CHAPTER 6

Scikit-Learn Classifier
Tuning from Complex
Training Sets

Now that we have practiced tuning low-dimensional (or simple) data, we are ready to
experiment tuning high-dimensional (or complex) data sets. Low-dimensional data
consists of a limited number of features, whereas high-dimensional data consists of a
very high number of features.
The term most commonly used to describe the dimensionality of a data set in
machine learning literature is feature space. Feature space refers to the collection
of features used to characterize the data set. That is, feature space refers to the
n-dimensions where your variables live (not including a target variable if it is present).
Consistent with tuning low-dimensional data, we follow a structured process when
tuning high-dimensional data:

a) Always begin with default hyperparameters using baseline algorithms.
b) Experiment with training and test sizes.

¢) Use dimensionality reduction when working with
high-dimensional data.

d) Draw random samples when working with large data sets.
e) Scale data (where appropriate) to potentially increase performance.
f) Use GridSearchCV or RandomizedSearchCV to tune.

g) Once tuned with baseline algorithms, experiment with complex
algorithms.

165
© David Paper 2020

D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,
https://doi.org/10.1007/978-1-4842-5373-1_6

https://doi.org/10.1007/978-1-4842-5373-1_6

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

Tuning Data Sets

We concentrate on three data sets: fetch_1fw_people, MNIST, and fetch_20newsgroups.
The fetch_1fw_people data set contains 1288 face images and seven targets. Each face
image is represented by a 50 x 37 matrix of pixels. The MNIST data set contains 70000
examples of handwritten digit images labeled from 0 to 9. Each digit is represented by a
28 x 28 matrix. The fetch_20newsgroups data set consists of approximately 18000 posts
on 20 topics. Data is split into a training and testing sets. The split is based on messages
posted before and after a specific date.

Tuning fetch_1fw_people

Face recognition is a very complex topic in machine learning. But, Scikit-Learn provides
fetch_1fw_people that is a wonderful data set upon which to experiment and learn.
Through experience and experimentation, I identified two Scikit-Learn algorithms -
SGDClassifier and svm.SVC - that work relatively well with the data set.

The first code example shown in Listing 6-1 tunes data with SGDClassifier.

Listing 6-1. Tuning fetch_1fw_people with SGDClassifier

import numpy as np, humanfriendly as hf, warnings

import time

from sklearn.decomposition import PCA

from sklearn.model selection import train test split,\
GridSearchCV, cross val score

from sklearn.linear_model import SGDClassifier

from sklearn.metrics import classification_report

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups)

166

__name__ == " main__ ":

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

warnings.filterwarnings("ignore", category=DeprecationWarning)
X = np.load('data/X_faces.npy")
y = np.load('data/y_faces.npy")
X _train, X test, y train, y test = train test split(
X, y, random state=0)

pca = PCA(n_components=0.95, whiten=True, random state=1)

pca.fit(X _train)

X_train_pca = pca.transform(X_train)

X test pca = pca.transform(X test)

pca_name = pca._class . name

print ('<<' + pca_name + '>>')

print ('features (before PCA):', X.shape[1])

print ('features (after PCA):', pca.n _components , br)

sgd = SGDClassifier(max_iter=1000, tol=.001, random state=0)

sgd.fit(X_train pca, y train)

y pred = sgd.predict(X test pca)

cr = classification report(y test, y pred)

print (cr)

sgd name = sgd. class . name__

param _grid = {'alpha': [1e-3, 1e-2, 1le-1, 1e0], 'max_iter': [1000],
'loss': ['log", 'perceptron'], 'penalty': ['l1'],
"tol': [.001]}

grid = GridSearchCV(sgd, param grid, cv=5)

start = time.perf counter()

grid.fit(X train pca, y train)

see_time('training time:")

print ()

bp = grid.best params_

print ('best parameters:')

print (bp, br)

sgd = SGDClassifier(**bp, random state=1)

167

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

sgd.fit(X_train pca, y train)

y pred = sgd.predict(X test pca)

cr = classification report(y test, y pred)
print (cr)

print ('cross-validation:")

scores = get cross(sgd, X train pca, y train)
print (np.mean(scores))

Go ahead and execute the code from Listing 6-1. Remember that you can find the
example from the book’s example download. You don’t need to type the example by
hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 6-1 should resemble the following:

<<PCA>>
features (before PCA): 1850
features (after PCA): 135

precision recall fi-score support

0 0.89 0.57 0.70 28

1 0.80 0.78 0.79 63

2 0.83 0.62 0.71 24

3 0.73 0.89 0.80 132

4 0.55 0.55 0.55 20

5 0.88 0.32 0.47 22

6 0.67 0.73 0.70 33

micro avg 0.74 0.74 0.74 322
macro avg 0.76 0.64 0.67 322
weighted avg 0.76 0.74 0.73 322

training time: 7 seconds and 745.7 milliseconds

best parameters:
{'alpha': 0.001, 'loss': 'log', 'max iter': 1000, 'penalty': 'l1', 'tol': 0.001}

precision recall fi-score support
0 0.91 0.71 0.80 28
1 0.79 0.79 0.79 63

168

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

2 0.71 0.71 0.71 24

3 0.84 0.86 0.85 132

4 0.48 0.75 0.59 20

5 0.83 0.45 0.59 22

6 0.72 0.79 0.75 33

micro avg 0.78 0.78 0.78 322
macro avg 0.76 0.72 0.73 322
weighted avg 0.79 0.78 0.78 322

cross-validation:
0.7808966616425951

The first code example begins by importing requisite packages. Function see_time
returns elapased time. The main block loads data into X and y, splits it into train-test
subsets, and conducts PCA to reduce feature space dimensionality.

PCA is critical when tuning high-dimensional data because it drastically reduces
computational expense with minimal information loss. The code then trains data with
SGDClassifier (to obtain a baseline performance measure) and displays results. Next,
tuning commences with GridSearchCV.

Tip PCA s a critical tuning tool because it reduces dimensionality on high-
dimensional data sets with minimal information loss, which results in drastically
lower tuning time (or less computational expense).

We tune alpha, max_iter, loss, penalty, and tol hyperparameters. Hyperparameter
alpha is the constant that multiplies the regularization term. Hyperparameter max_iter
sets the maximum number of passes (or epochs) over training data. An epoch is one
complete presentation of the data set to be learned by a machine.

Hyperparameter loss refers to the loss function used for the experiment. Machines
learn by means of a loss function, which is a method for evaluating how well an algorithm
models a given set of data. Hyperparameter penalty refers to the regularization term that
is used by the model. Hyperparameter fol is the stopping criteria.

The two most important hyperparameters are alpha and penalty as they are directly
related to the type and amount of regularization employed by the model.

169

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

The parameter grid is constructed next. Notice that alpha is the critical
hyperparameter adjusted in this experiment. Through trial-and-error experiments, I
determined that /1 penalty was the best option, so I hard-coded it into the grid to reduce
tuning time. Once tuned, SGDClassifier trains on the data with the best parameters
and displays results. Finally, cross-validation is conducted to ensure that the model is
performing at its best (which it is).

Tip Itis much easier (and faster) to conduct tuning experiments by varying one
or two hyperparameters at a time and keeping the others constant by hard-coding
their values.

The second code example shown in Listing 6-2 tunes with svm.SVC. From
experience, I knew that svm.SVC outperformed SGDClassifier, but I wanted to
demonstrate at least some of the rigor inherent in the experimental process of tuning by
including the first code example in the chapter.

Listing 6-2. Tuning fetch_1fw_people with svm.SVC

import numpy as np, humanfriendly as hf

import time

from sklearn.decomposition import PCA

from sklearn.model selection import train test split,\
GridSearchCV, cross val score

from sklearn.svm import SVC

from sklearn.metrics import classification report

import matplotlib.pyplot as plt

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups)

170

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

X = np.load('data/X_faces.npy")
y = np.load('data/y_faces.npy")
images = np.load('data/faces_images.npy')
targets = np.load('data/faces_targets.npy"')
_, h, w = images.shape
n_images, n_features, n_classes = X.shape[0], X.shape[1],\
len(targets)
X _train, X test, y train, y test = train test split(
X, Yy, random state=0)
pca = PCA(n_components=0.95, whiten=True, random state=0)
pca.fit(X_train)
components = pca.n_components_
eigenfaces = pca.components .reshape((components, h, w))
X_train_pca = pca.transform(X_train)
pca_name = pca. class . name
print ('<<' + pca_name + '>>')
print ('features (before PCA):', n_features)
print ('features (after PCA):', components, br)
X i = np.array(eigenfaces[0].reshape(h, w))
fig = plt.figure('eigenface')
ax = fig.subplots()
image = ax.imshow(X_ i, cmap="bone")
svm = SVC(random state=0, gamma='scale')
print (svm, br)
svm.fit(X train pca, y train)
X _test pca = pca.transform(X test)
y_pred = svm.predict(X test pca)
cr = classification_report(y test, y pred)
print (cr)
svm_name = svm. class . name_
param _grid = {'C': [1e2, 1e3, 5e3], 'gamma': [0.001, 0.005, 0.01, 0.1],
"kernel': ['rbf'], 'class weight': ['balanced']}
grid = GridSearchCV(svm, param grid, cv=5)

