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CHAPTER 2

Classification from Simple 
Training Sets
Classification is the problem of predicting a discrete class label. Classes are also called 

targets, labels, or categories. Classification is applied by training a classifier algorithm on 

training data to predict how new data is classified.

A machine learning classification data set consists of features (X) and targets (y) 

where input variables X describe known discrete output variables y. Feature data is 

typically referred to as the feature set (or feature space). Classification is considered 

supervised learning because we know the targets that correspond to the feature set.

Whew! That’s a lot. So, let’s look at a simple example to help you understand how 

classification works. Suppose we have a data set consisting of four categories of fruit, 

namely, “apple,” “orange,” “lemon,” and “lime.” Each data element (or row) describes one 

piece of fruit (the target) by its mass, width, height, and color (the features). So, an apple 

can be distinguished from an orange by different values of mass, width, height, and color.

In the example, the class label is the type of fruit. Each type of fruit is discrete. That is, 

an apple is easily distinguished from the other types of fruits. The goal is to predict type 

of fruit based on its mass, width, height, and color.

To train a data set, we split data into train-test subsets. Train data features are 

referred to as X_train and targets as y_train. Test data features are referred to as X_test 

and targets as y_test. We then build a classification model to train on X_train and y_train 

data. Once the model is trained, we can validate and predict from X_test and y_test data 

because the model has not seen the test data. By holding test data out of the training 

process, it effectively acts as new data.

Tip Never train on test data to keep it pure.
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A typical train-test split is 70%/30%, but the ratio should be chosen based on the size 

of the data set. If the data set is small, a 30% test set may not contain all of the classes 

or enough information to properly validate. Also, the distribution of different classes in 

both train and test sets should be equal to the actual data set. The best way to ensure 

this distribution is to split train-test subsets randomly. Fortunately, Scikit-Learn’s train_

test_split package randomizes the split automatically, but its default train-test split is 

75%/25%.

I recommend some general steps when tackling machine learning problems. First, 

always split data for training and validations purposes. Second, try scaling data to 

potentially improve performance. Third, experiment with training and test sizes. Fourth, 

always begin with a baseline model, simple algorithm or an algorithm based on prior 

experience with a data set. And, start with an algorithm’s default hyperparameters. Fifth, 

experiment with more complex models since Scikit-Learn is efficient and allows easy 

model substitution. When working with big data sets, try drawing random samples to 

reduce computational expense. When working with high-dimensional data sets, try 

dimensionality reduction with PCA or LDA to reduce computational expense. Sixth, 

tune the best algorithms identified in earlier steps to get the best performance. Finally, 

experiment some more. Machine learning is very time intensive and rigorous, so be 

patient and don’t give up.

Tip Always begin training with an algorithm’s default hyperparameters.

 Simple Data Sets
We concentrate on four simple data sets to introduce machine learning classification: 

wine, digits, banking, and make_moons. We didn’t introduce make_moons in Chapter 1  

because it is contrived. That is, Scikit-Learn provides the foundation for make_moons 

and we construct it as we see fit.

 Classifying Wine Data
The code example shown in Listing 2-1 classifies wine data.
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Listing 2-1. Classify load_wine data

from sklearn.datasets import load_wine

from sklearn.preprocessing import StandardScaler

from sklearn.discriminant_analysis import\

     LinearDiscriminantAnalysis as LDA

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import train_test_split

from sklearn import metrics

from random import *

if __name__ == "__main__":

    br = '\n'

    data = load_wine()

    X = data.data

    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, test_size=0.30, random_state=0)

    lda = LDA().fit(X_train, y_train)

    print (lda, br)

    lda_name = lda.__class__.__name__

    y_pred = lda.predict(X_train)

    accuracy = metrics.accuracy_score(y_train, y_pred)

    accuracy = str(accuracy * 100) + '%'

    print (lda_name + ':')

    print ('train:', accuracy)

    y_pred_test = lda.predict(X_test)

    accuracy = metrics.accuracy_score(y_test, y_pred_test)

    accuracy = str(round(accuracy * 100, 2)) + '%'

    print ('test: ', accuracy, br)

    print('Confusion Matrix', lda_name)

    print(metrics.confusion_matrix(y_test, lda.predict(X_test)), br)

    std_scale = StandardScaler().fit(X_train)

    X_train = std_scale.transform(X_train)

    X_test = std_scale.transform(X_test)
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    sgd = SGDClassifier(max_iter=5, random_state=0)

    print (sgd, br)

    sgd.fit(X_train, y_train)

    sgd_name = sgd.__class__.__name__

    y_pred = sgd.predict(X_train)

    y_pred_test = sgd.predict(X_test)

    print (sgd_name + ':')

    print('train: {:.2%}'.format(metrics.accuracy_score\(y_train, y_pred)))

     print('test:  {:.2%}\n'.format(metrics.accuracy_score\(y_test, y_pred_

test)))

    print('Confusion Matrix', sgd_name)

    print(metrics.confusion_matrix(y_test, sgd.predict(X_test)), br)

    n, ls = 100, []

    for i, row in enumerate(range(n)):

        rs = randint(0, 100)

        sgd = SGDClassifier(max_iter=5, random_state=0)

        sgd.fit(X_train, y_train)

        y_pred = sgd.predict(X_test)

        accuracy = metrics.accuracy_score(y_test, y_pred)

        ls.append(accuracy)

    avg = sum(ls) / len(ls)

    print ('MCS (true test accuracy):', avg)

