
29© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_7

CHAPTER 7

Conditionals
Conditional statements are used to execute different code blocks based on

different conditions.

�If Statement
The if statement will execute only if the condition inside the parentheses

is evaluated to true. The condition can include any of the comparison and

logical operators.

// Get a random integer (0, 1 or 2)

int x = new System.Random().Next(3);

if (x < 1) {

 System.Console.Write(x + " < 1");

}

To test for other conditions, the if statement can be extended by any

number of else if clauses. Each additional condition will be tested only if

all previous conditions are false.

else if (x > 1) {

 System.Console.Write(x + " > 1");

}

https://doi.org/10.1007/978-1-4842-5577-3_7

30

The if statement can have one else clause at the end, which will

execute if all previous conditions are false.

else {

 System.Console.Write(x + " == 1");

}

As for the curly brackets, they can be left out if only a single statement

needs to be executed conditionally. However, it is considered good

practice to include them since they improve readability.

if (x < 1)

 System.Console.Write(x + " < 1");

else if (x > 1)

 System.Console.Write(x + " > 1");

else

 System.Console.Write(x + " == 1");

�Switch Statement
The switch statement checks for equality between a value and a series of

case labels and then passes execution to the matching case. The statement

can contain any number of case clauses and may end with a default label

for handling all other cases.

int x = new System.Random().Next(4);

switch (x)

{

 case 0: System.Console.Write(x + " is 0"); break;

 case 1: System.Console.Write(x + " is 1"); break;

 default:System.Console.Write(x + " is >1"); break;

}

Chapter 7 Conditionals

31

Note that the statements after each case label are not surrounded

by curly brackets. Instead, the statements end with the break keyword

to break out of the switch. Case clauses in C# must end with a jump

statement, such as break, because unintentional fall-throughs are a

common programming error. An exception to this is if the case clause is

completely empty, in which case execution is allowed to fall through to the

next label.

switch (x)

{

 case 0:

 case 1: System.Console.Write("x is 0 or 1"); break;

}

�Goto Statement
To cause a fall-through to occur for a non-empty case clause, this behavior

has to be explicitly specified using the goto jump statement followed by a

case label. This will cause the execution to jump to that label.

case 0: goto case 1;

Goto may also be used outside of switches to jump to a label in the

same method’s scope. Control may then be transferred out of a nested

scope, but not into a nested scope. However, using goto in this manner is

discouraged since it makes it more difficult to follow the flow of execution.

myLabel:

// ...

goto myLabel; // jump to label

Chapter 7 Conditionals

32

�Switch Expression
C# 8.0 introduced the switch expression which is more concise than the

regular switch statement. It can be used when each case is an assignment

expression instead of a statement, as seen in the following example.

int x = new System.Random().Next(4);

string result = x switch {

 0 => "zero",

 1 => "one",

 _ => "more than one"

};

System.Console.WriteLine("x is " + result);

The switch expression returns the expression to the right of the arrow

(=>) if the expression tested matches the pattern to the left of the arrow.

Note that there are no case or break keywords in the switch expression

and that the default case is represented with an underscore (_).

�Ternary Operator
In addition to the if and switch statements, there is the ternary operator

(?:). This operator takes three expressions. If the first one is evaluated to

true, then the second expression is returned, and if it is false, the third

one is returned.

// Get a number between 0.0 and 1.0

double x = new System.Random().NextDouble();

x = (x < 0.5) ? 0 : 1; // ternary operator (?:)

Chapter 7 Conditionals

	Chapter 7: Conditionals
	If Statement
	Switch Statement
	Goto Statement
	Switch Expression
	Ternary Operator

