
9© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_3

CHAPTER 3

Variables
Variables are used for storing data in memory during program execution.

�Data Types
Depending on what data you need to store, there are several different kinds

of data types. The simple types in C# consist of four signed integer types

and four unsigned, three floating-point types, as well as char and bool.

Data Type Size (Bits) Description

Sbyte

short

int

long

8

16

32

64

Signed integers

Byte

ushort

uint

ulong

8

16

32

64

Unsigned integers

Float

double

decimal

32

64

128

Floating-point numbers

Char 16 Unicode character

Bool 4 Boolean value

https://doi.org/10.1007/978-1-4842-5577-3_3

10

�Declaration
In C#, a variable must be declared (created) before it can be used. To

declare a variable, you start with the data type you want it to hold followed

by a variable name. The name can be almost anything you want, but it is a

good idea to give your variables names that are closely related to the value

they will hold.

int myInt;

�Assignment
A value is assigned to the variable by using the equals sign, which is the

assignment operator (=). The variable then becomes defined or initialized.

myInt = 10;

The declaration and assignment can be combined into a single

statement.

int myInt = 10;

If multiple variables of the same type are needed, there is a shorthand

way of declaring or defining them by using the comma operator (,).

int myInt = 10, myInt2 = 20, myInt3;

Once a variable has been defined (declared and assigned), it can be

used by referencing the variable’s name.

System.Console.Write(myInt); // "10"

Chapter 3 Variables

11

�Integer Types
There are four signed integer types that can be used depending on how

large a number you need the variable to hold.

// Signed integers

sbyte myInt8 = 2; // -128 to +127

short myInt16 = 1; // -32768 to +32767

int myInt32 = 0; // -2^31 to +2^31-1

long myInt64 =-1; // -2^63 to +2^63-1

The unsigned types can be used if you only need to store positive

values.

// Unsigned integers

byte uInt8 = 0; // 0 to 255

ushort uInt16 = 1; // 0 to 65535

uint uInt32 = 2; // 0 to 2^32-1

ulong uInt64 = 3; // 0 to 2^64-1

In addition to the standard decimal notation, integers can also be

assigned using hexadecimal notation. As of C# 7.0, there is a binary

notation as well. Hexadecimal numbers are prefixed with 0x and binary

numbers with 0b.

int myHex = 0xF; // 15 in hexadecimal (base 16)

int myBin = 0b0100; // 4 in binary (base 2)

Version 7.0 of C# also added a digit separator (_) to improve readability

of long numbers. This digit separator can appear anywhere within the

number, as well as at the beginning of the number as of C# 7.2.

int myBin = 0b_0010_0010; // 34 in binary notation (0b)

Chapter 3 Variables

12

�Floating-Point Types
The floating-point types can store real numbers with different levels

of precision. Constant floating-point numbers in C# are always kept as

doubles, so in order to assign such a number to a float variable, an F

character needs to be appended to convert the number to the float type.

The same applies to the M character for decimals.

float myFloat = 3.14F; // 7 digits of precision

double myDouble = 3.14; // 15-16 digits of precision

decimal myDecimal = 3.14M; // 28-29 digits of precision

A more common and useful way to convert between data types is to

use an explicit cast. An explicit cast is performed by placing the desired

data type in parentheses before the variable or constant that is to be

converted. This will convert the value to the specified type, in this case,

float, before the assignment occurs.

myFloat = (float) myDecimal; // explicit cast

The precisions shown earlier refer to the total number of digits that the

types can hold. For example, when attempting to assign more than seven

digits to a float, the least significant ones will get rounded off.

myFloat = 12345.6789F; // rounded to 12345.68

Floating-point numbers can be assigned using either decimal or

exponential notation, as in the following example.

myDouble = 3e2; // 3*10^2 = 300

�Char Type
The char type can contain a single Unicode character delimited by single

quotes.

char c = 'a'; // Unicode char

Chapter 3 Variables

13

�Bool Type
The bool type can store a Boolean value, which is a value that can be either

true or false. These values are specified with the true and false keywords.

bool b = true; // bool value

�Variable Scope
The scope of a variable refers to the code block within which it is possible

to use that variable without qualification. For example, a local variable is

a variable declared within a method. Such a variable will only be available

within that method’s code block, after it has been declared. Once the scope

of the method ends, the local variable will be destroyed.

static void Main()

{

 int localVar; // local variable

}

In addition to local variables, C# has field and parameter type

variables, which will be looked at in later chapters. However, C# does not

have global variables, unlike C++.

Chapter 3 Variables

	Chapter 3: Variables
	Data Types
	Declaration
	Assignment
	Integer Types
	Floating-Point Types
	Char Type
	Bool Type
	Variable Scope