171

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

start = time.perf counter()

grid.fit(X _train pca, y train)
see_time('training time:")

print ()

bp = grid.best _params_

print ('best parameters:"')

print (bp, br)

svm = SVC(**bp)

svm.fit(X_train pca, y train)

y_pred = svm.predict(X_test_pca)

print ()

cr = classification report(y test, y pred)
print (cr, br)

print ('cross-validation:")

scores = get cross(svm, X train pca, y train)
print (np.mean(scores), br)

file = 'data/bp face'

np.save(file, bp)

bp = np.load('data/bp _face.npy')
bp = bp.tolist()

print ('best parameters:"')

print (bp)

plt.show()

Your output from executing Listing 6-2 should resemble the following:

<<PCA>>
features (before PCA): 1850
features (after PCA): 135

SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
decision function_shape='ovr', degree=3, gamma='scale',
kernel="rbf', max_iter=-1, probability=False, random state=0,
shrinking=True, to0l=0.001, verbose=False)

172

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

precision recall fi1-score support

0 1.00 0.43 0.60 28

1 0.83 0.87 0.85 63

2 0.94 0.62 0.75 24

3 0.71 0.97 0.82 132

4 1.00 0.70 0.82 20

5 1.00 0.36 0.53 22

6 0.96 0.73 0.83 33

micro avg 0.80 0.80 0.80 322
macro avg 0.92 0.67 0.74 322
weighted avg 0.84 0.80 0.78 322

training time: 18 seconds and 143.89 milliseconds

best parameters:
{'C': 100.0, 'class weight': 'balanced', 'gamma': 0.005, 'kernel': 'rbf'}

precision recall fi-score support

0 1.00 0.64 0.78 28

1 0.76 0.92 0.83 63

2 0.91 0.88 0.89 24

3 0.88 0.92 0.90 132

4 0.74 0.85 0.79 20

5 1.00 0.64 0.78 22

6 0.90 0.85 0.88 33

micro avg 0.86 0.86 0.86 322
macro avg 0.89 0.81 0.84 322
weighted avg 0.87 0.86 0.86 322

cross-validation:
0.8393624737627647

best parameters:
{'C': 100.0, 'class weight': 'balanced', 'gamma': 0.005, 'kernel': 'rbf'}

173

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

Listing 6-2 also displays Figure 6-1, which is the first eigenface created by PCA.

0 10 20 30

Figure 6-1. First eigenface created by PCA

The code begins by importing requisite packages. Function see_time returns
elapsed time. The main block loads data into X and y, splits it into train-test subsets,
and conducts PCA for dimensionality reduction. Baseline performance for svm.SVC is
displayed for later comparison to the tuned svm.SVC score.

Tuning commences by constructing a grid with C, gamma, kernel, and class_weight
hyperparameters. Hyperparameter C is the penalty parameter of the error term, so
itis very important for tuning. Hyperparameter gamma is the kernel coefficient.
Hyperparameter kernel specifies the kernel type to be used by the algorithm (e.g., linear).
Hyperparameter class_weight is used to set the weight (or emphasis) of each class.
Through experimentation, I found that the rbfkernel and balanced class weight were the
best, so I hard-coded them into the grid.

174

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

My process of discovery is as follows: First, I kept all other hyperparameters constant
and changed kernel to see the setting that yielded the best performance. Second, I kept
kernel constant and changed class weight.

As you can tell by the grid, we vary C and gamma to improve performance. Once
best parameters are determined, svm.SVC trains the data with them. Results are
displayed along with cross-validation measures. We have done well with svm.SVC since
we performed significantly better than the cross-validation score. We display the first
eigenface from dimensionality reduction for completeness. Finally, best parameters are
saved (and displayed).

