
37
© David Paper 2020
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,
https://doi.org/10.1007/978-1-4842-5373-1_2

CHAPTER 2

Classification from Simple
Training Sets
Classification is the problem of predicting a discrete class label. Classes are also called

targets, labels, or categories. Classification is applied by training a classifier algorithm on

training data to predict how new data is classified.

A machine learning classification data set consists of features (X) and targets (y)

where input variables X describe known discrete output variables y. Feature data is

typically referred to as the feature set (or feature space). Classification is considered

supervised learning because we know the targets that correspond to the feature set.

Whew! That’s a lot. So, let’s look at a simple example to help you understand how

classification works. Suppose we have a data set consisting of four categories of fruit,

namely, “apple,” “orange,” “lemon,” and “lime.” Each data element (or row) describes one

piece of fruit (the target) by its mass, width, height, and color (the features). So, an apple

can be distinguished from an orange by different values of mass, width, height, and color.

In the example, the class label is the type of fruit. Each type of fruit is discrete. That is,

an apple is easily distinguished from the other types of fruits. The goal is to predict type

of fruit based on its mass, width, height, and color.

To train a data set, we split data into train-test subsets. Train data features are

referred to as X_train and targets as y_train. Test data features are referred to as X_test

and targets as y_test. We then build a classification model to train on X_train and y_train

data. Once the model is trained, we can validate and predict from X_test and y_test data

because the model has not seen the test data. By holding test data out of the training

process, it effectively acts as new data.

Tip Never train on test data to keep it pure.

https://doi.org/10.1007/978-1-4842-5373-1_2

38

A typical train-test split is 70%/30%, but the ratio should be chosen based on the size

of the data set. If the data set is small, a 30% test set may not contain all of the classes

or enough information to properly validate. Also, the distribution of different classes in

both train and test sets should be equal to the actual data set. The best way to ensure

this distribution is to split train-test subsets randomly. Fortunately, Scikit-Learn’s train_

test_split package randomizes the split automatically, but its default train-test split is

75%/25%.

I recommend some general steps when tackling machine learning problems. First,

always split data for training and validations purposes. Second, try scaling data to

potentially improve performance. Third, experiment with training and test sizes. Fourth,

always begin with a baseline model, simple algorithm or an algorithm based on prior

experience with a data set. And, start with an algorithm’s default hyperparameters. Fifth,

experiment with more complex models since Scikit-Learn is efficient and allows easy

model substitution. When working with big data sets, try drawing random samples to

reduce computational expense. When working with high-dimensional data sets, try

dimensionality reduction with PCA or LDA to reduce computational expense. Sixth,

tune the best algorithms identified in earlier steps to get the best performance. Finally,

experiment some more. Machine learning is very time intensive and rigorous, so be

patient and don’t give up.

Tip Always begin training with an algorithm’s default hyperparameters.

 Simple Data Sets
We concentrate on four simple data sets to introduce machine learning classification:

wine, digits, banking, and make_moons. We didn’t introduce make_moons in Chapter 1

because it is contrived. That is, Scikit-Learn provides the foundation for make_moons

and we construct it as we see fit.

 Classifying Wine Data
The code example shown in Listing 2-1 classifies wine data.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

https://doi.org/10.1007/978-1-4842-5373-1_1

39

Listing 2-1. Classify load_wine data

from sklearn.datasets import load_wine

from sklearn.preprocessing import StandardScaler

from sklearn.discriminant_analysis import\

 LinearDiscriminantAnalysis as LDA

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import train_test_split

from sklearn import metrics

from random import *

if __name__ == "__main__":

 br = '\n'

 data = load_wine()

