
33© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_8

CHAPTER 8

Loops
There are four looping structures in C#. These are used to execute a code

block multiple times. Just as with the conditional if statement, the curly

brackets for the loops can be left out if there is only one statement in the

code block.

 While Loop
The while loop runs through the code block only if its condition is true and

will continue looping for as long as the condition remains true. Note that

the condition is only checked at the beginning of each iteration (loop).

int i = 0;

while (i < 10) {

 System.Console.Write(i++); // 0-9

}

 Do-While Loop
The do-while loop works in the same way as the while loop, except that

it checks the condition after the code block and will therefore always run

through the code block at least once. Bear in mind that this loop ends with

a semicolon.

https://doi.org/10.1007/978-1-4842-5577-3_8

34

int j = 0;

do {

 System.Console.Write(j++); // 0-9

} while (j < 10);

 For Loop
The for loop is used to go through a code block a specified number of

times. It uses three parameters. The first parameter initializes a counter

and is always executed once before the loop. The second parameter holds

the condition for the loop and is checked before each iteration. The third

parameter contains the increment of the counter and is executed at the

end of each iteration.

for (int k = 0; k < 10; k++) {

 System.Console.Write(k); // 0-9

}

Several variations of the for loop are possible. For instance, the first

and third parameters can be split into several statements using the comma

operator.

for (int k = 0, m = 5; k < 10; k++, m--) {

 System.Console.Write(k+m); // 5 (10x)

}

There is also the option of leaving out one or more of the parameters.

For example, the third parameter may be moved into the body of the loop.

for (int k = 0; k < 10;) {

 System.Console.Write(k++); // 0-9

}

Chapter 8 Loops

35

 Foreach Loop
The foreach loop provides an easy way to iterate through arrays. At each

iteration, the next element in the array is assigned to the specified variable

(the iterator) and the loop continues to execute until it has gone through

the entire array.

int[] a = { 1, 2, 3 };

foreach (int n in a) {

 System.Console.Write(n); // "123"

}

Note that the iterator variable is read-only and can therefore not be

used to change elements in the array.

 Break and Continue
There are two special keywords that can be used inside loops – break

and continue. The break keyword ends the loop structure, and continue

skips the rest of the current iteration and continues at the start of the next

iteration.

for (int i = 0; i < 10; i++) {

 if (i == 5) break; // end loop

 if (i == 3) continue; // start next iteration

 System.Console.Write(i); // "0124"

}

Chapter 8 Loops

	Chapter 8: Loops
	While Loop
	Do-While Loop
	For Loop
	Foreach Loop
	Break and Continue

