
189
© David Paper 2020
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,
https://doi.org/10.1007/978-1-4842-5373-1_7

CHAPTER 7

Scikit-Learn
Regression Tuning
Regression predictive modeling (or just regression) is the problem of learning the

strength of association between independent variables (or features) and continuous

dependent variables (or outcomes). Tuning regression algorithms is similar to tuning

classification algorithms. That is, we adjust a model’s hyperparameters until we arrive at

an optimal solution.

The difference is that the goal of regression tuning is to reduce root mean squared

error (RMSE), while the goal of classification tuning is to maximize accuracy. A benefit

of RMSE is that units of the error score are the same as the predicted value. While

regression predictions can be evaluated using RMSE, classification predictions cannot.

Tip The goal of regression tuning is to minimize RMSE.

Machine learning algorithms chosen for our tuning examples are not a coincidence.

I chose them based on many hours of experimentation, reading, and insight. Algorithms

that performed best for a given data set were included, and those that performed poorly

were not.

For regression experiments in this chapter, we leverage GridSearchCV for tuning.

Tip Tuning with GridSearchCV is suitable for an exhaustive search for the
best performing hyperparameters given adequate computing resources. Tuning
with RandomizedSearchCV is suitable for a good search or if tuning high-
dimensional data.

https://doi.org/10.1007/978-1-4842-5373-1_7

190

Learning to tune regression algorithms can be accelerated by working through

examples with a variety of data sets and regressors. But, I also suggest following a

structured process:

 a) Always begin with default hyperparameters using baseline

algorithms.

 b) Experiment with training and test sizes.

 c) Use dimensionality reduction when working with high-

dimensional data.

 d) Draw random samples when working with large data sets.

 e) Scale data (where appropriate) to potentially increase

performance.

 f) Use GridSearchCV or RandomizedSearchCV to tune.

 g) Once tuned with baseline algorithms, experiment with complex

algorithms.

Tip Begin tuning with a baseline algorithm (with its default hyperparameters) to
establish baseline performance.

 Tuning Data Sets
We concentrate on four data sets: tips, boston, and wine (red and white). tips data is

composed of food server tips in restaurants and related factors including tip, price of

meal, and time of day. boston data is composed of housing prices from various Boston

locations. wine data is composed two data sets (red and white) that consist of variants of

Portuguese Vinho Verde wine.

 Tuning tips
The code example shown in Listing 7-1 calculates RMSE for a variety of regression

algorithms based on unscaled and scaled data. Since tips is such a small data set, it is

computationally inexpensive to run this type of experiment.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

191

Listing 7-1. Calculating RMSE for tips data with regression algorithms

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor as rfr,\

 AdaBoostRegressor as ada, GradientBoostingRegressor as gbr

from sklearn.linear_model import LinearRegression as lr,\

 BayesianRidge as bay, Ridge as rr, Lasso as l,\

 LassoLars as ll, ElasticNet as en,\

 ARDRegression as ard, RidgeCV as rcv

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor as dtr

from sklearn.neighbors import KNeighborsRegressor as knn

from sklearn.preprocessing import StandardScaler

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_tips.npy')

 y = np.load('data/y_tips.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 regressors = [lr(), bay(), rr(alpha=.5, random_state=0),

 l(alpha=0.1, random_state=0), ll(), knn(),

 ard(), rfr(random_state=0, n_estimators=100),

 SVR(gamma='scale', kernel='rbf'),

 rcv(fit_intercept=False), en(random_state=0),

 dtr(random_state=0), ada(random_state=0),

 gbr(random_state=0)]

 print ('unscaled:', br)

 for reg in regressors:

 reg.fit(X_train, y_train)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

192

 rmse, name = get_error(reg, X_test, y_test)

 name = reg.__class__.__name__

 print (name + '(rmse):', end=' ')

 print (rmse)

 print ()

 print ('scaled:', br)

 scaler = StandardScaler()

 X_train_std = scaler.fit_transform(X_train)

 X_test_std = scaler.fit_transform(X_test)

 for reg in regressors:

 reg.fit(X_train_std, y_train)

 rmse, name = get_error(reg, X_test_std, y_test)

 name = reg.__class__.__name__

 print (name + '(rmse):', end=' ')

 print (rmse)

