
165
© David Paper 2020
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,
https://doi.org/10.1007/978-1-4842-5373-1_6

CHAPTER 6

Scikit-Learn Classifier
Tuning from Complex
Training Sets
Now that we have practiced tuning low-dimensional (or simple) data, we are ready to

experiment tuning high-dimensional (or complex) data sets. Low-dimensional data

consists of a limited number of features, whereas high-dimensional data consists of a

very high number of features.

The term most commonly used to describe the dimensionality of a data set in

machine learning literature is feature space. Feature space refers to the collection

of features used to characterize the data set. That is, feature space refers to the

n-dimensions where your variables live (not including a target variable if it is present).

Consistent with tuning low-dimensional data, we follow a structured process when

tuning high-dimensional data:

 a) Always begin with default hyperparameters using baseline algorithms.

 b) Experiment with training and test sizes.

 c) Use dimensionality reduction when working with

high- dimensional data.

 d) Draw random samples when working with large data sets.

 e) Scale data (where appropriate) to potentially increase performance.

 f) Use GridSearchCV or RandomizedSearchCV to tune.

 g) Once tuned with baseline algorithms, experiment with complex

algorithms.

https://doi.org/10.1007/978-1-4842-5373-1_6

166

 Tuning Data Sets
We concentrate on three data sets: fetch_1fw_people, MNIST, and fetch_20newsgroups.

The fetch_1fw_people data set contains 1288 face images and seven targets. Each face

image is represented by a 50 × 37 matrix of pixels. The MNIST data set contains 70000

examples of handwritten digit images labeled from 0 to 9. Each digit is represented by a

28 × 28 matrix. The fetch_20newsgroups data set consists of approximately 18000 posts

on 20 topics. Data is split into a training and testing sets. The split is based on messages

posted before and after a specific date.

 Tuning fetch_1fw_people
Face recognition is a very complex topic in machine learning. But, Scikit-Learn provides

fetch_1fw_people that is a wonderful data set upon which to experiment and learn.

Through experience and experimentation, I identified two Scikit-Learn algorithms –

SGDClassifier and svm.SVC – that work relatively well with the data set.

The first code example shown in Listing 6-1 tunes data with SGDClassifier.

Listing 6-1. Tuning fetch_1fw_people with SGDClassifier

import numpy as np, humanfriendly as hf, warnings

import time

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split,\

 GridSearchCV, cross_val_score

from sklearn.linear_model import SGDClassifier

from sklearn.metrics import classification_report

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

167

if __name__ == "__main__":

 br = '\n'

 warnings.filterwarnings("ignore", category=DeprecationWarning)

 X = np.load('data/X_faces.npy')

 y = np.load('data/y_faces.npy')

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 pca = PCA(n_components=0.95, whiten=True, random_state=1)

 pca.fit(X_train)

 X_train_pca = pca.transform(X_train)

 X_test_pca = pca.transform(X_test)

 pca_name = pca.__class__.__name__

 print ('<<' + pca_name + '>>')

 print ('features (before PCA):', X.shape[1])

 print ('features (after PCA):', pca.n_components_, br)

 sgd = SGDClassifier(max_iter=1000, tol=.001, random_state=0)

 sgd.fit(X_train_pca, y_train)

 y_pred = sgd.predict(X_test_pca)

 cr = classification_report(y_test, y_pred)

 print (cr)

 sgd_name = sgd.__class__.__name__

 param_grid = { 'alpha': [1e-3, 1e-2, 1e-1, 1e0], 'max_iter': [1000],

'loss': ['log', 'perceptron'], 'penalty': ['l1'],

'tol': [.001]}

 grid = GridSearchCV(sgd, param_grid, cv=5)

 start = time.perf_counter()

 grid.fit(X_train_pca, y_train)

 see_time('training time:')

 print ()

 bp = grid.best_params_

 print ('best parameters:')

 print (bp, br)

 sgd = SGDClassifier(**bp, random_state=1)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

168

 sgd.fit(X_train_pca, y_train)

 y_pred = sgd.predict(X_test_pca)

 cr = classification_report(y_test, y_pred)

 print (cr)

 print ('cross-validation:')

 scores = get_cross(sgd, X_train_pca, y_train)

 print (np.mean(scores))

Go ahead and execute the code from Listing 6-1. Remember that you can find the

example from the book’s example download. You don’t need to type the example by

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 6-1 should resemble the following:

