
91© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_15

CHAPTER 15

Properties
Properties in C# provide the ability to protect a field by reading and writing

to it through special methods called accessors. They are generally declared

as public with the same data type as the field they are going to protect,

followed by the name of the property and a code block that defines the get

and set accessors.

class Time

{

 private int seconds;

 public int sec

 {

 get { return seconds; }

 set { seconds = value; }

 }

}

Note that the contextual value keyword corresponds to the value

assigned to the property. Properties are implemented as methods, but

used as though they are fields.

static void Main()

{

 Time t = new Time();

 t.sec = 5;

 int s = t.sec; // 5

}

https://doi.org/10.1007/978-1-4842-5577-3_15

92

 Property Advantages
Since there is no special logic in the previously defined property, it is

functionally the same as if it had been a public field. However, as a general

rule, public fields should never be used in real-world programming

because of the many advantages that properties bring.

First of all, properties allow developers to change the internal

implementation of the property without breaking any programs that are

using it. This is of particular importance for published classes, which may

be in use by other developers. In the Time class, for example, the field’s

data type could need to be changed from int to byte. With properties,

this conversion could be handled in the background. With a public field,

however, changing the underlying data type for a published class will likely

break any programs that are using the class.

class Time

{

 private byte seconds;

 public int sec

 {

 get { return (int)seconds; }

 set { seconds = (byte)value; }

 }

}

A second advantage of properties is that they allow the data to be

validated before permitting a change. For example, the seconds field can

be prevented from being assigned a negative value in the following way.

class Time

{

 private int seconds;

 get { return seconds; }

Chapter 15 properties

93

 set

 {

 if (value > 0)

 seconds = value;

 else

 seconds = 0;

 }

}

Properties do not have to correspond to an actual field. They can just

as well compute their own values. The data could even come from outside

the class, such as from a database. There is also nothing that prevents the

programmer from doing other things in the accessors, such as keeping an

update counter.

public int hour

{

 get

 {

 return seconds / 3600;

 }

 set

 {

 seconds = value * 3600;

 count++;

 }

}

private int count = 0;

Chapter 15 properties

94

 Read-Only and Write-Only Properties
Either one of the accessors can be left out. Without the set accessor, the

property becomes read-only, and by leaving out the get accessor instead,

the property is made write-only.

// Read-only property

private int sec

{

 public get { return seconds; }

}

// Write-only property

private int sec

{

 public set { seconds = value; }

}

 Property Access Levels
The accessor’s access levels can be restricted. For instance, to prevent a

property from being modified from outside the class, the set accessor can

be made private.

private set { seconds = value; }

The access level of the property itself can also be changed to restrict

both accessors. By default, the accessors are public and the property itself

is private.

private int sec { get; set; }

Chapter 15 properties

95

 Auto-implemented Properties
The kind of property where the get and set accessors directly correspond

to a field is very common. Because of this, there is a shorthand way of

writing such a property, by leaving out the accessor code blocks and the

private field. This syntax was introduced in C# 3.0 and is called an

auto- implemented property.

class Time

{

 public int sec { get; set; }

}

Two additional capabilities were added to auto-properties in C# 6.0.

First, an initial value can be set as part of the declaration. Second, an

auto- property can be made read-only by leaving out the set accessor.

Such a property can only be set in the constructor, or as part of the

declaration, as shown here.

class Time

{

 // Read-only auto-property with initializer

 public System.DateTime Created { get; } =

 System.DateTime.Now;

}

Chapter 15 properties

	Chapter 15: Properties
	Property Advantages
	Read-Only and Write-Only Properties
	Property Access Levels
	Auto-implemented Properties

