8 Quick
SyntaX Reference

A Pocket Guide to the Language,
APIs, and Library

Mikael Olsson

C# 8 Quick Syntax
Reference

A Pocket Guide to the
Language, APIs, and Library

Third Edition

Mikael Olsson

Apress’

C# 8 Quick Syntax Reference: A Pocket Guide to the Language, APIs,
and Library

Mikael Olsson
HAMMARLAND, Finland

ISBN-13 (pbk): 978-1-4842-5576-6 ISBN-13 (electronic): 978-1-4842-5577-3
https://doi.org/10.1007/978-1-4842-5577-3

Copyright © 2020 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484255766. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5577-3

Table of Contents

About the AUthOrccccmminmmmmsesmnsss s xiii
About the Technical REVIEWETccccsrssamsmssmsssssnsssssnsssssnsssssnsssssnnsnns Xv
Introduction.........ccccemnmmnmmmenmnes s ——————— xvii
Chapter 1: Hello WOrld......ccccueeemmmmsssssssssmmmsssssssssssssssssssssssssssssssssssssnnns 1
ChooSiNG @N IDE........ccocvverierererrereresresessese e ssesssessessesassessessesasssssesaesaessssesnesnees 1
Creating @ ProjECL ..ot s 2
Ly o T[0T 3
1L C=] LT L TR 3
Chapter 2: Gompile and RUNccucvmmsmsmsmsmsmsmsmsmsmssssssssssssssssssssssssssnans 5
Visual Studio Compilationc.cuceevevrnennesernse s 5
Console CoMPIlALION ..o 5
LanQUAQE VEISION........ceverieriiene e rer e s e s s se e s s s sn e sa e s s e e saesanans 6
0] 0111 T O 6
Chapter 3: Variablescousmmmmmssmssmssmmsssmssssssssssssssssss s ssssssasssnsnas 9
DT] 0T 9
DECIAration.........ccoveeerese e s 10
ASSIGNMENT ... s 10
0L T [<] g 1 0TSSR 11
Floating-Point TYPES......cocvveriererirrir s s 12

iii

TABLE OF CONTENTS

08 T T 1 T R 12
BOOI TYPE...oeerr e e 13
Variable SCOPE ... 13
Chapter 4: Operatorsccccussssnmmssssssnmsssssssnmsssssssnsssssssnsssssssnnnsssssnnnnss 15
Arithmetic OPErators.........ccocvrivninin s s 15
AsSIgNMENT OPEratorsSccvvceriierrrresir s 16
Combined Assignment OPerators........ccovveevnrenniesesnsessseses e 16
Increment and Decrement OPerators ... 16
Comparison OPEratorscccvververierererserserese s e s s ss e s e s ssese s e saesnes 17
[T T2z LI 0] 0T = (0] £ RS 17
BitWiSe OPEIAtOrScceververerrerersersersessesessessessessssessessessssessessessssessessessesssnensessens 18
Operator PreCeUENTS ... e 18
Chapter 5: Strings....cccuunmmmmmmmmmmmmmmsssssssssnnnsesssssssssssssnseeess s sssssssnnsnnns 21
String Concatenationc.ccverrnsesrsssernse s 21
ESCape CharaCters.......ccvvvnenmnenensse s 22
STrNG COMPATE ..c.veveeeerere e e sa e e e s s pe e e eaenaen 23
SrNG MEMDEIS weverveveeiererere st sere s s s e ss s s sae e s e s sae s s e ssesaesaesessenaesaes 23
SHNGBUIIAET ClASSvcuevvrueririeieriese st st 24
Chapter 6: Arrays.......ccussmssmsssssssmsssssssssssssssassssssssssssssnsssnsssnsssnsssnssnnas 25
Array DECIAration ..o s 25
Array AllOCALION.......covverereererrere s e nrenis 25
Array ASSIGNMENT ..o e nra s 26
AITAY ACCESS ...overeireerresesessse s st s s s e s s s s s b e s b s e s nn e s ae s e e e nn e e ae e e n e s 26
Rectangular ArTays..........ccucrcereriniinsen s s s 26
JAPGCA AITAYS ... s p e e s 27

iv

TABLE OF CONTENTS

Chapter 7: Conditionalsccccrnnsmmmnmmssssnnnmsssssssnssssssnssesssssssssssssnnnnes 29
If STAtEMENT ... s 29
SWItCh STAteMENt ... s 30
GOLO StAtEMENTceeeeeeer s 31
SWItCh EXPreSSiON.......cccvvriiininrine s s 32
TErnary OPEIator.........ccvreverersriereris s s s r e s s s 32

Chapter 8: LOOPS......cuuummmmsmsssnmmmmsmsssnss 39

L LT = T o R 33
DO-Whilg LOOP....ccerererieire st n s n s s snen 33
0] I o OSSOSO 34
FOreach LOOPcccvceiiniiiinrine st snen 35
Break and CONtiNUE.........ccccvveierenernse s s 35
Chapter 9: Methodscccvusseemnmmsssnnnnmmsssssnnmsssssssnsssssssssessssssnssssssnnnnes 37
Defining Methods.........covvrererrrrre e nnens 37
L0 T aTo 1= (T 38
Method Parameters ... 38
Params KEYWOIccocvirereninsinene s se e srs e ssesnens 39
Method OVErloading.........cccvvererenerrnncrenese e 39
Optional Parameters ..o s saesessessesnens 40
Named ArgUMENLScocvvriiere s s 41
Return Statement...........ccoovrinrrr 41
Value and Reference TYPEScovvcerveererierrirree s ses s se e s s se e saesaes 42
Pass DY VAIUE ... s 43
Pass by REFEIEINCEcccveverrereree s 43
Ref KEYWOId........ccoeeereerreesesese s s s 44
OUL KBYWOI ..ot 46
Local MEthods. ... s 47

TABLE OF CONTENTS

Chapter 10: Class......ccussemmrmmsssnnnmssssssnsmssssssssssssssssssssssssnsssssssnnssssssnnnnss 49
ObJECE Creationccccorevrerrc st e a e 49
Accessing 0bject MEmMDErS ... s 50
[153 (1 o] S 51
ThiIS KEYWOIceeevieeerreerrnsesssess e e sss s sse e s sssss e s ssssessssssessssesssssssnssnnes 52
Constructor OVErloadingcuovverevnsenserieresessessese s s ssssessessessesessessesaes 52
Constructor CRAININGccccveveverririereree s s s s sae e s ssessesaesessessesees 53
INitial Field VAIUBS ..o 53
Default CONSTIFUCTONcov e 54
ObJECt INILANIZETSceveerercreree e 54
Partial Classccoovvererrenerrnserrsesssese s sessese s s ses e s 55
Garbage CollECIONccvverrcrere e 56
DESIIUCTON ...t ————— 56
NUILKEBYWOI........eierieie e s sa e s s n e s s s s 57
Nullable Value TYPEScccvcveririrrrrrers e snens 58
Nullable REfErenCE TYPES.....covererrererrrererereresesseseses e se e sesesenns 59
Null-Coalescing OPErator..........c.ccoeeerrererersereresersesesessesessesessesesessesessesessesesessesenns 60
Null-Conditional OPeratorcccvvrevnrninienininrne e s 61
Default ValUES ..o 62
TYPE INTEIENCE...... et 62
ANONYMOUS TYPES .eveeeruererieerrerersesseessesessesssesaessessesssessessessssssessessesssessessessessens 63

Chapter 11: Inheritance............cccounsmmmmsmsmmsnsmmsmsmssssmmsssmssssssnsn. 65
[0TSR 65
Downcast and UPCast ... s s 66
BOXING cvuerererierersere s s e s a e e e a e e e nne e 67
14070] 3T S 67

TABLE OF CONTENTS

The Is and AS KEYWOIUSccvcvvererierrinnie e sse e e sses s s sesssessesaesnens 67
Pattern MatChing ..o e 68
Chapter 12: Redefining Membersccuuemrmmmssssnnmmsssssssssssssssssssssnnnns 71
Hiding MEMDETS.......cco oo 71
Overriding MEMDEISc.vccvverrrese s 72
Hiding and OVErridingccovvenerenemnnesnesenesessse s srssesens 73
Sealed KEYWOIdccecereererierirsere st ses e sae e s e s e sse s s sae s s e s snesaessssesaesaes 73
Base KEYWOIdc.ccuvuererierire e nerse st sn e s s s s s 74
Chapter 13: AcCeSS LeVelS......cccrussmmmnrmssnnnnssssssnnsssssssnssssssssssssssssnnnnss 77
PriVale ACCESS.....coceueereeereecrerese e 77
ProteCted ACCESScovreeereecrerce e 78
INTEINAI ACCESS....cveeeerreerreerese s s nr s 79
Protected INternal ACCESSccvcreererrenirsere s s sneas 80
Private ProteCted ACCESScuerrerrrnisrsisi s 80
PUBDIIC ACCESS ...t s e 81
TOP-LEVEl ACCESS LEVEIScoceeeecererer et res e se e se e s n 82
INNEE CIASSESecerecerreereeerenese e re s e s 82
AcCeSS LeVel GUIEIINEccccerererereereerrsesese e 83
Chapter 14: Static........ccccinmminmmmmmminennmmmnssnnssss s —————— 85
Accessing Static MEMDENS ..o 86
Static Methods........cccoviriicrr 86
SHALC FIlUS ...ccvvccce s 87
B3] £ LT e 0T L 87
StatiC CONSIIUCTON ... 88
Static Local FUNCLIONS........cccoeoereierrcrereserese e 88
EXtension Methods.........ccuvernenmnenennse s s s 89

vii

TABLE OF CONTENTS

Chapter 15: Properties.....ccccunemmrmsssnnnmsssssnssssssssssssssssssssssssssnsssssssnnnnes 91
Property Advantagesccceverrrnnienennsnsesese s s ssssessesnens 92
Read-Only and Write-Only Propertiesc.cooorerrnncrenenereseressesesesesese e 94
Property ACCESS LEVEISccoverereerrecrenee s se e nenns 94
Auto-implemented Properties........cvvvnrninnnnnine s 95

Chapter 16: INAEXEersScccivuussmmmnmmssssnnnmsssssnnsssssssnnsssssssnnsssssssnnssssssnnnnss 97
INdexer Parameters.........coouovvmrnmnnsnss s 98
Indexer OVErl0AdiNgccueevrerererrerreressesensesessssssessessessssessessessesessessessessssensessens 99
Ranges and INAEXES.......cccveriinrrine s s 100

Chapter 17: Interfacescccuusmerrrssssnnnsmssssssnsssssssnnssssssssssesssssnnnssssnnns 103
Interface SigNatUrES.........oo e s 103
Interface EXAMPIE ..o e e s 104
Functionality INterfacec.cuvernrrnrinnssss e 105
Class INTEITACEcccrererrrrieiriri s 105
Default Implementations..........cocvvvrerennrrienre s 106

Chapter 18: Abstract.........cccurmmmmnssnnnnmsssssnnmmsssssssessssssssessssssssessssnns 109
ADSIIACt MEMDEIS........coeeeecrieereree e se e 109
AbStract EXamPple.........cocvviinrcnr e s 110
Abstract Classes and INTerfacescouevvrererenrnseneseserssesese s 111

Chapter 19: NameSPACES....cuusuerrrssssnnnsmsssssnnsssssssnnnssssssnnsssssssnnnssssnnns 113
Nested NameSPACEScccvvereriirrir e 113
NaAMESPACE ACCESS...coveriirerre st s e s s r e s r e s r e ne e n 114
USING DIrECLIVE......cev et s 115

Chapter 20: ENUMcocccemmmnmsnsnmmmssssssmmssssssssesssssnssssssssssssssssnnnsssssnnns 117
ENUM EXAMPIE ...t s 117
Enum Constant ValUes ..o 118

viii

TABLE OF CONTENTS

EnUM Constant TYPE......cccvvererrierrerierensrseressessssesessesssssssessessessssessessessssessessenes 118
Enum Access Levels and SCOPE.......cccuevrecerncernesene st sesese e ses e sessesessenes 119
ENUM MEhOAS ... 119
Chapter 21: Exception Handlingccccccmmrrrnsssssssmssnnssmessssssssssssnnnnnas 121
Try-Catch Statement ... e 122
CatCh BIOCKcccivierrsreesree s s e ss e sn s s 122
o (et 110 N T £ R 123
FINAIY BIOCK.....coiiierierie e s sn s s s sn e s s 124
Using Statement ... ———————— 126
Throwing EXCEPLIONS......ccccciiiriiire s s 127
Chapter 22: Operator Overloading.........cccccccrssssssmmsnmnneessssssssssssnnnnns 129
Operator Overloading EXamplecccovvniniennnnnnensssesese s sesse s 129
Binary Operator OVerloading.......c.c.cvveeeresernsesnesssese s sessesessesessanes 130
Unary Operator OVErloading.........ccveeveverrerierenensensessessesessesessesessessessessssessessenes 130
Return Types and Parameters.........ccovvervrinneninsinsinsesesses e sessessssssessessens 131
Overloadable OPerators ... e 131
True and False Operator Overloading.........cccoevenveriennnnnnnenesnsesses s 132
Chapter 23: Custom CONVErsioNnsccccussssssmmssssssssssssssssnssssssnsnssssnnns 135
Implicit Conversion Methods.........c.ccovrininnnnnn e 135
Explicit Conversion Methods...........ccovevieirnsennesnse s 136
Chapter 24: Struct ... 137
Struct Variable...........ocvvinnr s ———— 137
STUCT CONSIIUCTONScvivecccre i 138
Struct Field INItIAliZErScccoverererererererse s 139
SrUCt INNEILANCE ... e 139
STrUCE GUIAEIINE ... e 140

ix

TABLE OF CONTENTS

Chapter 25: PreproCeSSOrS .uuuuuumtrmsssssssrssssssnsssssssnnsssssssnnsssssssnnnsssssnns 141
PreproCessOor SYNAXcoveverecerncerne st se e ns 142
Conditional Compilation SYmDOIS ... 142

Conditional Compilation..........cccoeevrvnininnnnn e 142
DiagnoStic DIrECHIVES......ccererrerreerercrer e s s e sa e s 143
Ling DIr€CHIVE. ... 144
Region DIreClIVES.......cccviriirrrern s snens 144

Chapter 26: Delegatescccueermmmssssnnmmssssssnsmsssssnnssssssssnnsssssnnnnsssssnns 145
AnNONYMOUS METNOUSccecerrrerrrcrere s 146
Lambda EXPreSSiONSccucveririnienenesisseses s sesse s ses e s sssssssessessessssesesseses 147

Expression Body MEMDENS........ccouevvererenernsmssssesssssessssessssesessssessssessssenens 148
Multicast DElegatesccvrevrererrerierenerrerer s s se e e 149
Delegate SigNatUreccvcvevererreriererer s sa s sae e se e sne s 150
Delegates as Parameters..........ccocvvvvereriersensesierses s s ssessee e ssesssesnesaesseas 151

Chapter 27: EVeNtScccccminsssmmnmmmsssssnsmssssssssssssssssssssssssssesssssnssssssnnns 153
0] 1 1] ST 153
EVENt KEYWOITcoveeieerescsenee s s nnnnes 154
EVENT CallEr ...t s 154
RAISING EVENTSoveiiicirerere et sae s s sa s 155
SUDSCIIDET......cotieieieciriri s 156
SUDbSCHDING 10 EVENTS ...cvuereeveecirere e rteserere s e s s e s e sse s sas e s e ssesaessssennesnens 157

Chapter 28: GENEIICS .uuvurrrssmnrrssansrssanssssansssssnsesssnnesssnsesssnnssssnnssssnnssss 159
GENEriC MEtNOUSoceeeeeeeeceree e e 159
Calling Generic Methodsc.cuovererernsenncsere e 160
Generic Type Parametersc.ccvvevnenensnesssesssseses s ssssesesse s s sessessssssessenes 161
Default ValUE ..o s 162

TABLE OF CONTENTS

GENENIC CIASSES ...cvrvrvrrruicreresrsessese s s 162
Generic Class INNEMTANCEcccoceererneerererers e 163
GENENiC INTEITACES......covecreree e 164
Generic Delegates.........cocv s 165
GENENIC EVENTSccccveerrce s s 165
Generics and ODJECT ... —————— 166
CONSTITAINTS ... s 166
Multiple CONSIraINESccvveverererrere e se s e nne s 168
Why Use ConsStraints.........cccucrvnninnsnsnc s sessessesnes 168
Chapter 29: Constantscccccvrrnmsssssssssmmmmmmmssssssssssssseesssssssssssnnns 171
LOCAl CONSTANTS.......ccererererirerreerrssesesese s se e s s e ssssessanes 171
CoNSTANT FIEldScoveeerreerrc e e 172
RRAUONIY ...t e 172
IN PArameters.........cccovirnnineri s 174
Constant GUIAEIINEoveeerererrreesese s 175
Chapter 30: Asynchronous Methods..........c.ccuvssmiemssesmsnsssssasssassasnas 177
The Async and Await KEYWOIdSccceeeerereerenneserenereesesesesesese e sessesessenens 177
ASYNC RETUIN TYPES....iueerreerrseresenese s e s s s sessssesessesessssessssesessssssssnens 178
Custom Async Methods..........ccoverrricernnnnesse e 179
Extended RetUrn TYPEScccvveriririrre st s seas 180
ey (S (- 181
1T = 183

About the Author

Mikael Olsson is a professional web entrepreneur, programmer, and

author. He works for an R&D company in Finland, where he specializes
in software development. In his spare time, he writes books and creates
web sites that summarize various fields of interest. The books he writes

are focused on teaching their subjects in the most efficient way possible,

by explaining only what is relevant and practical without any unnecessary

repetition or theory. The portal to his online businesses and other web
sites is Siforia.com.

xiii

About the Technical Reviewer

Michael Thomas has worked in software
development for more than 20 years as an
individual contributor, team lead, program
manager, and vice president of engineering.
Michael has more than 10 years of experience
working with mobile devices. His current focus

is in the medical sector, using mobile devices

to accelerate information transfer between
patients and health-care providers.

Introduction

The C# programming language is an object-oriented language created by
Microsoft for the .NET Framework. C# (pronounced “see sharp”) builds
on some of the best features of the major programming languages. It
combines the power of C++ with the simplicity of Visual Basic and also
borrows much from Java. This results in a language that is easy to learn and
use, is robust against errors, and enables rapid application development.
All this is achieved without sacrificing much of the power or speed, when
compared to C++.

In the years following its release in 2002, C# has grown to become
one of the most popular programming languages. It is a general-purpose
programming language, so it is useful for creating a wide range of
programs. Everything from small utilities to computer games, desktop
applications, or even operating systems can be built in C#. The language
can also be used with ASP.NET to create web-based applications.

When developing in .NET, programmers are given a wide range of
choices as to which programming language to use. Some of the more
popular .NET languages include VB.NET, C++/CLI, F#, and C#. Among
these, C# is often the language of choice. Like the other .NET languages,
C# is initially compiled to an intermediate language. This language is
called the Common Intermediate Language (CIL) and is run on the .NET
Framework. A .NET program will therefore be able to execute on any
system that has this framework installed.

xvii

INTRODUCTION

The .NET Framework is a software framework that includes a common
execution engine and a rich class library. It runs on Microsoft Windows
and is therefore only used for writing Windows applications. However,
there are also cross-platform ports available, the two largest being Mono'
and .NET Core.? These are both open source projects that allow .NET
applications to be run on other platforms, such as Linux, macOS, and
embedded systems.

'www .mono-project.com
*https://docs.microsoft.com/dotnet/core

xviii

http://www.mono-project.com/
https://docs.microsoft.com/dotnet/core

CHAPTER 1

Hello World

Choosing an IDE

To begin coding in C#, you need an Integrated Development Environment
(IDE) that supports the Microsoft .NET Framework. The most popular
choice is Microsoft’s own Visual Studio.! This IDE is available for free as a
light version called Visual Studio Community, which can be downloaded
from the Visual Studio web site.?