<<PCA>>

features (before PCA): 1850

features (after PCA): 135

 precision recall f1-score support

 0 0.89 0.57 0.70 28

 1 0.80 0.78 0.79 63

 2 0.83 0.62 0.71 24

 3 0.73 0.89 0.80 132

 4 0.55 0.55 0.55 20

 5 0.88 0.32 0.47 22

 6 0.67 0.73 0.70 33

 micro avg 0.74 0.74 0.74 322

 macro avg 0.76 0.64 0.67 322

weighted avg 0.76 0.74 0.73 322

training time: 7 seconds and 745.7 milliseconds

best parameters:

{'alpha': 0.001, 'loss': 'log', 'max_iter': 1000, 'penalty': 'l1', 'tol': 0.001}

 precision recall f1-score support

 0 0.91 0.71 0.80 28

 1 0.79 0.79 0.79 63

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

169

 2 0.71 0.71 0.71 24

 3 0.84 0.86 0.85 132

 4 0.48 0.75 0.59 20

 5 0.83 0.45 0.59 22

 6 0.72 0.79 0.75 33

 micro avg 0.78 0.78 0.78 322

 macro avg 0.76 0.72 0.73 322

weighted avg 0.79 0.78 0.78 322

cross-validation:

0.7808966616425951

The first code example begins by importing requisite packages. Function see_time

returns elapased time. The main block loads data into X and y, splits it into train-test

subsets, and conducts PCA to reduce feature space dimensionality.

PCA is critical when tuning high-dimensional data because it drastically reduces

computational expense with minimal information loss. The code then trains data with

SGDClassifier (to obtain a baseline performance measure) and displays results. Next,

tuning commences with GridSearchCV.

Tip pCa is a critical tuning tool because it reduces dimensionality on high-
dimensional data sets with minimal information loss, which results in drastically
lower tuning time (or less computational expense).

We tune alpha, max_iter, loss, penalty, and tol hyperparameters. Hyperparameter

alpha is the constant that multiplies the regularization term. Hyperparameter max_iter

sets the maximum number of passes (or epochs) over training data. An epoch is one

complete presentation of the data set to be learned by a machine.

Hyperparameter loss refers to the loss function used for the experiment. Machines

learn by means of a loss function, which is a method for evaluating how well an algorithm

models a given set of data. Hyperparameter penalty refers to the regularization term that

is used by the model. Hyperparameter tol is the stopping criteria.

The two most important hyperparameters are alpha and penalty as they are directly

related to the type and amount of regularization employed by the model.

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

170

The parameter grid is constructed next. Notice that alpha is the critical

hyperparameter adjusted in this experiment. Through trial-and-error experiments, I

determined that l1 penalty was the best option, so I hard-coded it into the grid to reduce

tuning time. Once tuned, SGDClassifier trains on the data with the best parameters

and displays results. Finally, cross-validation is conducted to ensure that the model is

performing at its best (which it is).

Tip it is much easier (and faster) to conduct tuning experiments by varying one
or two hyperparameters at a time and keeping the others constant by hard-coding
their values.

The second code example shown in Listing 6-2 tunes with svm.SVC. From

experience, I knew that svm.SVC outperformed SGDClassifier, but I wanted to

demonstrate at least some of the rigor inherent in the experimental process of tuning by

including the first code example in the chapter.

Listing 6-2. Tuning fetch_1fw_people with svm.SVC

import numpy as np, humanfriendly as hf

import time

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split,\

 GridSearchCV, cross_val_score

from sklearn.svm import SVC

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

171

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X_faces.npy')

 y = np.load('data/y_faces.npy')

 images = np.load('data/faces_images.npy')

 targets = np.load('data/faces_targets.npy')

 _, h, w = images.shape

 n_images, n_features, n_classes = X.shape[0], X.shape[1],\

 len(targets)

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 pca = PCA(n_components=0.95, whiten=True, random_state=0)

 pca.fit(X_train)

 components = pca.n_components_

 eigenfaces = pca.components_.reshape((components, h, w))

 X_train_pca = pca.transform(X_train)

 pca_name = pca.__class__.__name__

 print ('<<' + pca_name + '>>')

 print ('features (before PCA):', n_features)

 print ('features (after PCA):', components, br)

