using JSF view actions, although in real-life

applications, there are many different ways to implement the sending and receiving

of messages. From internal message invocation to scheduled tasks via an EJB timer

or ManagedExecutorService and even implementation of JMS messaging with EJB

message-driven beans, JMS can be utilized in many different contexts. After reading

through the recipes, you should be able to apply the strategies utilized within the recipes

in order to create the messaging system of your needs.

JMS 2.0 revamped the API with a simplified technique for sending and receiving

messages. In this chapter, you will see both the legacy standard API and the simplified

API so that the differences can be compared. The updated API also included

enhancements to message subscriptions, delivery delay, and more. The breadth of JMS

is far too large for complete coverage in this single chapter. To learn about all of the

features, please refer to the JMS 2.0 specification.

638

Note The examples in this chapter focus on working with JMS resources within
a GlassFish application server environment. Some of the recipes demonstrate
the use of Apache NetBeans IDE for producing and working with JMS resources.
However, although the focus is on GlassFish 5.1, the main concepts and techniques
can be carried forth for just about every Jakarta EE–compliant application server
environment. For more specific details on working with another application
server or IDE, please see the documentation that is specific to the corresponding
environment.

12-1. Creating JMS Resources
 Problem
You would like to provide the ability to create a JMS resource to deploy within a

GlassFish 5.1+ application server environment.

 Solution #1

The easiest technique for creating JMS resources is to utilize an IDE, such as Apache

NetBeans. In this example, a standard JMS connection factory will be created for an

application project utilizing the Apache NetBeans IDE:

 1. Right-click the project within the Apache NetBeans Projects

navigator menu; choose New and then Other. The New File wizard

will open, from which you will select the GlassFish menu option

from the Categories select list, followed by the JMS Resource file

type (see Figure 12-1).

CHApTEr 12 JAvA MESSAGE SErvICE

639

 2. Within the New JMS Resource wizard, enter a JNDI name (using

jms/ prefix) and a description. If you would like to enable the

resource, be sure to do so within this wizard screen as well. Next,

select the resource type that you wish to create. In this example,

we will demonstrate the creation of a connection factory, as seen

in Figure 12-2.

Figure 12-1. Create JMS resource file from within NetBeans

CHApTEr 12 JAvA MESSAGE SErvICE

640

 3. Click Finish, and a file named glassfish-resources.xml will be

created within your project if it does not already exist. When you

deploy the application project to the server, the resource will be

automatically created for you, as shown in Figure 12-3.

Note You can utilize the same steps to create javax.jms.
TopicConnectionFactory and javax.jms.QueueConnectionFactory
resources.

Figure 12-2. New JMS Resource wizard

CHApTEr 12 JAvA MESSAGE SErvICE

641

 Solution #2

Create a new JMS resource from within the GlassFish or Payara application server

administrative console. In this recipe example, we will create a JMS destination resource.

Specifically, we will walk through the creation of a javax.jms.Queue resource. Follow

these steps to create the resource:

 1. Log into the GlassFish or Payara administrative console by

navigating to https://localhost:4848. Expand the Resources

➤ JMS Resources menu in the navigation tree to expose the

Destination Resources menu option (see Figure 12-4).

Figure 12-3. glassfish-resources.xml file within a NetBeans project

Figure 12-4. GlassFish and Payara administration console Destination
Resources menu

CHApTEr 12 JAvA MESSAGE SErvICE

642

 2. Click the New button within the JMS Destination Resource

window to open the New JMS Destination Resource window.

Enter a JNDI name (beginning with jms/), followed by a unique

name for the Physical Destination Name field. Finally, choose the

resource type that you wish to create.

 3. Click OK to create the destination.

Note The GlassFish/payara asadmin create-jms-resource command can
also be used to create JMS-administered objects from the command line. The
asadmin tool can also be used to perform other tasks. For more information,
please refer to the documentation at https://eclipse-ee4j.github.io/
glassfish/docs/5.1.0/application-development-guide/setting-
up- dev-env.html#GSDVG00333.

 How It Works
The JMS API utilizes administrative resources in order to create and consume messages.

We refer to these resources as JMS resources. There are a couple of different types of JMS

resources that can be created—connection resources and destination resources. The

connection resources are used to create connections to a provider. There are three types

of connection resources that can be created:

• ConnectionFactory: Instance of the javax.jms.ConnectionFactory

interface. Can be used to create JMS Topics and JMS Queue types

• TopicConnectionFactory: Instance of the javax.jms.

TopicConnectionFactory interface

• QueueConnectionFactory: Instance of the javax.jms.

QueueConnectionFactory interface

CHApTEr 12 JAvA MESSAGE SErvICE

https://eclipse-ee4j.github.io/glassfish/docs/5.1.0/application-development-guide/setting-up-dev-env.html#GSDVG00333
https://eclipse-ee4j.github.io/glassfish/docs/5.1.0/application-development-guide/setting-up-dev-env.html#GSDVG00333
https://eclipse-ee4j.github.io/glassfish/docs/5.1.0/application-development-guide/setting-up-dev-env.html#GSDVG00333

643

JMS connection factory resources are very similar to JDBC connection factories in

that they provide a pool of connections that an application can use in order to connect

and produce a session. There are many attributes that can be provided when creating

connection factory resources:

• Initial and Minimum Pool Size: The initial and minimum number of

connections that will be created and maintained by the connection

pool.

• Maximum Pool Size: The maximum number of connections that can

be created within the pool.

• Pool Resize Quantity: The number of connections that will be

removed when the pool idle timeout expires.

• Idle Timeout: The maximum amount of time that connections can

remain in the pool if they are idle (seconds).

• Max Wait Time: The maximum amount of time that a caller will wait

before a connection timeout is sent (milliseconds).

• On Any Failure: If set to true (checked), all connections would be

closed and reconnected on failure.

• Transaction Support: The level of transaction support (XATransaction,

LocalTransaction, NoTransaction). The default is empty.

• Connection Validation: If set to true, then connections will need to be

validated.

Note XATransaction always deals with a coordinating transaction manager,
including one or more databases, all within a single global transaction. Non-XA
transactions always involve a single resource.

Solution #1 to this recipe demonstrates how to create a connection factory resource

using the Apache NetBeans IDE. This step-by-step procedure makes it easy to create

such objects and deploy them to your GlassFish or Payara application server for use. You

can also create connection factory objects using the GlassFish or Payara administrative

console by following the steps that are provided in Solution #2 to this recipe and

choosing the Connection Factories submenu rather than the Destination Resources

CHApTEr 12 JAvA MESSAGE SErvICE

644

submenu in step 1. ConnectionFactory objects are registered automatically with JNDI

once created, and they can then be injected into Java classes and used. The following

lines of code demonstrate how to inject a ConnectionFactory resource into a class:

@Resource(name = "jms/MyConnectionFactory")

private static ConnectionFactory connectionFactory;

Destination resources can also be created in a similar fashion to connection

resources. Destination resources act as targets that receive or consume messages that

are produced. Destination resources can be one of two types: javax.jms.Queue (Queue)

or javax.jms.Topic (Topic). A Queue is a destination resource that consumes messages

in a point-to-point (PTP) manner, much like a one-way line of traffic. When a producer

sends a message to a queue, the message will stay in the queue until it is consumed.

A topic is a destination that is used in a publisher/subscriber scenario, whereas messages

sent to a Topic may be consumed by multiple receivers. One or more receivers can

subscribe to a Topic.

Solution #2 demonstrates how to create a destination resource within a GlassFish

or Payara application server, using the administration console. The console provides

a wizard that can be used to easily create a destination resource. The most important

piece of information to provide when creating a destination is the name. As with any JMS

resource, the JNDI name should begin with the jms/ prefix. When creating a destination

resource, a unique name must also be provided for the Destination Resource Name,

although other Jakarta EE–compliant containers may or may not make this a mandatory

specification. Destination resources can be injected into Java classes in the same manner

as ConnectionFactory resources. The following lines of code demonstrate the injection

of a Topic resource:

@Resource(name="jms/myTopic")

private Topic myTopic;

CHApTEr 12 JAvA MESSAGE SErvICE

645

12-2. Creating a Session
 Problem
You would like to create a JMS session so that you can send or consume messages.

 Solution
Create a connection so that you can subsequently create one or more sessions, which

in turn can send messages to destinations or consume messages. In order to create

a connection, obtain a ConnectionFactory object by injection via the @Resource

annotation, and call its createConnection method as demonstrated in the following

line of code:

Connection connection = connectionFactory.createConnection();

After you have created a connection, you need to start a session. In order to do so,

call the connection object’s createSession method as follows:

Session session = connection.createSession(false,

 Session.AUTO_ACKNOWLEDGE);

Note If you are using the simplified JMS ApI, which is covered in more detail in
recipe 12-3, you do not need to manually create a JMS session. The creation of a
JMS session is only required when utilizing the standard ApI.

 Running the Example

If you take a look at the sources that can be found in the JakartaEERecipes project within

the org.jakartaeerecipes.chapter12 package, you can see a full demonstration for creating

a JMS session. To see the example in action, deploy the JakartaEERecipes project to your

application server after setting up a JMS connection factory (see Recipe 12-1), and visit

the following URL:

http://localhost:8080/JakartaEERecipes/faces/chapter12/recipe12_02.xhtml.

CHApTEr 12 JAvA MESSAGE SErvICE

646

 How It Works
Before you can begin to send or consume messages, you must obtain a JMS connection

so that you can start a session. A session can be used to create JMS resources such as

message consumers, message producers, messages, queue browsers, and temporary

queues and topics. A session can be created using a Connection object. To create a

session, call a Connection object’s createSession method, and pass the appropriate

arguments depending upon your application’s needs. The createSession syntax is

as follows:

createSession(boolean isTransacted, int acknowledgementType)

The first argument to the createSession method is a Boolean value to indicate if

transactions should take place within the session. If a session is created as transacted

(set to true for the first argument to createSession), acknowledgment occurs once

the entire transaction is successfully committed. If for some reason the transaction is

not committed, the entire transaction is rolled back, and all messages are redelivered.

However, if a session is not transacted, one must indicate which type of acknowledgment

must be received to consider a message successfully sent. The second argument to the

createSession method indicates the acknowledgment type. Table 12-1 lists the different

acknowledgment types along with a description of each.

Table 12-1. JMS Session Message Acknowledgment

Acknowledgment Type Description

Session.AUTO_ACKNOWLEDGE The session automatically acknowledges a client’s receipt of

a message, either when the client has successfully returned

from a call to receive or when the MessageListener it has

called to process the message has successfully returned.

Session.CLIENT_ACKNOWLEDGE The client acknowledges the receipt of a message by calling

the message’s acknowledge method.

Session.DUpS_OK_ACKNOWLEDGE Lazy acknowledgment of messages, allowing duplicates to be

received.

CHApTEr 12 JAvA MESSAGE SErvICE

647

In the solution to this recipe, the session that is created is non-transactional, and

the receipt type is Session.AUTO_ACKNOWLEDGE. This is the most common type of JMS

session that is created. Once the session has been created, then it can be used to create

JMS resources.

12-3. Creating and Sending a Message
 Problem
You wish to create and send a JMS message.

 Solution #1

Make use of the standard API to create and send a message. To do so, create a Message

object with respect to the type of message you wish to send, and then create and use

a message producer in order to send messages to a destination. To create a message,

first decide upon the type of message that you wish to send. Once decided, create the

appropriate message object from the JMS session. In this example, we’ll demonstrate the

creation of a text message. The following lines of code demonstrate how to create a text

message including a String.

TextMessage message = session.createTextMessage();

message.setText("Jakarta EE 8 Is the Best!");

Next, to create a MessageProducer and send the message, call a JMS session’s

createProducer method, and pass the object type of the destination to which you wish

to send a message. The following lines of code demonstrate how to create a message

producer and send the text message that was created in the previous lines. The first lines

of code demonstrate how to inject the destination resource, and then the actual creation

of the message producer and sending of the message follows:

@Resource(name="jms/jakartaEERecipesQueue")

private Queue myQueue;

...

 public void sendMessage() {

 if (connection != null) {

 System.out.println("Creating Session");

CHApTEr 12 JAvA MESSAGE SErvICE

648

 try(Session session = connection.createSession(false, Session.

AUTO_ACKNOWLEDGE);

) {

 myQueue = (Queue) getContext().lookup("jms/

jakartaEERecipesQueue");

 MessageProducer producer = session.createProducer(myQueue);

 TextMessage message = session.createTextMessage();

 message.setText("Jakarta EE 8 Is the Best!");

 producer.send(message);

 producer.close();

 setConnectionString("Message Successfully Sent to Queue");

 } catch (NamingException | JMSException ex) {

 System.out.println(ex);

 setConnectionString("Session not created and message not sent");

 }

 } else {

 setConnectionString("No connection available");

 }

 }

 Solution #2

Make use of the simplified API to create and send a message. To utilize the simplified

API, create a JMSContext object, and then utilize it to create a MessageProducer and send

the message to the appropriate destination. In the following example, a simple String-

based message is sent to a Queue using the simplified API. This technique provides the

same result as Solution #1:

@Resource(name = "jms/jakartaEERecipesConnectionFactory")

 private ConnectionFactory connectionFactory;

 @Resource(lookup = "jms/jakartaEERecipesQueue")

 Queue inboundQueue;

...

CHApTEr 12 JAvA MESSAGE SErvICE

649

 public void sendMessageNew() {

 try (JMSContext context = connectionFactory.createContext();) {

 StringBuilder message = new StringBuilder();

 message.append("Jakarta EE 8 Is the Best!");

 context.createProducer().send(inboundQueue, message.toString());

 }

 }

 Running the Examples

An example that can be run from within a JSF view has been created for this recipe. The

code found at org.jakartaeerecipes.chapter12.Example12_03.java contains a managed

bean that includes a sendMessage method that utilizes the standard API implementation

and a sendMessageNew method that utilizes the simplified API. Both methods are

responsible for creating a message and sending it to a destination Queue. By running the

example, you can look at the server log to see the output from the method. Deploy the

JakartaEERecipes project and visit the following URL to run the example:

http://localhost:8080/JakartaEERecipes/faces/chapter12/recipe12_03.xhtml.

 How It Works
The reason that any application makes use of JMS is to incorporate the ability to send

or receive messages. Therefore, it is no surprise that the JMS API has been developed to

make these tasks very easy for the developer. In Java EE 7, things were made even easier

using the simplified JMS API.

Let’s begin by discussing the steps that are needed to utilize the standard API for

sending a JMS message. To send a JMS message using the standard API, you need to

create a resource destination for your message and obtain a connection and a JMS

session, as seen in Recipes 12-1 and 12-2. Once you have obtained a JMS session, the

next step is to create a MessageProducer using the Session createProducer method,

passing the destination as an argument. After this legwork has been completed, the

message can be constructed. You can create a message by calling the javax.jms.

Session method that corresponds to the type of message that you wish to create.

CHApTEr 12 JAvA MESSAGE SErvICE

650

Note To see all of the available methods, please refer to the online
documentation at

https://jakarta.ee/specifications/platform/8/apidocs/javax/
jms/class-use/Session.html#javax.jms.

In the example for this recipe, a text message is created by calling the session.

createTextMessage() method. The text is then set by calling the TextMessage object’s

setText method.

Once a message has been created, a MessageProducer must be created in order to

facilitate the sending of the message. Again, javax.jms.Session comes to the rescue

here as we can call its createProducer method, passing the destination resource

for which we’d like to create the MessageProducer. Once created, the producer’s

sendMessage method can be invoked, passing the message that you wish to send.

As mentioned previously, the javax.jms.Session can be used to generate different

message types. Table 12-2 lists the different message types that can be created, along

with a description.

Table 12-2. JMS Message Types

Message Type Creation Method

StreamMessage The message body contains a stream of primitive values in the Java programming

language. Filled and read sequentially.

MapMessage The message body contains a set of name/value pairs that are formed from String

objects and Java primitives. May be accessed sequentially or randomly by name,

and the order of entries is undefined.

TextMessage The message body contains a String object. Able to be used for plain text as well

as XML messages.

ObjectMessage The message body contains a serializable Java object.

BytesMessage The message body contains a stream of uninterpreted bytes.

CHApTEr 12 JAvA MESSAGE SErvICE

https://jakarta.ee/specifications/platform/8/apidocs/javax/jms/class-use/Session.html#javax.jms
https://jakarta.ee/specifications/platform/8/apidocs/javax/jms/class-use/Session.html#javax.jms

651

When utilizing the simplified API that was introduced with Java EE 7, there are a

few shortcuts that can be made. To compare Solution #1 with Solution #2, you can see

that there are fewer lines of code in the second solution. The simplified API enables

developers to produce the same results as the standard API with much less code. A

JMSContext object is obtained via a call to the ConnectionFactory’s createContext

method, and it can be used to begin a chain of method invocations that will result in the

sending of a message in just one line of code. To break it down a bit, after the JMSContext

has been obtained, its createProducer method can be called, chaining a call to the send

method, passing the Queue and the message to be sent.

JMS message implementations may vary between the different application server

products. However, all JMS message types share some common characteristics. For

instance, all JMS messages implement the javax.jms.Message interface. Messages

are composed of a header, properties, and a body. The header of a message contains

values that are utilized by clients and providers for routing and identification purposes,

properties provide message filtering, and the body portion of the message carries

the actual message content or payload. The message header is used for linking

messages to one another, and a field named JMSCorrelationID contains this content.

Message objects contain the ability to support application-defined property values.

The properties can be set via a construct known as message selectors, and they are

responsible for filtering messages. For more detailed information regarding the

Message interface, please see the online documentation at https://jakarta.ee/

specifications/platform/8/apidocs/javax/jms/Message.html. The body varies

across the different message types, as listed in Table 12-2.

It can be useful to add properties and headers to a particular message in order to

allow message consumers to have filtering capabilities via JMS message selectors. To

learn more about using JMS message selectors, please refer to Recipe 12-5.

CHApTEr 12 JAvA MESSAGE SErvICE

https://jakarta.ee/specifications/platform/8/apidocs/javax/jms/Message.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/jms/Message.html

652

12-4. Receiving Messages
 Problem
You would like to receive messages that have just been sent by a JMS producer.

 Solution #1

Make use of the standard JMS API to create a message consumer. Using the JMS session,

create the message consumer by calling the createConsumer method, passing the type

of message consumer that you would like to create. Once the message consumer object

has been created, invoke the start method on the JMS connection object, and then call

the consumer object’s receive method to receive a message. In the following example

controller class, a message consumer will be created and set up to receive the message

that was sent by the producer in Recipe 12-3.

The following code excerpt is taken from the org.jakartaeerecipes.chapter12.

recipe12_04.Example12_04.java source file. The method named receiveMessage is

responsible for consuming messages from a specified destination point Queue. Note that

the code assumes that the messages within the queue would eventually end and that

there would not be a continuous stream of incoming messages:

public void receiveMessage() {

 boolean stopReceivingMessages = false;

 if(connection == null){

 createConnection();

 }

 try(Session session = connection.createSession(false, Session.AUTO_

ACKNOWLEDGE);) {

 createConnection();

 myQueue = (Queue) getContext().lookup("jms/jakartaEERecipesQueue");

 try (MessageConsumer consumer = session.createConsumer(myQueue)) {

 connection.start();

 while (!stopReceivingMessages) {

 Message inMessage = consumer.receive();

 if (inMessage != null) {

 if (inMessage instanceof TextMessage) {

CHApTEr 12 JAvA MESSAGE SErvICE

653

 String messageStr = ((TextMessage) inMessage).

getText();

 setDisplayMessage(messageStr);

 } else {

 setDisplayMessage("Message was of another type");

 }

 } else {

 stopReceivingMessages = true;

 }

 }

 connection.stop();

 }

 } catch (NamingException | JMSException ex) {

 Logger.getLogger(Example12_04.class.getName()).log(Level.SEVERE,

null, ex);

 } finally {

 if (connection != null){

 closeConnection();

 }

 }

 }

 Solution #2

Utilize the simplified API to create a message consumer. Utilize a JMSContext object to

create the JMSConsumer in an efficient and simplified manner. The following example

method resides within a managed bean controller. The message consumer in this

example will be created and set up to receive the message that was sent by the producer

in Recipe 12-3:

 public String receiveMessageNew() {

 try (JMSContext context = connectionFactory.createContext()) {

 JMSConsumer consumer = context.createConsumer(myQueue);

 return consumer.receiveBody(String.class);

 }

 }

CHApTEr 12 JAvA MESSAGE SErvICE

654

 Running the Example

The JakartaEERecipes project contains a working example for this recipe that

demonstrates the sending and receiving of JMS messages. To view the example, you will

need to deploy the project to your application server and then visit the following URL:

http://localhost:8080/JakartaEERecipes/faces/chapter12/recipe12_04.xhtml

 How It Works
The receiving client of a message is also known as the message consumer. Message

consumers can be created using the standard or the simplified JMS API. We will compare

these two approaches in this section to give you an idea of the differences between the two.

Using the standard API, a consumer is created from JMS session objects in the same

manner that producers are created (see Recipe 12-3), calling the createConsumer method

of the JMS session and passing the destination object from which the consumer will listen

for and accept messages. Message consumers have the ability to consume messages that

are waiting within a queue, and they listen indefinitely for new incoming messages.

To set up a consumer, call the JMS session object’s createConsumer method, and

pass the destination object that you wish to consume from. The next step is to call the

JMS connection start method. This will tell JMS that the consumer is ready to begin

receiving messages. After invoking the connection.start() method, a consumer can

receive a message by calling the Consumer object’s receive method, optionally passing

time in milliseconds for the consumer to listen for messages. If no time limit is specified,

the consumer will listen indefinitely.

As you can see from the example in this recipe, once the receive method is called,

a Message object is retrieved. Once the message is received, the application can glean

whatever it needs by calling the Message object’s getter methods accordingly.

Now let’s take a look at using the simplified API. As you can see from Solution #2,

there are fewer lines of code required to produce the same result achieved from Solution

#1. The JMSContext object aids in producing less code by calling its createConsumer

method and passing the resource from which the application will need to consume

messages. This method call will return a JMSConsumer, which has a similar API to

MessageConsumer, with the ability to receive messages both synchronously and

asynchronously. In the example, a String message is consumed synchronously:

CHApTEr 12 JAvA MESSAGE SErvICE

655

Note It is possible to create an asynchronous consumer by registering a
MessageListener with the MessageConsumer. After a listener has been
registered for the consumer, the listener’s onMessage() method will be called
each time a message has been delivered. For instance, the following code could be
used to register a listener to the consumer that was created within the example for
this recipe.

javax.jms.MessageListener jakartaEERecipesListener = new MyMessageListener();

consumer.setMessageListener(jakaratEERecipesListener);

12-5. Filtering Messages
 Problem
You would like to provide properties for your messages that will make it easier for

consumers to filter through and find messages of their choice.

 Solution
Utilize message selectors in order to filter the messages that are being consumed.

Message selectors are String-based expressions that can be assigned to consumers upon

creation, and they are generally used to filter the types of messages that a consumer will

receive. In the following example, both the sendMessage1 and sendMessage2 methods

create JMS messages. The sendMessage1 method sets a property named TYPE with a

value of JAKARTAEE on the message. After setting this property, a MessageProducer is

created, and the message is sent. The sendMessage2 method sets a property named

TYPE with a value of JAVASE on the message. Just like sendMessage1, the sendMessage2

method then creates a MessageProducer and sends the message. The receiveMessage

method sets up a MessageConsumer with a selector specified to only consume messages

with a property of TYPE that includes a value of JAKARTAEE.

CHApTEr 12 JAvA MESSAGE SErvICE

656

The following excerpt has been taken from the class named org.jakartaeerecipes.

chapter12.recipe12_05.Example12_05.java:

public void sendMessage1() {

 if (connection != null) {

 try (Session session = connection.createSession(false, Session.

AUTO_ACKNOWLEDGE);

 MessageProducer producer = session.createProducer(myQueue);) {

 TextMessage message = session.createTextMessage();

 message.setText("Jakarta EE 8 Is the Best!");

 message.setStringProperty("TYPE", "JAKARTAEE");

 producer.send(message);

 } catch (JMSException ex) {

 System.out.println(ex);

 }

 }

 }

 public void sendMessage2() {

 if (connection != null) {

 try (Session session = connection.createSession(false, Session.

AUTO_ACKNOWLEDGE);

 MessageProducer producer = session.createProducer(myQueue);) {

 System.out.println("Creating message");

 TextMessage message2 = session.createTextMessage();

 message2.setText("Java SE 9 Is Great!");

 message2.setStringProperty("TYPE", "JAVASE");

 producer.send(message2);

 } catch (JMSException ex) {

 System.out.println(ex);

 }

 }

 }

CHApTEr 12 JAvA MESSAGE SErvICE

657

 public void receiveMessage() {

 boolean stopReceivingMessages = false;

 String selector = "TYPE = 'JAKARTAEE'";

 try(Connection connection = connectionFactory.createConnection();

 Session session = connection.createSession(false,

 Session.AUTO_ACKNOWLEDGE);

 MessageConsumer consumer = session.createConsumer(myQueue,

selector);) {

 connection.start();

 while (!stopReceivingMessages) {

 Message inMessage = consumer.receive();

 if (inMessage != null) {

 if (inMessage instanceof TextMessage) {

 String messageStr = ((TextMessage) inMessage).getText();

 setDisplayMessage(messageStr);

 } else {

 setDisplayMessage("Message was of another type");

 }

 } else {

 stopReceivingMessages = true;

 }

 }

 connection.stop();

 } catch (JMSException ex) {

 System.out.println(ex);

 }

 }

 Running the Example

If you deploy the JakartaEERecipes project, you can run the example by pointing your

browser to the following URL: http://localhost:8080/JakartaEERecipes/faces/

chapter12/recipe12_05.xhtml. You can click the Receive Messages button to start

the consumer. Then click the Send EE Message and Send SE Message buttons to send

CHApTEr 12 JAvA MESSAGE SErvICE

658

messages, which contain different property values. Watch the server log to see output

pertaining to the browsed messages.

 How It Works
Message selectors are String-based expressions that can be assigned to consumers upon

creation. To create a selector, form a String that contains an expression with syntax based

on a subset of the SQL 92 conditional expression syntax. The expression String should

formulate the filter that you wish to use when consuming messages. An expression will

look very much like the WHERE clause of a database query. In the example for this recipe,

the selector is set to the following String:

TYPE = 'JAKARTAEE'

This selector causes the consumer to filter all messages that are received and only

consume those messages containing a property named TYPE that is assigned a value of

JAKARTAEE. Standard SQL 92 can be used to combine filters and build an expression that

will provide the filtering capability that is required by the consumer.

To assign the selector to a consumer, pass it to the JMS session createConsumer

method. After doing so, any messages received by the created consumer will be filtered

based upon the selector expression.

12-6. Inspecting Message Queues
 Problem
Your application makes use of a JMS queue, and you would like to browse through each

of the messages within the queue without removing them.

 Solution
Create a QueueBrowser object and use it to browse through each of the messages that are

contained within the queue.

CHApTEr 12 JAvA MESSAGE SErvICE

659

In the following excerpt from Java class org.jakartaeerecipes.chapter12.

recipe12_06.Example12_06.java, the browseMessages method connects to a JMS

session, creates a browser queue, and traverses the messages within the queue:

public void browseMessages() {

 try(Connection connection = connectionFactory.createConnection();

 Session session = connection.createSession(false, Session.AUTO_

ACKNOWLEDGE);

 QueueBrowser browser = session.createBrowser(myQueue);) {

 Enumeration msgs = browser.getEnumeration();

 if(!msgs.hasMoreElements()){

 System.out.println("No more messages within the queue...");

 } else {

 while(msgs.hasMoreElements()){

 Message currMsg = (Message)msgs.nextElement();

 System.out.println("Message ID: " + currMsg.

getJMSMessageID());

 }

 }

 } catch (JMSException ex) {

 System.out.println(ex);

 }

 }

 Running the Example

If you deploy the JakartaEERecipes project, you can run the example by pointing your

browser to the following URL: http://localhost:8080/JakartaEERecipes/faces/

chapter12/recipe12_06.xhtml. You can click the Send Message button within the view

several times and then click the Browse Through Messages button and watch the server

log to see output pertaining to the browsed messages.

CHApTEr 12 JAvA MESSAGE SErvICE

660

 How It Works
There are times when it is important to have the ability to search through messages

in order to find the one that you would like to read. In circumstances such as these,

message queue browsers come to the rescue. A QueueBrowser object provides the ability

for an application to search through each message within a queue and display the

header values for each of them. This capability can be important if the message header

contains important information that helps to differentiate each type of message that

is sent by a particular application. The JMS QueueBrowser object makes it easy to sift

through messages in order to find the one you would like, using similar semantics as

those that are used to create other JMS objects.

To create a QueueBrowser, you must first have an open JMS session object. You can

then call the Session object’s createBrowser method, passing the JMS destination type

as an argument. Therefore, if you wish to browse messages in a queue that is named

jms/myQueue, you would pass the injected resource for jms/myQueue to the createBrowser

method. Once you have created a browser object, simply iterate over the messages

and browse through them using the Enumeration that is returned from the call to the

browser.getEnumeration() method.

12-7. Creating Durable Message Subscribers
 Problem
You would like to ensure that an application receives all published messages, even when

the subscriber is not active.

 Solution
Create a durable subscriber for the Topic destination that will be used to send and

receive messages. Once created, messages can be published to the topic using the

standard message publishing techniques, as demonstrated within Recipe 12-3,

sending to the Topic destination that contains the subscription. The messages can

then be consumed via a message consumer that has been created using the Topic and

subscription.

In this example, a durable message subscriber is created, the message is created and

published to the Topic destination, and finally, the message is consumed.

CHApTEr 12 JAvA MESSAGE SErvICE

661

 The Topic Connection

Topic connections are a bit different than Queue connections in that they utilize an

object named TopicConnection, rather than a standard Connection object. Moreover,

a TopicConnectionFactory must be injected into an object in order to create a

TopicConnection. The following lines of code demonstrate how to create a connection

factory to generate TopicConnections for working with subscriptions:

@Resource(name = "jms/jakartaEERecipesConnectionFactory")

 private TopicConnectionFactory connectionFactory;

TopicConnection connection = (TopicConnection) connectionFactory.

createConnection();

connection.setClientID("durable");

 Creating the Initial Durable Subscriber

When creating a durable subscriber, an initial durable subscriber must be created

prior to sending any messages to the Topic. This initial subscriber will initialize

the subscription and make it available for publishing and receiving purposes. The

following code excerpt, taken from org.jakartaeerecipes.chapter12.recipe12_07.

Example12_07.java, demonstrates the creation of a durable subscriber:

public void createTopicSubscriber(){

 try {

 createConnection();

 TopicSession session = connection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

 myTopic = (Topic) getContext().lookup("jms/jakartaEERecipesTopic");

 TopicSubscriber subscriber = session.createDurableSubscriber(myT

opic, "jakartaEERecipesSub");

 connection.close();

 } catch (javax.naming.NamingException | JMSException ex) {

 Logger.getLogger(Example12_07.class.getName()).log(Level.SEVERE,

null, ex);

 }

 }

CHApTEr 12 JAvA MESSAGE SErvICE

662

For the demonstration application, a JSF h:commandButton component invokes this

method so that you can watch the output occurring within the server log.

 Creating and Publishing a Message

Creating and publishing a message to a Topic is much like publishing messages to a

Queue. However, instead of creating a producer, a publisher is generated. The following

code excerpt, taken from org.jakartaeerecipes.chapter12.recipe12_07.Example12_07.

java, demonstrates the creation of a Message, and then it is published to the durable

subscriber:

public void sendMessage() {

 try {

 createConnection();

 System.out.println("Creating session");

 TopicSession session = connection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

 System.out.println("Creating message");

 TextMessage message = session.createTextMessage();

 message.setText("Jakarta EE 8 Is the Best!");

 message.setStringProperty("TYPE", "JAKARTAEE");

 System.out.println("Creating producer");

 myTopic = (Topic) getContext().lookup("jms/

jakartaEERecipesTopic");

 TopicPublisher publisher = session.createPublisher(myTopic);

 System.out.println("Sending message");

 publisher.publish(message);

 System.out.println("Message sent, closing session");

 publisher.close();

 session.close();

 connection.close();

 } catch (NamingException | JMSException ex) {

 Logger.getLogger(Example12_07.class.getName()).log(Level.SEVERE,

null, ex);

 }

CHApTEr 12 JAvA MESSAGE SErvICE

663

This method is also bound to an h:commandButton component for our example

view, and you can see more output generated from the actions that take place within the

method.

 Receiving the Message

Each message created and published to the Topic is later consumed by the subscriber(s)

to the Topic. The following method demonstrates how to create a durable subscriber and

receive messages from it:

public void receiveMessage() {

 boolean stopReceivingMessages = false;

 try {

 createConnection();

 System.out.println("Creating session to receive messages");

 TopicSession session = connection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

 myTopic = (Topic) getContext().lookup("jms/jakartaEERecipesTopic");

 System.out.println("Setting up consumer");

 String selector = "TYPE = 'JAKARTAEE'";

 TopicSubscriber subscriber = session.createDurableSubscriber

(myTopic, "jakartaEERecipesSub");

 connection.start();

 while (!stopReceivingMessages) {

 System.out.println("Receiving message");

 Message inMessage = subscriber.receive();

 if (inMessage != null) {

 System.out.println(inMessage);

 if (inMessage instanceof TextMessage) {

 String messageStr = ((TextMessage) inMessage).getText();

 System.out.println(messageStr);

 setDisplayMessage(messageStr);

 } else {

 System.out.println("Message was of another type");

 setDisplayMessage("Message was of another type");

 }

CHApTEr 12 JAvA MESSAGE SErvICE

664

 } else {

 stopReceivingMessages = true;

 }

 }

 connection.stop();

 subscriber.close();

 session.close();

 closeConnection();

 } catch (NamingException | JMSException ex) {

 Logger.getLogger(Example12_07.class.getName()).log(Level.SEVERE,

null, ex);

 }

 }

The receiveMessage method is bound to an h:commandButton component within

the JSF view in the example program, and you can follow along with the output that can

be seen in the server log.