The C# language has undergone a number of updates since the initial
release of C# 1.0 in 2002. At the time of writing, C# 8.0 is the current version
and was released in 2019. Each version of the language corresponds to a
version of Visual Studio, so in order to use the features of C# 8.0, you need
Visual Studio 2019 (version 16.3 or higher).

Note When installing Visual Studio, be sure to select the “.NET
desktop development” and “.NET Core cross-platform development”
workloads in order to be able to use C# 8.0.

'www.visualstudio.com
“www . visualstudio.com/vs/community/

© Mikael Olsson 2020 1
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_1

http://www.visualstudio.com
http://www.visualstudio.com/vs/community/

CHAPTER 1 HELLO WORLD

Creating a Project

After installing the IDE, go ahead and launch it. You then need to create
a new project, which will manage the C# source files and other resources.
To display the New Project window, go to File » New » Project in Visual
Studio. From there, select the “Console App (.NET Core)” template and
click the Next button. Configure the name and location of the project

if you want to and then click Create to allow the project wizard to create
your project.

You have now created a C# project. In the Solution Explorer pane
(View » Solution Explorer), you can see that the project consists of a single
C# source file (. cs) that should already be opened. If not, you can double-
click the file in the Solution Explorer in order to open it. In the source file,
there is some basic code to help you get started. However, to keep things
simple at this stage, go ahead and simplify the code into this.

class MyApp
{

static void Main()
{
}

}

The application now consists of a class called MyApp containing an
empty Main method, both delimited by curly brackets. The Main method
is the entry point of the program and must have this format. The casing
is also important since C# is case-sensitive. The curly brackets delimit
what belongs to a code entity, such as a class or method, and they must be
included. The brackets, along with their content, are referred to as code
blocks, or just blocks.

CHAPTER 1 HELLO WORLD

Hello World

As is common when learning a new programming language, the first
program to write is one that displays a “Hello World” text string. This is
accomplished by adding the following line of code between the curly
brackets of the Main method.

System.Console.WritelLine("Hello World");

This line of code uses the Writeline method, which accepts a single
string parameter delimited by double quotes. The method is located inside
the Console class, which belongs to the System namespace. Note that
the dot operator (.) is used to access members of both namespaces and
classes. The statement must end with a semicolon, as must all statements
in C#. Your code should now look like this.

class MyApp
{

static void Main()

{
System.Console.WriteLine("Hello World");
}
}

The Writeline method adds a line break at the end of the printed string.
To display a string without a line break, you use the Write method instead.

IntelliSense

When writing code in Visual Studio, a window called IntelliSense will pop
up wherever there are multiple predetermined alternatives from which

to choose. This window is very useful and can be brought up manually by
pressing Ctrl+Space. It gives you quick access to any code entities you are
able to use within your program, including the classes and methods of
the .NET Framework along with their descriptions. This is a very powerful
feature that you should learn to use.

CHAPTER 2

Compile and Run

Visual Studio Compilation

With the Hello World program completed, the next step is to compile and
run it. To do so, open the Debug menu and select Start Without Debugging,
or simply press Ctrl+F5. Visual Studio will then compile and run the
application, which displays the string in a console window.

Console Compilation

Ifyou did not have an IDE such as Visual Studio, you could still compile
the program as long as you have the .NET Framework installed. To try this,
open a console window (C: \Windows\System32\cmd.exe) and navigate to
the project folder where the source file is located. You then need to find the
C# compiler called csc.exe, which is located in a path similar to the one
shown here. Run the compiler with the source filename as an argument
and it will produce an executable in the current folder.

C:\MySolution\MyProject>
\Windows\Microsoft.NET\Framework64\v3.5\
csc.exe Program.cs

If you try running the compiled program from the console window,
it will show the same output as the one created by Visual Studio.

C:\MySolution\MyProject> Program.exe
Hello World

© Mikael Olsson 2020 5
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_2

CHAPTER2 COMPILE AND RUN

Language Version

As of Visual Studio 2019, the default version of C# used is determined by
which version of .NET the project targets. You can change this version
by right-clicking the project node in the Solution Explorer and selecting
Properties. From there, under the Application tab, there is a drop-down
list labeled Target framework. To use the latest features from C# 8.0, the
project needs to target .NET Core 3.0 or later so make sure it is selected.
For this option to be available, the .NET Core workload must have been
selected when installing Visual Studio 2019 and the project must be
created using one of the .NET Core templates.

Comments

Comments are used to insert notes into the source code. C# uses the
standard C++ comment notations, with both single-line and multi-line
comments. They are meant only to enhance the readability of the source
code and have no effect on the end program. The single-line comment
begins with // and extends to the end of the line. The multi-line comment

may span multiple lines and is delimited by /x and %/.
// single-line comment

/% multi-line
comment x/

In addition to these, there are two documentation comments.
There is one single-line documentation comment that starts with /// and
one multi-line documentation comment that is delimited by /#* and */.
These comments are used when producing class documentation.

CHAPTER2 COMPILE AND RUN

/// <summary>Class level documentation.</summary>
class MyApp
{
/** <summary>Program entry point.</summary>
<param name="args">Command line arguments.</param>
*/
static void Main(string[] args)
{
System.Console.WritelLine("Hello World");
}
}

CHAPTER 3

Variables

Variables are used for storing data in memory during program execution.

Data Types

Depending on what data you need to store, there are several different kinds
of data types. The simple types in C# consist of four signed integer types
and four unsigned, three floating-point types, as well as char and bool.

Data Type Size (Bits) Description

Sbyte 8 Signed integers

short 16

int 32

long 64

Byte 8 Unsigned integers
ushort 16

uint 32

ulong 64

Float 32 Floating-point numbers
double 64

decimal 128

Char 16 Unicode character
Bool 4 Boolean value

© Mikael Olsson 2020 9

M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_3

CHAPTER 3 VARIABLES

Declaration

In C#, a variable must be declared (created) before it can be used. To
declare a variable, you start with the data type you want it to hold followed
by a variable name. The name can be almost anything you want, butitis a
good idea to give your variables names that are closely related to the value
they will hold.

int myInt;

Assignment

A value is assigned to the variable by using the equals sign, which is the
assignment operator (=). The variable then becomes defined or initialized.

myInt = 10;

The declaration and assignment can be combined into a single
statement.

int myInt = 10;

If multiple variables of the same type are needed, there is a shorthand
way of declaring or defining them by using the comma operator (,).

int myInt = 10, myInt2 = 20, myInt3;

Once a variable has been defined (declared and assigned), it can be
used by referencing the variable’s name.

System.Console.Write(myInt); // "10"

10

CHAPTER 3 VARIABLES

Integer Types

There are four signed integer types that can be used depending on how
large a number you need the variable to hold.

// Signed integers

2; // -128 to +127
short myInt16 = 1; // -32768 to +32767
int myInt32 = 0; // -2"31 to +2"31-1
long myInt64 =-1; // -2"63 to +2"63-1

sbyte myInt8

The unsigned types can be used if you only need to store positive
values.

// Unsigned integers

byte uInt8 =0; // 0 to 255
ushort uInt16 = 1; // 0 to 65535
uint ulnt32 = 2; // 0 to 2"32-1
ulong uInté4 = 3; // 0 to 2"64-1

In addition to the standard decimal notation, integers can also be
assigned using hexadecimal notation. As of C# 7.0, there is a binary
notation as well. Hexadecimal numbers are prefixed with 0x and binary

numbers with 0b.
int myHex = OxF; // 15 in hexadecimal (base 16)
int myBin = 0b0100; // 4 in binary (base 2)

Version 7.0 of C# also added a digit separator (_) to improve readability
of long numbers. This digit separator can appear anywhere within the
number, as well as at the beginning of the number as of C# 7.2.

int myBin = ob_0010 _0010; // 34 in binary notation (0b)

11

CHAPTER 3 VARIABLES

Floating-Point Types

The floating-point types can store real numbers with different levels

of precision. Constant floating-point numbers in C# are always kept as
doubles, so in order to assign such a number to a float variable, an F
character needs to be appended to convert the number to the float type.
The same applies to the M character for decimals.

float myFloat
double myDouble
decimal myDecimal

3.14F; // 7 digits of precision
3.14; // 15-16 digits of precision
3.14M; // 28-29 digits of precision

A more common and useful way to convert between data types is to
use an explicit cast. An explicit cast is performed by placing the desired
data type in parentheses before the variable or constant that is to be
converted. This will convert the value to the specified type, in this case,
float, before the assignment occurs.

myFloat = (float) myDecimal; // explicit cast

The precisions shown earlier refer to the total number of digits that the
types can hold. For example, when attempting to assign more than seven
digits to a float, the least significant ones will get rounded off.

myFloat = 12345.6789F; // rounded to 12345.68

Floating-point numbers can be assigned using either decimal or
exponential notation, as in the following example.

myDouble = 3e2; // 3%10"2 = 300

Char Type

The char type can contain a single Unicode character delimited by single
quotes.

char ¢ = 'a'; // Unicode char

12

CHAPTER 3 VARIABLES

Bool Type

The bool type can store a Boolean value, which is a value that can be either
true or false. These values are specified with the true and false keywords.

bool b = true; // bool value

Variable Scope

The scope of a variable refers to the code block within which it is possible
to use that variable without qualification. For example, a local variable is

a variable declared within a method. Such a variable will only be available
within that method’s code block, after it has been declared. Once the scope
of the method ends, the local variable will be destroyed.

static void Main()

{

int localVar; // local variable

}

In addition to local variables, C# has field and parameter type
variables, which will be looked at in later chapters. However, C# does not
have global variables, unlike C++.

13

CHAPTER 4

Operators

Operators are special symbols used to operate on values. They can be
grouped into five types: arithmetic, assignment, comparison, logical, and
bitwise operators.

Arithmetic Operators

The arithmetic operators include the four basic arithmetic operations,
as well as the modulus operator (%), which is used to obtain the division

remainder.
float x = 3 +2; // 5 // addition
X =13 -2; // 1// subtraction
X =3 x%2; // 6 // multiplication
x=3/2;//1// division
X =3%2; // 1// modulus (division remainder)

Notice that the division sign gives an incorrect result. This is because
it operates on two integer values and will therefore round the result and
return an integer. To get the correct value, one of the numbers needs to be
converted into a floating-point number.

x =3 / (float)2; // 1.5

© Mikael Olsson 2020 15
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_4

CHAPTER 4 OPERATORS

Assignment Operators

The next group is the assignment operators. Most importantly is the
assignment operator (=) itself, which assigns a value to a variable.

Combined Assignment Operators

A common use of the assignment and arithmetic operators is to operate on
avariable and then to save the result back into that same variable. These
operations can be shortened with the combined assignment operators.

int x = 0;
X += 5; // X = X+5;
X -=5; // X = x-5;
X %= 5; // X = Xx5;
X /=5; // x = x/5;
X %=5; // X = x%5;

Increment and Decrement Operators

Another common operation is to increment or decrement a variable by
one. This can be simplified with the increment (++) and decrement (- -)
operators.

X++; // X = X+1;
X--3; // x = x-1;

Both of these operators can be used before or after a variable.

X++; // post-increment
X--; // post-decrement
++X; // pre-increment
--X; // pre-decrement

16

CHAPTER 4 OPERATORS

The result on the variable is the same whichever is used. The difference
is that the post-operator returns the original value before it changes the
variable, while the pre-operator changes the variable first and then returns

the value.
int x, y;
X =5; Yy = Xx++; // y=5, x=6
X =5;y =++x; // y=6, x=6

Comparison Operators

The comparison operators compare two values and return true or false.
They are mainly used to specify conditions, which are expressions that
evaluate to true or false.

bool b = (2 == 3); // equal to (false)
b =(2!=3); // not equal to (true)
b =(2>3); // greater than (false)
b=1(2<3); // less than (true)
b = (2 »>= 3); // greater than or equal to (false)
b = (2 <= 3); // less than or equal to (true)

Logical Operators

The logical operators are often used together with the comparison operators.
Logical and (&&) evaluates to true if both the left and right side are true,

and logical or (| |) evaluates to true if either the left or right side is true. The
logical not (!) operator is used for inverting a Boolean result. Note that for
both “logical and” and “logical or,” the right side of the operator will not be
evaluated if the result is already determined by the left side.

bool b = (true &% false); // logical and (false)
b = (true || false); // logical or (true)
b = !I(true); // logical not (false)

17

CHAPTER 4 OPERATORS

Bitwise Operators

The bitwise operators can manipulate individual bits inside an integer.
For example, the bitwise and (&) operator makes the resulting bit 1 if the
corresponding bits on both sides of the operator are set.

int x = 5 & 4; // and (0b101 & 0b100 = 0b100 = 4)

=5 | 4; // or (0b101 | 0b100 = 0b101 = 5)

=5~ 4; // xor (0b101 » 0b100 = 0b001 = 1)

4 << 1; // left shift (0b100 << 1 = 0b1000 = 8)

= 4 >> 1; // right shift (ob100 >> 1 = 0b10 = 2)

= ~4; // invert (~0b00000100 = 0b11111011 = -5)

X X X X X
1

These bitwise operators have shorthand assignment operators, just like
the arithmetic operators.

int x=5; x &= 4; // and (0b101 & 0b100 = 0b100 = 4)
x=5; x |= 4; // or (0b101 | 0b100 = 0b101 = 5)
x=5; X "= 4; // xor (0b101 " 0b100 = 0b001 = 1)
X=5; X <<= 1; // left shift (0b101 << 1 = 0b1010 = 10)
x=5; X >= 1; // right shift (ob101 >> 1 = 0b10 = 2)

Operator Precedents

In C#, expressions are normally evaluated from left to right. However,
when an expression contains multiple operators, the precedence of those
operators decides the order in which they are evaluated. The order of
precedence can be seen in the following table, where the operator with the
lower precedence will be evaluated first.

18

CHAPTER 4 OPERATORS

Pre Operator Pre Operator
1 + -- 1~ 7 &

2 x /% 8 A

3 + - 9 |

4 K> 10 &&

5 <K= > >= 11 | |

6 == |= 12 = op=

For example, logical and (&&) binds weaker than relational operators,
which in turn bind weaker than arithmetic operators.

bool x = 2+3 > 1%4 && 5/5 == 1; // true

To make things clearer, parentheses can be used to specify which part
of the expression will be evaluated first. Parentheses have the greatest
precedence of all operators.

bool x = ((2+3) > (1x4)) && ((5/5) == 1); // true

19

CHAPTER 5

Strings

The string data type is used to store string constants. They are delimited by
double quotes.

string a = "Hello";

String Concatenation

The concatenation operator (+) can combine strings together. It also has
an accompanying assignment operator (+=), which appends a string to

another and creates a new string.

string b = a + " World"; // Hello World
a += " World"; // Hello World

When one of the operands is not of a string type, the concatenation
operator will implicitly convert the non-string type into a string, making
the following assignment valid.

int 1 = 1;
stringc=1+"1is " +1; // 11is1

The string conversion is performed implicitly using the ToString
method. All types in .NET have this method, which provides a string

representation of a variable or expression. As seen in the next example,

the string conversion can also be made explicitly.

string d = i.ToString() + " is " + 1.ToString(); // 1 is 1

© Mikael Olsson 2020 21
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_5

CHAPTER5 STRINGS

Another way to compile strings is to use string interpolation. This
feature was added in C# 6.0 and enables expressions placed inside curly
brackets to be evaluated within a string. To perform string interpolation, a
dollar sign ($) is placed before the string.

string s1 = "Hello";
string s2 = "World";

string s = $"{s1} {s2}"; // Hello World

Escape Characters

A statement can be broken up across multiple lines, but a string constant
must be on a single line. In order to divide it, the string constant has to first
be split up using the concatenation operator.

string myString
= "Hello " +
"World";
To add new lines into the string itself, the escape character (\n) is used.

string myString = "Hello\nWorld";

This backslash notation is used to write special characters, such as a
backslash or double quote. Among the special characters is also a Unicode
character notation for writing any character.

Character Meaning Character Meaning

\n Newline \f Form feed

\t Horizontal tab \a Alert sound

\v Vertical tab \' Single quote

\b Backspace \" Double quote

\r Carriage return \\ Backslash

\O Null character ~ \uFFFF Unicode character (four-digit hex number)

22

CHAPTER5 STRINGS

Escape characters can be ignored by adding an @ symbol before the
string. This is called a verbatim string and can be used to make file paths
more readable, for example.

string s1
string s2

"c:\\Windows\\System32\\cmd.exe";
@"c:\Windows\System32\cmd.exe";

String Compare

The way to compare two strings is simply by using the equal to operator
(==). This will not compare the memory addresses, as in some other
languages such as Java.

string greeting = "Hi";
bool b = (greeting == "Hi"); // true

String Members

The string type is an alias for the String class. As such, it provides a
multitude of methods related to strings, for example, methods like
Replace, Insert, and Remove. An important thing to note is that there are
no methods for changing a string. Methods that appear to modify a string
actually always return a completely new string. This is because the String
class is immutable. The content of a string variable cannot be changed
unless the whole string is replaced.

string a = "String";

string b = a.Replace("i", "o"); // Strong

b = a.Insert(o, "My "); // My String

b = a.Remove(0, 3); // ing

b = a.Substring(o, 3); // Str

b = a.ToUpper(); // STRING
int i = a.length; /] 6

23

CHAPTER5 STRINGS

StringBuilder Class

StringBuilder is a mutable string class. Because of the performance cost
associated with replacing a string, the StringBuilder class is a better
alternative when a string needs to be modified many times.

System.Text.StringBuilder sb = new
System.Text.StringBuilder("Hello");

The class has several methods that can be used to manipulate the
actual content of a string, such as Append, Remove, and Insert.

sb.Append(" World"); // Hello World
sb.Remove(0, 5); // World
sb.Insert(o, "Bye"); // Bye World

To convert a StringBuilder object back into a regular string, you use
the ToString method.

string s = sb.ToString(); // Bye World

24

CHAPTER 6

Arrays

An array is a data structure used for storing a collection of values that all
have the same data type.

Array Declaration

To declare an array, a set of square brackets is appended to the data type
that the array will contain, followed by the array’s name. An array can be
declared with any data type and all of its elements will then be of that type.

int[] x; // integer array

Array Allocation

The array is allocated with the new keyword, followed again by the data
type and a set of square brackets containing the length of the array. This is
the fixed number of elements that the array can contain. Once the array is
created, the elements will automatically be assigned to the default value
for that data type, in this case, zero.

int[] x = new int[3];

© Mikael Olsson 2020 25
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_6

CHAPTER6 ARRAYS

Array Assignment

To fill the array elements, they can be referenced one at a time and then
assigned values. An array element is referenced by placing the element’s
index inside square brackets. Notice that the index for the first element
starts with zero.

x[0] = 1;
x[1] = 2;
x[2] = 3;

Alternatively, the values can be assigned all at once by using a curly
bracket notation. The new keyword and data type may optionally be left out
if the array is declared at the same time.

new int[] { 1, 2, 3 };

int[] y
z={1,2 3}

int[]

Array Access

Once the array elements are initialized, they can be accessed by
referencing the elements’ indexes inside the square brackets.

System.Console.Write(x[0] + x[1] + x[2]); // "6"

Rectangular Arrays

There are two kinds of multi-dimensional arrays in C#: rectangular and
jagged. A rectangular array has the same length of all sub-arrays and
separates the dimensions using a comma.

string[,] x = new string[2, 2];

26

CHAPTER6 ARRAYS

As with single-dimensional arrays, they can either be filled in one at a
time or all at once during the allocation.

x[0, 0] = "00"; x[0, 1] = "01";
x[1, o] = "10"; x[1, 1] = "11";
string[,] y = { { "00", "01" }, { "10", "11" } };

Jagged Arrays

Jagged arrays are arrays of arrays, and they can have irregular dimensions.
The dimensions are allocated one at a time and the sub-arrays can
therefore be allocated to different sizes.

string[][] a = new string[2][];
a[o] = new string[1]; a[0][0]
a[1] = new string[2]; a[1][0]

"00";
"10"; a[l][l] = "11";

It is possible to assign the values during the allocation.

string[][] b = { new string[] { "00" },
new string[] { "10", "11" } };

These are all examples of two-dimensional arrays. If you need more
than two dimensions, more commas can be added for the rectangular
array, or more square brackets for the jagged array.

