CHAPTER 7

Scikit-Learn
Regression Tuning

Regression predictive modeling (or just regression) is the problem of learning the
strength of association between independent variables (or features) and continuous
dependent variables (or outcomes). Tuning regression algorithms is similar to tuning
classification algorithms. That is, we adjust a model’s hyperparameters until we arrive at
an optimal solution.

The difference is that the goal of regression tuning is to reduce root mean squared
error (RMSE), while the goal of classification tuning is to maximize accuracy. A benefit
of RMSE is that units of the error score are the same as the predicted value. While
regression predictions can be evaluated using RMSE, classification predictions cannot.

Tip The goal of regression tuning is to minimize RMSE.

Machine learning algorithms chosen for our tuning examples are not a coincidence.
I chose them based on many hours of experimentation, reading, and insight. Algorithms
that performed best for a given data set were included, and those that performed poorly
were not.

For regression experiments in this chapter, we leverage GridSearchCV for tuning.

Tip Tuning with GridSearchCV is suitable for an exhaustive search for the
best performing hyperparameters given adequate computing resources. Tuning
with RandomizedSearchCV is suitable for a good search or if tuning high-
dimensional data.

189
© David Paper 2020

D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,
https://doi.org/10.1007/978-1-4842-5373-1_7

https://doi.org/10.1007/978-1-4842-5373-1_7

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

Learning to tune regression algorithms can be accelerated by working through
examples with a variety of data sets and regressors. But, I also suggest following a
structured process:

a) Always begin with default hyperparameters using baseline
algorithms.

b) Experiment with training and test sizes.

c) Use dimensionality reduction when working with high-
dimensional data.

d) Draw random samples when working with large data sets.

e) Scale data (where appropriate) to potentially increase
performance.

f) Use GridSearchCV or RandomizedSearchCV to tune.

g) Once tuned with baseline algorithms, experiment with complex
algorithms.

Tip Begin tuning with a baseline algorithm (with its default hyperparameters) to
establish baseline performance.

Tuning Data Sets

We concentrate on four data sets: tips, boston, and wine (red and white). tips data is
composed of food server tips in restaurants and related factors including tip, price of
meal, and time of day. boston data is composed of housing prices from various Boston
locations. wine data is composed two data sets (red and white) that consist of variants of
Portuguese Vinho Verde wine.

Tuning tips

The code example shown in Listing 7-1 calculates RMSE for a variety of regression
algorithms based on unscaled and scaled data. Since tips is such a small data set, it is
computationally inexpensive to run this type of experiment.

190

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

Listing 7-1. Calculating RMSE for tips data with regression algorithms

import numpy as np

from sklearn.model selection import train test split

from sklearn.metrics import mean squared error

from sklearn.ensemble import RandomForestRegressor as rfr,\
AdaBoostRegressor as ada, GradientBoostingRegressor as gbr

from sklearn.linear _model import LinearRegression as 1r,\
BayesianRidge as bay, Ridge as rr, Lasso as 1,\
Lassolars as 11, ElasticNet as en,\
ARDRegression as ard, RidgeCV as rcv

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor as dtr

from sklearn.neighbors import KNeighborsRegressor as knn

from sklearn.preprocessing import StandardScaler

def get error(model, Xtest, ytest):
y_pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name

= np.load('data/y_tips.npy")
train, X test, y train, y test = train test split(
X, y, random state=0)

b
X = np.load('data/X_tips.npy")
y
X

regressors = [1r(), bay(), rr(alpha=.5, random_state=0),
1(alpha=0.1, random state=0), 11(), knn(),
ard(), rfr(random state=0, n_estimators=100),
SVR(gamma="scale', kernel="rbf'),
rcv(fit_intercept=False), en(random state=0),
dtr(random_state=0), ada(random state=0),
gbr(random_state=0)]

print ('unscaled:', br)

for reg in regressors:

reg.fit(X_train, y_train)