Go ahead and execute the code from Listing 7-1. Remember that you can find the

example from the book’s example download. You don’t need to type the example by

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 7-1 should resemble the following:

unscaled:

LinearRegression(rmse): 0.9474705746817206

BayesianRidge(rmse): 0.9245282337469829

Ridge(rmse): 0.9471900902779103

Lasso(rmse): 0.9158574785712037

LassoLars(rmse): 1.333812899498391

KNeighborsRegressor(rmse): 1.086204460049883

ARDRegression(rmse): 0.9264801346401996

RandomForestRegressor(rmse): 0.8850975551298138

SVR(rmse): 0.9441992099702836

RidgeCV(rmse): 0.9426372075893412

ElasticNet(rmse): 0.9307377813721578

DecisionTreeRegressor(rmse): 1.2994272932036561

AdaBoostRegressor(rmse): 0.932681302158466

GradientBoostingRegressor(rmse): 0.9112440690311495

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

193

scaled:

LinearRegression(rmse): 0.9007751177881488

BayesianRidge(rmse): 0.9096801291989541

Ridge(rmse): 0.9010890080377257

Lasso(rmse): 0.8785977911833892

LassoLars(rmse): 1.333812899498391

KNeighborsRegressor(rmse): 0.9613578099280607

ARDRegression(rmse): 0.8745960871430548

RandomForestRegressor(rmse): 0.893772251516372

SVR(rmse): 0.9749204385201592

RidgeCV(rmse): 3.1960055364135638

ElasticNet(rmse): 1.1310151423347359

DecisionTreeRegressor(rmse): 1.1835900827021861

AdaBoostRegressor(rmse): 0.986987944835978

GradientBoostingRegressor(rmse): 0.8908489427010696

The code begins by importing requisite packages and a variety of regression

algorithms. Function get_error returns model name and RMSE. The main block begins

by loading preprocessed tips data from NumPy files. Remember that we encoded tips

data and saved it for future processing in Chapter 4.

Tip Scikit-Learn allows you to experiment with a variety of algorithms to test
performance without requiring contextual knowledge of them.

The code continues by splitting data into train-test subsets. Next, we create a list of

regression algorithms. The code continues by training each algorithm on unscaled data

and displaying results. The code then scales data, trains each algorithm on scaled data,

and displays results.

Scaling data is a very important part of this experiment because many of the

algorithms reported lower RMSE results than their unscaled brethren. The best

performing algorithms with scaled data are Lasso and ARDRegression.

Tip Scaling can be a very important technique during the tuning process.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

https://doi.org/10.1007/978-1-4842-5373-1_4

194

So, the experiment was a success! It guided us to two algorithms upon which we can

concentrate our tuning efforts.

The next code example shown in Listing 7-2 tunes tips with Lasso.

Listing 7-2. Tuning tips with Lasso

import numpy as np, humanfriendly as hf

import time

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import Lasso

from sklearn.model_selection import GridSearchCV,\

 cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups,

 scoring='neg_mean_squared_error')

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_tips.npy')

 y = np.load('data/y_tips.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 scaler = StandardScaler()

 X_train_std = scaler.fit_transform(X_train)

 X_test_std = scaler.fit_transform(X_test)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

195

 lasso = Lasso(random_state=0, alpha=0.1)

 print (lasso, br)

 lasso.fit(X_train_std, y_train)

 rmse, name = get_error(lasso, X_test_std, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 alpha_lasso = [1e-1]

 params = {'alpha': alpha_lasso, 'positive': [True, False],

 'max_iter': [10, 50, 100]}

 grid = GridSearchCV(lasso, params, cv=5, n_jobs=-1, verbose=1)

 start = time.perf_counter()

 grid.fit(X_train, y_train)

 see_time('training time:')

 bp = grid.best_params_

 print (bp, br)

 lasso = Lasso(**bp, random_state=0).fit(X_train_std, y_train)

 rmse, name = get_error(lasso, X_test_std, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 start = time.perf_counter()

 scores = get_cross(lasso, X, y)

 see_time('cross-validation rmse:')

 rmse = np.sqrt(np.mean(scores) * -1)

 print (rmse)

