
49© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_10

CHAPTER 10

Class
A class is a template used to create objects. They are made up of members,

the main two of which are fields and methods. Fields are variables that

hold the state of the object, while methods define what the object can do.

class MyRectangle

{

 int x, y;

 int GetArea() { return x * y; }

}

 Object Creation
To use a class’s instance members from outside the defining class, an

object of the class must first be created. This is done by using the new

keyword, which will create a new object in the system’s memory.

class MyClass

{

 static void Main()

 {

 // Create an object of MyRectangle

 MyRectangle r = new MyRectangle();

 }

}

https://doi.org/10.1007/978-1-4842-5577-3_10

50

An object is also called an instance. The object will contain its own set

of fields, which hold values that are different from those of other instances

of the class.

 Accessing Object Members
In addition to creating the object, the members of the class that are to be

accessible need to be declared as public in the class definition.

class MyRectangle

{

 // Make members accessible for instances of the class

 public int x, y;

 public int GetArea() { return x * y; }

}

The member access operator (.) is used after the object’s name to

reference its accessible members.

static void Main()

{

 MyRectangle r = new MyRectangle();

 r.x = 10;

 r.y = 5;

 int a = r.GetArea(); // 50

}

Chapter 10 Class

51

 Constructor
The class can have a constructor. This is a special kind of method used

to instantiate (construct) the object. It always has the same name as the

class and does not have a return type, because it implicitly returns a new

instance of the class. To be accessible from another class, it needs to be

declared with the public access modifier.

public MyRectangle() { x = 10; y = 5; }

When a new instance of the class is created, the constructor method

is called, which in the example here sets the fields to the specified initial

values.

static void Main()

{

 MyRectangle r = new MyRectangle(); // calls constructor

}

The constructor can have a parameter list, just as any other method. As

seen in the following example, this can be used to make the fields’ initial

values depend on the parameters passed when the object is created.

class MyRectangle

{

 public int x, y;

 public MyRectangle(int width, int height)

 {

 x = width; y = height;

 }

 static void Main()

 {

 MyRectangle r = new MyRectangle(20, 15);

 }

}

Chapter 10 Class

52

 This Keyword
Inside the constructor, as well as in other methods belonging to the

object, a special keyword called this can be used. This keyword is a

reference to the current instance of the class. Suppose, for example, that

the constructor’s parameters have the same names as the corresponding

fields. The fields could then still be accessed by using the this keyword,

even though they are overshadowed by the parameters.

class MyRectangle

{

 public int x, y;

 public MyRectangle(int x, int y)

 {

 this.x = x; // set field x to parameter x

 this.y = y;

 }

}

 Constructor Overloading
To support different parameter lists, the constructor can be overloaded.

In the next example, the fields will be assigned default values if the class is

instantiated without any arguments. With one argument, both fields will

be set to the specified value, and with two arguments, each field will be

assigned a separate value. Attempting to create an object with the wrong

number of arguments, or with incorrect data types, will result in a compile-

time error, just as with any other method.

class MyRectangle

{

 public int x, y;

Chapter 10 Class

53

 public MyRectangle() { x = 10; y = 5; }

 public MyRectangle(int a) { x = a; y = a; }

 public MyRectangle(int a, int b) { x = a; y = b; }

}

 Constructor Chaining
The this keyword can also be used to call one constructor from another.

This is known as constructor chaining and allows for greater code reuse.

Note that the keyword appears as a method call before the constructor

body and after a colon.

class MyRectangle

{

 public int x, y;

 public MyRectangle() : this(10, 5) {}

 public MyRectangle(int a) : this(a, a) {}

 public MyRectangle(int a, int b) { x = a; y = b; }

}

 Initial Field Values
If there are fields in a class that need to be assigned initial values, such as

in the previous example, the fields can simply be initialized at the same

time as they are declared. This can make the code a bit cleaner. The initial

values will be assigned when the object is created, before the constructor is

called.

class MyRectangle

{

 public int x = 10, y = 20;

}

Chapter 10 Class

54

An assignment of this type is called a field initializer. Such an

assignment cannot refer to another instance field.

 Default Constructor
It is possible to create a class even if no constructors are defined. This

is because the compiler will automatically add a default parameterless

constructor to such a class. The default constructor will instantiate the

object and set each field to its default value.

class MyRectangle {}

class MyApp

{

 static void Main()

 {

 // Calls default constructor

 MyRectangle r = new MyRectangle();

 }

}

 Object Initializers
When creating an object, as of C# 3.0, it is possible to initialize the object’s

public fields within the instantiation statement. A code block is then

added, containing a comma-separated list of field assignments. This object

initializer block will be processed after the constructor has been called.

class MyRectangle

{

 public int x, y;

}

Chapter 10 Class

55

class MyClass

{

 static void Main()

 {

 // Use object initializer

 MyRectangle r = new MyRectangle() { x = 10, y = 5 };

 }

}

If there are no arguments for the constructor, the parentheses may be

removed.

