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CHAPTER 4

Expressing Parallelism
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Now we can put together our first collection of puzzle pieces. We 

already know how to place code (Chapter 2) and data (Chapter 3) on 

a device—all we must do now is engage in the art of deciding what to 

do with it. To that end, we now shift to fill in a few things that we have 

conveniently left out or glossed over so far. This chapter marks the 

transition from simple teaching examples toward real-world parallel 

code and expands upon details of the code samples we have casually 

shown in prior chapters.

https://doi.org/10.1007/978-1-4842-5574-2_4#DOI
https://doi.org/10.1007/978-1-4842-5574-2_2
https://doi.org/10.1007/978-1-4842-5574-2_3


92

Writing our first program in a new parallel language may seem like a 

daunting task, especially if we are new to parallel programming. Language 

specifications are not written for application developers and often assume 

some familiarity with terminology; they do not contain answers to 

questions like these:

•	 Why is there more than one way to express parallelism?

•	 Which method of expressing parallelism should I use?

•	 How much do I really need to know about the 

execution model?

This chapter seeks to address these questions and more. We introduce 

the concept of a data-parallel kernel, discuss the strengths and weaknesses 

of the different kernel forms using working code examples, and highlight 

the most important aspects of the kernel execution model.

�Parallelism Within Kernels
Parallel kernels have emerged in recent years as a powerful means 

of expressing data parallelism. The primary design goals of a kernel-

based approach are portability across a wide range of devices and high 

programmer productivity. As such, kernels are typically not hard-coded 

to work with a specific number or configuration of hardware resources 

(e.g., cores, hardware threads, SIMD [Single Instruction, Multiple Data] 

instructions). Instead, kernels describe parallelism in terms of abstract 

concepts that an implementation (i.e., the combination of compiler and 

runtime) can then map to the hardware parallelism available on a specific 

target device. Although this mapping is implementation-defined, we can 

(and should) trust implementations to select a mapping that is sensible 

and capable of effectively exploiting hardware parallelism.
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Exposing a great deal of parallelism in a hardware-agnostic way 

ensures that applications can scale up (or down) to fit the capabilities of 

different platforms, but…

Guaranteeing functional portability is not the same as guaranteeing 
high performance!

There is a significant amount of diversity in the devices supported, 

and we must remember that different architectures are designed and 

optimized for different use cases. Whenever we hope to achieve the 

highest levels of performance on a specific device, we should always 

expect that some additional manual optimization work will be required—

regardless of the programming language we’re using! Examples of such 

device-specific optimizations include blocking for a particular cache 

size, choosing a grain size that amortizes scheduling overheads, making 

use of specialized instructions or hardware units, and, most importantly, 

choosing an appropriate algorithm. Some of these examples will be 

revisited in Chapters 15, 16, and 17.

Striking the right balance between performance, portability, and 

productivity during application development is a challenge that we must 

all face—and a challenge that this book cannot address in its entirety. 

However, we hope to show that DPC++ provides all the tools required to 

maintain both generic portable code and optimized target-specific code 

using a single high-level programming language. The rest is left as an 

exercise to the reader!

�Multidimensional Kernels
The parallel constructs of many other languages are one-dimensional, 

mapping work directly to a corresponding one-dimensional hardware 

resource (e.g., number of hardware threads). Parallel kernels are 
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a higher-level concept than this, and their dimensionality is more 

reflective of the problems that our codes are typically trying to solve (in a 

one-, two-, or three-dimensional space).

However, we must remember that the multidimensional indexing 

provided by parallel kernels is a programmer convenience implemented 

on top of an underlying one-dimensional space. Understanding how this 

mapping behaves can be an important part of certain optimizations (e.g., 

tuning memory access patterns).

One important consideration is which dimension is contiguous or 

unit-stride (i.e., which locations in the multidimensional space are next to 

each other in the one-dimensional space). All multidimensional quantities 

related to parallelism in SYCL use the same convention: dimensions 

are numbered from 0 to N-1, where dimension N-1 corresponds to the 

contiguous dimension. Wherever a multidimensional quantity is written as 

a list (e.g., in constructors) or a class supports multiple subscript operators, 

this numbering applies left to right. This convention is consistent with the 

behavior of multidimensional arrays in standard C++.

An example of mapping a two-dimensional space to a linear index 

using the SYCL convention is shown in Figure 4-1. We are of course free 

to break from this convention and adopt our own methods of linearizing 

indices, but must do so carefully—breaking from the SYCL convention may 

have a negative performance impact on devices that benefit from stride-

one accesses.

Figure 4-1.  Two-dimensional range of size (2, 8) mapped to linear 
indices
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If an application requires more than three dimensions, we must take 

responsibility for mapping between multidimensional and linear indices 

manually, using modulo arithmetic.

�Loops vs. Kernels
An iterative loop is an inherently serial construct: each iteration of the 

loop is executed sequentially (i.e., in order). An optimizing compiler may 

be able to determine that some or all iterations of a loop can execute in 

parallel, but it must be conservative—if the compiler isn’t smart enough or 

doesn’t have enough information to prove that parallel execution is always 

safe, it must preserve the loop’s sequential semantics for correctness.

Consider the loop in Figure 4-2, which describes a simple vector 

addition. Even in a simple case like this, proving that the loop can be 

executed in parallel is not trivial: parallel execution is only safe if c does 

not overlap a or b, which in the general case cannot be proven without 

a runtime check! In order to address situations like this, languages have 

added features enabling us to provide compilers with extra information 

that may simplify analysis (e.g., asserting that pointers do not overlap 

with restrict) or to override all analysis altogether (e.g., declaring that 

all iterations of a loop are independent or defining exactly how the loop 

should be scheduled to parallel resources).

The exact meaning of a parallel loop is somewhat ambiguous—due 

to overloading of the term by different parallel programming languages—

but many common parallel loop constructs represent compiler 

transformations applied to sequential loops. Such programming models 

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

Figure 4-2.  Expressing a vector addition as a serial loop
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enable us to write sequential loops and only later provide information 

about how different iterations can be executed safely in parallel. These 

models are very powerful, integrate well with other state-of-the-art 

compiler optimizations, and greatly simplify parallel programming, but 

do not always encourage us to think about parallelism at an early stage of 

development.

A parallel kernel is not a loop, and does not have iterations. Rather, a 

kernel describes a single operation, which can be instantiated many times 

and applied to different input data; when a kernel is launched in parallel, 

multiple instances of that operation are executed simultaneously.

Figure 4-3 shows our simple loop example rewritten as a kernel using 

pseudocode. The opportunity for parallelism in this kernel is clear and 

explicit: the kernel can be executed in parallel by any number of instances, 

and each instance independently applies to a separate piece of data. By 

writing this operation as a kernel, we are asserting that it is safe to run in 

parallel (and ideally should be).

In short, kernel-based programming is not a way to retrofit parallelism 

into existing sequential codes, but a methodology for writing explicitly 

parallel applications.

The sooner that we can shift our thinking from parallel loops to 
kernels, the easier it will be to write effective parallel programs using 
Data Parallel C++.

launch N kernel instances {
int id = get_instance_id(); // unique identifier in [0, N)
c[id] = a[id] + b[id];

}

Figure 4-3.  Loop rewritten (in pseudocode) as a parallel kernel
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�Overview of Language Features
Once we’ve decided to write a parallel kernel, we must decide what type of 

kernel we want to launch and how to represent it in our program. There are 

a multitude of ways to express parallel kernels, and we need to familiarize 

ourselves with each of these options if we want to master the language.

�Separating Kernels from Host Code
We have several alternative ways to separate host and device code, which 

we can mix and match within an application: C++ lambda expressions or 

function objects (functors), OpenCL C source strings, or binaries. Some 

of these options were already covered in Chapter 2, and all of them will be 

covered in more detail in Chapter 10.

The fundamental concepts of expressing parallelism are shared by all 

these options. For consistency and brevity, all the code examples in this 

chapter express kernels using C++ lambdas.

LAMBDAS NOT CONSIDERED HARMFUL

There is no need to fully understand everything that the C++ specification 

says about lambdas in order to get started with DPC++—all we need to 

know is that the body of the lambda represents the kernel and that variables 

captured (by value) will be passed to the kernel as arguments.

There is no performance impact arising from the use of lambdas instead of 

more verbose mechanisms for defining kernels. A DPC++ compiler always 

understands when a lambda represents the body of a parallel kernel and can 

optimize for parallel execution accordingly.

For a refresher on C++ lambda functions, with notes about their use in SYCL, 

see Chapter 1. For more specific details on using lambdas to define kernels, 

see Chapter 10.
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�Different Forms of Parallel Kernels
There are three different kernel forms, supporting different execution 

models and syntax. It is possible to write portable kernels using any of 

the kernel forms, and kernels written in any form can be tuned to achieve 

high performance on a wide variety of device types. However, there will be 

times when we may want to use a specific form to make a specific parallel 

algorithm easier to express or to make use of an otherwise inaccessible 

language feature.

The first form is used for basic data-parallel kernels and offers the 

gentlest introduction to writing kernels. With basic kernels, we sacrifice 

control over low-level features like scheduling in order to make the 

expression of the kernel as simple as possible. How the individual kernel 

instances are mapped to hardware resources is controlled entirely by the 

implementation, and so as basic kernels grow in complexity, it becomes 

harder and harder to reason about their performance.

The second form extends basic kernels to provide access to low-level 

performance-tuning features. This second form is known as ND-range 

(N-dimensional range) data parallel for historical reasons, and the most 

important thing to remember is that it enables certain kernel instances to 

be grouped together, allowing us to exert some control over data locality 

and the mapping between individual kernel instances and the hardware 

resources that will be used to execute them.

The third form provides an alternative syntax to simplify the expression 

of ND-range kernels using nested kernel constructs. This third form is 

referred to as hierarchical data parallel, referring to the hierarchy of the 

nested kernel constructs that appear in user source code.

We will revisit how to choose between the different kernel forms again 

at the end of this chapter, once we’ve discussed their features in more 

detail.
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�Basic Data-Parallel Kernels
The most basic form of parallel kernel is appropriate for operations that 

are embarrassingly parallel (i.e., operations that can be applied to every 

piece of data completely independently and in any order). By using this 

form, we give an implementation complete control over the scheduling of 

work. It is thus an example of a descriptive programming construct—we 

describe that the operation is embarrassingly parallel, and all scheduling 

decisions are made by the implementation.

Basic data-parallel kernels are written in a Single Program, Multiple 

Data (SPMD) style—a single “program” (the kernel) is applied to multiple 

pieces of data. Note that this programming model still permits each 

instance of the kernel to take different paths through the code, as a result 

of data-dependent branches.

One of the greatest strengths of a SPMD programming model is that it 

allows the same “program” to be mapped to multiple levels and types of 

parallelism, without any explicit direction from us. Instances of the same 

program could be pipelined, packed together and executed with SIMD 

instructions, distributed across multiple threads, or a mix of all three.

�Understanding Basic Data-Parallel Kernels
The execution space of a basic parallel kernel is referred to as its execution 

range, and each instance of the kernel is referred to as an item. This is 

represented diagrammatically in Figure 4-4.
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The execution model of basic data-parallel kernels is very simple: it 

allows for completely parallel execution, but does not guarantee or require 

it. Items can be executed in any order, including sequentially on a single 

hardware thread (i.e., without any parallelism)! Kernels that assume that all 

items will be executed in parallel (e.g., by attempting to synchronize items) 

could therefore very easily cause programs to hang on some devices.

However, in order to guarantee correctness, we must always write 

our kernels under the assumption that they could be executed in parallel. 

For example, it is our responsibility to ensure that concurrent accesses to 

memory are appropriately guarded by atomic memory operations (see 

Chapter 19) in order to prevent race conditions.

�Writing Basic Data-Parallel Kernels
Basic data-parallel kernels are expressed using the parallel_for function. 

Figure 4-5 shows how to use this function to express a vector addition, 

which is our take on “Hello, world!” for parallel accelerator programming.

Figure 4-4.  Execution space of a basic parallel kernel, shown for a 2D 
range of 64 items
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The function only takes two arguments: the first is a range specifying 

the number of items to launch in each dimension, and the second is a 

kernel function to be executed for each index in the range. There are 

several different classes that can be accepted as arguments to a kernel 

function, and which should be used depends on which class exposes the 

functionality required—we’ll revisit this later.

Figure 4-6 shows a very similar use of this function to express a matrix 

addition, which is (mathematically) identical to vector addition except 

with two-dimensional data. This is reflected by the kernel—the only 

difference between the two code snippets is the dimensionality of the 

range and id classes used! It is possible to write the code this way because 

a SYCL accessor can be indexed by a multidimensional id. As strange as it 

looks, this can be very powerful, enabling us to write kernels templated on 

the dimensionality of our data.

It is more common in C/C++ to use multiple indices and multiple 

subscript operators to index multidimensional data structures, and this 

explicit indexing is also supported by accessors. Using multiple indices 

in this way can improve readability when a kernel operates on data of 

different dimensionalities simultaneously or when the memory access 

patterns of a kernel are more complicated than can be described by using 

an item’s id directly.

h.parallel_for(range{N}, [=](id<1> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-5.  Expressing a vector addition kernel with parallel_for

h.parallel_for(range{N, M}, [=](id<2> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-6.  Expressing a matrix addition kernel with parallel_for
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For example, the matrix multiplication kernel in Figure 4-7 must 

extract the two individual components of the index in order to be able to 

describe the dot product between rows and columns of the two matrices. 

In our opinion, consistently using multiple subscript operators (e.g., 

[j][k]) is more readable than mixing multiple indexing modes and 

constructing two-dimensional id objects (e.g., id(j,k)), but this is simply 

a matter of personal preference.

The examples in the remainder of this chapter all use multiple 

subscript operators, to ensure that there is no ambiguity in the 

dimensionality of the buffers being accessed.

h.parallel_for(range{N, N}, [=](id<2> idx) {
int j = idx[0];
int i = idx[1];
for (int k = 0; k < N; ++k) {

c[j][i] += a[j][k] * b[k][i];
// c[idx] += a[id(j,k) * b[id(k,i)]; <<< equivalent

}
});

Figure 4-7.  Expressing a naïve matrix multiplication kernel for 
square matrices, with parallel_for

Figure 4-8.  Mapping matrix multiplication work to items in the 
execution range
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The diagram in Figure 4-8 shows how the work in our matrix 

multiplication kernel is mapped to individual items. Note that the number 

of items is derived from the size of the output range and that the same 

input values may be read by multiple items: each item computes a single 

value of the C matrix, by iterating sequentially over a (contiguous) row of 

the A matrix and a (non-contiguous) column of the B matrix.

�Details of Basic Data-Parallel Kernels
The functionality of basic data-parallel kernels is exposed via three C++ 

classes: range, id, and item. We’ve already seen the range and id classes 

a few times in previous chapters, but we revisit them here with a different 

focus.

�The range Class

A range represents a one-, two-, or three-dimensional range. The 

dimensionality of a range is a template argument and must therefore be 

known at compile time, but its size in each dimension is dynamic and is 

passed to the constructor at runtime. Instances of the range class are used 

to describe both the execution ranges of parallel constructs and the sizes of 

buffers.

A simplified definition of the range class, showing the constructors and 

various methods for querying its extent, is shown in Figure 4-9.
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�The id Class

An id represents an index into a one, two-, or three-dimensional range. The 

definition of id is similar in many respects to range: its dimensionality must 

also be known at compile time, and it may be used to index an individual 

instance of a kernel in a parallel construct or an offset into a buffer.

As shown by the simplified definition of the id class in Figure 4-10, 

an id is conceptually nothing more than a container of one, two, or three 

integers. The operations available to us are also very simple: we can query 

the component of an index in each dimension, and we can perform simple 

arithmetic to compute new indices.

Although we can construct an id to represent an arbitrary index, to 

obtain the id associated with a specific kernel instance, we must accept 

it (or an item containing it) as an argument to a kernel function. This id 

(or values returned by its member functions) must be forwarded to any 

function in which we want to query the index—there are not currently any 

free functions for querying the index at arbitrary points in a program, but 

this may be addressed by a future version of DPC++.

template <int Dimensions = 1>
class range {
public:

// Construct a range with one, two or three dimensions
range(size_t dim0);
range(size_t dim0, size_t dim1);
range(size_t dim0, size_t dim1, size_t dim2);

// Return the size of the range in a specific dimension 
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Return the product of the size of each dimension
size_t size() const;

// Arithmetic operations on ranges are also supported
};

Figure 4-9.  Simplified definition of the range class
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Each instance of a kernel accepting an id knows only the index in the 

range that it has been assigned to compute and knows nothing about the 

range itself. If we want our kernel instances to know about their own index 

and the range, we need to use the item class instead.

�The item Class

An item represents an individual instance of a kernel function, 

encapsulating both the execution range of the kernel and the instance’s 

index within that range (using a range and an id, respectively). Like range 

and id, its dimensionality must be known at compile time.

A simplified definition of the item class is given in Figure 4-11. The 

main difference between item and id is that item exposes additional 

functions to query properties of the execution range (e.g., size, offset) and 

a convenience function to compute a linearized index. As with id, the 

only way to obtain the item associated with a specific kernel instance is to 

accept it as an argument to a kernel function.

template <int Dimensions = 1>
class id {
public:

// Construct an id with one, two or three dimensions
id(size_t dim0);
id(size_t dim0, size_t dim1);
id(size_t dim0, size_t dim1, size_t dim2);

// Return the component of the id in a specific dimension 
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Arithmetic operations on ids are also supported
};

Figure 4-10.  Simplified definition of the id class
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�Explicit ND-Range Kernels
The second form of parallel kernel replaces the flat execution range of 

basic data-parallel kernels with an execution range where items belong to 

groups and is appropriate for cases where we would like to express some 

notion of locality within our kernels. Different behaviors are defined and 

guaranteed for different types of groups, giving us more insight into and/or 

control over how work is mapped to specific hardware platforms.

These explicit ND-range kernels are thus an example of a more 

prescriptive parallel construct—we prescribe a mapping of work to each 

type of group, and the implementation must obey that mapping. However, 

it is not completely prescriptive, as the groups themselves may execute in 

any order and an implementation retains some freedom over how each 

type of group is mapped to hardware resources. This combination of 

prescriptive and descriptive programming enables us to design and tune 

our kernels for locality without impacting their portability.

Like basic data-parallel kernels, ND-range kernels are written in a 

SPMD style where all work-items execute the same kernel "program" 

applied to multiple pieces of data. The key difference is that each program 

template <int Dimensions = 1, bool WithOffset = true>
class item {
public:
// Return the index of this item in the kernel's execution range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t operator[](int dimension) const;

// Return the execution range of the kernel executed by this item
range<Dimensions> get_range() const;
size_t get_range(int dimension) const;

// Return the offset of this item (if with_offset == true)
id<Dimensions> get_offset() const;

// Return the linear index of this item
// e.g. id(0) * range(1) * range(2) + id(1) * range(2) + id(2)
size_t get_linear_id() const;

};

Figure 4-11.  Simplified definition of the item class
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instance can query its position within the groups that contain it and can 

access additional functionality specific to each type of group.

�Understanding Explicit ND-Range Parallel Kernels
The execution range of an ND-range kernel is divided into work-groups, 

sub-groups, and work-items. The ND-range represents the total execution 

range, which is divided into work-groups of uniform size (i.e., the work-

group size must divide the ND-range size exactly in each dimension). Each 

work-group can be further divided by the implementation into sub-groups. 

Understanding the execution model defined for work-items and each type 

of group is an important part of writing correct and portable programs.

Figure 4-12 shows an example of an ND-range of size (8, 8, 8) divided into 

8 work-groups of size (4, 4, 4). Each work-group contains 16 one-dimensional 

sub-groups of 4 work-items. Pay careful attention to the numbering of the 

dimensions: sub-groups are always one-dimensional, and so dimension 2 of 

the ND-range and work-group becomes dimension 0 of the sub-group.

Figure 4-12.  Three-dimensional ND-range divided into work-groups, 
sub-groups, and work-items
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The exact mapping from each type of group to hardware resources 

is implementation-defined, and it is this flexibility that enables programs 

to execute on a wide variety of hardware. For example, work-items could 

be executed completely sequentially, executed in parallel by hardware 

threads and/or SIMD instructions, or even executed by a hardware 

pipeline specifically configured for a specific kernel.

In this chapter, we are focused only on the semantic guarantees of the 

ND-range execution model in terms of a generic target platform, and we 

will not cover its mapping to any one platform. See Chapters 15, 16, and 17 

for details of the hardware mapping and performance recommendations 

for GPUs, CPUs, and FPGAs, respectively.

�Work-Items

Work-items represent the individual instances of a kernel function. In the 

absence of other groupings, work-items can be executed in any order and 

cannot communicate or synchronize with each other except by way of 

atomic memory operations to global memory (see Chapter 19).

�Work-Groups

The work-items in an ND-range are organized into work-groups. Work-

groups can execute in any order, and work-items in different work-groups 

cannot communicate with each other except by way of atomic memory 

operations to global memory (see Chapter 19). However, the work-items 

within a work-group have concurrent scheduling guarantees when certain 

constructs are used, and this locality provides some additional capabilities:

	 1.	 Work-items in a work-group have access to work-

group local memory, which may be mapped to 

a dedicated fast memory on some devices (see 

Chapter 9).
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	 2.	 Work-items in a work-group can synchronize 

using work-group barriers and guarantee memory 

consistency using work-group memory fences (see 

Chapter 9).

	 3.	 Work-items in a work-group have access to group 

functions, providing implementations of common 

communication routines (see Chapter 9) and 

common parallel patterns such as reductions and 

scans (see Chapter 14).

The number of work-items in a work-group is typically configured 

for each kernel at runtime, as the best grouping will depend upon both 

the amount of parallelism available (i.e., the size of the ND-range) and 

properties of the target device. We can determine the maximum number of 

work-items per work-group supported by a specific device using the query 

functions of the device class (see Chapter 12), and it is our responsibility 

to ensure that the work-group size requested for each kernel is valid.

There are some subtleties in the work-group execution model that are 

worth emphasizing.

First, although the work-items in a work-group are scheduled to a 

single compute unit, there need not be any relationship between the 

number of work-groups and the number of compute units. In fact, the 

number of work-groups in an ND-range can be many times larger than 

the number of work-groups that a given device can execute concurrently! 

We may be tempted to try and write kernels that synchronize across 

work-groups by relying on very clever device-specific scheduling, but we 

strongly recommend against doing this—such kernels may appear to work 

today, but they are not guaranteed to work with future implementations 

and are highly likely to break when moved to a different device.

Second, although the work-items in a work-group are scheduled 

concurrently, they are not guaranteed to make independent forward 

progress—executing the work-items within a work-group sequentially 
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between barriers and collectives is a valid implementation. 

Communication and synchronization between work-items in the same 

work-group is only guaranteed to be safe when performed using the barrier 

and collective functions provided, and hand-coded synchronization 

routines may deadlock.

THINKING IN WORK-GROUPS

Work-groups are similar in many respects to the concept of a task in other 

programming models (e.g., Threading Building Blocks): tasks can execute 

in any order (controlled by a scheduler); it’s possible (and even desirable) to 

oversubscribe a machine with tasks; and it’s often not a good idea to try and 

implement a barrier across a group of tasks (as it may be very expensive or 

incompatible with the scheduler). If we’re already familiar with a task-based 

programming model, we may find it useful to think of work-groups as though 

they are data-parallel tasks.

�Sub-Groups

On many modern hardware platforms, subsets of the work-items in a 

work-group known as sub-groups are executed with additional scheduling 

guarantees. For example, the work-items in a sub-group could be executed 

simultaneously as a result of compiler vectorization, and/or the sub-

groups themselves could be executed with forward progress guarantees 

because they are mapped to independent hardware threads.

When working with a single platform, it is tempting to bake 

assumptions about these execution models into our codes, but this makes 

them inherently unsafe and non-portable—they may break when moving 

between different compilers or even when moving between different 

generations of hardware from the same vendor!
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Defining sub-groups as a core part of the language gives us a safe 

alternative to making assumptions that may later prove to be device-

specific. Leveraging sub-group functionality also allows us to reason about 

the execution of work-items at a low level (i.e., close to hardware) and is 

key to achieving very high levels of performance across many platforms.

As with work-groups, the work-items within a sub-group can 

synchronize, guarantee memory consistency, or execute common parallel 

patterns via group functions. However, there is no equivalent of work-

group local memory for sub-groups (i.e., there is no sub-group local 

memory). Instead, the work-items in a sub-group can exchange data 

directly—without explicit memory operations—using shuffle operations 

(Chapter 9).

Some aspects of sub-groups are implementation-defined and outside 

of our control. However, a sub-group has a fixed (one-dimensional) size for 

a given combination of device, kernel, and ND-range, and we can query 

this size using the query functions of the kernel class (see Chapter 10). 

By default, the number of work-items per sub-group is also chosen by the 

implementation—we can override this behavior by requesting a particular 

sub-group size at compile time, but must ensure that the sub-group size 

we request is compatible with the device.

Like work-groups, the work-items in a sub-group are only guaranteed 

to execute concurrently—an implementation is free to execute each work-

item in a sub-group sequentially and only switch between work-items 

when a sub-group collective function is encountered. Where sub-groups 

are special is that some devices guarantee that they make independent 

forward progress—on some devices, all sub-groups within a work-

group are guaranteed to execute (make progress) eventually, which is a 

cornerstone of several producer-consumer patterns. Whether or not this 

independent forward progress guarantee holds can be determined using a 

device query.
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THINKING IN SUB-GROUPS

If we are coming from a programming model that requires us to think about 

explicit vectorization, it may be useful to think of each sub-group as a set of 

work-items packed into a SIMD register, where each work-item in the sub-

group corresponds to a SIMD lane. When multiple sub-groups are in flight 

simultaneously and a device guarantees they will make forward progress, this 

mental model extends to treating each sub-group as though it were a separate 

stream of vector instructions executing in parallel.

�Writing Explicit ND-Range Data-Parallel Kernels
Figure 4-13 re-implements the matrix multiplication kernel that we saw 

previously using the ND-range parallel kernel syntax, and the diagram in 

Figure 4-14 shows how the work in this kernel is mapped to the work-items 

in each work-group. Grouping our work-items in this way ensures locality 

of access and hopefully improves cache hit rates: for example, the work-

group in Figure 4-14 has a local range of (4, 4) and contains 16 work-items, 

but only accesses four times as much data as a single work-item—in other 

words, each value we load from memory can be reused four times.

range global{N, N};
range local{B, B};
h.parallel_for(nd_range{global, local}, [=](nd_item<2> it) {

int j = it.get_global_id(0);
int i = it.get_global_id(1);

for (int k = 0; k < N; ++k)
c[j][i] += a[j][k] * b[k][i];

});

Figure 4-13.  Expressing a naïve matrix multiplication kernel with 
ND-range parallel_for
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So far, our matrix multiplication example has relied on a hardware 

cache to optimize repeated accesses to the A and B matrices from work-

items in the same work-group. Such hardware caches are commonplace 

on traditional CPU architectures and are becoming increasingly so on GPU 

architectures, but there are other architectures (e.g., previous-generation 

GPUs, FPGAs) with explicitly managed “scratchpad” memories. ND-range 

kernels can use local accessors to describe allocations that should be 

placed in work-group local memory, and an implementation is then free 

to map these allocations to special memory (where it exists). Usage of this 

work-group local memory will be covered in Chapter 9.

�Details of Explicit ND-Range Data-Parallel 
Kernels
ND-range data-parallel kernels use different classes compared to basic 

data-parallel kernels: range is replaced by nd_range, and item is replaced 

by nd_item. There are also two new classes, representing the different 

types of groups to which a work-item may belong: functionality tied to 

work-groups is encapsulated in the group class, and functionality tied to 

sub-groups is encapsulated in the sub_group class.

Figure 4-14.  Mapping matrix multiplication to work-groups and 
work-items
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�The nd_range Class

An nd_range represents a grouped execution range using two instances 

of the range class: one denoting the global execution range and another 

denoting the local execution range of each work-group. A simplified 

definition of the nd_range class is given in Figure 4-15.

It may be a little surprising that the nd_range class does not mention 

sub-groups at all: the sub-group range is not specified during construction 

and cannot be queried. There are two reasons for this omission. First, 

sub-groups are a low-level implementation detail that can be ignored 

for many kernels. Second, there are several devices supporting exactly 

one valid sub-group size, and specifying this size everywhere would 

be unnecessarily verbose. All functionality related to sub-groups is 

encapsulated in a dedicated class that will be discussed shortly.

�The nd_item Class

An nd_item is the ND-range form of an item, again encapsulating the 

execution range of the kernel and the item’s index within that range.  

Where nd_item differs from item is in how its position in the range is queried 

and represented, as shown by the simplified class definition in Figure 4-16. 

template <int Dimensions = 1>
class nd_range {
public:
// Construct an nd_range from global and work-group local ranges
nd_range(range<Dimensions> global, range<Dimensions> local);

// Return the global and work-group local ranges
range<Dimensions> get_global_range() const;
range<Dimensions> get_local_range() const;

// Return the number of work-groups in the global range
range<Dimensions> get_group_range() const;

};

Figure 4-15.  Simplified definition of the nd_range class
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For example, we can query the item’s index in the (global) ND-range using 

the get_global_id() function or the item’s index in its (local) parent work-

group using the get_local_id() function.

The nd_item class also provides functions for obtaining handles to 

classes describing the group and sub-group that an item belongs to. These 

classes provide an alternative interface for querying an item’s index in an 

ND-range. We strongly recommend writing kernels using these classes 

instead of relying on nd_item directly: using the group and sub_group 

classes is often cleaner, conveys intent more clearly, and is more aligned 

with the future direction of DPC++.

template <int Dimensions = 1>
class nd_item {
public:
// Return the index of this item in the kernel's execution range
id<Dimensions> get_global_id() const;
size_t get_global_id(int dimension) const;
size_t get_global_linear_id() const;

// Return the execution range of the kernel executed by this item
range<Dimensions> get_global_range() const;
size_t get_global_range(int dimension) const;

// Return the index of this item within its parent work-group
id<Dimensions> get_local_id() const;
size_t get_local_id(int dimension) const;
size_t get_local_linear_id() const;

// Return the execution range of this item's parent work-group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

// Return a handle to the work-group
// or sub-group containing this item
group<Dimensions> get_group() const;
sub_group get_sub_group() const;

};

Figure 4-16.  Simplified definition of the nd_item class
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�The group Class

The group class encapsulates all functionality related to work-groups, and 

a simplified definition is shown in Figure 4-17.

Many of the functions that the group class provides each have 

equivalent functions in the nd_item class: for example, calling group.get_

id() is equivalent to calling item.get_group_id(), and calling group.

get_local_range() is equivalent to calling item.get_local_range(). 

If we’re not using any of the work-group functions exposed by the class, 

should we still use it? Wouldn’t it be simpler to use the functions in 

nd_item directly, instead of creating an intermediate group object? There 

is a tradeoff here: using group requires us to write slightly more code, but 

that code may be easier to read. For example, consider the code snippet in 

Figure 4-18: it is clear that body expects to be called by all work-items in the 

group, and it is clear that the range returned by get_local_range() in the 

body of the parallel_for is the range of the group. The same code could 

very easily be written using only nd_item, but it would likely be harder for 

readers to follow.

template <int Dimensions = 1>
class group {
public:
// Return the index of this group in the kernel's execution range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t get_linear_id() const;

// Return the number of groups in the kernel's execution range
range<Dimensions> get_group_range() const;
size_t get_group_range(int dimension) const;

// Return the number of work-items in this group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

};

Figure 4-17.  Simplified definition of the group class
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�The sub_group Class

The sub_group class encapsulates all functionality related to sub-

groups, and a simplified definition is shown in Figure 4-19. Unlike with 

work-groups, the sub_group class is the only way to access sub-group 

functionality; none of its functions are duplicated in nd_item. The queries 

in the sub_group class are all interpreted relative to the calling work-item: 

for example, get_local_id() returns the local index of the calling work-

item within its sub-group.

void body(group& g);

h.parallel_for(nd_range{global, local}, [=](nd_item<1> it) {
group<1> g = it.get_group();
range<1> r = g.get_local_range();
...
body(g);

});

Figure 4-18.  Using the group class to improve readability

class sub_group {
public:
// Return the index of the sub-group
id<1> get_group_id() const;

// Return the number of sub-groups in this item's parent work-group
range<1> get_group_range() const;

// Return the index of the work-item in this sub-group
id<1> get_local_id() const;

// Return the number of work-items in this sub-group
range<1> get_local_range() const;

// Return the maximum number of work-items in any 
// sub-group in this item's parent work-group
range<1> get_max_local_range() const;

};

Figure 4-19.  Simplified definition of the sub_group class
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Note that there are separate functions for querying the number of 

work-items in the current sub-group and the maximum number of work-

items in any sub-group within the work-group. Whether and how these 

differ depends on exactly how sub-groups are implemented for a specific 

device, but the intent is to reflect any differences between the sub-group 

size targeted by the compiler and the runtime sub-group size. For example, 

very small work-groups may contain fewer work-items than the compile-

time sub-group size, or sub-groups of different sizes may be used to handle 

work-groups that are not divisible by the sub-group size.

�Hierarchical Parallel Kernels
Hierarchical data-parallel kernels offer an experimental alternative syntax 

for expressing kernels in terms of work-groups and work-items, where 

each level of the hierarchy is programmed using a nested invocation of 

the parallel_for function. This top-down programming style is intended 

to be similar to writing parallel loops and may feel more familiar than the 

bottom-up programming style used by the other two kernel forms.

One complexity of hierarchical kernels is that each nested invocation 

of parallel_for creates a separate SPMD environment; each scope 

defines a new “program” that should be executed by all parallel workers 

associated with that scope. This complexity requires compilers to perform 

additional analysis and can complicate code generation for some devices; 

compiler technology for hierarchical parallel kernels on some platforms is 

still relatively immature, and performance will be closely tied to the quality 

of a particular compiler implementation.

Since the relationship between a hierarchical data-parallel kernel 

and the code generated for a specific device is compiler-dependent, 

hierarchical kernels should be considered a more descriptive construct 

than explicit ND-range kernels. However, since hierarchical kernels retain 

the ability to control the mapping of work to work-items and work-groups, 

they remain more prescriptive than basic kernels.
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�Understanding Hierarchical Data-Parallel 
Kernels
The underlying execution model of hierarchical data-parallel kernels is the 

same as the execution model of explicit ND-range data-parallel kernels. 

Work-items, sub-groups, and work-groups have identical semantics and 

execution guarantees.

However, the different scopes of a hierarchical kernel are mapped by 

the compiler to different execution resources: the outer scope is executed 

once per work-group (as if executed by a single work-item), while the inner 

scope is executed in parallel by work-items within the work-group. The 

different scopes also control where in memory different variables should 

be allocated, and the opening and closing of scopes imply work-group 

barriers (to enforce memory consistency).

Although the work-items in a work-group are still divided into 

sub-groups, the sub_group class cannot currently be accessed from a 

hierarchical parallel kernel; incorporating the concept of sub-groups into 

SYCL hierarchical parallelism requires more significant changes than 

introducing a new class, and work in this area is ongoing.

�Writing Hierarchical Data-Parallel Kernels
In hierarchical kernels, the parallel_for function is replaced by the 

parallel_for_work_group and parallel_for_work_item functions, 

which correspond to work-group and work-item parallelism, respectively. 

Any code in a parallel_for_work_group scope is executed only once per 

work-group, and variables allocated in a parallel_for_work_group scope 

are visible to all work-items (i.e., they are allocated in work-group local 

memory). Any code in a parallel_for_work_item scope is executed in 

parallel by the work-items of the work-group, and variables allocated in a 

parallel_for_work_item scope are visible to a single work-item (i.e., they 

are allocated in work-item private memory).
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As shown in Figure 4-20, kernels expressed using hierarchical 

parallelism are very similar to ND-range kernels. We should therefore 

view hierarchical parallelism primarily as a productivity feature; it doesn’t 

expose any functionality that isn’t already exposed via ND-range kernels, 

but it may improve the readability of our code and/or reduce the amount 

of code that we must write.

It is important to note that the ranges passed to the parallel_for_

work_group function specify the number of groups and an optional group 

size, not the total number of work-items and group size as was the case for 

ND-range parallel_for. The kernel function accepts an instance of the 

group class, reflecting that the outer scope is associated with work-groups 

rather than individual work-items.

parallel_for_work_item is a member function of the group class 

and can only be called inside of a parallel_for_work_group scope. In 

its simplest form, its only argument is a function accepting an instance of 

the h_item class, and the number of times that the function is executed is 

equal to the number of work-items requested per work-group; the function 

is executed once per physical work-item. An additional productivity feature 

of parallel_for_work_item is its ability to support a logical range, which 

range num_groups{N / B, N / B}; // N is a multiple of B
range group_size{B, B};
h.parallel_for_work_group(num_groups, group_size, [=](group<2> grp) {
int jb = grp.get_id(0);
int ib = grp.get_id(1);
grp.parallel_for_work_item([&](h_item<2> it) {

int j = jb * B + it.get_local_id(0);
int i = ib * B + it.get_local_id(1);
for (int k = 0; k < N; ++k)
c[j][i] += a[j][k] * b[k][i];

});
});

Figure 4-20.  Expressing a naïve matrix multiplication kernel with 
hierarchical parallelism
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is passed as an additional argument to the function. When a logical range 

is specified, each physical work-item executes zero or more instances of 

the function, and the logical items of the logical range are assigned round-

robin to physical work-items.

Figure 4-21 shows an example of the mapping between a logical 

range consisting of 11 logical work-items and an underlying physical 

range consisting of 8 physical work-items. The first three work-items 

are assigned two instances of the function, and all other work-items are 

assigned only one.

As shown in Figure 4-22, combining the optional group size of 

parallel_for_work_group with the logical range of parallel_for_work_

item gives an implementation the freedom to choose work-group sizes 

without sacrificing our ability to conveniently describe the execution range 

using nested parallel constructs. Note that the amount of work performed 

per group remains the same as in Figure 4-20, but that the amount of work 

has now been separated from the physical work-group size.

Figure 4-21.  Mapping a logical range of size 11 to a physical range of 
size 8
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�Details of Hierarchical Data-Parallel Kernels
Hierarchical data-parallel kernels reuse the group class from ND-range 

data-parallel kernels, but replace nd_item with h_item. A new private_

memory class is introduced to provide tighter control over allocations in 

parallel_for_work_group scope.

�The h_item Class

An h_item is a variant of item that is only available within a parallel_

for_work_item scope. As shown in Figure 4-23, it provides a similar 

interface to an nd_item, with one notable difference: the item’s index can 

be queried relative to the physical execution range of a work-group (with 

get_physical_local_id()) or the logical execution range of a parallel_

for_work_item construct (with get_logical_local_id()).

range num_groups{N / B, N / B}; // N is a multiple of B
range group_size{B, B};
h.parallel_for_work_group(num_groups, [=](group<2> grp) {
int jb = grp.get_id(0);
int ib = grp.get_id(1);
grp.parallel_for_work_item(group_size, [&](h_item<2> it) {

int j = jb * B + it.get_logical_local_id(0);
int i = ib * B + it.get_logical_local_id(1);
for (int k = 0; k < N; ++k)
c[j][i] += a[j][k] * b[k][i];

});
});

Figure 4-22.  Expressing a naïve matrix multiplication kernel with 
hierarchical parallelism and a logical range
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template <int Dimensions>
class h_item {
public:
// Return item's index in the kernel's execution range
id<Dimensions> get_global_id() const;
range<Dimensions> get_global_range() const;

// Return the index in the work-group's execution range
id<Dimensions> get_logical_local_id() const;
range<Dimensions> get_logical_local_range() const;

// Return the index in the logical execution range of the parallel_for
id<Dimensions> get_physical_local_id() const;
range<Dimensions> get_physical_local_range() const;

};

Figure 4-23.  Simplified definition of the h_item class

�The private_memory Class

The private_memory class provides a mechanism to declare variables that 

are private to each work-item, but which can be accessed across multiple 

parallel_for_work_item constructs nested within the same parallel_

for_work_group scope.

This class is necessary because of how variables declared in different 

hierarchical parallelism scopes behave: variables declared at the outer scope 

are only private if the compiler can prove it is safe to make them so, and 

variables declared at the inner scope are private to a logical work-item rather 

than a physical one. It is impossible using scope alone for us to convey that a 

variable is intended to be private for each physical work-item.

To see why this is a problem, let’s refer back to our matrix 

multiplication kernels in Figure 4-22. The ib and jb variables are declared 

at parallel_for_work_group scope and by default should be allocated 

in work-group local memory! There’s a good chance that an optimizing 

compiler would not make this mistake, because the variables are read-only 

and their value is simple enough to compute redundantly on every work-

item, but the language makes no such guarantees. If we want to be certain 
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that a variable is declared in work-item private memory, we must wrap the 

variable declaration in an instance of the private_memory class, shown in 

Figure 4-24.

For example, if we were to rewrite our matrix multiplication kernel 

using the private_memory class, we would define the variables as private_

memory<int> ib(grp), and each access to these variables would become 

ib[item]. In this case, using the private_memory class results in code that 

is harder to read, and declaring the values at parallel_for_work_item 

scope is clearer.

Our recommendation is to only use the private_memory class if 

a work-item private variable is used across multiple parallel_for_

work_item scopes within the same parallel_for_work_group, it is too 

expensive to compute repeatedly, or its computation has side effects that 

prevent it from being computed redundantly. Otherwise, we should rely 

on the abilities of modern optimizing compilers by default and declare 

variables at parallel_for_work_item scope only when their analysis fails 

(remembering to also report the issue to the compiler vendor).

�Mapping Computation to Work-Items
Most of the code examples so far have assumed that each instance of a 

kernel function corresponds to a single operation on a single piece of data. 

This is a simple way to write kernels, but such a one-to-one mapping is not 

template <typename T, int Dimensions = 1>
class private_memory {
public:

// Construct a private variable for each work-item in the group
private_memory(const group<Dimensions>&);

// Return the private variable associated with this work-item
T& operator(const h_item<Dimensions>&);

};

Figure 4-24.  Simplified definition of the private_memory class
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dictated by DPC++ or any of the kernel forms—we always have complete 

control over the assignment of data (and computation) to individual work-

items, and making this assignment parameterizable can be a good way to 

improve performance portability.

�One-to-One Mapping
When we write kernels such that there is a one-to-one mapping of work 

to work-items, those kernels must always be launched with a range or 

nd_range with a size exactly matching the amount of work that needs to 

be done. This is the most obvious way to write kernels, and in many cases, 

it works very well—we can trust an implementation to map work-items to 

hardware efficiently.

However, when tuning for performance on a specific combination of 

system and implementation, it may be necessary to pay closer attention 

to low-level scheduling behaviors. The scheduling of work-groups to 

compute resources is implementation-defined and could potentially be 

dynamic (i.e., when a compute resource completes one work-group, the 

next work-group it executes may come from a shared queue). The impact 

of dynamic scheduling on performance is not fixed, and its significance 

depends upon factors including the execution time of each instance of the 

kernel function and whether the scheduling is implemented in software 

(e.g., on a CPU) or hardware (e.g., on a GPU).

�Many-to-One Mapping
The alternative is to write kernels with a many-to-one mapping of work 

to work-items. The meaning of the range changes subtly in this case: the 

range no longer describes the amount of work to be done, but rather 

the number of workers to use. By changing the number of workers and 

the amount of work assigned to each worker, we can fine-tune work 

distribution to maximize performance.
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Writing a kernel of this form requires two changes:

	 1.	 The kernel must accept a parameter describing the 

total amount of work.

	 2.	 The kernel must contain a loop assigning work to 

work-items.

A simple example of such a kernel is given in Figure 4-25. Note that 

the loop inside the kernel has a slightly unusual form—the starting index 

is the work-item’s index in the global range, and the stride is the total 

number of work-items. This round-robin scheduling of data to work-items 

ensures that all N iterations of the loop will be executed by a work-item, 

but also that linear work-items access contiguous memory locations (to 

improve cache locality and vectorization behavior). Work can be similarly 

distributed across groups or the work-items in individual groups to further 

improve locality.

These work distribution patterns are common, and they can be 

expressed very succinctly when using hierarchical parallelism with a 

logical range. We expect that future versions of DPC++ will introduce 

syntactic sugar to simplify the expression of work distribution in ND-range 

kernels.

size_t N = ...; // amount of work
size_t W = ...; // number of workers
h.parallel_for(range{W}, [=](item<1> it) {

for (int i = it.get_id()[0]; i < N; i += it.get_range()[0]) {
output[i] = function(input[i]);

}
});

Figure 4-25.  Kernel with separate data and execution ranges
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�Choosing a Kernel Form
Choosing between the different kernel forms is largely a matter of personal 

preference and heavily influenced by prior experience with other parallel 

programming models and languages.

The other main reason to choose a specific kernel form is that it is the only 

form to expose certain functionality required by a kernel. Unfortunately, it can 

be difficult to identify which functionality will be required before development 

begins—especially while we are still unfamiliar with the different kernel forms 

and their interaction with various classes.

We have constructed two guides based on our own experience in order 

to help us navigate this complex space. These guides should be considered 

rules of thumb and are definitely not intended to replace our own 

experimentation—the best way to choose between the different kernel forms 

will always be to spend some time writing in each of them, in order to learn 

which form is the best fit for our application and development style.

The first guide is the flowchart in Figure 4-26, which selects a kernel 

form based on

	 1.	 Whether we have previous experience with parallel 

programming

	 2.	 Whether we are writing a new code from scratch or 

are porting an existing parallel program written in a 

different language

	 3.	 Whether our kernel is embarrassingly parallel, 

already contains nested parallelism, or reuses data 

between different instances of the kernel function

	 4.	 Whether we are writing a new kernel in SYCL to 

maximize performance or to improve the portability 

of our code or because it provides a more productive 

means of expressing parallelism than lower-level 

languages
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The second guide is the table in Figure 4-27, which summarizes the 

functionalities that are exposed to each of the kernel forms. It is important 

to note that this table reflects the state of DPC++ at the time of publication 

for this book and that the features available to each kernel form should 

be expected to change as the language evolves. However, we expect 

the basic trend to remain the same: basic data-parallel kernels will not 

expose locality-aware features, explicit ND-range kernels will expose all 

performance-enabling features, and hierarchical kernels will lag behind 

explicit ND-range kernels in exposing features, but their expression of 

those features will use higher-level abstractions.

Figure 4-26.  Helping choose the right form for our kernel
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�Summary
This chapter introduced the basics of expressing parallelism in DPC++ and 

discussed the strengths and weaknesses of each approach to writing data-

parallel kernels.

DPC++ and SYCL provide support for many forms of parallelism, and 

we hope that we have provided enough information to prepare readers to 

dive in and start coding!

We have only scratched the surface, and a deeper dive into many of 

the concepts and classes introduced in this chapter is forthcoming: the 

usage of local memory, barriers, and communication routines will be 

covered in Chapter 9; different ways of defining kernels besides using 

lambda expressions will be discussed in Chapter 10; detailed mappings 

of the ND-range execution model to specific hardware will be explored 

in Chapters 15, 16, and 17; and best practices for expressing common 

parallel patterns using DPC++ will be presented in Chapter 14.

Figure 4-27.  Features available to each kernel form
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use, sharing, adaptation, distribution and reproduction in any medium or 
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the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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