
109© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_18

CHAPTER 18

Abstract
An abstract class provides a partial implementation that other classes

can build on. When a class is declared as abstract, it means that the class

can contain incomplete members that must be implemented in derived

classes, in addition to normal class members.

 Abstract Members
Any member that requires a body can be declared abstract – such

as methods, properties, and indexers. These members are then left

unimplemented and only specify their signatures, while their bodies are

replaced with semicolons.

abstract class Shape

{

 // Abstract method

 public abstract int GetArea();

 // Abstract property

 public abstract int area { get; set; }

 // Abstract indexer

 public abstract int this[int index] { get; set; }

 // Abstract event

 public delegate void MyDelegate();

https://doi.org/10.1007/978-1-4842-5577-3_18

110

 public abstract event MyDelegate MyEvent;

 // Abstract class

 public abstract class InnerShape {};

}

 Abstract Example
In the following example, the class has an abstract method named

GetArea.

abstract class Shape

{

 private int x = 100, y = 100;

 public abstract int GetArea();

}

If a class derives from this abstract class, it is then forced to override

the abstract member. This is different from the virtual modifier, which

specifies that the member may optionally be overridden.

class Rectangle : Shape

{

 public int GetArea() { return x * y; }

}

The deriving class can be declared abstract as well, in which case it

does not have to implement any of the abstract members.

abstract class Rectangle : Shape {}

An abstract class can also inherit from a non-abstract class.

class NonAbstract {}

abstract class Abstract : NonAbstract {}

Chapter 18 abstraCt

111

If the base class has virtual members, these can be overridden as

abstract to force further deriving classes to provide new implementations

for them.

class MyClass

{

 void virtual Dummy() {}

}

abstract class Abstract : MyClass

{

 void abstract override Dummy() {}

}

An abstract class can be used as an interface to hold objects made from

derived classes.

Shape s = new Rectangle();

It is not possible to instantiate an abstract class. Even so, an abstract

class may have constructors that can be called from derived classes by

using the base keyword.

Shape s = new Shape(); // compile-time error

 Abstract Classes and Interfaces
Abstract classes are similar to interfaces in many ways. Both can define

member signatures that deriving classes must implement, yet neither one

of them can be instantiated. The key differences are first that the abstract

class can contain non-abstract members, while the interface cannot. And

second, a class can implement any number of interfaces but only inherit

from one class, abstract or not.

Chapter 18 abstraCt

112

// Defines default functionality and definitions

abstract class Shape

{

 public int x = 100, y = 100;

 public abstract int GetArea();

}

class Rectangle : Shape {} // class is a Shape

// Defines an interface or a specific functionality

interface IComparable

{

 int Compare(object o);

}

class MyClass : IComparable {} // class can be compared

An abstract class, just like a non-abstract class, can extend one base

class and implement any number of interfaces. An interface, however,

cannot inherit from a class. It can inherit from another interface, which

effectively combines the two interfaces into one.

Chapter 18 abstraCt

	Chapter 18: Abstract
	Abstract Members
	Abstract Example
	Abstract Classes and Interfaces