Tuning MNIST

MNIST is not a large data set with 70000 examples, but it has a high-dimensional
feature space consisting of 784 features. Such feature space complexity increases
computational expense, so we must take this into account when running experiments
with computationally expensive algorithms like svm.SVC.

The first code example in Listing 6-3 tunes MNIST with RandomForestClassifier
and ExtraTreesClassifier. These algorithms have numerous hyperparameters, but we
only adjust a few. I was able to greatly simplify tuning from my experience with these
algorithms. You can experiment further, but computational expense increases greatly as
you adjust additional hyperparameters.

Listing 6-3. Tuning with RandomForestClassifier and ExtraTreesClassifier

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model selection import train test split

from sklearn.model selection import RandomizedSearchCV,\
cross_val score

from sklearn.ensemble import RandomForestClassifier,\
ExtraTreesClassifier

def get scores(model, xtrain, ytrain, xtest, ytest):
ypred = model.predict(xtest)
train = model.score(xtrain, ytrain)

test = model.score(xtest, y test)

175

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

def

def

def

def

if _ name__

176

name = model. class . name
return (name, train, test)

get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups)

prep_data(data, target):
d = [data[i] for i, _ in enumerate(data)]

t = [target[i] for i, _ in enumerate(target)]
return list(zip(d, t))

create sample(d, n, replace='yes'):
if replace == 'yes': s = random.sample(d, n)

else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]
Xs = [row[0] for i, row in enumerate(s)]
ys = [row[1] for i, row in enumerate(s)]

return np.array(Xs), np.array(ys)

see_time(note):
end = time.perf counter()
elapsed = end - start

print (note, hf.format timespan(elapsed, detailed=True))

br = "\n

X_file
y file

X = np.

y = np.
X.astype(np.float32)

X

=" main_":

"data/X_mnist'
"data/y_mnist'

load('data/X_mnist.npy")
load('data/y_mnist.npy")

data = prep data(X, y)
sample_size = 7000

Xs, ys

create sample(data, sample size)

rf = RandomForestClassifier(random state=0, n_estimators=100)
print (rf, br)

params
random

{'class weight': ['balanced'], 'max_depth': [10, 30]}
RandomizedSearchCV(rf, param distributions = params,
cv=3, n_iter=2, random state=0)

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

start = time.perf counter()
random.fit(Xs, ys)
see_time('RandomizedSearchCV total tuning time:")
bp = random.best_params_
print (bp, br)
X _train, X test, y train, y test = train test split(
X, y, random state=0)
rf = RandomForestClassifier(**bp, random state=0, n_estimators=100)
start = time.perf counter()
rf.fit(X_train, y train)
rf scores = get scores(rf, X train, y train, X test, y test)
see_time('total time:")
print (rf scores[0] + ' (train, test):')
print (rf scores[1], rf scores[2], br)
et = ExtraTreesClassifier(random state=0, n_estimators=200)
print (et, br)
params = {'class weight': ['balanced'], 'max_depth': [10, 30]}
random = RandomizedSearchCV(et, param distributions = params,
cv=3, n_iter=2, random state=0)
start = time.perf counter()
random.fit(Xs, ys)
see_time('RandomizedSearchCV total tuning time:")
bp = random.best params_
print (bp, br)
X _train, X test, y train, y test = train test split(
X, y, random state=0)
et = ExtraTreesClassifier(**bp, random state=0, n_estimators=200)
start = time.perf counter()
et.fit(X_train, y train)
et scores = get scores(et, X train, y train, X test, y test)
see_time('total time:")
print (et _scores[0] + ' (train, test):')
print (et scores[1], et scores[2], br)
print ('cross-validation (et):")
start = time.perf counter()

177

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

scores = get_cross(xf, X, y)
see_time('total time:")

print (np.mean(scores), br)

file = 'data/bp_mnist_et'
np.save(file, bp)

bp = np.load('data/bp _mnist_et.npy")
bp = bp.tolist()

print ('best parameters:"')

print (bp)

Your output from executing Listing 6-3 should resemble the following:

RandomForestClassifier(bootstrap=True, class weight=None,
criterion="gini', max_depth=None,
max_features="auto', max_leaf nodes=None,
min_impurity decrease=0.0, min_impurity split=None,
min_samples leaf='deprecated', min_samples split=2,
min_weight fraction leaf='deprecated’,
n_estimators=100, n_jobs=None, oob score=False,
random_state=0, verbose=0, warm_start=False)