 Unsubscribing from the Subscription

It is important to unsubscribe from a subscriber when finished using it because

subscribers use up additional resources, as discussed in the “How It Works” section. The

following method demonstrates how to unsubscribe:

public void unsubscribe(){

 try {

 createConnection();

 TopicSession session = connection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

 // close subscriber if open, then unsubscribe

 session.unsubscribe("jakartaEERecipesSub");

 connection.close();

 } catch (JMSException ex) {

CHApTEr 12 JAvA MESSAGE SErvICE

665

 Logger.getLogger(Example12_07.class.getName()).log(Level.SEVERE,

null, ex);

 }

 }

 Running the Example

An example that binds all the methods shown in this recipe to JSF views can be executed

by deploying the JakartaEERecipes project to your GlassFish/Payara server and visiting

the following URL:

http://localhost:8080/JakartaEERecipes/faces/chapter12/recipe12_7.xhtml

 How It Works
A message subscription is a JMS consumer that retains a durable connection to

a specified topic destination. Message subscriptions cannot be made for Queue

destinations, only for Topics because they utilize publish/subscribe messaging.

By default, a durable subscriber remains persistent, because the delivery mode is

PERSISTENT by default. Subscriptions are stored in a server cache so that they can be

retrieved in the event of a server failure. Because durable message subscribers retain

messages in a cache, they take up a larger memory footprint. Therefore, it is important

that subscribers remain subscribed only as long as necessary, and then unsubscribe to

release the memory.

Note Durable subscriptions can only have one subscriber at a time.

To work with message subscribers, a special set of connection and session

objects must be used. To start, you must inject a TopicConnectionFactory into any

object that will make use of Topics. A TopicConnection can be created by calling the

createTopicConnection method. A TopicSession must be created which, in turn, from

the TopicConnection. The TopicSession object can be used to create durable message

subscribers and message publishers.

When creating a subscriber, one must invoke the JMS session method,

createDurableSubscriber, and pass the Topic destination, along with a String that

is used to identify the subscriber. The String identifier is important because this is the

CHApTEr 12 JAvA MESSAGE SErvICE

666

identifier that will be used by consumers to subscribe to the messages being published

to the Topic. A TopicSubscriber object is generated from the createDurableSubscriber

method, and it is important to create the initial durable subscriber in order to create the

Topic subscription. Once the initial durable subscriber has been created, messages can

be sent to the subscription, and consumers can subscribe to it.

To create a message and send it to a subscription, the JMS session createPublisher

method must be invoked, passing the Topic destination object as an argument. The

call to createPublisher will generate a TopicPublisher object, which can be utilized

for publishing messages to a Topic subscription. Any type of message can be sent to

a Topic. To learn more about the different types of messages that can be sent, please

refer to Recipe 12-3. Any number of messages can be sent to a topic, and if a consumer

has subscribed to the subscriber, it will receive the messages. New subscribers will

begin receiving messages that are sent to the subscription after the time when they’ve

subscribed.

In order to subscribe to a Topic, a TopicSubscriber object should be created

by calling the JMS session createDurableSubscriber method, passing the Topic

destination object and the String-based identifier that was originally used to establish

the subscriber. Once the TopicSubscriber has been created, messages can be consumed

as usual, invoking the TopicSubscriber receive method for each message that will be

consumed. Typically, an application will set a boundary limit to the number of messages

that will be consumed, and perform a loop to receive that number of messages from a

subscribed Topic.

Since a durable subscription creates a memory footprint, it is essential for consumers

to unsubscribe when finished with the Topic. If a consumer does not unsubscribe, the

application server will starve other subscriber resources and will eventually run out

of usable memory. To unsubscribe a consumer, invoke the JMS session unsubscribe

method, passing the String-based name of the subscriber. I told you that the String you

use for identifying the subscriber was important!

It is sometimes useful to create message subscriptions for certain circumstances.

Pertinent situations for using a subscriber may include a subscription for client

consumers to receive messages regarding application errors or for an alert system so

that administrators can subscribe to alerts that they wish to receive. In any case, durable

subscriptions can be useful, so long as they are used sparingly and maintained in an

appropriate manner.

CHApTEr 12 JAvA MESSAGE SErvICE

667

12-8. Delaying Message Delivery
 Problem
You would like to delay a message that is being sent.

 Solution
Set the time of delay in milliseconds by calling the producer’s setDeliveryDelay(long)

method. In the following example, the message sending will be delayed by 1000

milliseconds:

TopicPublisher publisher = session.createPublisher(myTopic);

publisher.setDeliveryDelay(1000);

 How It Works
In JMS 2.0, it is possible to delay the delivery of a message. The JMS API provides a

method, setDeliveryDelay, for producers. This method can be called, passing the delay

time in milliseconds, prior to sending the message. Once the delay has been set, this will

cause all subsequent message deliveries by that producer to be delayed.

CHApTEr 12 JAvA MESSAGE SErvICE

669
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_13

CHAPTER 13

RESTful Web Services
Java Web Services can play a vital role in enterprise application development. A web

service can be described as a client and server application that communicates over

HTTP, which provides a standard means for communication and interoperability

between different applications. There are many different web service implementations

available across each of the different programming platforms. A web service is made

accessible via an endpoint implementation. Entire applications can be implemented

using web services that transmit messages and data to and from each other. The two

main web service implementations that have been part of Java EE over the past few

releases are the Java API for XML Web Services (JAX-WS) and the Java API for RESTful

Web Services (JAX-RS). In the Jakarta EE 8 release, JAX-WS was not updated, and it is no

longer deemed as a “current” technology. JAX-RS has been renamed to Jakarta RESTful

Web Services.

Jakarta RESTful Web Services is the API for Representational State Transfer (REST)

web services. REST services are useful for performing operations via HTTP without the

need for a WSDL or XML messages. REST services do not follow the SOAP standard.

REST service implementations are stateless, and they provide a smaller footprint for

bandwidth than SOAP services, making them ideal for HTTP on mobile devices. They

utilize a predefined state of stateless operations.

Although both SOAP and REST support SSL, JAX-WS provides WS-Security, which

provides enterprise-related security. JAX-WS provides a very formal transaction

process over a service, whereas REST is limited by HTTP. However, in most cases, it is

recommended to use REST services over JAX-WS when possible. Newer security APIs

such as JSON Web Tokens (JWT) have been introduced, providing Jakarta RESTful Web

Services with levels of security that can be achieved with JAX-WS.

Over the next several recipes, you will be shown how to develop Jakarta RESTful web

services. You’ll learn how to configure your environment to work with Jakarta RESTful

Web Services and how to code a client to make use of the services.

670

SETTING UP A REST ENVIRONMENT

There are a couple of options that can be utilized for creating and utilizing REST services. In

this chapter, I focus on making use of the Jakarta RESTful Web Services implementation for

REST services, which is based upon Jersey. If you are using GlassFish 5.1, the API jars are

provided with the distribution, so you do not need to download any additional libraries in order

to add REST functionality to your applications. However, if you are utilizing another application

server, such as Tomcat, you will need to download the Jakarta EE 8 and package it with your

application.

In order for Jakarta RESTful Web Services to handle REST requests, you will have to configure

a REST servlet dispatcher within the application’s web.xml configuration file or within a Java

class. The following excerpt from the web.xml configuration file demonstrates how to set up

Jakarta RESTful Web Services for an application:

<servlet>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>

 <url-pattern>/rest/*</url-pattern>

 </servlet-mapping>

One can also make use of an annotation within a Java class to configure Jakarta RESTful Web

Services and forget about the web.xml configuration. To do so, add the @ApplicationPath

annotation to a class which extends javax.ws.rs.core.Application, as follows:

@javax.ws.rs.ApplicationPath("rest")

public class ApplicationConfig extends Application {

 @Override

 public Set<Class<?>> getClasses() {

 Set<Class<?>> resources = new java.util.HashSet<>();

 resources.add(org.jakartaeerecipes.authorservice.rest.

BookAuthorFacadeREST.class);

 return resources;

 }

}

CHAPTER 13 RESTFul WEb SERvICES

671

13-1. Developing a RESTful Web Service
 Problem
You would like to create a Jakarta RESTful web service that will be exposed over the

Internet to handle operations on data.

Note Prior to performing the solutions to this recipe, you must be sure that your
environment is configured for using REST services. For more information, please
see the introduction to this chapter.

 Solution #1
Create a RESTful web service by creating a root resource class (POJO) and adding

resource methods to the class. To designate a class as a root resource class, annotate it

with @Path or create at least one method within the class that is annotated with

@Path and a request method designator (@GET, @PUT, @POST, or @DELETE). The following

example demonstrates how to create a RESTful web service that simply displays a String

or HTML to a client. The sources for this code can be found in the JakartaEERecipes

project within the org.jakartaeerecipes.chapter13.SimpleRest.java file:

package org.jakartaeerecipes.chapter13.rest;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

// Set the PATH to http://host:port/application/rest/simplerest/

@Path("/simplerest")

public class SimpleRest {

 @GET

 // Produces plain text message

 @Produces("text/plain")

 public String getPlainMessage() {

 return "Hello from a simple rest service";

 }

CHAPTER 13 RESTFul WEb SERvICES

672

 @GET

 // Produces plain text message

 @Produces("text/html")

 public String getHTMLMessage() {

 return "<P>Hello from a simple rest service</P>";

 }

}

Assuming that you have configured your environment to work with

Jakarta RESTful Web Services, you can deploy the JakartaEERecipes application and

then visit the following URL to see the results produced from the REST service:

http://localhost:8080/JakartaEERecipes/rest/simplerest.

 Solution #2
Utilize an IDE, such as NetBeans, to create a RESTful web service. The NetBeans IDE

includes wizards for developing web services of different types. By right-clicking a

project and choosing the New ➤ Other... option from the contextual menu, the New File

dialog will open, and Web Services can be chosen from the selection list. Proceed with

the following directions to generate a REST web service from an entity class:

 1) Choose the RESTful Web Service from the Entity Classes option

from the New File menu.

 2) Select one or more classes from the Available Entity Classes list

and click the Add button. In this example, we’ll choose the org.

jakartaeerecipes.entity.Book entity, as shown in Figure 13-1.

Choose Next.

CHAPTER 13 RESTFul WEb SERvICES

673

 3) List the package into which the REST service class will be generated,

along with a package location (see Figure 13-2). Click Finish.

Figure 13-1. Select entity classes for RESTful web services within NetBeans

Figure 13-2. Choose a resource package for the REST service class within NetBeans

CHAPTER 13 RESTFul WEb SERvICES

674

A REST service class that is similar to the following class would be generated after

performing these steps:

@Stateless

@Path("org.jakartaeerecipes.entity.book")

public class BookFacadeREST extends AbstractFacade<Book> {

 @PersistenceContext(unitName = "JakartaEERecipesPU")

 private EntityManager em;

 public BookFacadeREST() {

 super(Book.class);

 }

 @POST

 @Override

 @Consumes({"application/xml", "application/json"})

 public void create(Book entity) {

 super.create(entity);

 }

 @PUT

 @Override

 @Consumes({"application/xml", "application/json"})

 public void edit(Book entity) {

 super.edit(entity);

 }

 @DELETE

 @Path("{id}")

 public void remove(@PathParam("id") BigDecimal id) {

 super.remove(super.find(id));

 }

 @GET

 @Path("{id}")

 @Produces({"application/xml", "application/json"})

 public Book find(@PathParam("id") BigDecimal id) {

 return super.find(id);

 }

CHAPTER 13 RESTFul WEb SERvICES

675

 @GET

 @Override

 @Produces({"application/xml", "application/json"})

 public List<Book> findAll() {

 return super.findAll();

 }

 @GET

 @Path("{from}/{to}")

 @Produces({"application/xml", "application/json"})

 public List<Book> findRange(@PathParam("from") Integer from,

@PathParam("to") Integer to) {

 return super.findRange(new int[]{from, to});

 }

 @GET

 @Path("count")

 @Produces("text/plain")

 public String countREST() {

 return String.valueOf(super.count());

 }

 @Override

 protected EntityManager getEntityManager() {

 return em;

 }

}

 How It Works
RESTful web services are easy to develop, and they have the ability to produce

and consume many different types of media. In most cases, REST web services are

encouraged for services that will be sending and receiving information over the Internet.

Before an application can support REST services, it must be properly configured to do

so. In this book, the Jakarta RESTful Web Services implementation is utilized, which is

based upon Jersey, the standard REST implementation for the industry. Please see the

CHAPTER 13 RESTFul WEb SERvICES

676

introduction to this chapter for more information on configuring Jakarta RESTful Web

Services within your application.

A Java class that is a REST service implementation contains a myriad of annotations.

Table 13-1 lists the possible annotations that may be used to create a REST service.

Table 13-1. REST Service Annotations

Annotation Description

@POST Request method designator that processes HTTP POST requests.

@GET Request method designator that processes HTTP GET requests.

@PUT Request method designator that processes HTTP PuT requests.

@DELETE Request method designator that processes HTTP DElETE requests.

@HEAD Request method designator that corresponds to the HTTP HEAD method.

Processes HTTP HEAD requests.

@Path The value of this annotation should correlate to the relative uRI path that

indicates where the Java class will be hosted. variables can be embedded in the

uRIs to make a uRI path template.

@PathParam A type of parameter that can be extracted for use in the resource class. uRI

path parameters are extracted from the request uRI, and the parameter names

correspond to the uRI path template variable names specified in the @Path

class-level annotation.

@QueryParam A type of parameter that can be extracted for use in the resource class. Query

parameters are extracted from the request.

@Consumes used to specify the MIME media types of representations that a resource can

consume.

@Produces used to specify the MIME media types of representations that a resource can

produce.

@Provider used for anything that is of interest to the Jakarta RESTful Web Services runtime,

such as a MessageBodyHeader and MessageBodyWriter.

CHAPTER 13 RESTFul WEb SERvICES

677

To designate a class as a REST service, the @Path annotation must be placed prior

to the class or before at least one of the class method signatures. The @Path annotation

is used to indicate the URI that should correspond to the service. The full URI includes

the host name, port number, application name, and REST servlet name, followed by

the path designated with the @Path annotation. In the example, the @Path annotation

specifies /simplerest as the service path, so the URL http://localhost:8080/

JakartaEERecipes/rest/simplerest will invoke the web service. It is possible to

include variables within a URL by enclosing them within brackets using the syntax

{var}. For example, if each user had his or her own profile for a particular site, the @Path

annotation could be as follows:

...

@Path("/simplerest/{user}")

...

In such a case, the URL could look like the following: http://localhost:8080/

JakartaEERecipes/rest/simplerest/Juneau.

The @Path annotation can also be specified before any methods that are marked with

@GET, @POST, @PUT, or @DELETE in order to specify a URI for invoking the denoted method.

Moreover, variables can be placed within the path in order to accept a more dynamic

URL. For instance, suppose a method was added to the class in Solution #1 that would

return a greeting for the user that is specified as a parameter within the URL. You may do

something like the following in order to make the URL unique:

@Path("{user}")

@GET

@Produces("text/html")

public String getUserMessage(@PathParam("user") String user){

 return "Greetings " + "" + user + "";

}

In this case, the getUserMessage method would be invoked if a URL like the

following were placed into the browser: http://localhost:8080/JakartaEERecipes/

rest/simplerest/josh. If this URL were specified, then the method would be invoked,

passing “josh” as the user variable value, and the message would be displayed as

Hello josh

CHAPTER 13 RESTFul WEb SERvICES

678

Note It is very important to create uRIs that are readable and also provide
intuitive information about your web service. uRIs that are based upon these
standards help to reduce errors within client applications and make the web
service more functional.

Designate methods with the @GET, @POST, @PUT, or @DELETE designator to process

the type of web service request that is desired. Doing so will generate web service

functionality. If more than one method exists within a REST web service implementation

and @Path is only specified at the class level and not at the method level, then the

method that returns the MIME type the client requires will be invoked. If you wish your

method to display content, designate a method with @GET. If you wish to create a method

for adding or inserting an object, designate the method as @POST. If you are creating

a method for inserting new objects only, then designate it with @PUT. Finally, if you

are creating a method for removing objects, then designate it with @DELETE. For more

information regarding these annotations, please refer to Recipe 13-3.

REST services can become fairly complex if they constitute many different methods

and paths. Entire applications exist based upon REST services, where all CRUD (create,

retrieve, update, delete) manipulations are invoked via web service calls. This recipe

provides only the foundation for developing with Jakarta RESTful Web Services, as the

topic is far too involved for a handful of recipes or a chapter in itself.

13-2. Consuming and Producing with REST
 Problem
You would like to produce different types of content with a RESTful web service.

Moreover, you would like the web service to consume content as well.

 Solution
Create methods within the web service implementation class that are annotated with

@GET for generating output and optionally along with @Produces for specifying the type

of output. Annotate methods with @POST or @PUT for updating or inserting data. The

following sections provide examples utilizing these solutions.

CHAPTER 13 RESTFul WEb SERvICES

679

 Producing Output

Make use of the @Produces annotation to specify the type of content you wish to produce

from a decorated method. The following excerpt, taken from the JakartaEERecipes

project source at org.jakartaeerecipes.chapter13.rest.SimpleRest, demonstrates

the use of @Produces:

 @GET

 // Produces an XML message

 @Produces("application/xml")

 public MessageWrapper getXMLMessage() {

 // Pass string to MessageWrapper class, which marshals the String

as XML

 return new MessageWrapper("Hello from a simple rest service");

 }

 Producing List Output

Make use of the @Produces annotation to specify the type of content you wish to produce

from a decorated method. The following excerpt, taken from the JakartaEERecipes

project source at org.jakartaeerecipes.chapter13.rest.SimpleRest, demonstrates

the use of @Produces and returns an object that contains a List of results:

 @GET

 // Produces an XML message

 @Path("all")

 @Produces("application/xml")

 public MessageWrapperList getXMLMessageList() {

 ArrayList<String> messageList = new ArrayList<>();

 messageList.add("String 1");

 messageList.add("String 2");

 return new MessageWrapperList(messageList);

 }

In this case, the MessageWrapperList object sources are as follows, but this example

could be changed to accept Lists of any object type...not just Strings:

package org.jakartaeerecipes.chapter13.recipe13_02;

CHAPTER 13 RESTFul WEb SERvICES

680

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlSeeAlso;

@XmlRootElement(name="messageWrapperList")

@XmlSeeAlso(String.class)

public class MessageWrapperList extends ArrayList<String> {

 private static final long serialVersionUID = 1L;

 public MessageWrapperList(){

 super();

 }

 public MessageWrapperList(Collection<? extends String> message){

 super(message);

 }

 @XmlElement(name="messageList")

 public List<String> getMessageList() {

 return this;

 }

 public void setMessageList(List<String> messages) {

 this.addAll(messages);

 }

}

 Accepting Input

Annotate methods within a web service class with @PUT to indicate that some content

is being passed to the method. To specify the type of content being passed, annotate

the same method with @Consumes(content-type). The following excerpt, taken from

CHAPTER 13 RESTFul WEb SERvICES

681

the JakartaEERecipes project source at org.jakartaeerecipes.chapter13.rest.

SimpleRest.java, demonstrates the use of @Consumes:

 @PUT

 @Path("add")

 @Consumes("text/plain")

 public String add(@QueryParam("text") String text){

 this.message = text;

 return message;

 }

To input a new message stating JakartaEERecipes, you would reach the following

URL in your browser, which passes the new message to the text variable: http://

localhost:8080/JakartaEERecipes/rest/simplerest/add?text=JakartaEERecipes.

 How It Works
Create a web service class by following the procedures outlined in Recipe 13-2, and then

designate methods within the web service as producers or consumers by annotating

them appropriately. Methods that will be generating some type of output should be

annotated with @Produces, which should subsequently specify the type of output

generated. Moreover, the methods that are generating output should also be annotated

with @GET, which indicates that the method is a reading resource. Methods that will be

accepting input should be annotated with @PUT or @POST. The @PUT annotation indicates

that a new resource will be created, and the @POST annotation indicates that an existing

resource will be updated or a new resource will be created. Incidentally, the methods

that accept input should also be annotated with @Consumes, which should subsequently

specify the type of content that is being consumed. Overall, @Produces annotations

should coincide with the @GET annotated methods. That is, a method that is decorated

with @GET will return some content to the client. @Consumes annotations should coincide

with either @PUT or @POST annotated methods.

In the solution to this recipe, two types of methods are demonstrated. The first

example demonstrates a REST method that produces XML content, and the

@Produces("application/xml") annotation indicates it as such. Within the method,

a String is passed to a class named MessageWrapper. The MessageWrapper class is

responsible for marshaling the String as XML using JAXB. For more information,

CHAPTER 13 RESTFul WEb SERvICES

682

please refer to the sources located at org.jakartaeerecipes.chapter13.recipe13_02.

MessageWrapper.java and see the JAXB documentation online at https://eclipse-

ee4j.github.io/jakartaee-tutorial/jaxrs-advanced007.html#GKKNJ. The beauty

of Jakarta RESTful Web Services is that just about any content type can be produced. A

client application can visit the URL that corresponds to a web service’s @GET method, and

content will be returned in a format that will work for that client. For instance, if a client

is a web browser, it will look for a method that produces text/html content within the

web service and then invoke that method.

The other example in the solution to this recipe demonstrates a REST method that

consumes String content. The @PUT annotation indicates that either a new object will be

generated or an existing object will be updated with the request. In this case, the String-

based message field is updated to the content that is passed into the web service via the

text variable. The @Path annotation has been placed above the method signature to

indicate a path following the format /add should be used to access this method. Lastly,

the @Consumes annotation indicates that the method will consume plain text.

If one were interested in returning a List of values, then a wrapper class for

consuming the list of returned entity objects and storing into a local List is likely

one of the best approaches. In the example, a List<String> is returned from the

getXMLMessageList() service. This is facilitated by utilizing a wrapper object named

MessageWrapperList, which extends ArrayList<String>, therefore accepting a List of

Strings, and returns that list when the getMessageList() method is called upon. Using a

wrapper object such as this makes it easy to send lists of data to and from a web service.

The REST service in this example is very brief, and in real-world scenarios, many

methods producing and consuming different types of content are utilized within REST

service implementations.

CHAPTER 13 RESTFul WEb SERvICES

https://eclipse-ee4j.github.io/jakartaee-tutorial/jaxrs-advanced007.html#GKKNJ
https://eclipse-ee4j.github.io/jakartaee-tutorial/jaxrs-advanced007.html#GKKNJ

683

13-3. Writing a Jakarta RESTful Web Services Client
 Problem
You wish to create a Jakarta RESTful Web Services client application to consume a

RESTful web service.

 Solution
Make use of the Jakarta RESTful Web Services Client API to build a client application.

The following example demonstrates how to create a very basic client using the Jakarta

RESTful Web Services Client API:

import java.util.concurrent.ExecutionException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.xml.ws.Response;

/**
 *
 * @author Juneau

 */

public class RestClient {

 public static void main(String[] args){

 // Obtain an instance of the client

 Client client = ClientBuilder.newClient();

 Response res = (Response) client.target("http://localhost:8080/

JakartaEERecipes/rest/simplerest")

 .request("text/plain").get();

 try {

 System.out.println((String) res.get());

 } catch (InterruptedException ex) {

CHAPTER 13 RESTFul WEb SERvICES

684

 Logger.getLogger(RestClient.class.getName()).log(Level.SEVERE,

null, ex);

 } catch (ExecutionException ex) {

 Logger.getLogger(RestClient.class.getName()).log(Level.SEVERE,

null, ex);

 }

 }

}

To test the client, first deploy and run the JakartaEERecipes application so that the

simplerest REST web service is available. Once deployed, run the RestClient class to

see the result in the server log.

 How It Works
Historically, it has always been no small task to test web services. That is because in

order to test a web service, either a separate web application had to make a call to the

web service or custom client tests would have to be built to accommodate the testing.

In the JAX-RS 2.0 release, a client API was introduced, allowing developers to follow a

standard API for developing test clients and so forth.

To make use of the client API, obtain an instance of the javax.ws.rs.client.Client

by either injecting the resource or calling the javax.ws.rs.client.ClientBuilder

newClient method. Once a Client instance is obtained, it can be configured by setting

properties or registering Provider and/or Feature classes. Properties are simply

name/value pairs that can be passed to the client via the setProperty method. Features

are Providers that implement the Feature interface. A Feature can be used for grouping

related properties and Providers into a single unit, making configuration even easier.

In the solution to this recipe, the client has been built to access the simplerest web

service. After a client instance is obtained, properties can be set against it by calling the

Client setProperty() method, passing the property/value pair:

 client.setProperty("property", "value");

CHAPTER 13 RESTFul WEb SERvICES

685

 Web Resource Targets

The first step toward invoking a web resource is to make a call to a target. This can be

done in a couple of different ways. The previous example demonstrated the use of the

Client target method, which accepts a URI and returns a WebTarget:

WebTarget myTarget = client.target("http://somehost.com/service");

Once the target has been obtained, a number of things can be done with it. A request

can be made against it, as in the RestClientOne example, by invoking the target’s request

method. A target can also be further qualified by calling its path method and passing the

next sequence in a URI path:

WebTarget myTarget =

 client.target("http://somehost.com/service").path("one");

A path can also contain dynamic content in the form of URI template parameters. To

include a template parameter, wrap the dynamic portion of the path in curly brackets

{ }, and then add a call to the pathParam method, passing the name/value pair of the

parameter. One could also send a query parameter via adding a call to queryParam using

a similar format:

WebTarget myTarget =

 client.target("http://somehost.com/service").path("one").path("{code}")

 .pathParam("code","100375");

Note Path parameters and query parameters differ in the way in which they are
sent to the web service. A path parameter is chained to the end of the uRI using
the following format:

http://web-service/path-param1/path-param2

A query parameter is chained to the end of the uRI using the following format:

http://web-service?query-param1&query-param2

CHAPTER 13 RESTFul WEb SERvICES

686

WebTarget objects are immutable in that methods for altering WebTargets, such

as path, return new instances of WebTarget. WebTargets can also be configured by

registering features or providers via a call to the target’s register method, passing either

type of class:

client.register(Feature.class)

client.register(Provider.class)

 Obtaining a Response

The example at the beginning of this section demonstrated a simple client that returns a

plain-text response. However, it is possible to return different response types by passing

different Strings or MediaType fields to the Client target request method. Table 13-2

lists the different MediaType fields that can be used. All fields listed within the table that

contain a _TYPE suffix are of type MediaType, whereas the others are static String types.

Table 13-2. MediaType Fields

Field String

APPlICATION_ATOM_XMl “application/atom+xml”

APPlICATION_ATOM_XMl_TYPE

APPlICATION_FORM_uRlENCODED “application/x-www-form-urlencoded”

APPlICATION_FORM_uRlENCODED_TYPE

APPlICATION_JSON “application/json”

APPlICATION_JSON_TYPE

APPlICATION_OCTET_STREAM “application/octet-stream”

APPlICATION_OCTET_STREAM_TYPE

APPlICATION_SvG_XMl “application/svg+xml”

APPlICATION_SvG_XMl_TYPE

APPlICATION_XHTMl_XMl “ application/xhtml+xml”

APPlICATION_XHTMl_XMl_TYPE

(continued)

CHAPTER 13 RESTFul WEb SERvICES

687

To obtain a requested resource, call the get method, which will return a javax.

ws.rs.core.Response object. The returned Response can be used to process the results

accordingly, depending upon what you are trying to do within the client. In the example,

the Response object’s readEntity method is called, which simply returns the results

in the requested format. In the example, a String.class is passed to the readEntity

method, implying that a response should be returned in String format. To see a

complete list of methods that can be called against a Response object, please refer to the

online documentation (https://jakarta.ee/specifications/platform/8/apidocs/

javax/ws/rs/core/Response.html), as the list is quite lengthy.

It is possible to filter a response by chaining methods, as needed, to specify headers,

cookies, and so forth, when calling upon the request method. Each of these chained

Field String

APPlICATION_XMl “ application/xml”

APPlICATION_XMl_TYPE

MEDIA_TYPE_WIlDCARD “*”

MulTIPART_FORM_DATA “multipart/form-data”

MulTIPART_FORM_DATA_TYPE

TEXT_HTMl “text/html”

TEXT_HTMl_TYPE

TEXT_PlAIN “text/plain”

TEXT_PlAIN_TYPE

TEXT_XMl “text/xml”

TEXT_XMl_TYPE

WIlDCARD “*/*”

WIlDCARD_TYPE

Table 13-2. (continued)

CHAPTER 13 RESTFul WEb SERvICES

https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/core/Response.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/core/Response.html

688

method calls returns a Builder object, which can be further built upon. The following

methods can be chained to further build the request:

• cookie(Cookie)

• cookie(String, String)

• header(String, Object)

• headers(MultivaluedMap<String, Object>)

• register

 Returning Entities

Sometimes there is a requirement to return a type other than Response from a web

resource. In these cases, it is possible to obtain an entity type by passing the entity class

to the get call. The following lines of code demonstrate how to return an Employee

entity, rather than a standard Response object:

Response res = client.target("http://localhost:8080/JakartaEERecipes/rest/

employeeSearch")

 .request("application/xml").get(Employee.class);

In cases where entities are being returned, the request type is required to be

application/xml or APPLICATION_XML_TYPE.

 Invoking at a Later Time

There are cases when it makes sense to obtain a request and prepare it for execution, but

not invoke that request until a later time. In such cases, one can prepare an Invocation

that can be executed at a later time. In the following lines of code, an Invocation is

created by making a request to a WebTarget and then calling the buildGet() method:

Invocation inv1 = client.target("http://localhost:8080/JakartaEERecipes/

rest/simplerest")

 .request("text/plain").buildGet();

// Sometime later...

Response res = inv1.invoke();

CHAPTER 13 RESTFul WEb SERvICES

689

If we were posting a response, the buildPost() method could be called against the

WebTarget instead, as follows:

Invocation inv1 = client.target("http://localhost:8080/JakartaEERecipes/

rest/makeithappen")

 .request("text/plain").buildPost(order);

 Response res = inv1.invoke();

Note To asynchronously execute an Invocation, call the invocation
submit method, rather than the invoke method.

Invocation objects can be configured similarly to WebTarget and Client objects.

Filters, interceptors, properties, features, and providers can be configured on an

Invocation by calling the register method and passing the appropriate configuration

instance, as demonstrated in the following:

// Assume that inv1 is an Invocation instance

String result = inv1.register(MyInterceptor.class).invoke(String.class);

Note To learn more about filters and interceptors, read Recipe 13-4.

 WebTarget Injection

A WebTarget can be injected into any Jakarta RESTful Web Services managed resource

by specifying the @Uri annotation and passing the WebTarget URI. In following example,

a WebTarget resource is injected into a Jakarta RESTful Web Services resource to

demonstrate this concept:

@Path("/orderservice")

public class OrderService {

 @Uri("order/{id}")

 WebTarget orderId;

 //...

}

CHAPTER 13 RESTFul WEb SERvICES

690

13-4. Filtering Requests and Responses
 Problem
You wish to perform some activity against a web service request before it has been

delivered to the network, or to a web service response before it has been sent back to

the client.

 Solution
Apply a filter or interceptor to the web service request or response to perform the desired

activity. The following example filter is used to write alerts to the system log before an

incoming request has been processed and before a response is sent back to the client:

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import javax.annotation.Priority;

import javax.ws.rs.Priorities;

import javax.ws.rs.container.ContainerRequestContext;

import javax.ws.rs.container.ContainerRequestFilter;

import javax.ws.rs.container.ContainerResponseContext;

import javax.ws.rs.container.ContainerResponseFilter;

import javax.ws.rs.ext.Provider;

import org.jakartaeerecipes.chapter13.rest.interfaces.Alerter;

@Provider

@Alerter

public class AlertFilter implements ContainerRequestFilter,

 ContainerResponseFilter {

 @Override

 public void filter(ContainerRequestContext requestContext)

 throws IOException {

 alert(requestContext);

 }

CHAPTER 13 RESTFul WEb SERvICES

691

 @Override

 public void filter(ContainerRequestContext crc,

ContainerResponseContext crc1) throws IOException {

 alert(crc);

 }

 public void alert(ContainerRequestContext context) {

 try(InputStream in = context.getEntityStream();) {

 if (in != null) {

 InputStreamReader inreader = new InputStreamReader(in);

 BufferedReader reader = new BufferedReader(inreader);

 String text = "";

 while ((text = reader.readLine()) != null) {

 System.out.println(text);

 }

 }

 } catch (IOException ex) {

 // Error handling

 }

 }

}

 How It Works
The concept of filters and interceptors is analogous to the post office processing your

mail before it comes to your address. Rather than a message being delivered directly

from point A to point B, it is first routed to one or more postal offices, where it is further

processed before reaching point B. Web resource filters and interceptors apply that same

concept to requests or responses that are being processed via a web service. If a filter

or interceptor is bound to a web resource, then it will be invoked at some point in the

life cycle of a request or response to that web resource. The type of filter or interceptor

determines at what point in the life cycle it is applied. Interceptors (otherwise known

as entity interceptors) wrap around a method invocation at a specified extension point.

CHAPTER 13 RESTFul WEb SERvICES

692

Filters, on the other hand, execute code at a specified extension point, but they are not

wrapped around methods. In the next few sections, you will take a closer look at each

and how they are used.

 Filters

An extension point is an interface that includes a method, which is responsible for

filtering or intercepting the request or response. Filters have four such extension

point interfaces, those being ClientRequestFilter, ClientResponseFilter,

ContainerRequestFilter, and ContainerResponseFilter. The name of the extension

point helps to describe what filter is applied and at what point. ClientRequestFilter

and ClientResponseFilter are for use with the Jakarta RESTful Web Services Client API.

ClientRequestFilter is applied before an HTTP request is delivered to the network.

A ClientResponseFilter is applied when a server response is received and before control

is returned to the application. ContainerRequestFilter and ContainerResponseFilter

classes are for use with the Jakarta RESTful Web Services Server API. Similar to the client-

side filters, a ContainerRequestFilter is applied upon receiving a request from a client,

and a ContainerResponseFilter is applied before the HTTP response is delivered.

 Entity Interceptors

As mentioned in the previous section, an extension point is an interface that includes

a method, which is responsible for filtering or intercepting the request or response.

Entity interceptors have two such extension points, those being ReaderInterceptor and

WriterInterceptor. An entity interceptor class must implement one or both of these

extension points. Also mentioned previously, entity interceptors wrap calls to methods.

More specifically, MessageBodyWriter implementations wrap calls to the writeTo

method, whereas MessageBodyReader implementations wrap calls to the readFrom

method.