Your output from executing Listing 7-2 should resemble the following:

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

 normalize=False, positive=False, precompute=False,

 random_state=0, selection='cyclic', tol=0.0001,

 warm_start=False)

Lasso(rmse): 0.8785977911833892

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

196

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 2.1s finished

training time: 2 seconds and 246.86 milliseconds

{'alpha': 0.1, 'max_iter': 10, 'positive': True}

Lasso(rmse): 0.8781319871042923

cross-validation rmse: 8.58 milliseconds

1.0379804468729155

The code begins by importing requisite packages. Function get_error returns

RMSE. Function see_time returns elapsed time. Function get_cross returns cross_

validation RMSE.

The main block begins by loading preprocessed tips data. The code continues by

splitting data into train-test subsets. Next, we scale data. We then train data with Lasso

and display results for baseline comparison with the tuned RMSE.

Lasso is an algorithm that uses L1 penalty for regularization. We tune alpha, positive,

and max_iter hyperparameters based on prior experimentation.

Hyperparameter alpha is the constant that multiplies the L1 penalty term. It is

also the most important hyperparameter to tune with Lasso. Hyperparameter positive

forces the coefficient to be positive. Hyperparameter max_iter represents the maximum

number of iterations.

Tuning commences using GridSearchCV with grid params. With tuning, we were

able to lower RMSE by a very small amount. Cross-validation reveals that we are doing

very well.

Tip keep in mind that function get_error returns negative mean squared error, so
we have to make the result positive by multiplying it by -1 and taking the square
root of the result to get RMSE.

The next code example shown in Listing 7-3 tunes tips with ARDRegression.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

197

Listing 7-3. Tuning tips with ARDRegression

import numpy as np, humanfriendly as hf

import time

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import ARDRegression

from sklearn.model_selection import GridSearchCV,\

 cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups,

 scoring='neg_mean_squared_error')

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_tips.npy')

 y = np.load('data/y_tips.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 scaler = StandardScaler()

 X_train_std = scaler.fit_transform(X_train)

 X_test_std = scaler.fit_transform(X_test)

 ard = ARDRegression().fit(X_train_std, y_train)

 print (ard, br)

 rmse, name = get_error(ard, X_test_std, y_test)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

198

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 iters = [50]

 a1 = [1e5, 1e4]

 a2 = [1e5, 1e4]

 params = {'n_iter': iters, 'alpha_1': a1, 'alpha_2': a2}

 grid = GridSearchCV(ard, params, cv=5, n_jobs=-1, verbose=1)

 start = time.perf_counter()

 grid.fit(X_train, y_train)

 see_time('training time:')

 bp = grid.best_params_

 print (bp, br)

 ard = ARDRegression(**bp).fit(X_train_std, y_train)

 rmse, name = get_error(ard, X_test_std, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 start = time.perf_counter()

 scores = get_cross(ard, X, y)

 see_time('cross-validation rmse:')

 rmse = np.sqrt(np.mean(scores) * -1)

 print (rmse)

Your output from executing Listing 7-3 should resemble the following:

ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

 copy_X=True, fit_intercept=True, lambda_1=1e-06,

 lambda_2=1e-06, n_iter=300, normalize=False,

 threshold_lambda=10000.0, tol=0.001, verbose=False)

ARDRegression(rmse): 0.8745960871430548

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 20 out of 20 | elapsed: 3.5s finished

training time: 4 seconds and 286.03 milliseconds

{'alpha_1': 10000.0, 'alpha_2': 100000.0, 'n_iter': 50}

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

199

ARDRegression(rmse): 0.8645625277607758

cross-validation rmse: 4 seconds and 10.17 milliseconds

1.0376527153700184

The code begins by importing requisite packages. Function get_error returns

RMSE. Function see_time returns elapsed time. Function get_cross returns

cross_validation RMSE.

The main block begins by loading preprocessed tips data. The code continues

by splitting data into train-test subsets. Next, we scale data. We then train data with

ARDRegression and display results for baseline comparison with the tuned RMSE.