 X = data.data

 y = data.target

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.30, random_state=0)

 lda = LDA().fit(X_train, y_train)

 print (lda, br)

 lda_name = lda.__class__.__name__

 y_pred = lda.predict(X_train)

 accuracy = metrics.accuracy_score(y_train, y_pred)

 accuracy = str(accuracy * 100) + '%'

 print (lda_name + ':')

 print ('train:', accuracy)

 y_pred_test = lda.predict(X_test)

 accuracy = metrics.accuracy_score(y_test, y_pred_test)

 accuracy = str(round(accuracy * 100, 2)) + '%'

 print ('test: ', accuracy, br)

 print('Confusion Matrix', lda_name)

 print(metrics.confusion_matrix(y_test, lda.predict(X_test)), br)

 std_scale = StandardScaler().fit(X_train)

 X_train = std_scale.transform(X_train)

 X_test = std_scale.transform(X_test)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

40

 sgd = SGDClassifier(max_iter=5, random_state=0)

 print (sgd, br)

 sgd.fit(X_train, y_train)

 sgd_name = sgd.__class__.__name__

 y_pred = sgd.predict(X_train)

 y_pred_test = sgd.predict(X_test)

 print (sgd_name + ':')

 print('train: {:.2%}'.format(metrics.accuracy_score\(y_train, y_pred)))

 print('test: {:.2%}\n'.format(metrics.accuracy_score\(y_test, y_pred_

test)))

 print('Confusion Matrix', sgd_name)

 print(metrics.confusion_matrix(y_test, sgd.predict(X_test)), br)

 n, ls = 100, []

 for i, row in enumerate(range(n)):

 rs = randint(0, 100)

 sgd = SGDClassifier(max_iter=5, random_state=0)

 sgd.fit(X_train, y_train)

 y_pred = sgd.predict(X_test)

 accuracy = metrics.accuracy_score(y_test, y_pred)

 ls.append(accuracy)

 avg = sum(ls) / len(ls)

 print ('MCS (true test accuracy):', avg)

Go ahead and execute the code from Listing 2-1. Remember that you can find the

example from the book’s example download. You don’t need to type the example by

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 2-1 should resemble the following:

LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,

solver='svd', store_covariance=False, tol=0.0001)

LinearDiscriminantAnalysis:

train: 100.0%

test: 98.15%

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

41

Confusion Matrix LinearDiscriminantAnalysis

[[19 0 0]

 [1 21 0]

 [0 0 13]]

SGDClassifier(alpha=0.0001, average=False, class_weight=None,

 early_stopping=False, epsilon=0.1, eta0=0.0,

 fit_intercept=True, l1_ratio=0.15,

 learning_rate='optimal', loss='hinge', max_iter=5,

 n_iter=None, n_iter_no_change=5, n_jobs=None,

 penalty='l2', power_t=0.5, random_state=0, shuffle=True,

 tol=None, validation_fraction=0.1, verbose=0,

 warm_start=False)

SGDClassifier:

train: 100.00%

test: 100.00%

Confusion Matrix SGDClassifier

[[19 0 0]

 [0 22 0]

 [0 0 13]]

MCS (true test accuracy): 1.0

The code begins by importing metrics, random, and requisite packages. The

main block begins by loading data and splitting it into train-test subsets. Notice that

we adjusted the test size to 30%. Next, a LinearDiscriminantAnalysis (LDA) model

is created and trained on the train set. You can fiddle with test size to see if your

accuracy improves. But, don’t make it too big. Your model needs training data to better

understand and learn.

Tip to see a model’s hyperparameters, just print the variable that holds the
model after creation (e.g., print (lda)).

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

42

LDA was introduced in Chapter 1 as an unsupervised learning model for

dimensionality reduction. LDA is a very interesting model in that it performs

unsupervised dimensionality reduction and supervised classification.

Data scaling doesn’t improve LDA performance, so the model trains on unscaled

data. Accuracy scores are then computed on both train and test subsets. Performance

accuracy is typically reported only on test data. However, it is useful to get train and test

accuracy to see how well the model fits the data. In this case, the model fits the data very

well because train accuracy and test accuracy are very similar. If train accuracy is well

above test accuracy, the model is overfitting the data.