191

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

rmse, name = get error(reg, X test, y test)
name = reg. class_ . name__
print (name + '(rmse):', end=" ")
print (rmse)
print ()
print ('scaled:', br)
scaler = StandardScaler()
X train std = scaler.fit transform(X train)
X test std = scaler.fit transform(X test)
for reg in regressors:
reg.fit(X_train std, y train)
rmse, name = get error(reg, X test std, y test)
name = reg. class . name__
print (name + '(rmse):', end=" ")
print (rmse)

Go ahead and execute the code from Listing 7-1. Remember that you can find the
example from the book’s example download. You don’t need to type the example by
hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 7-1 should resemble the following:

unscaled:

LinearRegression(rmse): 0.9474705746817206
BayesianRidge(rmse): 0.9245282337469829
Ridge(rmse): 0.9471900902779103

Lasso(rmse): 0.9158574785712037
LassoLars(rmse): 1.333812899498391
KNeighborsRegressor(rmse): 1.086204460049883
ARDRegression(rmse): 0.9264801346401996
RandomForestRegressor(rmse): 0.8850975551298138
SVR(rmse): 0.9441992099702836

RidgeCV(rmse): 0.9426372075893412
ElasticNet(rmse): 0.9307377813721578
DecisionTreeRegressor(rmse): 1.2994272932036561
AdaBoostRegressor(rmse): 0.932681302158466
GradientBoostingRegressor(rmse): 0.9112440690311495

192

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

scaled:

LinearRegression(rmse): 0.9007751177881488
BayesianRidge(rmse): 0.9096801291989541
Ridge(rmse): 0.9010890080377257

Lasso(rmse): 0.8785977911833892
LassoLars(rmse): 1.333812899498391
KNeighborsRegressor(rmse): 0.9613578099280607
ARDRegression(rmse): 0.8745960871430548
RandomForestRegressor(rmse): 0.893772251516372
SVR(rmse): 0.9749204385201592

RidgeCV(rmse): 3.1960055364135638
ElasticNet(rmse): 1.1310151423347359
DecisionTreeRegressor(rmse): 1.1835900827021861
AdaBoostRegressor(rmse): 0.986987944835978
GradientBoostingRegressor(rmse): 0.8908489427010696

The code begins by importing requisite packages and a variety of regression
algorithms. Function get_error returns model name and RMSE. The main block begins
by loading preprocessed tips data from NumPy files. Remember that we encoded tips
data and saved it for future processing in Chapter 4.

Tip Scikit-Learn allows you to experiment with a variety of algorithms to test
performance without requiring contextual knowledge of them.

The code continues by splitting data into train-test subsets. Next, we create a list of
regression algorithms. The code continues by training each algorithm on unscaled data
and displaying results. The code then scales data, trains each algorithm on scaled data,
and displays results.

Scaling data is a very important part of this experiment because many of the
algorithms reported lower RMSE results than their unscaled brethren. The best
performing algorithms with scaled data are Lasso and ARDRegression.

Tip Scaling can be a very important technique during the tuning process.

193

https://doi.org/10.1007/978-1-4842-5373-1_4

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

So, the experiment was a success! It guided us to two algorithms upon which we can
concentrate our tuning efforts.
The next code example shown in Listing 7-2 tunes tips with Lasso.

Listing 7-2. Tuning tips with Lasso

import numpy as np, humanfriendly as hf

import time

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

from sklearn.linear model import Lasso

from sklearn.model selection import GridSearchCV,\
cross_val score

from sklearn.metrics import mean squared error

def get error(model, Xtest, ytest):
y pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name _

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups,
scoring="neg mean_squared error")

= np.load('data/y_tips.npy")

train, X test, y train, y test = train test split(
X, y, random state=0)

scaler = StandardScaler()

X train_std = scaler.fit transform(X train)

