
37© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_9

CHAPTER 9

Methods
Methods are reusable code blocks that will only execute when called.

 Defining Methods
A method can be created inside a class by typing void followed by the

method’s name, a set of parentheses, and a code block. The void keyword

means that the method will not return a value. The naming convention for

methods is the same as for classes – a descriptive name with each word

initially capitalized.

class MyApp

{

 void MyPrint()

 {

 System.Console.WriteLine("Hello World");

 }

}

All methods in C# must belong to a class, and they are the only place

where statements may be executed. C# does not have global functions,

which are methods defined outside of classes.

https://doi.org/10.1007/978-1-4842-5577-3_9

38

 Calling Methods
The previously defined method will print out a text message. To invoke

(call) it, an instance of the MyApp class must first be created by using the

new keyword. The dot operator is then used after the instance’s name to

access its members, which includes the MyPrint method.

class MyApp

{

 static void Main()

 {

 MyApp m = new MyApp();

 m.MyPrint(); // Hello World

 }

 void MyPrint()

 {

 System.Console.WriteLine("Hello World");

 }

}

 Method Parameters
The parentheses that follow the method name are used to pass arguments

to the method. To do this, the corresponding parameters must first be

specified in the method definition in the form of a comma-separated list of

declarations.

void MyPrint(string s1, string s2)

{

 System.Console.WriteLine(s1 + s2);

}

Chapter 9 Methods

39

A method can be defined to take any number of arguments, and they

can have any data types. Just ensure the method is called with the same

types and number of arguments.

static void Main()

{

 MyApp m = new MyApp();

 m.MyPrint("Hello", " World"); // "Hello World"

}

To be precise, parameters appear in method definitions, while

arguments appear in method calls. However, the two terms are sometimes

used interchangeably.

 Params Keyword
To take a variable number of arguments of a specific type, an array with

the params modifier can be added as the last parameter in the list. Any

extra parameters of the specified type that are passed to the method will

automatically be stored in that array.

void MyPrint(params string[] s)

{

 foreach (string x in s)

 System.Console.WriteLine(x);

}

 Method Overloading
It is possible to declare multiple methods with the same name as long as

the parameters vary in type or number. This is called method overloading

and can be seen in the implementation of the System.Console.Write

Chapter 9 Methods

40

method, for example, which has 18 method definitions. It is a powerful

feature that allows a method to handle a variety of arguments without the

programmer needing to be aware of using different methods.

void MyPrint(string s)

{

 System.Console.WriteLine(s);

}

void MyPrint(int i)

{

 System.Console.WriteLine(i);

}

 Optional Parameters
As of C# 4.0, parameters can be declared as optional by providing a default

value for them in the method declaration. When the method is invoked,

these optional arguments may be omitted to use the default values.

class MyApp

{

 void MySum(int i, int j = 0, int k = 0)

 {

 System.Console.WriteLine(1*i + 2*j + 3*k);

 }

 static void Main()

 {

 new MyApp().MySum(1, 2); // 5

 }

}

Chapter 9 Methods

41

 Named Arguments
C# 4.0 also introduced named arguments, which allow an argument to

be passed using the name of its corresponding parameter. This feature

complements optional parameters by enabling arguments to be passed

out of order, instead of relying on their position in the parameter list.

Therefore, any optional parameter can be specified without having to

specify the value for every optional parameter before it.

static void Main()

{

 new MyApp().MySum(1, k: 2); // 7

}

Both optional and required parameters can be named, but the named

arguments must be placed after the unnamed ones. This order restriction

was loosened in C# 7.2, allowing named arguments to be followed by

positional arguments provided that the named arguments are in the

correct position.

static void Main()

{

 new MyApp().MySum(i: 2, 1); // 4

}

Named arguments are useful for improving code readability, by

identifying what each argument represents.

 Return Statement
A method can return a value. The void keyword is then replaced with the

data type that the method will return, and the return keyword is added to

the method body with an argument of the specified return type.

Chapter 9 Methods

42

string GetPrint()

{

 return "Hello";

}

Return is a jump statement that causes the method to exit and return

the value to the place where the method was called. For example, the

GetPrint method can be passed as an argument to the Write method

since the method evaluates to a string.

static void Main()

{

 MyApp m = new MyApp();

 System.Console.Write(m.GetPrint()); // "Hello World"

}

The return statement may also be used in void methods to exit before

the end block is reached.

void MyMethod()

{

 return;

}

 Value and Reference Types
There are two kinds of data types in C#: value types and reference types.