The code continues by displaying a confusion matrix. A confusion matrix describes

the performance of a classification model (or classifier) on a set of test data for which

the true values are known. The diagonal consisting of 19, 21, and 13 is where the model

correctly classified. The model only misclassified one data element from the test set,

which makes perfect sense with a test accuracy of over 98%. Next, we scale data because

SGDClassifier is known to perform better with scaled data. The model is trained, and

train and test accuracy are displayed along with the confusion matrix. With this model,

classification was perfect.

The final part of the code is optional. It employs Monte Carlo experiments to

validate performance of the SGDClassifier on the wine data. Monte Carlo experiments

use randomness to solve deterministic (or supervised) problems. With a perfect test

accuracy of 100%, we should be a bit skeptical. So, we ran 100 Monte Carlo experiments

to obtain the actual test performance. As you can see, we get 100%!

Monte Carlo experiments are a fantastic method for deriving accuracy, but are

incredibly computationally expensive. We were safe in this cased because the data

set is small and simple. With big data sets with high-dimensional data, Monte Carlo

experiments are not very practical.

LinearDiscriminantAnalysis and SGDClassifier were not chosen randomly. The

algorithms were identified strategically as best performers through rigorous trial-and-

error experimentation and research.

Tip each data set is different, so choose algorithms strategically through
trial- and- error experimentation and of course research.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

https://doi.org/10.1007/978-1-4842-5373-1_1

43

 Classifying Digits
The first code example shown in Listing 2-2 loads the data and splits it into train-

test subsets. Next, data is trained with classifiers GaussianNB, SGDClassifier, and

svm. Algorithm svm is the best performer. The code then identifies and visualizes

misclassifications. The code concludes by visualizing the first misclassification.

Listing 2-2. Classify load_digits data

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.linear_model import SGDClassifier

from sklearn.svm import SVC

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

import seaborn as sns

def find_misses(test, pred):

 return [i for i, row in enumerate(test) if row != pred[i]]

if __name__ == "__main__":

 br = '\n'

 digits = load_digits()

 X = digits.data

 y = digits.target

 X_train, X_test, y_train, y_test = train_test_split\

 (X, y, random_state=0)

 gnb = GaussianNB().fit(X_train, y_train)

 gnb_name = gnb.__class__.__name__

 y_pred = gnb.predict(X_test)

 accuracy = accuracy_score(y_test, y_pred)

 print (gnb_name + ' \'test\' accuracy:', accuracy)

 scaler = StandardScaler()

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

44

 X_train_std = scaler.fit_transform(X_train)

 X_test_std = scaler.fit_transform(X_test)

 sgd = SGDClassifier(random_state=0, max_iter=1000, tol=0.001)

 sgd_name = sgd.__class__.__name__

 sgd.fit(X_train_std, y_train)

 y_pred = sgd.predict(X_test_std)

 accuracy = accuracy_score(y_test, y_pred)

 print (sgd_name + ' \'test\' accuracy:', accuracy)

 svm = SVC(gamma='auto').fit(X_train_std, y_train)

 svm_name = svm.__class__.__name__

 y_pred = svm.predict(X_test_std)

 accuracy = accuracy_score(y_test, y_pred)

 print (svm_name + ' \'test\' accuracy:', accuracy, br)

 indx = find_misses(y_test, y_pred)

 print ('total misclassifications (' + str(svm_name) +\ '):', len(indx), br)

 print ('pred', 'actual')

 misses = [(y_pred[row], y_test[row], i)

 for i, row in enumerate(indx)]

 [print (row[0], ' ', row[1]) for row in misses]

 img_indx = misses[0][2]

 img_pred = misses[0][0]

 img_act = misses[0][1]

 text = str(img_pred)

 print(classification_report(y_test, y_pred))

 cm = confusion_matrix(y_test, y_pred)

 plt.figure(1)

 ax = plt.axes()

 sns.heatmap(cm.T, annot=True, fmt="d",

 cmap='gist_ncar_r', ax=ax)

 title = svm_name + ' confusion matrix'

 ax.set_title(title)

 plt.xlabel('true value')

 plt.ylabel('predicted value')

 test_images = X_test.reshape(-1, 8, 8)

 plt.figure(2)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

45

 plt.title('1st misclassifcation')

 plt.imshow(test_images[img_indx], cmap='gray', interpolation='gaussian')

 plt.text(0, 0.05, text, color='r', bbox=dict(facecolor='white'))

 plt.show()