Go ahead and execute the code from Listing 2-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 2-1 should resemble the following:

LinearDiscriminantAnalysis( n_components=None, priors=None, shrinkage=None, 

solver='svd', store_covariance=False, tol=0.0001)

LinearDiscriminantAnalysis:

train: 100.0%

test:  98.15%
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Confusion Matrix LinearDiscriminantAnalysis

[[19  0  0]

 [ 1 21  0]

 [ 0  0 13]]

SGDClassifier(alpha=0.0001, average=False, class_weight=None,

       early_stopping=False, epsilon=0.1, eta0=0.0,

       fit_intercept=True, l1_ratio=0.15,

       learning_rate='optimal', loss='hinge', max_iter=5,

       n_iter=None, n_iter_no_change=5, n_jobs=None,

       penalty='l2', power_t=0.5, random_state=0, shuffle=True,

       tol=None, validation_fraction=0.1, verbose=0,

       warm_start=False)

SGDClassifier:

train: 100.00%

test:  100.00%

Confusion Matrix SGDClassifier

[[19  0  0]

 [ 0 22  0]

 [ 0  0 13]]

MCS (true test accuracy): 1.0

The code begins by importing metrics, random, and requisite packages. The 

main block begins by loading data and splitting it into train-test subsets. Notice that 

we adjusted the test size to 30%. Next, a LinearDiscriminantAnalysis (LDA) model 

is created and trained on the train set. You can fiddle with test size to see if your 

accuracy improves. But, don’t make it too big. Your model needs training data to better 

understand and learn.

Tip to see a model’s hyperparameters, just print the variable that holds the 
model after creation (e.g., print (lda)).
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LDA was introduced in Chapter 1 as an unsupervised learning model for 

dimensionality reduction. LDA is a very interesting model in that it performs 

unsupervised dimensionality reduction and supervised classification.

Data scaling doesn’t improve LDA performance, so the model trains on unscaled 

data. Accuracy scores are then computed on both train and test subsets. Performance 

accuracy is typically reported only on test data. However, it is useful to get train and test 

accuracy to see how well the model fits the data. In this case, the model fits the data very 

well because train accuracy and test accuracy are very similar. If train accuracy is well 

above test accuracy, the model is overfitting the data.

The code continues by displaying a confusion matrix. A confusion matrix describes 

the performance of a classification model (or classifier) on a set of test data for which 

the true values are known. The diagonal consisting of 19, 21, and 13 is where the model 

correctly classified. The model only misclassified one data element from the test set, 

which makes perfect sense with a test accuracy of over 98%. Next, we scale data because 

SGDClassifier is known to perform better with scaled data. The model is trained, and 

train and test accuracy are displayed along with the confusion matrix. With this model, 

classification was perfect.

The final part of the code is optional. It employs Monte Carlo experiments to 

validate performance of the SGDClassifier on the wine data. Monte Carlo experiments 

use randomness to solve deterministic (or supervised) problems. With a perfect test 

accuracy of 100%, we should be a bit skeptical. So, we ran 100 Monte Carlo experiments 

to obtain the actual test performance. As you can see, we get 100%!

Monte Carlo experiments are a fantastic method for deriving accuracy, but are 

incredibly computationally expensive. We were safe in this cased because the data 

set is small and simple. With big data sets with high-dimensional data, Monte Carlo 

experiments are not very practical.

LinearDiscriminantAnalysis and SGDClassifier were not chosen randomly. The 

algorithms were identified strategically as best performers through rigorous trial-and- 

error experimentation and research.

Tip each data set is different, so choose algorithms strategically through  
trial- and- error experimentation and of course research.
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 Classifying Digits
The first code example shown in Listing 2-2 loads the data and splits it into train- 

test subsets. Next, data is trained with classifiers GaussianNB, SGDClassifier, and 

svm. Algorithm svm is the best performer. The code then identifies and visualizes 

misclassifications. The code concludes by visualizing the first misclassification.

Listing 2-2. Classify load_digits data

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.linear_model import SGDClassifier

from sklearn.svm import SVC

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

import seaborn as sns

def find_misses(test, pred):

    return [i for i, row in enumerate(test) if row != pred[i]]

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    gnb = GaussianNB().fit(X_train, y_train)

    gnb_name = gnb.__class__.__name__

    y_pred = gnb.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print (gnb_name + ' \'test\' accuracy:', accuracy)

    scaler = StandardScaler()
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    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    sgd = SGDClassifier(random_state=0, max_iter=1000, tol=0.001)

    sgd_name = sgd.__class__.__name__

    sgd.fit(X_train_std, y_train)

    y_pred = sgd.predict(X_test_std)

    accuracy = accuracy_score(y_test, y_pred)

    print (sgd_name + ' \'test\' accuracy:', accuracy)

    svm = SVC(gamma='auto').fit(X_train_std, y_train)

    svm_name = svm.__class__.__name__

    y_pred = svm.predict(X_test_std)

    accuracy = accuracy_score(y_test, y_pred)

    print (svm_name + ' \'test\' accuracy:', accuracy, br)

    indx = find_misses(y_test, y_pred)

    print ('total misclassifications (' + str(svm_name) +\ '):', len(indx), br)

    print ('pred', 'actual')

    misses = [(y_pred[row], y_test[row], i)

              for i, row in enumerate(indx)]