X_test std = scaler.fit transform(X test)

b
X = np.load('data/X_tips.npy")
y
X

194

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

lasso = Lasso(random_state=0, alpha=0.1)

print (lasso, br)

lasso.fit(X train std, y train)

rmse, name = get error(lasso, X test std, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

alpha_lasso = [1e-1]

params = {'alpha': alpha lasso, 'positive': [True, False],
‘max_iter': [10, 50, 100]}

grid = GridSearchCV(lasso, params, cv=5, n_jobs=-1, verbose=1)

start = time.perf counter()

grid.fit(X train, y train)

see_time('training time:")

bp = grid.best _params_

print (bp, br)

lasso = Lasso(x*bp, random state=0).fit(X train_std, y train)

rmse, name = get error(lasso, X test std, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

start = time.perf counter()

scores = get cross(lasso, X, y)

see_time('cross-validation rmse:")

rmse = np.sqrt(np.mean(scores) * -1)

print (rmse)

Your output from executing Listing 7-2 should resemble the following:

Lasso(alpha=0.1, copy X=True, fit intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False,
random_state=0, selection='cyclic', tol=0.0001,
warm start=False)

Lasso(rmse): 0.8785977911833892

195

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[Parallel(n _jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 30 out of 30 | elapsed: 2.1s finished
training time: 2 seconds and 246.86 milliseconds

{"alpha': 0.1, 'max_iter': 10, 'positive': True}

Lasso(rmse): 0.8781319871042923

cross-validation rmse: 8.58 milliseconds
1.0379804468729155

The code begins by importing requisite packages. Function get_error returns
RMSE. Function see_time returns elapsed time. Function get_cross returns cross_
validation RMSE.

The main block begins by loading preprocessed tips data. The code continues by
splitting data into train-test subsets. Next, we scale data. We then train data with Lasso
and display results for baseline comparison with the tuned RMSE.

Lasso is an algorithm that uses L1 penalty for regularization. We tune alpha, positive,
and max_iter hyperparameters based on prior experimentation.

Hyperparameter alpha is the constant that multiplies the L1 penalty term. It is
also the most important hyperparameter to tune with Lasso. Hyperparameter positive
forces the coefficient to be positive. Hyperparameter max_iter represents the maximum
number of iterations.

Tuning commences using GridSearchCV with grid params. With tuning, we were
able to lower RMSE by a very small amount. Cross-validation reveals that we are doing
very well.

Tip Keep in mind that function get_error returns negative mean squared error, S0
we have to make the result positive by multiplying it by -1 and taking the square
root of the result to get RMSE.

The next code example shown in Listing 7-3 tunes tips with ARDRegression.

196

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

Listing 7-3. Tuning tips with ARDRegression

import numpy as np, humanfriendly as hf

import time

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

from sklearn.linear model import ARDRegression

from sklearn.model selection import GridSearchCV,\
cross_val score

from sklearn.metrics import mean squared error

def get error(model, Xtest, ytest):
y pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name _

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups,
scoring="neg mean_squared error')

if _name_ ==" main__
br = "\n'
X = np.load('data/X_tips.npy")
y = np.load('data/y_tips.npy")
X _train, X test, y train, y test = train test split(
X, y, random state=0)
scaler = StandardScaler()
X train_std = scaler.fit transform(X train)
X_test _std = scaler.fit_transform(X_test)
ard = ARDRegression().fit(X train std, y train)
print (ard, br)
rmse, name = get error(ard, X test std, y test)

197

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

print (name + '(rmse):', end=" ")

print (rmse, br)

iters = [50]

al = [1e5, 1le4]

a2 = [1e5, 1e4]

params = {'n_iter': iters, 'alpha 1': a1, 'alpha 2': a2}
grid = GridSearchCV(ard, params, cv=5, n_jobs=-1, verbose=1)
start = time.perf counter()

grid.fit(X train, y train)

see_time('training time:")

bp = grid.best _params_

print (bp, br)

ard = ARDRegression(xxbp).fit(X train std, y train)
rmse, name = get error(ard, X test std, y test)
print (name + '(rmse):', end=" ")

print (rmse, br)

start = time.perf counter()

scores = get cross(ard, X, y)
see_time('cross-validation rmse:")

rmse = np.sqrt(np.mean(scores) * -1)

print (rmse)