 X_i = np.array(eigenfaces[0].reshape(h, w))

 fig = plt.figure('eigenface')

 ax = fig.subplots()

 image = ax.imshow(X_i, cmap='bone')

 svm = SVC(random_state=0, gamma='scale')

 print (svm, br)

 svm.fit(X_train_pca, y_train)

 X_test_pca = pca.transform(X_test)

 y_pred = svm.predict(X_test_pca)

 cr = classification_report(y_test, y_pred)

 print (cr)

 svm_name = svm.__class__.__name__

 param_grid = { 'C': [1e2, 1e3, 5e3], 'gamma': [0.001, 0.005, 0.01, 0.1],

'kernel': ['rbf'], 'class_weight': ['balanced']}

 grid = GridSearchCV(svm, param_grid, cv=5)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

172

 start = time.perf_counter()

 grid.fit(X_train_pca, y_train)

 see_time('training time:')

 print ()

 bp = grid.best_params_

 print ('best parameters:')

 print (bp, br)

 svm = SVC(**bp)

 svm.fit(X_train_pca, y_train)

 y_pred = svm.predict(X_test_pca)

 print ()

 cr = classification_report(y_test, y_pred)

 print (cr, br)

 print ('cross-validation:')

 scores = get_cross(svm, X_train_pca, y_train)

 print (np.mean(scores), br)

 file = 'data/bp_face'

 np.save(file, bp)

 bp = np.load('data/bp_face.npy')

 bp = bp.tolist()

 print ('best parameters:')

 print (bp)

 plt.show()

Your output from executing Listing 6-2 should resemble the following:

<<PCA>>

features (before PCA): 1850

features (after PCA): 135

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma='scale',

 kernel='rbf', max_iter=-1, probability=False, random_state=0,

 shrinking=True, tol=0.001, verbose=False)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

173

 precision recall f1-score support

 0 1.00 0.43 0.60 28

 1 0.83 0.87 0.85 63

 2 0.94 0.62 0.75 24

 3 0.71 0.97 0.82 132

 4 1.00 0.70 0.82 20

 5 1.00 0.36 0.53 22

 6 0.96 0.73 0.83 33

 micro avg 0.80 0.80 0.80 322

 macro avg 0.92 0.67 0.74 322

weighted avg 0.84 0.80 0.78 322

training time: 18 seconds and 143.89 milliseconds

best parameters:

{'C': 100.0, 'class_weight': 'balanced', 'gamma': 0.005, 'kernel': 'rbf'}

 precision recall f1-score support

 0 1.00 0.64 0.78 28

 1 0.76 0.92 0.83 63

 2 0.91 0.88 0.89 24

 3 0.88 0.92 0.90 132

 4 0.74 0.85 0.79 20

 5 1.00 0.64 0.78 22

 6 0.90 0.85 0.88 33

 micro avg 0.86 0.86 0.86 322

 macro avg 0.89 0.81 0.84 322

weighted avg 0.87 0.86 0.86 322

cross-validation:

0.8393624737627647

best parameters:

{'C': 100.0, 'class_weight': 'balanced', 'gamma': 0.005, 'kernel': 'rbf'}

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

174

Listing 6-2 also displays Figure 6-1, which is the first eigenface created by PCA.

The code begins by importing requisite packages. Function see_time returns

elapsed time. The main block loads data into X and y, splits it into train-test subsets,

and conducts PCA for dimensionality reduction. Baseline performance for svm.SVC is

displayed for later comparison to the tuned svm.SVC score.

Tuning commences by constructing a grid with C, gamma, kernel, and class_weight

hyperparameters. Hyperparameter C is the penalty parameter of the error term, so

it is very important for tuning. Hyperparameter gamma is the kernel coefficient.

Hyperparameter kernel specifies the kernel type to be used by the algorithm (e.g., linear).

Hyperparameter class_weight is used to set the weight (or emphasis) of each class.

Through experimentation, I found that the rbf kernel and balanced class weight were the

best, so I hard-coded them into the grid.

Figure 6-1. First eigenface created by PCA

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

175

My process of discovery is as follows: First, I kept all other hyperparameters constant

and changed kernel to see the setting that yielded the best performance. Second, I kept

kernel constant and changed class weight.

As you can tell by the grid, we vary C and gamma to improve performance. Once

best parameters are determined, svm.SVC trains the data with them. Results are

displayed along with cross-validation measures. We have done well with svm.SVC since

we performed significantly better than the cross-validation score. We display the first

eigenface from dimensionality reduction for completeness. Finally, best parameters are

saved (and displayed).