    [print (row[0], '  ', row[1]) for row in misses]

    img_indx = misses[0][2]

    img_pred = misses[0][0]

    img_act = misses[0][1]

    text = str(img_pred)

    print(classification_report(y_test, y_pred))

    cm = confusion_matrix(y_test, y_pred)

    plt.figure(1)

    ax = plt.axes()

    sns.heatmap(cm.T, annot=True, fmt="d",

                cmap='gist_ncar_r', ax=ax)

    title = svm_name + ' confusion matrix'

    ax.set_title(title)

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    test_images = X_test.reshape(-1, 8, 8)

    plt.figure(2)
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    plt.title('1st misclassifcation')

    plt.imshow(test_images[img_indx], cmap='gray', interpolation='gaussian')

    plt.text(0, 0.05, text, color='r', bbox=dict(facecolor='white'))

    plt.show()

After executing code from Listing 2-2, your output should resemble the following:

GaussianNB 'test' accuracy: 0.8333333333333334

SGDClassifier 'test' accuracy: 0.9377777777777778

SVC 'test' accuracy: 0.9822222222222222

total misclassifications (SVC): 8

pred actual

7    2

1    8

7    9

9    5

4    7

4    3

2    8

4    1

              precision    recall  f1-score   support

           0       1.00      1.00      1.00        37

           1       0.98      0.98      0.98        43

           2       0.98      0.98      0.98        44

           3       1.00      0.98      0.99        45

           4       0.93      1.00      0.96        38

           5       1.00      0.98      0.99        48

           6       1.00      1.00      1.00        52

           7       0.96      0.98      0.97        48

           8       1.00      0.96      0.98        48

           9       0.98      0.98      0.98        47

   micro avg       0.98      0.98      0.98       450

   macro avg       0.98      0.98      0.98       450

weighted avg       0.98      0.98      0.98       450
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Listing 2-2 also displays Figures 2-1 and 2-2. Figure 2-1 displays the confusion matrix 

for the best performing algorithm, which is svm. You see SVC displayed because we 

are implementing the SVC implementation of the svm algorithm. SVC implementation 

utilizes C-support vector classification, which is represented as svm.SVC in Scikit- 

Learn. Figure 2-2 displays the first misclassification from the prediction set, which 

is digit 2 misclassified as digit 7. If we look at the confusion matrix, we can see this 

misclassification at the intersection of predicted value row for digit 7 and true value 

column for digit 2. So, the true value (digit 2) was incorrectly predicted (or misclassified) 

as digit 7.

Figure 2-1. Confusion matrix for the svm.SVC algorithm
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The code example begins by importing GaussianNB, confusion_matrix, and 

classification_report as well as other requisite packages. GaussianNB is an excellent 

baseline algorithm because it is fast, performs well with many classification problems, 

and has few hyperparameters to tune.

Tip if you have no experience with a classification data set, gaussianNB is a 
great place to start because it is simple, fast, easy to understand, and has few 
hyperparameters to tune.

Function find_misses returns a list of misclassified digits. The main block loads data, 

splits it into train-test subsets, and trains with GaussianNB, SGDClassifier, and svm.

GaussianNB is a probabilistic classifier based on applying Bayes’ theorem with 

strong independence assumptions between features. SGDClassifier is a classifier that 

implements a plain stochastic gradient descent learning routine that supports different 

loss functions and penalties for classification. Support vector machine (svm) builds a 

model that assigns new examples to one category or the other.

The code then displays test accuracy for all three models. Since svm.SVC scores 

the highest, we use it to identify misclassifications. Total misclassifications are then 

displayed. The code continues by displaying how each misclassification was rendered. 

So, the first misclassified digit was 2 and it was misclassified as 7.

Figure 2-2. First misclassification from the prediction set
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Next, the code creates a classification report (for the svm.SVC algorithm) that 

presents precision, recall, and f1_score scores for each digit. Accuracy is a great way to 

report a score, but f1_score, especially, is one to consider including because it is the most 

conservative.

The code concludes by displaying a svm.SVC confusion matrix and the first 

misclassification where 2 was misclassified as 7. The figure is also interesting because it 

presents the actual image of digit 2 with the way it was classified in red as digit 7.

Once a great performing algorithm is identified for a data set, I highly recommend 

creating a confusion matrix visualization. Not only it easy to understand how well an 

algorithm classified targets, it allows deeper scrutiny of where the algorithm didn’t 

perform as expected.

Tip Creating a confusion matrix visualization is an excellent way to get a sense 
of how an algorithm performs.

Although we obtained a high accuracy score from svm in the previous example, 

Scikit-Learn allows us to substitute classifiers very easily. So, the next code example goes 

a bit crazy by training wine data with six additional classifiers. Keep in mind that the data 

set is small and simple. With larger and more complex data, substituting classifiers can 

be computationally expensive.

The next code example shown in Listing 2-3 classifies wine data with several Scikit- 

Learn algorithms to identify promising ones for improved performance.