Your output from executing Listing 7-3 should resemble the following:

ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_ score=False,
copy X=True, fit intercept=True, lambda 1=1e-06,
lambda_2=1e-06, n_iter=300, normalize=False,
threshold lambda=10000.0, t0l=0.001, verbose=False)

ARDRegression(rmse): 0.8745960871430548

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 20 out of 20 | elapsed: 3.5s finished
training time: 4 seconds and 286.03 milliseconds

{"alpha_1': 10000.0, 'alpha 2': 100000.0, 'n iter': 50}

198

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING
ARDRegression(rmse): 0.8645625277607758

cross-validation rmse: 4 seconds and 10.17 milliseconds
1.0376527153700184

The code begins by importing requisite packages. Function get_error returns
RMSE. Function see_time returns elapsed time. Function get_cross returns
cross_validation RMSE.

The main block begins by loading preprocessed tips data. The code continues
by splitting data into train-test subsets. Next, we scale data. We then train data with
ARDRegression and display results for baseline comparison with the tuned RMSE.

ARDRegression (Automatic Relevance Determination Regression) fits a regression
model with Bayesian Ridge Regression. Estimation of the model is accomplished by
iteratively maximizing the marginal log-likelihood of the observations.

We tune with n_iter, alpha_1, and alpha_2. Hyperparameter n_iter is the maximum
number of iterations. Hyperparameter alpha_1 is the shape parameter for the gamma
distribution prior over the alpha parameter. Hyperparameter alpha_2 is the inverse scale
parameter (or rate parameter) for the gamma distribution prior over the alpha parameter.

We are able to reduce RMSE with tuning. Also, cross-validation reveals that we are
doing very well.

Tuning boston

The code example shown in Listing 7-4 calculates RMSE for a variety of regression
algorithms based on unscaled and scaled data. Since boston is a relatively small data set,
it is computationally inexpensive to run this type of experiment.

Listing 7-4. Calculating RMSE for boston data with regression algorithms

import numpy as np

from sklearn.model selection import train test split

from sklearn.metrics import mean squared error

from sklearn.ensemble import RandomForestRegressor as rfr,\
AdaBoostRegressor as ada, GradientBoostingRegressor as gbr

from sklearn.linear_model import LinearRegression as lr,\
BayesianRidge as bay, Ridge as rr, Lasso as 1,\
LassolLars as 11, ElasticNet as en,\

199

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

ARDRegression as ard, RidgeCV as rcv

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor as dtr

from sklearn.neighbors import KNeighborsRegressor as knn

from sklearn.preprocessing import StandardScaler

def get error(model, Xtest, ytest):

200

y pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name

__name__ ==" main_":
1

br = "\n
X = np.load('data/X_boston.npy")
y = np.load('data/y_boston.npy")
X _train, X test, y train, y test = train test split(
X, y, random state=0)
regressors = [1r(), bay(), rr(alpha=.5, random state=0),
1(alpha=0.1, random state=0), 11(), knn(),
ard(), rfr(random state=0, n_estimators=100),
SVR(gamma="scale', kernel="rbf'),
rcv(fit_intercept=False), en(random state=0),
dtr(random_state=0), ada(random state=0),
gbr(random_state=0)]
print ('unscaled:', br)
for reg in regressors:
reg.fit(X_train, y_train)
rmse, name = get error(reg, X test, y test)
name = reg. class . name__
print (name + '(rmse):', end=" ")
print (rmse)
print ()
print ('scaled:', br)
scaler = StandardScaler()
X train_std = scaler.fit transform(X train)
X _test std = scaler.fit transform(X_test)