ARDRegression (Automatic Relevance Determination Regression) fits a regression

model with Bayesian Ridge Regression. Estimation of the model is accomplished by

iteratively maximizing the marginal log-likelihood of the observations.

We tune with n_iter, alpha_1, and alpha_2. Hyperparameter n_iter is the maximum

number of iterations. Hyperparameter alpha_1 is the shape parameter for the gamma

distribution prior over the alpha parameter. Hyperparameter alpha_2 is the inverse scale

parameter (or rate parameter) for the gamma distribution prior over the alpha parameter.

We are able to reduce RMSE with tuning. Also, cross-validation reveals that we are

doing very well.

 Tuning boston
The code example shown in Listing 7-4 calculates RMSE for a variety of regression

algorithms based on unscaled and scaled data. Since boston is a relatively small data set,

it is computationally inexpensive to run this type of experiment.

Listing 7-4. Calculating RMSE for boston data with regression algorithms

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor as rfr,\

 AdaBoostRegressor as ada, GradientBoostingRegressor as gbr

from sklearn.linear_model import LinearRegression as lr,\

 BayesianRidge as bay, Ridge as rr, Lasso as l,\

 LassoLars as ll, ElasticNet as en,\

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

200

 ARDRegression as ard, RidgeCV as rcv

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor as dtr

from sklearn.neighbors import KNeighborsRegressor as knn

from sklearn.preprocessing import StandardScaler

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_boston.npy')

 y = np.load('data/y_boston.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 regressors = [lr(), bay(), rr(alpha=.5, random_state=0),

 l(alpha=0.1, random_state=0), ll(), knn(),

 ard(), rfr(random_state=0, n_estimators=100),

 SVR(gamma='scale', kernel='rbf'),

 rcv(fit_intercept=False), en(random_state=0),

 dtr(random_state=0), ada(random_state=0),

 gbr(random_state=0)]

 print ('unscaled:', br)

 for reg in regressors:

 reg.fit(X_train, y_train)

 rmse, name = get_error(reg, X_test, y_test)

 name = reg.__class__.__name__

 print (name + '(rmse):', end=' ')

 print (rmse)

 print ()

 print ('scaled:', br)

 scaler = StandardScaler()

 X_train_std = scaler.fit_transform(X_train)

 X_test_std = scaler.fit_transform(X_test)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

201

 for reg in regressors:

 reg.fit(X_train_std, y_train)

 rmse, name = get_error(reg, X_test_std, y_test)

 name = reg.__class__.__name__

 print (name + '(rmse):', end=' ')

 print (rmse)

Your output from executing Listing 7-4 should resemble the following:

unscaled:

LinearRegression(rmse): 4.236710574387242

BayesianRidge(rmse): 4.317939916221959

Ridge(rmse): 4.243658717030716

Lasso(rmse): 4.300740333025026

LassoLars(rmse): 8.754893348840868

KNeighborsRegressor(rmse): 5.9934937623789

ARDRegression(rmse): 4.28415048500826

RandomForestRegressor(rmse): 3.37169151536684

SVR(rmse): 7.100029068343849

RidgeCV(rmse): 4.392246392993031

ElasticNet(rmse): 4.88844846745213

DecisionTreeRegressor(rmse): 4.346328232622458

AdaBoostRegressor(rmse): 3.652816906059683

GradientBoostingRegressor(rmse): 3.1941117128039194

scaled:

LinearRegression(rmse): 4.398269524691269

BayesianRidge(rmse): 4.419543929268475

Ridge(rmse): 4.400075160458176

Lasso(rmse): 4.489952156682322

LassoLars(rmse): 8.754893348840868

KNeighborsRegressor(rmse): 4.757936288305807

ARDRegression(rmse): 4.383622227159

RandomForestRegressor(rmse): 4.053037237125816

SVR(rmse): 5.083294658978756

RidgeCV(rmse): 22.34757636411328

ElasticNet(rmse): 5.277752330669967

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

202

DecisionTreeRegressor(rmse): 5.2796587719252726

AdaBoostRegressor(rmse): 4.100148076529094

GradientBoostingRegressor(rmse): 3.7490071027496015

The code begins by importing requisite packages and a variety of regression

algorithms. Function get_error returns model name and RMSE. The main block begins

by loading cleansed boston data from NumPy files. Remember that we cleansed boston

data and saved it for future processing in Chapter 4.

