
65© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_11

CHAPTER 11

Inheritance
Inheritance allows a class to acquire the members of another class. In the

following example, the class Square inherits from Rectangle, specified by

a colon. Rectangle then becomes the base class of Square, which in turn

becomes a derived class of Rectangle. In addition to its own members,

Square gains all accessible members in Rectangle, except for any

constructors or destructors.

// Base class (parent class)

class Rectangle

{

 public int x = 10, y = 10;

 public int GetArea() { return x * y; }

}

// Derived class (child class)

class Square : Rectangle {}

�Object Class
A class in C# may only inherit from one base class. If no base class is

specified, the class will implicitly inherit from System.Object. This is

therefore the root class of all other classes.

class Rectangle : System.Object {}

https://doi.org/10.1007/978-1-4842-5577-3_11

66

C# has a unified type system in that all data types, directly or indirectly,

inherit from Object. This does not only apply to classes, but also to other

data types, such as arrays and simple types. For example, the int keyword

is only an alias for the System.Int32 struct type. Likewise, object is an

alias for the System.Object class.

System.Object o = new object();

Because all types inherit from Object, they all share a common

set of methods. One such method is ToString, which returns a string

representation of the current object. The method often returns the name of

the type, which can be useful for debugging purposes.

System.Console.WriteLine(o.ToString()); // "System.Object"

�Downcast and Upcast
Conceptually, a derived class is a specialization of its base class. This means

that Square is a kind of Rectangle as well as an Object, and it can therefore

be used anywhere a Rectangle or Object is expected. If an instance of

Square is created, it can be upcast to Rectangle since the derived class

contains everything in the base class.

Square s = new Square();

Rectangle r = s; // upcast

The object is now viewed as a Rectangle, so only Rectangle’s

members can be accessed. When the object is downcast back into a

Square, everything specific to the Square class will still be preserved. This

is because the Rectangle only contained the Square; it did not change the

Square object in any way.

Square s2 = (Square)r; // downcast

Chapter 11 Inheritance

67

The downcast has to be made explicit since downcasting an actual

Rectangle into a Square is not allowed.

Rectangle r2 = new Rectangle();

Square s3 = (Square)r2; // error

�Boxing
The unified type system of C# allows for a variable of value type to

be implicitly converted into a reference type of the Object class. This

operation is known as boxing and once the value has been copied into the

object, it is seen as a reference type.

int myInt = 5;

object myObj = myInt; // boxing

�Unboxing
The opposite of boxing is unboxing. This converts the boxed value back

into a variable of its value type. The unboxing operation must be explicit.

If the object is not unboxed into the correct type, a runtime error will occur.

myInt = (int)myObj; // unboxing

�The Is and As Keywords
There are two operators that can be used to avoid exceptions when casting

objects: is and as. First, the is operator returns true if the left side object

can be cast to the right side type without causing an exception.

Rectangle q = new Square();

if (q is Square) { Square o = q; } // condition is true

Chapter 11 Inheritance

68

The second operator used to avoid object casting exceptions is the as

operator. This operator provides an alternative way of writing an explicit

cast, with the difference that if it fails, the reference will be set to null.

Rectangle r = new Rectangle();

Square o = r as Square; // invalid cast, returns null

When using the as operator, there is no distinction between a null

value and the wrong type. Furthermore, this operator only works with

reference type variables. Pattern matching provides a way to overcome

these restrictions.

�Pattern Matching
C# 7.0 introduced pattern matching, which extends the use of the is

operator to both testing a variable’s type and, upon validation, assigning

it to a new variable of that type. This provides a new method for safely

casting variables between types, and also largely replaces the use of the as

operator with the following, more convenient syntax.

Rectangle q = new Square();

if (q is Square mySquare) { /* use mySquare here */ }

When a pattern variable like mySquare is introduced in an if

statement, it also becomes available in the enclosing block’s scope. Hence

the variable can be used even after the end of the if statement. This is not

the case for other conditional or looping statements.

object obj = "Hello";

if (!(obj is string text)) {

 return; } // exit if obj is not a string

}

System.Console.WriteLine(text); // "Hello"

Chapter 11 Inheritance

69

The extended is expression works not just with reference types, but

also with value types. In addition to types, any constant may also be used,

as seen in the following example.

class MyApp

{

 void Test(object o)

 {

 if (o is 5)

 System.Console.WriteLine("5");

 else if (o is int i)

 System.Console.WriteLine("int:" + i);

 else if (o is null)

 System.Console.WriteLine("null");

 }

 static void Main()

 {

 MyApp c = new MyApp();

 c.Test(5); // "5"

 c.Test(1); // "int:1"

 c.Test(null); // "null"

 }

}

Pattern matching works not only with if statements but also with

switch statements, using a slightly different syntax. The type to be

matched and any variable to be assigned is placed after the case keyword.

The previous example method can be rewritten as follows.

Chapter 11 Inheritance

70

void Test(object o)

{

 switch(o)

 {

 case 5:

 System.Console.WriteLine("5"); break;

 case int i:

 System.Console.WriteLine("int:" + i); break;

 case null:

 System.Console.WriteLine("null"); break;

 }

}

Note that the order of the case expressions matter when performing

pattern matching. The first case matching the number 5 must appear

before the more general int case in order for it to be matched.

Chapter 11 Inheritance

	Chapter 11: Inheritance
	Object Class
	Downcast and Upcast
	Boxing
	Unboxing
	The Is and As Keywords
	Pattern Matching