 Binding Filters and Interceptors

Filters and interceptors must be associated to application classes or methods, and this

process is also known as binding. The default type of binding is global binding, and any

filter or interceptor that does not include annotations is bound globally. Global binding

associates the filter or interceptor with all resource methods in an application. That said,

CHAPTER 13 RESTFul WEb SERvICES

693

any time a resource method is invoked, all globally bound filters and interceptors are

processed as well.

Filters and interceptors can be registered manually via Application or

Configuration, or they can be registered dynamically. To indicate that a filter or

interceptor should be registered dynamically, it should be annotated with @Provider.

If a filter or interceptor is not annotated as such, it must be registered manually.

To manually bind a filter or interceptor to a resource method, the filter or interceptor

class must be denoted with a @NameBinding annotation. A @NameBinding annotation can

be coded just as a standard annotation would, but it should also include the @NameBinding

annotation in its interface. The following annotation code could be used to create a

@NameBinding annotation that might be placed on a filter that is responsible for firing alerts:

@NameBinding

@Target({ ElementType.TYPE, ElementType.METHOD })

@Retention(value = RetentionPolicy.RUNTIME)

public @interface Alerter { }

To associate the @NameBinding with a filter or interceptor, simply annotate the filter

or interceptor class with it. The following AlertFilter class is a filter implementation

that is denoted with the @Alerter annotation:

@Provider

@Alerter

class AlertFilter implements ContainerRequestFilter,

 ContainerResponseFilter {

...

}

That filter can now be bound to a resource method by annotating the resource method

with the same @NameBinding as the filter class, as demonstrated in the following example:

@GET

@Produces("text/html")

@Alerter

public String getJobs(){

 ...

}

CHAPTER 13 RESTFul WEb SERvICES

694

Note This same concept can be applied to Application subclasses in order to
globally bind the filter or interceptor.

 Setting Priorities

As mentioned in previous sections, filters and interceptors can be chained. Chains

of filters or interceptors invoke individual filters or interceptors based upon a given

priority. To assign priority to a filter or interceptor, denote the implementation class with

the @BindingPriority annotation. Integer numbers are used to associate priorities. The

higher the integer, the higher the priority. Therefore, the filter or interceptor that has the

highest-priority integer assigned to it will be invoked first, and the lowest-priority integer

will be invoked last.

13-5. Processing Long-Running Operations
Asynchronously
 Problem
Your server-side Jakarta RESTful Web Services method contains a long-running

operation, and you would like to avoid blocking while waiting for the event to complete.

 Solution
Perform asynchronous processing so that the resource method containing the long-

running operation can inform Jakarta RESTful Web Services that a response is not yet

readily available, but will be produced at some point in the future. In the following

example, a Jakarta RESTful Web Services service named AsyncResource contains a

resource method named asyncOperation. The asyncOperation method contains a long-

running task, which is handed off to a ManagedExecutorService for processing:

import javax.annotation.Resource;

import javax.enterprise.concurrent.ManagedExecutorService;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

CHAPTER 13 RESTFul WEb SERvICES

695

import javax.ws.rs.container.AsyncResponse;

import javax.ws.rs.container.Suspended;

/**
 * Recipe 13-5: Asynchronous Processing

 * @author Juneau

 */

@Path("/asynchronous/asyncResource")

public class AsyncResource {

 @Resource(name = "concurrent/__defaultManagedExecutorService")

 ManagedExecutorService mes;

 @GET

 public void asyncOperation(@Suspended final AsyncResponse ar){

 mes.submit(

 new Runnable() {

 public void run(){

 // Perform long running operation

 longRunningOperation();

 ar.resume("Performing asynchronous operation");

 }

 });

 }

 public void longRunningOperation(){

 // This is a method that contains a long-running operation

 System.out.println("Performing long running task...");

 }

}

Note To learn more about ManagedExecutorService, please see Chapter 17.

CHAPTER 13 RESTFul WEb SERvICES

696

 How It Works
The Jakarta RESTful Web Services 2.0 API introduced the ability to hand long-running

tasks off to a ManagedExecutorService for processing. This allows a server-side resource

to return control back to a client and avoid problematic blocks. The API also includes

a way to register a timeout handler in case the asynchronous process does not return

within a specified amount of time, along with client-side asynchronous capabilities. To

begin, the server-side asynchronous implementation will be described, followed by the

others.

To perform asynchronous processing within a Jakarta RESTful Web Services

resource, the resource method that contains long-running operations must accept

an instance of AsyncResponse via the utilization of the @Suspended annotation. The

AsyncResponse class provides a means for resuming operations and returning control to

the client. A ManagedExecutorService (see Chapter 17 for more information) must be

made available within the class, and it must be called upon to submit a new Runnable

containing the long-running operation and a call to AsyncResponse.resume() to

return control back to the client once the long-running process is completed. When the

ManagedExecutorService submit method is called, the Runnable is passed to the server

for further processing, forking a thread to execute the task and returning immediately.

When the long-running task has completed, it will be passed back to the application,

invoking the AsyncResponse resume method.

In order to avoid long-running operations that never return and cause a

suspended connection to wait indefinitely, it is possible to specify a timeout value. The

timeout value can be specified by setting a timeout handler via the AsyncResponse.

setTimeoutHandler() method, passing a new instance of TimeoutHandler. After

the setTimeoutHandler has been invoked, the timeout can be set by calling the

AsyncResponse.setTimeout() method, passing any unit of type java.util.

concurrent.TimeUnit. For instance, the following lines demonstrate how to set a

timeout of 30 seconds for the long-running operation contained in the resource shown

in the solution to this recipe:

...

@GET

 public void asyncOperation(@Suspended final AsyncResponse ar){

 ar.setTimeoutHandler(new TimeoutHandler() {

 public void handleTimeout(AsyncResponse ar){

CHAPTER 13 RESTFul WEb SERvICES

697

 ar.resume("Timed out");

 }

 });

 ar.setTimeout(30, SECONDS);

 mes.submit(

 new Runnable() {

 public void run(){

 // Perform long running operation

 longRunningOperation();

 ar.resume("Performing asynchronous operation");

 }

 });

 }

...

Note Jakarta RESTful Web Services implementations will generate a
ServiceUnavailableException with a status of 503 when a timeout value is
reached and no timeout handler is present.

As mentioned at the top of this section, the asynchronous Jakarta RESTful Web

Services API has been extended to the client API as well. By default, invocations from

a client to a target are executed in a synchronous fashion, but they can be changed to

asynchronous by calling the async method and optionally registering an instance of

InvocationCallback. For example, the following lines of code demonstrate a client call

to the web service resource that was presented in the solution to this recipe:

Client client = ClientBuilder.newClient();

Target target = client.target("http://localhost:8080/JakartaEERecipes/rest/

asynchronous/asyncResource");

Target.request().async().get();

For more information regarding the client API and asynchronous operations, please

refer to the Jakarta RESTful Web Services documentation online.

CHAPTER 13 RESTFul WEb SERvICES

698

13-6. Pushing One-Way Asynchronous Updates
from Servers
 Problem
You wish to push one-way messages from a server to one or more clients.

 Solution
Utilize Server-Sent Events (SSE) to push messages from a server to one or more clients.

The Jakarta RESTful Web Services 2.1 API introduced the concept of SSE, which allows

one to push messages from a server to subscribed clients. It also allows for subscription

events to perform server actions. The following example contains sources for a Jakarta

RESTful Web Services class. The class contains a send method, which allows a client to

connect to the server and obtain messages from the server that have been broadcasted

via Server-Sent Events:

package org.jakartaeerecipes.chapter13.rest.service;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Context;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.sse.Sse;

import javax.ws.rs.sse.SseEventSink;

@Path("sse")

public class SSEEventResource {

 @Resource(name = "DefaultManagedExecutorService")

 ManagedExecutorService executor;

 public SSEEventResource() {

 }

 @GET

 @Path("send")

CHAPTER 13 RESTFul WEb SERvICES

699

 @Produces(MediaType.SERVER_SENT_EVENTS)

 public void send(@Context SseEventSink eventSink,

 @Context Sse sse) {

 executor.execute(() -> {

 try (SseEventSink sink = eventSink) {

 eventSink.send(sse.newEvent("Welcome to the List!"));

 eventSink.send(sse.newEvent("Message One!"));

 eventSink.send(sse.newEvent("SERVER-NOTIFICATION",

"Message Two!"));

 eventSink.send(sse.newEventBuilder()

 .comment("Nice Test")

 .name("SERVER-TEST")

 .data("Some data...could be an object")

 .build());

 eventSink.close();

 }

 });

 }

}

One can visit the following URL and see the resulting messages broadcast:

http://localhost:8080/JakartaEERecipes/rest/sse/send.

To broadcast to multiple clients simultaneously, one can use the SseBroadcaster

to register multiple SseEventSink instances and send messages. The following example

demonstrates how to construct a Jakarta RESTful Web Services class that allows clients to

register and the server to broadcast events to those registered clients:

package org.jakartaeerecipes.chapter13.rest.service;

import java.util.UUID;

import javax.annotation.PostConstruct;

import javax.ejb.Singleton;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

CHAPTER 13 RESTFul WEb SERvICES

700

import javax.ws.rs.Produces;

import javax.ws.rs.core.Context;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.sse.Sse;

import javax.ws.rs.sse.SseBroadcaster;

import javax.ws.rs.sse.SseEventSink;

@Path("/")

@Singleton

public class SSEEventBroadcaster {

 @Context

 private Sse sse;

 private volatile SseBroadcaster sseBroadcaster;

 public SSEEventBroadcaster() {

 }

 @PostConstruct

 public void init() {

 sseBroadcaster = sse.newBroadcaster();

 }

 @GET

 @Path("register")

 @Produces(MediaType.SERVER_SENT_EVENTS)

 public void register(@Context SseEventSink eventSink) {

 eventSink.send(sse.newEvent("Thanks for registering!"));

 sseBroadcaster.register(eventSink);

 }

 @POST

 @Path("send/{message}")

 public void broadcast(@PathParam("message") String message) {

 sseBroadcaster.broadcast(sse.newEventBuilder()

 .mediaType(MediaType.APPLICATION_JSON_TYPE)

 .id(UUID.randomUUID().toString())

 .name("SSEEventBroadcaster Message")

CHAPTER 13 RESTFul WEb SERvICES

701

 .data(message)

 .build()

);

 }

}

 How It Works
The Jakarta RESTful Web Services 2.1 release introduced support for Server-Sent Events

(SSE). Server-Sent Events make it possible to push messages from a server to multiple

clients at a time over HTTP or HTTPS. The connection from the client to the server can

remain open, and messages can continue to be sent until the client disconnects. The API

contains a number of interfaces that are used for sending messages to clients, registering

connections, and so on, and each of them resides within the javax.ws.rs.sse package.

The Sse interface is the server-side entry point for creating OutboundSseEvent and

SseBroadcaster. It can be injected into a field or used as a parameter to a method or

constructor. The SseEventSink interface is used to actually send a stream of messages,

and it can be acquired by injecting as a resource method parameter. SseEvent is the

base event class, which defines properties such as Id, Name, and Comment. The

OutboundSseEvent is used by the server to package an SseEvent, and SseBroadcaster is

used to manage multiple SseEventSink objects. The SseBroadcaster enables the server

to send events to all registered clients and provides facilities for handing exceptions.

In the first example, a simple Jakarta RESTful Web Services class is used to

demonstrate how a server can use a single method to register a client and send one

or more events. In the example, the class is registered as a RESTful web service at the

path “sse”, and the method send() is registered at the path “sse/send”. The send()

method produces the type MediaType.SERVER_SENT_EVENTS. It accepts @Context

parameters of type SseEventSink and Sse, which are used to register a client and push

events. The class also injects a ManagedExecutorService instance, which is a server-

side concurrency utility that is used to perform concurrent processes. You can learn

more about the ManagedExecutorService in Chapter 16. Inside the method, a try-

with- resources clause is used to open up an SseEventSink identified as eventSink.

The eventSink is used to send a number of SseEvent instances. Once completed, the

eventSink is closed. The entire process is sent to the ManagedExecutorService so that it

can be queued up in the server and executed in a concurrent manner.

CHAPTER 13 RESTFul WEb SERvICES

702

The next example demonstrates how to construct a Jakarta RESTful Web Services

class that can be used to register clients and broadcast events. The class is registered

as a singleton, meaning that only one instance of the class will be constructed and

utilized by all sessions. An Sse context is registered with the class, as it can be used

to create new SseBroadcaster objects, new SseEvent objects, and new event builder

objects. An SseBroadcaster is declared as volatile, meaning that it will be stored in

main Java memory and not in a cache. There is an init() method which is annotated

with @PostConstruct so that it will be executed immediately after construction. The

init() method contains a call to sse.newBroadcaster(), thereby obtaining a new

SseBroadcaster instance. Clients can register by calling upon the register web service

method, which produces MediaType.SERVER_SENT_EVENTS. An SseEventSink Context

parameter is passed in as a parameter to the register method, and in the implementation

a new SseEvent is sent via the eventSink. The SseEventSink is then registered to the

SseBroadcaster instance. The broadcast method accepts a String as a path parameter,

and inside the method the SseBroadcaster broadcast() is used to send an event. The

method demonstrates the use of the SseEvent builder. As you can see, calling upon sse.

newEventBuilder() allows for the construction of an SseEvent utilizing the builder

pattern. In the example, the media type is set as MediaType.APPLICATION_JSON_TYPE,

which indicates JSON:

sseBroadcaster.broadcast(sse.newEventBuilder()

 .mediaType(MediaType.APPLICATION_JSON_TYPE)

 .id(UUID.randomUUID().toString())

 .name("SSEEventBroadcaster Message")

 .data(message)

 .build()

);

In the next recipe, I will demonstrate how to register a client to an SseBroadcaster

and also how to listen for events on the client.

CHAPTER 13 RESTFul WEb SERvICES

703

13-7. Receiving Server-Sent Events As a Client
 Problem
You wish to create a client which subscribes to an SseBroadcaster on which messages

are pushed from a server, and you’d like to have the client perform an action when a

message is received.

 Solution
Utilize Server-Sent Events (SSE) to push messages from a server to one or more clients.

The Jakarta RESTful Web Services 2.1 API introduced the concept of SSE, which allows a

server to broadcast messages to registered clients. In the following example, a JSF client

is used to call upon a Jakarta RESTful Web Services SSE broadcaster and register. The

client then listens to broadcasted messages for 1000 milliseconds:

package org.jakartaeerecipes.chapter15.rest.jsf;

import javax.annotation.PostConstruct;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.client.WebTarget;

import javax.ws.rs.sse.SseEventSource;

@Named

@RequestScoped

public class SseClient {

 private Client client;

 @PostConstruct

 public void init() {

 client = ClientBuilder.newClient();

 }

CHAPTER 13 RESTFul WEb SERvICES

704

 public void listen() {

 WebTarget target = client.target("http://localhost:8080/

JakartaEERecipes/rest/ssebroadcaster/register");

 try (SseEventSource source = SseEventSource.target(target).build())

{

 source.register(System.out::println);

 source.open();

 Thread.sleep(1000); // Consume events for 1000 ms

 source.close();

 } catch (InterruptedException e) {

 }

 }

}

A JSF commandButton could be linked to the #{sseClient.listen} method, which

would then invoke the client when pressed.

 How It Works
A Jakarta RESTful Web Services client can be used to register to a SSE broadcaster

by simply calling upon the broadcaster’s registration method. Once registered, the

SseEventSource can be opened for a defined amount of time (one should not leave an

SseEventSource open without bound), and then it can be closed when finished listening

for messages.

In the example, the SseEventSource is set to the target of the broadcaster URL. Next,

it registers the output from the incoming message to be written to System.out.

println(). Therefore, each message received will be written to the system log. After

the registration, the source is opened for incoming messages. In the example, a thread

is hard-coded to sleep for 1000 milliseconds. This is simply to keep the client open for

messages for 1000 milliseconds and would likely not be coded this way for a production

application. Lastly, the SseEventSource is closed, which ends the client session.

CHAPTER 13 RESTFul WEb SERvICES

705
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_14

CHAPTER 14

WebSockets and JSON
The Jakarta EE 8 platform aims to provide a common ground for developing Java

enterprise solutions that incorporate HTML5 and other modern web technologies.

As such, there are a few core features that were added to Java EE 7, allowing for better

bidirectional support of HTML5. The Java EE 7 platform introduced communication

between the client and the server via a technology named WebSockets, enabling

more parity with the HTML5 standard. WebSockets are a full-duplex communication

mechanism that allows both textual and binary messages to be sent between clients and

servers, without the HTTP request/response life cycle. WebSockets allow either the client

or the server to send a message at any time, providing an asynchronous solution for

working with data while the user is performing a task.

HTML5 has become the mainstream markup language for developing content that

can be presented via the World Wide Web. It defines a standard, which can be used to

produce both HTML and XHTML documents. Along with standardization, HTML5 also

brings forth semantic features that were previously only possible on desktop application

platforms. For example, elements such as <video> and <audio> allow media content to

be embedded directly in web pages, without the need to embed a media player solution.

There is no doubt that HTML5, the fifth revision of the HTML standard, has opened the

doors to new possibilities in web application development.

The universally supported JSON (JavaScript Object Notation) object has become

a widely adopted solution for sending data between points. HTML5-based web

applications can utilize JSON to transport data, using WebSockets, Ajax, or other

transport technologies. The Jakarta EE 8 platform provides the JSON Processing

(JSON-P) API, which introduces utilities that make it easier to build and work with JSON

objects within the Java language. Java EE 8 added enhancements to JSON-P, allowing the

abilities to point to a specific location within a JSON document, and also patch existing

JSON documents. The JSON Binding (JSON-B) API was also introduced in Java EE 8,

providing a convenient API for mapping JSON to Java objects.

706

This chapter will focus on recipes that demonstrate these APIs. You will learn how

to make use of WebSockets, JSON-P, and JSON-B so that your application’s client-

server communication can become seamless, whether the user interface is written with

HTML5, JSF, or another markup language.

14-1. Creating a WebSocket Endpoint
 Problem
You wish to create a WebSocket endpoint that can be used to receive messages

asynchronously.

 Solution
Create a WebSocket endpoint by annotating a server-side POJO (Plain Old Java

Object) class and a method within that class, accordingly. In the following example,

a simple POJO class, named org.jakartaeerecipes.chapter14.recipe14_01.

BookChatEndpoint, is annotated to indicate that it should be accessible via the Web as

a WebSocket endpoint. The class contains a method named messageReceiver, which is

annotated to make it accessible to a client as a callable message consumer:

import javax.websocket.OnMessage;

import javax.websocket.server.ServerEndpoint;

...

@ServerEndpoint(path="/bookChatEndpoint")

public class BookChatEndpoint {

 @OnMessage

 public String messageReceiver(String message) {

 return "Message Received: " + message;

 }

}

The WebSocket endpoint will be accessible to clients at the URL ws://localhost:8080/

JakartaEERecipes/bookChatEndpoint. When a message is sent from a client to the

endpoint, it is sent to the messageReceiver method, where it is processed accordingly. In

this case, a String message containing the message passed to the endpoint is returned

to the client.

Chapter 14 WebSoCketS and JSon

707

 How It Works
A server-side class can accept messages from clients by configuring it as a WebSocket

endpoint. To develop a WebSocket endpoint, create a Java POJO, and annotate it with

@ServerEndpoint. The @ServerEndpoint annotation accepts a String-based path

attribute, which is used to indicate the URI at which the server is available to accept

client messages. Therefore, when the server is started, the value of the path attribute

would be appended to the end of the context path and application name in which the

WebSocket resides. By initiating a call to that URL, one method, annotated with

@OnMessage, will be invoked to process the message that is sent.

In the example, a class named BookChatEndpoint is annotated as a WebSocket, so it

is accessible to clients as an endpoint for receiving messages and returning a response.

When initiating communication with the WebSocket endpoint, the client must utilize a

URL that contains a URI scheme of “ws,” rather than “http.” The “ws” URI scheme was

introduced by the WebSocket protocol and, as such, indicates that the URL is used for

communication with a WebSocket. In this example, a client can send a message to the

server via the bookChatEndpoint WebSocket, and the server can send a message back at

the same time, because WebSockets allow for full-duplex communication. Full-duplex

communication is an HTML5 standard, rather than standard HTTP, which utilizes a

request-response communication.

14-2. Sending Messages to a WebSocket Endpoint
 Problem
You would like to send a message from a client to a WebSocket endpoint that is available

on a server.

 Solution
Engineer a JavaScript solution that can be used to send messages from a client

browser to a WebSocket endpoint. Invoke the JavaScript function via an action event

that is bound to an HTML input tag within the view. In the following example, a

button contains an onclick attribute that will invoke a JavaScript function named

bookChatRelay. The bookChatRelay function is responsible for opening a session with

Chapter 14 WebSoCketS and JSon

708

a WebSocket endpoint so that messages can be sent. The following listing is an excerpt

from the recipe14_02.xhtml JSF view, which is located within the web/chapter14

directory of the JakartaEERecipes source bundle:

...

<html>

 <head>

 <script type="text/javascript">

 var ws;

 function bookChatRelay()

 {

 if ("WebSocket" in window)

 {

 alert("WebSocket is supported by your Browser!");

 if (ws == null){

 alert("Creating new websocket connection");

 ws = new WebSocket("ws://localhost:8080/

JakartaEERecipes/bookChatEndpoint");

 } else {

 ws.send("Another message");

 }

 ws.onopen = function()

 {

 // Web Socket is connected, send data using send()

 ws.send("Message to send");

 alert("Message is sent...");

 };

 ws.onmessage = function (evt)

 {

 var received_msg = evt.data;

 alert("Message from server: " + received_msg);

 };

Chapter 14 WebSoCketS and JSon

709

 ws.onclose = function()

 {

 // websocket is closed.

 alert("Connection is closed...");

 };

 }

 else

 {

 // The browser doesn't support WebSocket

 alert("WebSocket NOT supported by your Browser!");

 }

 }

 function closeConnection(){

 if (ws !== null){

 ws.close();

 ws = null;

 }

 }

 </script>

 </head>

 <body>

 <input id="wsRelay" type="button" value="WebSocket Test Message"

 onclick="bookChatRelay();"/>

 <input id="closeConn" type="button" value="Close Connection"

 onclick="closeConnection();"/>

 </body>

</html>

When the button is pressed, the message will be sent from the browser client to the

WebSocket endpoint, and a message will be returned from the endpoint to the client.

Note the JavaScript code in this test creates a new WebSocket connection each
time the button on the page is pressed. this is okay for testing purposes, but in a
real-life scenario, you will want to retain and reuse the connection, if possible.

Chapter 14 WebSoCketS and JSon

710

 How It Works
The ability to asynchronously send messages (text or binary) from a client to a server

defines the foundation of Ajax and HTML5 capability. The WebSockets API allows

developers to send messages to the server via JavaScript calls to a WebSocket endpoint.

Conversely, the API allows clients to receive messages and process them accordingly via

a series of JavaScript functions. The example for this recipe demonstrates how to send a

message to a WebSocket endpoint by clicking a button on a web page. When the button

is clicked, a JavaScript function named bookChatRelay is invoked, which embodies the

processing implementation.

To send a message to a WebSocket endpoint via a JavaScript function, the first task is

to confirm whether the user’s browser is capable of working with WebSockets (HTML5

compliant). This confirmation can be performed using a conditional statement to verify

if the “WebSocket” object is available within the client via the following if statement:

if("WebSocket" in window){

...

} else {

...

}

If the client browser is capable of working with WebSockets, then the

implementation inside the if block is invoked; otherwise, the implementation within

the else block is invoked. To process the WebSocket message, a new WebSocket object

must be instantiated to establish the server connection, which is done by passing the

URL to the WebSocket endpoint to a new WebSocket object:

var ws = new WebSocket("ws://localhost:8080/JakartaEERecipes/

bookChatEndpoint");

The constructor for creating a WebSocket takes either one or two parameters.

The first parameter is the URL of the server to which the WebSocket will connect, and

the optional second parameter is a String of protocols that can be used for message

transmission. The WebSocket object contains a handful of events that are utilized to help

implement message processing. Table 14-1 lists the different events that can occur in the

life cycle a WebSocket object, along with a description of what they do.

Chapter 14 WebSoCketS and JSon

711

After the WebSocket object has been instantiated successfully, a connection to the

server will be established, which will cause the open event to occur. To process this event,

assign a function to the onOpen handler, and process events accordingly within that

function. Messages are usually sent to the server when the open event occurs, and this is

demonstrated within the example:

 ws.onopen = function()

 {

 // Web Socket is connected, send data using send()

 ws.send("Message to send");

 alert("Message is sent...");

 };

Similarly, you can listen for any other events to occur, and then process tasks

accordingly when they do. In the example, when a message is received from the server, it

is printed within an alert dialog. Also in the example, when the WebSocket is closed, an

alert dialog is presented to the user.

The example does not demonstrate all the possible ways that the WebSocket object

in JavaScript can be utilized. For instance, you could send messages to the server by

invoking the send() method and passing the data that you wish to send as a parameter.

The close() method can be called on a WebSocket to manually terminate the existing

connection. WebSocket objects also contain the helpful attributes readyState and

bufferedAmount, which can be used for obtaining information about a connection. The

readyState attribute will advise the current state of the WebSocket connection via a

returned number, and bufferedAmount attribute value represents the number of bytes

of UTF-8 text that have been queued using the send() method. Table 14-2 displays the

different possible values for the readyState attribute, along with a description of each.

Table 14-1. JavaScript WebSocket Object Events

Event Handler Method Description

open onOpen occurs when the WebSocket connection is established

close onClose occurs when the WebSocket connection is closed

error onError occurs when there is a communication error

message onMessage occurs when data is received from the server

Chapter 14 WebSoCketS and JSon

712

14-3. Building a JSON Object
 Problem
You would like to build a JSON object that can be passed from a client to a server or vice

versa.

 Solution
Make use of the JsonObjectBuilder to build a JSON object using Java code. The

following example demonstrates how to utilize a JsonObjectBuilder() instance to

create a new JsonObject. In this example class, multiple JsonObjects are created from

reading the contents of a database table. Once the object is built, the sections of the

object are assigned to a String that will eventually be displayed or persisted:

import java.io.IOException;

import java.io.StringWriter;

import java.util.List;

import javax.ejb.EJB;

import javax.faces.bean.ManagedBean;

import javax.json.Json;

import javax.json.JsonObject;

import javax.json.JsonObjectBuilder;

Table 14-2. JavaScript WebSocket readyState Values

Value Description

0 Connection not yet established.

WebSocket.CONNECTING

1 Connection established and communication is possible.

WebSocket.OPEN

2 Connection going through closing handshake.

WebSocket.CLOSING

3 Connection closed and cannot be opened.

WebSocket.CLOSED

Chapter 14 WebSoCketS and JSon

713

import javax.json.JsonWriter;

import org.jakartaeerecipes.jpa.entity.BookAuthor;

import org.jakartaeerecipes.jpa.session.BookAuthorFacade;

@Named(name = "jsonController")

public class JsonController {

 @EJB

 BookAuthorFacade bookAuthorFacade;

 private String authorJson;

 public void buildAuthors() {

 List<BookAuthor> authors = bookAuthorFacade.findAll();

 JsonObjectBuilder builder = Json.createObjectBuilder();

 StringBuilder json = new StringBuilder();

 try (StringWriter sw = new StringWriter();) {

 for (BookAuthor author : authors) {

 System.out.println("author" + author.getLast());

 builder.add("author", Json.createObjectBuilder()

 .add("authorId", author.getId())

 .add("first", author.getFirst())

 .add("last", author.getLast())

 .add("bio", author.getBio()));

 }

 JsonObject result = builder.build();

 try (JsonWriter writer = Json.createWriter(sw)) {

 writer.writeObject(result);

 }

 json.append(sw.toString());

 authorJson = json.toString();

 } catch (IOException ex) {

 System.out.println(ex);

 }

 }

...

Chapter 14 WebSoCketS and JSon

714

Once created, the JsonObject can be passed to a client for processing, or in this case,

it can be persisted to disk.

 How It Works
The JavaScript Object Notation Processing (JSON-P) API was added to the Java Enterprise

platform as of the release of Java EE 7. JSON-P, also referred to as “JSON with padding,”

has become the standard way to build JSON objects using Java. The JSON-P API includes

a helper class that can be used to create JSON objects using the builder pattern. Using the

JsonObjectBuilder class, JSON objects can be built using a series of method calls, each

building upon each other—hence the builder pattern. Once the JSON object has been

built, the JsonObjectBuilder build method can be called to return a JsonObject.

In the example for this recipe, you construct a JSON object that provides details

regarding book authors. The JsonObjectBuilder.beginObject() method is used to

denote that a new object is being created. The add method is used to add more name/

value properties, much like that of a Map. Therefore, the following line adds a property

named authorId with a value of author.getId():

.add("authorId", author.getId())

Objects can be embedded inside of each other, creating a hierarchy of different

sections within one JsonObject. In the example, after the first call to add(), another object

named author is embedded inside the initial JsonObject by calling beginObject() and

passing the name of the embedded object. Embedded objects can also contain properties;

so to add properties to the embedded object, call the add() method within the embedded

object. JsonObjects can embody as many embedded objects as needed. The following

lines of code demonstrate the beginning and end of an embedded object definition:

 .beginObject("author")

 .add("first", "Josh")

 .add("last", "Juneau")

 .endObject()

It is also possible that a JsonObject may have an array of related subobjects. To

add an array of subobjects, call the beginArray() method, passing the name of the

array as an argument. Arrays can consist of objects and even hierarchies of objects,

arrays, and so forth. In the example for this recipe, the book object has a couple of

Chapter 14 WebSoCketS and JSon

715

arrays defined, one being an array of editor objects and the other being an array of

technicalReviewer objects.

Once a JsonObject has been created, it can be passed to a client. WebSockets

work well for passing JsonObjects back to a client, but there are a bevy of different

technologies available for communicating with JSON.

14-4. Writing a JSON Object to Disk
 Problem
You would like to write a JSON object to the file system.

 Solution
Utilize the JSON-P API to build a JSON object, and then store it to the file system. The

JsonWriter class makes it possible to create a file on disk and then write the JSON to

that file. In the following example, the JsonObject that was generated in Recipe 14-3 is

written to disk using this technique:

public void writeJson() {

 try {

 JsonObject jsonObject = jsonController.buildAuthorsJson();

 javax.json.JsonWriter jsonWriter = Json.createWriter(new

FileWriter("Authors.json"));

 jsonWriter.writeObject(jsonObject);

 jsonWriter.close();

 FacesContext.getCurrentInstance().addMessage(null, new

FacesMessage(

 FacesMessage.SEVERITY_INFO, "JSON Built",

 "JSON Built"));

 } catch (IOException ex) {

 System.out.println(ex);

 }

 }

Chapter 14 WebSoCketS and JSon

716

 How It Works
The JsonWriter class can be utilized to write a JsonObject to a Java writer object.

A JsonWriter is instantiated by passing a Writer object as an argument. Instantiating

a JsonWriter will write to the Writer object that had been passed as an argument,

using JSON format. After that Writer has been created, the JsonWriter writeObject()

method can be invoked, passing the JsonObject that is to be written. Once the

JsonObject has been written, the JsonWriter can be closed by calling its close()

method. These are the only steps that are necessary for writing a JSON object to a Java

Writer class type.

14-5. Reading JSON from an Input Source
 Problem
You would like to read a JSON object that has been built or persisted to a file.

 Solution
Obtain a JSON object that you would like to read, and then read it using the javax.json.

Json createReader utility. In the following example, a JSON file is read from disk and

then parsed to determine the hierarchy of events within. Each of the events is printed to

the server log as the JSON is being parsed:

public String readObject() {

 InputStream in = new ByteArrayInputStream(controller.

buildAndReturnAuthors().getBytes());

 // or

 //Reader fileReader = new InputStreamReader(getClass().getResource

AsStream("AuthorObject.json"));

 //JsonReader reader = Json.createReader(fileReader);

 JsonReader reader = Json.createReader(in);

 JsonObject obj = reader.readObject();

 return obj.toString();

 }

Chapter 14 WebSoCketS and JSon

717

 How It Works
Once a JSON object has been persisted to disk, it will later need to be read back in for

utilization. The JsonReader object takes care of this task. To create a JsonReader object,

call the Json.createReader() method, passing either an InputStream or Reader object.

Once a JsonReader object has been created, it can produce a JsonObject by calling its

readObject method.

 Parsing Content

In order to perform some tasks, a JSON object must be searched to find only the content

that is desired and useful for the current task. Utilizing a JSON parser can make jobs

such as these easier, as a parser is able to break the object down into pieces so that each

different piece can be examined as needed, to produce the desired result.

The javax.json.Json class contains a static factory method, createParser(),

that accepts a bevy of input and returns an Iterable JsonParser. Table 14-3 lists the

different possible input types that are accepted via the createParser() method.

Once a JsonParser has been created, it can be made into an Iterator of Event

objects. Each Event correlates to a different structure within the JSON object. For

instance, when the JSON object is created, a START_OBJECT event occurs, adding a name/

value pair that will trigger both KEY_NAME and VALUE_STRING events. These events can

be utilized to obtain the desired information from a JSON object. In the example, the

event names are merely printed to a server log. However, in a real-life application, a

conditional would most likely test each iteration to find a particular event and then

perform some processing. Table 14-4 lists the different JSON events, along with a

description of when each occurs.

Table 14-3. createParser Method Input Types

Input Type Method Call

InputStream createParser(InputStream in)

JsonArray createParser(JsonArray arr)

JsonObject createParser(JsonObject obj)

Reader createParser(Reader reader)

Chapter 14 WebSoCketS and JSon

718

14-6. Converting Between JSON and Java Objects
 Problem
You have obtained a list of Java objects in a response from a web service, and you wish to

convert it to JSON.

 Solution
Utilize the JSON Binding (JSON-B) API to bind the Java object elements to JSON format.

In the following example, an XML response is received from a web service, converted

into Java objects, and the JSON-B API is used to convert the objects into JSON. A Jakarta

RESTful Web Services client is used to obtain a response that will include a number of

Employee objects, and each of them will be converted into a Java Employee object:

. . .

