
85© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_14

CHAPTER 14

Static
The static keyword can be used to declare fields and methods that can

be accessed without having to create an instance of the class. Static (class)

members only exist in one copy, which belongs to the class itself, whereas

instance (non-static) members are created as new copies for each new

object. This means that static methods cannot use instance members since

these methods are not part of an instance. On the other hand, instance

methods can use both static and instance members.

class MyCircle

{

 // Instance variable (one per object)

 public float r = 10F;

 // Static/class variable (only one instance)

 public static float pi = 3.14F;

 // Instance method

 public float GetArea()

 {

 return ComputeArea(r);

 }

https://doi.org/10.1007/978-1-4842-5577-3_14

86

 // Static/class method

 public static float ComputeArea(float a)

 {

 return pi*a*a;

 }

}

�Accessing Static Members
To access a static member from outside the class, the class name is used

followed by the dot operator. This operator is the same as the one used

to access instance members, but to reach them, an object reference is

required. An object reference cannot be used to access a static member.

class MyApp

{

 static void Main()

 {

 float f = MyCircle.ComputeArea(MyCircle.pi);

 }

}

�Static Methods
The advantage of static members is that they can be used by other classes

without having to create an instance of the class. Fields should therefore

be declared static when only a single instance of the variable is needed.

Methods should be declared static if they perform a generic function that

is independent of any instance variables. A good example of this is the

System.Math class, which provides a multitude of mathematical methods.

This class contains only static members and constants.

Chapter 14 Static

87

static void Main()

{

 double pi = System.Math.PI;

}

�Static Fields
Static fields have the advantage that they persist throughout the life of the

application. A static variable can therefore be used, for example, to record

the number of times that a method has been called.

static int count = 0;

public static void Dummy()

{

 count++;

}

The default value for a static field will be set only once before it is first

used.

�Static Classes
A class can also be marked static if it only contains static members and

constant fields. A static class cannot be inherited or instantiated into an

object. Attempting to do so will cause a compile-time error.

static class MyCircle {}

Chapter 14 Static

88

�Static Constructor
A static constructor can perform any actions needed to initialize a class.

Typically, these actions involve initializing static fields that cannot be

initialized as they are declared. This can be necessary if their initialization

requires more than one line, or some other logic, to be initialized.

class MyClass

{

 static int[] array = new int[5];

 static MyClass()

 {

 for(int i = 0; i < array.Length; i++)

 array[i] = i;

 }

}

The static constructor, in contrast to the regular instance constructor,

will only be run once. This occurs automatically either when an instance

of the class is created or when a static member of the class is referenced.

Static constructors cannot be called directly and are not inherited. In case

the static fields also have initializers, those initial values will be assigned

before the static constructor is run.

�Static Local Functions
A local function automatically captures the context of its enclosing scope,

enabling it to reference members outside of itself such as variables local to

the parent method.

Chapter 14 Static

89

string GetName()

{

 string name = "John";

 return LocalFunc();

 string LocalFunc() { return name; }

}

As of C# 8.0, the static modifier can be applied to local functions to

disable this behavior. The compiler will then ensure that the static local

function does not reference any members outside of its own scope.

Limiting access in this way can help simplify debugging, because you will

know that the local function does not modify any external variables.

string GetName()

{

 string name = "John";

 return LocalFunc(name);

 static string LocalFunc(string s) { return s; }

}

�Extension Methods
A feature added in C# 3.0 is extension methods, which provide a way

to seemingly add new instance methods to an existing class outside its

definition. An extension method must be defined as static in a static class

and the keyword this is used on the first parameter to designate which

class to extend.

Chapter 14 Static

90

static class MyExtensions

{

 // Extension method

 public static int ToInt(this string s) {

 return Int32.Parse(s);

 }

}

The extension method is callable for objects of its first parameter

type, in this case, string, as if it were an instance method of that class.

No reference to the static class is needed.

class MyApp

{

 static void Main() {

 string s = "10";

 int i = s.ToInt();

 }

}

Because the extension method has an object reference, it can use

instance members of the class it is extending. However, it cannot use

members of any class that are inaccessible due to their access level. The

benefit of extension methods is that they enable you to “add” methods to a

class without having to modify or derive the original type.

Chapter 14 Static

	Chapter 14: Static
	Accessing Static Members
	Static Methods
	Static Fields
	Static Classes
	Static Constructor
	Static Local Functions
	Extension Methods