 Tuning MNIST
MNIST is not a large data set with 70000 examples, but it has a high-dimensional

feature space consisting of 784 features. Such feature space complexity increases

computational expense, so we must take this into account when running experiments

with computationally expensive algorithms like svm.SVC.

The first code example in Listing 6-3 tunes MNIST with RandomForestClassifier

and ExtraTreesClassifier. These algorithms have numerous hyperparameters, but we

only adjust a few. I was able to greatly simplify tuning from my experience with these

algorithms. You can experiment further, but computational expense increases greatly as

you adjust additional hyperparameters.

Listing 6-3. Tuning with RandomForestClassifier and ExtraTreesClassifier

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split

from sklearn.model_selection import RandomizedSearchCV,\

 cross_val_score

from sklearn.ensemble import RandomForestClassifier,\

 ExtraTreesClassifier

def get_scores(model, xtrain, ytrain, xtest, ytest):

 ypred = model.predict(xtest)

 train = model.score(xtrain, ytrain)

 test = model.score(xtest, y_test)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

176

 name = model.__class__.__name__

 return (name, train, test)

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups)

def prep_data(data, target):

 d = [data[i] for i, _ in enumerate(data)]

 t = [target[i] for i, _ in enumerate(target)]

 return list(zip(d, t))

def create_sample(d, n, replace='yes'):

 if replace == 'yes': s = random.sample(d, n)

 else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

 Xs = [row[0] for i, row in enumerate(s)]

 ys = [row[1] for i, row in enumerate(s)]

 return np.array(Xs), np.array(ys)

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

 br = '\n'

 X_file = 'data/X_mnist'

 y_file = 'data/y_mnist'

 X = np.load('data/X_mnist.npy')

 y = np.load('data/y_mnist.npy')

 X = X.astype(np.float32)

 data = prep_data(X, y)

 sample_size = 7000

 Xs, ys = create_sample(data, sample_size)

 rf = RandomForestClassifier(random_state=0, n_estimators=100)

 print (rf, br)

 params = {'class_weight': ['balanced'], 'max_depth': [10, 30]}

 random = RandomizedSearchCV(rf, param_distributions = params,

 cv=3, n_iter=2, random_state=0)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

177

 start = time.perf_counter()

 random.fit(Xs, ys)

 see_time('RandomizedSearchCV total tuning time:')

 bp = random.best_params_

 print (bp, br)

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 rf = RandomForestClassifier(**bp, random_state=0, n_estimators=100)

 start = time.perf_counter()

 rf.fit(X_train, y_train)

 rf_scores = get_scores(rf, X_train, y_train, X_test, y_test)

 see_time('total time:')

 print (rf_scores[0] + ' (train, test):')

 print (rf_scores[1], rf_scores[2], br)

 et = ExtraTreesClassifier(random_state=0, n_estimators=200)

 print (et, br)

 params = {'class_weight': ['balanced'], 'max_depth': [10, 30]}

 random = RandomizedSearchCV(et, param_distributions = params,

 cv=3, n_iter=2, random_state=0)

 start = time.perf_counter()

 random.fit(Xs, ys)

 see_time('RandomizedSearchCV total tuning time:')

 bp = random.best_params_

 print (bp, br)

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=0)

 et = ExtraTreesClassifier(**bp, random_state=0, n_estimators=200)

 start = time.perf_counter()

 et.fit(X_train, y_train)

 et_scores = get_scores(et, X_train, y_train, X_test, y_test)

 see_time('total time:')

 print (et_scores[0] + ' (train, test):')

 print (et_scores[1], et_scores[2], br)

 print ('cross-validation (et):')

 start = time.perf_counter()

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

178

 scores = get_cross(rf, X, y)

 see_time('total time:')

 print (np.mean(scores), br)

 file = 'data/bp_mnist_et'

 np.save(file, bp)

 bp = np.load('data/bp_mnist_et.npy')

 bp = bp.tolist()

 print ('best parameters:')

 print (bp)

Your output from executing Listing 6-3 should resemble the following:

RandomForestClassifier(bootstrap=True, class_weight=None,

 criterion='gini', max_depth=None,

 max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf='deprecated', min_samples_split=2,

 min_weight_fraction_leaf='deprecated',

 n_estimators=100, n_jobs=None, oob_score=False,

 random_state=0, verbose=0, warm_start=False)