List<Employee> employees;

. . .

public String fetchJson(){

Table 14-4. JSON Object Events

Event Occurrence

START_OBJECT Start of an object

END_OBJECT end of an object

START_ARRAY Start of an array

END_ARRAY end of an array

KEY_NAME name of a key

VALUE_STRING Value of a name/value pair in String format

VALUE_NUMBER Value of a name/value pair in numeric format

VALUE_TRUE Value of a name/value pair in boolean format

VALUE_FALSE Value of a name/value pair in boolean format

VALUE_NULL Value of a name/value pair as nULL

Chapter 14 WebSoCketS and JSon

719

 WebTarget target = ClientBuilder.newClient().target("http://

localhost:8080/JakartaEERecipes/rest/org.jakartaeerecipes.entity.

employee");

 employees = (target.request(javax.ws.rs.core.MediaType.APPLICATION_

XML)

 .get(

 new GenericType<List<Employee>>() {

 }));

 System.out.println("Items: " + employees);

 Jsonb jsonb = JsonbBuilder.create();

 String result = null;

 result = jsonb.toJson(employees);

 return result;

}

Similarly, the JSON-B API can be used to convert from JSON to Java. In the following

method, a JSON string is returned from a web service call, and it is converted into a Java

collection:

public List<Employee> fetchJavaFromJson(){

 WebTarget target = ClientBuilder.newClient().target("http://

localhost:8080/JakartaEERecipes/rest/org.jakartaeerecipes.entity.

employee");

 String employeesJson = (target.request(javax.ws.rs.core.MediaType.

APPLICATION_JSON)

 .get(

 new GenericType<String>() {

 }));

 System.out.println("Items: " + employeesJson);

 Jsonb jsonb = JsonbBuilder.create();

 List<Employee> employees = new ArrayList();

 employees = jsonb.fromJson(employeesJson, ArrayList.class);

 return employees;

}

Chapter 14 WebSoCketS and JSon

720

In the example, a JSF view is used to display the contents of the Employee JSON. The

view markup sources are as follows:

<h:body>

 <p:panel header="JSON Representation of Employees">

 <h:outputText value="#{employeeJsonController.fetchJson()}"/>

 </p:panel>

 <p:panel header="Java Representation of Employees JSON">

 <p:dataTable value="#{employeeJsonController.fetchJavaFromJson()}"

var="emp">

 <p:column>

 #{emp.last}

 </p:column>

 </p:dataTable>

 </p:panel>

</h:body>

The output would look similar to the following:

 How It Works
The JSON-B API can be used to convert between JSON and Java seamlessly. In the

release of Java EE 7, the transition between JSON and Java was missing. Therefore, this

conversion had to take place manually, and it was a bit painstaking. In Java EE 8, this gap

has been closed, and it is now possible to convert seamlessly between JSON and Java.

Note to visit the JSon-b web site and view all documentation, please visit
http://json-b.net/.

Chapter 14 WebSoCketS and JSon

http://json-b.net/

721

The key piece of the JSON-B API is the Jsonb interface, which provides an abstraction

over the JSON binding operations. The JsonbBuilder can be used to obtain a Jsonb

object, which in turn is used to convert between Java and JSON. To create the Jsonb

object, call upon the JsonBuilder create() method. Once the Jsonb object has been

obtained, it can be used to convert to JSON and serialize by passing the Java object to the

toJson() method:

Jsonb jsonb = JsonbBuilder.create();

 String result = null;

 result = jsonb.toJson(employees);

To go in the opposite direction and deserialize from JSON back to Java, use the Jsonb

fromJson() method, passing the JSON string as the first argument and the Java type to

which the JSON will be converted as the second argument:

Jsonb jsonb = JsonbBuilder.create();

List<Employee> employees = new ArrayList();

employees = jsonb.fromJson(employeesJson, ArrayList.class);

The technique shown in the preceding text is only one way to convert back to a

Collection type. If you wish to convert in a type-safe manner, back to the generic type

List<Employee>, it can be done as follows:

employees = jsonb.fromJson(employeesJson, new ArrayList<Employee>(){}

 .getClass().

getGenericSuperclass());

The Jsonb object can also convert back to a single Java object by passing the Java

object type as the second argument to the fromJson() utility method, as follows:

Jsonb jsonb = JsonbBuilder.create();

Employee employee = new Employee;

employee = jsonb.fromJson(singleEmployeeJson, Employee.class);

This recipe covers the basics of converting JSON to Java and vice versa. For more

information regarding customizations, please see Recipe 14-7.

Chapter 14 WebSoCketS and JSon

722

14-7. Custom Mapping with JSON-B
 Problem
You wish to change the JSON property names when converting to a Java class or perform

custom mapping for circumstances such as converting specific date formats or marking

specified fields as transient.

 Solution
Utilize a JsonbConfig to create a custom runtime configuration for the JSON mapping.

There are also a handful of annotations that can be applied at the Java class level, field

level, or getter/setters to customize some configurations. In the following scenario,

a custom configuration is used to create a property naming strategy that includes

lowercase with underscores:

JsonbConfig config = new JsonbConfig()

 .withPropertyNamingStrategy(PropertyNamingStragegy.LOWER_CASE_WITH_

UNDERSCORES);

Jsonb jsonb = JsonbBuilder.create(config);

As mentioned previously, there are also a handful of annotations that can be applied to

customize mapping. In the following scenario, the dog color property is marked as transient.

This means that the color property will not be serialized into JSON when converting:

public class Dog {

 private String name;

 private int age;

 private String gender;

 @JsonbTransient

 private String color;

}

Chapter 14 WebSoCketS and JSon

723

 How It Works
The JsonbConfig class makes it easy to create a custom runtime configuration for your

JSON mapping and formatting. Annotations can be used to create a custom compile

time configuration. Such customizations can include things like changing from the

default property naming convention or specifying a particular property ordering.

To create a new configuration, simply create a new JsonbConfig class and pass the

configuration to the JsonbBuilder.create() method, as such:

JsonbConfig config = new JsonbConfig();

Jsonb jsonb = JsonbBuilder.create(config);

The JsonbConfig class can be used to specify the runtime configurations contained

in Table 14-5. In the example for this recipe, the .withPropertyNamingStrategy()

option was specified to configure a property naming strategy that is lowercase with

underscores.

Table 14-5. JsonbConfig Options

Option Description

.withFormatting(boolean) Creates custom configuration with formatting.

.withPropertyNaming

Strategy(strategy)

provides strategy for constructing property names. accepts

a strategy of type PropertyNamingStrategy (IdentItY,

LoWer_CaSe_WIth_daSheS, LoWer_CaSe_WIth_

UnderSCoreS, Upper_CaMeL_CaSe, Upper_CaMeL_CaSe_

WIth_SpaCeS, CaSe_InSenSItIVe).

.withPropertyOrder

Strategy(strategy)

provides strategy for ordering properties. accepts a strategy

of type PropertyOrderStrategy (LeXICoGraphICaL, anY,

reVerSe).

.withNullValues(boolean) Changes the default nULL handling. Global configuration.

.withDateFormat("format") Changes the default date format. Global configuration.

.withBinaryDataStrategy

(strategy)

provides strategy for binary data encoding. default is bYte

encoding. accepts BinaryDataStrategy (bYte, baSe_64,

baSe_64_UrL).

(continued)

Chapter 14 WebSoCketS and JSon

724

As previously mentioned, configurations can also be made at compile time by

specifying annotations on Java classes, fields, or getters and setters. The following table,

Table 14-6, lists the annotations that can be placed on a Java class, field, or accessor

method.

Option Description

.withAdapters(Custom

Adapter)

assigns a CustomAdapter to a Jsonb configuration. (See

JSon-b documentation for more on adapters.)

.withSerializers(Jsonb

Serializer)

assigns a JsonbSerializer to a Jsonb configuration.

.withDeserializers(Jsonb

Deserializer)

assigns a JsonbDeserializer to a Jsonb configuration.

.withStrictIJSON(boolean) provides support for the I-JSon restricted profile of JSon.

Table 14-5. (continued)

Table 14-6. Annotation Configurations

Annotation Description

@JsonbProperty

("name")

Field and getter/setter level. Changes the name of a particular property.

placed on a getter: the new name will be serialized when writing to

JSon. placed on a setter: the new name will be expected when reading

during deserialization. placed on a field: the new name will be applied

on both serialization and deserialization.

@JsonbPropertyOrder

(strategy)

Class level. Customizes the order of serialized properties. accepts a

propertyorderStrategy (LeXICoGraphICaL, anY, reVerSe).

@JsonbTransient Field and getter/setter level. Indicates that an annotated field should

be ignored by the JSon binding engine. placed on a field: property is

ignored during serialization and deserialization. Getter: property ignored

during serialization. Setter: property ignored during deserialization.

@JsonbNillable

(boolean)

Class and field level. Indicates if nULL values are to be serialized.

default is false.

(continued)

Chapter 14 WebSoCketS and JSon

725

14-8. Replacing a Specified Element in a JSON
Document
 Problem
You wish to replace values of a JSON document that match a given pattern.

 Solution
Utilize the JSON-P patch capability to replace the values within the JSON document.

In the following example, a string of text is taken in from a JSF form and used to create

a JSON pointer to the matching last name in the JSON String. The JSON Replace

functionality is then used to replace the matching JSON String value with the String

value of “JsonMaster”:

public void findEmployeeByLast() {

 setSearchResult(null);

 String text = "/" + this.lastSearchText;

 JsonObject json = Json.createObjectBuilder().build();

 JsonValue object = json.getJsonObject(fetchJson());

 if (lastSearchText != null && object != null) {

 JsonPointer pointer = Json.createPointer(text);

 System.out.println("text: " + text + pointer);

 System.out.println("json: " + object);

 JsonValue result = pointer.getValue(object.asJsonArray());

Annotation Description

@JsonbCreator Constructor level. allows one to annotate a custom constructor with

parameters or a static factory method used to create a class instance.

@JsonbDateFormat

("format")

Field level. Customizes date format for a specified property.

@JsonbNumberFormat

("format")

Field level. Customizes number format for a specified property.

Table 14-6. (continued)

Chapter 14 WebSoCketS and JSon

726

 // Replace a value

 JsonArray array = (JsonArray) pointer.replace(object.asJsonArray(),

 Json.createValue("JsonMaster"));

 setSearchResult(array.toString());

 }

}

The following markup shows the JSF form that is used to send the search text and

display the resulting output:

<h:form id="jsonPointerForm">

 <p:panel header="Employee Search By Address">

 <p:outputLabel for="lastSearchText" value="Pointer String:"/>

 <p:inputText id="lastSearchText" value="#{employeeJsonController.

lastSearchText}"/>

 <p:commandButton id="searchButton"

 action="#{employeeJsonController.

findEmployeeByLast}"

 update="searchResult" value="Find Value"/>

 </p:panel>

 <h:outputText id="searchResult" value="#{customerController.

searchResult}"/>

</h:form>

 How It Works
The JSON-P 1.1 API added the ability to point to a specified JSON value and also to

replace values of a JSON document. The JSON Pointer ability allows one to identify a

specific value within a JSON document. To utilize the JSON Pointer functionality, one

must first obtain a JsonObject by calling upon the appropriate Json interface method

for working with the JSON that is to be used. In the solution to this recipe, the

Chapter 14 WebSoCketS and JSon

727

Json.createObjectBuilder().build() methods are called upon to return a JsonObject.

The JsonObject can then be used to perform a JSON Patch operation. The fetchJson()

method in the example returns a JSON String:

JsonObject json = Json.createObjectBuilder().build();

JsonValue object = json.getJsonObject(fetchJson());

The JsonPointer object is obtained by calling upon the Json interface

createPointer() method, passing the String of text to find in the JSON. The following

excerpt from the solution shows the process of obtaining the JSON pointer:

JsonPointer pointer = Json.createPointer(text);

The JSON Patch functionality provides the ability to add, remove, or replace a

portion of a JSON document or String that has been obtained via a JSON pointer. In the

solution, the Replace functionality is used to replace the last name that is pointed to

with the string “JsonMaster”. This is done by calling upon the JsonPointer replace()

method and passing the JSON object as the first argument and the Json that will replace

the original JSON as the second argument:

JsonArray array = (JsonArray) pointer.replace(object.asJsonArray(),

 Json.createValue(

"JsonMaster"));

The JsonPointer object also contains the methods add() and replace(). The add()

method can be used to add a value into a JSON object or insert a value into an array. The

add() method accepts a JsonObject as the first argument and the Json value to add as

the second argument. The remove() method allows one to remove a JsonPointer value

from a JSON document.

Chapter 14 WebSoCketS and JSon

729
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_15

CHAPTER 15

Security
One of the most important components to an enterprise-level application is security.

It is a fact that enterprise applications must be rock solid and secure so that data and

application functionality cannot fall into the wrong hands. Utilizing a combination

of application container security and application-level security can help secure

applications from thugs who are targeting enterprise data.

The release of Java EE 8 introduced the Security API, which for the first time provided

the Java EE platform with a standard API that can be used for securing applications.

In previous releases, security was certainly possible, but there was no standard API,

so there were variations of homegrown authentication solutions and third-party APIs

that were used throughout the applications that used the platform. In this chapter, I

will touch upon techniques that may have been used in previous releases for securing

applications, and I’ll also outline similar solutions utilizing the standard security API that

is part of the Jakarta EE platform.

Three different types of security can be applied to enterprise-level applications:

declarative, programmatic, and transport security. Declarative security occurs within

an application’s deployment descriptor or via annotations that are added to classes and

methods within the application. Declarative security is used to provide the application

server container with the ability to guard access to certain application features via the

use of user authentication and roles. Programmatic security occurs when the developer

manually codes the authentication methods, customizing the requirements for

authentication into an application. Transport security occurs between the client and the

server, and it is responsible for securing information as it is passed between the two.

This chapter will touch upon each of these three levels of security. It contains recipes

that cover application server configurations utilizing the GlassFish and Payara server for

setting up database and LDAP (Lightweight Directory Access Protocol) authentication

for applications that are deployed within the container. You will also learn how to

utilize XML configuration, annotations, and Jakarta Expression Language to secure

portions of your applications. Lastly, it’ll touch upon how to secure transport via SSL

730

and certificates. Since the GlassFish and Payara administrations are very similar, assume

that when GlassFish is referenced in this chapter, the same holds true for Payara, unless

otherwise noted. However, Payara server does include a number of important security

benefits over and above what is provided by GlassFish, not to mention the normalized

security patch release schedule. This chapter will also touch upon the Jakarta EE Security

API, which provides a standardized solution that enables developers to produce portable

applications and package security implementations within the application, rather than

in the container.

15-1. Setting Up Application Users and Groups
in GlassFish
 Problem
You want to create users, groups, and roles within your application server container for

use with applications that are deployed to the container.

 Solution
Log into the GlassFish or Payara administrative console to add users to the File security

realm. You can then add the users to groups by specifying the group names when

creating the users. This example will walk you through the configuration of a new user

within the GlassFish application server.

Log into the administrative console by navigating to http://localhost:4848 and

then logging in as an administrative user.

Use the tree menu on the left side of the screen to navigate to the Configurations ➤

server-config ➤ Security ➤ Realms menu. Once you click the Realms menu option, the

Realms form will appear (Figure 15-1).

Chapter 15 SeCurity

731

 1. Click the “file” realm link to enter the Edit Realm form, as shown

in Figure 15-2.

Figure 15-1. GlassFish Realms form

Figure 15-2. GlassFish Edit Realm form

Chapter 15 SeCurity

732

 2. Click the Manage Users button within the Edit Realm form to

open the File Users form, and then click the New button within

the File Users form (Figure 15-3) to enter the New File Realm User

form (Figure 15-4).

 3. Fill in a user ID and the password information to complete the

New File Realm User form, and optionally add a group name to

the Group List field. Click the Save button to add the user to the

File Users list (Figure 15-5).

Figure 15-3. GlassFish File Users form

Figure 15-4. GlassFish New File Realm User form

Chapter 15 SeCurity

733

Once they’re created, users within GlassFish/Payara realms can be used for

application authentication purposes. To learn more about configuring your applications

to utilize application server container user authentication, please refer to Recipe 15-2.

 How It Works
Adding an authentication prompt to allow user access to secured areas can be one of

the best forms of protection for any application. Fortunately, the Java platform makes

authentication easy for you to add to your applications, albeit there was no formal

standard introduced until the release of Java EE 8. Most application servers have some

mechanism for adding user accounts that can be used to access applications that are

deployed in one of the server domains. GlassFish and Payara are no exception because

they provide the ability to add users and groups to different security realms, which can

then be applied to applications for authentication purposes.

Note Most application server containers also allow for connectivity with LDap
servers or databases, which enables authentication to occur against user accounts
within the LDap server or stored within a database table, rather than within the
container itself. For an example of LDap authentication, please read the recipes
later in this chapter.

Figure 15-5. File Users list

Chapter 15 SeCurity

734

When adding users to GlassFish, they must be incorporated with a security realm.

The File security realm is available for use with the default installation, although more

security realms can be created if desired. Adding users to realms is a fairly simple

process, and individual users can be added by following the steps noted in the solution

to this recipe. When creating a user, one of the options that can be specified is a group.

You can think of a GlassFish user group as a role, in that more than one user can

belong to a group. GlassFish does not contain a mechanism for managing the groups

themselves; in fact, a group is merely a String value to GlassFish. However, if you follow

through the steps in Recipe 15-2, you will see that groups can be mapped to roles at the

application level. Therefore, if UserA belongs to a group named standard, then UserA

can also belong to a group named admin. The application can then grant access to UserA

for different portions of the application, depending upon which groups or roles the user

belongs to.

Users in GlassFish are simplistic in that they are used for authentication and access

purposes within the deployed applications only. Users can be managed only on a per-

server installation basis, so they are a bit cumbersome since they cannot be shared

across servers to provide a single sign-on solution. For that reason, it is recommended

that GlassFish/Payara users be used for smaller applications/environments or testing

purposes only. For a more substantial and enterprise authentication solution, either

database or LDAP user accounts would be a better choice.

Note to learn about configuring form-based authentication within the GlassFish
or payara application server and utilizing a database to store user credentials, see
recipe 15-6.

15-2. Performing Basic Web Application Authorization
 Problem
You have established users and associated them with groups within the application

server container. Now you want to assign users to particular roles based upon the access

levels that they require for the application and apply a basic authentication mechanism

for access to specified application views.

Chapter 15 SeCurity

735

 Solution #1

Configure form-based security using basic authentication within the web application

deployment descriptor. Map roles to groups within the glassfish-web.xml deployment

descriptor, if needed. The following excerpt was taken from the web.xml deployment

descriptor of the JakartaEERecipes NetBeans project sources. It demonstrates how to secure

all of the views that reside within the chapter15 folder (determined by the url- pattern

element within web.xml) such that a username and password combination is required for

access. The auth-method tag within web.xml specifies the type of authentication that will

be used for the application. In the example, you’ll use BASIC authentication. Only those

usernames and passwords that have been configured in the GlassFish file realm with the

appropriate group will be granted access; in this case, it is the users role:

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>secured</web-resource-name>

 <url-pattern>/faces/chapter15/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>users</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>file</realm-name>

 </login-config>

 <security-role>

 <role-name>users</role-name>

 </security-role>

Chapter 15 SeCurity

736

If role names specified in the web.xml deployment descriptor are the same as the

group names that have been associated with users in GlassFish, then you are done.

Users will be granted access to those areas of the application that have been secured,

based upon the group association. However, if a role name differs from those groups that

have been associated to users, you can manually map role names to group names by

specifying a security-role-mapping in the glassfish-web.xml file for the application.

The following excerpt, taken from the glassfish-web.xml configuration file for the

JakartaEERecipes application, demonstrates how to map roles to GlassFish users. In this

case, the role standard that was specified for the account in Recipe 15-1 is mapped to

the users role. The users role has access to the /faces/chapter15/* url-pattern:

 <security-role-mapping>

 <role-name>users</role-name>

 <group-name>standard</group-name>

 </security-role-mapping>

Once everything has been configured, then access will be granted according to

the configurations that have been placed within the web.xml deployment descriptor.

To test the authentication mechanism, deploy the JakartaEERecipes WAR file to your

GlassFish/Payara application server, and visit the following URL:

http://localhost:8080/JakartaEERecipes/faces/chapter15/index.xhtml

 Solution #2

Use annotations on classes and class methods to declare roles within an application

for access to secured pages as deemed necessary. To implement access control on a

particular class or method, annotate using @DeclareRoles and/or @RolesAllowed,

specifying the roles that can be used to access them. Those users who are authenticated

belonging to one of the specified roles will be granted access to the content.

In the example corresponding to this recipe, the chapter15/recipe15_02.xhtml

JSF view contains two command buttons that invoke actions within a managed bean.

Each of the buttons invokes a different action in the bean. One of the buttons invokes

a method that is secured via the @RolesAllowed annotation, and the other does not.

The following excerpt is taken from the class org.jakartaeerecipes.chapter15.

recipe15_02.Recipe15_02b, which is the managed bean controller that contains the two

methods being called from the command buttons:

Chapter 15 SeCurity

737

public class Recipe15_02b implements Serializable {

 public String unsecuredProcess(){

 return "recipe15_02_1.xhtml";

 }

 @RolesAllowed("users")

 public String securedProcess(){

 return "recipe15_02_2.xhtml";

 }

}

When the commandButton that invokes the securedProcess() method is clicked, the

user will be prompted to authenticate if they have not already done so.

 How It Works
There are a couple of ways to secure an application using basic application server

authentication. Commonly, applications provide basic authentication security via the

use of XML configuration within the web.xml deployment descriptor along with optional

configuration within the glassfish-web.xml deployment descriptor. It is also possible

to add basic authentication security into an application using code only, via declarative

security. Declarative security is based on the use of annotations for declaring roles for

access to application classes and methods. While both of these techniques are very

similar in concept, each of them has its own set of bonuses in certain situations.

In Solution #1 to this recipe, XML configuration is used to secure access to all web

views that reside within a specific folder in the application. To add security via XML

configuration files, the web.xml deployment descriptor needs to have the security-

constraint, login-config, and security-role elements added to it for mapping

application roles to GlassFish users and groups. The security-constraint element

encompasses a handful of subelements that are used to tell the application server

container which areas of the application to secure and which accounts are able to access

those secured areas. First, a web-resource-collection element is used to declare the

Chapter 15 SeCurity

738

locations of the application to secure and which HTTP methods to secure. The following

elements should be embedded within a web-resource-collection element:

• web-resource-name: This is an optional name that can be specified

for the secured location. In the recipe solution, the name secured is

specified.

• url-pattern: This is the URL pattern that will be used to determine

which areas of the application are to be secured. An asterisk (*) is to

be used as a wildcard. In the recipe solution, chapter15/* specifies

that all views contained within the chapter15 folder should be

secured. If you want to secure a specific page, then utilize the URL

pattern to that page, including the page name.

• http-method: This is used to specify which HTTP methods should

be secured for access to the locations specified by the url-pattern

element.

Another subelement that can be declared within the security-constraint element

is the auth-constraint element. This element lists the different security roles that

are used to secure the locations specified by the url-pattern via adding role-name

subelements. In the recipe solution, the users role is declared for the application. A

user-data-constraint element can also be included as a subelement to the security-

constraint element in order to specify the type of protection that will be applied when

data is transported between the client and the server. In the example, this has been set

to CONFIDENTIAL. The values that can be specified for the transport guarantee are as

follows:

• NONE: Data requires no transport security.

• INTEGRAL: Data cannot be changed in transit between the client and

the server.

• CONFIDENTIAL: Outside entities are unable to observe the contents of

the transmission. Secure Sockets Layer (SSL) will be used in this case,

and it must be configured within the web server.

The security-role XML element lists the different roles that can be used for

securing access to the application pages. Add the role-name subelement to the

security-role for each role specification. The login-config XML element is used to

Chapter 15 SeCurity

739

specify the method of authentication that is to be used for securing the application. The

auth-method should be set to BASIC for most cases, but all possible values are BASIC,

DIGEST, FORM, and CLIENT-CERT.

Adding the designated elements to the web.xml deployment descriptor, as

described in this section, provides sufficient ability for applications to be secured via

user credentials to specified secure locations. In some cases, it makes sense to use

annotations to declare roles from within the application code itself. For such cases, the

@DeclareRoles and @RolesAllowed annotations can be specified on a class or method.

The following annotations can be used to specify security within a class. For each of the

annotations, either a single role or a list of roles can be specified.

• @DeclareRoles: This is specified at the class or method level, and

each role that is allowed to access the class should be indicated

within the annotation. For instance, one or more roles can be

specified for access to the class using the following syntax:

Class level:

@DeclareRoles("users")

public class MyClass {

 ...

}

Method level:

public class MyClass {

 ...

 @DeclareRoles({"role1", "role2"})

 public void calculatePay(){

 ...

 }

...

}

• @RolesAllowed: This is specified at either the class or method level.

A list of roles that are allowed to access the class or method should be

indicated within the annotation. The syntax is the same as with that

of @DeclareRoles.

Chapter 15 SeCurity

740

• @PermitAll: This is specified at the class or method level. It indicates

that all roles are allowed access.

• @DenyAll: This is specified at the class or method level. It indicates

that no roles are allowed access.

When both the @DeclareRoles and @RolesAllowed annotations are used within

the same class, the roles listed within each are allowed to access that class. The roles

specified for access on a particular method using @RolesAllowed override the roles that

are listed to access the entire class.

It is possible to programmatically check to see which roles an authenticated user

belongs to by calling the SessionContext isUserInRole() method. This allows you

to permit access to particular features of an application using conditional logic, as

demonstrated by the following lines of code:

@DeclareRoles({"role1", "role2, "role3"}

public class MyClass {

 ...

 @RolesAllowed("role2")

 public void calculatePay(){

 ...

 }

 @PermitAll

 public void calculatePay(){

 if (ctx.isUserInRole("role1")) {

 ...

 } else if (ctx.isUserInRole("role3")){

 ...

 }

 }

 ...

}

Chapter 15 SeCurity

741

15-3. Developing a Programmatic Login Form
with Custom Authentication Validation
 Problem
You want to secure your JSF application to a specified group of users. Furthermore, you

want to create a custom login view, which will be used to pass user credentials to the

appropriate business objects for authentication.

 Solution
Develop a login form that consists of username and password inputText fields, along

with a commandButton to invoke a programmatic login action that resides within

a managed bean controller. Develop logic within the managed bean controller to

authenticate users. In the following example, a login form is generated using JSF and

Facelets, utilizing a managed bean for authentication control.

 Creating the Login Form

A login form is basically the same as any other form, except it accepts a username and a

password as arguments and passes them to a JavaBean that utilizes the information to

accept or deny the authentication request. The login form also utilizes a standard HTML

form element that passes the username (j_username) and password (j_password) field

values to an action named j_security_check. The following code is used to comprise

the login.xhtml form for a JSF authentication mechanism:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:p="http://primefaces.org/ui">

 <ui:composition template="/layout/custom_template.xhtml">

 <ui:define name="title">

Chapter 15 SeCurity

742

 <h:outputText value="Welcome to the Acme Bookstore"></

h:outputText>

 </ui:define>

 <ui:define name="content">

 <h:form id="login">

 <center>

 <p align="center" class="sub_head_sub">

 Acme Bookstore Application

 </p>

 You must authenticate to gain access to

this application.

 <h:messages errorStyle="color:

red" infoStyle="color: green"

globalOnly="true"/>

 <div>

 <p:panel rendered="#{authenticationControll

er.authenticated}">

 Authenticated

successfully...go to Application

 </p:panel>

 <p:panel rendered="#{!authenticationControl

ler.authenticated}">

 Username: <h:inputText id="j_username"

 value="#{authent

icationControll

er.username}"/>

 Password: <h:inputSecret id="j_password"

Chapter 15 SeCurity

743

 value="#{authent

icationControll

er.password}"/>

 <h:commandButton id="login" action="#{a

uthenticationController.login}"

 value="Login"/>

 </p:panel>

 </div>

 </center>

 </h:form>

 </ui:define>

 </ui:composition>

</html>

Note the inputSecret component used in this example will display a series of
asterisks, rather than plain text, when input is typed into the text box.

Once loaded, the login form will resemble Figure 15-6 when using the Acme

Bookstore template.

Chapter 15 SeCurity

744

 Coding the Authentication Backend

The authentication backend is responsible for performing the authentication and

maintaining state for a user session. The backend logic consists of an EJB for maintaining

the authentication logic and a JSF controller that is used for binding view methods and

fields to backend logic. The controller should be session scoped so that the user state can

be maintained for an entire session. Lastly, if you’re using a database table to contain all

of the usernames that have access to the application, then an entity class will be required

for that database table.

In this section, I will introduce a custom technique as a non-standard solution,

which utilizes an EJB to authenticate an individual’s credentials. The authentication

occurs calling upon the HttpServletRequest login(), passing authentication off to

the application server container. This is container-specific, meaning that it will only

work if the application has been configured, as has been done with the first recipe in this

chapter.

Figure 15-6. Login form example

Chapter 15 SeCurity

745

The second approach makes use of Jakarta Security, which was introduced in

Java EE 8 as the Java EE Security API, using servlet-based authentication within an

HttpAuthenticationMechanism (HAM). To see more specifics regarding Jakarta Security,

please see Recipe 15-4.

EJB: (Custom Solution)

The Enterprise JavaBean that is used for this custom authentication backend is

a stateless session bean that contains a login method, which makes calls to the

application server container authentication mechanism. The following code is from the

class org.jakartaeerecipes.chapter15.recipe15_03.AutheticationBean.java file in

the JakartaEERecipes project:

package org.jakartaeerecipes.chapter15.recipe15_03;

import java.io.Serializable;

import javax.ejb.Remove;

import javax.ejb.Stateless;

import javax.faces.application.FacesMessage;

import javax.persistence.CacheRetrieveMode;

import javax.faces.context.FacesContext;

import javax.persistence.EntityManager;

import javax.persistence.NoResultException;

import javax.persistence.PersistenceContext;

import javax.persistence.Query;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpSession;

@Stateless

public class AuthenticationBean implements Serializable {

 @PersistenceContext(unitName = "JakartaEERecipesPU")

 private EntityManager em;

 private boolean authenticated = false;

 private String username = null;

 private String password = null;

Chapter 15 SeCurity

746

 HttpSession session = null;

 User user;

 public AuthenticationBean() {

 }

 public void findUser() {

 try {

 em.flush();

 getUser();

 Query userQry = em.createQuery(

 "select object(u) from User u "

 + "where u.username = :username").setParameter

("username", getUser().getUsername().toUpperCase());

 // Enable forced database query

 userQry.setHint("javax.persistence.cache.retrieveMode",

CacheRetrieveMode.BYPASS);

 setUser((User) userQry.getSingleResult());

 FacesContext.getCurrentInstance().addMessage(null, new

FacesMessage(FacesMessage.SEVERITY_INFO, "Successfully

Authenticated", ""));

 } catch (Exception e) {

 FacesContext.getCurrentInstance().addMessage(null, new

FacesMessage(FacesMessage.SEVERITY_ERROR, "Invalid username/

password", ""));

 setUser(null);

 }

 }

 public HttpSession getSession() {

 FacesContext context = FacesContext.getCurrentInstance();

 HttpServletRequest request = (HttpServletRequest) context.

getExternalContext().getRequest();

 session = request.getSession(false);

Chapter 15 SeCurity

747

 return session;

 }

 public boolean login() {

 HttpSession session = getSession();

 HttpServletRequest request = null;

 Query userQry = null;

 System.out.println("In the login method..." + getUser().

getUsername());

 try {

 FacesContext context = FacesContext.getCurrentInstance();

 request = (HttpServletRequest) context.getExternalContext().

getRequest();

 request.login(getUser().getUsername(), this.password);

 session.setMaxInactiveInterval(1800);

 session.setAttribute("authenticated", new Boolean(true));

 em.flush();

 userQry = em.createQuery(

 "select count(u) from User u "

 + "where u.username = :username").

setParameter("username", getUser().getUsername().

toUpperCase());

 userQry.setHint("javax.persistence.cache.retrieveMode",

CacheRetrieveMode.BYPASS);

 Long count = (Long)userQry.getSingleResult();

 if (count > 0){

 userQry = em.createQuery(

 "select object(u) from User u "

 + "where u.username = :username").

setParameter("username", getUser().getUsername().

toUpperCase());

 // Enable forced database query

Chapter 15 SeCurity

748

 userQry.setHint("javax.persistence.cache.retrieveMode",

CacheRetrieveMode.BYPASS);

 setUser((User) userQry.getSingleResult());

 System.out.println("Setting User, user exists in database

with role ->" + user.getSecurityRole());

 setAuthenticated(true);

 } else {

 // User cannot authenticate successfully...do something

 }

 FacesContext.getCurrentInstance().addMessage(null, new

FacesMessage(FacesMessage.SEVERITY_INFO, "Successfully

Authenticated", ""));

 return authenticated;

 } catch (NoResultException| ServletException ex) {

 setUser(null);

 setAuthenticated(false);

 session = getSession();

 session.setAttribute("authenticated", new Boolean(false));

 if(request != null){

 try {

 request.logout();

 } catch (ServletException ex1) {

 System.out.println("AuthBean#login Error: " + ex);

 }

 }

 FacesContext.getCurrentInstance().addMessage(null, new

FacesMessage(FacesMessage.SEVERITY_ERROR, "Invalid username/

password", ""));

 return false;

 } finally {

 setPassword(null);

 }

 }

Chapter 15 SeCurity

749

 /**
 * @return the isAuthenticated

 */

 public boolean isAuthenticated() {

 if (getSession().getAttribute("authenticated") != null) {

 boolean auth = (Boolean) getSession().getAttribute("authenticated");

 if (auth) {

 authenticated = true;

 }

 } else {

 authenticated = false;

 }

 return authenticated;

 }

 /**
 * @param isAuthenticated the isAuthenticated to set

 */

 public void setAuthenticated(boolean isAuthenticated) {

 this.authenticated = isAuthenticated;

 }

 @Remove

 public void remove() {

 System.out.println("Being removed from session...");

 setUser(null);

 }

 /**
 * @return the username

 */

 public String getUsername() {

 try {

 System.out.println("The current username is: " + user.getUsername());

 username = getUser().getUsername();

 } catch (NullPointerException ex) {

 }

Chapter 15 SeCurity

750

 return username;

 }

 /**
 * @param username the username to set

 */

 public void setUsername(String username) {

 getUser().setUsername(username);

 System.out.println("Just set the username to : " + getUser().

getUsername());

 this.username = null;

 }

 /**
 * @return the password

 */

 public String getPassword() {

 return this.password;

 }

 /**
 * @param password the password to set

 */

 public void setPassword(String password) {

 this.password = password;

 }

 /**
 * @return the user

 */

 public User getUser(){

 if (this.user == null) {

 user = new User();

 }

 return user;

 }

 /**

Chapter 15 SeCurity

751

 * @param user the user to set

 */

 public void setUser(User user) {

 this.user = user;

 }

}

JSF Controller

The controller is responsible for coordinating authentication efforts between the JSF

view and the EJB. It also has a session scope so that the user’s state can be maintained

throughout the life of the application session. The following code is taken from the org.

jakartaeerecipes.chapter15.recipe15_03.AuthenticationController.java file that

is contained within the JakartaEERecipes project:

import javax.servlet.http.HttpSession;

@Named("authenticationController")

@SessionScoped

public class AuthenticationController implements Serializable {

 @EJB

 private AuthenticationBean authenticationFacade;

 private String username;

 private User user;

 private boolean authenticated = false;

 private HttpSession session = null;

 private String userAgent;

 /**
 * Creates a new instance of AuthenticationController

 */

 public AuthenticationController() {

 }

 public HttpSession getSession() {

 // if(session == null){

 FacesContext context = FacesContext.getCurrentInstance();

Chapter 15 SeCurity

752

 HttpServletRequest request = (HttpServletRequest) context.

getExternalContext().getRequest();

 session = request.getSession();

 return session;

 }

 /**
 * @return the username

 */

 public String getUsername() {

 this.username = getUser().getUsername();

 return this.username;

 }

 /**
 * @param username the username to set

 */

 public void setUsername(String username) {

 this.username = username;

 getUser().setUsername(username);

 }

 /**
 * @return the password

 */

 public String getPassword() {

 return authenticationFacade.getPassword();

 }

 /**
 * @param password the password to set

 */

 public void setPassword(String password) {

 authenticationFacade.setPassword(password);

 }

 public User getUser() {

Chapter 15 SeCurity

753

 if (this.user == null) {

 user = new User();

 setUser(authenticationFacade.getUser());

 }

 return user;

 }

 public void setUser(User user) {

 this.user = user;

 }

 public String login() {

 authenticationFacade.setUser(getUser());

 boolean authResult = authenticationFacade.login();

 if (authResult) {

 this.authenticated = true;

 setUser(authenticationFacade.getUser());

 return "SUCCESS_LOGIN";

 } else {

 this.authenticated = false;

 setUser(null);

 return "BAD_LOGIN";

 }

 }

 public String logout() {

 user = null;

 this.authenticated = false;

 FacesContext facesContext = FacesContext.getCurrentInstance();

 ExternalContext externalContext = facesContext.

getExternalContext();

 externalContext.invalidateSession();

 return "SUCCESS_LOGOUT";

 }

Chapter 15 SeCurity

754

 /**
 * @return the authenticated

 */

 public boolean isAuthenticated() {

 try {

 boolean auth = (Boolean) getSession().getAttribute("authenticated");

 if (auth) {

 this.authenticated = true;

 } else {

 authenticated = false;

 }

 } catch (Exception e) {

 this.authenticated = false;

 }

 return authenticated;

 }

 public void setAuthenticated(boolean authenticated) {

 this.authenticated = authenticated;

 }

}

User Entity

For any application, it is a good idea to maintain a list of users who have the ability to

access the application pages. Furthermore, if an application requires fine-grained access

control, it is important to assign roles to each user to indicate which privilege level each

user should have for the application. A database table can be used for this purpose, and

the table should contain a field for the username of each person who has access to the

application, as well as a field for the user role. The following SQL is used for creating the

USER database table in an Oracle database, although similar SQL could be used to create

a table in a different RDMS:

create table users(

id number,

username varchar(150) not null,

Chapter 15 SeCurity

755

password varchar(50) not null,

primary key (id));

The following class listing is that for the org.jakartaeerecipes.chapter15.

recipe15_03.User.java file, which is an entity class within the JakartaEERecipes project:

import java.io.Serializable;

import java.math.BigDecimal;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

/**
 * Entity class User

 */

@Entity

@Table(name = "USER")

public class User implements Serializable {

 @Id

 @Column(name = "USER_ID", nullable = false)

 private BigDecimal userId;

 @Column(name = "USERNAME")

 private String username;

 @Column(name = "SECURITY_ROLE")

 private String securityRole;

 /** Creates a new instance of User */

 public User() {

 }

 /**
 * Creates a new instance of User with the specified values.