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

for reg in regressors:
reg.fit(X_train std, y train)
rmse, name = get error(reg, X test std, y test)
name = reg. class . name__
print (name + '(rmse):', end=" ")
print (rmse)

Your output from executing Listing 7-4 should resemble the following:
unscaled:

LinearRegression(rmse): 4.236710574387242
BayesianRidge(rmse): 4.317939916221959
Ridge(rmse): 4.243658717030716

Lasso(rmse): 4.300740333025026
LassolLars(rmse): 8.754893348840868
KNeighborsRegressor(rmse): 5.9934937623789
ARDRegression(rmse): 4.28415048500826
RandomForestRegressor(rmse): 3.37169151536684
SVR(rmse): 7.100029068343849

RidgeCV(rmse): 4.392246392993031
ElasticNet(rmse): 4.88844846745213
DecisionTreeRegressor(rmse): 4.346328232622458
AdaBoostRegressor(rmse): 3.652816906059683
GradientBoostingRegressor(rmse): 3.1941117128039194

scaled:

LinearRegression(rmse): 4.398269524691269
BayesianRidge(rmse): 4.419543929268475
Ridge(rmse): 4.400075160458176
Lasso(rmse): 4.489952156682322
LassolLars(rmse): 8.754893348840868
KNeighborsRegressor(rmse): 4.757936288305807
ARDRegression(rmse): 4.383622227159
RandomForestRegressor(rmse): 4.053037237125816
SVR(rmse): 5.083294658978756
RidgeCV(rmse): 22.34757636411328
ElasticNet(rmse): 5.277752330669967

201

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

DecisionTreeRegressor(rmse): 5.2796587719252726
AdaBoostRegressor(rmse): 4.100148076529094
GradientBoostingRegressor(rmse): 3.7490071027496015

The code begins by importing requisite packages and a variety of regression
algorithms. Function get_error returns model name and RMSE. The main block begins
by loading cleansed boston data from NumPy files. Remember that we cleansed boston
data and saved it for future processing in Chapter 4.

The code continues by splitting data into train-test subsets. Next, we create a list of
regression algorithms. The code continues by training each algorithm on unscaled data
and displaying results. The code then scales data, trains each algorithm on scaled data,
and displays results.

The best performing algorithms in this experiment are GradientBoostingRegressor
and RandomForestRegressor (both with unscaled data). So, scaling data did not add
value with this data set.

The next code example shown in Listing 7-5 tunes the boston data set with
GradientBoostingRegressor.

Listing 7-5. Tuning boston data with GradientBoostingRegressor

import numpy as np, humanfriendly as hf, warnings, sys

import time

from sklearn.model selection import train test split

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model selection import GridSearchCV,\
cross_val score

from sklearn.metrics import mean_squared error

def get error(model, Xtest, ytest):
y_pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

202

https://doi.org/10.1007/978-1-4842-5373-1_4

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

def get cross(model, data, target, groups=10):
return cross_val score(model, data, target, cv=groups,
scoring="neg mean squared error')

if not sys.warnoptions:

warnings.simplefilter('ignore")

np.load('data/X_boston.npy")

np.load('data/y_boston.npy")

X _train, X test, y train, y test = train test split(
X, y, random state=0)

<
1}

gbr = GradientBoostingRegressor(random state=0)

print (gbr, br)

gbr.fit(X_train, y train)

rmse, name = get error(gbr, X test, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

loss = ['1ls', 'lad', "huber']

lr = [1e-2, 1le-1, 1e-0]

n_est = [150, 200, 300, 500]

alpha = [0.9]

params = {'loss': loss, 'learning rate': lr,
'n_estimators': n_est, 'alpha': alpha}

grid = GridSearchCV(gbr, params, cv=5, n_jobs=-1,

verbose=1, refit=False)
start = time.perf counter()
grid.fit(X _train, y train)
see_time('training time:")
bp = grid.best params_
print (bp, br)
gbr = GradientBoostingRegressor (*xbp, random state=0)
gbr.fit(X train, y train)
rmse, name = get error(gbr, X test, y test)
print (name + '(rmse):', end=" ")
print (rmse, br)