RandomizedSearchCV total tuning time: 13 seconds and 398.73 milliseconds
{'max_depth': 30, 'class weight': 'balanced'}

total time: 32 seconds and 589.23 milliseconds
RandomForestClassifier (train, test):
0.9999809523809524 0.9701142857142857

ExtraTreesClassifier(bootstrap=False, class weight=None,
criterion="gini', max_depth=None, max_features='auto',
max_leaf nodes=None, min_impurity decrease=0.0,
min_impurity split=None,
min_samples leaf='deprecated', min_samples split=2,
min_weight fraction leaf='deprecated',
n_estimators=200, n_jobs=None, oob score=False,
random state=0, verbose=0, warm start=False)

RandomizedSearchCV total tuning time: 23 seconds and 342.93 milliseconds
{'max_depth': 30, 'class weight': 'balanced'}
178

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

total time: 1 minute, 8 seconds and 270.59 milliseconds
ExtraTreesClassifier (train, test):
1.0 0.9732

cross-validation (et):
total time: 5 minutes, 40 seconds and 788.07 milliseconds
0.9692001937716965

best parameters:
{'max_depth': 30, 'class weight': 'balanced'}

The code begins by importing requisite packages. Function get_scores returns
accuracy scores and model name. Function get_cross returns cross-validation score.
Function prep_data prepares data for function create_sample. Function create sample
creates a random sample with or without replacement. Function see_time returns
elapsed time. The main block loads data, creates a random sample, and instantiates
algorithm RandomForestClassifier.

Tuning commences by constructing a grid with class_weight and max_depth
hyperparameters. Hyperparameter class_weight is used to set the weight (or emphasis)
of each class. Hyperparameter max_depth is used to establish the maximum depth of the
tree. Through many hours of experimentation, I found that these two parameters were
key to increasing performance. Tuning continues by leveraging RandomizedSearchCV
to obtain the best parameters. Notice that tuning time is only a bit over thirteen seconds
because the grid is very simple.

Now we can test RandomForestClassifier with best parameters. Notice that we
include hyperparameter n_estimators in the algorithm along with best parameters.
Hyperparameter n_estimators represents the number of trees in the forest and may be
the most important hyperparameter for improving performance.

We include n_estimators in the algorithm (instead of putting it in the grid) for two
reasons. First, it is such an important hyperparameter that we can save time by adjusting
it outside a tuning experiment. That is, we can adjust it very easily without adding
computational expense to the tuning experiment. However, increasing its value does add
computational expense to processing the algorithm. Second, it must be included with
this algorithm to avoid an annoying warning.

Tuning ExtraTreesClassifier follows the exact same logic with only one difference.
We increase n_estimators to 200 trees. Notice that this increase causes processing time to
more than double, but performance is better.

179

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

Finally, we run cross-validation (on ExtraTreesClassifier) and save the best
parameters from ExtraTreesClassifier for future processing. From the cross-validation
score, we know that our accuracy scores are solid. However, cross-validation consumes
over 5 minutes of processing time! You can comment out the cross-validation part of the
code ifyou don’t want to wait.

On a positive note, cross-validation only needs to be executed once on an algorithm.
I suggest that you run cross-validation before commencing a tuning experiment. You can
then run trial-and-error experiments until you meet or exceed the cross-validation score.

Tip Cross-validation need only be run once because it cannot be tuned.

Overall performance was good with accuracy over 97% with not too much overfitting.
But, don’t be lulled into a false sense of security by working through my tuning
experiments. Tuning consumes a lot of time and patience. I can only give you examples
and hints to help you become a more accomplished data scientist.

I highly recommend timing tuning experiments, especially ones that are
computationally expensive (such as tuning with numerous hyperparameters over
various ranges of values). Otherwise, it is very difficult to get a sense of how well your
experiment is proceeding. When I first began tuning machine learning algorithms, I
didn’t time experiments. My progress was slow because I became very frustrated when I
couldn’t differentiate tuning experiments by elapsed time.

Tip Always time tuning experiments to gauge progress.

The next code example shown in Listing 6-4 tunes MNIST with svm.SVC.

