
91© Intel Corporation 2021
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_4

CHAPTER 4

Expressing Parallelism

USM

ke
rn

els

SYCL THINKPARALLEL

C+
+1

7

 Khronos

lam
bdas

bu
ffe

rs
ac

ce
ss

or
s

 queue devicesho
st

Now we can put together our first collection of puzzle pieces. We

already know how to place code (Chapter 2) and data (Chapter 3) on

a device—all we must do now is engage in the art of deciding what to

do with it. To that end, we now shift to fill in a few things that we have

conveniently left out or glossed over so far. This chapter marks the

transition from simple teaching examples toward real-world parallel

code and expands upon details of the code samples we have casually

shown in prior chapters.

https://doi.org/10.1007/978-1-4842-5574-2_4#DOI
https://doi.org/10.1007/978-1-4842-5574-2_2
https://doi.org/10.1007/978-1-4842-5574-2_3

92

Writing our first program in a new parallel language may seem like a

daunting task, especially if we are new to parallel programming. Language

specifications are not written for application developers and often assume

some familiarity with terminology; they do not contain answers to

questions like these:

•	 Why is there more than one way to express parallelism?

•	 Which method of expressing parallelism should I use?

•	 How much do I really need to know about the

execution model?

This chapter seeks to address these questions and more. We introduce

the concept of a data-parallel kernel, discuss the strengths and weaknesses

of the different kernel forms using working code examples, and highlight

the most important aspects of the kernel execution model.

�Parallelism Within Kernels
Parallel kernels have emerged in recent years as a powerful means

of expressing data parallelism. The primary design goals of a kernel-

based approach are portability across a wide range of devices and high

programmer productivity. As such, kernels are typically not hard-coded

to work with a specific number or configuration of hardware resources

(e.g., cores, hardware threads, SIMD [Single Instruction, Multiple Data]

instructions). Instead, kernels describe parallelism in terms of abstract

concepts that an implementation (i.e., the combination of compiler and

runtime) can then map to the hardware parallelism available on a specific

target device. Although this mapping is implementation-defined, we can

(and should) trust implementations to select a mapping that is sensible

and capable of effectively exploiting hardware parallelism.

Chapter 4 Expressing Parallelism

93

Exposing a great deal of parallelism in a hardware-agnostic way

ensures that applications can scale up (or down) to fit the capabilities of

different platforms, but…

Guaranteeing functional portability is not the same as guaranteeing
high performance!

There is a significant amount of diversity in the devices supported,

and we must remember that different architectures are designed and

optimized for different use cases. Whenever we hope to achieve the

highest levels of performance on a specific device, we should always

expect that some additional manual optimization work will be required—

regardless of the programming language we’re using! Examples of such

device-specific optimizations include blocking for a particular cache

size, choosing a grain size that amortizes scheduling overheads, making

use of specialized instructions or hardware units, and, most importantly,

choosing an appropriate algorithm. Some of these examples will be

revisited in Chapters 15, 16, and 17.

Striking the right balance between performance, portability, and

productivity during application development is a challenge that we must

all face—and a challenge that this book cannot address in its entirety.

However, we hope to show that DPC++ provides all the tools required to

maintain both generic portable code and optimized target-specific code

using a single high-level programming language. The rest is left as an

exercise to the reader!

�Multidimensional Kernels
The parallel constructs of many other languages are one-dimensional,

mapping work directly to a corresponding one-dimensional hardware

resource (e.g., number of hardware threads). Parallel kernels are

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_15
https://doi.org/10.1007/978-1-4842-5574-2_16
https://doi.org/10.1007/978-1-4842-5574-2_17

94

a higher-level concept than this, and their dimensionality is more

reflective of the problems that our codes are typically trying to solve (in a

one-, two-, or three-dimensional space).

However, we must remember that the multidimensional indexing

provided by parallel kernels is a programmer convenience implemented

on top of an underlying one-dimensional space. Understanding how this

mapping behaves can be an important part of certain optimizations (e.g.,

tuning memory access patterns).

One important consideration is which dimension is contiguous or

unit-stride (i.e., which locations in the multidimensional space are next to

each other in the one-dimensional space). All multidimensional quantities

related to parallelism in SYCL use the same convention: dimensions

are numbered from 0 to N-1, where dimension N-1 corresponds to the

contiguous dimension. Wherever a multidimensional quantity is written as

a list (e.g., in constructors) or a class supports multiple subscript operators,

this numbering applies left to right. This convention is consistent with the

behavior of multidimensional arrays in standard C++.

An example of mapping a two-dimensional space to a linear index

using the SYCL convention is shown in Figure 4-1. We are of course free

to break from this convention and adopt our own methods of linearizing

indices, but must do so carefully—breaking from the SYCL convention may

have a negative performance impact on devices that benefit from stride-

one accesses.

Figure 4-1.  Two-dimensional range of size (2, 8) mapped to linear
indices

Chapter 4 Expressing Parallelism

95

If an application requires more than three dimensions, we must take

responsibility for mapping between multidimensional and linear indices

manually, using modulo arithmetic.

�Loops vs. Kernels
An iterative loop is an inherently serial construct: each iteration of the

loop is executed sequentially (i.e., in order). An optimizing compiler may

be able to determine that some or all iterations of a loop can execute in

parallel, but it must be conservative—if the compiler isn’t smart enough or

doesn’t have enough information to prove that parallel execution is always

safe, it must preserve the loop’s sequential semantics for correctness.

Consider the loop in Figure 4-2, which describes a simple vector

addition. Even in a simple case like this, proving that the loop can be

executed in parallel is not trivial: parallel execution is only safe if c does

not overlap a or b, which in the general case cannot be proven without

a runtime check! In order to address situations like this, languages have

added features enabling us to provide compilers with extra information

that may simplify analysis (e.g., asserting that pointers do not overlap

with restrict) or to override all analysis altogether (e.g., declaring that

all iterations of a loop are independent or defining exactly how the loop

should be scheduled to parallel resources).

The exact meaning of a parallel loop is somewhat ambiguous—due

to overloading of the term by different parallel programming languages—

but many common parallel loop constructs represent compiler

transformations applied to sequential loops. Such programming models

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

Figure 4-2.  Expressing a vector addition as a serial loop

Chapter 4 Expressing Parallelism

96

enable us to write sequential loops and only later provide information

about how different iterations can be executed safely in parallel. These

models are very powerful, integrate well with other state-of-the-art

compiler optimizations, and greatly simplify parallel programming, but

do not always encourage us to think about parallelism at an early stage of

development.