203

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

start = time.perf counter()

scores = get cross(gbr, X, y)
see_time('cross-validation rmse:")
rmse = np.sqrt(np.mean(scores) * -1)
print (rmse)

Your output from executing Listing 7-5 should resemble the following:

GradientBoostingRegressor(alpha=0.9, criterion="friedman_mse’,
init=None, learning rate=0.1, loss='ls',
max_depth=3, max_features=None,
max_leaf nodes=None, min_impurity decrease=0.0,
min_impurity split=None,
min_samples leaf='deprecated', min_samples split=2,
min_weight fraction leaf='deprecated’,
n_estimators=100, n_iter no change=None,
presort="auto', random_state=0, subsample=1.0,
t0l1=0.0001, validation fraction=0.1, verbose=0,
warm start=False)

GradientBoostingRegressor(rmse): 3.1941117128039194

Fitting 5 folds for each of 36 candidates, totalling 180 fits

[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 34 tasks | elapsed: 3.1s

[Parallel(n _jobs=-1)]: Done 180 out of 180 | elapsed: 9.1s finished
training time: 9 seconds and 170.11 milliseconds

{'alpha': 0.9, 'learning rate': 0.1, 'loss': 'huber', 'n_estimators': 300}

GradientBoostingRegressor(rmse): 3.0839764165411934

cross-validation rmse: 3 seconds and 258.29 milliseconds
3.7929403445012064

The code begins by importing GradientBoostingRegressor as well as other requisite
packages. GradientBoostingRegressor performs gradient boosting for regression by
building an additive model in a forward-stage fashion.

204

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

Function get_error returns the RMSE and model name for a given algorithm.
Function see_time returns elapsed time. Function get_cross returns the negative mean
squared error.

The main block loads boston data, splits it into train-test subsets, and trains data
with GradientBoostingRegressor. The code continues by displaying RMSE with default
parameters to provide a baseline score for comparison to the tuned RMSE. Next, the
model is tuned with hyperparameters loss, learning_rate, n_estimators, and alpha.

Hyperparameter loss is the loss function to be optimized. Hyperparameter
learning rate controls how much we adjust model learning with respect to the loss
gradient. Hyperparameter n_estimators is the number of boosting stages to perform.
Hypeparameter alpha is the alpha-quantile of the huber loss function.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our
tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

Tip You may have to occasionally reboot your computer as tuning requires an
enormous amount of computing resources.

The final code example in this section (shown in Listing 7-6) tunes the boston data
set with RandomForestRegressor.

Listing 7-6. Tuning boston data with RandomForestRegressor

import numpy as np, humanfriendly as hf, warnings, sys

import time

from sklearn.model selection import train test split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model selection import GridSearchCV,\
cross_val score

from sklearn.metrics import mean squared error

def get error(model, Xtest, ytest):
y pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name

205

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups,
scoring="neg mean squared error')

if name_ ==" main_":
br = "\n'
if not sys.warnoptions:
warnings.simplefilter('ignore")
np.load('data/X_boston.npy")
np.load('data/y_boston.npy")
X _train, X test, y train, y test = train test split(
X, y, random state=0)

<
1

rfr = RandomForestRegressor(random_state=0)

print (rfr, br)

rfr.fit(X_train, y train)

rmse, name = get error(rfr, X test, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

n_est = [100, 500, 1000]

boot = [True, False]

params = {'n_estimators': n_est, 'bootstrap': boot}

grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1,
verbose=1, refit=False)

start = time.perf counter()

grid.fit(X _train, y train)

see_time('training time:")

bp = grid.best params_

print (bp, br)

rfr = RandomForestRegressor (**bp, random state=0)

rfr.fit(X _train, y train)

rmse, name = get error(rfr, X test, y test)