RandomizedSearchCV total tuning time: 13 seconds and 398.73 milliseconds

{'max_depth': 30, 'class_weight': 'balanced'}

total time: 32 seconds and 589.23 milliseconds

RandomForestClassifier (train, test):

0.9999809523809524 0.9701142857142857

ExtraTreesClassifier(bootstrap=False, class_weight=None,

 criterion='gini', max_depth=None, max_features='auto',

 max_leaf_nodes=None, min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf='deprecated', min_samples_split=2,

 min_weight_fraction_leaf='deprecated',

 n_estimators=200, n_jobs=None, oob_score=False,

 random_state=0, verbose=0, warm_start=False)

RandomizedSearchCV total tuning time: 23 seconds and 342.93 milliseconds

{'max_depth': 30, 'class_weight': 'balanced'}

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

179

total time: 1 minute, 8 seconds and 270.59 milliseconds

ExtraTreesClassifier (train, test):

1.0 0.9732

cross-validation (et):

total time: 5 minutes, 40 seconds and 788.07 milliseconds

0.9692001937716965

best parameters:

{'max_depth': 30, 'class_weight': 'balanced'}

The code begins by importing requisite packages. Function get_scores returns

accuracy scores and model name. Function get_cross returns cross-validation score.

Function prep_data prepares data for function create_sample. Function create sample

creates a random sample with or without replacement. Function see_time returns

elapsed time. The main block loads data, creates a random sample, and instantiates

algorithm RandomForestClassifier.

Tuning commences by constructing a grid with class_weight and max_depth

hyperparameters. Hyperparameter class_weight is used to set the weight (or emphasis)

of each class. Hyperparameter max_depth is used to establish the maximum depth of the

tree. Through many hours of experimentation, I found that these two parameters were

key to increasing performance. Tuning continues by leveraging RandomizedSearchCV

to obtain the best parameters. Notice that tuning time is only a bit over thirteen seconds

because the grid is very simple.

Now we can test RandomForestClassifier with best parameters. Notice that we

include hyperparameter n_estimators in the algorithm along with best parameters.

Hyperparameter n_estimators represents the number of trees in the forest and may be

the most important hyperparameter for improving performance.

We include n_estimators in the algorithm (instead of putting it in the grid) for two

reasons. First, it is such an important hyperparameter that we can save time by adjusting

it outside a tuning experiment. That is, we can adjust it very easily without adding

computational expense to the tuning experiment. However, increasing its value does add

computational expense to processing the algorithm. Second, it must be included with

this algorithm to avoid an annoying warning.

Tuning ExtraTreesClassifier follows the exact same logic with only one difference.

We increase n_estimators to 200 trees. Notice that this increase causes processing time to

more than double, but performance is better.

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

180

Finally, we run cross-validation (on ExtraTreesClassifier) and save the best

parameters from ExtraTreesClassifier for future processing. From the cross-validation

score, we know that our accuracy scores are solid. However, cross-validation consumes

over 5 minutes of processing time! You can comment out the cross-validation part of the

code if you don’t want to wait.

On a positive note, cross-validation only needs to be executed once on an algorithm.

I suggest that you run cross-validation before commencing a tuning experiment. You can

then run trial-and-error experiments until you meet or exceed the cross-validation score.

Tip Cross-validation need only be run once because it cannot be tuned.

Overall performance was good with accuracy over 97% with not too much overfitting.

But, don’t be lulled into a false sense of security by working through my tuning

experiments. Tuning consumes a lot of time and patience. I can only give you examples

and hints to help you become a more accomplished data scientist.

I highly recommend timing tuning experiments, especially ones that are

computationally expensive (such as tuning with numerous hyperparameters over

various ranges of values). Otherwise, it is very difficult to get a sense of how well your

experiment is proceeding. When I first began tuning machine learning algorithms, I

didn’t time experiments. My progress was slow because I became very frustrated when I

couldn’t differentiate tuning experiments by elapsed time.

Tip always time tuning experiments to gauge progress.

The next code example shown in Listing 6-4 tunes MNIST with svm.SVC.