27

CHAPTER 7

Conditionals

Conditional statements are used to execute different code blocks based on
different conditions.

If Statement

The if statement will execute only if the condition inside the parentheses
is evaluated to true. The condition can include any of the comparison and
logical operators.

// Get a random integer (0, 1 or 2)
int x = new System.Random().Next(3);

if (x < 1) {
System.Console.Write(x + " < 1");

}

To test for other conditions, the if statement can be extended by any
number of else if clauses. Each additional condition will be tested only if
all previous conditions are false.

else if (x » 1) {
System.Console.Write(x + " > 1");

}

© Mikael Olsson 2020 29
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_7

CHAPTER 7 CONDITIONALS

The if statement can have one else clause at the end, which will
execute if all previous conditions are false.

else {
System.Console.Write(x + " == 1");

}

As for the curly brackets, they can be left out if only a single statement
needs to be executed conditionally. However, it is considered good
practice to include them since they improve readability.

if (x < 1)

System.Console.Write(x + " < 1");
else if (x > 1)

System.Console.Write(x + " > 1");
else

System.Console.Write(x + " == 1");

Switch Statement

The switch statement checks for equality between a value and a series of
case labels and then passes execution to the matching case. The statement
can contain any number of case clauses and may end with a default label
for handling all other cases.

int x = new System.Random().Next(4);
switch (x)
{

case 0: System.Console.Write(x + " is 0"); break;
is 1"); break;
is »>1"); break;

case 1: System.Console.Write(x +
default:System.Console.Write(x +

}

30

CHAPTER 7 CONDITIONALS

Note that the statements after each case label are not surrounded
by curly brackets. Instead, the statements end with the break keyword
to break out of the switch. Case clauses in C# must end with a jump
statement, such as break, because unintentional fall-throughs are a
common programming error. An exception to this is if the case clause is
completely empty, in which case execution is allowed to fall through to the
next label.

switch (x)
{
case 0:
case 1: System.Console.Write("x is 0 or 1"); break;

}

Goto Statement

To cause a fall-through to occur for a non-empty case clause, this behavior
has to be explicitly specified using the goto jump statement followed by a
case label. This will cause the execution to jump to that label.

case 0: gOtO case 1;

Goto may also be used outside of switches to jump to a label in the
same method’s scope. Control may then be transferred out of a nested
scope, but not into a nested scope. However, using goto in this manner is
discouraged since it makes it more difficult to follow the flow of execution.

myLabel:
/...
goto mylLabel; // jump to label

31

CHAPTER 7 CONDITIONALS

Switch Expression

C# 8.0 introduced the switch expression which is more concise than the
regular switch statement. It can be used when each case is an assignment
expression instead of a statement, as seen in the following example.

int x = new System.Random().Next(4);
string result = x switch {

0 => "zero",

1 => "one",

_ => "more than one"
};

System.Console.WriteLine("x is

+ result);

The switch expression returns the expression to the right of the arrow
(=>) if the expression tested matches the pattern to the left of the arrow.
Note that there are no case or break keywords in the switch expression
and that the default case is represented with an underscore (_).

Ternary Operator

In addition to the if and switch statements, there is the ternary operator
(?:). This operator takes three expressions. If the first one is evaluated to
true, then the second expression is returned, and if it is false, the third
one is returned.

// Get a number between 0.0 and 1.0
double x = new System.Random().NextDouble();
X = (x <0.5) 20 : 1; // ternary operator (?:)

32

CHAPTER 8

Loops

There are four looping structures in C#. These are used to execute a code
block multiple times. Just as with the conditional if statement, the curly
brackets for the loops can be left out if there is only one statement in the

code block.

While Loop

The while loop runs through the code block only if its condition is true and
will continue looping for as long as the condition remains true. Note that
the condition is only checked at the beginning of each iteration (loop).

int i = 0;

while (i < 10) {
System.Console.Write(i++); // 0-9

}

Do-While Loop

The do-while loop works in the same way as the while loop, except that

it checks the condition after the code block and will therefore always run
through the code block at least once. Bear in mind that this loop ends with
a semicolon.

© Mikael Olsson 2020 33
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_8

CHAPTER 8 LOOPS

int j = 0;
do {

System.Console.Write(j++); // 0-9
} while (j < 10);

For Loop

The for loop is used to go through a code block a specified number of
times. It uses three parameters. The first parameter initializes a counter
and is always executed once before the loop. The second parameter holds
the condition for the loop and is checked before each iteration. The third
parameter contains the increment of the counter and is executed at the
end of each iteration.

for (int k = 0; k < 10; k++) {
System.Console.Write(k); // 0-9
}

Several variations of the for loop are possible. For instance, the first
and third parameters can be split into several statements using the comma
operator.

for (int k = 0, m = 5; k < 10; k++, m--) {
System.Console.Write(k+m); // 5 (10x)
}

There is also the option of leaving out one or more of the parameters.
For example, the third parameter may be moved into the body of the loop.

for (int k = 0; k < 10;) {
System.Console.Write(k++); // 0-9
}

34

CHAPTER 8 LOOPS

Foreach Loop

The foreach loop provides an easy way to iterate through arrays. At each
iteration, the next element in the array is assigned to the specified variable
(the iterator) and the loop continues to execute until it has gone through
the entire array.

int[la={1,2,31}
foreach (int n in a) {
System.Console.Write(n); // "123"

}

Note that the iterator variable is read-only and can therefore not be
used to change elements in the array.

Break and Continue

There are two special keywords that can be used inside loops - break
and continue. The break keyword ends the loop structure, and continue
skips the rest of the current iteration and continues at the start of the next

iteration.

for (int i = 0; 1 < 10; i++) {
if (i == 5) break; // end loop
if (i == 3) continue; // start next iteration
System.Console.Write(i); // "0124"

}

35

CHAPTER 9

Methods

Methods are reusable code blocks that will only execute when called.

Defining Methods

A method can be created inside a class by typing void followed by the
method’s name, a set of parentheses, and a code block. The void keyword
means that the method will not return a value. The naming convention for
methods is the same as for classes - a descriptive name with each word
initially capitalized.

class MyApp
{
void MyPrint()
{
System.Console.WritelLine("Hello World");
}
}

All methods in C# must belong to a class, and they are the only place
where statements may be executed. C# does not have global functions,
which are methods defined outside of classes.

© Mikael Olsson 2020 37
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_9

CHAPTER9 METHODS

Calling Methods

The previously defined method will print out a text message. To invoke
(call) it, an instance of the MyApp class must first be created by using the
new keyword. The dot operator is then used after the instance’s name to
access its members, which includes the MyPrint method.

class MyApp
{

static void Main()
{
MyApp m = new MyApp();
m.MyPrint(); // Hello World
}
void MyPrint()
{
System.Console.WritelLine("Hello World");

}
}

Method Parameters

The parentheses that follow the method name are used to pass arguments

to the method. To do this, the corresponding parameters must first be

specified in the method definition in the form of a comma-separated list of

declarations.

void MyPrint(string si1, string s2)

{

System.Console.WritelLine(s1 + s2);

}

38

CHAPTER9 METHODS

A method can be defined to take any number of arguments, and they
can have any data types. Just ensure the method is called with the same
types and number of arguments.

static void Main()
{

MyApp m = new MyApp();

m.MyPrint("Hello", " World"); // "Hello World"
}

To be precise, parameters appear in method definitions, while
arguments appear in method calls. However, the two terms are sometimes
used interchangeably.

Params Keyword

To take a variable number of arguments of a specific type, an array with
the params modifier can be added as the last parameter in the list. Any
extra parameters of the specified type that are passed to the method will
automatically be stored in that array.

void MyPrint(params string[] s)
{

foreach (string x in s)
System.Console.WritelLine(x);

Method Overloading

It is possible to declare multiple methods with the same name as long as
the parameters vary in type or number. This is called method overloading
and can be seen in the implementation of the System.Console.Write

39

CHAPTER9 METHODS

method, for example, which has 18 method definitions. It is a powerful
feature that allows a method to handle a variety of arguments without the
programmer needing to be aware of using different methods.

void MyPrint(string s)
{

System.Console.WritelLine(s);

}
void MyPrint(int i)

{

System.Console.Writeline(i);

}

Optional Parameters

As of C# 4.0, parameters can be declared as optional by providing a default
value for them in the method declaration. When the method is invoked,
these optional arguments may be omitted to use the default values.

class MyApp

{
void MySum(int i, int j = 0, int k = 0)
{
System.Console.WritelLine(1*i + 2*j + 3%k);
}
static void Main()
{
new MyApp().MySum(1, 2); // 5
}
}

40

CHAPTER9 METHODS

Named Arguments

C# 4.0 also introduced named arguments, which allow an argument to
be passed using the name of its corresponding parameter. This feature
complements optional parameters by enabling arguments to be passed
out of order, instead of relying on their position in the parameter list.
Therefore, any optional parameter can be specified without having to
specify the value for every optional parameter before it.

static void Main()

{
new MyApp().MySum(1, k: 2); // 7

}

Both optional and required parameters can be named, but the named
arguments must be placed after the unnamed ones. This order restriction
was loosened in C# 7.2, allowing named arguments to be followed by
positional arguments provided that the named arguments are in the
correct position.

static void Main()

{
new MyApp().MySum(i: 2, 1); // 4

}

Named arguments are useful for improving code readability, by
identifying what each argument represents.

Return Statement

A method can return a value. The void keyword is then replaced with the
data type that the method will return, and the return keyword is added to
the method body with an argument of the specified return type.

41

CHAPTER9 METHODS

string GetPrint()
{

return "Hello";

}

Returnis a jump statement that causes the method to exit and return
the value to the place where the method was called. For example, the
GetPrint method can be passed as an argument to the Write method
since the method evaluates to a string.

static void Main()
{
MyApp m = new MyApp();
System.Console.Write(m.GetPrint()); // "Hello World"
}

The return statement may also be used in void methods to exit before
the end block is reached.

void MyMethod()
{

return;

}

Value and Reference Types

There are two kinds of data types in C#: value types and reference types.
Variables of value types directly contain their data, whereas variables of
reference types hold references to their data. The reference types in C#
include class, interface, array, and delegate types. The value types include the
simple types, as well as the struct, enum, and nullable value types. Reference
type variables are typically created using the new keyword, although that is
not always necessary, as, for example, in the case of string objects.

42

CHAPTER9 METHODS

A variable of a reference type is generally called an object, although
strictly speaking the object is the data that the variable refers to. With
reference types, multiple variables can reference the same object, and
therefore operations performed through one variable will affect any other
variables that reference the same object. In contrast, with value types,
each variable will store its own value and operations on one will not affect
another.

Pass by Value

When passing parameters of value type, only a local copy of the variable is
passed. This means that if the copy is changed, it will not affect the original
variable.

void Set(int i) { i = 10; }

static void Main()

{
MyApp m = new MyApp();
int x = 0; // value type
m.Set(x); // pass value of x
System.Console.Write(x); // O

Pass by Reference

For reference data types, C# uses true pass by reference. This means that
when a reference type is passed, it is not only possible to change its state
but also to replace the entire object and have the change propagate back to
the original object.

43

CHAPTER9 METHODS
void Set(int[] i) { i = new int[] { 10 }; }

static void Main()

{

MyApp m = new MyApp();
int[] y = { 0 }; // reference type

m.Set(y); // pass object reference
System.Console.Write(y[0]); // 10

Ref Keyword

A variable of value type can be passed by reference by using the ref
keyword, both in the caller and method declarations. This will cause the
variable to be passed in by reference, and therefore changing it will update
the original value.

void Set(ref int i) { i = 10; }

static void Main()
{
MyApp m = new MyApp();
int x = 0; // value type
m.Set(ref x); // pass reference to value type
System.Console.Write(x); // 10

Value types can be returned by reference starting with C# 7.0. The ref
keyword is then added both before the return type and the return value.
Bear in mind that the returned variable must have a lifetime that extends
beyond the method’s scope, so it cannot be a variable local to the method.

44

CHAPTER9 METHODS

class MyClass
{
public int myField = 5;
public ref int GetField()
{
return ref myField;
}
}

The caller can decide whether to retrieve the returned variable by
value (as a copy) or by reference (as an alias). Note that when retrieving by
reference, the ref keyword is used both before the method call and before
the variable declaration.

class MyApp

{
static void Main()
{
MyClass m = new MyClass();
ref int myAlias = ref m.GetField(); // reference
int myCopy = m.GetField(); // value copy
myAlias = 10;
System.Console.WritelLine(m.myField); // "10"
}
}

45

CHAPTER9 METHODS

Out Keyword

Sometimes you may want to pass an unassigned variable by reference
and have it assigned in the method. However, using an unassigned local
variable will give a compile-time error. For this situation, the out keyword
can be used. It has the same function as ref, except that the compiler will
allow use of the unassigned variable, and it will make sure the variable is
assigned in the method.

void Set(out int i) { i = 10; }

static void Main()

{
MyApp m = new MyApp();
int x; // value type
m.Set(out x); // pass reference to unset value type
System.Console.Write(x); // 10

With C# 7.0, it became possible to declare out variables in the
argument list of a method call. This feature allows the previous example to
be simplified in the following manner.

static void Main()

{
MyApp m = new MyApp();
m.Set(out int x);
System.Console.Write(x); // 10

}

46

CHAPTER9 METHODS

Local Methods

Starting with C# 7.0, a method can be defined inside another method. This
is useful for limiting the scope of a method, in cases when the method is
only called by one other method. To illustrate, a nested method is used
here to perform a countdown. Note that this nested method calls itself and

is therefore called a recursive method.

class MyClass
{

void CountDown()
{
int x = 10;
Recursion(x);
System.Console.WritelLine("Done");
void Recursion(int i)
{
if (i <= 0) return;
System.Console.WritelLine(i);
System.Threading.Thread.Sleep(1000); // wait 1 second
Recursion(i - 1);
}
}

static void Main()

{
new MyClass().CountDown();

}
}

47

CHAPTER 10

Class

A class is a template used to create objects. They are made up of members,

the main two of which are fields and methods. Fields are variables that
hold the state of the object, while methods define what the object can do.

class MyRectangle
{

int x, y;

int GetArea() { return x * y; }
}

Object Creation

To use a class’s instance members from outside the defining class, an
object of the class must first be created. This is done by using the new
keyword, which will create a new object in the system’s memory.

class MyClass
{

static void Main()
{
// Create an object of MyRectangle
MyRectangle r = new MyRectangle();
}
}

© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_10

49

CHAPTER 10 CLASS

An object is also called an instance. The object will contain its own set
of fields, which hold values that are different from those of other instances
of the class.

Accessing Object Members

In addition to creating the object, the members of the class that are to be
accessible need to be declared as public in the class definition.

class MyRectangle

{
// Make members accessible for instances of the class
public int x, y;
public int GetArea() { return x * y; }

}

The member access operator (.) is used after the object’s name to
reference its accessible members.

static void Main()

{
MyRectangle r = new MyRectangle();
r.x = 10;
r.y =5;
int a = r.GetArea(); // 50
}

50

CHAPTER 10 CLASS

Constructor

The class can have a constructor. This is a special kind of method used
to instantiate (construct) the object. It always has the same name as the
class and does not have a return type, because it implicitly returns a new
instance of the class. To be accessible from another class, it needs to be
declared with the public access modifier.

public MyRectangle() { x = 10; y = 5; }

When a new instance of the class is created, the constructor method
is called, which in the example here sets the fields to the specified initial
values.

static void Main()

{
MyRectangle r = new MyRectangle(); // calls constructor

}

The constructor can have a parameter list, just as any other method. As
seen in the following example, this can be used to make the fields’ initial
values depend on the parameters passed when the object is created.

class MyRectangle

{
public int x, y;

public MyRectangle(int width, int height)

{
x = width; y = height;
}
static void Main()
{
MyRectangle r = new MyRectangle(20, 15);
}
}

51

CHAPTER 10 CLASS

This Keyword

Inside the constructor, as well as in other methods belonging to the
object, a special keyword called this can be used. This keyword is a
reference to the current instance of the class. Suppose, for example, that
the constructor’s parameters have the same names as the corresponding
fields. The fields could then still be accessed by using the this keyword,
even though they are overshadowed by the parameters.

class MyRectangle

{
public int x, y;
public MyRectangle(int x, int y)
{
this.x = x; // set field x to parameter x
this.y = y;
}
}

Constructor Overloading

To support different parameter lists, the constructor can be overloaded.

In the next example, the fields will be assigned default values if the class is
instantiated without any arguments. With one argument, both fields will
be set to the specified value, and with two arguments, each field will be
assigned a separate value. Attempting to create an object with the wrong
number of arguments, or with incorrect data types, will result in a compile-
time error, just as with any other method.

class MyRectangle

{
public int x, y;

52

CHAPTER 10 CLASS

public MyRectangle() { x = 10; y = 5; }

public MyRectangle(int a) { x = a; y = a; }

public MyRectangle(int a, int b) { x = a; y = b; }
}

Constructor Chaining

The this keyword can also be used to call one constructor from another.
This is known as constructor chaining and allows for greater code reuse.
Note that the keyword appears as a method call before the constructor
body and after a colon.

class MyRectangle
{
public int x, y;
public MyRectangle() : this(10, 5) {}
public MyRectangle(int a) : this(a, a) {}
public MyRectangle(int a, int b) { x = a; y = b; }

Initial Field Values

If there are fields in a class that need to be assigned initial values, such as
in the previous example, the fields can simply be initialized at the same
time as they are declared. This can make the code a bit cleaner. The initial
values will be assigned when the object is created, before the constructor is
called.

class MyRectangle
{

public int x = 10, y = 20;

}

53

CHAPTER 10 CLASS

An assignment of this type is called a field initializer. Such an
assignment cannot refer to another instance field.

Default Constructor

It is possible to create a class even if no constructors are defined. This
is because the compiler will automatically add a default parameterless
constructor to such a class. The default constructor will instantiate the
object and set each field to its default value.

class MyRectangle {}
class MyApp

{

static void Main()

{
// Calls default constructor

MyRectangle r = new MyRectangle();
}
}

Object Initializers

When creating an object, as of C# 3.0, it is possible to initialize the object’s
public fields within the instantiation statement. A code block is then
added, containing a comma-separated list of field assignments. This object
initializer block will be processed after the constructor has been called.

class MyRectangle

{
public int x, y;

}

54

CHAPTER 10 CLASS

class MyClass
{

static void Main()
{
// Use object initializer
MyRectangle r = new MyRectangle() { x = 10, y = 5 };
}
}

If there are no arguments for the constructor, the parentheses may be
removed.

MyRectangle r = new MyRectangle { x = 10, y = 5 };

Partial Class

A class definition can be split up into separate source files by using the
partial type modifier. These partial classes will be combined into the
final type by the compiler. All parts of a partial class must have the partial
keyword and share the same access level.

// Filel.cs
public partial class MyPartialClass {}

// File2.cs
public partial class MyPartialClass {}

Splitting classes across multiple source files is primarily useful when
part of a class is generated automatically. For example, this feature
is used by Visual Studio’s graphical user interface builder to separate
automatically generated code from user-defined code. Partial classes can
also make it easier for multiple programmers to work on the same class
simultaneously.