 * @param userId the userId of the User

 */

Chapter 15 SeCurity

756

 public User(BigDecimal userId) {

 this.userId = userId;

 }

 /**
 * Gets the userId of this User.

 * @return the userId

 */

 public BigDecimal getUserId() {

 return this.userId;

 }

 /**
 * Sets the userId of this User to the specified value.

 * @param userId the new userId

 */

 public void setUserId(BigDecimal userId) {

 this.userId = userId;

 }

 /**
 * Gets the username of this User.

 * @return the username

 */

 public String getUsername() {

 return this.username;

 }

 /**
 * Sets the username of this User to the specified value.

 * @param username the new username

 */

 public void setUsername(String username) {

 this.username = username;

 }

 /**
 * Gets the securityRole of this User.

Chapter 15 SeCurity

757

 * @return the securityRole

 */

 public String getSecurityRole() {

 return this.securityRole;

 }

 /**
 * Sets the securityRole of this User to the specified value.

 * @param securityRole the new securityRole

 */

 public void setSecurityRole(String securityRole) {

 this.securityRole = securityRole;

 }

 /**
 * Returns a hash code value for the object. This implementation computes

 * a hash code value based on the id fields in this object.

 * @return a hash code value for this object.

 */

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (this.userId != null ? this.userId.hashCode() : 0);

 return hash;

 }

 /**
 * Determines whether another object is equal to this User. The result is

 * <code>true</code> if and only if the argument is not null and is a

User object that

 * has the same id field values as this object.

 * @param object the reference object with which to compare

 * @return <code>true</code> if this object is the same as the argument;

 * <code>false</code> otherwise.

 */

 @Override

 public boolean equals(Object object) {

Chapter 15 SeCurity

758

 return false;

 }

 User other = (User)object;

 if (this.userId != other.userId && (this.userId == null ||

!this.userId.equals(other.userId))) return false;

 return true;

 }

}

 How It Works
The HTTP request login method can be used to programmatically authenticate users

for an application when the application server form-based authentication has been

configured. A JSF form can pass parameters to a managed bean controller, which can

pass them to the HTTP request login method to perform programmatic authentication

using the credentials.

As demonstrated in the login form that is listed in the solution to this recipe, a

standard JSF view can be coded that passes values from the inputText components

to a corresponding managed bean controller. The corresponding fields, username and

password, are bound to properties within the managed bean controller. The username is

then set into the username property of a new User entity object, and the password value

is passed directly into the EJB for later use. The password is not stored in the managed

bean controller at all, and therefore, it is not stored into the session.

Let’s take a moment to discuss the methods within the managed bean controller.

In the example, a commandButton is contained within the view, which is bound to the

managed bean controller’s login method. Once invoked, the login method invokes a

method within the EJB, which is responsible for performing the actual authentication

against the application server container and JPA data store user table. In this case, the

EJB method is also named login, and when it is invoked, then the User entity object is

passed to the EJB so that the username property that is stored in the object can be used

for authentication purposes. The login method within the managed bean controller

invokes the EJB login method, which passes back a Boolean value to indicate whether

the credentials have successfully authenticated the user. Depending upon the outcome,

Chapter 15 SeCurity

759

the user is then granted or denied access to the application. Also within the managed

bean controller is a logout method. This method invalidates the current session by

obtaining the external context, which is the application server context, and then by

invoking its invalidate() method.

The login method within the EJB is where the real activity occurs because it is where

the application server HTTP request login method is invoked to verify the credentials.

First, the HttpServletRequest object is obtained from the external context, and then

its login method is called. This method accepts the username and password values,

initiates the application server authentication mechanism, and raises an exception if

the credentials are invalid. Otherwise, if the credentials are valid, then a time limit is set

on the HttpSession object. The value passed to the session.setMaxInactiveInterval

method indicates how long a user session can be inactive before the application

server automatically invalidates the session. The remainder of this method is used

for performing application-specific authentication using the User entity object. In

the example, the entity manager is flushed, and then a query is issued that counts the

number of User entity objects matching the username that has been entered via the

login form. When querying the entity, a hint is set that forces the database to be queried

each time the request is initiated. The following line of code is an excerpt from the EJB

login method that demonstrates how to set this hint:

user.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.

BYPASS);

If there are zero matching entity objects for a given username, then the user is not

authenticated to the application, and a false value is returned to the managed bean

controller to indicate invalid credentials. Otherwise, if there is a matching entity object

for the given username, then the matching entity object is obtained, and a session

attribute is set to indicate that the user was successfully authenticated.

Chapter 15 SeCurity

760

Note applications can contain their own set of users, one that is separate from those
users who are managed by the GlassFish application server or database. One way of
doing so is to create a separate database table for each application, which will be used
to store usernames and roles for those users who may access the application. the login
logic that is contained within the managed bean controller can then perform a query on
the application-specific table to see whether the username specified within the login
view is contained within the table. if the username is in the table, then the user can be
granted access to the application; otherwise, no access will be granted. this approach
adds two steps into the authentication process: application server form-based
authentication and authentication at the database table level.

15-4. Authentication with the Security API Using
Database Credentials
 Problem
You are interested in utilizing a standard solution for integrating form-based

authentication into your application, using a database to store credentials.

 Solution
Utilize Jakarta Security to authenticate a user using the same form authentication as

demonstrated in Recipe 15-3. However, this solution will utilize credentials saved in a

database, although one could also utilize LDAP authentication or another custom means

via the Security API. Configuration for the database takes place via an annotation within

the application, so no application server configuration is necessary.

To configure the application, annotate an @ApplicationScoped bean to indicate

the authentication identity store that will be used for the application. In this case, the

@DatabaseIdentityStoreDefinition annotation is used to configure the database as an

identity store for the application:

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Named;

Chapter 15 SeCurity

761

import javax.security.enterprise.identitystore.

DatabaseIdentityStoreDefinition;

import javax.security.enterprise.identitystore.Pbkdf2PasswordHash;

@DatabaseIdentityStoreDefinition(

 dataSourceLookup = "${'jdbc/acmedb'}",

 callerQuery = "#{'select password from caller_store where name = ?'}",

 groupsQuery = " select group_name from caller_groups where caller_

name = ?",

 hashAlgorithm = Pbkdf2PasswordHash.class,

 priorityExpression = "#{100}",

 hashAlgorithmParameters = {

 "Pbkdf2PasswordHash.Iterations=3072",

 "${applicationConfig.hash}"

 } // just for test / example

)

@ApplicationScoped

@Named

public class ApplicationConfig {

 public String[] getHash() {

 return new String[]{"Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacS

HA512", "Pbkdf2PasswordHash.SaltSizeBytes=64"};

 }

}

A singleton can be used to configure a database connection. This code will be run

once each time the application is started up, and it will load the database configuration

and populate the security database for testing purposes. In real life, this class would only

be used to configure the data source, as the security database would likely be populated

by an administrator. The following excerpt is from the sources of the singleton EJB:

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.util.HashMap;

import java.util.Map;

Chapter 15 SeCurity

762

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import javax.annotation.Resource;

import javax.annotation.sql.DataSourceDefinition;

import javax.ejb.Singleton;

import javax.ejb.Startup;

import javax.inject.Inject;

import javax.sql.DataSource;

import javax.security.enterprise.identitystore.Pbkdf2PasswordHash;

@DataSourceDefinition(

 name = "java:global/JakartaEERecipes/acmedb",

 className = "org.apache.derby.jdbc.ClientDataSource",

 serverName="localhost",

 databaseName="acme",

 user = "acmeuser",

 password = "databasepassword"

)

@Singleton

@Startup

public class LoadDatabase {

 @Resource(lookup="java:global/JakartaEERecipes/acmedb")

 private DataSource dataSource;

 @Inject

 private Pbkdf2PasswordHash passwordHash;

 @PostConstruct

 public void init() {

 Map<String, String> parameters= new HashMap<>();

 parameters.put("Pbkdf2PasswordHash.Iterations", "3072");

 parameters.put("Pbkdf2PasswordHash.Algorithm",

"PBKDF2WithHmacSHA512");

 parameters.put("Pbkdf2PasswordHash.SaltSizeBytes", "64");

 passwordHash.initialize(parameters);

Chapter 15 SeCurity

763

 executeUpdate(dataSource, "CREATE TABLE caller_store(name

VARCHAR(64) PRIMARY KEY, password VARCHAR(255))");

 executeUpdate(dataSource, "CREATE TABLE caller_groups(caller_name

VARCHAR(64), group_name VARCHAR(64))");

 executeUpdate(dataSource, "INSERT INTO caller_store

VALUES('juneau', '" + passwordHash.generate("eerecipes".

toCharArray()) + "')");

 executeUpdate(dataSource, "INSERT INTO caller_groups

VALUES('juneau', 'group1')");

 executeUpdate(dataSource, "INSERT INTO caller_groups

VALUES('juneau', 'group2')");

 }

 @PreDestroy

 public void destroy() {

 try {

 executeUpdate(dataSource, "DROP TABLE IF EXISTS caller_store");

 executeUpdate(dataSource, "DROP TABLE IF EXISTS caller_groups");

 } catch (Exception e) {

 // silently ignore, concerns in-memory database

 }

 }

 private void executeUpdate(DataSource dataSource, String query) {

 try (Connection connection = dataSource.getConnection()) {

 try (PreparedStatement statement = connection.

prepareStatement(query)) {

 statement.executeUpdate();

 }

 } catch (SQLException e) {

 // do nothing

 }

 }

}

Chapter 15 SeCurity

764

The same JSF login form from Recipe 15-3 can be used for the authentication UI

in this case, with the exception of passing credentials and invoking SecurityContext.

authenticate(). This is a different form-based scenario which utilizes the

@CustomFormAuthenticationMechanismDefinition annotation. The following excerpt

is taken from the JSF login form, containing a PrimeFaces commandButton component

which binds to a CDI controller action to perform the validation:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:p="http://primefaces.org/ui">

 <h:head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <title>Jakarta Recipes = Chapter 15 Examples</title>

 </h:head>

 <h:body>

 <ui:composition template="layout/custom_template_search.xhtml">

 <ui:define name="content">

 <h1>Login Form for Jakarta EE Recipes Application</h1>

 <h:form id="loginForm">

 <p:messages id="messages"/>

 <p:panelGrid columns="2">

 <p:outputLabel for="username" value="Username: "/>

 <p:inputText id="username" value="#{standardizedAut

henticationController.username}"/>

 <p:outputLabel for="password" value="Password "/>

 <p:password id="password" value="#{standardizedAuth

enticationController.password}"/>

 </p:panelGrid>

 <p:commandButton id="loginAction" action="#{standardize

dAuthenticationController.login}"

 value="Login"

 update="messages"/>

Chapter 15 SeCurity

765

 </h:form>

 </ui:define>

 </ui:composition>

 </h:body>

</html>

Lastly, the code for the authentication CDI controller bean is as follows. The

@RequestScoped controller contains properties for passing the username and password,

along with the logic for authenticating the credentials that have been supplied by the user:

import javax.enterprise.context.RequestScoped;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.inject.Inject;

import javax.inject.Named;

import javax.security.enterprise.credential.Credential;

import javax.security.enterprise.credential.Password;

import javax.security.enterprise.credential.UsernamePasswordCredential;

import javax.security.enterprise.identitystore.CredentialValidationResult;

import javax.security.enterprise.identitystore.IdentityStoreHandler;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.validation.constraints.NotNull;

/**
 *
 * @author Juneau

 */

@Named

@RequestScoped

public class StandardizedAuthenticationController {

 @Inject

 private IdentityStoreHandler identityStoreHandler;

 @NotNull

 private String username;

Chapter 15 SeCurity

766

 @NotNull

 private String password;

 public void login() {

 FacesContext context = FacesContext.getCurrentInstance();

 Credential credential = new UsernamePasswordCredential(username,

new Password(password));

 CredentialValidationResult cres = identityStoreHandler.

validate(credential);

 if (cres.getStatus().equals(CredentialValidationResult.Status.VALID)) {

 context.responseComplete();

 context.addMessage(null, new FacesMessage(FacesMessage.

SEVERITY_INFO, "Authentication Successful", null));

 } else if (cres.getStatus().equals(CredentialValidationResult.

Status.INVALID)) {

 context.addMessage(null,

 new FacesMessage(FacesMessage.SEVERITY_ERROR,

"Authentication Failure", null));

 }

 }

 private static HttpServletResponse getResponse(FacesContext context) {

 return (HttpServletResponse) context

 .getExternalContext()

 .getResponse();

 }

 private static HttpServletRequest getRequest(FacesContext context) {

 return (HttpServletRequest) context

 .getExternalContext()

 .getRequest();

 }

 /**
 * @return the username

 */

Chapter 15 SeCurity

767

 public String getUsername() {

 return username;

 }

 /**
 * @param username the username to set

 */

 public void setUsername(String username) {

 this.username = username;

 }

 /**
 * @return the password

 */

 public String getPassword() {

 return password;

 }

 /**
 * @param password the password to set

 */

 public void setPassword(String password) {

 this.password = password;

 }

}

 How It Works
Jakarta Security defines a set of annotations that can be used to configure an application

identity store and HttpAuthenticationMechanism for an application, among other

security configurations. These standardized annotations are available as part of Jakarta

Security across all Jakarta EE 8–compliant containers, allowing security configuration

to be packaged as part of an application without additional XML configuration

requirements. This makes it possible to create portable applications that contain security

in which the same security configuration can be used across a number of containers.

Chapter 15 SeCurity

768

An identity store typically holds a list of callers and caller groups, as well as security

credentials for authenticating the caller. The API defines the following set of standard

identity store annotations, which supply an abstraction of an identity store:

• @LdapIdentityStoreDefinition: Supports caller that is stored in an

external LDAP server.

• @DatabaseIdentityStoreDefinition: Supports caller that is stored

in an external database, which is accessible via a JNDI-bound

DataSource.

The identity store annotations must be defined within a CDI bean that is marked as

@ApplicationScoped, so that they are configured one time per application startup. An

identity store is stateless, and it should include the information required to authenticate

a caller into an application. The caller should not interact directly with an identity

store. Instead, an HttpAuthenticationMechanism, which will be explained in the

following, should perform the interaction. An identity store contains two methods that

can be implemented by an authentication mechanism in order to validate a caller’s

credentials and return a caller’s security groups. Those methods are validate() and

getCallerGroups(), respectively. An identity store can implement one or both of these

methods, and calling upon the identity store’s validationTypes() method returns a

set of values that indicate which methods are implemented via the following values:

VALIDATE, PROVIDE_GROUPS.

The validate() method takes a Credential object, which is a portable object that

contains a username/password that has been supplied by a caller. The validate()

method returns a CredentialValidationResult, indicating the validation status. The

CredentialValidationResult can be used to obtain information such as the resulting

validation status, and if successful then it also contains the identity store ID, caller

principal, caller’s unique ID within the identity store, and the caller’s groups. The

getStatus() method of CredentialValidationResult will return one of the following

status values:

• VALID: Validation succeeded and caller groups can be obtained, if any

are available.

• INVALID: Validation failed.

• NOT_VALIDATED: Validation was not attempted due to invalid

credential type.

Chapter 15 SeCurity

769

More than one identity store can be configured for an application by setting a

priority. Identity stores can also be programmed by implementing the IdentityStore

interface, or they can be injected via the use of the identity store annotations outlined

previously. These topics, as well as more in-depth analysis of the identity store concept,

are covered in detail within the JSR 375 specification, available on javaee.github.io:

https://javaee.github.io/security-spec/.

The HttpAuthenticationMechanism is used by the Security API to validate a user’s

credentials. There must be three HttpAuthenticationMechanisms supplied by a Jakarta

EE 8–compliant application server container, which are the following:

• BASIC (@BasicAuthenticationMechanismDefinition): Authenticates

according to the HTTP basic authentication semantics.

• FORM (@FormAuthenticationMechanismDefinition): Authenticates

according to the form-based authentication semantics.

• CUSTOM FORM (authenticate): Authenticates according to the

form-based authentication semantics; however, it does not occur

via posting back to j_security_check. Instead, SecurityContext.

authenticate() is invoked with passed-in credentials.

An HttpAuthenticationMechanism can be coded by implementing the

HttpAuthenticationMechanism interface, or it can be injected using one of the

aforementioned annotations. To implement, one must code the validateRequest()

method, which is invoked before the doFilter() method of a servlet filter or service()

method of any servlet. The validateRequest() method is also called upon in response

to code calling the HttpServletRequest authenticate() method. There are two

methods that are part of the HttpAuthenticationMechanism which are not required for

implementation: secureResponse(), and cleanSubject().

The validateRequest() method is used to allow the caller to authenticate. The

secureResponse() method is provided to allow for post-processing on the response

that is generated by a servlet or servlet filter. The cleanSubject() method is provided to

allow for cleanup after the caller is logged out.

Since a compliant container must provide default implementations of the

HttpAuthenticationMechanism, it is possible for an application to simply use the

mechanism without coding or supplying an annotation. The example in this recipe

does just that. When the caller inserts credentials into the login screen and presses

the button, the StandardizedAuthenticationController login() method is

Chapter 15 SeCurity

https://javaee.github.io/security-spec/

770

called. This controller class contains an injected IdentityStoreHandler, which

is used to hook into the HttpAuthenticationMechanism that is provided by the

container. In the login() method, the caller’s username and password are passed

into a UsernamePasswordCredential object to return a Credential. The Credential

is then passed into the IdentityStoreHandler.validate() method, returning a

CredentialValidationResult object. This object can be used to glean the success or

failure of the authentication attempt. The resulting success or failure can be tested by

calling upon the CredentialValidationResult.getStatus() method.

The Jakarta Security API helps to bring standardization to an area of the platform

that has been very non-standardized in the past. While many containers will likely

still retain their proprietary security APIs and techniques, any Jakarta EE 8–compliant

container must also adhere to the standards of Jakarta Security.

Note there are dozens of examples that can be found on the Jakarta ee Security api
(Soteria) Github project page at https://github.com/eclipse-ee4j/soteria.
it is also a great idea to read through the specification, which is less than 50 pages,
and it can be found at https://javaee.github.io/security-spec/.

15-5. Managing Page Access Within a JSF Application
 Problem
You have set up authentication for your JSF application, specifying access to a limited

user base via a username and password combination. You want to limit certain views

within your application such that only members of a particular role will be granted

permission access.

 Solution
Authenticate a user to an application and store a Boolean indicating that the user has

been successfully authenticated. Utilize that Boolean to perform conditional logic

within JSF views to render forms that should be accessed only via authenticated users.

If a user is successfully authenticated, then the form is rendered, and if the user is not

successfully authenticated, then the form will provide an error message indicating that

authentication is required for access.

Chapter 15 SeCurity

https://github.com/eclipse-ee4j/soteria
https://javaee.github.io/security-spec/

771

The following JSF view demonstrates the use of conditional logic for displaying

portions of the page that require controlled access:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:p="http://primefaces.org/ui">

 <ui:composition template="/layout/fess_template.xhtml">

 <ui:define name="title">

 <h:outputText value="Jakarta EE 8 Recipes Controlled Access"></

h:outputText>

 </ui:define>

 <ui:define name="body">

 <h:panelGroup id="messagePanel" layout="block">

 <h:messages errorStyle="color: red" infoStyle="color:

green" layout="table"/>

 </h:panelGroup>

 <p:panel rendered="#{authenticationController.authenticated}">

 <h:form>

 This portion of the view contains secret content!

 </h:form>

 </p:panel>

 <p:panel rendered="#{!authenticationController.authenticated}">

 Please <a href="#{request.contextPath}/faces/chapter15/

recipe15_03.xhtml">authenticate to use this form.

 </p:panel>

 </ui:define>

 </ui:composition>

</html>

Chapter 15 SeCurity

772

 How It Works
The rendered attribute of JSF components can be used to perform conditional

rendering. If you bind the rendered attribute to a managed bean property that returns a

Boolean indicating whether a user is authenticated, then this technique can be used to

control access to certain components. In this example, this technique is demonstrated

using a PrimeFaces panel component. The panel contains information that should be

secured, and it is rendered only if the authenticated property returns a true value. If

the authenticated property contains a false value, then a different panel component

is rendered, which displays a message to the user indicating that authentication is

required.

The controller that is used for programmatic authentication within a JSF application

should contain a Boolean value that can be bound to the conditional logic within

the JSF view to indicate whether the current user has successfully authenticated. For

this example, the managed bean controller, org.jakartaeerecipes.chapter15.

recipe15_03.AuthenticationController, contains a Boolean field named

authenticated. The following excerpt from the class shows the isAuthenticated()

method, which is called when the authenticated property is accessed from a JSF view:

 public boolean isAuthenticated() {

 try {

 boolean auth = (Boolean) getSession().

getAttribute("authenticated");

 if (auth) {

 this.authenticated = true;

 } else {

 authenticated = false;

 }

 } catch (Exception e) {

 this.authenticated = false;

 }

 return authenticated;

 }

Chapter 15 SeCurity

773

This same technique can be used to hide or show individual components based

upon a user’s authentication. Furthermore, fine-grained access control can be used

to provide Boolean values to the rendered attribute by utilizing JSF EL conditional

expressions. For instance, if some components should be accessed only by users

who belong in certain security roles, then a conditional expression can be used to

render a component if the user belongs to a specified role. The following line of code

demonstrates how to render an outputText component if a user belongs to the ADMIN

security role:

<h:outputLink rendered="${authenticationController.user.securityRole eq

'ADMIN'}" value="#" onclick="dialog.show()">Delete Property</h:outputLink>

Although the rendered attribute may not allow you to secure every part of an

application, when used along with other security measures such as annotating methods

(Recipe 15-2), it can help provide a very secure environment.

15-6. Configuring LDAP Authentication Within
GlassFish/Payara
 Problem
You want to authenticate users to your application based upon a centrally located LDAP

server for your organization’s enterprise.

 Solution
Create an LDAP security realm for GlassFish/Payara from within the administrative

console utility, and set it up as a com.sun.enterprise.security.auth.realm.ldap.

LDAPRealm. To create an LDAP security realm within GlassFish/Payara, use the following

procedure:

• Log into the GlassFish/Payara administrative console.

• Traverse to the Realms form by expanding the left tree menu

Configurations ➤ Security ➤ server-config ➤ Realms.

• Click the New... button within the Realms form to create a new

security realm.

Chapter 15 SeCurity

774

• Within the New Realm form, provide a name for the security realm.

Next, select com.sun.enterprise.security.auth.realm.ldap.

LDAPRealm from the Class Name pull-down menu. This will open the

configurations for setting up an LDAP realm (Figure 15-7).

Figure 15-7. New LDAP security realm

Complete the properties specific to the class in order to connect to an LDAP server of

your choice.

 1. Add the following additional properties by clicking the Add
Property button and providing the name-value information for

each:

• search-bind-dn: Enter the fully qualified DN for your LDAP

host, the directory, and the LDAP account to which you will

authenticate. For example:

Chapter 15 SeCurity

775

CN=account-name,OU=AccountGroup,DC=dc1,DC=dc2,DC=dc3

• search-bind-password: Enter the password for the account name

you specified previously.

• search-filter: Type the following as the value for this property:

(sAMAccountName=%s).

 2. Restart the application server.

 How It Works
Perhaps one of the most efficient ways to authenticate to applications is to utilize an

LDAP account. Using an LDAP account for authentication can provide a single sign-on

solution across all of an organization’s servers and applications. LDAP authentication

also provides a single point of maintenance for account information and still allows

individual applications to maintain their own fine-grained security via roles. The

solution to this recipe enumerates the steps that are involved in setting up an LDAP

security realm within the GlassFish and Payara application servers. However, you can

follow similar procedures for setting up an LDAP security realm in other application

server containers.

Once you have LDAP authentication set up within the application server, you

can configure your applications to use it. To configure an application to use LDAP

authentication, add the following configurations to the web.xml deployment descriptor:

<login-config>

 <auth-method>FORM</auth-method>

 <realm-name>REALM-NAME</realm-name>

 <form-login-config>

 <form-login-page>/faces/login.xhtml</form-login-page>

 <form-error-page>/faces/loginError.xhtml</form-error-page>

 </form-login-config>

 </login-config>

In the previous excerpt from web.xml, the realm-name element should be the same

as the name given to the LDAP security realm you created within GlassFish/Payara.

The form-login-page and form-error-page values should reference the views that

are to be used for logging into an application and the view that is displayed when there

Chapter 15 SeCurity

776

is a login error, respectively. Authenticating into an LDAP security realm is the same

as that covered in Recipe 15-3. Simply call the HttpRequest object’s login method to

authenticate using the credentials provided by the user via the login view.

15-7. Configuring Custom Security Certificates
Within GlassFish/Payara
 Problem
You want to utilize custom certificates for securing access via SSL within your GlassFish/

Payara environment.

 Solution
Obtain a certificate from a certified certificate authority, and then install it into the

GlassFish application server container. Once installed, route requests via a secured port

that utilizes SSL and force users to accept the security certificate to proceed. To install a

certificate that has been obtained from a valid certificate authority, follow these steps:

 1. Copy the trusted root certificate from your certified authority to

your server. Issue the following command from the command line

or terminal:

keytool –import –alias root –keystore keystore_name.keystore –

trustcacerts –file trustedcarootcertificate.crt

 2. Next, import the trusted certificate:

keytool –import –alias cert_alias –keystore keystore_name.keystore

–trustcacerts –file certificate.crt

 3. Adjust SSL settings from within the GlassFish administrative

console. To adjust the settings, go to Configuration ➤ Network

Config- ➤ Network Listeners ➤ http-listener-2 in order to open

the secured HTTP listener page. Once it’s open, select the SSL tab,

and enter the certificate nickname and keystore that match the

ones you used in step 2.

Chapter 15 SeCurity

777

 4. Restart your server, and then access your applications securely

using this URL:

https://localhost:8181/your_application_context.

Note in the previous numbered list, keystore_name.keystore represents
the name of a keystore, and trustedcarootcertificate.crt and
certificate.crt represent the names of certificates.

 How It Works
GlassFish comes with a self-signed security certificate that is suitable for test

environments. However, when utilizing GlassFish as a production application server

solution, it is imperative that a certificate from a verified authority be put in place in

order to secure application transport. This recipe demonstrates how to install a security

certificate for use with SSL in order to achieve secure transport.

Before you can install a verified certificate, you need to obtain it. You will need to

choose from one of the many certificate authorities and then send a certificate request,

which includes the key from your application server. A keystore will need to be created in

order to generate a certificate request. Issue the following command from the command

line or terminal to create the keystore:

keytool –keysize 2048 –genkey –alias –keyalg RSA –dname "CN=yourdomain.

org,O=company_name,L=city,S=state,C=country" – keypass glassfish_master_

password –storepass glassfish_master_password –keystore choose_keystore_

name.keystore

Once the keystore has been created, a certificate signing request (CSR) that will be

sent to the certificate authority can be generated. To generate the certificate signing

request (CSR), issue the following command from your server:

keytool –certreq –alias –keystore chosen_keystore_name.keystore –storepass

glassfish_master_password –keypass glassfish_master_password –file csrname.csr

Chapter 15 SeCurity

778

Note to change the GlassFish master password, issue the following command
when your GlassFish domain is stopped: asadmin change-master-password
–savemasterpassword=true.

Once you submit your CSR to the certificate authority, the certificate authority

will send back a valid security certificate that can be installed into your server. Follow

the steps in the solution to this recipe to install the certificate into GlassFish. Once the

certificate is installed, your server will be verified secure via the certificate authority, and

users should see a message indicating as such (usually a green lock) in their browsers

when visiting your secured sites.

Chapter 15 SeCurity

779
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_16

CHAPTER 16

Concurrency and Batch
The Java Enterprise platform had been missing a few key features upon its inception.

Those features included standard techniques for processing tasks concurrently and

standardization for batch application processing. In the release of Java EE 7, these two

missing features were addressed with the addition of the Java Concurrency Utilities and

Batch Processing APIs.

Each of the two APIs is quite large, and they include proven solutions that have

been used by various enterprise projects for years. Using Java SE concurrency utilities

such as java.util.concurrent and java.lang.Thread in Java EE applications has

been problematic in the past, since the application server container was unable to work

with such resources. Extensions of the java.util.concurrent API enabled application

servers and other containers to become aware of these concurrency resources.

The extensions allow enterprise applications to appropriately utilize asynchronous

operations via the use of java.util.concurrent.ExecutorService resources that are

made available within the enterprise environment.

The API for batch processing provides a fine-grained experience for developers,

which enables them to produce and process batch applications in a variety of different

ways. Enterprise applications no longer need to utilize customized classes for

performing batch processing, allowing enterprise applications to adhere to an adopted

standard.

As mentioned previously, the scope of these additional APIs is quite large, and this

chapter will not attempt to cover each feature. However, the recipes contained within

should provide enough information to get a developer up and running using some

of the most frequently required pieces of each API. For more in-depth information

regarding the details of Jakarta Concurrency, please refer to the JavaDoc located at

https://jakarta.ee/specifications/concurrency/1.1/apidocs/. The recipes for

this chapter work in both GlassFish 5.1 and Payara 5. Other Jakarta EE 8–compliant

application servers such as Open Liberty and WildFly also contain similar solutions for

the problems.

https://jakarta.ee/specifications/concurrency/1.1/apidocs/

780

16-1. Creating Resources for Processing Tasks
Asynchronously in an Application Server
 Problem
You would like to register a ManagedExecutorService resource within your application

server environment.

 Solution #1

Create a new ManagedExecutorService using the GlassFish or Payara asadmin create-

managed- executor-service utility. To utilize concurrent utilities such as reporter

tasks, the application server must be configured to utilize a ManagedExecutorService.