206

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

print (name + '(rmse):', end=" ")
print (rmse, br)

start = time.perf counter()

scores = get cross(rfr, X, y)
see_time('cross-validation rmse:")
rmse = np.sqrt(np.mean(scores) * -1)
print (rmse)

Your output from executing Listing 7-6 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion="mse',
max_depth=None, max_features="auto',
max_leaf nodes=None, min_impurity decrease=0.0,
min_impurity split=None,
min_samples leaf='deprecated', min_samples split=2,
min_weight fraction leaf='deprecated’,
n_estimators='warn', n_jobs=None, oob score=False,
random state=0, verbose=0, warm start=False)

RandomForestRegressor(rmse): 3.5587794792757004

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 30 out of 30 | elapsed: 8.3s finished
training time: 8 seconds and 453.84 milliseconds

{"bootstrap': True, 'n_estimators': 100}

RandomForestRegressor(rmse): 3.37169151536684

cross-validation rmse: 1 second and 845.76 milliseconds
3.6815463792891623

The code begins by importing RandomForestRegressor as well as other requisite
packages. RandomForestRegressor fits a number of classifying decision trees on various
subsamples of the data set and uses averaging to improve predictive accuracy and
control overfitting.

Function get_error returns the RMSE and model name for a given algorithm.
Function see_time returns elapsed time. Function get_cross returns the negative mean
squared error.

207

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

The main block loads boston data, splits it into train-test subsets, and trains data
with RandomForestRegressor. The code continues by displaying RMSE with default
parameters to provide a baseline score for comparison to the tuned RMSE. Next, the
model is tuned with hyperparameters n_estimators and bootstrap.

Hyperparameter n_estimators is the number of trees in the forest. Hyperparameter
bootstrap determines whether bootstrap samples are used when building trees.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our
tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

Tuning wine

By running an experiment similar to those shown in Listings 7-1 and 7-4, we found that
RandomForestRegressor (with unscaled data) delivered the lowest RMSE for both red
and white wine data. Go ahead and create your own experiments to verify our results if
you wish.

The code example shown in Listing 7-7 tunes the red wine data set with
RandomForestRegressor.

Listing 7-7. Tuning red wine data with RandomForestRegressor

import numpy as np, humanfriendly as hf

import time

from sklearn.model selection import train test split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model selection import GridSearchCV,\
cross_val score

from sklearn.metrics import mean_squared error

def get error(model, Xtest, ytest):
y pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name _

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

208

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

def get cross(model, data, target, groups=10):

return cross_val score(model, data, target, cv=groups,
scoring="neg mean squared error')

X = np.load('data/X_red.npy")

y = np.load('data/y_red.npy")

X _train, X test, y train, y test = train test split(
X, y, random state=0)

rfr = RandomForestRegressor(random state=0, n_estimators=10)

print (rfr, br)

rfr.fit(X_train, y train)

rmse, name = get error(rfr, X test, y test)

print (name + '(xmse):', end=" ")

print (rmse, br)

n_est = [100, 500]

boot = [True, False]

params = {'n_estimators': n_est, 'bootstrap': boot}

grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1, verbose=1)

start = time.perf counter()

grid.fit(X_train, y_train)

see_time('training time:")

bp = grid.best params_

print (bp, br)

rfr = RandomForestRegressor (**bp, random state=0)

rfr.fit(X_train, y train)

rmse, name = get error(rfr, X test, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

start = time.perf counter()

scores = get cross(rfr, X, y)

see_time('cross-validation rmse:")

rmse = np.sqrt(np.mean(scores) * -1)

print (rmse)

209

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING
Your output from executing Listing 7-7 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion="mse",
max_depth=None, max_features='auto',
max_leaf nodes=None,
min_impurity decrease=0.0,
min_impurity split=None,
min_samples leaf='deprecated’,
min_samples split=2,
min_weight fraction_ leaf='deprecated',
n_estimators=10, n_jobs=None,
oob_score=False, random state=0, verbose=0,
warm_start=False)