After executing code from Listing 2-2, your output should resemble the following:

GaussianNB 'test' accuracy: 0.8333333333333334

SGDClassifier 'test' accuracy: 0.9377777777777778

SVC 'test' accuracy: 0.9822222222222222

total misclassifications (SVC): 8

pred actual

7 2

1 8

7 9

9 5

4 7

4 3

2 8

4 1

 precision recall f1-score support

 0 1.00 1.00 1.00 37

 1 0.98 0.98 0.98 43

 2 0.98 0.98 0.98 44

 3 1.00 0.98 0.99 45

 4 0.93 1.00 0.96 38

 5 1.00 0.98 0.99 48

 6 1.00 1.00 1.00 52

 7 0.96 0.98 0.97 48

 8 1.00 0.96 0.98 48

 9 0.98 0.98 0.98 47

 micro avg 0.98 0.98 0.98 450

 macro avg 0.98 0.98 0.98 450

weighted avg 0.98 0.98 0.98 450

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

46

Listing 2-2 also displays Figures 2-1 and 2-2. Figure 2-1 displays the confusion matrix

for the best performing algorithm, which is svm. You see SVC displayed because we

are implementing the SVC implementation of the svm algorithm. SVC implementation

utilizes C-support vector classification, which is represented as svm.SVC in Scikit-

Learn. Figure 2-2 displays the first misclassification from the prediction set, which

is digit 2 misclassified as digit 7. If we look at the confusion matrix, we can see this

misclassification at the intersection of predicted value row for digit 7 and true value

column for digit 2. So, the true value (digit 2) was incorrectly predicted (or misclassified)

as digit 7.

Figure 2-1. Confusion matrix for the svm.SVC algorithm

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

47

The code example begins by importing GaussianNB, confusion_matrix, and

classification_report as well as other requisite packages. GaussianNB is an excellent

baseline algorithm because it is fast, performs well with many classification problems,

and has few hyperparameters to tune.

Tip if you have no experience with a classification data set, gaussianNB is a
great place to start because it is simple, fast, easy to understand, and has few
hyperparameters to tune.

Function find_misses returns a list of misclassified digits. The main block loads data,

splits it into train-test subsets, and trains with GaussianNB, SGDClassifier, and svm.

GaussianNB is a probabilistic classifier based on applying Bayes’ theorem with

strong independence assumptions between features. SGDClassifier is a classifier that

implements a plain stochastic gradient descent learning routine that supports different

loss functions and penalties for classification. Support vector machine (svm) builds a

model that assigns new examples to one category or the other.

The code then displays test accuracy for all three models. Since svm.SVC scores

the highest, we use it to identify misclassifications. Total misclassifications are then

displayed. The code continues by displaying how each misclassification was rendered.

So, the first misclassified digit was 2 and it was misclassified as 7.

Figure 2-2. First misclassification from the prediction set

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

48

Next, the code creates a classification report (for the svm.SVC algorithm) that

presents precision, recall, and f1_score scores for each digit. Accuracy is a great way to

report a score, but f1_score, especially, is one to consider including because it is the most

conservative.

The code concludes by displaying a svm.SVC confusion matrix and the first

misclassification where 2 was misclassified as 7. The figure is also interesting because it

presents the actual image of digit 2 with the way it was classified in red as digit 7.

Once a great performing algorithm is identified for a data set, I highly recommend

creating a confusion matrix visualization. Not only it easy to understand how well an

algorithm classified targets, it allows deeper scrutiny of where the algorithm didn’t

perform as expected.

Tip Creating a confusion matrix visualization is an excellent way to get a sense
of how an algorithm performs.