A parallel kernel is not a loop, and does not have iterations. Rather, a

kernel describes a single operation, which can be instantiated many times

and applied to different input data; when a kernel is launched in parallel,

multiple instances of that operation are executed simultaneously.

Figure 4-3 shows our simple loop example rewritten as a kernel using

pseudocode. The opportunity for parallelism in this kernel is clear and

explicit: the kernel can be executed in parallel by any number of instances,

and each instance independently applies to a separate piece of data. By

writing this operation as a kernel, we are asserting that it is safe to run in

parallel (and ideally should be).

In short, kernel-based programming is not a way to retrofit parallelism

into existing sequential codes, but a methodology for writing explicitly

parallel applications.

The sooner that we can shift our thinking from parallel loops to
kernels, the easier it will be to write effective parallel programs using
Data Parallel C++.

launch N kernel instances {
int id = get_instance_id(); // unique identifier in [0, N)
c[id] = a[id] + b[id];

}

Figure 4-3.  Loop rewritten (in pseudocode) as a parallel kernel

Chapter 4 Expressing Parallelism

97

�Overview of Language Features
Once we’ve decided to write a parallel kernel, we must decide what type of

kernel we want to launch and how to represent it in our program. There are

a multitude of ways to express parallel kernels, and we need to familiarize

ourselves with each of these options if we want to master the language.

�Separating Kernels from Host Code
We have several alternative ways to separate host and device code, which

we can mix and match within an application: C++ lambda expressions or

function objects (functors), OpenCL C source strings, or binaries. Some

of these options were already covered in Chapter 2, and all of them will be

covered in more detail in Chapter 10.

The fundamental concepts of expressing parallelism are shared by all

these options. For consistency and brevity, all the code examples in this

chapter express kernels using C++ lambdas.

LAMBDAS NOT CONSIDERED HARMFUL

There is no need to fully understand everything that the C++ specification

says about lambdas in order to get started with DPC++—all we need to

know is that the body of the lambda represents the kernel and that variables

captured (by value) will be passed to the kernel as arguments.

There is no performance impact arising from the use of lambdas instead of

more verbose mechanisms for defining kernels. A DPC++ compiler always

understands when a lambda represents the body of a parallel kernel and can

optimize for parallel execution accordingly.

For a refresher on C++ lambda functions, with notes about their use in SYCL,

see Chapter 1. For more specific details on using lambdas to define kernels,

see Chapter 10.

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_2
https://doi.org/10.1007/978-1-4842-5574-2_10
https://doi.org/10.1007/978-1-4842-5574-2_1
https://doi.org/10.1007/978-1-4842-5574-2_10

98

�Different Forms of Parallel Kernels
There are three different kernel forms, supporting different execution

models and syntax. It is possible to write portable kernels using any of

the kernel forms, and kernels written in any form can be tuned to achieve

high performance on a wide variety of device types. However, there will be

times when we may want to use a specific form to make a specific parallel

algorithm easier to express or to make use of an otherwise inaccessible

language feature.

The first form is used for basic data-parallel kernels and offers the

gentlest introduction to writing kernels. With basic kernels, we sacrifice

control over low-level features like scheduling in order to make the

expression of the kernel as simple as possible. How the individual kernel

instances are mapped to hardware resources is controlled entirely by the

implementation, and so as basic kernels grow in complexity, it becomes

harder and harder to reason about their performance.

The second form extends basic kernels to provide access to low-level

performance-tuning features. This second form is known as ND-range

(N-dimensional range) data parallel for historical reasons, and the most

important thing to remember is that it enables certain kernel instances to

be grouped together, allowing us to exert some control over data locality

and the mapping between individual kernel instances and the hardware

resources that will be used to execute them.

The third form provides an alternative syntax to simplify the expression

of ND-range kernels using nested kernel constructs. This third form is

referred to as hierarchical data parallel, referring to the hierarchy of the

nested kernel constructs that appear in user source code.

We will revisit how to choose between the different kernel forms again

at the end of this chapter, once we’ve discussed their features in more

detail.

Chapter 4 Expressing Parallelism

99

�Basic Data-Parallel Kernels
The most basic form of parallel kernel is appropriate for operations that

are embarrassingly parallel (i.e., operations that can be applied to every

piece of data completely independently and in any order). By using this

form, we give an implementation complete control over the scheduling of

work. It is thus an example of a descriptive programming construct—we

describe that the operation is embarrassingly parallel, and all scheduling

decisions are made by the implementation.

Basic data-parallel kernels are written in a Single Program, Multiple

Data (SPMD) style—a single “program” (the kernel) is applied to multiple

pieces of data. Note that this programming model still permits each

instance of the kernel to take different paths through the code, as a result

of data-dependent branches.

One of the greatest strengths of a SPMD programming model is that it

allows the same “program” to be mapped to multiple levels and types of

parallelism, without any explicit direction from us. Instances of the same

program could be pipelined, packed together and executed with SIMD

instructions, distributed across multiple threads, or a mix of all three.

�Understanding Basic Data-Parallel Kernels
The execution space of a basic parallel kernel is referred to as its execution

range, and each instance of the kernel is referred to as an item. This is

represented diagrammatically in Figure 4-4.

Chapter 4 Expressing Parallelism

100

The execution model of basic data-parallel kernels is very simple: it

allows for completely parallel execution, but does not guarantee or require

it. Items can be executed in any order, including sequentially on a single

hardware thread (i.e., without any parallelism)! Kernels that assume that all

items will be executed in parallel (e.g., by attempting to synchronize items)

could therefore very easily cause programs to hang on some devices.

However, in order to guarantee correctness, we must always write

our kernels under the assumption that they could be executed in parallel.

For example, it is our responsibility to ensure that concurrent accesses to

memory are appropriately guarded by atomic memory operations (see

Chapter 19) in order to prevent race conditions.

�Writing Basic Data-Parallel Kernels
Basic data-parallel kernels are expressed using the parallel_for function.

Figure 4-5 shows how to use this function to express a vector addition,

which is our take on “Hello, world!” for parallel accelerator programming.

Figure 4-4.  Execution space of a basic parallel kernel, shown for a 2D
range of 64 items

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_19

101

The function only takes two arguments: the first is a range specifying

the number of items to launch in each dimension, and the second is a

kernel function to be executed for each index in the range. There are

several different classes that can be accepted as arguments to a kernel

function, and which should be used depends on which class exposes the

functionality required—we’ll revisit this later.