Variables of value types directly contain their data, whereas variables of

reference types hold references to their data. The reference types in C#

include class, interface, array, and delegate types. The value types include the

simple types, as well as the struct, enum, and nullable value types. Reference

type variables are typically created using the new keyword, although that is

not always necessary, as, for example, in the case of string objects.

Chapter 9 Methods

43

A variable of a reference type is generally called an object, although

strictly speaking the object is the data that the variable refers to. With

reference types, multiple variables can reference the same object, and

therefore operations performed through one variable will affect any other

variables that reference the same object. In contrast, with value types,

each variable will store its own value and operations on one will not affect

another.

 Pass by Value
When passing parameters of value type, only a local copy of the variable is

passed. This means that if the copy is changed, it will not affect the original

variable.

void Set(int i) { i = 10; }

static void Main()

{

 MyApp m = new MyApp();

 int x = 0; // value type

 m.Set(x); // pass value of x

 System.Console.Write(x); // 0

}

 Pass by Reference
For reference data types, C# uses true pass by reference. This means that

when a reference type is passed, it is not only possible to change its state

but also to replace the entire object and have the change propagate back to

the original object.

Chapter 9 Methods

44

void Set(int[] i) { i = new int[] { 10 }; }

static void Main()

{

 MyApp m = new MyApp();

 int[] y = { 0 }; // reference type

 m.Set(y); // pass object reference

 System.Console.Write(y[0]); // 10

}

 Ref Keyword
A variable of value type can be passed by reference by using the ref

keyword, both in the caller and method declarations. This will cause the

variable to be passed in by reference, and therefore changing it will update

the original value.

void Set(ref int i) { i = 10; }

static void Main()

{

 MyApp m = new MyApp();

 int x = 0; // value type

 m.Set(ref x); // pass reference to value type

 System.Console.Write(x); // 10

}

Value types can be returned by reference starting with C# 7.0. The ref

keyword is then added both before the return type and the return value.

Bear in mind that the returned variable must have a lifetime that extends

beyond the method’s scope, so it cannot be a variable local to the method.

Chapter 9 Methods

45

class MyClass

{

 public int myField = 5;

 public ref int GetField()

 {

 return ref myField;

 }

}

The caller can decide whether to retrieve the returned variable by

value (as a copy) or by reference (as an alias). Note that when retrieving by

reference, the ref keyword is used both before the method call and before

the variable declaration.

class MyApp

{

 static void Main()

 {

 MyClass m = new MyClass();

 ref int myAlias = ref m.GetField(); // reference

 int myCopy = m.GetField(); // value copy

 myAlias = 10;

 System.Console.WriteLine(m.myField); // "10"

 }

}

Chapter 9 Methods

46

 Out Keyword
Sometimes you may want to pass an unassigned variable by reference

and have it assigned in the method. However, using an unassigned local

variable will give a compile-time error. For this situation, the out keyword

can be used. It has the same function as ref, except that the compiler will

allow use of the unassigned variable, and it will make sure the variable is

assigned in the method.

void Set(out int i) { i = 10; }

static void Main()

{

 MyApp m = new MyApp();

 int x; // value type

 m.Set(out x); // pass reference to unset value type

 System.Console.Write(x); // 10

}

With C# 7.0, it became possible to declare out variables in the

argument list of a method call. This feature allows the previous example to

be simplified in the following manner.

static void Main()

{

 MyApp m = new MyApp();

 m.Set(out int x);

 System.Console.Write(x); // 10

}

Chapter 9 Methods

47

 Local Methods
Starting with C# 7.0, a method can be defined inside another method. This

is useful for limiting the scope of a method, in cases when the method is

only called by one other method. To illustrate, a nested method is used

here to perform a countdown. Note that this nested method calls itself and

is therefore called a recursive method.

class MyClass

{

 void CountDown()

 {

 int x = 10;

 Recursion(x);

 System.Console.WriteLine("Done");

 void Recursion(int i)

 {

 if (i <= 0) return;

 System.Console.WriteLine(i);

 System.Threading.Thread.Sleep(1000); // wait 1 second

 Recursion(i - 1);

 }

 }

 static void Main()

 {

 new MyClass().CountDown();

 }

}

Chapter 9 Methods

	Chapter 9: Methods
	Defining Methods
	Calling Methods
	Method Parameters
	Params Keyword
	Method Overloading
	Optional Parameters
	Named Arguments
	Return Statement
	Value and Reference Types
	Pass by Value
	Pass by Reference
	Ref Keyword
	Out Keyword
	Local Methods