Listing 2-3. Classifying load_digits with various algorithms

import humanfriendly as hf

import time

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression,\

     LogisticRegressionCV

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier, GradientBoostingClassifier

from sklearn.preprocessing import StandardScaler
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from sklearn.metrics import accuracy_score

from sklearn.metrics import f1_score

def get_scores(model, Xtest, ytest, avg):

    y_pred = model.predict(Xtest)

    accuracy = accuracy_score(ytest, y_pred)

    f1 = f1_score(ytest, y_pred, average=avg)

    return (accuracy, f1)

def get_time(time):

    return hf.format_timespan(time, detailed=True)

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    lr = LogisticRegression(random_state=0, solver='lbfgs',

                            multi_class='auto', max_iter=4000)

    lr.fit(X_train_std, y_train)

    lr_name = lr.__class__.__name__

    acc, f1 = get_scores(lr, X_test_std, y_test, 'micro')

    print (lr_name + ' scaled \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    softmax = LogisticRegression(multi_class="multinomial",

                                 solver="lbfgs", max_iter=4000,

                                 C=10, random_state=0)

    softmax.fit(X_train_std, y_train)

    acc, f1 = get_scores(softmax, X_test_std, y_test, 'micro')

    print (lr_name + ' (softmax) scaled \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)
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    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X_train_std, y_train)

    rf_name = rf.__class__.__name__

    acc, f1 = get_scores(rf, X_test_std, y_test, 'micro')

    print (rf_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et.fit(X_train, y_train)

    et_name = et.__class__.__name__

    acc, f1 = get_scores(et, X_test, y_test, 'micro')

    print (et_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    gboost_clf = GradientBoostingClassifier(random_state=0)

    gb_name = gboost_clf.__class__.__name__

    gboost_clf.fit(X_train, y_train)

    acc, f1 = get_scores(gboost_clf, X_test, y_test, 'micro')

    print (gb_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    knn_clf = KNeighborsClassifier().fit(X_train, y_train)

    knn_name = knn_clf.__class__.__name__

    acc, f1 = get_scores(knn_clf, X_test, y_test, 'micro')

    print (knn_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    start = time.perf_counter()

    lr_cv = LogisticRegressionCV( random_state=0, cv=5, multi_class='auto', 

max_iter=4000)

    lr_cv_name = lr_cv.__class__.__name__

    lr_cv.fit(X, y)

    end = time.perf_counter()

    elapsed_ls = end - start

    timer = get_time(elapsed_ls)

    print (lr_cv_name + ' timer:', timer)

    acc, f1 = get_scores(lr_cv, X_test, y_test, 'micro')

    print (lr_cv_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1)
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After executing code from Listing 2-3, your output should resemble the following:

LogisticRegression scaled 'test':

accuracy: 0.9733333333333334 , f1_score: 0.9733333333333334

LogisticRegression (softmax) scaled 'test':

accuracy: 0.9644444444444444 , f1_score: 0.9644444444444444

RandomForestClassifier 'test':

accuracy: 0.9755555555555555 , f1_score: 0.9755555555555555

ExtraTreesClassifier 'test':

accuracy: 0.9822222222222222 , f1_score: 0.9822222222222222

GradientBoostingClassifier 'test':

accuracy: 0.9622222222222222 , f1_score: 0.9622222222222222

KNeighborsClassifier 'test':

accuracy: 0.98 , f1_score: 0.98

LogisticRegressionCV timer: 49 seconds and 38.45 milliseconds

LogisticRegressionCV 'test':

accuracy: 0.9822222222222222 , f1_score: 0.9822222222222222

The code begins by importing humanfriendly, time, LogisticRegression, 

LogisticRegressionCV, KNeighborsClassifier, GradientBoostingClassifier, and 

ExtraTreesClassifier as well as other requisite packages. Function get_scores returns 

accuracy and f1_score. Function get_time returns elapsed time. It facilitates finding how 

long it takes an algorithm to train a data set.

LogisticRegression is a classification algorithm traditionally limited to only two-class 

classification problems. Softmax (multinomial logistic regression) classification uses 

logistic regression for multiclass classification. RandomForestClassifier is an ensemble 

learning method that constructs a multitude of decision trees at training time and 

outputs the class that is the mode of the classes. ExtraTreesClassifier implements a meta 

estimator that fits a number of randomized decision trees (or extra trees) on various 

subsamples of the data set and uses averaging to improve predictive accuracy and 

control overfitting. GradientBoostingClassifier produces a prediction model in the form 

of weak prediction models (typically decision trees). KNeighborsClassifier implements 

the k-nearest neighbors’ vote where input consists of the k closest training examples in 
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the feature space. Feature space refers to the n-dimensions where your features exist. 

LogisticRegression uses a logistic function to model data. LogisticRegressionCV uses 

logistic regression to implement cross-validation estimation.

Cross-validation (CV) divides data into n number of subsets and iterates n times. 

Through each iteration, one of the n subsets is held out as the test set while the rest 

are used for training. Every iteration uses a different subset. So, accuracy and error 

are averaged over all n trials. The resultant accuracy is very good, but CV can be 

computationally expensive.

GradientBoostingClassifier and ExtraTreesClassifier are ensemble methods similar 

to RandomForestClassifier in that they fit (or train) a number of decision trees on the 

data and average results to improve predictive accuracy.

Tip You may have to install the humanfriendly package since it isn’t installed 
automatically by Anaconda. open a new Anaconda prompt and install as shown in 
listing 2-4.

Listing 2-4. Install a new package

pip install humanfriendly

The main block begins by loading and splitting data into train-test subsets. Each 

of the algorithms train the data and scores are displayed. Notice that over 46 seconds 

are consumed by LogisticRegressionCV. Although all of the algorithms performed 

admirably, we still couldn’t beat 98.22% accuracy.

 Classifying Bank Data
The first code example shown in Listing 2-5 loads bank data from a CSV file. Next, the 

education feature is engineered to make it more presentable.

