CHAPTER 13

Access Levels

Every class member has an accessibility level that determines where the
member will be visible. There are six of them available in C#: public,
protected, internal, protected internal, private, and private
protected, the last of which was added in C# 7.2. The default access level
for members of a class is private.

Private Access

All members regardless of access level are accessible in the class in which
they are declared, the defining class. This is the only place where a private
member can be accessed.

public class MyBase
{

// Unrestricted access
public int myPublic;

// Defining assembly or derived class
protected internal int myProtInt;

// Derived class within defining assembly
private protected int myPrivProt;

© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_13

77


https://doi.org/10.1007/978-1-4842-5577-3_13

CHAPTER 13 ACCESS LEVELS

// Defining assembly
internal int myInternal;

// Derived class
protected int myProtected;

// Defining class only
private int myPrivate;

void Test()

{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myPrivProt = 0; // allowed
myInternal = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // allowed

}

}

Protected Access

A protected member can be accessed from within a derived class, but it is
inaccessible from any other classes.

class Derived : MyBase

{
void Test()

{
myPublic 0; // allowed
myProtInt = 0; // allowed
0; // allowed

myPrivProt

78



CHAPTER 13 ACCESS LEVELS

myInternal = 0; // allowed

myProtected = 0; // allowed

myPrivate = 0; // inaccessible
}

}

Internal Access

An internal member can be accessed anywhere within the local assembly,
but not from another assembly. An assembly is the compilation unit of a
.NET project, either an executable program (.exe) or a library (.d11).

// Defining assembly
class AnyClass

{
void Test(MyBase m)
{
m.myPublic = 0; // allowed
m.myProtInt = 0; // allowed
m.myPrivProt = 0; // inaccessible
m.myInternal = 0; // allowed
m.myProtected = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

In Visual Studio, a project (assembly) is contained within a solution.
You can add a second project to your solution by right-clicking the
Solution node in the Solution Explorer window and selecting Add » New
Project.

79



CHAPTER 13 ACCESS LEVELS

For the second project to be able to reference accessible types from the
first project, you need to add a reference. To do so, right-click the References
node of the second project and click Add Reference. Under Projects, select
the name of the first project and click OK to add the reference.

Protected Internal Access

Protected internal access means either protected or internal. A protected
internal member can therefore be accessed anywhere within the current
assembly or in classes outside the assembly that are derived from the
enclosing class.

// Other assembly
class Derived : MyBase

{
void Test()
{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myPrivProt = 0; // inaccessible
myInternal = 0; // inaccessible
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
}

Private Protected Access

A private protected member is accessible only within the defining assembly
in types that derive from the defining type. Put another way, this access
level restricts the member’s visibility to being both protected and internal.

80



CHAPTER 13 ACCESS LEVELS

// Defining assembly
class Derived : MyBase

{
void Test()
{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myPrivProt = 0; // allowed
myInternal = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
}
Public Access

The public modifier gives unrestricted access from anywhere that a
member can be referenced.

// Other assembly
class AnyClass

{
void Test(MyBase m)
{
m.myPublic = 0; // allowed
m.myProtInt = 0; // inaccessible
m.myPrivProt = 0; // inaccessible
m.myInternal = 0; // inaccessible
m.myProtected = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

81



CHAPTER 13 ACCESS LEVELS

Top-Level Access Levels

A top-level member is a type that is declared outside of any other types. In
C#, the following types can be declared on the top level: class, interface,
struct, enum, and delegate. By default, these uncontained members are
given internal access. To be able to use a top-level member from another
assembly, that member has to be marked as public. This is the only other
access level allowed for top-level members.

internal class MyInternalClass {}
public class MyPublicClass {}

Inner Classes

Classes may contain inner classes, which can be set to any one of the

six access levels. The access levels have the same effect on inner classes
as they do on other members. If the class is inaccessible, it cannot be
instantiated or inherited. By default, inner classes are private, which
means that they can only be used within the class where they are defined.

class MyBase

{
// Inner classes (nested classes)
public class MyPublic {}
protected internal class MyProtInt {}
private protected class MyPrivProt {}
internal class MyInternal {}
protected class MyProtected {}
private class MyPrivate {}

82



CHAPTER 13 ACCESS LEVELS

Access Level Guideline

As a guideline, when choosing an access level, it is generally best to use the
most restrictive level possible. This is because the more places a member
can be accessed, the more places it can be accessed incorrectly, which
makes the code harder to debug. Using restrictive access levels will also
make it easier to modify a class without breaking the code for any other
programmers using that class.

83



	Chapter 13: Access Levels
	Private Access
	Protected Access
	Internal Access
	Protected Internal Access
	Private Protected Access
	Public Access
	Top-Level Access Levels
	Inner Classes
	Access Level Guideline