Listing 6-4. Tuning MNIST with svm.SVC

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model selection import train test split
from sklearn.model selection import RandomizedSearchCV
from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

180

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

def get scores(model, xtrain, ytrain, xtest, ytest):
ypred = model.predict(xtest)
train = model.score(xtrain, ytrain)
test = model.score(xtest, y test)
name = model. class . name

return (name, train, test)

def prep data(data, target):
d = [data[i] for i, _ in enumerate(data)]
t = [target[i] for i, _ in enumerate(target)]
return list(zip(d, t))

def create sample(d, n, replace='yes'):
if replace == 'yes': s = random.sample(d, n)
else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]
Xs = [row[0] for i, row in enumerate(s)]
ys = [row[1] for i, row in enumerate(s)]
return np.array(Xs), np.array(ys)

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

if _name__ == " main_":
br = '\n'
X _file = 'data/X_mnist'
y file = 'data/y_mnist'
X = np.load('data/X _mnist.npy")
y = np.load('data/y mnist.npy")
X = X.astype(np.float32)
data = prep data(X, y)
sample size = 7000
Xs, ys = create _sample(data, sample size)

pca = PCA(n_components=0.95, random state=0)
Xs = StandardScaler().fit transform(Xs)
Xs_reduced = pca.fit_transform(Xs)

181

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

X _train, X test, y train, y test = train test split(
Xs_reduced, ys, random state=0)
svm = SVC(gamma="scale', random_state=0)
print (svm, br)
start = time.perf counter()
svm.fit(X _train, y train)
svm_scores = get scores(svm, X train, y train, X test, y test)
print (svm scores[0] + ' (train, test):")
print (svm scores[1], svm scores[2])
see_time('time:")
print ()
param grid = {'C': [30, 35, 40], 'kernel': ['poly'],
‘gamma': ['scale'], 'degree': [3], 'coefo': [0.1]}
start = time.perf counter()
rand = RandomizedSearchCV(svm, param grid, cv=3, n_jobs = -1,
random state=0, n_iter=3, verbose=2)
rand.fit(X train, y train)
see_time('RandomizedSearchCV total tuning time:")
bp = rand.best params_
print (bp, br)
svm = SVC(**bp, random state=0)
start = time.perf counter()
svm.fit(X_train, y_train)
svm_scores = get scores(svm, X train, y train, X test, y test)
print (svm scores[0] + ' (train, test):')
print (svm_scores[1], svm scores[2])
see_time('total time:")

Your output from executing Listing 6-4 should resemble the following:

SVC(C=1.0, cache_size=200, class weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='scale',
kernel="rbf', max_iter=-1, probability=False, random_state=0,
shrinking=True, t0l=0.001, verbose=False)

182

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

SVC (train, test):
0.9845714285714285 0.9228571428571428
time: 13 seconds and 129.03 milliseconds

Fitting 3 folds for each of 3 candidates, totalling 9 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 4 out of 9 | elapsed: 14.0s

remaining: 17.6s

[Parallel(n_jobs=-1)]: Done 9 out of 9 | elapsed: 19.3s remaining:
0.0s

[Parallel(n jobs=-1)]: Done 9 out of 9 | elapsed: 19.3s finished
RandomizedSearchCV total tuning time: 23 seconds and 824.72 milliseconds
{"kernel': 'poly', 'gamma': 'scale', 'degree': 3, 'coefo': 0.1, 'C': 30}

SVC (train, test):
1.0 0.9542857142857143
total time: 10 seconds and 810.06 milliseconds

Like the first MNIST tuning code example, we take a random sample. But, we also
use PCA for dimensionality reduction because of the immense computational expense
inherent with svm.SVC.

Tip For computationally expensive algorithms, we recommend drawing a random
sample and using PCA for dimensionality reduction to speed processing.

The code begins by importing requisite packages. We already talked about the
functions in the last example, so we don’t need to discuss it here.

The main block loads data and draws a random sample of 7000. PCA is used for
dimensionality reduction with 5% information loss. Next, we scale training data because
svm.SVC responds well to scaling. The code continues by splitting data into train-test
subsets. Next, svm.SVC is trained with default parameters to gauge performance.

The code continues using RandomizedSearchCV to tune. We create a grid with
hyperparameters C, kernel, gamma, degree, and coef0. We've already discussed
hyperparameters C, kernel, and gamma, so we don’t need to do it again here.
Hyperparameter degree represents the degree of the polynomial kernel function.