Feature engineering is creating features (based on domain knowledge of the 

data) that make machine learning algorithms work. Although feature engineering is 

fundamental to machine learning application, it is both difficult and expensive.

The code then transforms categorical features to numerical to enable algorithm 

training. This transformation is typically referred to as encoding.
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Tip machine learning algorithms only operate on numerical data.

Finally, the five most important features are displayed along with data features and 

class counts. The feature set and targets are saved in NumPy files.

Listing 2-5. Engineering and wrangling bank data

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestClassifier

if __name__ == "__main__":

    br = '\n'

    f = 'data/bank.csv'

    data = pd.read_csv(f)

    print ('original "education" categories:')

    print (data.education.unique(), br)

    data['education'] = np.where(data['education'] == 'basic.9y',

                                 'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.6y',

                                 'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.4y',

                                 'basic', data['education'])

    data['education'] = np.where( data['education'] == 'high.school',  

'high_school', data.education)

    data['education'] = np.where( data['education'] == 'professional.course', 

'professional', data['education'])

    data['education'] = np.where( data['education'] == 'university.degree', 

'university', data['education'])

    print ('engineered "education" categories:')

    print (data.education.unique(), br)

    print ('target value counts:')

    print (data.y.value_counts(), br)

    data_X = data.loc[:, data.columns != 'y']

    cat_vars = [ 'job', 'marital', 'education', 'default', 'housing', 

'loan', 'contact', 'month', 'day_of_week', 'poutcome']

    data_new = pd.get_dummies(data_X, columns=cat_vars)
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    X = data_new.values

    y = data.y.values

    attributes = list(data_X)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X, y)

    rf_name = rf.__class__.__name__

    feature_importances = rf.feature_importances_

    importance = sorted(zip(feature_importances, attributes), reverse=True)

    n = 5

    print (n, 'most important features' + ' (' + rf_name + '):')

    [print (row) for i, row in enumerate(importance) if i < n]

    print ()

    features_file = 'data/features'

    np.save(features_file, attributes)

    features = np.load('data/features.npy')

    print ('features:')

    print (features, br)

    y_file = 'data/y'

    X_file = 'data/X'

    np.save(y_file, y)

    np.save(X_file, X)

    d = {}

    dvc = data.y.value_counts()

    d['no'], d['yes'] = dvc['no'], dvc['yes']

    dvc_file = 'data/value_counts'

    np.save(dvc_file, d)

    d = np.load('data/value_counts.npy')

    print ('class counts:', d)

After executing code from Listing 2-5, your output should resemble the following:

original "education" categories:

['basic.4y' 'high.school' 'basic.6y' 'basic.9y' 'professional.course'

 'unknown' 'university.degree' 'illiterate']

engineered "education" categories:

['basic' 'high_school' 'professional' 'unknown' 'university' 'illiterate']
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target value counts:

no     36548

yes     4640

Name: y, dtype: int64

5 most important features (RandomForestClassifier):

(0.28697175347986037, 'job')

(0.08761238456151103, 'month')

(0.0797624194551633, 'age')

(0.05492109153356108, 'day_of_week')

(0.04027613029914145, 'marital')

features:

['age' 'job' 'marital' 'education' 'default' 'housing' 'loan' 'contact' 

'month' 'day_of_week' 'duration' 'campaign' 'pdays' 'previous' 'poutcome' 

'emp.var.rate' 'cons.price.idx' 'cons.conf.idx' 'euribor3m' 'nr.employed']

class counts: {'no': 36548, 'yes': 4640}

The code example begins by importing requisite packages. The main block reads 

the data and displays the original values from the education feature. The code continues 

by feature engineering the feature and displays the new values. Notice how difficult it 

is to feature engineer just a single feature. Next, categorical features are encoded by the 

pandas get_dummies function to one hot encoding (OHE) vectors. Scikit-Learn expects 

feature data to be numeric, which is why we need to encode them.

OHE vectors are also called dummy variables. OHE is a good choice since it is one of 

the most common methods for dealing with categorical data in machine learning. OHE 

takes each category value and turns it into a binary vector of size i (where i is the number 

of values in category i) and makes all columns equal to zero except the category column. 

For example, marital status is either “married,” “single,” or “divorced” in our data set. If 

someone is married, OHE encodes a [1 0 0] vector. If single, OHE encodes a [0 1 0] vector. 

Finally, if divorced, OHE encodes a [0 0 1] vector. Simply, the 1 bit is hot to indicate the 

category that fits the data element.

The code then creates feature set X and target y from the transformed data set. 

Feature importance is displayed with the help of RandomForestClassifier. Next, X and 

y are saved in NumPy files. Finally, class counts are created, saved, and displayed. It is 

useful to view class counts to see the balance between targets.
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Notice that we have more no values than yes values. So, the data set is a bit 

imbalanced. This occurrence is commonly referred to as imbalanced class distribution, 

which is when the number of observations belonging to one class is significantly lower 

than those belonging to other classes. In our case, the balance between yes and no is 

about 12.6%. So, we don’t have a major problem. A rate (or event rate) less than 5% is a 

problem because machine learning algorithms can produce unsatisfactory classification 

when this happens.

Now that bank data is prepared, we can run experiments to identify high-performing 

classification algorithms as demonstrated in the next code example, which is shown 

in Listing 2-6. Keep in mind that many hours of experimentation led to the choice of 

algorithms for this example.