MyRectangle r = new MyRectangle { x = 10, y = 5 };

 Partial Class
A class definition can be split up into separate source files by using the

partial type modifier. These partial classes will be combined into the

final type by the compiler. All parts of a partial class must have the partial

keyword and share the same access level.

// File1.cs

public partial class MyPartialClass {}

// File2.cs

public partial class MyPartialClass {}

Splitting classes across multiple source files is primarily useful when

part of a class is generated automatically. For example, this feature

is used by Visual Studio’s graphical user interface builder to separate

automatically generated code from user-defined code. Partial classes can

also make it easier for multiple programmers to work on the same class

simultaneously.

Chapter 10 Class

56

 Garbage Collector
The .NET Framework has a garbage collector that periodically releases

memory used by objects when they are no longer accessible. This frees

the programmer from the often tedious and error-prone task of manual

memory management. An object will be eligible for destruction when

there are no more references to it. This occurs, for example, when a local

object variable goes out of scope. Bear in mind that an object cannot be

explicitly deallocated in C#.

static void Main()

{

 if (true) {

 string s = "";

 }

// String object s becomes inaccessible

// here and will be destroyed

}

 Destructor
In addition to constructors, a class can also have a destructor. The

destructor is used to release any unmanaged resources allocated by the

object. It is called automatically before an object is destroyed and cannot

be called explicitly. The name of the destructor is the same as the class

name, but preceded by a tilde (~). A class may only have one destructor

and it does not take any parameters or return any value.

class MyComponent

{

 public System.ComponentModel.Component comp;

 public MyComponent()

Chapter 10 Class

57

 {

 comp = new System.ComponentModel.Component();

 }

 // Destructor

 ~MyComponent()

 {

 comp.Dispose();

 }

}

In general, the .NET Framework garbage collector automatically

manages the allocation and release of memory for objects. However, when

a class uses unmanaged resources – such as files, network connections,

and user interface components – a destructor should be used to free up

those resources when they are no longer needed.

 Null Keyword
The null keyword is used to represent a null reference, which is a

reference that does not refer to any object. It can only be assigned to

variables of reference type and not to value type variables.

string s = null;

Trying to access members of an object referring to null will cause an

exception, because there is no valid instance to dereference.

int length = s.Length; // error: NullReferenceException

In order to safely access instance members of an object that may be

null, a check for a null reference should first be carried out. This test can be

done for instance using the equal to operator (==).

Chapter 10 Class

58

class MyApp

{

 public string s; // null by default

 static void Main()

 {

 MyApp o = new MyApp();

 if (o.s == null) {

 o.s = ""; // create a valid object (empty string)

 }

 int length = o.s.Length; // 0

 }

}

Another option is to use the ternary operator to assign a suitable value

in case a null string is encountered.

string s = null;

int length = (s != null) ? s.Length : 0; // 0

 Nullable Value Types
A value type can be made to hold the value null in addition to its normal

range of values by appending a question mark (?) to its underlying type.

This is called a nullable type and allows the simple types, as well as other

struct types, to indicate an undefined value. For example, bool? is a

nullable type that can hold the values true, false, and null.

bool? b = null; // nullable bool type

Chapter 10 Class

59

 Nullable Reference Types
One of the most common mistakes in object-oriented programming

languages is to dereference a variable set to null, which causes a null

reference exception. To help avoid this issue, C# 8.0 introduced a

distinction between nullable and non-nullable reference types. Same as

with nullable value types, a nullable reference type is created by appending

a question mark (?) to the type. Only such a reference type may be

assigned the value null.

string? s1 = null; // nullable reference type

string s2 = ""; // non-nullable reference type

This language feature needs to be explicitly enabled because existing

reference types then become non-nullable reference types. To enable it for

the entire project, right-click the project item in the Solution Explorer and

select Edit Project File from the context menu to open the .csproj project

file. In this file, add a Nullable element to the PropertyGroup element and

set its value to enable as seen here.

<PropertyGroup>

 ...

 <Nullable>enable</Nullable>

</PropertyGroup>

Alternatively, the feature can be enabled for only a single file by

adding the #nullable enable directive to that file. Once enabled, any null

assignments to non-nullable reference types will trigger a compilation

warning.

#nullable enable

string a = null; // warning

Non-nullable reference types do not need to be null-checked before

they are dereferenced.