Listing 6-4. Tuning MNIST with svm.SVC

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split

from sklearn.model_selection import RandomizedSearchCV

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

181

def get_scores(model, xtrain, ytrain, xtest, ytest):

 ypred = model.predict(xtest)

 train = model.score(xtrain, ytrain)

 test = model.score(xtest, y_test)

 name = model.__class__.__name__

 return (name, train, test)

def prep_data(data, target):

 d = [data[i] for i, _ in enumerate(data)]

 t = [target[i] for i, _ in enumerate(target)]

 return list(zip(d, t))

def create_sample(d, n, replace='yes'):

 if replace == 'yes': s = random.sample(d, n)

 else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

 Xs = [row[0] for i, row in enumerate(s)]

 ys = [row[1] for i, row in enumerate(s)]

 return np.array(Xs), np.array(ys)

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

 br = '\n'

 X_file = 'data/X_mnist'

 y_file = 'data/y_mnist'

 X = np.load('data/X_mnist.npy')

 y = np.load('data/y_mnist.npy')

 X = X.astype(np.float32)

 data = prep_data(X, y)

 sample_size = 7000

 Xs, ys = create_sample(data, sample_size)

 pca = PCA(n_components=0.95, random_state=0)

 Xs = StandardScaler().fit_transform(Xs)

 Xs_reduced = pca.fit_transform(Xs)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

182

 X_train, X_test, y_train, y_test = train_test_split(

 Xs_reduced, ys, random_state=0)

 svm = SVC(gamma='scale', random_state=0)

 print (svm, br)

 start = time.perf_counter()

 svm.fit(X_train, y_train)

 svm_scores = get_scores(svm, X_train, y_train, X_test, y_test)

 print (svm_scores[0] + ' (train, test):')

 print (svm_scores[1], svm_scores[2])

 see_time('time:')

 print ()

 param_grid = { 'C': [30, 35, 40], 'kernel': ['poly'],

'gamma': ['scale'], 'degree': [3], 'coef0': [0.1]}

 start = time.perf_counter()

 rand = RandomizedSearchCV(svm, param_grid, cv=3, n_jobs = -1,

 random_state=0, n_iter=3, verbose=2)

 rand.fit(X_train, y_train)

 see_time('RandomizedSearchCV total tuning time:')

 bp = rand.best_params_

 print (bp, br)

 svm = SVC(**bp, random_state=0)

 start = time.perf_counter()

 svm.fit(X_train, y_train)

 svm_scores = get_scores(svm, X_train, y_train, X_test, y_test)

 print (svm_scores[0] + ' (train, test):')

 print (svm_scores[1], svm_scores[2])

 see_time('total time:')

Your output from executing Listing 6-4 should resemble the following:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma='scale',

 kernel='rbf', max_iter=-1, probability=False, random_state=0,

 shrinking=True, tol=0.001, verbose=False)

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

183

SVC (train, test):

0.9845714285714285 0.9228571428571428

time: 13 seconds and 129.03 milliseconds

Fitting 3 folds for each of 3 candidates, totalling 9 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 4 out of 9 | elapsed: 14.0s

remaining: 17.6s

[Parallel(n_jobs=-1)]: Done 9 out of 9 | elapsed: 19.3s remaining:

0.0s

[Parallel(n_jobs=-1)]: Done 9 out of 9 | elapsed: 19.3s finished

RandomizedSearchCV total tuning time: 23 seconds and 824.72 milliseconds

{'kernel': 'poly', 'gamma': 'scale', 'degree': 3, 'coef0': 0.1, 'C': 30}

SVC (train, test):

1.0 0.9542857142857143

total time: 10 seconds and 810.06 milliseconds

Like the first MNIST tuning code example, we take a random sample. But, we also

use PCA for dimensionality reduction because of the immense computational expense

inherent with svm.SVC.

Tip for computationally expensive algorithms, we recommend drawing a random
sample and using pCa for dimensionality reduction to speed processing.

The code begins by importing requisite packages. We already talked about the

functions in the last example, so we don’t need to discuss it here.

The main block loads data and draws a random sample of 7000. PCA is used for

dimensionality reduction with 5% information loss. Next, we scale training data because

svm.SVC responds well to scaling. The code continues by splitting data into train-test

subsets. Next, svm.SVC is trained with default parameters to gauge performance.

The code continues using RandomizedSearchCV to tune. We create a grid with

hyperparameters C, kernel, gamma, degree, and coef0. We’ve already discussed

hyperparameters C, kernel, and gamma, so we don’t need to do it again here.

Hyperparameter degree represents the degree of the polynomial kernel function.