The code continues by splitting data into train-test subsets. Next, we create a list of

regression algorithms. The code continues by training each algorithm on unscaled data

and displaying results. The code then scales data, trains each algorithm on scaled data,

and displays results.

The best performing algorithms in this experiment are GradientBoostingRegressor

and RandomForestRegressor (both with unscaled data). So, scaling data did not add

value with this data set.

The next code example shown in Listing 7-5 tunes the boston data set with

GradientBoostingRegressor.

Listing 7-5. Tuning boston data with GradientBoostingRegressor

import numpy as np, humanfriendly as hf, warnings, sys

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import GridSearchCV,\

 cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

https://doi.org/10.1007/978-1-4842-5373-1_4

203

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups,

 scoring='neg_mean_squared_error')

if __name__ == "__main__":

 br = '\n'

 if not sys.warnoptions:

 warnings.simplefilter('ignore')

 X = np.load('data/X_boston.npy')

 y = np.load('data/y_boston.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 gbr = GradientBoostingRegressor(random_state=0)

 print (gbr, br)

 gbr.fit(X_train, y_train)

 rmse, name = get_error(gbr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 loss = ['ls', 'lad', 'huber']

 lr = [1e-2, 1e-1, 1e-0]

 n_est = [150, 200, 300, 500]

 alpha = [0.9]

 params = {'loss': loss, 'learning_rate': lr,

 'n_estimators': n_est, 'alpha': alpha}

 grid = GridSearchCV(gbr, params, cv=5, n_jobs=-1,

 verbose=1, refit=False)

 start = time.perf_counter()

 grid.fit(X_train, y_train)

 see_time('training time:')

 bp = grid.best_params_

 print (bp, br)

 gbr = GradientBoostingRegressor(**bp, random_state=0)

 gbr.fit(X_train, y_train)

 rmse, name = get_error(gbr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

204

 start = time.perf_counter()

 scores = get_cross(gbr, X, y)

 see_time('cross-validation rmse:')

 rmse = np.sqrt(np.mean(scores) * -1)

 print (rmse)

Your output from executing Listing 7-5 should resemble the following:

GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse',

 init=None, learning_rate=0.1, loss='ls',

 max_depth=3, max_features=None,

 max_leaf_nodes=None, min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf='deprecated', min_samples_split=2,

 min_weight_fraction_leaf='deprecated',

 n_estimators=100, n_iter_no_change=None,

 presort='auto', random_state=0, subsample=1.0,

 tol=0.0001, validation_fraction=0.1, verbose=0,

 warm_start=False)

GradientBoostingRegressor(rmse): 3.1941117128039194

Fitting 5 folds for each of 36 candidates, totalling 180 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 3.1s

[Parallel(n_jobs=-1)]: Done 180 out of 180 | elapsed: 9.1s finished

training time: 9 seconds and 170.11 milliseconds

{'alpha': 0.9, 'learning_rate': 0.1, 'loss': 'huber', 'n_estimators': 300}

GradientBoostingRegressor(rmse): 3.0839764165411934

cross-validation rmse: 3 seconds and 258.29 milliseconds

3.7929403445012064

The code begins by importing GradientBoostingRegressor as well as other requisite

packages. GradientBoostingRegressor performs gradient boosting for regression by

building an additive model in a forward-stage fashion.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

205

Function get_error returns the RMSE and model name for a given algorithm.

Function see_time returns elapsed time. Function get_cross returns the negative mean

squared error.

The main block loads boston data, splits it into train-test subsets, and trains data

with GradientBoostingRegressor. The code continues by displaying RMSE with default

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the

model is tuned with hyperparameters loss, learning_rate, n_estimators, and alpha.

Hyperparameter loss is the loss function to be optimized. Hyperparameter

learning_rate controls how much we adjust model learning with respect to the loss

gradient. Hyperparameter n_estimators is the number of boosting stages to perform.