RandomForestRegressor(rmse): 0.626079068488957

Fitting 5 folds for each of 4 candidates, totalling 20 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 20 out of 20 | elapsed: 7.1s finished
training time: 7 seconds and 629.56 milliseconds

{'bootstrap': True, 'n estimators': 100}

RandomForestRegressor(rmse): 0.5847897057917487

cross-validation rmse: 4 seconds and 804.96 milliseconds
0.6498982966515346

The code begins by importing requisite packages. Function get_error returns the
RMSE and model name for a given algorithm. Function see_time returns elapsed time.
Function get_cross returns the negative mean squared error.

The main block loads red wine data, splits it into train-test subsets, and trains data
with RandomForestRegressor. The code continues by displaying RMSE with default
parameters to provide a baseline score for comparison to the tuned RMSE. Next, the
model is tuned with hyperparameters n_estimators and bootstrap.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our
tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

The final code example shown in Listing 7-8 tunes the white wine data set with
RandomForestRegressor.

210

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

Listing 7-8. Tuning white wine data with RandomForestRegressor

import numpy as np, humanfriendly as hf

import time

from sklearn.model selection import train test split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model selection import GridSearchCV,\
cross_val score

from sklearn.metrics import mean squared error

def get error(model, Xtest, ytest):
y_pred = model.predict(Xtest)
return np.sqrt(mean_squared error(ytest, y pred)),\
model. class . name

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups,
scoring="neg mean_squared error")

X = np.load('data/X white.npy")

y = np.load('data/y white.npy")

X _train, X test, y train, y test = train test split(
X, y, random state=0)

rfr = RandomForestRegressor(random state=0, n_estimators=10)

print (rfr, br)

rfr.fit(X_train, y train)

rmse, name = get error(rfr, X test, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

n_est = [100, 500]

boot = [True, False]

211

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

params = {'n_estimators': n_est, 'bootstrap': boot}
grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1, verbose=1)
start = time.perf counter()

grid.fit(X_train, y_train)

see_time('training time:")

bp = grid.best params_

print (bp, br)

rfr = RandomForestRegressor (**bp, random state=0)
rfr.fit(X_train, y train)

rmse, name = get error(rfr, X test, y test)

print (name + '(rmse):', end=" ")

print (rmse, br)

start = time.perf counter()

scores = get cross(rfr, X, y)
see_time('cross-validation rmse:")

rmse = np.sqrt(np.mean(scores) * -1)

print (rmse)

Your output from executing Listing 7-8 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion="mse',
max_depth=None, max_features="auto',
max_leaf nodes=None, min_impurity decrease=0.0,
min_impurity split=None,
min_samples leaf='deprecated', min_samples split=2,
min weight fraction leaf='deprecated',n estimators=10,
n_jobs=None, oob_score=False, random state=0,
verbose=0, warm start=False)

RandomForestRegressor(rmse): 0.6966098665124181

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 20 out of 20 | elapsed: 18.7s finished
training time: 25 seconds and 709.64 milliseconds

{"bootstrap': True, 'n_estimators': 500}

212

CHAPTER 7 SCIKIT-LEARN REGRESSION TUNING

RandomForestRegressor(rmse): 0.6728175517621279

cross-validation rmse: 1 minute, 24 seconds and 70.99 milliseconds
0.7183073387927801

The code begins by importing requisite packages. Function get_error returns the
RMSE and model name for a given algorithm. Function see_time returns elapsed time.
Function get_cross returns the negative mean squared error.

The main block loads white wine data, splits it into train-test subsets, and trains
data with RandomForestRegressor. The code continues by displaying RMSE with default
parameters to provide a baseline score for comparison to the tuned RMSE. Next, the
model is tuned with hyperparameters n_estimators and bootstrap.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our
tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

213

	Chapter 7: Scikit-Learn Regression Tuning
	Tuning Data Sets
	Tuning tips
	Tuning boston
	Tuning wine

