
103© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_17

CHAPTER 17

Interfaces
An interface is used to specify members that deriving classes must

implement. They are defined with the interface keyword followed by a

name and a code block. Their naming convention is to start with a capital

I and then to have each word initially capitalized.

interface IMyInterface {}

 Interface Signatures
The interface code block can only contain signatures, and only those

of methods, properties, indexers, and events. The interface members

cannot have any implementations. Instead, their bodies are replaced by

semicolons. They also cannot have any restrictive access modifiers since

interface members are always public.

interface IMyInterface

{

 // Interface method

 int GetArea();

 // Interface property

 int Area { get; set; }

https://doi.org/10.1007/978-1-4842-5577-3_17

104

 // Interface indexer

 int this[int index] { get; set; }

 // Interface event

 event System.EventHandler MyEvent;

}

 Interface Example
In the following example, an interface called IComparable is defined with a

single method named Compare.

interface IComparable

{

 int Compare(object o);

}

The class Circle defined next implements this interface by using

the same notation as is used for inheritance. The Circle class must then

define the Compare method, which for this class will return the difference

between the circle radiuses. The implemented member must be public,

in addition to having the same signature as the one defined in the interface.

class Circle : IComparable

{

 int r;

 public int Compare(object o)

 {

 return r - (o as Circle).r;

 }

}

Chapter 17 InterfaCes

105

Although a class can only inherit from one base class, it may

implement any number of interfaces. It does so by specifying the interfaces

in a comma-separated list after the base class.

 Functionality Interface
IComparable demonstrates the first use of interfaces, which is to define a

specific functionality that classes can share. It allows programmers to use

the interface members without having to know the actual type of a class. To

illustrate, the following method takes two IComparable objects and returns

the largest one. This method will work for any two objects of the same class

that implement the IComparable interface, because the method only uses

the functionality exposed through that interface.

static object Largest(IComparable a, IComparable b)

{

 return (a.Compare(b) > 0) ? a : b;

}

 Class Interface
A second way to use an interface is to provide an actual interface for a

class, through which the class can be used. Such an interface defines the

functionality that programmers using the class will need.

interface IMyClass

{

 void Exposed();

}

Chapter 17 InterfaCes

106

class MyClass : IMyClass

{

 public void Exposed() {}

 public void Hidden() {}

}

The programmers can then view instances of the class through this

interface by enclosing the objects in variables of the interface type.

IMyInterface m = new MyClass();

This abstraction provides two benefits. First, it makes it easier for

other programmers to use the class since they now only have access to

the members that are relevant to them. Second, it makes the class more

flexible since its implementation can change without being noticeable by

other programmers using the class, as long as the interface is followed.

 Default Implementations
C# 8.0 added the ability to create default implementations for interface

members. Consider the following example of a simple logging interface.

interface ILogger

{

 void Info(string message);

}

class ConsoleLogger : ILogger

{

 public void Info(string message)

 {

 Console.WriteLine(message);

 }

}

Chapter 17 InterfaCes

107

By providing a default implementation, this existing interface can

be extended with a new member without breaking any classes using the

interface.

interface ILogger

{

 void Info(string message);

 void Error(string message)

 {

 Console.WriteLine(message);

 }

}

Chapter 17 InterfaCes

	Chapter 17: Interfaces
	Interface Signatures
	Interface Example
	Functionality Interface
	Class Interface
	Default Implementations