We include it because we chose poly for the kernel. Hyperparameter coef0 is used in
conjunction with degree for polynomial kernels.

183

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

Through experimentation, I found that hyperparameter C was the most important
one to adjust. So, the grid only varies the values for C.

The code continues by using the best parameters from the tuning experiment with
svm.SVC. We were able to increase test performance by quite a bit, but we still face
overfitting.

We didn’t include cross-validation for two reasons. First, svm.SVC didn’t perform
as well as ExtraTreeClassifier (so what'’s the point?). Second, it takes an extraordinary
amount of time to run cross-validation on svm.SVC with MNIST.

Tuning fetch_20newsgroups

Like face recognition, text exploration is a very complex topic in machine learning. But,
Scikit-Learn provides fetch_20newsgroups that is a wonderful data set upon which to
experiment and learn.

Tuning complexity is greatly exacerbated because a pipelined model (with
MultinomialNB and TfidfVectorizer) includes two sets of hyperparmeters (one from each
algorithm).

Tuning MultinomialNB by itself is very easy because one need only adjust the alpha
hyperparameter. Hyperparameter alpha allows us to adjust smoothing. However, tuning
TfidfVectorizer is much more difficult as it includes numerous hyperparameters.

We encounter an even higher level of difficulty when tuning a pipelined model with
RandomizedSearchCV because the names of the hyperparameters are different. Each
hyperparameter from a pipelined model must be prefixed with the algorithm name so
that RandomizedSearchCV can interpret correctly. This makes sense because algorithms
can share the same hyperparameters.

The code example shown in Listing 6-5 tunes a pipelined model.

Listing 6-5. Tuning fetch_20newsgroups with a pipelined model

import numpy as np, humanfriendly as hf

import time

from sklearn.datasets import fetch 20newsgroups

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.naive bayes import MultinomialNB

from sklearn.pipeline import make pipeline

from sklearn.metrics import f1_score

184

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

from sklearn.model selection import RandomizedSearchCV,\
cross_val score

def get cross(model, data, target, groups=10):
return cross val score(model, data, target, cv=groups)

def see time(note):
end = time.perf counter()
elapsed = end - start
print (note, hf.format timespan(elapsed, detailed=True))

if name_ ==" main_":
1

train = fetch_20newsgroups(subset="train")

test = fetch 20newsgroups(subset="test")

categories = ['rec.autos', 'rec.motorcycles', 'sci.space', 'sci.med']

train = fetch _20newsgroups(subset="train', categories=categories,

remove=("headers', 'footers', 'quotes'))
test = fetch_20newsgroups(subset="test', categories=categories,
remove=("headers', 'footers', 'quotes'))

targets = train.target names

mnb = MultinomialNB()

tf = TfidfVectorizer()

print (mnb, br)

print (tf, br)

pipe = make pipeline(tf, mnb)

pipe.fit(train.data, train.target)

labels = pipe.predict(test.data)

f1 = f1_score(test.target, labels, average='micro')

print ('f1 score', f1, br)

print (pipe.get params().keys(), br)

param grid = {'tfidfvectorizer ngram range': [(1, 1), (1, 2)],
"tfidfvectorizer use idf': [True, False],
'multinomialnb__alpha': [1e-2, 1e-3],
'multinomialnb__ fit prior': [True, False]}

start = time.perf counter()

185

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

rand = RandomizedSearchCV(pipe, param grid, cv=3, n_jobs = -1,
random_state=0, n_iter=16, verbose=2)

rand.fit(train.data, train.target)

see_time('RandomizedSearchCV tuning time:")

bp = rand.best params

print ()

print ('best parameters:")

print (bp, br)

rbs = rand.best score_

mnb = MultinomialNB(alpha=0.01)

tf = TfidfVectorizer(ngram range=(1, 1), use idf=False)

pipe = make pipeline(tf, mnb)

pipe.fit(train.data, train.target)

labels = pipe.predict(test.data)

f1 = f1 _score(test.target, labels, average='micro')

print ('f1_score', f1, br)

file = 'data/bp_news'

np.save(file, bp)

bp = np.load('data/bp _news.npy')

bp = bp.tolist()

print ('best parameters:"')

print (bp, br)

start = time.perf counter()

scores = get cross(pipe, train.data, train.target)

see_time('cross-validation:")

print (np.mean(scores))

Your output from executing Listing 6-5 should resemble the following:
MultinomialNB(alpha=1.0, class_prior=None, fit prior=True)