To create a ManagedExecutorService in GlassFish, run the following command at the

command prompt:

<path-to-glassfish>/bin/asadmin create-managed-executor-service concurrent/

BatchExecutor

In the preceding command-line action, the name of the ManagedExecutorService

that is being created is concurrent/BatchExecutor. However, this could be changed to

better suit the application. To see all of the options available for the create-managed-

executor-service command, issue the --help flag. The following shows the results of

doing so:

bin/asadmin create-managed-executor-service --help

NAME

 create-managed-executor-service

SYNOPSIS

 Usage: create-managed-executor-service [--enabled=true] [--c

 ontextinfo=contextinfo] [--threadpriority=5] [--longrunningt

 asks=false] [--hungafterseconds=hungafterseconds] [--corepoo

 lsize=0] [--maximumpoolsize=2147483647] [--keepaliveseconds=

 60] [--threadlifetimeseconds=0] [--taskqueuecapacity=2147483

 647] [--description=description] [--property=property]

 [--target=target] jndi_name

Chapter 16 ConCurrenCy and BatCh

781

OPTIONS

 --enabled

 --contextinfo

 --threadpriority

 --longrunningtasks

 --hungafterseconds

 --corepoolsize

 --maximumpoolsize

 --keepaliveseconds

 --threadlifetimeseconds

 --taskqueuecapacity

 --description

 --property

 --target

OPERANDS

 jndi_name

 Solution #2

Create a ManagedExecutorService using the GlassFish or Payara server administration

console. To do so, authenticate successfully into the administrative console, and navigate

to the Concurrent Resources ➤ Managed Executor Services administration panel using

the left-hand tree menu (see Figure 16-1).

Chapter 16 ConCurrenCy and BatCh

782

Once you’ve opened the panel, click the New button to create a new service. This

will open the New Managed Executor Service panel, in which you will be required to

populate a JNDI name for your new service (see Figure 16-2).

Figure 16-1. GlassFish Managed Executor Services panel

Chapter 16 ConCurrenCy and BatCh

783

This panel offers quite a few options for creation of the service. However, the

only option that is required is the JNDI name, as all others are populated with default

values. The JNDI name that is specified should follow the format of concurrent/

YourExecutorServiceName, where YourExecutorServiceName is a custom name of your

choice.

 How It Works
In Java EE 7, the ManagedExecutorService was introduced, adding the ability to produce

asynchronous tasks that are managed by an application server. Although there is a

default ManagedExecutorService available for use, application server administrators

can create ManagedExecutorService resources within an application server that can

be utilized by one or more applications, much like a Java Message Service (JMS) Topic

or Queue. To create a service, issue the asadmin create-managed-executor-service

Figure 16-2. New Managed Executor Service panel

Chapter 16 ConCurrenCy and BatCh

784

command at the command prompt, passing the name that you would like to use to

identify the service. There are a bevy of options that can be used to customize the

service in different ways. For instance, the service can be configured to let tasks run for a

specified amount of time, pools can be configured, and so forth, allowing you to generate

a ManagedExecutorService that will best suit the application requirements.

For those who would prefer to work within the GlassFish or Payara administration

console, there are a few administration panels to make creation and management of

concurrent resources easier. The Managed Executor Service panel can be used to create

new application server ManagedExecutorService resources, as well as manage those that

already exist.

Note GlassFish and other Jakarta ee 8–compliant application servers come
preconfigured with a default ManagedExecutorService resource that is named
java:comp/DefaultManagedExecutorService.

16-2. Configuring and Creating a Reporter Task
 Problem
You would like to create a long-running task that will communicate with a database and

generate a report in the end.

 Solution
Once the application server has been configured and the ManagedExecutorService

has been created, an application can be written to utilize the newly created service.

Within an application, you can choose to configure the application to make use of the

ManagedExecutorService via XML, or a @Resource annotation can be used to inject

the resource. To configure via XML, add a <resource-env-ref> element to the web.xml

deployment descriptor. In this case, you need to configure a resource of type javax.

enterprise.concurrent.ManagedExecutorService, as shown in the following excerpt

from the web.xml:

Chapter 16 ConCurrenCy and BatCh

785

<resource-env-ref>

 <description>

This executor is used for the application's reporter task. This executor

has the following requirements:

Run Location: NA

Context Info: Local Namespace

 </description>

 <resource-env-ref-name>

 concurrent/BatchExecutor

 </resource-env-ref-name>

 <resource-env-ref-type>

 javax.enterprise.concurrent.ManagedExecutorService

 </resource-env-ref-type>

</resource-env-ref>

In the XML configuration, the resource has been assigned to a reference name

of concurrent/BatchExecutor, but you could name the reference to best suit your

application. If you would rather utilize an annotation, then the following @Resource

annotation can be specified to inject a ManagedExecutorService into a class for use. You

will see an example of this in use later on:

@Resource(name = "concurrent/BatchExecutor")

ManagedExecutorService mes;

Once the configuration is complete, you can create a report task class, which is a

class that implements Runnable and is responsible for running the actual reports. The

following class, org.jakartaeerecipes.chapter16.recipe16_02.ReporterTask, is an

example of such as class:

import java.util.List;

import javax.ejb.EJB;

import org.jakartaeerecipes.jpa.entity.Book;

import org.jakartaeerecipes.jpa.entity.BookAuthor;

import org.jakartaeerecipes.jpa.session.BookAuthorFacade;

import org.jakartaeerecipes.jpa.session.BookFacade;

Chapter 16 ConCurrenCy and BatCh

786

/**
 * Example of a Reporter Task

 * @author Juneau

 */

public class ReporterTask implements Runnable {

 String reportName;

 @EJB

 private BookAuthorFacade bookAuthorFacade;

 @EJB

 private BookFacade bookFacade;

 public ReporterTask(String reportName) {

 this.reportName = reportName;

 }

 public void run() {

// Run the named report

 if ("AuthorReport".equals(reportName)) {

 runAuthorReport();

 } else if ("BookReport".equals(reportName)) {

 runBookReport();

 }

 }

 /**
 * Prints a list of authors to the system log.

 */

 public void runAuthorReport() {

 List<BookAuthor> authors = bookAuthorFacade.findAuthor();

 System.out.println("Author Listing Report");

 System.out.println("=====================");

 for (BookAuthor author : authors) {

 System.out.println(author.getFirst() + " " + author.getLast());

 }

 }

Chapter 16 ConCurrenCy and BatCh

787

 /**
 * Prints a list of books to a file

 */

 void runBookReport() {

 System.out.println("Querying the database");

 Path reportFile = Paths.get("BookReport.txt");

 try (BufferedWriter writer = Files.newBufferedWriter(

 reportFile, Charset.defaultCharset())) {

 Files.deleteIfExists(reportFile);

 reportFile = Files.createFile(reportFile);

 writer.append("Book Listing Report");

 writer.newLine();

 writer.append("===================");

 writer.newLine();

 List<Book> books = bookFacade.findAllBooks();

 for (Book book : books) {

 writer.append(book.getTitle());

 writer.newLine();

 }

 writer.flush();

 } catch (IOException exception) {

 System.out.println("Error writing to file");

 }

 }

}

Lastly, the report needs to be invoked by the ManagedExecutorService that was

configured within the web.xml. In this example, the ManagedExecutorService is injected

into a servlet, which is then used to invoke the report, as seen in the following code:

@WebServlet(name = "BookReportServlet", urlPatterns = {"/BookReportServlet"})

public class ReportServlet extends HttpServlet implements Servlet { //

Cache our executor instance

Chapter 16 ConCurrenCy and BatCh

788

 @Resource(name = "concurrent/BatchExecutor")

 ManagedExecutorService mes;

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Book Report Invoker</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h2>This servlet initiates the book report

task. Please look " +

 "in the server log to see the results.</h2>
" +

 " Updating the web page is not run asynchronously,

however, " +

 " the report generation will process independently.");

 out.println("

");

 ReporterTask reporterTask = new ReporterTask("BookReport");

 Future reportFuture = mes.submit(reporterTask);

 while(!reportFuture.isDone())

 out.println("Running...
");

 if (reportFuture.isDone()){

 out.println("Report Complete");

 }

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

...

}

Chapter 16 ConCurrenCy and BatCh

789

When the servlet is visited, the reporter task will be initiated and it will begin to

produce results.

 How It Works
After the ManagedExecutorService has been created, it can be utilized by one or more

applications to perform concurrent operations. An application must be either configured

via XML to allow access to the ManagedExecutorService resource in the application

server container, or the resource can be injected via the use of the @Resource annotation.

In the example for this recipe, each of these options is demonstrated. For the purposes of

the example, it is assumed that the @Resource annotation is utilized to inject the service

into the servlet.

To run a task concurrently using the service, you must create the task in a

separate class that implements java.util.Runnable so that it can be invoked as a

separate process, much like a standard Java Thread. In the example, a class named

ReporterTask implements Runnable, and within the run() method, the reporter task

performs the tasks that we wish to run in an asynchronous manner. In this example, a

couple of methods are invoked from within the run method. The Runnable class that

has been generated can then be passed to the ManagedExecutorService to be run

concurrently while other tasks are being performed by the application. To make use of

the ManagedExecutorService, register it with the application via XML or by resource

injection. In the example for this recipe, resource injection is utilized, making the

ManagedExecutorService available from within the Java servlet. To inject the resource,

specify the name of it to the @Resource annotation:

@Resource(name = "concurrent/BatchExecutor")

ManagedExecutorService mes;

The ManagedExecutorService can then be invoked by calling the submit() method

and passing an instance of the Runnable task that we’d like to submit for processing. In

this case, the ReporterTask class is instantiated, and an instance of it is then passed to

the service, returning a java.util.concurrent.Future object:

ReporterTask reporterTask = new ReporterTask("BookReport");

Future reportFuture = mes.submit(reporterTask);

Chapter 16 ConCurrenCy and BatCh

790

Once submitted, the Future object that was returned can be periodically checked to

see if it is still running or if it has been completed by calling its isDone() method. It can

be cancelled by calling the cancel() method, and a canceled task can be checked by

calling its isCanceled() method.

The reporter task is a long-running task that queries the database to obtain data for

generation of a report. Having the ability to run such a task asynchronously fills a gap

in the Java enterprise ecosystem that developers have been dealing with in enterprise

solutions since the inception of Java EE.

16-3. Running More Than One Task Concurrently
 Problem
You require the ability to run two or more tasks concurrently within your application.

For instance, the application you are writing needs the ability to connect a database and

retrieve data from two or more tables to obtain results at the same time. You wish to have

the results aggregated before returning them to the user.

 Solution
Create a builder task that can be used to run two different tasks in parallel. Each

of the tasks can retrieve the data from the different sources, and in the end, the

data will be merged together and aggregated to formulate the result. To utilize a

builder task, the application server environment must first be configured with a

ManagedExecutorService, as per Recipe 16-1. Once the resource has been configured,

an application can be configured to make use of the resource via XML or annotation.

To utilize XML configuration, add a <resource-env-ref> element to the web.xml

deployment descriptor. In this case, you need to configure a resource of type javax.

enterprise.concurrent.ManagedExecutorService, as shown in the excerpt from the

web.xml in Recipe 16-2, and repeated as follows:

<resource-env-ref>

 <description>

This executor is used for the application's builder tasks. This executor

has the following requirements:

Run Location: Local

Chapter 16 ConCurrenCy and BatCh

791

Context Info: Local Namespace, Security

 </description>

 <resource-env-ref-name>

 concurrent/BuilderExecutor

 </resource-env-ref-name>

 <resource-env-ref-type>

 javax.enterprise.concurrent.ManagedExecutorService

 </resource-env-ref-type>

</resource-env-ref>

In this example, the ManagedExecutorService resource in the application is

configured to work with a resource that has been registered with the application server

container and identified by the JNDI name of concurrent/BuilderExecutor. If you

would rather utilize an annotation, then the following @Resource annotation can be

specified to inject a ManagedExecutorService into a class for use within the Runnable:

@Resource(name = "concurrent/BuilderExecutor")

ManagedExecutorService mes;

Once the application has been configured to work with the ManagedExecutorService

resource, you can create task classes for each of the different tasks that you wish to run.

Each task class must implement the javax.enterprise.concurrent.ManagedTask

interface. The following code is from the file org.jakartaeereipes.chapter16.

recipe16_03.AuthorTask.java, and it shows what a task class should look like:

public class AuthorTask implements Callable<AuthorInfo>, ManagedTask {

 // The ID of the request to report on demand.

 BigDecimal authorId;

 AuthorInfo authorInfo;

 Map<String, String> execProps;

 public AuthorTask(BigDecimal id) {

 this.authorId = id;

 execProps = new HashMap<>();

 execProps.put(ManagedTask.IDENTITY_NAME, getIdentityName());

 }

Chapter 16 ConCurrenCy and BatCh

792

 public AuthorInfo call() {

// Find the entity bean and return it to the client.

 return authorInfo;

 }

 public String getIdentityName() {

 return "AuthorTask: AuthorID=" + authorId;

 }

 public Map<String, String> getExecutionProperties() {

 return execProps;

 }

 public String getIdentityDescription(Locale locale) {

 // Use a resource bundle...

 return "AuthorTask asynchronous EJB invoker";

 }

 @Override

 public ManagedTaskListener getManagedTaskListener() {

 return new CustomManagedTaskListener();

 }

}

One or more of such task classes can be implemented, and then they can be

processed via the builder task using the ManagedExecutorService resource that has

been registered with the application server container. The following servlet makes use of

a ManagedExecutorService to coordinate the invocation of two task classes. In this case,

the task class names are AuthorTask and AuthorTaskTwo:

@WebServlet(name = "BuilderServlet", urlPatterns = {"/builderServlet"})

public class BuilderServlet extends HttpServlet implements Servlet {

 // Retrieve our executor instance.

 @Resource(name = "concurrent/BuilderExecutor")

 ManagedExecutorService mes;

 AuthorInfo authorInfoHome;

 BookInfo bookInfoHome;

Chapter 16 ConCurrenCy and BatCh

793

 protected void processRequest(HttpServletRequest req,

HttpServletResponse resp) throws ServletException, IOException {

 try {

 PrintWriter out = resp.getWriter();

 // Create the task instances

 ArrayList<Callable<AuthorInfo>> builderTasks = new ArrayList

<Callable<AuthorInfo>>();

 builderTasks.add(new AuthorTask(BigDecimal.ONE));

 builderTasks.add(new AuthorTaskTwo(BigDecimal.ONE));

 // Submit the tasks and wait.

 List<Future<AuthorInfo>> taskResults = mes.invokeAll(

builderTasks);

 ArrayList<AuthorInfo> results = new ArrayList<AuthorInfo>();

 for(Future<AuthorInfo> result: taskResults){

 results.add(result.get());

 out.write("Processing Results...");

 }

 } catch (InterruptedException|ExecutionException ex) {

 Logger.getLogger(BuilderServlet.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

...

}

 How It Works
After the ManagedExecutorService has been created, it can be utilized by one or more

applications to perform concurrent operations. An application must be either configured

via XML to allow access to the ManagedExecutorService resource in the application

server container, or the resource can be injected via the use of the @Resource annotation.

In the example for this recipe, each of these options is demonstrated. For the purposes of

the example using the servlet, it is assumed that the @Resource annotation is utilized to

inject the service into the servlet and no XML configuration has been made.

Chapter 16 ConCurrenCy and BatCh

794

To coordinate the processing of tasks in an asynchronous manner via a

ManagedExecutorService, the tasks that need to be processed should be contained in

separate classes or multiple instances of the same task class. Each of the task classes

should implement the java.util.concurrent.Callable and javax.enterprise.

concurrent.ManagedTask interfaces. A task class should include a constructor that

enables a caller to pass arguments that are required to instantiate the object, and should

implement a call() method, which returns the information that is needed to construct

the report to the client. Two or more such task classes can then be invoked via the

ManagedExecutorService in order to process all results into the required format.

To assemble the tasks for processing, create an ArrayList<Callable>, and add

instances of each task to the array. In the example, the array is named builderTasks,

and instances of two different task types are added to that array:

ArrayList<Callable<AuthorInfo>> builderTasks = new ArrayList<Callable

<AuthorInfo>>();

builderTasks.add(new AuthorTask(BigDecimal.ONE));

builderTasks.add(new AuthorTaskTwo(BigDecimal.ONE));

Next, pass the array that has been constructed to the ManagedExecutorService,

returning a List<Future<object>>, which can then be used to process the results.

List<Future<AuthorInfo>> results = mes.invokeAll(builderTasks);

AuthorInfo authorInfo = (AuthorInfo) results.get(0).get();

// Process the results

Utilizing this technique, a series of tasks can be concurrently processed, returning

results that can be later used to formulate a response. In this example, a report is

constructed by calling two task classes and returning the results of queried information.

This same technique can be applied to an array of different tasks, allowing an application

to process the results of multiple task invocations in one central location.

16-4. Utilizing Transactions Within a Task
 Problem
You would like to manage a transaction within an application task that will be processed

using a ManagedExecutorService resource.

Chapter 16 ConCurrenCy and BatCh

795

 Solution
Make use of the javax.transaction.UserTransaction to create and manage

a transaction. The following example demonstrates how to make use of the

UserTransaction interface to demarcate transactions within a task class that will be

processed by a ManagedExecutorService:

public class UserTransactionTask implements Runnable {

 @Resource

 SessionContext ctx;

 @EJB

 private BookAuthorFacade bookAuthorFacade;

 UserTransaction ut = ctx.getUserTransaction();

 public void run() {

 try {

 // Start a transaction

 ut.begin();

 List<BookAuthor> authors = bookAuthorFacade.findAuthor();

 for (BookAuthor author : authors) {

 // do something

 }

 ut.commit();

 } catch (NotSupportedException | SystemException | RollbackException

 | HeuristicMixedException | HeuristicRollbackException ex) {

 Logger.getLogger(UserTransactionTask.class.getName()).

log(Level.SEVERE, null, ex);

 }

 }

}

The previous class can then be processed by the ManagedExecutorService by

implementing a solution similar to the following:

@WebServlet(name = "UserTransactionServlet", urlPatterns = {"/

userTransactionServlet"})

public class UserTransactionServlet extends HttpServlet implements Servlet {

Chapter 16 ConCurrenCy and BatCh

796

 @Resource(name = "concurrent/BatchExecutor")

 ManagedExecutorService mes;

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 // servlet output...

 UserTransactionTask utTask = new UserTransactionTask();

 Future utFuture = mes.submit(utTask);

 while(!utFuture.isDone())

 out.println("Running...
");

 if (utFuture.isDone()){

 out.println("Report Complete");

 }

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 How It Works
In some cases, an application may require transaction coordination within a task

that will be processed via a ManagedExecutorService. Transactions can be carried

out within these tasks via utilization of the javax.transaction.UserTransaction

interface. The UserTransaction can be obtained by calling the SessionContext.

getUserTransaction() method. The SessionContext resource can be injected into a

bean using the @Resource annotation.

Once the UserTransaction has been obtained, the transaction can begin by calling

the UserTransaction begin method. The transaction can be ended by calling the

UserTransaction commit() method. The transaction encompasses any tasks that are

Chapter 16 ConCurrenCy and BatCh

797

performed after the call to begin and before the call to commit. If one of the tasks within

the transaction fails, then all work performed within the transaction is halted, and values

go back to what they were prior to the beginning of the transaction. This helps to ensure

that all processes required for a task are completed if successful or rolled back in the

event of a failure.

16-5. Running Concurrent Tasks at Scheduled
Times
 Problem
The application that you are utilizing needs to have the ability to periodically perform a

task on a timed interval.

 Solution
Use the ManagedScheduleExecutorService to create a scheduled task within your

application. Before an application can use the service, it must be created within the

application server container. To create a ManagedScheduleExecutorService instance

within GlassFish, issue the following command from the command line:

bin/asadmin create-managed-scheduled-executor-service concurrent/name-of-

service

In this command, name-of-service can be whatever name you choose. The

create-managed-scheduled-executor-service command has many options that can

be specified. To see and learn more about each option, invoke the command help by

issuing the --help flag after the command, rather than providing the name of the service

to create. Optionally, you could create the service using an application server resource,

such as the GlassFish administration console.

Once the service has been created within the container, it can be utilized by an

application. To utilize this type of service, the environment must be configured via XML

or annotation. To utilize XML configuration, add a <resource-env-ref> element to the

web.xml deployment descriptor. In this case, you need to configure a resource of type

javax.enterprise.concurrent.ManagedScheduledExecutorService, as shown in the

excerpt from the following web.xml:

Chapter 16 ConCurrenCy and BatCh

798

<resource-env-ref>

 <description>Prints alerts to server log, if warranted, on a periodic

basis</description>

<resource-env-ref-name>

concurrent/__defaultScheduledManagedExecutorService

</resource-env-ref-name>

 <resource-env-ref-type>

javax.enterprise.concurrent.ManagedScheduledExecutorService

 </resource-env-ref-type>

</resource-env-ref>

If you wish to use annotations rather than XML, the @Resource annotation

can be used in client code to inject the ManagedScheduledExecutorService,

as shown in the following lines. In this case, the injected resource references a

ManagedScheduledExecutorService that is identified by the name concurrent/__

defaultManagedScheduledExecutorService:

@Resource(name="concurrent/ScheduledAlertExecutor")

ManagedScheduledExecutorService mes;

To write the task that you wish to have scheduled, create a Java class that implements

Runnable. As such, the class will contain a run method, which will be invoked each time

the scheduled task is initiated. The following example demonstrates how to construct a

task that can be used for logging. In this example, the BookAuthor entity is queried on a

periodic basis to determine if new authors have been added to the database:

public class ScheduledLoggerExample implements Runnable {

 CreateConnection createConn = null;

 @Override

 public void run() {

 queryAuthors();

 }

 public void queryAuthors(){

 createConn = new CreateConnection();

 String qry = "select object(o) from BookAuthor o";

 createConn.loadProperties();

Chapter 16 ConCurrenCy and BatCh

799

 try (Connection conn = createConn.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {

 // if new author, then alert

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

To periodically invoke the task, utilize the ManagedScheduledExecutorService

resource. The following JSF managed bean class demonstrates how to invoke this type of

service:

@Named

public class ScheduledTaskClient {

 Future alertHandle = null;

 @Resource(name="concurrent/__defaultManagedScheduledExecutorService")

 ManagedScheduledExecutorService mes;

 public void alertScheduler() {

 ScheduledAuthorAlert ae = new ScheduledAuthorAlert();

 alertHandle = mes.scheduleAtFixedRate(

 ae, 5L, 5L, TimeUnit.MINUTES);

 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,

 "Task Scheduled", "Task Scheduled");

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

}

Chapter 16 ConCurrenCy and BatCh

800

 How It Works
To schedule a task to run at specific times, utilize the javax.concurrent.

ManagedScheduledExecutorService interface. This interface extends the java.util.

concurrent.ScheduledExecutorService and javax.enterprise.concurrent.

ManagedExecutorService interfaces. The ManagedScheduleExecutorService can be

used to execute a Runnable task according to a specified schedule.

As mentioned previously, a ManagedScheduleExecutorService can be used to

schedule Runnable tasks. That is, any class that implements java.lang.Runnable can

be invoked via the service. The code that is contained within the task class’s run method

is invoked each time the task is initiated. In the example for this recipe, the run method

executes another method within the class that is used to query an entity and perform

some work against the results.

To make use of a ManagedScheduledExecutorService, one can be created within

the application server container. This can be done by issuing the asadmin create-

managed- scheduled-executor-service command, as demonstrated in the example for

this recipe. However, any Jakarta EE 8–compliant application server should contain a

default ManagedScheduledExecutorService for use. Once the resource has been created

in the application server, an application can make use of it. To enable an application to

access the service, XML configuration within the web.xml deployment descriptor can

be used, or a @Resource annotation can be used to inject the resource. In the example

for this recipe, both techniques are demonstrated. However, in the class that is used

to initiate the example task, the @Resource annotation is used to inject the application

server’s default ManagedScheduledExecutorService that can be identified by the name

concurrent/__defaultManagedScheduledExecutorService:

@Resource(name=" concurrent/__defaultManagedScheduledExecutorService ")

 ManagedScheduledExecutorService mes;

To schedule the task, create an instance of the task class, and then pass the instance

to one of the ManagedScheduledExecutorService scheduler methods that are made

available via the ScheduleExecutorService interface. The methods that can be used to

schedule tasks are shown in Table 16-1.

Chapter 16 ConCurrenCy and BatCh

801

In the example for this recipe, the scheduleAtFixedRate() method is called, passing

the task class, along with the initial delay period of 5 minutes, and then the task is

executed every 5 minutes thereafter.

16-6. Creating Thread Instances
 Problem
Your application requires the ability to perform tasks in the background while other tasks

are executing.

 Solution
Create thread instances to run tasks in the background by making use of a

ManagedThreadFactory resource. Before an application can use the service, it must

be created within the application server container. To create a ManagedThreadFactory

instance within GlassFish, issue the following command from the command line:

asadmin create-managed-thread-factory concurrent/myThreadFactory

Table 16-1. ScheduleExecutorService Methods

Method Description

schedule(Callable<V> callable,

long delay, TimeUnit unit)

Creates and executes a ScheduledFeature object. the

object becomes available after the specified delay period.

schedule(Runnable command,

long delay, TimeUnit unit)

Creates and executes a one-time task that becomes

available after the specified delay.

scheduleAtFixedRate(Runnable

command, long initialDelay,

long period, TimeUnit unit)

Creates and executes a periodic task that becomes

available after the initial specified delay period.

Subsequent executions are then scheduled in increments

of the specified period after the initial delay.

scheduleWithFixedDelay(Runnab

le command, long initialDelay,

long delay, TimeUnit unit)

Creates and executes a periodic task that becomes

available after the initial delay period. Subsequent

executions are then scheduled with the specified delay

period in between each execution.

Chapter 16 ConCurrenCy and BatCh

802

In this command, name-of-service can be whatever you choose. The create-

managed- thread-factory command has many options that can be specified. To see and

learn more about each option, invoke the command help by issuing the --help flag after

the command, rather than providing the name of the service to create.

To utilize a ManagedThreadFactory, the environment must be configured via XML

or annotation. To utilize XML configuration, add a <resource-env-ref> element to the

web.xml deployment descriptor. In this case, you need to configure a resource of type

javax.enterprise.concurrent.ManagedThreadFactory, as shown in the excerpt from

the following web.xml:

<resource-env-ref>

 <description>

</description>

<resource-env-ref-name>

 concurrent/AcmeThreadFactory

</resource-env-ref-name>

 <resource-env-ref-type>

javax.enterprise.concurrent.ManagedThreadFactory

 </resource-env-ref-type>

</resource-env-ref>

To utilize annotations rather than XML configuration, the ManagedThreadFactory

can be injected using an annotation such as the following:

@Resource(name="concurrent/AcmeThreadFactory");

ManagedThreadFactory threadFactory;

In this example, a ManagedThreadFactory will be injected into an EJB so that a

logging task can be used to print output to the server log when the EJB is created or

destroyed. The following code demonstrates how to create a task that can be utilized by

the ManagedThreadFactory:

public class MessagePrinter implements Runnable {

 @Override

 public void run() {

 printMessage();

 }

Chapter 16 ConCurrenCy and BatCh

803

 public void printMessage(){

 System.out.println("Here we are performing some work...");

 }

}

To initiate the threading, call the ManagedThreadFactory, which can be injected into

a using class via the @Resource annotation. The ManageThreadFactory newThread()

method can then be invoked to spawn a new thread, passing the Runnable class instance

for which the thread should process. In the following servlet context listener example,

when a thread context is initialized, then a Runnable class that was listed in the previous

code listing, MessagePrinter, is instantiated and passed to the ManagedThreadFactory

to spawn a new thread:

public class ServletCtxListener implements ServletContextListener {

 Thread printerThread = null;

 @Resource(name ="concurrent/AcmeThreadFactory")

 ManagedThreadFactory threadFactory;

 public void contextInitialized(ServletContextEvent scEvent) {

 MessagePrinter printer = new MessagePrinter();

 printerThread = threadFactory.newThread(printer);

 printerThread.start();

 }

 public void contextDestroyed(ServletContextEvent scEvent) {

 synchronized (printerThread) {

 printerThread.interrupt();

 }

 }

}

 How It Works
Until the release of Java EE 7, multithreaded enterprise applications were very

customized. In fact, until the release, there was no formal framework to utilize for

spawning threads within an enterprise Java application. In Jakarta EE 8, which includes

the Jakarta concurrency utilities, thread processing has been formalized. To utilize

Chapter 16 ConCurrenCy and BatCh

804

threading within an enterprise application, you should create ManagedThreadFactory

resource(s) within the application server container, and utilize those resources within

application(s), as needed.

To create a ManagedThreadFactory resource within the GlassFish or Payara

application server, invoke the asadmin create-managed-thread-factory command

from the command prompt. At a minimum, the desired name for the resource should be

included with the invocation of the command. However, there are a number of different

options that can be specified to customize the resource. To learn more about those

options, please see the online documentation at https://jakarta.ee/specifications/

concurrency/1.1/apidocs/.

As mentioned in the example, an application can make use of a

ManagedThreadFactory resource by configuring XML within the web.xml deployment

descriptor or by injecting via the @Resource annotation within the classes that need

to make use of the resource. Once that resource has been injected, calls can be made

against it to spawn new threads using the newThread() method. The newThread()

method returns a Thread instance, which can then be utilized as needed, by calling the

Thread instance methods, as needed. In the solution to this recipe, the thread is started

by calling the thread’s start() method, and when the context is destroyed, then the

thread’s interrupt() method is invoked.

The addition of a formal threading framework into Java EE, and now Jakarta EE, has

been very much welcomed. By adhering to the use of ManagedThreadFactory API, your

enterprise applications can be made multithreaded using an accepted standard solution.

16-7. Creating an Item-Oriented Batch Process
 Problem
You would like to create a job that runs in the background and executes a task.

 Solution
Make use of the Batch Applications for the Java Platform API, introduced in Java EE 7,

to create a job that handles item-oriented processing. Batch processing that is item-

oriented is also known as “chunk” processing. In this example, a batch process is created

to read text from a file, process that text accordingly, and then write out the processed

Chapter 16 ConCurrenCy and BatCh

https://jakarta.ee/specifications/concurrency/1.1/apidocs/
https://jakarta.ee/specifications/concurrency/1.1/apidocs/

805

text. To begin, construct an XML file to define the job. The XML file for this example

will be called acmeFileProcessor.xml. We will break down the lines of this file, as well

as discuss the different options for writing job XML, in the “How It Works” section. For

now, let’s take a look at what a job process looks like. The following lines are from the

acmeFileProcessor.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<job id="myJob" xmlns="http://batch.jsr352/jsl">

 <step id="readingStep" >

 <chunk item-count="2">

 <reader ref="acmeReader"></reader>

 <processor ref="acmeProcessor"></processor>

 </chunk>

 </step>

 <step id="writingStep" >

 <chunk item-count="1">

 <writer ref="acmeWriter"></writer>

 </chunk>

 </step>

</job>

There are three tasks being performed in this particular job: acmeReader,

acmeProcessor, and acmeWriter. These three tasks can be associated with Java class

implementations within the batch.xml file, which is located within the META-INF

directory. The following code shows what the batch.xml looks like:

<?xml version="1.0" encoding="UTF-8"?>

<batch-artifacts xmlns="http://jcp.org.batch/jsl">

 <ref id="acmeReader" class="org.jakartaeerecipes.chapter16.recipe16_07.

AcmeReader"/>

 <ref id="acmeProcessor" class="org.jakartaeerecipes.chapter16.

recipe16_07.AcmeProcessor"/>

 <ref id="acmeWriter" class="org.jakartaeerecipes.chapter16.recipe16_07.

AcmeWriter"/>

</batch-artifacts>

Chapter 16 ConCurrenCy and BatCh

806

Next, let’s take a look at each of these class implementations. We will begin by

looking at the following AcmeReader class implementation. This class is responsible for

reading a file and creating a new WidgetReportItem object for each line of text:

package org.jakartaeerecipes.chapter16.recipe16_07;

import java.nio.charset.Charset;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.List;

import javax.batch.api.AbstractItemReader;

/**
 * Example of a file reading task

 *
 * @author Juneau

 */

public class AcmeReader extends AbstractItemReader<WidgetReportItem> {

 public AcmeReader() {

 }

 /**
 * Read lines of report and store each into a WidgetReportItem object.

 * Once all lines have been read then return null to trigger the end of file.

 * @return

 * @throws Exception

 */

 @Override

 public WidgetReportItem readItem() throws Exception {

 Path file = Paths.get("widgetFile.txt");

 List<String> fileLines;

 Charset charset = Charset.forName("US-ASCII");

 fileLines = Files.readAllLines(file, charset);

Chapter 16 ConCurrenCy and BatCh

807

 for(String line:fileLines){

 return new WidgetReportItem(line);

 }

 return null;

 }

}

Next, let’s take a look at the AcmeProcessor class. This class is responsible

for processing each WidgetReportItem accordingly. In this case, if the line of text

that is contained in the object has the text “Two” in it, then it will be added to

a WidgetOutputItem object (see the following code for WidgetReportItem and

WidgetOutputItem):

package org.jakartaeerecipes.chapter16.recipe16_07;

import javax.batch.api.ItemProcessor;

/**
 *
 * @author Juneau

 */

public class AcmeProcessor implements ItemProcessor<WidgetReportItem,

WidgetOutputItem> {

 public AcmeProcessor(){}

 /**
 * Write out all lines that contain the text "Two"

 * @param item

 * @return

 * @throws Exception

 */

 @Override

 public WidgetOutputItem processItem(WidgetReportItem item) throws

Exception {

 if(item.getLineText().contains("Two")){

 return new WidgetOutputItem(item.getLineText());

Chapter 16 ConCurrenCy and BatCh

808

 } else {

 return null;

 }

 }

}

Lastly, let’s see what the AcmeWriter class looks like. This class is responsible for

writing the WidgetOutputItem objects that have been processed by AcmeProcessor:

package org.jakartaeerecipes.chapter16.recipe16_07;

import java.util.List;

import javax.batch.api.AbstractItemWriter;

/**
 *
 * @author Juneau

 */

public class AcmeWriter extends AbstractItemWriter<WidgetOutputItem> {

 @Override

 public void writeItems(List<WidgetOutputItem> list) throws Exception {

 for(WidgetOutputItem item:list){

 System.out.println("Write to file:" + item.getLineText());

 }

 }

}

The WidgetReportItem and WidgetOutputItem objects are merely containers that

hold a String of text. The following is the implementation for WidgetReportItem; other

than the name, the WidgetOutputItem object is identical:

package org.jakartaeerecipes.chapter16.recipe16_07;

public class WidgetReportItem {

 private String lineText;

Chapter 16 ConCurrenCy and BatCh

809

 public WidgetReportItem(String line){

 this.lineText = line;

 }

 /**
 * @return the lineText

 */

 public String getLineText() {

 return lineText;

 }

 /**
 * @param lineText the lineText to set

 */

 public void setLineText(String lineText) {

 this.lineText = lineText;

 }

}

When this batch job is executed, the text file is read and processed, and then specific

lines of text are written to the system log. The read and process tasks are performed as

part of the first step, and then the write is processed as the second step.