Hypeparameter alpha is the alpha-quantile of the huber loss function.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

Tip You may have to occasionally reboot your computer as tuning requires an
enormous amount of computing resources.

The final code example in this section (shown in Listing 7-6) tunes the boston data

set with RandomForestRegressor.

Listing 7-6. Tuning boston data with RandomForestRegressor

import numpy as np, humanfriendly as hf, warnings, sys

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,\

 cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

206

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups,

 scoring='neg_mean_squared_error')

if __name__ == "__main__":

 br = '\n'

 if not sys.warnoptions:

 warnings.simplefilter('ignore')

 X = np.load('data/X_boston.npy')

 y = np.load('data/y_boston.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 rfr = RandomForestRegressor(random_state=0)

 print (rfr, br)

 rfr.fit(X_train, y_train)

 rmse, name = get_error(rfr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 n_est = [100, 500, 1000]

 boot = [True, False]

 params = {'n_estimators': n_est, 'bootstrap': boot}

 grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1,

 verbose=1, refit=False)

 start = time.perf_counter()

 grid.fit(X_train, y_train)

 see_time('training time:')

 bp = grid.best_params_

 print (bp, br)

 rfr = RandomForestRegressor(**bp, random_state=0)

 rfr.fit(X_train, y_train)

 rmse, name = get_error(rfr, X_test, y_test)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

207

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 start = time.perf_counter()

 scores = get_cross(rfr, X, y)

 see_time('cross-validation rmse:')

 rmse = np.sqrt(np.mean(scores) * -1)

 print (rmse)

Your output from executing Listing 7-6 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion='mse',

 max_depth=None, max_features='auto',

 max_leaf_nodes=None, min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf='deprecated', min_samples_split=2,

 min_weight_fraction_leaf='deprecated',

 n_estimators='warn', n_jobs=None, oob_score=False,

 random_state=0, verbose=0, warm_start=False)

RandomForestRegressor(rmse): 3.5587794792757004

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 8.3s finished

training time: 8 seconds and 453.84 milliseconds

{'bootstrap': True, 'n_estimators': 100}

RandomForestRegressor(rmse): 3.37169151536684

cross-validation rmse: 1 second and 845.76 milliseconds

3.6815463792891623

The code begins by importing RandomForestRegressor as well as other requisite

packages. RandomForestRegressor fits a number of classifying decision trees on various

subsamples of the data set and uses averaging to improve predictive accuracy and

control overfitting.

Function get_error returns the RMSE and model name for a given algorithm.

Function see_time returns elapsed time. Function get_cross returns the negative mean

squared error.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

208

The main block loads boston data, splits it into train-test subsets, and trains data

with RandomForestRegressor. The code continues by displaying RMSE with default

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the

model is tuned with hyperparameters n_estimators and bootstrap.

Hyperparameter n_estimators is the number of trees in the forest. Hyperparameter

bootstrap determines whether bootstrap samples are used when building trees.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

 Tuning wine
By running an experiment similar to those shown in Listings 7-1 and 7-4, we found that

RandomForestRegressor (with unscaled data) delivered the lowest RMSE for both red

and white wine data. Go ahead and create your own experiments to verify our results if

you wish.

The code example shown in Listing 7-7 tunes the red wine data set with

RandomForestRegressor.

Listing 7-7. Tuning red wine data with RandomForestRegressor

import numpy as np, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,\

 cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

209

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups,

 scoring='neg_mean_squared_error')

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_red.npy')

 y = np.load('data/y_red.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 rfr = RandomForestRegressor(random_state=0, n_estimators=10)

 print (rfr, br)

 rfr.fit(X_train, y_train)

 rmse, name = get_error(rfr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 n_est = [100, 500]

 boot = [True, False]

 params = {'n_estimators': n_est, 'bootstrap': boot}

 grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1, verbose=1)

 start = time.perf_counter()

 grid.fit(X_train, y_train)

 see_time('training time:')

 bp = grid.best_params_

 print (bp, br)

 rfr = RandomForestRegressor(**bp, random_state=0)

 rfr.fit(X_train, y_train)

 rmse, name = get_error(rfr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 start = time.perf_counter()

 scores = get_cross(rfr, X, y)

 see_time('cross-validation rmse:')

 rmse = np.sqrt(np.mean(scores) * -1)

 print (rmse)