Figure 4-6 shows a very similar use of this function to express a matrix

addition, which is (mathematically) identical to vector addition except

with two-dimensional data. This is reflected by the kernel—the only

difference between the two code snippets is the dimensionality of the

range and id classes used! It is possible to write the code this way because

a SYCL accessor can be indexed by a multidimensional id. As strange as it

looks, this can be very powerful, enabling us to write kernels templated on

the dimensionality of our data.

It is more common in C/C++ to use multiple indices and multiple

subscript operators to index multidimensional data structures, and this

explicit indexing is also supported by accessors. Using multiple indices

in this way can improve readability when a kernel operates on data of

different dimensionalities simultaneously or when the memory access

patterns of a kernel are more complicated than can be described by using

an item’s id directly.

h.parallel_for(range{N}, [=](id<1> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-5.  Expressing a vector addition kernel with parallel_for

h.parallel_for(range{N, M}, [=](id<2> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-6.  Expressing a matrix addition kernel with parallel_for

Chapter 4 Expressing Parallelism

102

For example, the matrix multiplication kernel in Figure 4-7 must

extract the two individual components of the index in order to be able to

describe the dot product between rows and columns of the two matrices.

In our opinion, consistently using multiple subscript operators (e.g.,

[j][k]) is more readable than mixing multiple indexing modes and

constructing two-dimensional id objects (e.g., id(j,k)), but this is simply

a matter of personal preference.

The examples in the remainder of this chapter all use multiple

subscript operators, to ensure that there is no ambiguity in the

dimensionality of the buffers being accessed.

h.parallel_for(range{N, N}, [=](id<2> idx) {
int j = idx[0];
int i = idx[1];
for (int k = 0; k < N; ++k) {

c[j][i] += a[j][k] * b[k][i];
// c[idx] += a[id(j,k) * b[id(k,i)]; <<< equivalent

}
});

Figure 4-7.  Expressing a naïve matrix multiplication kernel for
square matrices, with parallel_for

Figure 4-8.  Mapping matrix multiplication work to items in the
execution range

Chapter 4 Expressing Parallelism

103

The diagram in Figure 4-8 shows how the work in our matrix

multiplication kernel is mapped to individual items. Note that the number

of items is derived from the size of the output range and that the same

input values may be read by multiple items: each item computes a single

value of the C matrix, by iterating sequentially over a (contiguous) row of

the A matrix and a (non-contiguous) column of the B matrix.

�Details of Basic Data-Parallel Kernels
The functionality of basic data-parallel kernels is exposed via three C++

classes: range, id, and item. We’ve already seen the range and id classes

a few times in previous chapters, but we revisit them here with a different

focus.

�The range Class

A range represents a one-, two-, or three-dimensional range. The

dimensionality of a range is a template argument and must therefore be

known at compile time, but its size in each dimension is dynamic and is

passed to the constructor at runtime. Instances of the range class are used

to describe both the execution ranges of parallel constructs and the sizes of

buffers.

A simplified definition of the range class, showing the constructors and

various methods for querying its extent, is shown in Figure 4-9.

Chapter 4 Expressing Parallelism

104

�The id Class

An id represents an index into a one, two-, or three-dimensional range. The

definition of id is similar in many respects to range: its dimensionality must

also be known at compile time, and it may be used to index an individual

instance of a kernel in a parallel construct or an offset into a buffer.

As shown by the simplified definition of the id class in Figure 4-10,

an id is conceptually nothing more than a container of one, two, or three

integers. The operations available to us are also very simple: we can query

the component of an index in each dimension, and we can perform simple

arithmetic to compute new indices.

Although we can construct an id to represent an arbitrary index, to

obtain the id associated with a specific kernel instance, we must accept

it (or an item containing it) as an argument to a kernel function. This id

(or values returned by its member functions) must be forwarded to any

function in which we want to query the index—there are not currently any

free functions for querying the index at arbitrary points in a program, but

this may be addressed by a future version of DPC++.

template <int Dimensions = 1>
class range {
public:

// Construct a range with one, two or three dimensions
range(size_t dim0);
range(size_t dim0, size_t dim1);
range(size_t dim0, size_t dim1, size_t dim2);

// Return the size of the range in a specific dimension
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Return the product of the size of each dimension
size_t size() const;

// Arithmetic operations on ranges are also supported
};

Figure 4-9.  Simplified definition of the range class

Chapter 4 Expressing Parallelism

105

Each instance of a kernel accepting an id knows only the index in the

range that it has been assigned to compute and knows nothing about the

range itself. If we want our kernel instances to know about their own index

and the range, we need to use the item class instead.

�The item Class

An item represents an individual instance of a kernel function,

encapsulating both the execution range of the kernel and the instance’s

index within that range (using a range and an id, respectively). Like range

and id, its dimensionality must be known at compile time.

A simplified definition of the item class is given in Figure 4-11. The

main difference between item and id is that item exposes additional

functions to query properties of the execution range (e.g., size, offset) and

a convenience function to compute a linearized index. As with id, the

only way to obtain the item associated with a specific kernel instance is to

accept it as an argument to a kernel function.

template <int Dimensions = 1>
class id {
public:

// Construct an id with one, two or three dimensions
id(size_t dim0);
id(size_t dim0, size_t dim1);
id(size_t dim0, size_t dim1, size_t dim2);

// Return the component of the id in a specific dimension
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Arithmetic operations on ids are also supported
};

Figure 4-10.  Simplified definition of the id class

Chapter 4 Expressing Parallelism

106

�Explicit ND-Range Kernels
The second form of parallel kernel replaces the flat execution range of

basic data-parallel kernels with an execution range where items belong to

groups and is appropriate for cases where we would like to express some

notion of locality within our kernels. Different behaviors are defined and

guaranteed for different types of groups, giving us more insight into and/or

control over how work is mapped to specific hardware platforms.

These explicit ND-range kernels are thus an example of a more

prescriptive parallel construct—we prescribe a mapping of work to each

type of group, and the implementation must obey that mapping. However,

it is not completely prescriptive, as the groups themselves may execute in

any order and an implementation retains some freedom over how each

type of group is mapped to hardware resources. This combination of

prescriptive and descriptive programming enables us to design and tune

our kernels for locality without impacting their portability.