55

CHAPTER 10 CLASS

Garbage Collector

The .NET Framework has a garbage collector that periodically releases
memory used by objects when they are no longer accessible. This frees
the programmer from the often tedious and error-prone task of manual
memory management. An object will be eligible for destruction when
there are no more references to it. This occurs, for example, when a local
object variable goes out of scope. Bear in mind that an object cannot be
explicitly deallocated in C#.

static void Main()

{
if (true) {
string s = "";
}

// String object s becomes inaccessible
// here and will be destroyed

}

Destructor

In addition to constructors, a class can also have a destructor. The
destructor is used to release any unmanaged resources allocated by the
object. It is called automatically before an object is destroyed and cannot
be called explicitly. The name of the destructor is the same as the class
name, but preceded by a tilde (~). A class may only have one destructor
and it does not take any parameters or return any value.

class MyComponent

{

public System.ComponentModel.Component comp;
public MyComponent()

56

CHAPTER 10 CLASS

{

comp = new System.ComponentModel.Component();
}
// Destructor
~MyComponent ()
{
comp.Dispose();
}
}

In general, the .NET Framework garbage collector automatically
manages the allocation and release of memory for objects. However, when
a class uses unmanaged resources - such as files, network connections,
and user interface components - a destructor should be used to free up
those resources when they are no longer needed.

Null Keyword

The null keyword is used to represent a null reference, which is a
reference that does not refer to any object. It can only be assigned to
variables of reference type and not to value type variables.

string s = null;

Trying to access members of an object referring to null will cause an
exception, because there is no valid instance to dereference.

int length = s.Length; // error: NullReferenceException

In order to safely access instance members of an object that may be
null, a check for a null reference should first be carried out. This test can be
done for instance using the equal to operator (==).

57

CHAPTER 10 CLASS

class MyApp
{
public string s; // null by default
static void Main()
{
MyApp o = new MyApp();
if (o.s == null) {

o.s = ""; // create a valid object (empty string)

}
int length = o.s.Length; // 0

Another option is to use the ternary operator to assign a suitable value

in case a null string is encountered.

string s = null;
int length = (s != null) ? s.Length : 0; // 0

Nullable Value Types

A value type can be made to hold the value null in addition to its normal
range of values by appending a question mark (?) to its underlying type.
This is called a nullable type and allows the simple types, as well as other
struct types, to indicate an undefined value. For example, bool? is a
nullable type that can hold the values true, false, and null.

bool? b = null; // nullable bool type

58

CHAPTER 10 CLASS

Nullable Reference Types

One of the most common mistakes in object-oriented programming
languages is to dereference a variable set to null, which causes a null
reference exception. To help avoid this issue, C# 8.0 introduced a
distinction between nullable and non-nullable reference types. Same as
with nullable value types, a nullable reference type is created by appending
a question mark (?) to the type. Only such a reference type may be
assigned the value null.

string? si1 = null; // nullable reference type

string s2 = ""; // non-nullable reference type

This language feature needs to be explicitly enabled because existing
reference types then become non-nullable reference types. To enable it for
the entire project, right-click the project item in the Solution Explorer and
select Edit Project File from the context menu to open the .csproj project
file. In this file, add a Nullable element to the PropertyGroup element and
set its value to enable as seen here.

<PropertyGroup>

<Nullable>enable</Nullable>
</PropertyGroup>

Alternatively, the feature can be enabled for only a single file by
adding the #nullable enable directive to that file. Once enabled, any null
assignments to non-nullable reference types will trigger a compilation

warning.

#nullable enable
string a = null; // warning

Non-nullable reference types do not need to be null-checked before
they are dereferenced.

59

CHAPTER 10 CLASS

string b = ""; // non-nullable reference type

int i = s.Length; // no warning

Attempting to dereference a nullable reference in contexts when it may
possibly be null will cause a compiler warning. A null check is required to
remove the warning.

string? c = null;

/...
int j = c.length; // warning
if (c != null)

int k = c.Length; // no warning

This behavior can be overridden using the null-forgiving operator
(1) added in C# 8.0. In cases when the compiler cannot determine that
avariable is non-null, this postfix operator can be used to suppress the
warning when you are certain the nullable variable is not set to null.

string? d = "Hello";

/...
int a = d.Length; // potential warning
int b = d!.Length; // warning suppressed

Null-Coalescing Operator

The null-coalescing operator (??) returns the left-hand operand if it is
not null and otherwise returns the right-hand operand. This conditional
operator provides an easy syntax for assigning a nullable type to a non-
nullable type.

int? i = null;
int j=17?20;//0

60

CHAPTER 10 CLASS

A variable of a nullable type should not be explicitly cast to a non-
nullable type. Doing so will cause a runtime error if the variable has null
as its value.

int? i = null;
int j = (int)i; // error

C# 8.0 introduced the null-coalescing assignment operator (?7?=),
combining the null-coalescing operator with an assignment. The operator
assigns the value on its right side to the operand on its left side if the left
side operand evaluates to null.

int? i = null;
i ??=3; // assign i=3 if i==null
// same as 1 =1 ?? 3;

Null-Conditional Operator

In C# 6.0, the null-conditional operator (?.) was introduced. This operator
provides a concise way to perform null checks when accessing object
members. It works like the regular member access operator (.), except
that if a null reference is encountered, the value null is returned instead of
causing an exception to occur.

string s = null;
int? length = s?.Length; // null

Combining this operator with the null-coalescing operator is useful for
assigning a default value whenever a null reference appears.

string s = null;
int length = s?.Length ?? 0; // 0

Another use for the null-conditional operator is together with arrays.
The question mark can be placed before the square brackets of the array

61

CHAPTER 10 CLASS

and the expression will then evaluate to null if the array is uninitialized.
Note that this will not check if the array index referenced is out of range.

string[] s = null;
string s3 = s?[3]; // null

Default Values

The default value of a reference type is null. For the simple data types, the
default values are as follows: numerical types become 0, a char has the
Unicode character for zero (\0000), and a bool is false. Default values will
be assigned automatically by the compiler for fields. However, explicitly
specifying the default value for fields is considered good programming
since it makes the code easier to understand. For local variables the default
values will not be set by the compiler. Instead, the compiler forces the
programmer to assign values to any local variables that are used, so as to
avoid problems associated with using unassigned variables.

class MyClass
{

int x; // field is assigned default value 0
void test()

{

int x; // local variable must be assigned if used

}
}

Type Inference

Beginning with C# 3.0, local variables can be declared with var to have
the compiler automatically determine the type of the variable based on

62

CHAPTER 10 CLASS

its assignment. Bear in mind that var is not a dynamic type so changing
the assignment later will not change the underlying type inferred by the
compiler. The following two declarations are equivalent.

class MyClass {}
var o = new MyClass(); // Implicit type
MyClass o = new MyClass(); // Explicit type

When to use var comes down to preference. In cases when the type of
the variable is obvious from the assignment, use of var may be preferable
to shorten the declaration and arguably improve readability. If unsure of
what the type of a variable is, you can hover the mouse cursor over it in
the IDE to display its type. Keep in mind that var can only be used when a
local variable is both declared and initialized at the same time.

Anonymous Types

An anonymous type is a type created without an explicitly defined class.
They provide a concise way to form a temporary object that is only needed
within the local scope and therefore should not be visible elsewhere. An
anonymous type is created using the new operator followed by an object
initializer block.

var v = new { first = 1, second = true };
System.Console.WritelLine(v.first); // "1"

Property types are automatically determined by the compiler based
on the assigned value. They will be readonly so their values cannot be
changed after their initial assignment. Note that type inference using var is
needed to hold the reference of an anonymous type.

63

CHAPTER 11

Inheritance

Inheritance allows a class to acquire the members of another class. In the

following example, the class Square inherits from Rectangle, specified by

a colon. Rectangle then becomes the base class of Square, which in turn
becomes a derived class of Rectangle. In addition to its own members,

Square gains all accessible members in Rectangle, except for any
constructors or destructors.

// Base class (parent class)
class Rectangle

{
public int x = 10, y = 10;
public int GetArea() { return x * y; }

}

// Derived class (child class)
class Square : Rectangle {}

Object Class

A class in C# may only inherit from one base class. If no base class is
specified, the class will implicitly inherit from System.0Object. This is
therefore the root class of all other classes.

class Rectangle : System.Object {}

© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_11

65

CHAPTER 11 INHERITANCE

C# has a unified type system in that all data types, directly or indirectly,
inherit from Object. This does not only apply to classes, but also to other
data types, such as arrays and simple types. For example, the int keyword
is only an alias for the System. Int32 struct type. Likewise, object is an
alias for the System.Object class.

System.Object o = new object();

Because all types inherit from Object, they all share a common
set of methods. One such method is ToString, which returns a string
representation of the current object. The method often returns the name of
the type, which can be useful for debugging purposes.

System.Console.WritelLine(o.ToString()); // "System.Object"

Downcast and Upcast

Conceptually, a derived class is a specialization of its base class. This means
that Square is a kind of Rectangle as well as an Object, and it can therefore
be used anywhere a Rectangle or Object is expected. If an instance of
Square is created, it can be upcast to Rectangle since the derived class
contains everything in the base class.

Square s = new Square();
Rectangle r = s; // upcast

The object is now viewed as a Rectangle, so only Rectangle’s
members can be accessed. When the object is downcast back into a
Square, everything specific to the Square class will still be preserved. This
is because the Rectangle only contained the Square; it did not change the
Square object in any way.

Square s2 = (Square)r; // downcast

66

CHAPTER 11 INHERITANCE

The downcast has to be made explicit since downcasting an actual
Rectangle into a Square is not allowed.

Rectangle r2 = new Rectangle();
Square s3 = (Square)r2; // error

Boxing

The unified type system of C# allows for a variable of value type to

be implicitly converted into a reference type of the Object class. This
operation is known as boxing and once the value has been copied into the
object, it is seen as a reference type.

int myInt = 5;
object myObj = myInt; // boxing

Unboxing

The opposite of boxing is unboxing. This converts the boxed value back
into a variable of its value type. The unboxing operation must be explicit.
If the object is not unboxed into the correct type, a runtime error will occur.

myInt = (int)myObj; // unboxing

The Is and As Keywords

There are two operators that can be used to avoid exceptions when casting
objects: is and as. First, the is operator returns true if the left side object
can be cast to the right side type without causing an exception.

Rectangle q = new Square();
if (q is Square) { Square o = q; } // condition is true

67

CHAPTER 11 INHERITANCE

The second operator used to avoid object casting exceptions is the as
operator. This operator provides an alternative way of writing an explicit
cast, with the difference that if it fails, the reference will be set to null.

Rectangle r = new Rectangle();
Square o = r as Square; // invalid cast, returns null

When using the as operator, there is no distinction between a null
value and the wrong type. Furthermore, this operator only works with
reference type variables. Pattern matching provides a way to overcome
these restrictions.

Pattern Matching

C# 7.0 introduced pattern matching, which extends the use of the is
operator to both testing a variable’s type and, upon validation, assigning
it to a new variable of that type. This provides a new method for safely
casting variables between types, and also largely replaces the use of the as
operator with the following, more convenient syntax.

Rectangle q = new Square();
if (q is Square mySquare) { /* use mySquare here */ }

When a pattern variable like mySquare is introduced in an if
statement, it also becomes available in the enclosing block’s scope. Hence
the variable can be used even after the end of the if statement. This is not
the case for other conditional or looping statements.

object obj = "Hello";
if (!(obj is string text)) {
return; } // exit if obj is not a string

}
System.Console.WritelLine(text); // "Hello"

68

CHAPTER 11 INHERITANCE

The extended is expression works not just with reference types, but
also with value types. In addition to types, any constant may also be used,

as seen in the following example.

class MyApp

{
void Test(object o)

{

if (o is 5)
System.Console.WriteLine("5");

else if (o is int i)
System.Console.WriteLine("int:" + 1i);
else if (o is null)
System.Console.WritelLine("null");

}

static void Main()

{
MyApp c = new MyApp();
c.Test(5); // "5"
c.Test(1); // "int:1"
c.Test(null); // "null"

Pattern matching works not only with if statements but also with
switch statements, using a slightly different syntax. The type to be
matched and any variable to be assigned is placed after the case keyword.
The previous example method can be rewritten as follows.

69

CHAPTER 11 INHERITANCE

void Test(object o)
{
switch(o)
{
case 5:
System.Console.WritelLine("5"); break;
case int i:
System.Console.WritelLine("int:" + i); break;
case null:
System.Console.WritelLine("null"); break;

}
}

Note that the order of the case expressions matter when performing
pattern matching. The first case matching the number 5 must appear
before the more general int case in order for it to be matched.

70

CHAPTER 12

Redefining Members

A member in a derived class can redefine a member in its base class. This
can be done for all kinds of inherited members, but it is most often used
to give instance methods new implementations. To give a method a new
implementation, the method is redefined in the child class with the same
signature as it has in the base class. The signature includes the name,
parameters, and return type of the method.

class Rectangle

{

public int x = 1, y = 10;

public int GetArea() { return x * y; }
}

class Square : Rectangle

{

public int GetArea() { return 2 * x; }

}

Hiding Members

It must be specified whether the method is intended to hide or override the
inherited method. By default, the new method will hide it, but the compiler
will give a warning that the behavior should be explicitly specified.

© Mikael Olsson 2020 71
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_12

CHAPTER 12 REDEFINING MEMBERS

To remove the warning, the new modifier needs to be used. This
specifies that the intention was to hide the inherited method and to
replace it with a new implementation.

class Square : Rectangle

{

public new int GetArea() { return 2 * x; }

}

Overriding Members

Before a method can be overridden, the virtual modifier must first be
added to the method in the base class. This modifier allows the method to

be overridden in a derived class.

class Rectangle

{

public int x = 1, y = 10;

public virtual int GetArea() { return x x y; }
}

The override modifier can then be used to change the
implementation of the inherited method.

class Square : Rectangle

{

public override int GetArea() { return 2 * x; }

}

72

CHAPTER 12 REDEFINING MEMBERS

Hiding and Overriding

The difference between override and new is shown when a Square is
upcast to a Rectangle. If the method is redefined with the new modifier,
then this allows access to the previously hidden method defined in
Rectangle. On the other hand, if the method is redefined using the
override modifier, then the upcast will still call the version defined in
Square. In short, the new modifier redefines the method down the class
hierarchy, while override redefines the method both up and down in the
hierarchy.

Sealed Keyword

To stop an overridden method from being further overridden in classes
that inherit from the derived class, the method can be declared as sealed
to negate the virtual modifier.

class MyClass
{

public sealed override int NonOverridable() {}

}

A class can also be declared as sealed to prevent any class from

inheriting it.

sealed class NonInheritable {}

73

CHAPTER 12 REDEFINING MEMBERS

Base Keyword

There is a way to access a parent’s method even if it has been redefined.
This is done by using the base keyword to reference the base class
instance. Whether the method is hidden or overridden, it can still be
reached by using this keyword.

class Triangle : Rectangle

{

public override GetArea() { return base.CetArea()/2; }

}

The base keyword can also be used to call a base class constructor
from a derived class constructor. The keyword is then used as a method
call before the constructor’s body, prefixed by a colon.

class Rectangle

{

public int x = 1, y = 10;

public Rectangle(int a, int b) { x = a; y = b; }
}

class Square : Rectangle

{
public Square(int a) : base(a,a) {}

}

When a derived class constructor does not have an explicit call to the
base class constructor, the compiler will automatically insert a call to the
parameterless base class constructor in order to ensure that the base class
is properly constructed.

74

CHAPTER 12 REDEFINING MEMBERS

class Square : Rectangle
{

public Square(int a) {} // : base() implicitly added
}

Note that if the base class has a constructor defined that is not
parameterless, the compiler will not create a default parameterless
constructor. Therefore, defining a constructor in the derived class,
without an explicit call to a defined base class constructor, will cause a
compile-time error.

class Base { public Base(int a) {} }
class Derived : Base {} // compile-time error

75

CHAPTER 13

Access Levels

Every class member has an accessibility level that determines where the
member will be visible. There are six of them available in C#: public,
protected, internal, protected internal, private, and private
protected, the last of which was added in C# 7.2. The default access level
for members of a class is private.

Private Access

All members regardless of access level are accessible in the class in which
they are declared, the defining class. This is the only place where a private
member can be accessed.

public class MyBase
{

// Unrestricted access
public int myPublic;

// Defining assembly or derived class
protected internal int myProtInt;

// Derived class within defining assembly
private protected int myPrivProt;

© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_13

77

CHAPTER 13 ACCESS LEVELS

// Defining assembly
internal int myInternal;

// Derived class
protected int myProtected;

// Defining class only
private int myPrivate;

void Test()

{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myPrivProt = 0; // allowed
myInternal = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // allowed

}

}

Protected Access

A protected member can be accessed from within a derived class, but it is
inaccessible from any other classes.

class Derived : MyBase

{
void Test()

{
myPublic 0; // allowed
myProtInt = 0; // allowed
0; // allowed

myPrivProt

78

CHAPTER 13 ACCESS LEVELS

myInternal = 0; // allowed

myProtected = 0; // allowed

myPrivate = 0; // inaccessible
}

}

Internal Access

An internal member can be accessed anywhere within the local assembly,
but not from another assembly. An assembly is the compilation unit of a
.NET project, either an executable program (.exe) or a library (.d11).

// Defining assembly
class AnyClass

{
void Test(MyBase m)
{
m.myPublic = 0; // allowed
m.myProtInt = 0; // allowed
m.myPrivProt = 0; // inaccessible
m.myInternal = 0; // allowed
m.myProtected = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

In Visual Studio, a project (assembly) is contained within a solution.
You can add a second project to your solution by right-clicking the
Solution node in the Solution Explorer window and selecting Add » New
Project.

79

CHAPTER 13 ACCESS LEVELS

For the second project to be able to reference accessible types from the
first project, you need to add a reference. To do so, right-click the References
node of the second project and click Add Reference. Under Projects, select
the name of the first project and click OK to add the reference.

Protected Internal Access

Protected internal access means either protected or internal. A protected
internal member can therefore be accessed anywhere within the current
assembly or in classes outside the assembly that are derived from the
enclosing class.

// Other assembly
class Derived : MyBase

{
void Test()
{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myPrivProt = 0; // inaccessible
myInternal = 0; // inaccessible
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
}

Private Protected Access

A private protected member is accessible only within the defining assembly
in types that derive from the defining type. Put another way, this access
level restricts the member’s visibility to being both protected and internal.

80

CHAPTER 13 ACCESS LEVELS

// Defining assembly
class Derived : MyBase

{
void Test()
{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myPrivProt = 0; // allowed
myInternal = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
}
Public Access

The public modifier gives unrestricted access from anywhere that a
member can be referenced.

// Other assembly
class AnyClass

{
void Test(MyBase m)
{
m.myPublic = 0; // allowed
m.myProtInt = 0; // inaccessible
m.myPrivProt = 0; // inaccessible
m.myInternal = 0; // inaccessible
m.myProtected = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

81

CHAPTER 13 ACCESS LEVELS

Top-Level Access Levels

A top-level member is a type that is declared outside of any other types. In
C#, the following types can be declared on the top level: class, interface,
struct, enum, and delegate. By default, these uncontained members are
given internal access. To be able to use a top-level member from another
assembly, that member has to be marked as public. This is the only other
access level allowed for top-level members.

internal class MyInternalClass {}
public class MyPublicClass {}

Inner Classes

Classes may contain inner classes, which can be set to any one of the

six access levels. The access levels have the same effect on inner classes
as they do on other members. If the class is inaccessible, it cannot be
instantiated or inherited. By default, inner classes are private, which
means that they can only be used within the class where they are defined.

class MyBase

{
// Inner classes (nested classes)
public class MyPublic {}
protected internal class MyProtInt {}
private protected class MyPrivProt {}
internal class MyInternal {}
protected class MyProtected {}
private class MyPrivate {}

82

CHAPTER 13 ACCESS LEVELS

Access Level Guideline

As a guideline, when choosing an access level, it is generally best to use the
most restrictive level possible. This is because the more places a member
can be accessed, the more places it can be accessed incorrectly, which
makes the code harder to debug. Using restrictive access levels will also
make it easier to modify a class without breaking the code for any other
programmers using that class.