Listing 2-6. Classifying bank data

import numpy as np, pandas as pd, random

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

def get_scores(model, xtrain, ytrain, xtest, ytest, scoring):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    f1 = f1_score(ytest, ypred, average=scoring)

    return (train, test, f1)

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))
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def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X.npy')

    y = np.load('data/y.npy')

    print ('full data set shape for X and y:')

    print (X.shape, y.shape, br)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et.fit(X_train, y_train)

    et_scores = get_scores(et, X_train, y_train, X_test, y_test, 'micro')

    print (et.__class__.__name__ + '(train, test, f1_score):')

    print (et_scores, br)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X_train, y_train)

    rf_scores = get_scores(rf, X_train, y_train, X_test, y_test, 'micro')

    print (rf.__class__.__name__ + '(train, test, f1_score):')

    print (rf_scores, br)

    sample_size = 4000

    data = prep_data(X, y)

    Xs, ys = create_sample(data, sample_size, replace='no')

    print ('sample data set shape for X and y:')

    print (Xs.shape, ys.shape, br)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (Xs, ys, random_state=0)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    knn = KNeighborsClassifier().fit(X_train, y_train)
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    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test, 'micro')

    print (knn.__class__.__name__ + '(train, test, f1_score):')

    print (knn_scores, br)

    svm = SVC(random_state=0, gamma='scale')

    svm.fit(X_train_std, y_train)

    svm_scores = get_scores( svm, X_train_std, y_train, X_test_std, y_test, 

'micro')

    print (svm.__class__.__name__ + '(train, test, f1_score):')

    print (svm_scores, br)

    knn_name, svm_name = knn.__class__.__name__,\

                         svm.__class__.__name__

    y_pred_knn = knn.predict(X_test)

    cm_knn = confusion_matrix(y_test, y_pred_knn)

    cm_knn_T = cm_knn.T

    y_pred_svm = svm.predict(X_test_std)

    cm_svm = confusion_matrix(y_test, y_pred_svm)

    cm_svm_T = cm_svm.T

    plt.figure(knn.__class__.__name__)

    ax = plt.axes()

    sns.heatmap(cm_knn_T, annot=True, fmt="d", cmap='gist_ncar_r', cbar=False)

    ax.set_title(str(knn_name) + ' confusion matrix')

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    plt.figure(str(svm_name) + ' confusion matrix' )

    ax = plt.axes()

    sns.heatmap(cm_svm_T, annot=True, fmt="d", cmap='gist_ncar_r', cbar=False)

    ax.set_title(svm_name)

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    cnt_no, cnt_yes = 0, 0

    for i, row in enumerate(y_test):

        if row == 'no': cnt_no += 1

        elif row == 'yes': cnt_yes += 1

    cnt_no, cnt_yes = str(cnt_no), str(cnt_yes)

    print ('true =>', 'no: ' + cnt_no + ', yes: ' + cnt_yes, br)
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    p_no, p_nox = cm_knn_T[0][0], cm_knn_T[0][1]

    p_yes, p_yesx = cm_knn_T[1][1], cm_knn_T[1][0]

    print ('knn classification report:')

    print ('predict \'no\':', p_no, '(' +\str(p_nox) + ' misclassifed)')

    print ('predict \'yes\':', p_yes, '(' +\str(p_yesx) + ' misclassifed)', br)

    p_no, p_nox = cm_svm_T[0][0], cm_svm_T[0][1]

    p_yes, p_yesx = cm_svm_T[1][1], cm_svm_T[1][0]

    print ('svm classification report:')

    print ('predict \'no\':', p_no, '(' +\str(p_nox) + ' misclassifed)')

    print ('predict \'yes\':', p_yes, '(' +\str(p_yesx) + ' misclassifed)')

    plt.show()

After executing code from Listing 2-6, your output should resemble the following:

full data set shape for X and y:

(41188, 61) (41188,)

ExtraTreesClassifier(train, test, f1_score):

(1.0, 0.9009420219481402, 0.9009420219481401)

RandomForestClassifier(train, test, f1_score):

(0.9999676281117478, 0.9121103233951636, 0.9121103233951636)

sample data set shape for X and y:

(4000, 61) (4000,)

KNeighborsClassifier(train, test, f1_score):

(0.9323333333333333, 0.916, 0.916)

SVC(train, test, f1_score):

(0.9376666666666666, 0.92, 0.92)

true => no: 902, yes: 98

knn classification report:

predict 'no': 869 (51 misclassifed)

predict 'yes': 47 (33 misclassifed)

svm classification report:

predict 'no': 883 (61 misclassifed)

predict 'yes': 37 (19 misclassifed)
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Listing 2-6 also displays Figures 2-3 and 2-4. Figure 2-3 displays the confusion matrix 

for KNeighborsClassifier and Figure 2-4 displays the confusion matrix for svm.SVC.

Figure 2-3. KNeighborsClassifier confusion matrix

Figure 2-4. svm.SVC confusion matrix
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The code begins by importing requisite packages. Function get_scores returns train 

and test accuracy scores. Function prep_data converts NumPy matrices to lists of vectors 

for easier manipulation of data elements for sampling. Function create_sample builds a 

random sample and returns it as X and y NumPy matrices.