Like basic data-parallel kernels, ND-range kernels are written in a

SPMD style where all work-items execute the same kernel "program"

applied to multiple pieces of data. The key difference is that each program

template <int Dimensions = 1, bool WithOffset = true>
class item {
public:
// Return the index of this item in the kernel's execution range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t operator[](int dimension) const;

// Return the execution range of the kernel executed by this item
range<Dimensions> get_range() const;
size_t get_range(int dimension) const;

// Return the offset of this item (if with_offset == true)
id<Dimensions> get_offset() const;

// Return the linear index of this item
// e.g. id(0) * range(1) * range(2) + id(1) * range(2) + id(2)
size_t get_linear_id() const;

};

Figure 4-11.  Simplified definition of the item class

Chapter 4 Expressing Parallelism

107

instance can query its position within the groups that contain it and can

access additional functionality specific to each type of group.

�Understanding Explicit ND-Range Parallel Kernels
The execution range of an ND-range kernel is divided into work-groups,

sub-groups, and work-items. The ND-range represents the total execution

range, which is divided into work-groups of uniform size (i.e., the work-

group size must divide the ND-range size exactly in each dimension). Each

work-group can be further divided by the implementation into sub-groups.

Understanding the execution model defined for work-items and each type

of group is an important part of writing correct and portable programs.

Figure 4-12 shows an example of an ND-range of size (8, 8, 8) divided into

8 work-groups of size (4, 4, 4). Each work-group contains 16 one-dimensional

sub-groups of 4 work-items. Pay careful attention to the numbering of the

dimensions: sub-groups are always one-dimensional, and so dimension 2 of

the ND-range and work-group becomes dimension 0 of the sub-group.

Figure 4-12.  Three-dimensional ND-range divided into work-groups,
sub-groups, and work-items

Chapter 4 Expressing Parallelism

108

The exact mapping from each type of group to hardware resources

is implementation-defined, and it is this flexibility that enables programs

to execute on a wide variety of hardware. For example, work-items could

be executed completely sequentially, executed in parallel by hardware

threads and/or SIMD instructions, or even executed by a hardware

pipeline specifically configured for a specific kernel.

In this chapter, we are focused only on the semantic guarantees of the

ND-range execution model in terms of a generic target platform, and we

will not cover its mapping to any one platform. See Chapters 15, 16, and 17

for details of the hardware mapping and performance recommendations

for GPUs, CPUs, and FPGAs, respectively.

�Work-Items

Work-items represent the individual instances of a kernel function. In the

absence of other groupings, work-items can be executed in any order and

cannot communicate or synchronize with each other except by way of

atomic memory operations to global memory (see Chapter 19).

�Work-Groups

The work-items in an ND-range are organized into work-groups. Work-

groups can execute in any order, and work-items in different work-groups

cannot communicate with each other except by way of atomic memory

operations to global memory (see Chapter 19). However, the work-items

within a work-group have concurrent scheduling guarantees when certain

constructs are used, and this locality provides some additional capabilities:

	 1.	 Work-items in a work-group have access to work-

group local memory, which may be mapped to

a dedicated fast memory on some devices (see

Chapter 9).

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_15
https://doi.org/10.1007/978-1-4842-5574-2_16
https://doi.org/10.1007/978-1-4842-5574-2_17
https://doi.org/10.1007/978-1-4842-5574-2_19
https://doi.org/10.1007/978-1-4842-5574-2_19
https://doi.org/10.1007/978-1-4842-5574-2_9

109

	 2.	 Work-items in a work-group can synchronize

using work-group barriers and guarantee memory

consistency using work-group memory fences (see

Chapter 9).

	 3.	 Work-items in a work-group have access to group

functions, providing implementations of common

communication routines (see Chapter 9) and

common parallel patterns such as reductions and

scans (see Chapter 14).

The number of work-items in a work-group is typically configured

for each kernel at runtime, as the best grouping will depend upon both

the amount of parallelism available (i.e., the size of the ND-range) and

properties of the target device. We can determine the maximum number of

work-items per work-group supported by a specific device using the query

functions of the device class (see Chapter 12), and it is our responsibility

to ensure that the work-group size requested for each kernel is valid.

There are some subtleties in the work-group execution model that are

worth emphasizing.

First, although the work-items in a work-group are scheduled to a

single compute unit, there need not be any relationship between the

number of work-groups and the number of compute units. In fact, the

number of work-groups in an ND-range can be many times larger than

the number of work-groups that a given device can execute concurrently!

We may be tempted to try and write kernels that synchronize across

work-groups by relying on very clever device-specific scheduling, but we

strongly recommend against doing this—such kernels may appear to work

today, but they are not guaranteed to work with future implementations

and are highly likely to break when moved to a different device.

Second, although the work-items in a work-group are scheduled

concurrently, they are not guaranteed to make independent forward

progress—executing the work-items within a work-group sequentially

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_9
https://doi.org/10.1007/978-1-4842-5574-2_9
https://doi.org/10.1007/978-1-4842-5574-2_14
https://doi.org/10.1007/978-1-4842-5574-2_12

110

between barriers and collectives is a valid implementation.

Communication and synchronization between work-items in the same

work-group is only guaranteed to be safe when performed using the barrier

and collective functions provided, and hand-coded synchronization

routines may deadlock.

THINKING IN WORK-GROUPS

Work-groups are similar in many respects to the concept of a task in other

programming models (e.g., Threading Building Blocks): tasks can execute

in any order (controlled by a scheduler); it’s possible (and even desirable) to

oversubscribe a machine with tasks; and it’s often not a good idea to try and

implement a barrier across a group of tasks (as it may be very expensive or

incompatible with the scheduler). If we’re already familiar with a task-based

programming model, we may find it useful to think of work-groups as though

they are data-parallel tasks.

�Sub-Groups

On many modern hardware platforms, subsets of the work-items in a

work-group known as sub-groups are executed with additional scheduling

guarantees. For example, the work-items in a sub-group could be executed

simultaneously as a result of compiler vectorization, and/or the sub-

groups themselves could be executed with forward progress guarantees

because they are mapped to independent hardware threads.

When working with a single platform, it is tempting to bake

assumptions about these execution models into our codes, but this makes

them inherently unsafe and non-portable—they may break when moving

between different compilers or even when moving between different

generations of hardware from the same vendor!

Chapter 4 Expressing Parallelism

111

Defining sub-groups as a core part of the language gives us a safe

alternative to making assumptions that may later prove to be device-

specific. Leveraging sub-group functionality also allows us to reason about

the execution of work-items at a low level (i.e., close to hardware) and is

key to achieving very high levels of performance across many platforms.