83

CHAPTER 14

Static

The static keyword can be used to declare fields and methods that can

be accessed without having to create an instance of the class. Static (class)
members only exist in one copy, which belongs to the class itself, whereas
instance (non-static) members are created as new copies for each new
object. This means that static methods cannot use instance members since
these methods are not part of an instance. On the other hand, instance
methods can use both static and instance members.

class MyCircle

{

// Instance variable (one per object)
public float r = 10F;

// Static/class variable (only one instance)
public static float pi = 3.14F;

// Instance method
public float GetArea()

{

return ComputeArea(r);

}

© Mikael Olsson 2020 85
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_14

CHAPTER 14 STATIC

// Static/class method
public static float ComputeArea(float a)
{
return pixaxa;
}
}

Accessing Static Members

To access a static member from outside the class, the class name is used
followed by the dot operator. This operator is the same as the one used
to access instance members, but to reach them, an object reference is
required. An object reference cannot be used to access a static member.

class MyApp

{
static void Main()
{
float f = MyCircle.ComputeArea(MyCircle.pi);
}
}

Static Methods

The advantage of static members is that they can be used by other classes
without having to create an instance of the class. Fields should therefore
be declared static when only a single instance of the variable is needed.
Methods should be declared static if they perform a generic function that
is independent of any instance variables. A good example of this is the
System.Math class, which provides a multitude of mathematical methods.
This class contains only static members and constants.

86

CHAPTER 14 STATIC

static void Main()

{
double pi = System.Math.PI;

}

Static Fields

Static fields have the advantage that they persist throughout the life of the
application. A static variable can therefore be used, for example, to record
the number of times that a method has been called.

static int count = 0;
public static void Dummy()

{

count++;

}

The default value for a static field will be set only once before it is first
used.

Static Classes

A class can also be marked static if it only contains static members and
constant fields. A static class cannot be inherited or instantiated into an
object. Attempting to do so will cause a compile-time error.

static class MyCircle {}

87

CHAPTER 14 STATIC

Static Constructor

A static constructor can perform any actions needed to initialize a class.
Typically, these actions involve initializing static fields that cannot be
initialized as they are declared. This can be necessary if their initialization
requires more than one line, or some other logic, to be initialized.

class MyClass
{
static int[] array = new int[5];
static MyClass()
{
for(int i = 0; i < array.Length; i++)
array[i] = i;

The static constructor, in contrast to the regular instance constructor,
will only be run once. This occurs automatically either when an instance
of the class is created or when a static member of the class is referenced.
Static constructors cannot be called directly and are not inherited. In case
the static fields also have initializers, those initial values will be assigned
before the static constructor is run.

Static Local Functions

A local function automatically captures the context of its enclosing scope,
enabling it to reference members outside of itself such as variables local to
the parent method.

88

CHAPTER 14 STATIC

string GetName()
{
string name = "John";
return LocalFunc();
string LocalFunc() { return name; }

}

As of C# 8.0, the static modifier can be applied to local functions to
disable this behavior. The compiler will then ensure that the static local
function does not reference any members outside of its own scope.
Limiting access in this way can help simplify debugging, because you will
know that the local function does not modify any external variables.

string GetName()
{
string name = "John";
return LocalFunc(name);
static string LocalFunc(string s) { return s; }

}

Extension Methods

A feature added in C# 3.0 is extension methods, which provide a way

to seemingly add new instance methods to an existing class outside its
definition. An extension method must be defined as static in a static class
and the keyword this is used on the first parameter to designate which
class to extend.

89

CHAPTER 14 STATIC

static class MyExtensions
{
// Extension method
public static int ToInt(this string s) {
return Int32.Parse(s);
}
}

The extension method is callable for objects of its first parameter
type, in this case, string, as if it were an instance method of that class.
No reference to the static class is needed.

class MyApp
{
static void Main() {
string s = "10";
int i = s.ToInt();
}
}

Because the extension method has an object reference, it can use
instance members of the class it is extending. However, it cannot use
members of any class that are inaccessible due to their access level. The
benefit of extension methods is that they enable you to “add” methods to a
class without having to modify or derive the original type.

90

CHAPTER 15

Properties

Properties in C# provide the ability to protect a field by reading and writing
to it through special methods called accessors. They are generally declared
as public with the same data type as the field they are going to protect,
followed by the name of the property and a code block that defines the get
and set accessors.

class Time
{
private int seconds;
public int sec
{
get { return seconds; }
set { seconds = value; }
}
}

Note that the contextual value keyword corresponds to the value
assigned to the property. Properties are implemented as methods, but
used as though they are fields.

static void Main()

{
Time t = new Time();
t.sec = 5;
int s = t.sec; // 5
}
© Mikael Olsson 2020 91

M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_15

CHAPTER 15 PROPERTIES

Property Advantages

Since there is no special logic in the previously defined property, it is
functionally the same as if it had been a public field. However, as a general
rule, public fields should never be used in real-world programming
because of the many advantages that properties bring.

First of all, properties allow developers to change the internal
implementation of the property without breaking any programs that are
using it. This is of particular importance for published classes, which may
be in use by other developers. In the Time class, for example, the field’s
data type could need to be changed from int to byte. With properties,
this conversion could be handled in the background. With a public field,
however, changing the underlying data type for a published class will likely
break any programs that are using the class.

class Time
{
private byte seconds;
public int sec
{
get { return (int)seconds; }
set { seconds = (byte)value; }
}
}

A second advantage of properties is that they allow the data to be
validated before permitting a change. For example, the seconds field can
be prevented from being assigned a negative value in the following way.

class Time

{

private int seconds;
get { return seconds; }

92

set
{
if (value > 0)
seconds = value;
else
seconds

]
o
[

CHAPTER 15 PROPERTIES

Properties do not have to correspond to an actual field. They can just

as well compute their own values. The data could even come from outside

the class, such as from a database. There is also nothing that prevents the

programmer from doing other things in the accessors, such as keeping an

update counter.

public int hour
{

get

{

return seconds / 3600;

}

set
{
seconds = value * 3600;
count++;
}
}

private int count = 0;

93

CHAPTER 15 PROPERTIES

Read-0Only and Write-Only Properties

Either one of the accessors can be left out. Without the set accessor, the
property becomes read-only, and by leaving out the get accessor instead,
the property is made write-only.

// Read-only property
private int sec

{

public get { return seconds; }

}

// Write-only property
private int sec

{

public set { seconds = value; }

}

Property Access Levels

The accessor’s access levels can be restricted. For instance, to prevent a
property from being modified from outside the class, the set accessor can
be made private.

private set { seconds = value; }

The access level of the property itself can also be changed to restrict
both accessors. By default, the accessors are public and the property itself
is private.

private int sec { get; set; }

94

CHAPTER 15 PROPERTIES

Auto-implemented Properties

The kind of property where the get and set accessors directly correspond
to a field is very common. Because of this, there is a shorthand way of
writing such a property, by leaving out the accessor code blocks and the
private field. This syntax was introduced in C# 3.0 and is called an
auto-implemented property.

class Time
{

public int sec { get; set; }
}

Two additional capabilities were added to auto-properties in C# 6.0.
First, an initial value can be set as part of the declaration. Second, an
auto-property can be made read-only by leaving out the set accessor.
Such a property can only be set in the constructor, or as part of the
declaration, as shown here.

class Time

{

// Read-only auto-property with initializer
public System.DateTime Created { get; } =
System.DateTime.Now;

95

CHAPTER 16

Indexers

Indexers allow an object to be treated as an array. They are declared in
the same way as properties, except that the this keyword is used instead
of aname and their accessors take parameters. In the following example,
the indexer corresponds to an object array called data, so the type of the
indexer is set to object.

class MyArray
{
object[] data = new object[10];
public object this[int i]
{
get { return data[i]; }
set { data[i] = value; }
}
}

The get accessor returns the specified element from the object array,
and the set accessor inserts the value into the specified element. With the
indexer in place, an instance of this class can be created and used as an
array, both to get and set the elements.

© Mikael Olsson 2020
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_16

97

CHAPTER 16 INDEXERS

static void Main()
{
MyArray a = new MyArray();
a[5] = "Hello World";
object o = a[5]; // Hello World

}

Indexer Parameters

The parameter list of an indexer is similar to that of a method, except that
it must have at least one parameter and the ref or out modifiers are not
allowed. For example, if there is a two-dimensional array, the column and
row indexes can be passed as separate parameters.

class MyArray
{
object[,] data = new object[10, 10];
public object this[int i, int j]
{
get { return data[i, j]; }
set { data[i, j] = value; }
}
}

The index parameter does not have to be of an integer type. An object
can just as well be passed as the index parameter. The get accessor can
then be used to return the index position where the passed object is
located.

98

CHAPTER 16 INDEXERS

class MyArray
{
object[] data = new object[10];
public int this[object o]
{
get { return System.Array.IndexOf(data, o); }
}
}

Indexer Overloading

Both of these functionalities can be provided by overloading the indexer.
The type and number of arguments will then determine which indexer
gets called.

class MyArray
{
object[] data = new object[10];
public int this[object o]
{
get { return System.Array.IndexOf(data, o); }

}

public object this[int i]
{
get { return data[i]; }
set { data[i] = value; }
}
}

99

CHAPTER 16 INDEXERS

Keep in mind that in a real program a range check should be included
in the accessors, so as to avoid exceptions caused by trying to go beyond
the length of the array.

public object this[int i]

{
get {
return (i >= 0 & i < data.Length) ? data[i] : null;
}
set {
if (i >= 0 &% i < data.Length)
data[i] = value;
}
}

Ranges and Indexes

C# 8.0 introduced two new operators for slicing collections such as arrays.
The range operator (x. . y) specifies the start and end index for a range of
elements. The result of such an operation can be used directly in a loop or
stored in the System.Range type.

int[1]b={1, 2,3, 4,5}
foreach (int n in b[1..3]) {
System.Console.Write(n); // "23"

}

System.Range range = 0..3; // 1% to 3™
foreach (int n in b[range]) {
System.Console.Write(n); // "123"

}

100

CHAPTER 16 INDEXERS

The second operator introduced in C# 8.0 is named the hat operator
("). Itis used as a prefix to count indexes starting from the end of the array.
An index can be stored using the System.Index type.

string s = "welcome";
System.Index first = 0;
System.Index last = "1;

System.Console.Write($"{s[first]}, {s[last]}"); // "w, e"

Both of these operators can be combined in the same expression as
seen in the next example. Note that either the start or end point for the
range operator can be left out to include all remaining elements.

string s = "welcome";
System.Console.Write(s["4..]); // "come"

101

CHAPTER 17

Interfaces

An interface is used to specify members that deriving classes must
implement. They are defined with the interface keyword followed by a
name and a code block. Their naming convention is to start with a capital
I and then to have each word initially capitalized.

interface IMyInterface {}

Interface Signatures

The interface code block can only contain signatures, and only those

of methods, properties, indexers, and events. The interface members
cannot have any implementations. Instead, their bodies are replaced by
semicolons. They also cannot have any restrictive access modifiers since
interface members are always public.

interface IMyInterface
{
// Interface method
int GetArea();

// Interface property
int Area { get; set; }

© Mikael Olsson 2020 103
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_17

CHAPTER 17 INTERFACES

// Interface indexer
int this[int index] { get; set; }

// Interface event
event System.EventHandler MyEvent;

Interface Example

In the following example, an interface called IComparable is defined with a
single method named Compare.

interface IComparable
{
int Compare(object o);

}

The class Circle defined next implements this interface by using
the same notation as is used for inheritance. The Circle class must then
define the Compare method, which for this class will return the difference
between the circle radiuses. The implemented member must be public,
in addition to having the same signature as the one defined in the interface.

class Circle : IComparable

{
int r;
public int Compare(object o)
{
return r - (o as Circle).r;
}
}

104

CHAPTER 17 INTERFACES

Although a class can only inherit from one base class, it may
implement any number of interfaces. It does so by specifying the interfaces
in a comma-separated list after the base class.

Functionality Interface

IComparable demonstrates the first use of interfaces, which is to define a
specific functionality that classes can share. It allows programmers to use
the interface members without having to know the actual type of a class. To
illustrate, the following method takes two IComparable objects and returns
the largest one. This method will work for any two objects of the same class
that implement the IComparable interface, because the method only uses
the functionality exposed through that interface.

static object Largest(IComparable a, IComparable b)
{

return (a.Compare(b) > 0) ? a : b;

}

Class Interface

A second way to use an interface is to provide an actual interface for a
class, through which the class can be used. Such an interface defines the
functionality that programmers using the class will need.

interface IMyClass

{
void Exposed();

}

105

CHAPTER 17 INTERFACES

class MyClass : IMyClass

{
public void Exposed() {}

public void Hidden() {}
}

The programmers can then view instances of the class through this
interface by enclosing the objects in variables of the interface type.

IMyInterface m = new MyClass();

This abstraction provides two benefits. First, it makes it easier for
other programmers to use the class since they now only have access to
the members that are relevant to them. Second, it makes the class more
flexible since its implementation can change without being noticeable by
other programmers using the class, as long as the interface is followed.

Default Implementations

C# 8.0 added the ability to create default implementations for interface
members. Consider the following example of a simple logging interface.

interface Ilogger

{

void Info(string message);

}

class Consolelogger : Ilogger

{

public void Info(string message)

{

Console.WritelLine(message);

}
}

106

CHAPTER 17 INTERFACES

By providing a default implementation, this existing interface can
be extended with a new member without breaking any classes using the
interface.

interface Ilogger

{
void Info(string message);
void Error(string message)

{

Console.WritelLine(message);

}
}

107

CHAPTER 18

Abstract

An abstract class provides a partial implementation that other classes
can build on. When a class is declared as abstract, it means that the class
can contain incomplete members that must be implemented in derived
classes, in addition to normal class members.

Abstract Members

Any member that requires a body can be declared abstract - such

as methods, properties, and indexers. These members are then left
unimplemented and only specify their signatures, while their bodies are
replaced with semicolons.

abstract class Shape

{
// Abstract method

public abstract int GetArea();

// Abstract property
public abstract int area { get; set; }

// Abstract indexer
public abstract int this[int index] { get; set; }

// Abstract event
public delegate void MyDelegate();

© Mikael Olsson 2020 109
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_18

CHAPTER 18 ABSTRACT

public abstract event MyDelegate MyEvent;

// Abstract class
public abstract class InnerShape {};

}

Abstract Example

In the following example, the class has an abstract method named
GetArea.

abstract class Shape

{
private int x = 100, y = 100;
public abstract int GetArea();
}

If a class derives from this abstract class, it is then forced to override
the abstract member. This is different from the virtual modifier, which
specifies that the member may optionally be overridden.

class Rectangle : Shape

{
public int GetArea() { return x * y; }

}

The deriving class can be declared abstract as well, in which case it
does not have to implement any of the abstract members.

abstract class Rectangle : Shape {}
An abstract class can also inherit from a non-abstract class.

class NonAbstract {}
abstract class Abstract : NonAbstract {}

110

CHAPTER 18 ABSTRACT

If the base class has virtual members, these can be overridden as
abstract to force further deriving classes to provide new implementations
for them.

class MyClass

{ void virtual Dummy() {}
}
abstract class Abstract : MyClass
{
void abstract override Dummy() {}
}

An abstract class can be used as an interface to hold objects made from
derived classes.

Shape s = new Rectangle();

It is not possible to instantiate an abstract class. Even so, an abstract
class may have constructors that can be called from derived classes by
using the base keyword.

Shape s = new Shape(); // compile-time error

Abstract Classes and Interfaces

Abstract classes are similar to interfaces in many ways. Both can define
member signatures that deriving classes must implement, yet neither one
of them can be instantiated. The key differences are first that the abstract
class can contain non-abstract members, while the interface cannot. And
second, a class can implement any number of interfaces but only inherit
from one class, abstract or not.

111

CHAPTER 18 ABSTRACT

// Defines default functionality and definitions
abstract class Shape
{

public int x = 100, y = 100;

public abstract int GetArea();

}
class Rectangle : Shape {} // class is a Shape

// Defines an interface or a specific functionality
interface IComparable
{

int Compare(object o);

}

class MyClass : IComparable {} // class can be compared

An abstract class, just like a non-abstract class, can extend one base
class and implement any number of interfaces. An interface, however,
cannot inherit from a class. It can inherit from another interface, which
effectively combines the two interfaces into one.

112

CHAPTER 19

Namespaces

Namespaces provide a way to group related top-level members into

a hierarchy. They are also used to avoid naming conflicts. A top-level
member, such as a class, that is not included in a namespace is said to
belong to the default namespace. It can be moved to another namespace
by being enclosed in a namespace block. The naming convention for
namespaces is the same as for classes, with each word initially capitalized.

namespace MyNamespace

{
class MyClass {}

}

Nested Namespaces

Namespaces can be nested any number of levels deep to further define the
namespace hierarchy.

namespace MyNamespace

{

namespace NestedNamespace

{
class MyClass {}

}
}

© Mikael Olsson 2020 113
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_19

CHAPTER 19 NAMESPACES
A more concise way to write this is to separate the namespaces with a dot.

namespace MyNamespace.NestedNamespace

{
class MyClass {}

}

Note that declaring the same namespace again in another class within
the project has the same effect as if both namespaces were included in the
same block, even if the class is located in another source code file.

Namespace Access

To access a class from another namespace, you need to specify its fully
qualified name.

namespace MyNamespace.NestedNamespace

{
public class MyClass {}

}

namespace OtherNamespace

{
class MyApp

{

static void Main()

{

MyNamespace.NestedNamespace.MyClass myClass;

}
}
}

114

CHAPTER 19 NAMESPACES

Using Directive

The fully qualified name can be shortened by including the namespace
with a using directive. The members of that namespace can then be
accessed anywhere in the code file without having to prepend the
namespace to every reference. It is mandatory to place using directives
before all other members in the code file.

using MyNamespace.NestedNamespace;

Having direct access to these members means that if there is a
conflicting member signature in the current namespace, the member in
the included namespace will be hidden. For example, if there is a MyClass
in the OtherNamespace as well, that class will be used by default. To use
the class in the included namespace, the fully qualified name would again
have to be specified.

using MyNamespace.NestedNamespace;

namespace MyNamespace.NestedNamespace

{
public class MyClass

{

public static int x;

}
}

namespace OtherNamespace

{
public class MyClass

{

static void Main()

{

115

CHAPTER 19 NAMESPACES

int x = MyNamespace.NestedNamespace.MyClass.x;
}

}
}

To simplify this reference, the using directive can instead be changed
to assign the namespace to an alias.

using MyAlias = MyNamespace.NestedNamespace;
/1 ...
int x = MyAlias.MyClass.x;

An even shorter way would be to define the fully qualified class name
as a new type for the code file, by using the same alias notation.

using MyType = MyNamespace.NestedNamespace.MyClass;
/1 ...
int x = MyType.x;

Ausing static directive was added in C# 6.0. This directive imports
only the accessible static members of the type into the current namespace.
In the following example, static members of the Math class can be used
without qualification due to the using static directive.

using static System.Math;

public class Circle

{
public double radius { get; set; }
public double Area
{
get { return PI * Pow(radius, 2); }
}
}

116

CHAPTER 20

Enum

An enumeration is a special kind of value type consisting of a list of named
constants. To create one, you use the enum keyword followed by a name
and a code block containing a comma-separated list of constant elements.

enum State { Run, Wait, Stop };

This enumeration type can be used to create variables that can hold
these constants. To assign a value to the enum variable, the elements are
accessed from the enum as if they were static members of a class.