 How It Works
Prior to the inclusion of Batch Applications for Java EE, organizations and individuals

had to write their own custom procedures for processing batch jobs. Utilizing the Batch

API, developers can create batch jobs using a combination of XML for defining a job

and Java for programming the implementation. In the solution for this recipe, a simple

batch job reads text from a file, processes it using a comparison, and then writes out the

processed text. The example batch program is simplistic, but the API makes it easy to

write very complex jobs.

Let’s begin the explanation by first taking a brief look at the API from a high

level. A job consists of one or more steps, and each step has exactly one ItemReader,

ItemWriter, and ItemProcessor. A JobOperator is responsible for launching a job, and

a JobRepository is used to maintain metadata regarding the currently running job. Jobs

Chapter 16 ConCurrenCy and BatCh

810

are defined via XML, and the <Job> element is at the root of the job definition. Thus,

a <Job> is the foundational element, which consists of one or more <step> elements,

and also defines other specifics of the job, such as the job name and if it is restartable

or not. Each <step> of a job consists of one or more chunks or batchlets. In this recipe,

which covers item-oriented processes, each step has just one chunk, although in general

steps could encompass one or more chunks. To learn more about batchlets, please see

the specification or online documentation at https://jakarta.ee/specifications/

batch/1.0/apidocs/javax/batch/api/Batchlet.html.

As expected, each chunk of a step is defined within the XML using a <chunk>

element. A <chunk> element defines the reader, writer, and processor pattern of a batch

job. A chunk runs within the scope of a transaction, and it is restartable at a checkpoint

if it does not complete. The <reader> element is a child element of <chunk>, and it is

used to specify the reader for that chunk. The <reader> element can accept zero or more

name/value pair properties using a <properties> element. The <processor> element

is also a child element of <chunk>, which specifies the processor element for that chunk.

Like a <reader> element, a <processor> element can accept zero or more name/

value pair properties using a <properties> element. The <writer> element is a child

element of <chunk> as well, which specifies the writer for the chunk step. Again, like the

reader and processor, the <writer> element can accept zero or more name/value pair

properties using a <properties> element.

The XML configuration for a job resides in an XML file that should be named the

same as the batch job to which it belongs. This file should reside within a folder named

batch-jobs, which in turn resides in the META-INF folder. An XML file named batch.

xml should also reside within the META-INF folder. This file contains the mapping for the

item reader, writer, and processor elements using <ref> elements and mapping the item

names to a Java implementation class:

<batch-artifacts xmlns="http://jcp.org.batch/jsl">

 <ref id="acmeReader" class="org.jakartaeerecipes.chapter16.recipe16_07.

AcmeReader"/>

 <ref id="acmeProcessor" class="org.jakartaeerecipes.chapter16.

recipe16_07.AcmeProcessor"/>

 <ref id="acmeWriter" class="org.jakartaeerecipes.chapter16.recipe16_07.

AcmeWriter"/>

</batch-artifacts>

Chapter 16 ConCurrenCy and BatCh

https://jakarta.ee/specifications/batch/1.0/apidocs/javax/batch/api/Batchlet.html
https://jakarta.ee/specifications/batch/1.0/apidocs/javax/batch/api/Batchlet.html

811

The implementation classes should either extend abstract classes (reader and writer)

or implement an interface (processor). The ItemReader implementation class, in this

case AcmeReader, extends the AbstractItemReader and accepts an object into which

the read items will be stored. In the example for this recipe, that object class is named

WidgetReportItem. As such, the class should implement the readItem() method, which

is responsible for performing the reading. The method should return the object to which

the items are read, or return a null when there are no more items to read:

public class AcmeReader extends AbstractItemReader<WidgetReportItem> {

...

@Override

 public WidgetReportItem readItem() throws Exception {

 Path file = Paths.get("widgetFile.txt");

 List<String> fileLines;

 Charset charset = Charset.forName("US-ASCII");

 fileLines = Files.readAllLines(file, charset);

 for(String line:fileLines){

 return new WidgetReportItem(line);

 }

 return null;

 }

...

The ItemProcessor class implementation, in this case AcmeProcessor, is responsible

for performing processing for the chunk, and it should implement the ItemProcessor

interface, accepting both the object containing the read items and an object to which

the processed items will be stored. The ItemProcessor implementation class should

implement a processItem method, which is responsible for performing the processing.

The ItemWriter class implementation, in this case AcmeWriter, is responsible

for performing the writing for the chunk. The class implementation should extend

the AbstractItemWriter class and accept the object to which the processed items

will be written. This implementation must contain the writeItems method, which is

responsible for performing the writing.

As mentioned in the introduction to this chapter, Jakarta Batch is very detailed, and

this recipe barely scratches the surface of how to write batch jobs.

Chapter 16 ConCurrenCy and BatCh

813
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2_17

CHAPTER 17

Deploying to Containers
The world of containerization has erupted, and it is difficult to navigate technology

without running into the word “containerization” or “Docker,” to be specific. Docker is

a technology which allows one to package a complete application environment into a

small, portable container. This technology provides the ability to easily configure and

customize containers to run various operating systems, virtual machines, databases,

application servers, web servers, and so on, so that applications can be deployed once

to the container and ported to almost any environment. With this ability, it is easy for

developers to create applications that consist of multiple containers that communicate

with each other, tightly integrating to produce robust and fault-tolerant applications.

One may ask questions such as “Why deploy to a container and then ship the

container, rather than a web archive (WAR) file?” or “Why would one create multiple

smaller applications deployed to multiple containers, in order to produce a single

cohesive system?” These questions can be answered in a number of ways, depending

upon the requirements of the solutions. In some cases, it does not make sense to deploy

to a container, and a standard WAR file will do just fine. However, one of the main

benefits of containerization is the creation of reproducible environments. This means

that a container can be created and an application can be deployed to that container,

providing a portable container that runs the same everywhere. When such a container

is then shipped to a customer, it will run the same as it does on the developer’s machine

or on the testing environment. Reproducible. This is a major benefit. How many times

have you developed an application, then deployed to an application server in a different

environment, and ran into obscure issues? Lots of developers run into such plagues and

spend countless hours trying to find a remedy… Containerization can help. This solution

also makes it possible to share pre-built images for other uses. Such is the idea behind

Docker Hub, providing a library of pre-built images for use. Images on Docker Hub can

be used as they are, or they can be extended in order to customize them for use.

814

What about the reasoning behind developing a multi-container solution?

Fault tolerance can be easily provided when a system is constructed from multiple

containers that run independently from one another. Each containerized application

can perform just a single task (or a handful of related tasks) and communicate with

the other containers in a non-obtrusive manner. This type of solution is also known

as “microservices,” and many successful solutions have been developed with this

methodology. If one of the containers goes down, the others will remain running, and

only a single feature of the whole system will become unavailable. Better yet, a fault

tolerance mechanism can be used to automatically spawn a new container to take place

of the one that is unavailable.

Docker and containerized solutions also provide a bevy of other benefits, including

quick startup time, easily manageable CPU and container configuration, small portable

solutions, and quick duplications and/or rebuilding of containers, just to mention a

few. Noting all of the benefits of containerization, it is easy to see how one may get

carried away and depend upon containers for everything. I cannot stress enough that

containerization is not the best solution in all cases. You must be selective and choose

the best strategy for the application at hand.

This chapter will provide a brief overview of using Docker to create containerized

applications. After reading through this chapter, you will have a basic understanding of

how to create a Docker container and then deploy an application to the container. You

will also have a basic understanding of how to make multiple containers communicate

with one another, to create a cohesive solution.

17-1. Creating a Docker Image and Running Java
 Problem
You would like to create a Docker image and run a small Java executable.

 Solution
Create a Docker container using the following steps:

 1. Create a new folder on your machine and name it javaapp.

Change directories into the new folder.

mkdir jakartaeeapp

cd jakartaeeapp

Chapter 17 Deploying to Containers

815

 2. Create a file within the new directory and name it Dockerfile,

without any file extension. This will be the file containing the

instructions for building your container.

nano Dockerfile

OR

vim Dockerfile

Note Both the nano and Vim editors are utilized from the terminal, and they are
available for a number of operating systems.

 3. Add the following contents to the Dockerfile:

FROM openjdk:11

COPY . /var/www/java

WORKDIR /var/www/java

RUN javac HelloDocker.java

CMD ["java", "HelloDocker"]

 4. Create a small Java program containing a main() method. Name

the file HelloDocker.java, and place the following contents inside:

class HelloDocker {

 public static void main(String[] args){

 System.out.println("Hello Docker!");

 }

}

 5. From inside of the javaapp directory, build the Docker image by

executing the following command from the command line or

terminal:

docker build -t javaapp .

 6. Run the Docker image by issuing the following command:

docker run javaapp

>> Hello Docker!

Chapter 17 Deploying to Containers

816

 How It Works
Creating a Java application and packaging it into a Docker image is quite simple. To

begin, one must install the Docker environment onto the machine which will be used

for creating the Docker container. On Windows or Mac platforms, this typically means

installing Docker Desktop. On Linux, this is typically Community Edition or a Docker

server environment, such as Docker Enterprise Edition.

Note For more information regarding installation of Docker onto linux, Mac, or
Windows, please see the online documentation: https://docs.docker.com/
install/.

Once Docker has been installed, a container can be created and installed into the

local image repository.

To begin creating a basic Docker image, create a folder into which any files that will

become a part of the Docker image will be stored. Next, inside of the folder, create a file

named Dockerfile, which will be used to configure the image. The Dockerfile is used

to indicate the base image from which this image will be created, and it also allows one

to specify configurations such as application entry point, ports for communication,

database information, and so on.

In the example, the base Docker image is derived from OpenJDK 11 using the

statement FROM openjdk:11. The next line of the example Dockerfile indicates that

the contents of the current folder should be copied inside of the image’s /var/www/

java folder. The Docker WORKDIR command is used to set the working directory for any

subsequent RUN, CMD, ENTRYPOINT, COPY, and ADD instructions. In the example, the next

line executes the Java program and creates an image:

RUN javac HelloDocker.java

A Docker container runs an image that is created via commands that are contained

within a Dockerfile. The RUN command creates a container which incorporates an image

on top of the OS image that is at the base of the container and runs it.

Chapter 17 Deploying to Containers

https://docs.docker.com/install/
https://docs.docker.com/install/

817

The RUN, CMD, and ENTRYPOINT instructions can be executed in either Shell or Exec

form. In this example, the CMD instruction uses the Exec form. The Exec form uses the

following format:

<instruction> ["executable","parameter1","parameter2"]

Shell form takes the following format:

<instruction> command

In the example, the final line of the Dockerfile contains the CMD command. There

can only be one CMD command per Dockerfile. If more than one CMD command exists,

then the last one in the file is executed. The CMD command provides defaults for the

executing container. In the example, the CMD command is written in the Exec format,

which provides the executable, followed by any parameters:

CMD ["java", "HelloDocker"]

In this case, the executable is “java”, and the parameter is “HelloDocker”, which is the

name of the executable Java application. The other possible formats for the command

are “Entrypoint” and Shell forms. To learn more about the different formats, as well as

the different Dockerfile commands, please refer to the online documentation: https://

docs.docker.com/engine/reference/builder/.

Once the Dockerfile has been built, the docker executable can be used to build

the image by invoking the docker build instruction from the command line or

terminal. In the example, the -t option is passed, which specifies a name for the

image. To see the many different options available for docker build, please refer

to the online documentation: https://docs.docker.com/engine/reference/

commandline/build/.

Lastly, to run the container, issue the docker run instruction from the command

line or terminal. In the example, simply the image name is passed to the docker run

command. However, there are more options that can be specified. Please refer to the

online documentation to read about the various options: https://docs.docker.com/

engine/reference/run/.

Chapter 17 Deploying to Containers

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

818

17-2. Deploying Images to Payara Server Utilizing
an Official Payara Docker Image
 Problem
You would create a container by utilizing a pre-built Docker image of Payara server and

deploying an application to it.

 Solution
Utilize a Docker Desktop installation to run a Payara Docker image that is stored on

Docker Hub. The following command will pull down the official Payara 5.194 image from

Docker Hub, create a container consisting of the WAR files that are present within the

“deployments” folder, and run the container:

docker run -d -p 4848:4848 -p 8095:8080 -v /Java_Dev/deployments:/opt/

payara/deployments -–name payara-container payara/server-full:5.194

 How It Works
To easily spin up a container that is built on top of Payara server, utilize the docker run

command, optionally passing a number of operators or parameters to configure the

container on the fly. The command in its most basic form adheres to the following format:

docker run <image name>

The image name is in the format of <community>/<repository>:tag.

Simply type docker run --help to see the available parameters. A handful of the

most commonly used parameters are explained in Table 17-1.

Chapter 17 Deploying to Containers

819

In the example, the port 4848 within the container is mapped to the port 4848 on the

host. Likewise, the port 8080 within the container is mapped to port 8095 on the host.

The volume /Java_Dev/Deployments from the host is mapped to the container volume

/opt/payara/deployments. Hence, if there are any WAR files residing within the host

volume, they will be auto-deployed when the Payara server is started since they will be

copied into the Payara deployments directory. The container in the example is named

payara-container, which is more easily identifiable than a randomly generated number.

Lastly, the container is based upon the Payara Server 5.194 image.

17-3. Creating a Docker Container Running a Basic
Jakarta EE Application
 Problem
You would like to create a Docker container from an image and run a Jakarta EE

application within the container.

 Solution
Utilize a container image, such as Payara or WildFly, as the basis for a Jakarta EE Docker

container. In this solution, Payara will be utilized to deploy a basic “Hello World” Jakarta

EE application containing a Jakarta RESTful web service.

Table 17-1. Common docker run Operators

Operator Description

-d runs the container in detached mode

-rm When used with -d, removes the container once it exits or when the daemon exits

--name provides an identifier for a container

-p publishes container port to host port in the format

host-port:container-port

-v Mounts a volume from host to container

Chapter 17 Deploying to Containers

820

For the purposes of this example, a simple Jakarta EE application is packaged with

the sources for this book. The application is named HelloApp, and the project can be

opened and compiled into a WAR file using an IDE, such as Apache NetBeans.

To deploy to a container, a Dockerfile needs to be constructed, which will pull a base

image for the container, and then subsequent images can be layered on top to create a fully

functional container. To begin, create a file without any extension in the root of the HelloApp

project, and name it Dockerfile. Inside of the Dockerfile, place the following contents:

FROM payara/server-full:5.193.1

COPY target/HelloApp-1.0.war $DEPLOY_DIR

Next, build the image by issuing the docker run command, and passing a name for

the image, along with a version. Be sure to include a trailing dot (.), as this indicates to

include the contents of the current directory in the build:

docker build -t hello-app:1.0 .

Finally, run the container by issuing the docker run command, providing host port

mapping, along with the image name and version:

docker run -it -p 8095:8080 hello-app:1.0

After issuing this command, the container will start, and you can visit the REST

endpoint, which should be available at http://localhost:8095/HelloApp-1.0/rest/

helloService/hello, and see the result:

Hello World

 How It Works
Many application server container vendors package their containers in a Docker-ready

format, usually on Docker Hub. As such, it is easy to build an image using one of these

containers as a base, and then deploy an application or service to that container.

In this example, the first line of the Dockerfile pulls Payara Server 5.193.1, the first

release of Payara Server that is Jakarta EE 8 compatible, which is utilized to create a base

image. Next, the HelloApp-1.0.war file is copied into an area within the Payara server

referenced as $DEPLOY_DIR using the COPY command. There are a couple of things to

note about this COPY command. First, it is assumed that the Dockerfile is contained at the

base of the project directory. Therefore, there should be a target folder at the same level

as the Dockerfile. Inside of the target folder should be the compiled HelloApp-1.0.war.

Chapter 17 Deploying to Containers

821

Hence, the COPY command references target/HelloApp-1.0.war. Next, the $DEPLOY_

DIR variable is a special variable to reference when using a Payara server image. This

variable points to the container’s /opt/payara/deployments directory. All in all, this

command is telling Docker to copy the WAR file into the auto-deploy directory.

The image can be built by issuing the docker build command. In this case, the -t

option is used to specify an image name and version. To see a complete list of options for

this command, please refer to the online documentation: https://docs.docker.com/

engine/reference/commandline/build/.

In order to run the container, issue the docker run command. In this example, the

-it option instructs Docker to allocate a pseudo-TTY connected to the container’s stdin.

This essentially creates an interactive bash within the container. The -p option specifies

the host-to-container port mapping. The last argument passed to docker run is the

image name and version.

It is a piece of cake to create a container and deploy an application using your choice

from a number of compliant Jakarta EE application server containers. Many vendors

make Docker-ready containers available, allowing very minimal work.

17-4. Enabling Communication Between Containers
 Problem
You would like to provide communication between multiple containers.

 Solution
To provide communication between two or more containers, one must ensure that port

numbers are being assigned correctly. Utilization of the Docker network feature can help

achieve the desired result:

docker network connect hellonetwork

or

docker run –net=hellonetwork -it -p 8096:8080 hello-app:1.0

In this solution, a JAX-RS service named HelloApp is deployed to the hellonetwork

on port 8096. A secondary JAX-RS client service named HelloAppClient is deployed on

the same hellonetwork on port 8097. In this case, HelloAppClient invokes the RESTful

service that is exposed via HelloApp on port 8096.

Chapter 17 Deploying to Containers

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

822

To begin, let’s take a look at the HelloAppClient code. One thing to note is that in this

code, the URL for the RESTful service call is hard-coded for brevity. However, it is not suitable

for production use in this manner. For a production environment, it would be best to set a

property containing the RESTful URL which could be read from within the JAX-RS client:

@Path("helloclient")

public class HelloService {

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public Response sayHello() {

 // Obtain an instance of the client

 Client client = ClientBuilder.newClient();

 Response res = (Response) client.target("localhost:8096/

HelloApp-1.0/rest/helloService/hello")

 .request("text/plain").get();

 return res;

 }

}

Next, build the HelloApp Docker image invoking the docker build command

from within the HelloApp project directory. Once the project has been deployed, the

container can be started by issuing the docker run command:

docker run -d --net=hellonetwork -it -p 8096:8080 hello-app:1.0

The HelloAppClient project image should be built in the same manner, and the

container can then be deployed to the same network. To do so, change directories to

traverse inside of the HelloAppClient project directory. Next, issue the docker build

command, and then issue the following docker run command:

docker run -d --net=hellonetwork -it -p 8097:8080 hello-app-client:1.0

Open a browser and navigate to the HelloAppClient project, and the text which is

made available from the HelloApp project service should be visible:

http://localhost:8097/HelloAppClient/rest/helloclient

Chapter 17 Deploying to Containers

823

 How It Works
The docker network command allows one to create a network to which any number of

containers can be assigned. Each of the containers within the network can communicate

with each other by means of specifying a container name. There are a number of

different ways to deploy multiple services to a Docker network such that they will be able

to communicate.

In this solution, two of the techniques for joining containers to the same Docker

network are presented. The first way to join a container to a Docker network would be to

issue the docker network command in the following format:

docker network connect <<network>> <<container name>>

This technique works well if there are already containers running. The only

downside is that one must know the container name in order to join it to the network

using this option. The second option is easier to manage if containers have not yet been

started, as the --net option can be specified with the docker run command, assigning

the container to a network as it is started.

Joining two or more containers to the same network can be effective for providing

container communication. This is a must if one of the containers is running a database

and the other containers need to access that database. It is also essential for organizing

microservices to provide a fully functional application. There are also tools, such as

Kubernetes, that are available to help orchestrate and manage a number of services.

If you plan to run many services, then it may make sense to look into one of these

tools. For further documentation on networking Docker containers, please review the

online documentation: https://docs.docker.com/engine/userguide/networking/

dockernetworks/.

Chapter 17 Deploying to Containers

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/

825
© Josh Juneau 2020
J. Juneau, Jakarta EE Recipes, https://doi.org/10.1007/978-1-4842-5587-2

Index

A
AbstractFacade class, 308, 482, 487, 504
AbstractItemWriter class, 811
Acme Bookstore, 196, 198
AcmePoolsNoSql project, 468
AcmePoolsService class, 468
AcmeProcessor class, 807
AcmeWriter class, 808
actionListener method, 231
addListener() method, 25
Aggregate functions, 546
AjaxBehaviorEvent object, 259
Ajax validation, 209, 249, 251, 253–255

JavaScript event attributes, 258
f:ajax, 256, 257
action listener, 259, 260

execute attribute, 257, 258
functionality to a group, 264–270
input fields, without page

reload, 260–262
partial-page updates, 262–264
render attribute, 257, 258

@Alerter annotation, 693
@Alternative annotation, 618
Apache NetBeans IDE, 638, 643
@ApplicationPath annotation, 302
@ApplicationScoped bean, 293, 464,

 470, 473
Artemis dependency, 461

methodologies, 464
types, 461

AsyncContext.complete() method, 33
Asynchronous task, 209
async method, 697
AsyncResponse resume method, 696
AsyncResponse.setTimeout() method, 696
AsyncResponse.setTimeoutHandler()

method, 696
auth-constraint element, 738
auth-method tag, 735
Author class, 119, 158
AuthorController, 116, 124, 155,

186, 199, 202
automaticTimer() method, 513

B
Backing beans, 111
Batch Processing APIs, 779
batch.xml file, 805
@BeanParam annotation, 335, 336
Bean validation, 245, 247, 249

applications, 570
built-in constraint, 572, 573
class-level constraints, 578–580
constraint annotation, 576, 577
constraint annotation attributes, 574
constructor parameters, 583, 584
custom constraint validator, 574–576

https://doi.org/10.1007/978-1-4842-5587-2

826

custom message interpolation, 587
dynamic error message, 585
entity class fields, 570, 571
groups, 589–591
parameters, 581, 582
payload, 574
return value, 584, 585
string interpolation, 585–587
validator engine, 588, 589

Binding filters/interceptors, 692, 693
@BindingPriority annotation, 694
BookController.getCustomBookList()

method, 505
BookEventHandler, 622, 625
BookFacade session, 482
BookGroup group, 589
Book interface, 603, 604
bookstoreController.sendMessage()

method, 290, 291
broadcast() method, 702
buildGet() method, 688

C
CalculationBean

class, 595, 598, 600, 602
CalculationController, 111
Calendar-based timer expression, 515
Callback methods, 485, 495
call() method, 794
cancel() method, 790
CartBean, 606, 608
CDI bean, 113
<chunk> element, 810
Chunk processing, 804
<c:if> test, 54
Class-level constraints, 578

declaration, 579
implementation, 579, 580
@NotNull, 580
@Size, 580

cleanSubject() method, 769
Client target method, 685
Client setProperty() method, 684
@ColumnResult annotation, 543
commandButton/commandLink

component, 224
commandButton component, 228, 260, 261
commandButton components,

228, 229, 231
commandLink components, 228, 230, 231
completeBookList property, 505
@ConcurrencyManagement

annotation, 512
ConstraintViolation.getMessage()

method, 589
@Consumes annotation, 682
ContactController class, 219, 220, 226
ContactController controller, 242
ContactController controller class, 234, 244
Containerization, 813, 814
Contexts and Dependency Injection

(CDI), see Jakarta CDI
convertToDatabaseColumn() method, 567
createClob() method, 392
createEntityManagerFactory method, 410
createItem() method, 335
create-managed-executor-service

command, 780
create-managed-scheduled-executor-

service command, 797, 800
create-managed-thread-factory

command, 802, 804
createNamedQuery method, 411
createNativeQuery() method, 536, 538

Bean validation (cont.)

Index

827

createQuery() method, 533, 534
Create, retrieve, update, and delete

(CRUD), 363
CREATE_USER procedure, 547
CredentialValidationResult.getStatus()

method, 770
Criteria API query, 532
cross-parameter constraint, 582, 584
currDateAndTime field, 17
currDate field, 42
@CustomFormAuthenticationMechanism

Definition annotation, 764
Custom message interpolation, 587
custom validation method, 245, 248

D
Data access object (DAO), 316, 368, 377
Data application

AbstractFacade, 307–309
BookAuthor class, 305, 307
BookAuthorFacadeREST, 311–313
BookAuthorService class, 314, 315
RESTful web service, creation, 311
session-scoped CDI bean, 314

@DatabaseIdentityStoreDefinition
annotation, 760

Data Definition Language (DDL), 450
Data Manipulation Language (DML), 367
Declarative security, 729
@DeclareRoles annotations, 739
Dependency injection, 594, 596, 601
@DependsOn annotation, 512
destroy() method, 5
diana-column module, 463
diana-core module, 459
diana-document module, 463
diana-key-value module, 463

Disposer method, 617
@Disposes annotation, 617
DISTINCT keyword, 546
Docker

container, creation, 814
containerized solutions, 814
description, 813
Dockerfile, 815, 816
DockerHub, 813
Jakarta EE application, 819–821
Java application and packaging, 816
multiple containers,

communication, 821–823
Payara server, 818, 819

Dockerfile, 815–817, 820
DockerHub, 813

@Documented annotation, 576
Document Object Model (DOM), 210
DocumentQuery.DocumentFrom

methods, 466
DocumentQuery.DocumentWhere

methods, 466
DocumentTemplate.insert() method, 469
doGet() method, 7, 17
doPost() method, 7, 81
doStartTag() method, 72
doTag() method, 72
DriverManager.getConnection()

method, 350
Durable message subscriber

creating and publishing, messages,
662, 663

initial subscriber, 661, 662
and receive messages, 663, 664
standard message publishing

techniques, 660
topic connections, 661
unsubscribing, subscription, 664

Index

828

Dynamic content
current date and time, 14, 16
server-side activity/user input, 14

E
EbookController, 603, 604, 606
Eclipse GlassFish/Apache Tomcat, 3
Eclipse Krazo framework

ApplicationConfig class, creation, 302
CDI models, 325–328
controller classes, 317–321
data, 304 see Data application
data source, 322–325
default discovery mode, 304
dependencies, 301
display feedback, 328–332
inserting/ updating data, 332–336
JAX-RS, configuration, 303
JAX-RS, creation, 300
new maven web application, 301
view engine, 336–340

EJB Timer service, 515
EL expression

character, 92
escape technique, 93
reserved words, 64

<el-ignored>true</el-ignored>
element, 92

Enterprise JavaBean (EJB), 305, 745
Entity interceptors, 692
Entity Manager

container-managed entity
managers, 477

EJB, 477
JDBC connection, 476

EntityManagerFactory, 477
Entity object, updating

BookFacade session bean, 502
IllegalArgumentException, 503

equals() method, 423, 424
executeQuery() method, 361, 375, 388
executeUpdate() method, 82

F
Facelets, 105
faces-config.xml file, 285
FacesContext, 150
Faces flow technology, 280
FacesServlet, 95, 100, 103, 105, 124, 139
f:ajax tag, 249, 255–257
Fault tolerance, 814
f:event tag, 278, 279
@FieldResult annotation, 543
File security realm, 734
Filtering messages, 655
Filters, 692
findAllBooksByChapterNumber()

method, 551
findAll() method, 505, 508
findAuthor() method, 528
findByTitle() method, 480, 482, 486
@FlowScoped annotation, 286, 287
flow-specific configuration file, 286
JSTL fmt library, 87
form-error-page values, 775
form-login-page values, 775
FROM clause, 530
from() method, 531
Full-duplex communication, 705, 707
f:validateBean tag, 248
f:validateDoubleRange validator tag, 246
f:validateLength validator tag, 246
f:validateLongRange validator tag, 246
f:validateRegex validator tag, 246

Index

829

f:validateRequired validator tag, 246
f:websocket tag, 289–292

G
@GeneratedValue annotation, 414, 415
GenericServlet, 5, 7
@GET method, 682
getBookAuthorList() method, 320
getBookAuthors() method, 320
getBooks() method, 328
getCallerGroups() method, 768
getCart() method, 489
getCompleteBookList() method, 507
getConnection() method, 344, 350
getCriteriaBuilder() method, 531
getId() methods, 571
getJspContext() method, 72
getMessageList() method, 682
getProperties() method, 303
getResultList() method, 533
getResultStream() method, 565
getSingleResult() method, 535
getStatus() method, 768
getTitle() methods, 571
getUserMessage method, 677
getXMLMessageList() service, 682
GlassFish application server

CSR, 778
custom certificates, 776
File User form, 732
File Users list, 733
form-based security, 735
group association, 736
keystore, 777
New File User form, 732
Realms form, 730, 731
transport guarantee, 738

user group, 734
web-resource-collection element, 738

GlassFish deployment directory, 8
GlassFish/Payara administrative

console, 641
Glassfish-resources.xml, 640
glassfish-web.xml deployment

descriptor, 735
groups() method, 576

H
Hard-coded values, 462
Hazelcast, 472
HelloApp, 820, 821
HelloAppClient code, 822
HelloDocker, 817
HelloWorldController, 98, 104
HTML5, 175, 705
HttpAuthenticationMechanism (HAM), 745
HttpServlet, 5, 6
HttpServletRequest authenticate()

method, 769
HttpServletRequest object, 7

I
IdentityStoreHandler.validate()

method, 770
IdentityStore interface, 769
Implicit navigation, 142
InitalValueController, 610
initialize() methods, 577, 581
init() method, 317, 702
Inner join, 549
inputHidden component, 223
inputSecret component, 223, 259
inputTextarea component, 223

Index

830

inputText component, 222, 223, 241, 243,
258, 264, 270, 273

insertRow() method, 81
instanceof() method, 277
In-store sale action method, 625
Integrated development

environment (IDE), 4, 5
Interceptors, 691
interrupt() method, 804
IntitialValueController, 613
invalidate() method, 759
isAuthenticated() method, 772
isCanceled() method, 790
isDone() method, 790
isELIgnored attribute, 92, 93
isListenerForSource() method, 277
isPrimitive() function, 54
isUserInRole() method, 740
isValid() methods, 577, 581
item-oriented processes, 804, 805, 810
ItemReader implementation class, 811

J, K
Jakarta CDI

alternative implementations, 618
bean metadata, 619, 620
business logic, 632–634
bean to Jakarta Server Faces

Views, 598–602
bootstrapping, Java SE application,

630, 631
CalculationBean class, 595
CartBean, 606, 608
classes, ignorance, 615, 616
contexts, 594
dependency injection, contextual

bean/other object, 594, 596, 597

event invocation, 620, 622–625
injecting non-bean objects, 610, 611,

613, 614
interceptor annotation, method

invocations, 625, 626, 628–630
loose coupling, 594
producer field, disposal, 617
qualifier, for injection, 603–606

Jakarta EE
CDI (see Jakarta CDI)
dependency injection, 594
features, 593
resources, 596

Jakarta EE 8 platform, 705
JakartaEERecipes application, 672
Jakarta Server Faces view, 598–602, 606,

608, 612
Java API for RESTful Web Services

(JAX- RS), 669
Java API for XML Web Services

(JAX-WS), 669
javaapp, 814, 815
Java concurrency Utilities, 779
Java Database Connectivity

(JDBC) API
connection management

CreateConnection
class, 355, 358, 359

CreateConnection class, 356
JDBC application, 354
workiing, 359
working, 359

CRUD operations, 363
DML, 367
performCreate method, 367
performDelete method, 368
performUpdate method, 367
uppercase format, 365, 367

Index

831

DAO
Author database, 377
AUTHOR database, 378–384
working, 384, 385

database connection
connection pool, 345–347
DataSource object, 349
resources, 348, 349
SQL exception, 353
working, 349–352

data drivers, adding to
CLASSPATH, 342–344

definition, 341
enterprise application development, 341
getConnection() method, 344, 345
PL/SQL stored procedure, 386–388
querying and storing objects

CLOB data type, 388–391
querying database, 360–362
REF_CURSOR, querying, 393, 394
4.2 release, 341
SQL injection

named parameters, 375
PreparedStatement objects, 369,

372, 373, 375, 377
PreparedStatement objects, 370–372
statements, 368
user-accepted String, 373

Java EE 7 platform, 705
Java JDK, 9
Java Message Service (JMS), 783

acknowledgment type, 646, 647
creating and sending, JMS

message, 647–651
createSession syntax, 646
delaying, delivery of message, 667
description, 637
destination resource, 641, 644

durable subscriber (see Durable
message subscriber, JMS session
method)

filtering messages, 655–658
message consumers, 654
messaging facilities, 637
queues, browse messages, 658–660
receiving messages, 652–654
resources, creation of, 638, 639, 641–643
session, creation, 645, 646

Java Naming and Directory Interface
(JNDI), 308, 477

Java Persistence API (JPA), 305,
395, 416, 527

Java Persistence Query Language
(JPQL), 441, 527

aggregate function, 545, 546
CriteriaQuery instance, 531
database stored procedure, 547, 548
data type, conversion, 566, 567
EntityManager’s createQuery

method, 528
entity’s subclasses, 560, 561
filter query, 531
forcing query execution, 555, 556
functional expressions, 552–555
javax.persistence.Query Interface

Methods, 529, 530
joins between entities, creation, 548–550
native queries, 535–539
ON condition, 562, 563
one-to-many relationship, 530
query results, processing, 564, 565
return, single object, 534, 535
single-valued relationship, 530
SqlResultSetMapping, 539–541
TypedQuery object, 531
updation/deletion, 556, 557, 559

Index

832

JavaScript component tags, 215, 216
JavaScript Object Notation (JSON)

annotations, 722–724
building, JSON object, 712, 714
conversion, JSON to Java, 718–721
createParser() method, 717
HTML5-based web applications, 705
JsonObjectBuilder, 712, 714
JSON object to disk, writing, 715
JsonReader object, 717
JsonWriter, 716
object events, 717, 718
reading JSON, input source, 716
replace functionality, 725–727

Java SE application, 593, 630–632
JavaServer Faces (JSF), 1

Apply Request Values, 152, 155
arithmetic and combine

expressions, 161–165
CDI controller class, 216
component listener, 278–280
component tag, 214, 215
controller class scopes, 112
core tags, 212, 213
databases, 95
displayAuthor method, 155
displaying messages, 125, 126, 128–131
display output

components, 235, 236
controller class, 234, 235
display static/dynamic text, 231
recipe03_03.xhtml, 232, 233
render, 231

ExampleController, 132, 133
ExampleMessage, 134
Expression Language/Java code, 293
Facelets, 105
FacesServlet, 95

f:event tag, 278
HTML components, 211, 212
input fields creation, 217

Acme Bookstore, 221
ContactController class, 219
ContactController class, 220
recipe03_01.xhtml, 217
recipe03_01.xhtml, 218
tags, 222

invoke application phase, 154
invoking actions

command components, 228–231
controller class, 226, 227
recipe03_02.xhtml, 224
recipe03_02.xhtml, 225, 226

JavaScript event-handling
attributes, 271–274

message from the server, 289
page flow (see Page flow)
panelGrid component, 293
passing page parameters, 155
programmatic search

expression API, 294–297
resource bundle/properties file, 131–134
simple JSF application,

creation, 96, 97, 99
sophisticated JSF views, 114,

116, 119, 121, 125
standard JSF component

libraries, 122, 123
system-level event, 275–277
validation

annotations, 242, 243
Bean validation, 247
custom method, 243
error message, 248
errors on input fields, 245
input components, 241

Index

833

passwordConfirm fields, 244
tags, 245, 246

view pages, 95, 102
websockets (see Websockets)

JavaServer Pages (JSP), 1, 2, 95, 98, 102,
104, 111, 299

Java Servlet
accessing parameter, 65–68
constructor, 5
developers, 1
dynamic content, 3

javax.servlet-api.jar file, 5
JSP (see JSP page)
packaging, compiling and

deploying, 8, 10, 11
push resources, clients, 34–36
reading and writing, nonblocking

I/O, 26–34
request and response, handling, 17–21
request-response programming

model, 5
startup and shutdown events, 22–26
web-based requests, 1

Java Specification Requests (JSRs), 395
Java Standard Tag Library (JSTL), 54
Java Transaction API (JTA), 478
java.util.concurrent.Callable interfaces, 794
java.util.concurrent.ExecutorService

resources, 779
javax.ejb.Singleton annotation, 511
javax.enterprise.concurrent.Managed

ScheduledExecutorService, 797
javax.enterprise.concurrent.