As with work-groups, the work-items within a sub-group can

synchronize, guarantee memory consistency, or execute common parallel

patterns via group functions. However, there is no equivalent of work-

group local memory for sub-groups (i.e., there is no sub-group local

memory). Instead, the work-items in a sub-group can exchange data

directly—without explicit memory operations—using shuffle operations

(Chapter 9).

Some aspects of sub-groups are implementation-defined and outside

of our control. However, a sub-group has a fixed (one-dimensional) size for

a given combination of device, kernel, and ND-range, and we can query

this size using the query functions of the kernel class (see Chapter 10).

By default, the number of work-items per sub-group is also chosen by the

implementation—we can override this behavior by requesting a particular

sub-group size at compile time, but must ensure that the sub-group size

we request is compatible with the device.

Like work-groups, the work-items in a sub-group are only guaranteed

to execute concurrently—an implementation is free to execute each work-

item in a sub-group sequentially and only switch between work-items

when a sub-group collective function is encountered. Where sub-groups

are special is that some devices guarantee that they make independent

forward progress—on some devices, all sub-groups within a work-

group are guaranteed to execute (make progress) eventually, which is a

cornerstone of several producer-consumer patterns. Whether or not this

independent forward progress guarantee holds can be determined using a

device query.

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_9
https://doi.org/10.1007/978-1-4842-5574-2_10

112

THINKING IN SUB-GROUPS

If we are coming from a programming model that requires us to think about

explicit vectorization, it may be useful to think of each sub-group as a set of

work-items packed into a SIMD register, where each work-item in the sub-

group corresponds to a SIMD lane. When multiple sub-groups are in flight

simultaneously and a device guarantees they will make forward progress, this

mental model extends to treating each sub-group as though it were a separate

stream of vector instructions executing in parallel.

�Writing Explicit ND-Range Data-Parallel Kernels
Figure 4-13 re-implements the matrix multiplication kernel that we saw

previously using the ND-range parallel kernel syntax, and the diagram in

Figure 4-14 shows how the work in this kernel is mapped to the work-items

in each work-group. Grouping our work-items in this way ensures locality

of access and hopefully improves cache hit rates: for example, the work-

group in Figure 4-14 has a local range of (4, 4) and contains 16 work-items,

but only accesses four times as much data as a single work-item—in other

words, each value we load from memory can be reused four times.

range global{N, N};
range local{B, B};
h.parallel_for(nd_range{global, local}, [=](nd_item<2> it) {

int j = it.get_global_id(0);
int i = it.get_global_id(1);

for (int k = 0; k < N; ++k)
c[j][i] += a[j][k] * b[k][i];

});

Figure 4-13.  Expressing a naïve matrix multiplication kernel with
ND-range parallel_for

Chapter 4 Expressing Parallelism

113

So far, our matrix multiplication example has relied on a hardware

cache to optimize repeated accesses to the A and B matrices from work-

items in the same work-group. Such hardware caches are commonplace

on traditional CPU architectures and are becoming increasingly so on GPU

architectures, but there are other architectures (e.g., previous-generation

GPUs, FPGAs) with explicitly managed “scratchpad” memories. ND-range

kernels can use local accessors to describe allocations that should be

placed in work-group local memory, and an implementation is then free

to map these allocations to special memory (where it exists). Usage of this

work-group local memory will be covered in Chapter 9.

�Details of Explicit ND-Range Data-Parallel
Kernels
ND-range data-parallel kernels use different classes compared to basic

data-parallel kernels: range is replaced by nd_range, and item is replaced

by nd_item. There are also two new classes, representing the different

types of groups to which a work-item may belong: functionality tied to

work-groups is encapsulated in the group class, and functionality tied to

sub-groups is encapsulated in the sub_group class.

Figure 4-14.  Mapping matrix multiplication to work-groups and
work-items

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_9

114

�The nd_range Class

An nd_range represents a grouped execution range using two instances

of the range class: one denoting the global execution range and another

denoting the local execution range of each work-group. A simplified

definition of the nd_range class is given in Figure 4-15.

It may be a little surprising that the nd_range class does not mention

sub-groups at all: the sub-group range is not specified during construction

and cannot be queried. There are two reasons for this omission. First,

sub-groups are a low-level implementation detail that can be ignored

for many kernels. Second, there are several devices supporting exactly

one valid sub-group size, and specifying this size everywhere would

be unnecessarily verbose. All functionality related to sub-groups is

encapsulated in a dedicated class that will be discussed shortly.

�The nd_item Class

An nd_item is the ND-range form of an item, again encapsulating the

execution range of the kernel and the item’s index within that range.

Where nd_item differs from item is in how its position in the range is queried

and represented, as shown by the simplified class definition in Figure 4-16.

template <int Dimensions = 1>
class nd_range {
public:
// Construct an nd_range from global and work-group local ranges
nd_range(range<Dimensions> global, range<Dimensions> local);

// Return the global and work-group local ranges
range<Dimensions> get_global_range() const;
range<Dimensions> get_local_range() const;

// Return the number of work-groups in the global range
range<Dimensions> get_group_range() const;

};

Figure 4-15.  Simplified definition of the nd_range class

Chapter 4 Expressing Parallelism

115

For example, we can query the item’s index in the (global) ND-range using

the get_global_id() function or the item’s index in its (local) parent work-

group using the get_local_id() function.

The nd_item class also provides functions for obtaining handles to

classes describing the group and sub-group that an item belongs to. These

classes provide an alternative interface for querying an item’s index in an

ND-range. We strongly recommend writing kernels using these classes

instead of relying on nd_item directly: using the group and sub_group

classes is often cleaner, conveys intent more clearly, and is more aligned

with the future direction of DPC++.

template <int Dimensions = 1>
class nd_item {
public:
// Return the index of this item in the kernel's execution range
id<Dimensions> get_global_id() const;
size_t get_global_id(int dimension) const;
size_t get_global_linear_id() const;

// Return the execution range of the kernel executed by this item
range<Dimensions> get_global_range() const;
size_t get_global_range(int dimension) const;

// Return the index of this item within its parent work-group
id<Dimensions> get_local_id() const;
size_t get_local_id(int dimension) const;
size_t get_local_linear_id() const;

// Return the execution range of this item's parent work-group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

// Return a handle to the work-group
// or sub-group containing this item
group<Dimensions> get_group() const;
sub_group get_sub_group() const;

};

Figure 4-16.  Simplified definition of the nd_item class

Chapter 4 Expressing Parallelism

116

�The group Class

The group class encapsulates all functionality related to work-groups, and

a simplified definition is shown in Figure 4-17.