State s = State.Run;

Enum Example

The switch statement provides a good example of when an enumeration
can be useful. Compared to using ordinary constants, an enumeration
has the advantage of allowing the programmer to clearly specify what
constant values are allowed. This provides compile-time type safety, and
IntelliSense also makes the values easier to remember.

switch (s)

{
case State.Run: break;
case State.Wait: break;
case State.Stop: break;

}

© Mikael Olsson 2020 117
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_20

CHAPTER 20 ENUM

Enum Constant Values

There is usually no need to know the actual constant values that the enum
constants represent, but sometimes it can be useful. By default, the first
element has the value 0, and each successive element has one value
higher.

enum State

{
Run, // 0
Wait, // 1
Stop // 2

};

These default values can be overridden by assigning values to the
constants. The values can be computed from an expression and they do
not have to be unique.

enum State
{

Run = 0, Wait = 3, Stop = Wait + 1
};

Enum Constant Type

The underlying type of the constant elements is implicitly specified as int,
but this can be changed by using a colon after the enumeration’s name
followed by the desired integer type.

enum MyEnum : byte {};

118

CHAPTER20 ENUM

Enum Access Levels and Scope

The access levels for enumerations are the same as for classes. They

are internal by default, but can also be declared as public. Although
enumerations are usually defined at the top level, they may be contained
within a class. In a class they have private access by default and can be set
to any one of the access levels.

Enum Methods

An enumeration constant can be cast to an int and the ToString method
can be used to obtain its name.

static void Main()
{

State s = State.Run;

int i = (int)s; 7/ 0

string t = s.ToString(); // Run
}

Several enumeration methods are available in the System. Enum class,
such as GetNames () to obtain an array containing the names of the enum
constants. Note that this method takes a type object (System.Type) as its
argument, which is retrieved using the typeof operator.

enum Colors { Red, Green };
static void Main()

{
foreach (string s in System.Enum.GetNames(typeof(Colors)))

{
System.Console.Write(s); // "RedGreen"

}
}

119

CHAPTER 21

Exception Handling

Exception handling allows programmers to deal with unexpected
situations that may occur in programs. As an example, consider opening a
file using the StreamReader class in the System.I0 namespace. To see what
kinds of exceptions this class may throw, you can hover the cursor over

the class name in Visual Studio. For instance, you may see the System.I0
exceptions FileNotFoundException and DirectoryNotFoundException.
If any of those exceptions occurs, the program will terminate with an error

message.

using System;
using System.IO;

class ErrorHandling

{

static void Main()
{
// Run-time error
StreamReader sr = new StreamReader("missing.txt");

}
}

© Mikael Olsson 2020 121
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_21

CHAPTER 21 EXCEPTION HANDLING

Try-Catch Statement

To avoid crashing the program, the exceptions must be caught using a
try-catch statement. This statement consists of a try block containing the
code that may cause the exception and one or more catch clauses. If the
try block successfully executes, the program will then continue running
after the try-catch statement. However, if an exception occurs, the
execution will then be passed to the first catch block able to handle that
exception type.

try {
StreamReader sr = new StreamReader("missing.txt");

}
catch {

Console.WriteLine("File not found");

}

Catch Block

Since the previous catch block is not set to handle any specific exception,
it will catch all of them. This is equivalent to catching the System.
Exception class, because all exceptions derive from this class.

catch (Exception) {}

To catch a more specific exception, that catch block needs to be placed
before more general exceptions.

catch (FileNotFoundException) {}
catch (Exception) {}

The catch block can optionally define an exception object that
can be used to obtain more information about the exception, such as a
description of the error.

122

CHAPTER 21 EXCEPTION HANDLING

catch (Exception e) {
Console.WritelLine("Error: " + e.Message);

}

Exception Filters

Exception filters were added in C# 6.0 and allow catch blocks to include
conditions. The condition is appended to the catch block using the when
keyword. A matched exception will then only be caught if the condition
evaluates to true, as in the following example.

try {
StreamReader sr = new StreamReader("missing.txt");

}

catch (FileNotFoundException e)
when (e.FileName.Contains(".txt")) {

Console.WritelLine("Missing file:

}

+ e.FileName);

When using exception filters, the same exception type may appear in
multiple catch clauses. Additionally, there are scenarios when a more general
exception can be placed before more specific ones. In the next example,
all exceptions are logged by calling a logging method as an exception filter.
Because the method returns false, the general exception is not caught and
thereby allows for another catch block to handle the exception.

using System;
using System.IO;

static class ErrorHandling

{

// Extension method
public static bool LogException(this Exception e)

123

CHAPTER 21 EXCEPTION HANDLING

{

Console.Error.WriteLine($"Exception: {e}");
return false;

}
static void Main()
{
try {
var sr = new StreamReader("missing.txt");
}

catch (Exception e) when (LogException(e)) {
// Never reached

}

catch (FileNotFoundException) {
// Actual handling of exception

}
}

Finally Block

As the last clause in the try-catch statement, a finally block can be
added. This block is used to clean up certain resources allocated in the try
block. Typically, limited system resources and graphical components need
to be released in this way once they are no longer needed. The code in the
finally block will always execute, whether or not there is an exception.
This will be the case even if the try block ends with a jump statement,
such as return.

In the example used previously, the file opened in the try block should
be closed if it was successfully opened. This is done properly in the next
code segment. To be able to access the StreamReader object from the

124

CHAPTER 21 EXCEPTION HANDLING

finally clause, it must be declared outside of the try block. Keep in mind
that if you forget to close the stream, the garbage collector will eventually
close it for you, but it is good practice to do it yourself.

StreamReader sr = null;

try {
st = new StreamReader("missing.txt");

}
catch (FileNotFoundException) {}
finally {
if (sr != null) sr.Close();
}

The previous statement is known as a try-catch-finally statement.
The catch block may also be left out to create a try-finally statement.
This statement will not catch any exceptions. Instead, it will ensure the
proper disposal of any resources allocated in the try block. This can
be useful if the allocated resource does not throw any exceptions. For
instance, such a class would be Bitmap in the System.Drawing namespace.

using System.Drawing;
/...
Bitmap b = null;
try {
b = new Bitmap(100, 50);
System.Console.WritelLine(b.Width); // "100"
}
finally {
if (b != null) b.Dispose();
}

125

CHAPTER 21 EXCEPTION HANDLING

Note that when using a Console Project a reference to the System.
Drawing assembly needs to be manually added for those members to
be accessible. To do so, right-click the References folder in the Solution
Explorer window and select Add Reference. Then from Assemblies »
Framework, select the System.Drawing assembly and click OK to add its
reference to your project.

Using Statement

The using statement provides a simpler syntax for writing the try-finally
statement. This statement starts with the using keyword followed by the
resource to be acquired, specified in parentheses. It then includes a code
block in which the obtained resource can be used. When the code block
finishes executing, the Dispose method of the object is automatically
called to clean it up. This method comes from the System.IDisposable
interface, so the specified resource must implement this interface. The
following code performs the same function as the one in the previous
example, but with fewer lines of code.

using System.Drawing;

/1 ...

void using (Bitmap b = new Bitmap(100, 50)) {
System.Console.WriteLine(b.Width); // "100"

} // disposed

C# 8.0 simplified resource management further by allowing for using
declarations. This removes the need for the curly brackets as the resource
handler will automatically be disposed of when it goes out of scope.

126

CHAPTER 21 EXCEPTION HANDLING

void MyBitmap()
{
using Bitmap b = new Bitmap(100, 50);
System.Console.WritelLine(b.Height); // "50"
} // disposed

Throwing Exceptions

When a situation occurs that a method cannot recover from, it can
generate an exception to signal the caller that the method has failed. This
is done using the throw keyword followed by a new instance of a class
deriving from System.Exception.

static void MakeError()

{

throw new System.DivideByZeroException("My Error");

}

The exception will then propagate up the caller stack until it is caught.
If a caller catches the exception but is not able to recover from it, the
exception can be rethrown using only the throw keyword. If there are no
more try-catch statements, the program will stop executing and display
the error message.

static void Main()

{

try {
MakeError();

}
catch {

throw; // rethrow error

}
}

127

CHAPTER 21 EXCEPTION HANDLING

As a statement, the throw keyword cannot be used in contexts that
require an expression, such as inside a ternary statement. C# 7.0 changed
this by allowing throw to also be used as an expression. This expands
the locations from which exceptions may be thrown, such as inside the
following null-coalescing expression.

using System;
class MyClass
{
private string _name;
public string name
{
get => name;
set => name = value ?? throw new
ArgumentNullException(nameof(name)+" was null");

}

static void Main()
{
MyClass ¢ = new MyClass();
c.name = null; // exception: name was null

Note the use of the nameof expression here, which was introduced
in C# 6.0. This expression turns the symbol inside the parentheses into a
string. The benefit of this shows itself if the property is renamed, as the
IDE can then find and rename this symbol. This would not be the case if a
string had been used instead.

128

CHAPTER 22

Operator Overloading

Operator overloading allows operators to be redefined and used where one
or both of the operands are of a certain class. When done correctly, this
can simplify the code and make user-defined types as easy to use as the

simple types.

Operator Overloading Example

In this example, there is a class called MyNum with an integer field and a
constructor for setting that field. There is also a static Add method that adds
two MyNum objects together and returns the result as a new MyNum object.

class MyNum
{
public int val;
public MyNum(int i) { val = i; }
public static MyNum Add(MyNum a, MyNum b) {
return new MyNum(a.val + b.val);

}
}

Two MyNum instances can be added together using the Add method.

MyNum a = new MyNum(10), b = new MyNum(5);
MyNum c = MyNum.Add(a, b);
© Mikael Olsson 2020 129

M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_22

CHAPTER 22 OPERATOR OVERLOADING

Binary Operator Overloading

What operator overloading does is simplify this syntax and thereby
provide a more intuitive interface for the class. To convert the Add method
to an overload method for the addition sign, replace the name of the
method with the operator keyword followed by the operator that is to be
overloaded. The whitespace between the keyword and the operator can
optionally be left out. Note that for an operator overloading method to
work, it must be defined as both public and static.

class MyNum
{
public int val;
public MyNum(int i) { val = i; }
public static MyNum operator +(MyNum a, MyNum b) {
return new MyNum(a.val + b.val);

}
}

Since the class now overloads the addition sign, this operator can be
used to perform the desired calculation.

MyNum a = new MyNum(10), b = new MyNum(5);

a + b;

MyNum ¢

Unary Operator Overloading

Addition is a binary operator, because it takes two operands. To overload a
unary operator, such as increment (++), a single method parameter is
used instead.

130

CHAPTER 22 OPERATOR OVERLOADING

public static MyNum operator ++(MyNum a)
{

return new MyNum(a.val + 1);

}

Note that this will overload both the postfix and prefix versions of the
increment operator.

MyNum a = new MyNum(10);
a++;
++a;

Return Types and Parameters

When overloading a unary operator, the return type and parameter type
must be of the enclosing type. On the other hand, when overloading most
binary operators, the return type can be anything, except for void, and
only one of the parameters must be of the enclosing type. This means

that it is possible to further overload a binary operator with other method
parameters, for example, to allow a MyNum and an int to be added together.

public static MyNum operator +(MyNum a, int b)
{

return new MyNum(a.val + b);

}

Overloadable Operators

C# allows overloading of almost all operators, as can be seen in the
following table. The combined assignment operators cannot be
explicitly overloaded. Instead, they are implicitly overloaded when their
corresponding arithmetic or bitwise operators are overloaded.

131

CHAPTER 22 OPERATOR OVERLOADING

Binary Operators Unary Operators Not Overloadable

+-*%/% + -~ e - B = [](C) 2
(+= -= *= /= %=) true false ?? -> => new as is sizeof
& | "~ << » typeof nameof

(&= |= "= <<= >>=)

== l=> < >=«=

The comparison operators, as well as true and false, must be

overloaded in pairs. For example, overloading the equal operator means

that the not equal operator also has to be overloaded.

True and False Operator Overloading

Notice in the previous table that true and false are considered to

be operators. By overloading them, objects of a class can be used in

conditional statements where the object needs to be evaluated as a

Boolean type. When overloading them, the return types must be bool.

class MyNum

{
public int val;
public MyNum(int i) { val = i; }
public static bool operator true(MyNum a) {
return (a.val != 0);
}
public static bool operator false(MyNum a) {
return (a.val == 0);
}
}

132

CHAPTER 22

class MyApp
{

static void Main()

{
MyNum a = new MyNum(10);
if (a) System.Console.Write("true");
else System.Console.Write("false");

}
}

OPERATOR OVERLOADING

133

CHAPTER 23

Custom Conversions

This chapter covers how to define custom type conversions for an object.
As seen in the following example, a class called MyNum is created with

a single int field and a constructor. With a custom type conversion, it
becomes possible to allow an int to be implicitly converted to an object of
this class.

class MyNum
{

public int val;

public MyNum(int i) { val = i; }
}

Implicit Conversion Methods

For this to work, an implicit conversion method needs to be added to

the class. This method’s signature looks similar to that used for unary
operator overloading. It must be declared as public static and includes
the operator keyword. However, instead of an operator symbol the
return type is specified, which is the target type for the conversion. The
single parameter will hold the value that is to be converted. The implicit
keyword is also included, which specifies that the method is used to
perform implicit conversions.

© Mikael Olsson 2020 135
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_23

CHAPTER 23 CUSTOM CONVERSIONS

public static implicit operator MyNum(int a)

{

return new MyNum(a);

}

With this method in place, an int can be implicitly converted to a
MyNum object.

MyNum a = 5; // implicit conversion

Another conversion method can be added that handles conversions in
the opposite direction, from a MyNum object to an int.

public static implicit operator int(MyNum a)

{

return a.val;

}

Explicit Conversion Methods

To prevent potentially unintended object type conversions by the compiler,
the conversion method can be declared as explicit instead of implicit.

public static explicit operator int(MyNum a)

{

return a.val;

}

The explicit keyword means that the programmer has to specify an
explicit cast in order to invoke the type conversion method. In particular,
explicit conversion methods should be used if the result of the conversion leads

to loss of information, or if the conversion method may throw exceptions.

MyNum a = 5;
int i = (int)a; // explicit conversion

136

CHAPTER 24

Struct

The struct keyword in C# is used to create value types. A struct is similar
to a class in that it represents a structure with mainly field and method
members. However, a struct is a value type, whereas a class is a reference
type. Therefore, a struct variable directly stores the data of the struct, while
a class variable only stores a reference to an object allocated in memory.

Struct Variable

Structs share most of the same syntax as classes. For example, the
following struct is named Point and consists of two public fields.

struct Point

{
public int x, y;

}

Given this struct definition, a variable of the Point type can be
initialized in the familiar way using the new operator.

Point p = new Point();

© Mikael Olsson 2020 137
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_24

CHAPTER 24 STRUCT

When creating a struct variable in this way, the default constructor
will be called, which sets the fields to their default value. Unlike classes,
structs can also be instantiated without using the new operator. The fields
will then remain unassigned. However, similar to when attempting to use a
local uninitialized variable, the compiler will not allow the fields to be read
until they have been initialized.

Point q;
int y = q.x; // compile-time error

Struct Constructors

Structs can contain the same members that classes can, except that
they cannot contain destructors or parameterless constructors. The
parameterless constructor is automatically provided and may not be
user-defined. However, a struct may declare constructors that have
parameters. The compiler will then enforce that all struct fields are
assigned in the constructors, so as to avoid problems associated with

unassigned variables.

struct Point
{
public int x, y;
public Point(int x, int y)
{
this.x = x;
this.y = y;
}
}

138

CHAPTER 24 STRUCT

Given this definition, the following statements will both create a Point
with the fields initialized to zero.

new Point();
new Point(0, 0);

Point p1
Point p2

Struct Field Initializers

Fields within a struct cannot be given initial values, unless they are
declared as const or static.

struct Point

{
public int x = 1, y = 1; // compile-time error
public static int myStatic = 5; // allowed
public const int myConst = 10; // allowed

}

Struct Inheritance

A struct cannot inherit from another struct or class, and it cannot be a
base class. This also means that struct members cannot be declared as
protected, private protected, or protected internal, and that struct
methods cannot be marked as virtual. Structs implicitly inherit from
System.ValueType, which in turn inherits from System.0Object. Although
structs do not support user-defined inheritance, they can implement
interfaces in the same way as classes.

139

CHAPTER 24 STRUCT

Struct Guideline

The struct type is typically used to represent lightweight classes that
encapsulate small groups of related variables. The primary reason for
using a struct instead of a class is to get value type semantics. For
example, the simple types are in fact all struct types. For these types, it is
more natural that assignment copies the value rather than the reference.

Structs can also be useful for performance reasons. A struct is
more efficient than a class in terms of memory. It not only takes up less
memory than a class, but it also does not need memory to be allocated
for it as required by reference type objects. Furthermore, a class requires
two memory spaces, one for the variable and one for the object, whereas
a struct only needs one. This can make a significant difference for a
program that operates on a great number of data structures. Bear in
mind that assignment and parameter passing by value are typically more
expensive with structs than with reference types, because the entire
struct needs to be copied for such operations.

140

CHAPTER 25

Preprocessors

C# includes a set of preprocessor directives that are mainly used for

conditional compilation. Although the C# compiler does not have a

separate preprocessor, as C and C++ compilers, the directives shown here

are processed as if there were one. That is, they appear to be processed

before the actual compilation takes place.

© Mikael Olsson 2020

Directive Description

#if If

#elif Else if

#else Else

#endif End if

#define Symbol define

#undef Symbol undefine

#error Generate error

#warning Generate warning

#line Set line number

#iregion Mark section start

#endregion Mark section end
141

M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_25

CHAPTER 25 PREPROCESSORS

Preprocessor Syntax

The preprocessor directives are easily distinguished from normal
programming code in that they start with a hash sign (#). They must always
occupy a line that is separate from anything else, except for single-line
comments. Whitespace may optionally be included before and after the
hash mark.

#line 1 // set line number

Conditional Compilation Symbols

A conditional compilation symbol is created using the #define directive
followed by the symbol’s name. When a symbol is defined, it will then
cause a conditional expression using that condition to be evaluated as
true. The symbol will remain defined only within the current source file,
starting from the line where the symbol is created.

#define MySymbol

The #undef (undefine) directive can disable a previously defined
symbol.

#undef MySymbol

Conditional Compilation

The #if and #endif directives specify a section of code that will be
included or excluded based on a given condition. Most often, this
condition will be a conditional compilation symbol.

#if MySymbol
/...
#endif

142

CHAPTER 25 PREPROCESSORS

Just as with the C# if statement, the #if directive can optionally
include any number of #elif (else if) directives and one final #else
directive. Conditional directives may also be nested within another
conditional section. In longer conditionals, it is good practice to add
comments to the #endif directives to help keep track of which #if
directive they correspond to.

#if Professional
/]l ...
#elif Advanced || Enterprise
/]l ...
#else
#if Debug
/] ...
#endif // Debug
#endif // Professional

Diagnostic Directives

There are two diagnostic directives: #error and #warning. The #error
directive is used to abort a compilation by generating a compilation error.
This directive can optionally take a parameter that provides an error
description.

#if Professional && Enterprise
#ferror Build cannot be both Professional and Enterprise
#endif

Similar to error, the #warning directive generates a compilation
warning message. This directive will not stop the compilation.

#if !Professional && !Enterprise
#warning Build should be Professional or Enterprise
#endif

143

CHAPTER 25 PREPROCESSORS

Line Directive

Another directive that affects the compiler’s output is #1ine. This directive
is used to change the line number and optionally the source filename that
is displayed when an error or warning occurs during compilation. This is
mainly useful when using a program that combines the source files into an
intermediate file, which is then compiled.

#line 500 "MyFile"
#error MyError // MyError on line 500

Region Directives

The last two directives are #region and #endregion. They delimit a section
of code that can be expanded or collapsed using the outlining feature of
Visual Studio.

#region MyRegion
#endregion
Just as the conditional directives, regions can be nested any number of

levels deep.