ManagedTask interfaces, 794
javax.json.Json class, 717
javax.persistence.Query methods, 536
javax.transaction.UserTransaction

interface, 796

javax.ws.rs.client.ClientBuilder newClient
method, 684

javax.ws.rs.core.Response object, 687
JMS connection factory resources, 643
JMS 2.0 specification, 637
JobOperator, 809
JobRepository, 809
jsf.ajax.request() method, 258, 271, 274
JSF application

Acme Bookstore application, 198
with Apache NetBeans, 100
bookmarkable URLs,

creation, 165–168
components, 103
custom login view, 741

authentication backend, 744–746,
748, 749, 751

controller, 751–754
creation, 741
form, 744
HTTP request login

method, 758, 759
user entity, 754, 755, 757, 758

displaying lists of objects,
169, 173, 174

faceletsAuthorController, 186
function, 99
h:dataTable component, 198, 201
JSF life-cycle phases, 206–208
navigation, 134–140, 142, 143
New JSF Controller Class dialog, 101
page access, 770, 771
page template, creation, 177–181
resources directory, 193, 194, 197, 198
standard HTML5 markup, 175, 176
ui:composition tag, applying

templates, 181, 183, 185, 191
ui:define tag, 192

Index

834

user input validation, 144, 145, 147–151
web.xml configuration, 100

JSF CDI controller class, 111
JSF CDI controller classes, 499
JSF controller class, 95, 113

AuthorController, 116
bean class, 111
calculationController, 106, 111
controller class scopes, 112
description, 104
HelloWorldController, 104
lightweight container-managed

component, 105
New JSF Controller Class dialog, 101
performCalculation method, 114

JSF dataTable
BookController, 503, 504, 507
CDI controller property, 503
component, 507
EJB method, 505
findAll() method, 505
HashMap object, 508

JSF EL expressions, 161
JSF h:dataTable component, 173
JSF life cycle

Apply Request Values, 104
Invoke Application, 104
Process Validations, 104
Render Response, 104
Restore View, 104
stages, 103
Update Model Values, 104

JSF managed bean, 98
JSF 1.x, 95, 103
JSF 2.0, 167
JSF 2.x, 95, 102
JSF view

accessor methods, 113
calculationController, 106
component libraries, 122
displayAuthor method, 160
enhancements, 159
h:commandLink component, 160
JSF components, 108
resulting JSF view page, 110, 111

JsonbConfig class, 723
Jsonb fromJson() method, 721
JSON Binding (JSON-B), 705, 718–722, 724
Jsonb interface, 721
JsonObjectBuilder.beginObject()

method, 714
JsonPointer object, 727
JSON Processing (JSON-P), 705, 706, 714,

715, 725, 726
JSON Web Tokens (JWT), 669
JsonWriter class, 715, 716
JSP page

conditional expression, 50–54
creation, 37–40
display records, database, 82–87
document creation, 55, 56
EL expressions, 58–61
embedding Java, 40–42
error, 87–90
expressions, 62
input information, database

information, 76–82
objects, 62
tag, creation, 68–73
yielding/set values, 46–49

<jsp-property-group> element, 92
jspService() method, 41
jsp:setProperty element, 48, 49
<jsp:useBean> tag, 39
JSP tags, 57

JSF application (cont.)

Index

835

L
LDAP server

applications, 775
GlassFish/Payara, 773
properties, 774

Lightweight Directory Access Protocol
(LDAP), 729

link component, 240
loadProperties() method, 361
@Local annotation, 523
Local/remote interface

business interfaces, 522
designation rules, 524
EJB specification, 522
no-interface view, 522

@Lock annotation, 512

M
@ManagedBean

annotation, 601, 602
Managed beans, 111
ManagedExecutorService resource

asynchronous tasks, 783
builder task, 790, 792
command-line action, 780
generate a report, 784, 785, 787, 789
GlassFish Managed Executor Services

panel, 782
JSF managed bean class, 799
logging task, 802
new Executor Services panel, 783
reporter task, 790
run method, 798
runnable tasks, 800
run two/more tasks concurrently, 790
scheduler methods, 800
task types, 794

transaction within task, 794–796
XML configuration, 784, 785, 797

@ManyToMany annotation, 435, 438
merge() method, 502
Message consumers, 652–654
@MessageDriven annotation, 525
Message-driven beans (MDBs), 525
Message object, 647, 654
Message selectors, 651, 655, 658
Message subscription, 665, 666
META-INF directory, 805
method-level constraint, 584
Microservices, 814, 823
Model-View-Controller (MVC), 42, 299

N
@NameBinding annotation, 693
@Named annotation, 327, 597–602
@NamedNativeQuery annotation, 538
@NamedQuery annotation, 443
NavigationController, 135, 139, 143
newsletterDescription property, 236
newThread() method, 803, 804
Non-static method parameters, 582
NoSQL databases

Artemis (see Artemis dependency)
CLASSPATH/hard-coded values, 462
communication layer, 463
configuration, 460
Diana API, 459
DocumentCollectionManager, 462, 463
document-oriented

CRUD operations, 467
delete, 469
DocumentCollectionManager

interface, 471
DocumentTemplate interface, 470

Index

836

insert, 468
update, 468

DriverManager/EntityManager
configuration, 463

host and port, 464
Java classes, 464
key-value database

BucketManager, 472, 473
Hazelcast, 472
source code, 472

Maven, 461
mongodb driver, 462
query creation, 464–467

O
Object-relational mapping

(ORM), 395
annotations, 402
automatic schema generation

annotations, 450, 451, 453
EntityManagerFactory

properties, 447
generation properties, 448, 450
PersistenceProvider

generateSchema method, 448
validation, entity fields,

 443, 444, 446
data types

CONTACT table, 403–405
Oracle Database, 406

Date-Time API, 454, 455
definition, 395, 396, 400
entity, creating, 397–399
@ManyToMany annotation,

435–438, 440
named queries, 441–443

@OneToMany annotation,
 430–433, 435

@OneToOne annotation, 426–430
persistence unit, creating

database connection pools, 407
EntityManager object, 410
RESOURCE_LOCAL, 409
WAR/EAR, 408

primary keys
AuthorWork entity, 417, 420
AuthorWorkPKNonEmbedded,

421–423
equals() method, 424
@IdClass, 425

primary key values
BOOK_AUTHOR_S

database, 411, 412
@GeneratedValue annotation, 415
SequenceGenerator

annotation, 414
same annotation, use many

times, 456, 457
Observers, 625
onError() method, 33
@OneToMany annotation, 430
@OneToOne annotation, 429
Online sale action method, 625
onmessage attribute, 292, 293
onWritePossible() method, 33
Optional transaction life-cycle callbacks

container-managed transactions, 520
methods, 518

out.println() method, 17
outputFormat component, 236
outputLabel component, 237, 239
outputLink components, 237, 238
outputScript tag, 273
outputText component, 236, 237, 278

NoSQL databases (cont.)

Index

837

P
Page flow

configuration file, 281
configuration tags, 285
controller class, 282–284, 286
definition, 280
EL variable, 288
identifier, 281
initializer/finalizer, 286
navigational rules, 287, 288

PrimeFaces panel component, 772
PaperbackController, 603, 606
Passivation, 494
passivationCapable attribute, 521
@Path annotation, 677, 682
path() method, 36
pathParam method, 685
@Pattern annotation, 446
Payara-container, 819
payload() method, 576
Payloads, 574
performCreate() method, 367, 392
performDelete method, 368
performFind() method, 373
performUpdate method, 367
persist() method, 501
Plain Old Java Object (POJO), 106, 158,

310, 446, 472, 569, 624
@PostActivate annotation, 495
@POST annotation, 681
@PostConstruct annotation, 485
PostConstructApplicationEvent, 277
@PostConstruct/@PreDestroy

callbacks, 518
@PreDestroy annotation, 485
PreDestroyApplicationEvent, 277
PreparedStatement object, 82

PreparedStatement setClob() method, 392
PreparedStatement setString() method, 374
PrintWriter println() method, 14
processEvent() method, 277
processItem method, 811
Process messages, asynchronous manner

activationConfig Properties, 526
message-driven bean, 524

<processor> element, 810
processRequest() method, 7, 16, 17, 81, 82
@Produces annotation, 679, 681
<properties> element, 810
Programmatic security, 729
@Push annotation, 293
PushBuilder interface, 36
PushBuilder.push() method, 36
@PUT annotation, 681, 682

Q
QueueBrowser object, 658, 660

R
readClob() method, 389
readEntity method, 687
<reader> element, 810
readItem() method, 811
read-only expressions, 61
<ref> elements, 810
Registering servlets, web.xml file, 11, 13, 14
register method, 686
Relational Database Management System

(RDBMS) model, 341, 459
@Remote annotation, 499, 522, 523
@Remove method, 494
Replace functionality, JSON, 725, 727
ReporterTask class, 789

Index

838

Representational State Transfer (REST)
web services, 669

RequestScoped CDI bean, 328
@RequestScoped controller, 765
@Requires annotation, 615, 616
@Resource annotation, 784, 789,

791, 793, 800
response.getWriter() method, 17
RESTful web service

accepting input, 681
annotations, 676
binding filters, 692
binding interceptors, 692
broadcasted messages, 703
broadcast events, 699, 701
client application, 683

chaining methods, 687
entity class, 688
injection, 689
invokation, 688, 689
MediaType fields, 686
plain-text response, 686
request method, 688
Webtargets, 685, 686

consume content, 678
designator, 678
entity interceptors, 692
filters/interceptor, 690–692
long-running operation, 694–696
MessageWrapper class, 681
NetBeans, entity classes, 673
NetBeans IDE, 672
NetBeans, resource package, 673, 675
priorities, 694
producing list output, 679
push one-way messages, 698
root resource class, 671
server, 703

SSE, 698
SseBroadcaster, 699
SseEventSink, 699
URL, 677

REST servlet dispatcher, 670
ResultSet getInt() method, 362
ResultSet getString() method, 362
@Retention annotation, 576
return-type constraints, 582
@RolesAllowed annotation, 736, 739
run() method, 789

S
@Schedule annotations, 515
scheduleAtFixedRate() method, 801
ScheduleExecutorService methods, 801
Scriptlets, 2, 42, 91
SeContainerInitializer class, 631
securedProcess() method, 737
secureResponse() method, 769
Security API

CDI controller action, 764, 765
database to store credentials, 760
HttpAuthenticationMechanisms, 769
identity store, 768
singleton, 761

security-constraint element, 738
SELECT clause, 530
select() method, 467
Self-signed security certificate, 777
send() method, 293, 701
SequenceGenerator annotation, 414
@ServerEndpoint annotation, 707
Server Sent Events (SSE), 698, 701
Server-side method, 224
service() method, 5
ServletContextListener interface, 25

Index

839

Session bean, 484
BookFacade class, 496–498
dependency injection

technique, 500
EJB methods, 499
HTML client to EJB

relationship, 499
no-interface view technique, 500

SessionContext.getUserTransaction()
method, 796

setParameter() method, 531, 533
setProperty method, 684
Simple JSF application, 96, 97, 99
Simple Tag Handlers, 72
SimpleTagSupport class, 68, 71
SimpleTagSupport class, 68
Singleton bean

Acme Bookstore Facelets
template, 511

BookstoreSessionCounter, 509, 510
callback methodology, 512
concurrency types, 512
cumulative counter, 508
vs. stateless session bean, 511
thread-safe locking access, 512

SqlResultSetMapping, 538, 541
entity class, 542
HashMap, 544
parameters, 542

SseEventSink interface, 701
StandardizedAuthenticationController

login() method, 769
Standard JSF component

libraries, 122, 123
start() method, 804
@Startup annotation, 511
@Stateful annotation, 493
stateful session bean

application server container, 493
callback methods, 495
CartController, 489–492
entity class, 493
life cycle, 494
OrderFacade class, 488, 489
passivation, 494
public modifier, 494

@StatefulTimeout annotation, 495
@Stateless annotation, 484
Stateless session bean

Book entity, 478
Stateless session beans

book entity, 478, 480
BookFacade class, 480
business interfaces, 485
callbacks, 485, 487
encapsulation, 487
life cycle, 486
Zero or more variables, 485

String-based identifier, 270
String-based SQL query, 538
String-based message, 585
String interpolation, 585
submit() method, 789
submitEmailAddress method, 582
subscribe() method, 263
@SupportedValidationTarget

annotation, 582
SystemEventListener class, 277
System.out.println() method, 362

T
@Table annotation, 401
Tag library descriptor (TLD), 50
Template clients, 181, 189, 190
Thread processing, 803

Index

840

@Timeout annotation, 516, 518
Timer service, schedule

attributes, 516
automatic timer, 513
calendar-based expressions, 517
calendar-based timer

expressions, 515, 516
initialization method, 514, 515
programmatic timer, 516, 517

toUpperCase method, 365
Transport security, 729

U
user-data-constraint element, 738
UserTransaction begin method, 796
UserTransaction commit() method, 796
UserTransaction interface, 795

V
validate() method, 589, 768
@ValidateNumChapters annotation, 579
validatePassword method, 244, 249
validateRequest() method, 769
validationAppliesTo element, 577
ValidationException method, 249

validationGroups annotation, 248
validationTypes() method, 768
@ValidNumChapters constraint, 580
@Veto annotation, 615, 616

W, X, Y, Z
Web archive (WAR) file, 813, 818–821
Web flow, 285
@WebListener annotation, 25
web-resource-collection element, 738
@WebServlet annotation, 11, 13, 14
Websockets

channel attribute, 292
creation, WebSocket

endpoint, 706, 707
full-duplex communication

mechanism, 705
implementations, 291
messagePusher, 292
parameters, 292
sending messages, to WebSocket

endpoint, 707, 709–712
WidgetOutputItem objects, 808
WidgetReportItem objects, 808
<writer> element, 810
WORKDIR command, 816

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Servlets and JavaServer Pages
	1-1. Developing a Servlet
	Problem
	Solution
	How It Works

	1-2. Packaging, Compiling, and Deploying a Servlet
	Problem
	Solution
	Quick Start

	How It Works

	1-3. Registering a Servlet Without Web.xml
	Problem
	Solution
	How It Works

	1-4. Displaying Dynamic Content with a Servlet
	Problem
	Solution
	How It Works

	1-5. Handling Requests and Responses
	Problem
	Solution
	How It Works

	1-6. Listening for Servlet Container Events
	Problem
	Solution
	How It Works

	1-7. Reading and Writing with Nonblocking I/O
	Problem
	Solution
	How It Works

	1-8. Pushing Resources from a Server to a Client
	Problem
	Solution
	How It Works

	1-9. Creating a Simple JSP Page
	Problem
	Solution
	How It Works
	Life Cycle of a JSP Page

	1-10. Embedding Java into a JSP Page
	Problem
	Solution
	How It Works

	1-11. Separating Business Logic from View Code
	Problem
	Solution
	How It Works

	1-12. Yielding or Setting Values
	Problem
	Solution
	How It Works

	1-13. Invoking a Function in a Conditional Expression
	Problem
	Solution
	How It Works

	1-14. Creating a JSP Document
	Problem
	Solution
	How It Works

	1-15. Embedding Expressions in EL
	Problem
	Solution
	How It Works

	1-16. Accessing Parameters in Multiple Pages
	Problem
	Solution
	How It Works

	1-17. Creating a Custom JSP Tag
	Problem
	Solution
	How It Works

	1-18. Including Other JSPs into a Page
	Problem
	Solution
	How It Works

	1-19. Creating an Input Form for a Database Record
	Problem
	Solution
	How It Works

	1-20. Looping Through Database Records Within a Page
	Problem
	Solution
	How It Works

	1-21. Handling JSP Errors
	Problem
	Solution
	How It Works

	1-22. Disabling Scriptlets in Pages
	Problem
	Solution
	How It Works

	1-23. Ignoring EL in Pages
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	Chapter 2: JavaServer Faces Fundamentals
	2-1. Writing a Simple JSF Application
	Problem
	Solution #1
	Displaying a JSF Controller Field Value
	Examining the JSF Controller

	Solution #2
	How It Works
	Breaking Down a JSF Application

	2-2. Writing a Controller Class
	Problem
	Solution
	Controller Class
	JSF View

	How It Works
	Scopes

	2-3. Building Sophisticated JSF Views with Components
	Problem
	Solution
	How It Works

	2-4. Displaying Messages in JSF Pages
	Problem
	Solution
	How It Works

	2-5. Updating Messages Without Recompiling
	Problem
	Solution
	How It Works

	2-6. Navigation Based upon Conditions
	Problem
	Solution
	How It Works

	2-7. Validating User Input
	Problem
	Solution
	How It Works

	2-8. Evaluation of Page Expressions Immediately
	Problem
	Solution
	How It Works

	2-9. Passing Page Parameters to Methods
	Problem
	Solution
	How It Works

	2-10. Operators and Reserved Words in Expressions
	Problem
	Solution
	How It Works

	2-11. Creating Bookmarkable URLs
	Problem
	Solution
	How It Works

	2-12. Displaying Lists of Objects
	Problem
	Solution
	How It Works

	2-13. Developing with HTML5
	Problem
	Solution
	How It Works

	2-14. Creating Page Templates
	Problem
	Solution
	How It Works

	2-15. Applying Templates
	Problem
	Solution
	View #1: recipe02_15a.xhtml
	View #2: recipe02_15b.xhtml
	View #3: recipe02_15c.xhtml
	Managed Bean Controller: AuthorController

	How It Works
	Applying Templates

	2-16. Adding Resources into the Mix
	Problem
	Solution
	How It Works

	2-17. Handling Variable-Length Data
	Problem
	Solution
	How It Works

	2-18. Invoking Controller Class Actions on Life-Cycle Phase Events
	Problem
	Solution
	How It Works

	Chapter 3: Advanced JavaServer Faces
	Component and Tag Primer
	Common Component Tag Attributes
	Common JavaScript Component Tags
	Binding Components to Properties

	3-1. Creating an Input Form
	Problem
	Solution
	The View: recipe03_01.xhtml
	Controller Class: ContactController.java

	How It Works

	3-2. Invoking Actions from Within a Page
	Problem
	Solution
	The View: recipe03_02.xhtml
	Controller Class: ContactController.java

	How It Works

	3-3. Displaying Output
	Problem
	Solution
	The View: recipe03_03.xhtml
	Controller Class: ContactController.java

	How It Works

	3-4. Adding Form Validation
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	3-5. Validating Input with Ajax
	Problem
	Solution
	How It Works

	3-6. Submitting Pages Without Page Reloads
	Problem
	Solution
	How It Works

	3-7. Making Partial-Page Updates
	Problem
	Solution
	How It Works

	3-8. Applying Ajax Functionality to a Group of Components
	Problem
	Solution
	How It Works

	3-9. Custom Processing of Ajax Functionality
	Problem
	Solution
	How It Works

	3-10. Listening for System-Level Events
	Problem
	Solution
	How It Works

	3-11. Listening for Component Events
	Problem
	Solution
	How It Works

	3-12. Developing a Page Flow
	Problem
	Solution
	How It Works
	Defining a Flow
	The Flow Controller Class
	Navigating Flow View Nodes
	Flow EL

	3-13. Broadcasting Messages from the Server to All Clients
	Problem
	Solution
	How It Works

	3-14. Programmatically Searching for Components
	Problem
	Solution #1
	Solution #2
	How It Works

	Chapter 4: Eclipse Krazo
	4-1. Configure an Application for the Eclipse Krazo Framework
	Problem
	Solution
	How It Works

	4-2. Making Data Available for the Application
	Problem
	Solution #1
	Solution #2
	How It Works

	4-3. Writing a Controller Class
	Problem
	Solution
	How It Works

	4-4. Using a Model to Expose Data to a View
	Problem
	Solution
	How It Works

	4-5. Utilizing CDI for Exposing Data
	Problem
	Solution
	How It Works

	4-6. Supplying Message Feedback to the User
	Problem
	Solution
	How It Works

	4-7. Inserting and Updating Data
	Problem
	Solution
	How It Works

	4-8. Applying a Different View Engine
	Problem
	Solution #1
	Solution #2
	How It Works

	Chapter 5: JDBC with Jakarta EE
	5-1. Obtaining Database Drivers and Adding Them to the CLASSPATH
	Problem
	Solution
	How It Works

	5-2. Connecting to a Database
	Problem
	Solution #1
	Solution #2

	How It Works

	5-3. Handling Database Connection Exceptions
	Problem
	Solution
	How It Works

	5-4. Simplifying Connection Management
	Problem
	Solution
	How It Works

	5-5. Querying a Database
	Problem
	Solution
	How It Works

	5-6. Performing CRUD Operations
	Problem
	Solution
	How It Works

	5-7. Preventing SQL Injection
	Problem
	Solution
	How It Works

	5-8. Utilizing Java Objects for Database Access
	Problem
	Solution
	How It Works

	5-9. Calling PL/SQL Stored Procedures
	Problem
	Solution
	How It Works

	5-10. Querying and Storing Large Objects
	Problem
	Solution
	How It Works

	5-11. Querying with a REF_CURSOR
	Problem
	Solution
	How It Works

	Chapter 6: Object-Relational Mapping
	6-1. Creating an Entity
	Problem
	Solution
	How It Works

	6-2. Mapping Data Types
	Problem
	Solution
	How It Works

	6-3. Creating a Persistence Unit
	Problem
	Solution
	How It Works

	6-4. Using Database Sequences to Create Primary Key Values
	Problem
	Solution
	How It Works

	6-5. Generating Primary Keys Using More Than One Attribute
	Problem
	Solution #1
	Solution #2
	How It Works

	6-6. Defining a One-to-One Relationship
	Problem
	Solution
	How It Works

	6-7. Defining One-to-Many and Many-to-One Relationships
	Problem
	Solution
	How It Works

	6-8. Defining a Many-to-Many Relationship
	Problem
	Solution
	How It Works

	6-9. Querying with Named Queries
	Problem
	Solution
	How It Works

	6-10. Performing Validation on Entity Fields
	Problem
	Solution
	How It Works

	6-11. Generating Database Schema Objects Automatically
	Problem
	Solution
	How It Works

	6-12. Mapping Date-Time Values
	Problem
	Solution
	How it Works

	6-13. Using the Same Annotation Many Times
	Problem
	Solution
	How It Works

	Chapter 7: Jakarta NoSQL
	7-1. Configuring for Jakarta NoSQL
	Problem
	Solution
	How It Works

	7-2. Writing a Query for a Document Database
	Problem
	Solution
	How It Works

	7-3. Inserting, Updating, and Deleting from a Document-Oriented Database
	Problem
	Solution
	Inserting
	Updating
	Deleting

	How It Works

	7-4. Working with a Key-Value Database
	Problem
	Solution
	How It Works

	Chapter 8: Enterprise JavaBeans
	8-1. Obtaining an Entity Manager
	Problem
	Solution #1
	Solution #2
	How It Works

	8-2. Developing a Stateless Session Bean
	Problem
	Solution #1
	Solution #2
	How It Works

	8-3. Developing a Stateful Session Bean
	Problem
	Solution
	How It Works

	8-4. Utilizing Session Beans with JSF
	Problem
	Solution
	How It Works

	8-5. Persisting an Object
	Problem
	Solution
	How It Works

	8-6. Updating an Object
	Problem
	Solution
	How It Works

	8-7. Returning Data to Display in a Table
	Problem
	Solution #1
	Solution #2
	How It Works

	8-8. Creating a Singleton Bean
	Problem
	Solution
	How It Works

	8-9. Scheduling a Timer Service
	Problem
	Solution #1
	Solution #2
	How It Works

	8-10. Performing Optional Transaction Life-Cycle Callbacks
	Problem
	Solution
	How It Works

	8-11. Ensuring a Stateful Session Bean Is Not Passivated
	Problem
	Solution
	How It Works

	8-12. Denoting Local and Remote Interfaces
	Problem
	Solution
	How It Works

	8-13. Processing Messages Asynchronously from Enterprise Beans
	Problem
	Solution
	How It Works

	Chapter 9: Java Persistence Query Language
	9-1. Querying All Instances of an Entity
	Problem
	Solution #1
	Solution #2
	How It Works

	9-2. Setting Parameters to Filter Query Results
	Problem
	Solution #1
	Solution #2
	How It Works

	9-3. Returning a Single Object
	Problem
	Solution
	How It Works

	9-4. Creating Native Queries
	Problem
	Solution #1
	Solution #2
	How It Works

	9-5. Querying More Than One Entity
	Problem
	Solution #1
	Solution #2
	How It Works

	9-6. Calling JPQL Aggregate Functions
	Problem
	Solution
	How It Works

	9-7. Invoking Database Stored Procedures Natively
	Problem
	Solution
	How It Works

	9-8. Joining to Retrieve Instances from Multiple Entities
	Problem
	Solution
	How It Works

	9-9. Joining to Retrieve All Rows Regardless of Match
	Problem
	Solution
	How It Works

	9-10. Applying JPQL Functional Expressions
	Problem
	Solution
	How It Works

	9-11. Forcing Query Execution Rather Than Cache Use
	Problem
	Solution
	How It Works

	9-12. Performing Bulk Updates and Deletes
	Problem
	Solution
	How It Works

	9-13. Retrieving Entity Subclasses
	Problem
	Solution
	How It Works

	9-14. Joining with ON Conditions
	Problem
	Solution
	How It Works

	9-15. Processing Query Results with Streams
	Problem
	Solution
	How It Works

	9-16. Converting Attribute Data Types
	Problem
	Solution
	How It Works

	Chapter 10: Bean Validation
	10-1. Validating Fields with Built-in Constraints
	Problem
	Solution #1
	Solution #2
	How It Works

	10-2. Writing Custom Constraint Validators
	Problem
	Solution
	How It Works

	10-3. Validating at the Class Level
	Problem
	Solution
	How It Works

	10-4. Validating Parameters
	Problem
	Solution
	How It Works

	10-5. Constructor Validation
	Problem
	Solution
	How It Works

	10-6. Validating Return Values
	Problem
	Solution
	How It Works

	10-7. Defining a Dynamic Validation Error Message
	Problem
	Solution
	How It Works

	10-8. Manually Invoking the Validator Engine
	Problem
	Solution
	How It Works

	10-9. Grouping Validation Constraints
	Problem
	Solution
	How It Works

	Chapter 11: Contexts and Dependency Injection
	11-1. Injecting a Contextual Bean or Other Object
	Problem
	Solution
	How It Works

	11-2. Binding a Bean to a Web View
	Problem
	Solution
	How It Works

	11-3. Allocating a Specific Bean for Injection
	Problem
	Solution
	How It Works

	11-4. Determining Scope of a Bean
	Problem
	Solution
	How It Works

	11-5. Injecting Non-bean Objects
	Problem
	Solution
	How It Works

	11-6. Ignoring Classes
	Problem
	Solution #1
	Solution #2
	How It Works

	11-7. Disposing of Producer Fields
	Problem
	Solution
	How It Works

	11-8. Specifying an Alternative Implementation at Deployment Time
	Problem
	Solution
	How It Works

	11-9. Injecting a Bean and Obtaining Metadata
	Problem
	Solution
	How It Works

	11-10. Invoking and Processing Events
	Problem
	Solution
	How It Works

	11-11. Intercepting Method Invocations
	Problem
	Solution
	How It Works

	11-12. Bootstrapping Java SE Environments
	Problem
	Solution
	How It Works

	11-13. Enhancing Business Logic of a Method
	Problem
	Solution
	How It Works

	Chapter 12: Java Message Service
	12-1. Creating JMS Resources
	Problem
	Solution #1
	Solution #2

	How It Works

	12-2. Creating a Session
	Problem
	Solution
	Running the Example

	How It Works

	12-3. Creating and Sending a Message
	Problem
	Solution #1
	Solution #2
	Running the Examples

	How It Works

	12-4. Receiving Messages
	Problem
	Solution #1
	Solution #2
	Running the Example

	How It Works

	12-5. Filtering Messages
	Problem
	Solution
	Running the Example

	How It Works

	12-6. Inspecting Message Queues
	Problem
	Solution
	Running the Example

	How It Works

	12-7. Creating Durable Message Subscribers
	Problem
	Solution
	The Topic Connection
	Creating the Initial Durable Subscriber
	Creating and Publishing a Message
	Receiving the Message
	Unsubscribing from the Subscription
	Running the Example

	How It Works

	12-8. Delaying Message Delivery
	Problem
	Solution
	How It Works

	Chapter 13: RESTful Web Services
	13-1. Developing a RESTful Web Service
	Problem
	Solution #1
	Solution #2
	How It Works

	13-2. Consuming and Producing with REST
	Problem
	Solution
	Producing Output
	Producing List Output
	Accepting Input

	How It Works

	13-3. Writing a Jakarta RESTful Web Services Client
	Problem
	Solution
	How It Works
	Web Resource Targets
	Obtaining a Response
	Returning Entities
	Invoking at a Later Time
	WebTarget Injection

	13-4. Filtering Requests and Responses
	Problem
	Solution
	How It Works
	Filters
	Entity Interceptors
	Binding Filters and Interceptors
	Setting Priorities

	13-5. Processing Long-Running Operations Asynchronously
	Problem
	Solution
	How It Works

	13-6. Pushing One-Way Asynchronous Updates from Servers
	Problem
	Solution
	How It Works

	13-7. Receiving Server-Sent Events As a Client
	Problem
	Solution
	How It Works

	Chapter 14: WebSockets and JSON
	14-1. Creating a WebSocket Endpoint
	Problem
	Solution
	How It Works

	14-2. Sending Messages to a WebSocket Endpoint
	Problem
	Solution
	How It Works

	14-3. Building a JSON Object
	Problem
	Solution
	How It Works

	14-4. Writing a JSON Object to Disk
	Problem
	Solution
	How It Works

	14-5. Reading JSON from an Input Source
	Problem
	Solution
	How It Works
	Parsing Content

	14-6. Converting Between JSON and Java Objects
	Problem
	Solution
	How It Works

	14-7. Custom Mapping with JSON-B
	Problem
	Solution
	How It Works

	14-8. Replacing a Specified Element in a JSON Document
	Problem
	Solution
	How It Works

	Chapter 15: Security
	15-1. Setting Up Application Users and Groups in GlassFish
	Problem
	Solution
	How It Works

	15-2. Performing Basic Web Application Authorization
	Problem
	Solution #1
	Solution #2

	How It Works

	15-3. Developing a Programmatic Login Form with Custom Authentication Validation
	Problem
	Solution
	Creating the Login Form
	Coding the Authentication Backend
	EJB: (Custom Solution)
	JSF Controller
	User Entity

	How It Works

	15-4. Authentication with the Security API Using Database Credentials
	Problem
	Solution
	How It Works

	15-5. Managing Page Access Within a JSF Application
	Problem
	Solution
	How It Works

	15-6. Configuring LDAP Authentication Within GlassFish/Payara
	Problem
	Solution
	How It Works

	15-7. Configuring Custom Security Certificates Within GlassFish/Payara
	Problem
	Solution
	How It Works

	Chapter 16: Concurrency and Batch
	16-1. Creating Resources for Processing Tasks Asynchronously in an Application Server
	Problem
	Solution #1
	Solution #2

	How It Works

	16-2. Configuring and Creating a Reporter Task
	Problem
	Solution
	How It Works

	16-3. Running More Than One Task Concurrently
	Problem
	Solution
	How It Works

	16-4. Utilizing Transactions Within a Task
	Problem
	Solution
	How It Works

	16-5. Running Concurrent Tasks at Scheduled Times
	Problem
	Solution
	How It Works

	16-6. Creating Thread Instances
	Problem
	Solution
	How It Works

	16-7. Creating an Item-Oriented Batch Process
	Problem
	Solution
	How It Works

	Chapter 17: Deploying to Containers
	17-1. Creating a Docker Image and Running Java
	Problem
	Solution
	How It Works

	17-2. Deploying Images to Payara Server Utilizing an Official Payara Docker Image
	Problem
	Solution
	How It Works

	17-3. Creating a Docker Container Running a Basic Jakarta EE Application
	Problem
	Solution
	How It Works

	17-4. Enabling Communication Between Containers
	Problem
	Solution
	How It Works

	Index