Many of the functions that the group class provides each have

equivalent functions in the nd_item class: for example, calling group.get_

id() is equivalent to calling item.get_group_id(), and calling group.

get_local_range() is equivalent to calling item.get_local_range().

If we’re not using any of the work-group functions exposed by the class,

should we still use it? Wouldn’t it be simpler to use the functions in

nd_item directly, instead of creating an intermediate group object? There

is a tradeoff here: using group requires us to write slightly more code, but

that code may be easier to read. For example, consider the code snippet in

Figure 4-18: it is clear that body expects to be called by all work-items in the

group, and it is clear that the range returned by get_local_range() in the

body of the parallel_for is the range of the group. The same code could

very easily be written using only nd_item, but it would likely be harder for

readers to follow.

template <int Dimensions = 1>
class group {
public:
// Return the index of this group in the kernel's execution range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t get_linear_id() const;

// Return the number of groups in the kernel's execution range
range<Dimensions> get_group_range() const;
size_t get_group_range(int dimension) const;

// Return the number of work-items in this group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

};

Figure 4-17.  Simplified definition of the group class

Chapter 4 Expressing Parallelism

117

�The sub_group Class

The sub_group class encapsulates all functionality related to sub-

groups, and a simplified definition is shown in Figure 4-19. Unlike with

work-groups, the sub_group class is the only way to access sub-group

functionality; none of its functions are duplicated in nd_item. The queries

in the sub_group class are all interpreted relative to the calling work-item:

for example, get_local_id() returns the local index of the calling work-

item within its sub-group.

void body(group& g);

h.parallel_for(nd_range{global, local}, [=](nd_item<1> it) {
group<1> g = it.get_group();
range<1> r = g.get_local_range();
...
body(g);

});

Figure 4-18.  Using the group class to improve readability

class sub_group {
public:
// Return the index of the sub-group
id<1> get_group_id() const;

// Return the number of sub-groups in this item's parent work-group
range<1> get_group_range() const;

// Return the index of the work-item in this sub-group
id<1> get_local_id() const;

// Return the number of work-items in this sub-group
range<1> get_local_range() const;

// Return the maximum number of work-items in any
// sub-group in this item's parent work-group
range<1> get_max_local_range() const;

};

Figure 4-19.  Simplified definition of the sub_group class

Chapter 4 Expressing Parallelism

118

Note that there are separate functions for querying the number of

work-items in the current sub-group and the maximum number of work-

items in any sub-group within the work-group. Whether and how these

differ depends on exactly how sub-groups are implemented for a specific

device, but the intent is to reflect any differences between the sub-group

size targeted by the compiler and the runtime sub-group size. For example,

very small work-groups may contain fewer work-items than the compile-

time sub-group size, or sub-groups of different sizes may be used to handle

work-groups that are not divisible by the sub-group size.

�Hierarchical Parallel Kernels
Hierarchical data-parallel kernels offer an experimental alternative syntax

for expressing kernels in terms of work-groups and work-items, where

each level of the hierarchy is programmed using a nested invocation of

the parallel_for function. This top-down programming style is intended

to be similar to writing parallel loops and may feel more familiar than the

bottom-up programming style used by the other two kernel forms.

One complexity of hierarchical kernels is that each nested invocation

of parallel_for creates a separate SPMD environment; each scope

defines a new “program” that should be executed by all parallel workers

associated with that scope. This complexity requires compilers to perform

additional analysis and can complicate code generation for some devices;

compiler technology for hierarchical parallel kernels on some platforms is

still relatively immature, and performance will be closely tied to the quality

of a particular compiler implementation.

Since the relationship between a hierarchical data-parallel kernel

and the code generated for a specific device is compiler-dependent,

hierarchical kernels should be considered a more descriptive construct

than explicit ND-range kernels. However, since hierarchical kernels retain

the ability to control the mapping of work to work-items and work-groups,

they remain more prescriptive than basic kernels.

Chapter 4 Expressing Parallelism

119

�Understanding Hierarchical Data-Parallel
Kernels
The underlying execution model of hierarchical data-parallel kernels is the

same as the execution model of explicit ND-range data-parallel kernels.

Work-items, sub-groups, and work-groups have identical semantics and

execution guarantees.

However, the different scopes of a hierarchical kernel are mapped by

the compiler to different execution resources: the outer scope is executed

once per work-group (as if executed by a single work-item), while the inner

scope is executed in parallel by work-items within the work-group. The

different scopes also control where in memory different variables should

be allocated, and the opening and closing of scopes imply work-group

barriers (to enforce memory consistency).

Although the work-items in a work-group are still divided into

sub-groups, the sub_group class cannot currently be accessed from a

hierarchical parallel kernel; incorporating the concept of sub-groups into

SYCL hierarchical parallelism requires more significant changes than

introducing a new class, and work in this area is ongoing.

�Writing Hierarchical Data-Parallel Kernels
In hierarchical kernels, the parallel_for function is replaced by the

parallel_for_work_group and parallel_for_work_item functions,

which correspond to work-group and work-item parallelism, respectively.

Any code in a parallel_for_work_group scope is executed only once per

work-group, and variables allocated in a parallel_for_work_group scope

are visible to all work-items (i.e., they are allocated in work-group local

memory). Any code in a parallel_for_work_item scope is executed in

parallel by the work-items of the work-group, and variables allocated in a

parallel_for_work_item scope are visible to a single work-item (i.e., they

are allocated in work-item private memory).

Chapter 4 Expressing Parallelism

120

As shown in Figure 4-20, kernels expressed using hierarchical

parallelism are very similar to ND-range kernels. We should therefore

view hierarchical parallelism primarily as a productivity feature; it doesn’t

expose any functionality that isn’t already exposed via ND-range kernels,

but it may improve the readability of our code and/or reduce the amount

of code that we must write.