#iregion MyRegion

#region MySubRegion

#endregion

#endregion

144

CHAPTER 26

Delegates

A delegate is a type used to reference a method. This allows methods to be
assigned to variables and passed as arguments. The delegate’s declaration
specifies the method signature to which objects of the delegate type

can refer. Delegates are by convention named with each word initially
capitalized, followed by Delegate at the end of the name.

delegate void MyDelegate(string str);

A method that matches the delegate’s signature can be assigned to a
delegate object of this type.

class MyClass

{
static void Print(string s)
{
System.Console.WritelLine(s);
}
static void Main()
{
MyDelegate d = Print;
}
}
© Mikael Olsson 2020 145

M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_26

CHAPTER 26 DELEGATES

This delegate object will behave as if it were the method itself,
regardless of whether it refers to a static or an instance method. A method
call on the object will be forwarded by the delegate to the method, and any
return value will be passed back through the delegate.

MyDelegate d = Print;
d("Hello"); // "Hello"

The syntax used here to instantiate the delegate is actually a simplified
notation that was introduced in C# 2.0. The backward compatible way
to instantiate a delegate is to use the regular reference type initialization
syntax.

MyDelegate d = new MyDelegate(Print);

Anonymous Methods

C# 2.0 also introduced anonymous methods, which can be assigned

to delegate objects. An anonymous method is specified by using the
delegate keyword followed by a method parameter list and body. This can
simplify the delegate’s instantiation since a separate method will not have
to be defined in order to instantiate the delegate.

MyDelegate f = delegate(string s)
{

System.Console.WritelLine(s);

};

146

CHAPTER 26 DELEGATES

Lambda Expressions

C# 3.0 went one step further and introduced lambda expressions. They
achieve the same goal as anonymous methods, but with a more concise
syntax. A lambda expression is written as a parameter list followed by the
lambda operator (=>) and an expression.

delegate int MyDelegate(int i);

static void Main()
{
// Anonymous method
MyDelegate a = delegate(int x) { return x * x; };

// Lambda expression
MyDelegate b = (int x) => x * x;

a(s5); // 25
b(5); // 25

The lambda must match the signature of the delegate. Typically, the
compiler can determine the data type of the parameters from the context,
so they do not need to be specified. The parentheses may also be left out if
the lambda has only one input parameter.

MyDelegate ¢ = x => x * X;

If no input parameters are needed, an empty set of parentheses must
be specified.

delegate void MyEmptyDelegate();

/] ...

MyEmptyDelegate d = () =>
System.Console.WritelLine("Hello");

147

CHAPTER 26 DELEGATES

A lambda expression that only executes a single statement is called an
expression lambda. The expression of a lambda can also be enclosed in
curly brackets to allow it to contain multiple statements. This form is called
a statement lambda.

MyDelegate e = (int x) => {
inty = x * x;
return y;

b

Expression Body Members

Lambda expressions provide a shorthand alternative way to define class
members in cases when the member consists of only a single expression.
This is called an expression body definition. Consider the following class.

class Person

{
public string name { get; } = "John";
public void PrintName() {
System.Console.WritelLine(name);
}
}

These member bodies can be rewritten as expression bodies instead,
which are easier to read.

class Person

{
public string name => "John";
public void PrintName() =>
System.Console.WriteLine(name);

148

CHAPTER 26 DELEGATES

Support for implementing member bodies as lambda expressions was
added in C# 6.0 for methods and get properties. C# 7.0 extended this list of
allowed members to also include constructors, destructors, set properties,
and indexers. To illustrate, here is an example using expression bodies for
a constructor and a property that has both set and get accessors.

class Person
{
private string firstName;
public string name
{
get => firstName;
set => firstName = value;

}

public Person(string name) => this.name = name;

}

Multicast Delegates

It is possible for a delegate object to refer to more than one method. Such
an object is known as a multicast delegate, and the methods it refers to
are contained in a so-called invocation list. To add another method to
the delegate’s invocation list, either the addition operator or the addition
assignment operator can be used.

static void Hi() { System.Console.Write("Hi"); }
static void Bye() { System.Console.Write("Bye"); }
/1 ...

MyDelegate del = Hi;

del = del + Hi;

del += Bye;

149

CHAPTER 26 DELEGATES

Similarly, to remove a method from the invocation list, the subtraction
or subtraction assignment operators are used.

del -= Hi;

When calling a multicast delegate object, all methods in its invocation
list will be invoked with the same arguments in the order that they were
added to the list.

del(); // "HiBye"

If the delegate returns a value, only the value of the last invoked
method will be returned. Likewise, if the delegate has an out parameter, its
final value will be the value assigned by the last method.

Delegate Signature

As mentioned, a method can be assigned to a delegate object if it matches
the delegate’s signature. However, a method does not have to match

the signature exactly. A delegate object can also refer to a method that
has a more derived return type than that defined in the delegate, or that
has parameter types that are ancestors of the corresponding delegate’s
parameter types.

class Base {}
class Derived : Base {}

delegate Base MyDelegate(Derived d);

class MyClass
{

static Derived Test(Base o)

{

return new Derived();

}

150

CHAPTER 26 DELEGATES

static void Main()
{
MyDelegate d = Test;
}
}

Delegates as Parameters

An important property of delegates is that they can be passed as method
parameters. To demonstrate the benefit of this, two simple classes will

be defined. The first one is a data storage class called PersonDB that has

an array containing a couple of names. It also has a method that takes a
delegate object as its argument and calls that delegate for each name in the
array.

delegate void ProcessPersonDelegate(string name);

class PersonDB

{
string[] 1list = { "John", "Sam", "Dave" };

public void Process(ProcessPersonDelegate f)

{
foreach(string s in list) f(s);

}
}

The second class is Client, which will use the storage class. It has a
Main method that creates an instance of PersonDB, and it calls that object’s
Process method with a method that is defined in the Client class.

151

CHAPTER 26 DELEGATES

class Client

{

static void Main()

{
PersonDB p = new PersonDB();
p.Process(PrintName);

}

static void PrintName(string name)

{
System.Console.WriteLine(name);
}
}

The benefit of this approach is that it allows the implementation
of the data storage to be separated from the implementation of the
data processing. The storage class only handles the storage and has no
knowledge of the processing that is done on the data. This allows the
storage class to be written in a more general way than if this class had to
implement all of the potential processing operations that a client may want
to perform on the data. With this solution, the client can simply plug its
own processing code into the existing storage class.

152

CHAPTER 27

Events

Events enable an object to notify other objects when something of interest
occurs. The object that raises the event is called the publisher and the
objects that handle the event are called subscribers.

Publisher

To demonstrate the use of events, a publisher will be created first. This will
be a class that inherits from ArraylList, but this version will raise an event
whenever an item is added to the list. Before the event can be created, a
delegate is needed that will hold the subscribers. This could be any kind

of delegate, but the standard design pattern is to use a void delegate that
accepts two parameters. The first parameter specifies the source object of
the event, and the second parameter is a type that either is or inherits from
the System.EventArgs class. This parameter usually contains the details of
the event, but in this example, there is no need to pass any event data and
so the base EventArgs class will be used as the parameter’s type.

public delegate void
EventHandlerDelegate(object sender, System.EventArgs e);
class Publisher : System.Collections.Arraylist

{
/...

© Mikael Olsson 2020 153
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_27

CHAPTER 27 EVENTS

Event Keyword

With the delegate defined, the event can be created in the Publisher

class using the event keyword followed by the delegate and the name of
the event. The event keyword creates a special kind of delegate that can
only be invoked from within the class where it is declared. Its access level
is public so that other classes are allowed to subscribe to this event. The
delegate that follows the event keyword is called the event delegate. The
name of the event is commonly a verb. In this case, the event will be raised
after the item has been added so the past tense of the verb “Add” is used,
which is “Added”. If a pre-event was created instead, which is raised before
the actual event, then the gerund (-ing) form of the verb would be used, in
this case “Adding”.

public event EventHandlerDelegate Added;

Alternatively, in place of this custom event delegate, the predefined
System.EventHandler delegate could have been used. This delegate is
identical to the one defined previously, and it’s used in the .NET class
libraries for creating events that have no event data.

Event Caller

To invoke the event, an event caller can be created. The naming
convention for this method is to precede the event’s name with the word
On, which in this case becomes OnAdded. The method has the protected
access level to prevent it from being called from an unrelated class, and it is
marked as virtual to allow deriving classes to override it. It takes the event
arguments as its one parameter, which in this case is of the EventArgs type.
The method will raise the event only if it is not null, meaning only when

154

CHAPTER 27 EVENTS

the event has any registered subscribers. To raise the event, the instance
reference this is passed as the sender, and the EventArgs object is the
object that was passed to the method.

protected virtual void OnAdded(System.EventArgs e)
{

if (Added != null) Added(this, e);
}

Raising Events

Now that the class has an event and a method for calling it, the final step
is to override the ArrayList’s Add method to make it raise the event. In
this overridden version of the method, the base class’s Add method is first
called, and the result is stored. The event is then raised with the OnAdded
method by passing to it the Empty field in the System. EventArgs class,
which represents an event with no data. Finally, the result is returned to
the caller.

public override int Add(object value)

{
int i = base.Add(value);

OnAdded(System.EventArgs.Empty);
return i;

}

The complete Publisher class now has the following appearance.

class Publisher : System.Collections.Arraylist

{
public delegate void

EventHandlerDelegate(object sender, System.EventArgs e);

155

CHAPTER 27 EVENTS

public event EventHandlerDelegate Added;

protected virtual void OnAdded(System.EventArgs e)

{
if (Added != null) Added(this, e);

}

public override int Add(object value)

{
int i = base.Add(value);
OnAdded(System.EventArgs.Empty);
return i;

}

}

Subscriber

To use the Publisher class, another class will be created that will subscribe
to the event.

class Subscriber

{
/...

This class contains an event handler, which is a method that has the
same signature as the event delegate and is used to handle an event. The
name of the handler is commonly the same as the name of the event
followed by the EventHandler suffix.

156

CHAPTER 27 EVENTS

class Subscriber

{
public void AddedEventHandler(object sender, System.EventArgs e)

{
System.Console.WritelLine("AddEvent occurred");
}
}

Subscribing to Events

The Publisher and Subscriber classes are now complete. To demonstrate
their use, a Main method is added where objects of the Publisher and
Subscriber classes are created. In order to register the handler in the
Subscriber object to the event in the Publisher object, the event handler
is added to the event as if it were a delegate. Unlike a delegate, however,
the event may not be called directly from outside its containing class.
Instead, the event can only be raised by the Publisher class, which in this
case occurs when an item is added to that object.

class MyApp
{

static void Main()

{

Subscriber s

new Subscriber();
Publisher p = new Publisher();
p.Added += s.AddedEventHandler;
p.Add(10); // "AddEvent occurred"

157

CHAPTER 28

Generics

Generics refer to the use of type parameters, which provide a way to design
code templates that can operate with different data types. Specifically, it

is possible to create generic methods, classes, interfaces, delegates, and
events.

Generic Methods

In the following example, there is a method that swaps two integer

arguments.

static void Swap(ref int a, ref int b)

{
int temp = a;
a = b;
b = temp;

}

To make this into a generic method that can work with any data type,
a type parameter first needs to be added after the method’s name,
enclosed between angle brackets. The naming convention for type
parameters is that they should start with a capital T and then have each
word that describes the parameter initially capitalized. In cases such as
this however, where a descriptive name would not add much value, it is
common to simply name the parameter with a capital T.

© Mikael Olsson 2020 159
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_28

CHAPTER 28 GENERICS

static void Swap<T>(ref int a, ref int b)

{
int temp = a;
a =b;
b = temp;

}

The type parameter can now be used as any other type inside the
method, and so the second thing that needs to be done to complete the
generic method is to replace the data type that will be made generic with
the type parameter.

static void Swap<T>(ref T a, ref T b)

{
T temp = a;
a=b;
b = temp;

}

Calling Generic Methods

The generic method is now finished. To call it, the desired type argument
needs to be specified in angle brackets before the method arguments.

int a = 0, b = 1;
Swap<int>(ref a, ref b);

In this case, the generic method may also be called as if it were a
regular method, without specifying the type argument. This is because the
compiler can automatically determine the type since the generic method’s
parameters use the type parameter. However, if this was not the case, or
to use another type argument than the one the compiler would select, the
type argument would then need to be explicitly specified.

160

CHAPTER 28 GENERICS
Swap(ref a, ref b);

Whenever a generic is called for the first time during runtime, a
specialized version of the generic will be instantiated that has every
occurrence of the type parameter substituted with the specified type
argument. It is this generated method that will be called and not the
generic method itself. Calling the generic method again with the same type
argument will reuse this instantiated method.

Swap<int>(ref a, ref b); // create & call Swap<int>
Swap<int>(ref a, ref b); // call Swap<int>

When the generic method is called with a new type, another
specialized method will be instantiated.

long c =0, d = 1;
Swap<long>(ref c, ref d); // create & call Swap<long>

Generic Type Parameters

A generic can be defined to accept more than one type parameter just by
adding more of them between the angle brackets. Generic methods can
also be overloaded based on the number of type parameters that they
define.

static void Dummy<T, U>() {}
static void Dummy<T>() {}

161

CHAPTER 28 GENERICS

Default Value

When using generics, one issue that may arise is how to assign a default
value to a type parameter since this value depends on the type. The
solution is to use the default keyword followed by the type parameter
enclosed in parentheses. This expression will return the default value no
matter which type parameter is used.

static void Reset<T>(ref T a)

{
a = default(T);

}

Default expressions were enhanced in C# 7.1. As of this version, the
type supplied to default may be omitted when the compiler can infer the
type based on the context.

static void Reset<T>(ref T a)

{
a = default; // same as default(T)

}

Generic Classes

Generic classes allow class members to use type parameters. They are
defined in the same way as generic methods, by adding a type parameter
after the class name.

class Point<T>

{
public T x, y;

}

162

CHAPTER 28 GENERICS

To instantiate an object from the generic class, the standard notation
is used, but with the type argument specified after both class names.
Note that in contrast to generic methods, a generic class must always be
instantiated with the type argument explicitly specified.

Point<short> p = new Point<short>();

Generic Class Inheritance

Inheritance works slightly differently with generic classes. A generic class
can inherit from a non-generic class, also called a concrete class. Second, it
can inherit from another generic class that has its type argument specified,
a so-called closed constructed base class. Finally, it can inherit from an
open constructed base class, which is a generic class that has its type
argument left unspecified.

class BaseConcrete {}
class BaseGeneric<T>{}

class Geni<T> : BaseConcrete {} // concrete
class Gen2<T> : BaseGeneric<int>{} // closed constructed
class Gen3<T> : BaseGeneric<T> {} // open constructed

A generic class that inherits from an open constructed base class must
define all of the base class’s type arguments, even if the derived generic
class does not need them. This is because only the child class’s type
arguments can be sent along when the child class is instantiated.

class BaseMultiple<T, U, V> {}
class Gen4<T, U> : BaseMultiple<T, U, int> {}

This also means that a non-generic class can only inherit from a closed
constructed base class, and not from an open one, because a non-generic

class cannot specify any type arguments when it is instantiated.

163

CHAPTER 28 GENERICS

class Coni : BaseGeneric<inty> {} // ok
class Con2 : BaseGeneric<T> {} // error

Generic Interfaces

Interfaces that are declared with type parameters become generic
interfaces. Generic interfaces have the same two purposes as regular
interfaces. They are either created to expose members of a class that

will be used by other classes or to force a class to implement a specific
functionality. When a generic interface is implemented, the type argument
must be specified. The generic interface can be implemented by both
generic and non-generic classes.

// Generic functionality interface
interface IGenericCollection<T>

{
void store(T t);

}

// Non-generic class implementing generic interface
class Box : IGenericCollection<int>
{

public int myBox;

public void store(int i) { myBox = i; }

}

// Generic class implementing generic interface
class GenericBox<T> : IGenericCollection<T>

{
public T myBox;

public void store(T t) { myBox = t; }
}

164

CHAPTER 28 GENERICS

Generic Delegates

A delegate can be defined with type parameters. As an example, the
following generic delegate uses its type parameter to specify the referable
method’s parameter. From this delegate type, a delegate object can be
created that can refer to any void method that takes a single argument,
regardless of its type.

class MyClass

{
public delegate void MyDelegate<T>(T arg);

public void Print(string s)

{
System.Console.Write(s);
}
static void Main()
{
MyDelegate<string> d = Print;
}
}

Generic Events

Generic delegates can be used to define generic events. For example,
instead of using the typical design pattern where the sender of the event is
of the Object type, a type parameter can allow the sender’s actual type to
be specified. This will make the argument strongly typed, which allows the
compiler to enforce that the correct type is used for that argument.

delegate void MyDelegate<T, U>(T sender, U eventArgs);
event MyDelegate<MyClass, System.EventArgs> myEvent;

165

CHAPTER 28 GENERICS

Generics and Object

In general, using the Object type as a universal container should be
avoided. The reason why Object containers, such as the ArraylList, exist
in the .NET class library is because generics were not introduced until C#
2.0. When compared with the Object type, generics not only ensure type
safety at compile time but they also remove the performance overhead
associated with boxing and unboxing value types into an Object container.

// Object container class
class MyBox { public object o; }

// Generic container class
class MyBox<T> { public T o; }

class MyClass
{

static void Main()

{
// .NET object container
System.Collections.ArraylList a;
// .NET generic container (preferred)
System.Collections.Generic.List<int> b;

Constraints

When defining a generic class or method, compile-time enforced
restrictions can be applied on the kinds of type arguments that may be
used when the class or method is instantiated. These restrictions are called
constraints and are specified using the where keyword. All in all, there are
six kinds of constraints.

166

CHAPTER 28 GENERICS

First, the type parameter can be restricted to value types by using the
struct keyword.

class C<T> where T : struct {} // value type

Second, the parameter can be constrained to reference types by using
the class keyword.

class D<T> where T : class {} // reference type

Third, the constraint can be a class name. This will restrict the type to
either that class or one of its derived classes.

class B {}
class E<T> where T : B {} // be/derive from base class

Fourth, the type can be constrained to either be or derive from another
type parameter.

class F<T, U> where T : U {} // be/derive from U

The fifth constraint is to specify an interface. This will restrict the type
parameter to only those types that implement the specified interface, or
that is of the interface type itself.

interface I {}
class G<T> where T : I {} // be/implement interface

Finally, the type argument can be constrained to only those types that
have a public parameterless constructor.

class H<T> where T : new() {} // no parameter constructor

167

CHAPTER 28 GENERICS

Multiple Constraints

Multiple constraints can be applied to a type parameter by specifying
them in a comma-separated list. Furthermore, to constrain more than one
type parameter, additional where clauses can be added. Note that if either
the class or the struct constraint is used, it must appear first in the list.
Moreover, if the parameterless constructor constraint is used, it must be
the last one in the list.

class 1T, U>
where T : class, I
where U : I, new() {}

Why Use Constraints

Aside from restricting the use of a generic method or class to only certain
parameter types, another reason for applying constraints is to increase

the number of allowed operations and method calls supported by the
constraining type. An unconstrained type may only use the System.0Object
methods. However, by applying a base class constraint, the accessible
members of that base class also become available.

class Person

{

public string name;

}

class PersonNameBox<T> where T : Person

{
public string box;
public void StorePersonName(T a)

168

CHAPTER 28 GENERICS

box = a.name;

}
}

The following example uses the parameterless constructor constraint.
This constraint enables new objects of the type parameter to be

instantiated.
class MyClass<T> where T : new() {}

Note that if a class has a constraint on its type parameter and a child
of that class has a type parameter that’s constrained by the base class, that
constraint must also be applied to the child class’s type parameter.

class MyChild<T> : MyClass<T>
where T : MyClass<T>, new() {}

169

CHAPTER 29

Constants

Avariable in C# can be made into a compile-time constant by adding the
const keyword before the data type. This modifier means that the variable
cannot be changed and it must therefore be assigned a value at the same
time as it is declared. Any attempts to assign a new value to the constant

will result in a compile-time error.