TfidfVectorizer(analyzer="word', binary=False,
decode_error='strict', dtype=<class 'numpy.float64'>,
encoding="utf-8', input='content', lowercase=True,
max_df=1.0, max_features=None, min_df=1,
ngram range=(1, 1), norm='12", preprocessor=None,

186

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

smooth _idf=True, stop words=None, strip accents=None,
sublinear tf=False, token pattern="(2u)\\b\\w\\w+\\b",
tokenizer=None, use_ idf=True, vocabulary=None)

f1_score 0.8440656565656567

dict _keys(['memory', 'steps', 'tfidfvectorizer', 'multinomialnb’,
'‘tfidfvectorizer analyzer', 'tfidfvectorizer binary',
"tfidfvectorizer decode error', 'tfidfvectorizer dtype',
"tfidfvectorizer encoding', 'tfidfvectorizer input’,
'tfidfvectorizer lowercase', 'tfidfvectorizer max df',
"tfidfvectorizer max_ features', 'tfidfvectorizer min df',
"tfidfvectorizer ngram range', 'tfidfvectorizer norm',
'tfidfvectorizer preprocessor', 'tfidfvectorizer smooth_idf',
"tfidfvectorizer stop words', 'tfidfvectorizer strip accents',
"tfidfvectorizer sublinear tf', 'tfidfvectorizer token pattern’,
'tfidfvectorizer tokenizer', 'tfidfvectorizer use idf',
‘tfidfvectorizer vocabulary', 'multinomialnb__alpha',
‘multinomialnb_ class prior', 'multinomialnb_fit prior'])

Fitting 3 folds for each of 16 candidates, totalling 48 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 25 tasks | elapsed: 7.6s

[Parallel(n jobs=-1)]: Done 48 out of 48 | elapsed: 12.4s finished
RandomizedSearchCV tuning time: 12 seconds and 747.04 milliseconds

best parameters:
{'tfidfvectorizer use idf': False, 'tfidfvectorizer ngram range': (1, 1),
‘multinomialnb_ fit prior': False, 'multinomialnb_alpha': 0.01}

f1 score 0.8611111111111112

best parameters:
{'tfidfvectorizer use idf': False, 'tfidfvectorizer ngram range': (1, 1),
‘multinomialnb_ fit prior': False, 'multinomialnb__alpha': 0.01}

cross-validation: 2 seconds and 750.36 milliseconds
0.8735201157292913

187

CHAPTER 6 SCIKIT-LEARN CLASSIFIER TUNING FROM COMPLEX TRAINING SETS

The code begins by importing requisite packages. Functions get_cross and
see_time are next. The main block begins by creating train and test sets from the
fetch_20newsgroups data set. Next, we create subcategories and split data into train-
test subsets. The code continues by creating a baseline pipeline model and displaying
f1_score for later comparison to the tuned model.

Possible hyperparameters of the pipelined model can be displayed with pipe.get_
params().keys(). This is an important step because we must include the exact names for
RandomizedSearchCV tuning.

Tip You can (and should) display hyperparameters of a pipelined model with
model_name.get_params().keys).

The parameter grid is created with ifidfvectorizer__ngram_range, tfidfvectorizer__
use_idf, multinomialnb__alpha, and multinomialnb__fit_prior.

Hyperparameter multinomialnb__alpha is exactly the same as alpha from
MultinomialNB. The only difference is that prefix multinomialnb is included to
inform RandomizedSearchCV the algorithm upon which it belongs. Hyperparameter
multinomialnb__fit_prior indicates whether or not to learn class prior probabilities.

Hyperparameters tfidfvectorizer__ngram_range and tfidfvectorizer __use_idfbelong to
algorithm TfidfVectorizer as indicated by their prefixes. ngram_range indicates the upper
and lower boundary of the range of n-values for different n-grams to be extracted from
the document. use_idf enables or disables inverse-document-frequency reweighting.

Tuning commences with RandomizedSearchCV based on the parameter grid values.
With tuning, we are able to increase performance to over 86%. However, cross-validation
indicates that we can squeeze out a bit more performance from our model.

188

	Chapter 6: Scikit-Learn Classifier Tuning from Complex Training Sets
	Tuning Data Sets
	Tuning fetch_1fw_people
	Tuning MNIST
	Tuning fetch_20newsgroups

