
71© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_12

CHAPTER 12

Redefining Members
A member in a derived class can redefine a member in its base class. This

can be done for all kinds of inherited members, but it is most often used

to give instance methods new implementations. To give a method a new

implementation, the method is redefined in the child class with the same

signature as it has in the base class. The signature includes the name,

parameters, and return type of the method.

class Rectangle

{

 public int x = 1, y = 10;

 public int GetArea() { return x * y; }

}

class Square : Rectangle

{

 public int GetArea() { return 2 * x; }

}

�Hiding Members
It must be specified whether the method is intended to hide or override the

inherited method. By default, the new method will hide it, but the compiler

will give a warning that the behavior should be explicitly specified.

https://doi.org/10.1007/978-1-4842-5577-3_12

72

To remove the warning, the new modifier needs to be used. This

specifies that the intention was to hide the inherited method and to

replace it with a new implementation.

class Square : Rectangle

{

 public new int GetArea() { return 2 * x; }

}

�Overriding Members
Before a method can be overridden, the virtual modifier must first be

added to the method in the base class. This modifier allows the method to

be overridden in a derived class.

class Rectangle

{

 public int x = 1, y = 10;

 public virtual int GetArea() { return x * y; }

}

The override modifier can then be used to change the

implementation of the inherited method.

class Square : Rectangle

{

 public override int GetArea() { return 2 * x; }

}

Chapter 12 Redefining Members

73

�Hiding and Overriding
The difference between override and new is shown when a Square is

upcast to a Rectangle. If the method is redefined with the new modifier,

then this allows access to the previously hidden method defined in

Rectangle. On the other hand, if the method is redefined using the

override modifier, then the upcast will still call the version defined in

Square. In short, the new modifier redefines the method down the class

hierarchy, while override redefines the method both up and down in the

hierarchy.

�Sealed Keyword
To stop an overridden method from being further overridden in classes

that inherit from the derived class, the method can be declared as sealed

to negate the virtual modifier.

class MyClass

{

 public sealed override int NonOverridable() {}

}

A class can also be declared as sealed to prevent any class from

inheriting it.

sealed class NonInheritable {}

Chapter 12 Redefining Members

74

�Base Keyword
There is a way to access a parent’s method even if it has been redefined.

This is done by using the base keyword to reference the base class

instance. Whether the method is hidden or overridden, it can still be

reached by using this keyword.

class Triangle : Rectangle

{

 public override GetArea() { return base.GetArea()/2; }

}

The base keyword can also be used to call a base class constructor

from a derived class constructor. The keyword is then used as a method

call before the constructor’s body, prefixed by a colon.

class Rectangle

{

 public int x = 1, y = 10;

 public Rectangle(int a, int b) { x = a; y = b; }

}

class Square : Rectangle

{

 public Square(int a) : base(a,a) {}

}

When a derived class constructor does not have an explicit call to the

base class constructor, the compiler will automatically insert a call to the

parameterless base class constructor in order to ensure that the base class

is properly constructed.

Chapter 12 Redefining Members

75

class Square : Rectangle

{

 public Square(int a) {} // : base() implicitly added

}

Note that if the base class has a constructor defined that is not

parameterless, the compiler will not create a default parameterless

constructor. Therefore, defining a constructor in the derived class,

without an explicit call to a defined base class constructor, will cause a

compile-time error.

class Base { public Base(int a) {} }

class Derived : Base {} // compile-time error

Chapter 12 Redefining Members

	Chapter 12: Redefining Members
	Hiding Members
	Overriding Members
	Hiding and Overriding
	Sealed Keyword
	Base Keyword