Local Constants

A local constant must always be initialized at the same time as it is
declared.

static void Main()

{

const int a = 10; // compile-time constant

}

The const modifier creates a compile-time constant, and so the
compiler will replace all usage of the constant with its value. The assigned
value must therefore be known at compile time. As a result of this, the
const modifier may only be used together with the simple types, as well as
with enum and string types.

© Mikael Olsson 2020 171
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_29

CHAPTER 29 CONSTANTS

Constant Fields

The const modifier can be applied to a field to make the field
unchangeable.

class MyClass
{

const int b = 5; // compile-time constant field

}

Constant fields cannot have the static modifier. They are implicitly
static and are accessed in the same way as static fields.

int a = MyClass.b;

Readonly

Another variable modifier similar to const is readonly, which creates a
runtime constant. This modifier can be applied to fields, and like const, it
makes the field unchangeable.

class MyClass
{

readonly int ¢ = 3; // run-time constant field

}

Since a readonly field is assigned at runtime, it can be assigned a
dynamic value that is not known until runtime.

readonly int d = System.DateTime.Now.Hour;
Unlike const, readonly can be applied to any data type.

readonly int[] e = { 1, 2, 3 }; // readonly array

172

CHAPTER 29 CONSTANTS

Additionally, a readonly field cannot only be initialized when it is
declared. It can also be assigned a value in the constructor.

class MyClass
{
readonly string s;
public MyClass() { s = "Hello World"; }

}

As of C# 7.2, the readonly modifier can be applied to not just fields but
also to structs. Declaring a struct as readonly will enforce immutability
on the members of the struct, requiring all fields and properties to be
made readonly.

readonly struct MyStruct
{
public readonly int myVar;
public int myProperty { get; }
public MyStruct(int var, int prop)
{
myVar = var;
myProperty = prop;
}
}

Another addition in C# 7.2 is the ability to mark a method’s return
value as readonly when returning a value type by reference with the ref
modifier. This will disallow the caller from modifying the returned value,
provided that the returned value is also assigned as a readonly reference
and not just a copy.

173

CHAPTER 29 CONSTANTS

class MyClass
{
readonly static int i,
static ref readonly int GetValue() { return ref i; }
static void Main()
{
ref readonly int a = ref GetValue();
a =5; // error: readonly variable
}
}

In Parameters

Similar to the ref parameter modifier, C# 7.2 added the in modifier, which
provides the ability to pass an argument as a readonly reference. Any code
in the method that attempts to modify an in parameter (or its members in
the case of a struct) will fail at compile time and so the parameter must be
initialized prior to the method call.

class MyApp

{
static void Test(in int num)
{
// num = 5; // error: readonly parameter
}
static void Main()
{
int i = 10;
Test(i); // passed by readonly reference
Test(2); // allowed, temporary variable created
}
}

174

CHAPTER 29 CONSTANTS

Like the ref modifier, the in modifier prevents unnecessary copies
from being made of value types. This is useful for performance reasons,
particularly when passing a large struct object to a method that’s called
multiple times.

Constant Guideline

In general, it is a good idea to always declare variables as const or
readonly if they do not need to be reassigned. This ensures that the
variables will not be changed anywhere in the program by mistake, which
in turn helps to prevent bugs. It also clearly conveys to other developers
when a variable is intended not to be modified.

175

CHAPTER 30

Asynchronous
Methods

An asynchronous method is a method that can return before it has finished
executing. Any method that performs a potentially long-running task, such
as accessing a web resource or reading a file, can be made asynchronous
to improve the responsiveness of the program. This is especially important
in graphical applications, because any method that takes a long time

to execute on the user interface thread will cause the program to be
unresponsive while waiting for that method to complete.

The Async and Await Keywords

Introduced in C# 5.0, the async and await keywords allow asynchronous
methods to be written with a simple structure that is similar to
synchronous (regular) methods. The async modifier specifies that the
method is asynchronous and that it can therefore contain one or more
await expressions. An await expression consists of the await keyword
followed by an awaitable method call.

© Mikael Olsson 2020 177
M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3_30

CHAPTER 30 ASYNCHRONOUS METHODS

class MyApp
{
async void MyAsync()
{
System.Console.Write("A");
await System.Threading.Tasks.Task.Delay(2000);
System.Console.Write("C");

}
}

This method will run synchronously until the await expression is
reached, at which point the method is suspended and execution returns to
the caller. The awaited task is scheduled to run in the background on the
same thread. In this case the task is a timed delay that will complete after
2000 milliseconds. Once the task is complete, the remainder of the async
method will execute.

Calling the async method from Main will output “A” followed by “B” and
then “C” after the delay. Note the use of the ReadKey method here to prevent
the console program from exiting before the async method has finished.

static void Main()

{

new MyApp().MyAsync();
System.Console.Write("B");

System.Console.ReadKey();
}

Async Return Types

In C# 5.0 an async method can have one of three built-in return types:
Task<T>, Task, and void. Specifying Task or void denotes that the method
does not return a value, whereas Task<T> means it will return a value of
type T. In contrast to void, the Task and Task<T> types are awaitable, so a

178

CHAPTER 30 ASYNCHRONOUS METHODS

caller can use the await keyword to suspend itself until after the task has
finished. The void type is mainly used to define async event handlers, as
event handlers require a void return type.

Custom Async Methods

In order to call a method asynchronously, it has to be wrapped in another
method that returns a started task. To illustrate, the following method
defines, starts, and returns a task which takes 2000 milliseconds to execute
before it returns the letter “Y” The task is here defined through the use of a
lambda expression for conciseness.

using System.Threading.Tasks;
using System.Threading;
/...
Task<string> MyTask()
{
return Task.Run<string>(() => {
Thread.Sleep(2000);
return "Y";
D;
}

This task method can be called asynchronously from an async method.
The naming convention for these methods is to append “Async” to the
method name. The asynchronous method in this example awaits the result
of the task and then prints it.

async void MyTaskAsync()

{
string result = await MyTask();

System.Console.Write(result);

}

179

CHAPTER 30 ASYNCHRONOUS METHODS

The async method is called in the same way as a regular method, as
can be seen in the following Main method. The output of the program will
be “XY".

static void Main()

{
new MyApp().MyTaskAsync();
System.Console.Write("X");
System.Console.ReadKey();

}

Extended Return Types

C# 7.0 lessened the restriction on what return types an async method can
have. This can be useful when an async method returns a constant result
or is likely to complete synchronously, in which case the extra allocation of
a Task object may become an undesired performance cost. The condition
is that the returned type must implement the GetAwaiter method, which
returns an awaiter object. To make use of this new feature, .NET provides
the ValueTask<T> type, which is a lightweight value type that includes
this method.

To give an example, the following PowTwo async method gives
the result of the argument raised to the second power (a?). It executes
synchronously if the argument is less than plus or minus ten and therefore
returns a ValueTask<double> type in order to not have to allocate a Task
object in such a case. Note that the Main method here has the async
modifier. This is allowed as of C# 7.1 and is used for cases like this when
the Main method calls an async method directly.

using System.Threading.Tasks;
public class MyAsyncValueTask

{

180

CHAPTER 30 ASYNCHRONOUS METHODS

static async Task Main()

{
double d = await PowTwo(10);
System.Console.WritelLine(d); // "100"

}

private static async ValueTask<double> PowTwo(double a)
{

if (a < 10 && a > -10) {

return System.Math.Pow(a, 2);

}

return await Task.Run(() => System.Math.Pow(a, 2));
}

}

To use the ValueTask type, you need to add a NuGet package to your
project. NuGet is a package manager providing free and open source
extensions to Visual Studio. The package is added by right-clicking
References in the Solution Explorer and choosing Manage NuGet
Packages. Switch to the Browse tab and search for “Tasks” to find the
System.Threading.Tasks.Extensions package. Select this package and
click install.

Async Streams

Async streams were added in C# 8.0, allowing async methods to return
multiple results. This broadens their usability, enabling async methods to
return data as it becomes available. The async stream (producer method)
uses a yield return statement. This returns the result to the caller and
then continues to execute the method, allowing the method to make
asynchronous calls in between yielding each result.

181

CHAPTER 30 ASYNCHRONOUS METHODS

using System.Collections.Generic;
using System.Threading.Tasks;
static async IAsyncEnumerable<int> MyStream(int count)
{
int sum = 0;
for (int i = 0; i <= count; i++)
{
sum = sum + i;
yield return sum; // return a result
// Simulate waiting for more data
await Task.Delay(1000);

}

// end stream

For the purpose of async streams, C# 8.0 added asynchronous versions
of the generic enumerator interfaces. The IAsyncEnumerable<T> interface
is used here for returning a stream that can be consumed using an await
foreach loop. This variant of the foreach loop was also introduced with C# 8.0.

static async Task Main()

{
await foreach (int data in MyStream(3))

{
System.Console.Write(data + " "); // "0 1 3 6"

}
}

182

Index

A

Abstract methods
classes and interfaces, 111, 112
GetArea class, 110
members, 109
Access levels, 77
guideline, 83
inner classes, 82
internal member, 79
private access, 77, 78
private protected member, 80
protected/internal, 80
protected member, 78
public modifier, 81
top-level member, 82
Anonymous methods, 63, 146
Arithmetic operators, 15
Array
access, 26
allocation, 25
assignment, 26
declaration, 25
jagged arrays, 27
rectangular, 26
Assignment operators, 16
combined operators, 16
increment (++) and
decrement (--), 16

© Mikael Olsson 2020

Asynchronous methods
async and await keyword, 177
extended return types, 180
methods, 179
return types, 178
streams, 181, 182

Bitwise operators, 18

C

Calling methods, 38
Class
accessing object members, 50
anonymous type, 63
constructor
chaining, 53
default value, 54
initial field values, 53
method, 51
object initializers, 54
overloading, 52
default value, 62
destructor, 56
garbage collector, 56
member access operator (.), 50
nullable types

183

M. Olsson, C# 8 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5577-3

https://doi.org/10.1007/978-1-4842-5577-3

INDEX

Class (cont.)
non-nullable reference
types, 59
null-coalescing
operator (??), 60
null-conditional
operator (?.), 61
PropertyGroup
element, 59
reference, 59
value, 58
null keyword, 57, 58
object creation, 49
partial class, 55
property types, 63
this keyword, 52
type inference, 62
Combined assignment operators, 16
Comparison operators, 17
Compilation
comments, 6, 7
console, 5
language version, 6
Visual Studio, 5
Concatenation
operator, 21, 22
Conditional statements, 29
Goto, 31
if statement, 29, 30
switch
assignment expression, 32
statement, 30
ternary operator, 32

184

Constants
fields, 172
guideline, 175
local constant, 171
in parameters, 174
readonly, 172, 173
Constructor method, 51
Conversion methods
explicit, 136
implicit, 135, 136

D

Delegates
anonymous methods, 146
lambda expressions, 147-149
multicast, 149
parameter types, 150-152
signature, 145

Do-while loop, 33

E

Enumeration (enum variable)
access levels, 119
constant elements, 118
GetNames() function, 119
int/ToString method, 119
scope, 119
switch statement, 117
typeof operator, 119

Events, 153
caller, 154
keyword, 154

publisher, 153
raising events, 155
subscriber, 157
EventHandler, 156
publisher class, 156
Exception handling, 121
catch block, 122
error message, 121
filters, 123
finally block, 124-126
throwing exceptions, 127, 128
try-catch statement, 122
using statement, 126
Explicit conversion methods, 136

F

Floating-point types, 12
Foreach loop, 35

G

Garbage collector, 56
Generics, 159
base class constraint, 168
calling methods, 160, 161
classes, 162
constraints, 166
default value, 162
delegates, 165
events, 165
inheritance, 163
interfaces, 164

INDEX

methods, 159
multiple constraints, 168
object type, 166
type parameters, 161
use of, 168

Goto statement, 31

H

Hello World
IDE, 1
IntelliSense, 3
main method, 3
project creation, 2
WriteLine method, 3

Implicit conversion
methods, 135, 136
Increment (++) and decrement (--)
operators, 16
Indexers
data, 97
get and set methods, 97
overloading, 99
parameters, 98
ranges and indexes, 100
Inheritance
boxing, 67
downcast and upcast, 66, 67
is and as operators, 67, 68
object class, 65

185

INDEX

Inheritance (cont.)
pattern matching, 68-70
rectangle class, 65
unboxing, 67

Integrated Development

Environment (IDE), 1

IntelliSense, 3

Interfaces, 103
class interface, 105
default implementations, 106, 107
functionalities, 105
IComparable method, 104
signatures, 103

J, K

Jagged arrays, 27

L

Lambda expressions
body definition, 148
expression lambda, 148
input parameter, 147
operator (=>), 147
statement lambda, 148

Local constant, 171

Logical operators, 17

Loops
break and continue, 35
do-while, 33
for, 34
foreach, 35
while, 33

186

Methods
calling methods, 38
defining methods, 37
local methods, 47
named arguments, 41
optional parameters, 40
out keyword, 46
overloading, 39
parameters, 38, 39
params keyword, 39
pass by value, 43
recursive method, 47
reference data types, 43
ref keyword, 44, 45
return statement, 41
value and reference

types, 42
Multicast delegates, 149
MyPrint method, 38

N

Namespaces
access, 114
directives, 115
naming convention, 113
nested namespaces,
113,114
static directive, 116
Null-coalescing
expression, 128
Null keyword, 57, 58

O

Operator overloading, 129
binary, 130
MyNum object, 129
overloadable operators, 131
return and parameter type, 131
true and false, 132
unary operator, 130

Operator precedents, 18

P,Q

Preprocessor
conditional compilation, 142
diagnostic directives, 141, 143
#error directive, 143
line directive, 144
region directives, 144
syntax, 142
#warning directive, 143
Properties
access levels, 94
accessors, 91
advantages of, 92
auto-implemented, 95
contextual value keyword, 91
read-only and write-only, 94

R

Read-only and write-only
properties, 94

Rectangular array, 26

Redefining members

INDEX

base keyword, 74
differences, 73
hiding members, 71
overriding members, 72
signature, 71

Return statement, 41

S

Static methods
access, 86
advantage of, 86
classes, 87
constructor, 88
extension methods, 89
fields, 87
instance methods, 85
local function, 88
String
compare, 23
concatenation operator, 21, 22
data type, 21
escape characters, 22, 23
members, 23
StringBuilder class, 24
verbatim string, 23
StringBuilder class, 24
Struct keyword, 137
constructors, 138
field initializers, 139
guideline, 140
inheritance, 139
variable, 137
Switch statement, 30

187

INDEX

T, U

Ternary operator, 32
Throwing exceptions, 127, 128
ToString method, 21

Type inference, 62

\'

Variables
assignment, 10
bool type, 13
char type, 12

188

data types, 9
declaration, 10
floating-point types, 12
integer types, 11
scope of, 13

verbatim string, 23

Visual Studio compilation, 5

W XY,Z
While loop, 33
WriteLine method, 3

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Choosing an IDE
	Creating a Project
	Hello World
	IntelliSense

	Chapter 2: Compile and Run
	Visual Studio Compilation
	Console Compilation
	Language Version
	Comments

	Chapter 3: Variables
	Data Types
	Declaration
	Assignment
	Integer Types
	Floating-Point Types
	Char Type
	Bool Type
	Variable Scope

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Combined Assignment Operators
	Increment and Decrement Operators

	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedents

	Chapter 5: Strings
	String Concatenation
	Escape Characters
	String Compare
	String Members
	StringBuilder Class

	Chapter 6: Arrays
	Array Declaration
	Array Allocation
	Array Assignment
	Array Access
	Rectangular Arrays
	Jagged Arrays

	Chapter 7: Conditionals
	If Statement
	Switch Statement
	Goto Statement
	Switch Expression
	Ternary Operator

	Chapter 8: Loops
	While Loop
	Do-While Loop
	For Loop
	Foreach Loop
	Break and Continue

	Chapter 9: Methods
	Defining Methods
	Calling Methods
	Method Parameters
	Params Keyword
	Method Overloading
	Optional Parameters
	Named Arguments
	Return Statement
	Value and Reference Types
	Pass by Value
	Pass by Reference
	Ref Keyword
	Out Keyword
	Local Methods

	Chapter 10: Class
	Object Creation
	Accessing Object Members
	Constructor
	This Keyword
	Constructor Overloading
	Constructor Chaining
	Initial Field Values
	Default Constructor
	Object Initializers
	Partial Class
	Garbage Collector
	Destructor
	Null Keyword
	Nullable Value Types
	Nullable Reference Types
	Null-Coalescing Operator
	Null-Conditional Operator
	Default Values
	Type Inference
	Anonymous Types

	Chapter 11: Inheritance
	Object Class
	Downcast and Upcast
	Boxing
	Unboxing
	The Is and As Keywords
	Pattern Matching

	Chapter 12: Redefining Members
	Hiding Members
	Overriding Members
	Hiding and Overriding
	Sealed Keyword
	Base Keyword

	Chapter 13: Access Levels
	Private Access
	Protected Access
	Internal Access
	Protected Internal Access
	Private Protected Access
	Public Access
	Top-Level Access Levels
	Inner Classes
	Access Level Guideline

	Chapter 14: Static
	Accessing Static Members
	Static Methods
	Static Fields
	Static Classes
	Static Constructor
	Static Local Functions
	Extension Methods

	Chapter 15: Properties
	Property Advantages
	Read-Only and Write-Only Properties
	Property Access Levels
	Auto-implemented Properties

	Chapter 16: Indexers
	Indexer Parameters
	Indexer Overloading
	Ranges and Indexes

	Chapter 17: Interfaces
	Interface Signatures
	Interface Example
	Functionality Interface
	Class Interface
	Default Implementations

	Chapter 18: Abstract
	Abstract Members
	Abstract Example
	Abstract Classes and Interfaces

	Chapter 19: Namespaces
	Nested Namespaces
	Namespace Access
	Using Directive

	Chapter 20: Enum
	Enum Example
	Enum Constant Values
	Enum Constant Type
	Enum Access Levels and Scope
	Enum Methods

	Chapter 21: Exception Handling
	Try-Catch Statement
	Catch Block
	Exception Filters
	Finally Block
	Using Statement
	Throwing Exceptions

	Chapter 22: Operator Overloading
	Operator Overloading Example
	Binary Operator Overloading
	Unary Operator Overloading
	Return Types and Parameters
	Overloadable Operators
	True and False Operator Overloading

	Chapter 23: Custom Conversions
	Implicit Conversion Methods
	Explicit Conversion Methods

	Chapter 24: Struct
	Struct Variable
	Struct Constructors
	Struct Field Initializers
	Struct Inheritance
	Struct Guideline

	Chapter 25: Preprocessors
	Preprocessor Syntax
	Conditional Compilation Symbols
	Conditional Compilation
	Diagnostic Directives
	Line Directive
	Region Directives

	Chapter 26: Delegates
	Anonymous Methods
	Lambda Expressions
	Expression Body Members

	Multicast Delegates
	Delegate Signature
	Delegates as Parameters

	Chapter 27: Events
	Publisher
	Event Keyword
	Event Caller
	Raising Events
	Subscriber
	Subscribing to Events

	Chapter 28: Generics
	Generic Methods
	Calling Generic Methods
	Generic Type Parameters
	Default Value
	Generic Classes
	Generic Class Inheritance
	Generic Interfaces
	Generic Delegates
	Generic Events
	Generics and Object
	Constraints
	Multiple Constraints
	Why Use Constraints

	Chapter 29: Constants
	Local Constants
	Constant Fields
	Readonly
	In Parameters
	Constant Guideline

	Chapter 30: Asynchronous Methods
	The Async and Await Keywords
	Async Return Types
	Custom Async Methods
	Extended Return Types
	Async Streams

	Index