It is important to note that the ranges passed to the parallel_for_

work_group function specify the number of groups and an optional group

size, not the total number of work-items and group size as was the case for

ND-range parallel_for. The kernel function accepts an instance of the

group class, reflecting that the outer scope is associated with work-groups

rather than individual work-items.

parallel_for_work_item is a member function of the group class

and can only be called inside of a parallel_for_work_group scope. In

its simplest form, its only argument is a function accepting an instance of

the h_item class, and the number of times that the function is executed is

equal to the number of work-items requested per work-group; the function

is executed once per physical work-item. An additional productivity feature

of parallel_for_work_item is its ability to support a logical range, which

range num_groups{N / B, N / B}; // N is a multiple of B
range group_size{B, B};
h.parallel_for_work_group(num_groups, group_size, [=](group<2> grp) {
int jb = grp.get_id(0);
int ib = grp.get_id(1);
grp.parallel_for_work_item([&](h_item<2> it) {

int j = jb * B + it.get_local_id(0);
int i = ib * B + it.get_local_id(1);
for (int k = 0; k < N; ++k)
c[j][i] += a[j][k] * b[k][i];

});
});

Figure 4-20.  Expressing a naïve matrix multiplication kernel with
hierarchical parallelism

Chapter 4 Expressing Parallelism

121

is passed as an additional argument to the function. When a logical range

is specified, each physical work-item executes zero or more instances of

the function, and the logical items of the logical range are assigned round-

robin to physical work-items.

Figure 4-21 shows an example of the mapping between a logical

range consisting of 11 logical work-items and an underlying physical

range consisting of 8 physical work-items. The first three work-items

are assigned two instances of the function, and all other work-items are

assigned only one.

As shown in Figure 4-22, combining the optional group size of

parallel_for_work_group with the logical range of parallel_for_work_

item gives an implementation the freedom to choose work-group sizes

without sacrificing our ability to conveniently describe the execution range

using nested parallel constructs. Note that the amount of work performed

per group remains the same as in Figure 4-20, but that the amount of work

has now been separated from the physical work-group size.

Figure 4-21.  Mapping a logical range of size 11 to a physical range of
size 8

Chapter 4 Expressing Parallelism

122

�Details of Hierarchical Data-Parallel Kernels
Hierarchical data-parallel kernels reuse the group class from ND-range

data-parallel kernels, but replace nd_item with h_item. A new private_

memory class is introduced to provide tighter control over allocations in

parallel_for_work_group scope.

�The h_item Class

An h_item is a variant of item that is only available within a parallel_

for_work_item scope. As shown in Figure 4-23, it provides a similar

interface to an nd_item, with one notable difference: the item’s index can

be queried relative to the physical execution range of a work-group (with

get_physical_local_id()) or the logical execution range of a parallel_

for_work_item construct (with get_logical_local_id()).

range num_groups{N / B, N / B}; // N is a multiple of B
range group_size{B, B};
h.parallel_for_work_group(num_groups, [=](group<2> grp) {
int jb = grp.get_id(0);
int ib = grp.get_id(1);
grp.parallel_for_work_item(group_size, [&](h_item<2> it) {

int j = jb * B + it.get_logical_local_id(0);
int i = ib * B + it.get_logical_local_id(1);
for (int k = 0; k < N; ++k)
c[j][i] += a[j][k] * b[k][i];

});
});

Figure 4-22.  Expressing a naïve matrix multiplication kernel with
hierarchical parallelism and a logical range

Chapter 4 Expressing Parallelism

123

template <int Dimensions>
class h_item {
public:
// Return item's index in the kernel's execution range
id<Dimensions> get_global_id() const;
range<Dimensions> get_global_range() const;

// Return the index in the work-group's execution range
id<Dimensions> get_logical_local_id() const;
range<Dimensions> get_logical_local_range() const;

// Return the index in the logical execution range of the parallel_for
id<Dimensions> get_physical_local_id() const;
range<Dimensions> get_physical_local_range() const;

};

Figure 4-23.  Simplified definition of the h_item class

�The private_memory Class

The private_memory class provides a mechanism to declare variables that

are private to each work-item, but which can be accessed across multiple

parallel_for_work_item constructs nested within the same parallel_

for_work_group scope.

This class is necessary because of how variables declared in different

hierarchical parallelism scopes behave: variables declared at the outer scope

are only private if the compiler can prove it is safe to make them so, and

variables declared at the inner scope are private to a logical work-item rather

than a physical one. It is impossible using scope alone for us to convey that a

variable is intended to be private for each physical work-item.

To see why this is a problem, let’s refer back to our matrix

multiplication kernels in Figure 4-22. The ib and jb variables are declared

at parallel_for_work_group scope and by default should be allocated

in work-group local memory! There’s a good chance that an optimizing

compiler would not make this mistake, because the variables are read-only

and their value is simple enough to compute redundantly on every work-

item, but the language makes no such guarantees. If we want to be certain

Chapter 4 Expressing Parallelism

124

that a variable is declared in work-item private memory, we must wrap the

variable declaration in an instance of the private_memory class, shown in

Figure 4-24.

For example, if we were to rewrite our matrix multiplication kernel

using the private_memory class, we would define the variables as private_

memory<int> ib(grp), and each access to these variables would become

ib[item]. In this case, using the private_memory class results in code that

is harder to read, and declaring the values at parallel_for_work_item

scope is clearer.

Our recommendation is to only use the private_memory class if

a work-item private variable is used across multiple parallel_for_

work_item scopes within the same parallel_for_work_group, it is too

expensive to compute repeatedly, or its computation has side effects that

prevent it from being computed redundantly. Otherwise, we should rely

on the abilities of modern optimizing compilers by default and declare

variables at parallel_for_work_item scope only when their analysis fails

(remembering to also report the issue to the compiler vendor).

�Mapping Computation to Work-Items
Most of the code examples so far have assumed that each instance of a

kernel function corresponds to a single operation on a single piece of data.

This is a simple way to write kernels, but such a one-to-one mapping is not

template <typename T, int Dimensions = 1>
class private_memory {
public:

// Construct a private variable for each work-item in the group
private_memory(const group<Dimensions>&);

// Return the private variable associated with this work-item
T& operator(const h_item<Dimensions>&);

};

Figure 4-24.  Simplified definition of the private_memory class

Chapter 4 Expressing Parallelism

125

dictated by DPC++ or any of the kernel forms—we always have complete

control over the assignment of data (and computation) to individual work-

items, and making this assignment parameterizable can be a good way to

improve performance portability.

�One-to-One Mapping
When we write kernels such that there is a one-to-one mapping of work

to work-items, those kernels must always be launched with a range or

nd_range with a size exactly matching the amount of work that needs to

be done. This is the most obvious way to write kernels, and in many cases,

it works very well—we can trust an implementation to map work-items to

hardware efficiently.