Scikit-Learn algorithms can only train data represented as NumPy. The main 

block loads X and y from NumPy files created in the previous example. X and y are 

split into train-test subsets. The code then trains data with ExtraTreesClassifier and 

RandomForestClassifier. A sample of 4000 is drawn so that we can efficiently train with 

KNeighborsClassifier and svm.SVC. These two algorithms are excellent classifiers, but 

are computationally expensive with large data sets.

Confusion matrices for KNeighborsClassifier and svm.SVC are then displayed 

because they fit the data better. That is, accuracy was better and there was less overfitting 

with these models. The code concludes by calculating the balance of target values for the 

data and misclassifications by KNeighborsClassifier and svm.

Of note is that KNeighborsClassifier and svm.SVC performed better than the other 

algorithms based on a sample less than 10% of the original data. This is actually very 

impressive!

The UCI Machine Learning Repository includes a randomly selected sample from 

the bank data with 10% of the examples. For completeness, the next example shown in 

Listing 2-7 tests accuracy on this sample.

Listing 2-7. Classifying UCI Irvine sample bank data

import pandas as pd, numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

def get_scores(model, xtrain, ytrain, xtest, ytest, scoring):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    f1 = f1_score(ytest, ypred, average=scoring)

    return (train, test, f1)
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if __name__ == "__main__":

    br = '\n'

    f = 'data/bank_sample.csv'

    data = pd.read_csv(f)

    print ('data shape:', data.shape, br)

    data['education'] =\

                      np.where(data['education'] == 'basic.9y',

                               'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.6y',

                                 'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.4y',

                                 'basic', data['education'])

    data['education'] = np.where( data['education'] == 'high.school',  

'high_school', data.education)

    data['education'] = np.where( data['education'] == 'professional.course', 

'professional', data['education'])

    data['education'] = np.where( data['education'] == 'university.degree', 

'university', data['education'])

    data_X = data.loc[:, data.columns != 'y']

    cat_vars = [ 'job', 'marital', 'education', 'default', 'housing', 

'loan', 'contact', 'month', 'day_of_week', 'poutcome']

    data_new = pd.get_dummies(data_X, columns=cat_vars)

    attributes = list(data_X)

    y = data.y.values

    X = data_new.values

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X_train, y_train)

    rf_name = rf.__class__.__name__

    rf_scores = get_scores(rf, X_train, y_train, X_test, y_test, 'micro')

    print (rf.__class__.__name__ + '(train, test, f1_score):')

    print (rf_scores, br)

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et.fit(X_train, y_train)
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    et_name = et.__class__.__name__

    et_scores = get_scores(et, X_train, y_train, X_test, y_test, 'micro')

    print (et.__class__.__name__ + '(train, test, f1_score):')

    print (et_scores, br)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test, 'micro')

    print (knn.__class__.__name__ + '(train, test, f1_score):')

    print (knn_scores, br)

    svm = SVC(random_state=0, gamma='scale')

    svm.fit(X_train_std, y_train)

    svm_scores = get_scores( svm, X_train_std, y_train, X_test_std, y_test, 

'micro')

    print (svm.__class__.__name__ + '(train, test, f1_score):')

    print (svm_scores)

After executing code from Listing 2-7, your output should resemble the following:

data shape: (4119, 21)

RandomForestClassifier(train, test, f1_score):

(1.0, 0.9058252427184466, 0.9058252427184466)

ExtraTreesClassifier(train, test, f1_score):

(1.0, 0.8990291262135922, 0.8990291262135922)

KNeighborsClassifier(train, test, f1_score):

(0.9323405632890903, 0.8883495145631068, 0.8883495145631068)

SVC(train, test, f1_score):

(0.9494982194885077, 0.9, 0.9)

The code begins by importing requisite packages. Function get_scores returns 

accuracy scores. The main block loads the sample, engineers the education feature, and 

encodes categorical features to OHE form. We had to feature engineer education for this 

example because we didn’t draw the sample from the full data set upon which we had 

already engineered the feature.
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The code continues by loading NumPy data into X and y, splitting it into train-test 

subsets, and training with RandomForestClassifier. Accuracy is then displayed. The 

remainder of the code trains with ExtraTreesClassifier, KNeighborsClassifier, and svm.

SVC and displays accuracy scores.

The sample we created performed at least as well as the one from the UCI repository. 

Our sample was even a bit smaller, which means that our sampling technique is more 

than adequate.

 Classifying make_moons
Scikit-Learn make_moons data is used primarily to visualize clustering and classification 

algorithms. However, it is also a great data set to get a sense of how classification 

algorithms attempt to separate binary target labels (or binary classification). 

Deployment of make_moons describes two interleaving circles with associated data 

points in 2D space.

Through visualization, we can easily see the separation between the two (or binary) 

labels. If human eyes can easily differentiate such separation in 2D space, classification 

algorithms should be able to do the same. We can test this with an example.

The first code example shown in Listing 2-8 creates a data set with 1000 elements, 

places feature data and its associated target into a Pandas DataFrame, and plots the 

result. Each feature element represents an x and y coordinate for plotting in 2D space. 

Each target represents the feature’s label, which is a binary value of either 0 or 1.