Chapter 10 Class

60

string b = ""; // non-nullable reference type

int i = s.Length; // no warning

Attempting to dereference a nullable reference in contexts when it may

possibly be null will cause a compiler warning. A null check is required to

remove the warning.

string? c = null;

//...

int j = c.Length; // warning

if (c != null)

 int k = c.Length; // no warning

This behavior can be overridden using the null-forgiving operator

(!) added in C# 8.0. In cases when the compiler cannot determine that

a variable is non-null, this postfix operator can be used to suppress the

warning when you are certain the nullable variable is not set to null.

string? d = "Hello";

//...

int a = d.Length; // potential warning

int b = d!.Length; // warning suppressed

 Null-Coalescing Operator
The null-coalescing operator (??) returns the left-hand operand if it is

not null and otherwise returns the right-hand operand. This conditional

operator provides an easy syntax for assigning a nullable type to a non-

nullable type.

int? i = null;

int j = i ?? 0; // 0

Chapter 10 Class

61

A variable of a nullable type should not be explicitly cast to a non-

nullable type. Doing so will cause a runtime error if the variable has null

as its value.

int? i = null;

int j = (int)i; // error

C# 8.0 introduced the null-coalescing assignment operator (??=),

combining the null-coalescing operator with an assignment. The operator

assigns the value on its right side to the operand on its left side if the left

side operand evaluates to null.

int? i = null;

i ??= 3; // assign i=3 if i==null

// same as i = i ?? 3;

 Null-Conditional Operator
In C# 6.0, the null-conditional operator (?.) was introduced. This operator

provides a concise way to perform null checks when accessing object

members. It works like the regular member access operator (.), except

that if a null reference is encountered, the value null is returned instead of

causing an exception to occur.

string s = null;

int? length = s?.Length; // null

Combining this operator with the null-coalescing operator is useful for

assigning a default value whenever a null reference appears.

string s = null;

int length = s?.Length ?? 0; // 0

Another use for the null-conditional operator is together with arrays.

The question mark can be placed before the square brackets of the array

Chapter 10 Class

62

and the expression will then evaluate to null if the array is uninitialized.

Note that this will not check if the array index referenced is out of range.

string[] s = null;

string s3 = s?[3]; // null

 Default Values
The default value of a reference type is null. For the simple data types, the

default values are as follows: numerical types become 0, a char has the

Unicode character for zero (\0000), and a bool is false. Default values will

be assigned automatically by the compiler for fields. However, explicitly

specifying the default value for fields is considered good programming

since it makes the code easier to understand. For local variables the default

values will not be set by the compiler. Instead, the compiler forces the

programmer to assign values to any local variables that are used, so as to

avoid problems associated with using unassigned variables.

class MyClass

{

 int x; // field is assigned default value 0

 void test()

 {

 int x; // local variable must be assigned if used

 }

}

 Type Inference
Beginning with C# 3.0, local variables can be declared with var to have

the compiler automatically determine the type of the variable based on

Chapter 10 Class

63

its assignment. Bear in mind that var is not a dynamic type so changing

the assignment later will not change the underlying type inferred by the

compiler. The following two declarations are equivalent.

class MyClass {}

var o = new MyClass(); // Implicit type

MyClass o = new MyClass(); // Explicit type

When to use var comes down to preference. In cases when the type of

the variable is obvious from the assignment, use of var may be preferable

to shorten the declaration and arguably improve readability. If unsure of

what the type of a variable is, you can hover the mouse cursor over it in

the IDE to display its type. Keep in mind that var can only be used when a

local variable is both declared and initialized at the same time.

 Anonymous Types
An anonymous type is a type created without an explicitly defined class.

They provide a concise way to form a temporary object that is only needed

within the local scope and therefore should not be visible elsewhere. An

anonymous type is created using the new operator followed by an object

initializer block.

var v = new { first = 1, second = true };

System.Console.WriteLine(v.first); // "1"

Property types are automatically determined by the compiler based

on the assigned value. They will be readonly so their values cannot be

changed after their initial assignment. Note that type inference using var is

needed to hold the reference of an anonymous type.

Chapter 10 Class

	Chapter 10: Class
	Object Creation
	Accessing Object Members
	Constructor
	This Keyword
	Constructor Overloading
	Constructor Chaining
	Initial Field Values
	Default Constructor
	Object Initializers
	Partial Class
	Garbage Collector
	Destructor
	Null Keyword
	Nullable Value Types
	Nullable Reference Types
	Null-Coalescing Operator
	Null-Conditional Operator
	Default Values
	Type Inference
	Anonymous Types

