
15© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_4

CHAPTER 4

Operators
Operators are special symbols used to operate on values. They can be

grouped into five types: arithmetic, assignment, comparison, logical, and

bitwise operators.

�Arithmetic Operators
The arithmetic operators include the four basic arithmetic operations,

as well as the modulus operator (%), which is used to obtain the division

remainder.

float x = 3 + 2; // 5 // addition

 x = 3 - 2; // 1 // subtraction

 x = 3 * 2; // 6 // multiplication

 x = 3 / 2; // 1 // division

 x = 3 % 2; // 1 // modulus (division remainder)

Notice that the division sign gives an incorrect result. This is because

it operates on two integer values and will therefore round the result and

return an integer. To get the correct value, one of the numbers needs to be

converted into a floating-point number.

x = 3 / (float)2; // 1.5

https://doi.org/10.1007/978-1-4842-5577-3_4

16

�Assignment Operators
The next group is the assignment operators. Most importantly is the

assignment operator (=) itself, which assigns a value to a variable.

�Combined Assignment Operators
A common use of the assignment and arithmetic operators is to operate on

a variable and then to save the result back into that same variable. These

operations can be shortened with the combined assignment operators.

int x = 0;

 x += 5; // x = x+5;

 x -= 5; // x = x-5;

 x *= 5; // x = x*5;

 x /= 5; // x = x/5;

 x %= 5; // x = x%5;

�Increment and Decrement Operators
Another common operation is to increment or decrement a variable by

one. This can be simplified with the increment (++) and decrement (--)

operators.

x++; // x = x+1;

x--; // x = x-1;

Both of these operators can be used before or after a variable.

x++; // post-increment

x--; // post-decrement

++x; // pre-increment

--x; // pre-decrement

Chapter 4 Operators

17

The result on the variable is the same whichever is used. The difference

is that the post-operator returns the original value before it changes the

variable, while the pre-operator changes the variable first and then returns

the value.

int x, y;

x = 5; y = x++; // y=5, x=6

x = 5; y = ++x; // y=6, x=6

�Comparison Operators
The comparison operators compare two values and return true or false.

They are mainly used to specify conditions, which are expressions that

evaluate to true or false.

bool b = (2 == 3); // equal to (false)

 b = (2 != 3); // not equal to (true)

 b = (2 > 3); // greater than (false)

 b = (2 < 3); // less than (true)

 b = (2 >= 3); // greater than or equal to (false)

 b = (2 <= 3); // less than or equal to (true)

�Logical Operators
The logical operators are often used together with the comparison operators.

Logical and (&&) evaluates to true if both the left and right side are true,

and logical or (||) evaluates to true if either the left or right side is true. The

logical not (!) operator is used for inverting a Boolean result. Note that for

both “logical and” and “logical or,” the right side of the operator will not be

evaluated if the result is already determined by the left side.

bool b = (true && false); // logical and (false)

 b = (true || false); // logical or (true)

 b = !(true); // logical not (false)

Chapter 4 Operators

18

�Bitwise Operators
The bitwise operators can manipulate individual bits inside an integer.

For example, the bitwise and (&) operator makes the resulting bit 1 if the

corresponding bits on both sides of the operator are set.

int x = 5 & 4; // and (0b101 & 0b100 = 0b100 = 4)

 x = 5 | 4; // or (0b101 | 0b100 = 0b101 = 5)

 x = 5 ^ 4; // xor (0b101 ^ 0b100 = 0b001 = 1)

 x = 4 << 1; // left shift (0b100 << 1 = 0b1000 = 8)

 x = 4 >> 1; // right shift (0b100 >> 1 = 0b10 = 2)

 x = ~4; // invert (~0b00000100 = 0b11111011 = -5)

These bitwise operators have shorthand assignment operators, just like

the arithmetic operators.

int x=5; x &= 4; // and (0b101 & 0b100 = 0b100 = 4)

 x=5; x |= 4; // or (0b101 | 0b100 = 0b101 = 5)

 x=5; x ^= 4; // xor (0b101 ^ 0b100 = 0b001 = 1)

 x=5; x <<= 1; // left shift (0b101 << 1 = 0b1010 = 10)

 x=5; x >>= 1; // right shift (0b101 >> 1 = 0b10 = 2)

�Operator Precedents
In C#, expressions are normally evaluated from left to right. However,

when an expression contains multiple operators, the precedence of those

operators decides the order in which they are evaluated. The order of

precedence can be seen in the following table, where the operator with the

lower precedence will be evaluated first.

Chapter 4 Operators

19

Pre Operator Pre Operator

1 ++ -- ! ~ 7 &

2 * / % 8 ^

3 + - 9 |

4 << >> 10 &&

5 < <= > >= 11 ||

6 == != 12 = op=

For example, logical and (&&) binds weaker than relational operators,

which in turn bind weaker than arithmetic operators.

bool x = 2+3 > 1*4 && 5/5 == 1; // true

To make things clearer, parentheses can be used to specify which part

of the expression will be evaluated first. Parentheses have the greatest

precedence of all operators.

bool x = ((2+3) > (1*4)) && ((5/5) == 1); // true

Chapter 4 Operators

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Combined Assignment Operators
	Increment and Decrement Operators

	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedents