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

210

Your output from executing Listing 7-7 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion='mse',

 max_depth=None, max_features='auto',

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf='deprecated',

 min_samples_split=2,

 min_weight_fraction_leaf='deprecated',

 n_estimators=10, n_jobs=None,

 oob_score=False, random_state=0, verbose=0,

 warm_start=False)

RandomForestRegressor(rmse): 0.626079068488957

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 20 out of 20 | elapsed: 7.1s finished

training time: 7 seconds and 629.56 milliseconds

{'bootstrap': True, 'n_estimators': 100}

RandomForestRegressor(rmse): 0.5847897057917487

cross-validation rmse: 4 seconds and 804.96 milliseconds

0.6498982966515346

The code begins by importing requisite packages. Function get_error returns the

RMSE and model name for a given algorithm. Function see_time returns elapsed time.

Function get_cross returns the negative mean squared error.

The main block loads red wine data, splits it into train-test subsets, and trains data

with RandomForestRegressor. The code continues by displaying RMSE with default

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the

model is tuned with hyperparameters n_estimators and bootstrap.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

The final code example shown in Listing 7-8 tunes the white wine data set with

RandomForestRegressor.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

211

Listing 7-8. Tuning white wine data with RandomForestRegressor

import numpy as np, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,\

 cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

 y_pred = model.predict(Xtest)

 return np.sqrt(mean_squared_error(ytest, y_pred)),\

 model.__class__.__name__

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups,

 scoring='neg_mean_squared_error')

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_white.npy')

 y = np.load('data/y_white.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 rfr = RandomForestRegressor(random_state=0, n_estimators=10)

 print (rfr, br)

 rfr.fit(X_train, y_train)

 rmse, name = get_error(rfr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 n_est = [100, 500]

 boot = [True, False]

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

212

 params = {'n_estimators': n_est, 'bootstrap': boot}

 grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1, verbose=1)

 start = time.perf_counter()

 grid.fit(X_train, y_train)

 see_time('training time:')

 bp = grid.best_params_

 print (bp, br)

 rfr = RandomForestRegressor(**bp, random_state=0)

 rfr.fit(X_train, y_train)

 rmse, name = get_error(rfr, X_test, y_test)

 print (name + '(rmse):', end=' ')

 print (rmse, br)

 start = time.perf_counter()

 scores = get_cross(rfr, X, y)

 see_time('cross-validation rmse:')

 rmse = np.sqrt(np.mean(scores) * -1)

 print (rmse)

Your output from executing Listing 7-8 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion='mse',

 max_depth=None, max_features='auto',

 max_leaf_nodes=None, min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf='deprecated', min_samples_split=2,

 min_weight_fraction_leaf='deprecated',n_estimators=10,

 n_jobs=None, oob_score=False, random_state=0,

 verbose=0, warm_start=False)

RandomForestRegressor(rmse): 0.6966098665124181

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 20 out of 20 | elapsed: 18.7s finished

training time: 25 seconds and 709.64 milliseconds

{'bootstrap': True, 'n_estimators': 500}

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

213

RandomForestRegressor(rmse): 0.6728175517621279

cross-validation rmse: 1 minute, 24 seconds and 70.99 milliseconds

0.7183073387927801

The code begins by importing requisite packages. Function get_error returns the

RMSE and model name for a given algorithm. Function see_time returns elapsed time.

Function get_cross returns the negative mean squared error.

The main block loads white wine data, splits it into train-test subsets, and trains

data with RandomForestRegressor. The code continues by displaying RMSE with default

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the

model is tuned with hyperparameters n_estimators and bootstrap.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

ChapTER 7 SCikiT-LEaRn REGRESSion TuninG

	Chapter 7: Scikit-Learn Regression Tuning
	Tuning Data Sets
	Tuning tips
	Tuning boston
	Tuning wine