We include it because we chose poly for the kernel. Hyperparameter coef0 is used in

conjunction with degree for polynomial kernels.

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

184

Through experimentation, I found that hyperparameter C was the most important

one to adjust. So, the grid only varies the values for C.

The code continues by using the best parameters from the tuning experiment with

svm.SVC. We were able to increase test performance by quite a bit, but we still face

overfitting.

We didn’t include cross-validation for two reasons. First, svm.SVC didn’t perform

as well as ExtraTreeClassifier (so what’s the point?). Second, it takes an extraordinary

amount of time to run cross-validation on svm.SVC with MNIST.

 Tuning fetch_20newsgroups
Like face recognition, text exploration is a very complex topic in machine learning. But,

Scikit-Learn provides fetch_20newsgroups that is a wonderful data set upon which to

experiment and learn.

Tuning complexity is greatly exacerbated because a pipelined model (with

MultinomialNB and TfidfVectorizer) includes two sets of hyperparmeters (one from each

algorithm).

Tuning MultinomialNB by itself is very easy because one need only adjust the alpha

hyperparameter. Hyperparameter alpha allows us to adjust smoothing. However, tuning

TfidfVectorizer is much more difficult as it includes numerous hyperparameters.

We encounter an even higher level of difficulty when tuning a pipelined model with

RandomizedSearchCV because the names of the hyperparameters are different. Each

hyperparameter from a pipelined model must be prefixed with the algorithm name so

that RandomizedSearchCV can interpret correctly. This makes sense because algorithms

can share the same hyperparameters.

The code example shown in Listing 6-5 tunes a pipelined model.

Listing 6-5. Tuning fetch_20newsgroups with a pipelined model

import numpy as np, humanfriendly as hf

import time

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.metrics import f1_score

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

185

from sklearn.model_selection import RandomizedSearchCV,\

 cross_val_score

def get_cross(model, data, target, groups=10):

 return cross_val_score(model, data, target, cv=groups)

def see_time(note):

 end = time.perf_counter()

 elapsed = end - start

 print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

 br = '\n'

 train = fetch_20newsgroups(subset='train')

 test = fetch_20newsgroups(subset='test')

 categories = ['rec.autos', 'rec.motorcycles', 'sci.space', 'sci.med']

 train = fetch_20newsgroups(subset='train', categories=categories,

remove=('headers', 'footers', 'quotes'))

 test = fetch_20newsgroups(subset='test', categories=categories,

remove=('headers', 'footers', 'quotes'))

 targets = train.target_names

 mnb = MultinomialNB()

 tf = TfidfVectorizer()

 print (mnb, br)

 print (tf, br)

 pipe = make_pipeline(tf, mnb)

 pipe.fit(train.data, train.target)

 labels = pipe.predict(test.data)

 f1 = f1_score(test.target, labels, average='micro')

 print ('f1_score', f1, br)

 print (pipe.get_params().keys(), br)

 param_grid = {'tfidfvectorizer__ngram_range': [(1, 1), (1, 2)],

 'tfidfvectorizer__use_idf': [True, False],

 'multinomialnb__alpha': [1e-2, 1e-3],

 'multinomialnb__fit_prior': [True, False]}

 start = time.perf_counter()

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

186

 rand = RandomizedSearchCV(pipe, param_grid, cv=3, n_jobs = -1,

random_state=0, n_iter=16, verbose=2)

 rand.fit(train.data, train.target)

 see_time('RandomizedSearchCV tuning time:')

 bp = rand.best_params_

 print ()

 print ('best parameters:')

 print (bp, br)

 rbs = rand.best_score_

 mnb = MultinomialNB(alpha=0.01)

 tf = TfidfVectorizer(ngram_range=(1, 1), use_idf=False)

 pipe = make_pipeline(tf, mnb)

 pipe.fit(train.data, train.target)

 labels = pipe.predict(test.data)

 f1 = f1_score(test.target, labels, average='micro')

 print ('f1_score', f1, br)

 file = 'data/bp_news'

 np.save(file, bp)

 bp = np.load('data/bp_news.npy')

 bp = bp.tolist()

 print ('best parameters:')

 print (bp, br)

 start = time.perf_counter()

 scores = get_cross(pipe, train.data, train.target)

 see_time('cross-validation:')

 print (np.mean(scores))

Your output from executing Listing 6-5 should resemble the following:

MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

TfidfVectorizer(analyzer='word', binary=False,

 decode_error='strict', dtype=<class 'numpy.float64'>,

 encoding='utf-8', input='content', lowercase=True,

 max_df=1.0, max_features=None, min_df=1,

 ngram_range=(1, 1), norm='l2', preprocessor=None,

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

187

 smooth_idf=True, stop_words=None, strip_accents=None,

 sublinear_tf=False, token_pattern='(?u)\\b\\w\\w+\\b',

 tokenizer=None, use_idf=True, vocabulary=None)

f1_score 0.8440656565656567

dict_keys(['memory', 'steps', 'tfidfvectorizer', 'multinomialnb',

'tfidfvectorizer__analyzer', 'tfidfvectorizer__binary',

'tfidfvectorizer__decode_error', 'tfidfvectorizer__dtype',

'tfidfvectorizer__encoding', 'tfidfvectorizer__input',

'tfidfvectorizer__lowercase', 'tfidfvectorizer__max_df',

'tfidfvectorizer__max_features', 'tfidfvectorizer__min_df',

'tfidfvectorizer__ngram_range', 'tfidfvectorizer__norm',

'tfidfvectorizer__preprocessor', 'tfidfvectorizer__smooth_idf',

'tfidfvectorizer__stop_words', 'tfidfvectorizer__strip_accents',

'tfidfvectorizer__sublinear_tf', 'tfidfvectorizer__token_pattern',

'tfidfvectorizer__tokenizer', 'tfidfvectorizer__use_idf',

'tfidfvectorizer__vocabulary', 'multinomialnb__alpha',

'multinomialnb__class_prior', 'multinomialnb__fit_prior'])

Fitting 3 folds for each of 16 candidates, totalling 48 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 25 tasks | elapsed: 7.6s

[Parallel(n_jobs=-1)]: Done 48 out of 48 | elapsed: 12.4s finished

RandomizedSearchCV tuning time: 12 seconds and 747.04 milliseconds

best parameters:

{'tfidfvectorizer__use_idf': False, 'tfidfvectorizer__ngram_range': (1, 1),

'multinomialnb__fit_prior': False, 'multinomialnb__alpha': 0.01}

f1_score 0.8611111111111112

best parameters:

{'tfidfvectorizer__use_idf': False, 'tfidfvectorizer__ngram_range': (1, 1),

'multinomialnb__fit_prior': False, 'multinomialnb__alpha': 0.01}

cross-validation: 2 seconds and 750.36 milliseconds

0.8735201157292913

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

188

The code begins by importing requisite packages. Functions get_cross and

see_time are next. The main block begins by creating train and test sets from the

fetch_20newsgroups data set. Next, we create subcategories and split data into train-

test subsets. The code continues by creating a baseline pipeline model and displaying

f1_score for later comparison to the tuned model.

Possible hyperparameters of the pipelined model can be displayed with pipe.get_

params().keys(). This is an important step because we must include the exact names for

RandomizedSearchCV tuning.

Tip You can (and should) display hyperparameters of a pipelined model with
model_name.get_params().keys().

The parameter grid is created with tfidfvectorizer__ngram_range, tfidfvectorizer__

use_idf, multinomialnb__alpha, and multinomialnb__fit_prior.

Hyperparameter multinomialnb__alpha is exactly the same as alpha from

MultinomialNB. The only difference is that prefix multinomialnb is included to

inform RandomizedSearchCV the algorithm upon which it belongs. Hyperparameter

multinomialnb__fit_prior indicates whether or not to learn class prior probabilities.

Hyperparameters tfidfvectorizer__ngram_range and tfidfvectorizer__use_idf belong to

algorithm TfidfVectorizer as indicated by their prefixes. ngram_range indicates the upper

and lower boundary of the range of n-values for different n-grams to be extracted from

the document. use_idf enables or disables inverse-document-frequency reweighting.

Tuning commences with RandomizedSearchCV based on the parameter grid values.

With tuning, we are able to increase performance to over 86%. However, cross-validation

indicates that we can squeeze out a bit more performance from our model.

Chapter 6 SCikit-Learn CLaSSifier tuning from CompLex training SetS

	Chapter 6: Scikit-Learn Classifier Tuning from Complex Training Sets
	Tuning Data Sets
	Tuning fetch_1fw_people
	Tuning MNIST
	Tuning fetch_20newsgroups