However, when tuning for performance on a specific combination of

system and implementation, it may be necessary to pay closer attention

to low-level scheduling behaviors. The scheduling of work-groups to

compute resources is implementation-defined and could potentially be

dynamic (i.e., when a compute resource completes one work-group, the

next work-group it executes may come from a shared queue). The impact

of dynamic scheduling on performance is not fixed, and its significance

depends upon factors including the execution time of each instance of the

kernel function and whether the scheduling is implemented in software

(e.g., on a CPU) or hardware (e.g., on a GPU).

�Many-to-One Mapping
The alternative is to write kernels with a many-to-one mapping of work

to work-items. The meaning of the range changes subtly in this case: the

range no longer describes the amount of work to be done, but rather

the number of workers to use. By changing the number of workers and

the amount of work assigned to each worker, we can fine-tune work

distribution to maximize performance.

Chapter 4 Expressing Parallelism

126

Writing a kernel of this form requires two changes:

	 1.	 The kernel must accept a parameter describing the

total amount of work.

	 2.	 The kernel must contain a loop assigning work to

work-items.

A simple example of such a kernel is given in Figure 4-25. Note that

the loop inside the kernel has a slightly unusual form—the starting index

is the work-item’s index in the global range, and the stride is the total

number of work-items. This round-robin scheduling of data to work-items

ensures that all N iterations of the loop will be executed by a work-item,

but also that linear work-items access contiguous memory locations (to

improve cache locality and vectorization behavior). Work can be similarly

distributed across groups or the work-items in individual groups to further

improve locality.

These work distribution patterns are common, and they can be

expressed very succinctly when using hierarchical parallelism with a

logical range. We expect that future versions of DPC++ will introduce

syntactic sugar to simplify the expression of work distribution in ND-range

kernels.

size_t N = ...; // amount of work
size_t W = ...; // number of workers
h.parallel_for(range{W}, [=](item<1> it) {

for (int i = it.get_id()[0]; i < N; i += it.get_range()[0]) {
output[i] = function(input[i]);

}
});

Figure 4-25.  Kernel with separate data and execution ranges

Chapter 4 Expressing Parallelism

127

�Choosing a Kernel Form
Choosing between the different kernel forms is largely a matter of personal

preference and heavily influenced by prior experience with other parallel

programming models and languages.

The other main reason to choose a specific kernel form is that it is the only

form to expose certain functionality required by a kernel. Unfortunately, it can

be difficult to identify which functionality will be required before development

begins—especially while we are still unfamiliar with the different kernel forms

and their interaction with various classes.

We have constructed two guides based on our own experience in order

to help us navigate this complex space. These guides should be considered

rules of thumb and are definitely not intended to replace our own

experimentation—the best way to choose between the different kernel forms

will always be to spend some time writing in each of them, in order to learn

which form is the best fit for our application and development style.

The first guide is the flowchart in Figure 4-26, which selects a kernel

form based on

	 1.	 Whether we have previous experience with parallel

programming

	 2.	 Whether we are writing a new code from scratch or

are porting an existing parallel program written in a

different language

	 3.	 Whether our kernel is embarrassingly parallel,

already contains nested parallelism, or reuses data

between different instances of the kernel function

	 4.	 Whether we are writing a new kernel in SYCL to

maximize performance or to improve the portability

of our code or because it provides a more productive

means of expressing parallelism than lower-level

languages

Chapter 4 Expressing Parallelism

128

The second guide is the table in Figure 4-27, which summarizes the

functionalities that are exposed to each of the kernel forms. It is important

to note that this table reflects the state of DPC++ at the time of publication

for this book and that the features available to each kernel form should

be expected to change as the language evolves. However, we expect

the basic trend to remain the same: basic data-parallel kernels will not

expose locality-aware features, explicit ND-range kernels will expose all

performance-enabling features, and hierarchical kernels will lag behind

explicit ND-range kernels in exposing features, but their expression of

those features will use higher-level abstractions.

Figure 4-26.  Helping choose the right form for our kernel

Chapter 4 Expressing Parallelism

129

�Summary
This chapter introduced the basics of expressing parallelism in DPC++ and

discussed the strengths and weaknesses of each approach to writing data-

parallel kernels.

DPC++ and SYCL provide support for many forms of parallelism, and

we hope that we have provided enough information to prepare readers to

dive in and start coding!

We have only scratched the surface, and a deeper dive into many of

the concepts and classes introduced in this chapter is forthcoming: the

usage of local memory, barriers, and communication routines will be

covered in Chapter 9; different ways of defining kernels besides using

lambda expressions will be discussed in Chapter 10; detailed mappings

of the ND-range execution model to specific hardware will be explored

in Chapters 15, 16, and 17; and best practices for expressing common

parallel patterns using DPC++ will be presented in Chapter 14.

Figure 4-27.  Features available to each kernel form

Chapter 4 Expressing Parallelism

https://doi.org/10.1007/978-1-4842-5574-2_9
https://doi.org/10.1007/978-1-4842-5574-2_10
https://doi.org/10.1007/978-1-4842-5574-2_15
https://doi.org/10.1007/978-1-4842-5574-2_16
https://doi.org/10.1007/978-1-4842-5574-2_17
https://doi.org/10.1007/978-1-4842-5574-2_14

130

Open Access  This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 4 Expressing Parallelism

http://creativecommons.org/licenses/by/4.0/

	Chapter 4: Expressing Parallelism
	Parallelism Within Kernels
	Multidimensional Kernels
	Loops vs. Kernels

	Overview of Language Features
	Separating Kernels from Host Code
	Different Forms of Parallel Kernels

	Basic Data-Parallel Kernels
	Understanding Basic Data-Parallel Kernels
	Writing Basic Data-Parallel Kernels
	Details of Basic Data-Parallel Kernels
	The range Class
	The id Class
	The item Class

	Explicit ND-Range Kernels
	Understanding Explicit ND-Range Parallel Kernels
	Work-Items
	Work-Groups
	Sub-Groups

	Writing Explicit ND-Range Data-Parallel Kernels
	Details of Explicit ND-Range Data-Parallel Kernels
	The nd_range Class
	The nd_item Class
	The group Class
	The sub_group Class

	Hierarchical Parallel Kernels
	Understanding Hierarchical Data-Parallel Kernels
	Writing Hierarchical Data-Parallel Kernels
	Details of Hierarchical Data-Parallel Kernels
	The h_item Class
	The private_memory Class

	Mapping Computation to Work-Items
	One-to-One Mapping
	Many-to-One Mapping

	Choosing a Kernel Form
	Summary