Listing 2-8. Plot make_moons

import matplotlib.pyplot as plt, pandas as pd

from sklearn import datasets

if __name__ == "__main__":

    br = '\n'

    X, y = datasets.make_moons( n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))

    colors = {0:'magenta', 1:'cyan'}

    fig, ax = plt.subplots()

    data = df.groupby('label')

    for key, label in data:

ChApter 2  ClAssifiCAtioN from simple trAiNiNg sets



65

        label.plot( ax=ax, kind='scatter', x='x', y='y', label=key, 

color=colors[key])

    plt.show()

After executing code from Listing 2-8, your output should resemble the following 

visualization shown in Figure 2-5:

The next code example shown in Listing 2-9 creates a make_moons data set 

of 1000 elements, splits it into train-test subsets, and trains with svm.SVC and 

KNeighborsClassifier. I intentionally picked these two algorithms because I knew they 

would do a great job of binary classification since they look at every data point.

Listing 2-9. Classify make_moons

from sklearn import datasets

from sklearn.neighbors import KNeighborsClassifier

from sklearn import svm

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Figure 2-5. Visualization of randomly generated make_moons data
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def get_scores(model, Xtrain, Xtest, ytrain, ytest):

    y_ptrain = model.predict(Xtrain)

    y_ptest = model.predict(Xtest)

    acc_train = accuracy_score(ytrain, y_ptrain)

    acc_test = accuracy_score(ytest, y_ptest)

    name = model.__class__.__name__

    return (name, acc_train, acc_test)

if __name__ == "__main__":

    br = '\n'

    X, y = datasets.make_moons( n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    X_train, X_test, y_train, y_test = train_test_split( X, y, random_

state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    accuracy = get_scores(knn, X_train, X_test, y_train, y_test)

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2], br)

    svm = svm.SVC(gamma='scale', random_state=0)

    svm.fit(X_train, y_train)

    accuracy = get_scores(svm, X_train, X_test, y_train, y_test)

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2])

After executing code from Listing 2-9, your output should resemble the following:

<<KNeighborsClassifier>>

train: 0.9666666666666667 test: 0.964

<<SVC>>

train: 0.9653333333333334 test: 0.96

The code example begins by importing requisite packages. Function get_scores 

returns model name and train and test accuracy scores. The main block begins by 

loading sample data and splitting it into train-test subsets. It continues by training data 

with KNeighborsClassifier and svm.SVC and reporting accuracy scores. As expected, 

both algorithms recognized the labels very accurately with essentially no overfitting.
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The final code example shown in Listing 2-10 extends our knowledge by splitting 

data into train, test, and validate subsets. KNeighborsClassifier is used to train and 

enable reporting.

Listing 2-10. Classify make_moons on train, validate, and test subsets

from sklearn.datasets import make_moons

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

def get_scores(model, Xtrain, ytrain, Xtest, ytest, Xvalid, yvalid):

    y_ptrain = model.predict(Xtrain)

    y_ptest = model.predict(Xtest)

    y_pvalid = model.predict(Xvalid)

    acc_train = accuracy_score(ytrain, y_ptrain)

    acc_test = accuracy_score(ytest, y_ptest)

    acc_valid = accuracy_score(yvalid, y_pvalid)

    name = model.__class__.__name__

    return (name, acc_train, acc_test, acc_valid)

if __name__ == "__main__":

    br = '\n'

    X_train, y_train = make_moons( n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    X_test, y_test = make_moons( n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    X_valid, y_valid = make_moons( n_samples=10000, shuffle=True, noise=0.2, 

random_state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    accuracy = get_scores( knn, X_train, y_train, X_test, y_test, X_valid, 

y_valid)

    print ('train test valid split (technique 1):')

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2], 'valid:', accuracy[3])

    print ('sample split:', X_train.shape, X_test.shape, X_valid.shape)

    print ()
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    X, y = make_moons(n_samples=1000, shuffle=True, noise=0.2, random_state=0)

    X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, 

random_state=0)

    X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, 

test_size=0.25, 

random_state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    accuracy = get_scores( knn, X_train, y_train, X_test, y_test, X_valid, 

y_valid)

    print ('train test valid split (technique 2):')

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2], 'valid:', accuracy[3])

    print ('sample split:', X_train.shape, X_test.shape, X_val.shape)

After executing code from Listing 2-10, your output should resemble the following:

train test valid split (technique 1):

<<KNeighborsClassifier>>

train: 0.969 test: 0.969 valid: 0.9688

sample split: (1000, 2) (1000, 2) (10000, 2)

train test valid split (technique 2):

<<KNeighborsClassifier>>

train: 0.9616666666666667 test: 0.975 valid: 0.9694

sample split: (600, 2) (200, 2) (200, 2)

The code begins importing requisite packages. Function get_scores is expanded 

to account for validation scores. The main block begins by creating three separate 

test, train, and validation subsets. With this technique, we create three data sets of 

the same size. Although this technique produces excellent results, it is much more 

computationally expensive as data sets become larger and larger. Actually, this 

technique is three times more expensive because three data sets are created and 

trained. KNeighborsClassifier is used to train, validate, and test. The second technique 

is very common because it splits one data set into train, validate, and test. Again, 

KNeighborsClassifier is used. Results from both techniques are comparable and 

excellent as expected.
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Tip test data should only be used once a model is completely trained from 
training and validation phases so it can provide an unbiased evaluation of a final 
model fit on training data.

In industry, machine learning engineers experiment with data problems by splitting 

it into train, test, and validate subsets prior to training. Training data is used to fit (or 

train) the model. The model sees and learns from training data.

Validation data is used to evaluate a model. Machine learning engineers use 

validation data to fine-tune the model’s hyperparameters. Test data provides an 

unbiased evaluation of a final model fit based on what was learned from fitting training 

data and tuning hyperparameters with validation data.
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