Although we obtained a high accuracy score from svm in the previous example,

Scikit-Learn allows us to substitute classifiers very easily. So, the next code example goes

a bit crazy by training wine data with six additional classifiers. Keep in mind that the data

set is small and simple. With larger and more complex data, substituting classifiers can

be computationally expensive.

The next code example shown in Listing 2-3 classifies wine data with several Scikit-

Learn algorithms to identify promising ones for improved performance.

Listing 2-3. Classifying load_digits with various algorithms

import humanfriendly as hf

import time

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression,\

 LogisticRegressionCV

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier,\

 ExtraTreesClassifier, GradientBoostingClassifier

from sklearn.preprocessing import StandardScaler

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

49

from sklearn.metrics import accuracy_score

from sklearn.metrics import f1_score

def get_scores(model, Xtest, ytest, avg):

 y_pred = model.predict(Xtest)

 accuracy = accuracy_score(ytest, y_pred)

 f1 = f1_score(ytest, y_pred, average=avg)

 return (accuracy, f1)

def get_time(time):

 return hf.format_timespan(time, detailed=True)

if __name__ == "__main__":

 br = '\n'

 digits = load_digits()

 X = digits.data

 y = digits.target

 X_train, X_test, y_train, y_test = train_test_split\

 (X, y, random_state=0)

 scaler = StandardScaler()

 X_train_std = scaler.fit_transform(X_train)

 X_test_std = scaler.fit_transform(X_test)

 lr = LogisticRegression(random_state=0, solver='lbfgs',

 multi_class='auto', max_iter=4000)

 lr.fit(X_train_std, y_train)

 lr_name = lr.__class__.__name__

 acc, f1 = get_scores(lr, X_test_std, y_test, 'micro')

 print (lr_name + ' scaled \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1, br)

 softmax = LogisticRegression(multi_class="multinomial",

 solver="lbfgs", max_iter=4000,

 C=10, random_state=0)

 softmax.fit(X_train_std, y_train)

 acc, f1 = get_scores(softmax, X_test_std, y_test, 'micro')

 print (lr_name + ' (softmax) scaled \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1, br)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

50

 rf = RandomForestClassifier(random_state=0, n_estimators=100)

 rf.fit(X_train_std, y_train)

 rf_name = rf.__class__.__name__

 acc, f1 = get_scores(rf, X_test_std, y_test, 'micro')

 print (rf_name + ' \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1, br)

 et = ExtraTreesClassifier(random_state=0, n_estimators=100)

 et.fit(X_train, y_train)

 et_name = et.__class__.__name__

 acc, f1 = get_scores(et, X_test, y_test, 'micro')

 print (et_name + ' \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1, br)

 gboost_clf = GradientBoostingClassifier(random_state=0)

 gb_name = gboost_clf.__class__.__name__

 gboost_clf.fit(X_train, y_train)

 acc, f1 = get_scores(gboost_clf, X_test, y_test, 'micro')

 print (gb_name + ' \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1, br)

 knn_clf = KNeighborsClassifier().fit(X_train, y_train)

 knn_name = knn_clf.__class__.__name__

 acc, f1 = get_scores(knn_clf, X_test, y_test, 'micro')

 print (knn_name + ' \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1, br)

 start = time.perf_counter()

 lr_cv = LogisticRegressionCV(random_state=0, cv=5, multi_class='auto',

max_iter=4000)

 lr_cv_name = lr_cv.__class__.__name__

 lr_cv.fit(X, y)

 end = time.perf_counter()

 elapsed_ls = end - start

 timer = get_time(elapsed_ls)

 print (lr_cv_name + ' timer:', timer)

 acc, f1 = get_scores(lr_cv, X_test, y_test, 'micro')

 print (lr_cv_name + ' \'test\':')

 print ('accuracy:', acc, ', f1_score:', f1)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

51

After executing code from Listing 2-3, your output should resemble the following:

LogisticRegression scaled 'test':

accuracy: 0.9733333333333334 , f1_score: 0.9733333333333334

LogisticRegression (softmax) scaled 'test':

accuracy: 0.9644444444444444 , f1_score: 0.9644444444444444

RandomForestClassifier 'test':

accuracy: 0.9755555555555555 , f1_score: 0.9755555555555555

ExtraTreesClassifier 'test':

accuracy: 0.9822222222222222 , f1_score: 0.9822222222222222

GradientBoostingClassifier 'test':

accuracy: 0.9622222222222222 , f1_score: 0.9622222222222222

KNeighborsClassifier 'test':

accuracy: 0.98 , f1_score: 0.98

LogisticRegressionCV timer: 49 seconds and 38.45 milliseconds

LogisticRegressionCV 'test':

accuracy: 0.9822222222222222 , f1_score: 0.9822222222222222

The code begins by importing humanfriendly, time, LogisticRegression,

LogisticRegressionCV, KNeighborsClassifier, GradientBoostingClassifier, and

ExtraTreesClassifier as well as other requisite packages. Function get_scores returns

accuracy and f1_score. Function get_time returns elapsed time. It facilitates finding how

long it takes an algorithm to train a data set.

LogisticRegression is a classification algorithm traditionally limited to only two-class

classification problems. Softmax (multinomial logistic regression) classification uses

logistic regression for multiclass classification. RandomForestClassifier is an ensemble

learning method that constructs a multitude of decision trees at training time and

outputs the class that is the mode of the classes. ExtraTreesClassifier implements a meta

estimator that fits a number of randomized decision trees (or extra trees) on various

subsamples of the data set and uses averaging to improve predictive accuracy and

control overfitting. GradientBoostingClassifier produces a prediction model in the form

of weak prediction models (typically decision trees). KNeighborsClassifier implements

the k-nearest neighbors’ vote where input consists of the k closest training examples in

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

52

the feature space. Feature space refers to the n-dimensions where your features exist.

LogisticRegression uses a logistic function to model data. LogisticRegressionCV uses

logistic regression to implement cross-validation estimation.

Cross-validation (CV) divides data into n number of subsets and iterates n times.

Through each iteration, one of the n subsets is held out as the test set while the rest

are used for training. Every iteration uses a different subset. So, accuracy and error

are averaged over all n trials. The resultant accuracy is very good, but CV can be

computationally expensive.

GradientBoostingClassifier and ExtraTreesClassifier are ensemble methods similar

to RandomForestClassifier in that they fit (or train) a number of decision trees on the

data and average results to improve predictive accuracy.

Tip You may have to install the humanfriendly package since it isn’t installed
automatically by Anaconda. open a new Anaconda prompt and install as shown in
listing 2-4.

Listing 2-4. Install a new package

pip install humanfriendly

The main block begins by loading and splitting data into train-test subsets. Each

of the algorithms train the data and scores are displayed. Notice that over 46 seconds

are consumed by LogisticRegressionCV. Although all of the algorithms performed

admirably, we still couldn’t beat 98.22% accuracy.

 Classifying Bank Data
The first code example shown in Listing 2-5 loads bank data from a CSV file. Next, the

education feature is engineered to make it more presentable.

Feature engineering is creating features (based on domain knowledge of the

data) that make machine learning algorithms work. Although feature engineering is

fundamental to machine learning application, it is both difficult and expensive.

The code then transforms categorical features to numerical to enable algorithm

training. This transformation is typically referred to as encoding.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

53

Tip machine learning algorithms only operate on numerical data.

Finally, the five most important features are displayed along with data features and

class counts. The feature set and targets are saved in NumPy files.

Listing 2-5. Engineering and wrangling bank data

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestClassifier

if __name__ == "__main__":

 br = '\n'

 f = 'data/bank.csv'

 data = pd.read_csv(f)

 print ('original "education" categories:')

 print (data.education.unique(), br)

 data['education'] = np.where(data['education'] == 'basic.9y',

 'basic', data['education'])

 data['education'] = np.where(data['education'] == 'basic.6y',

 'basic', data['education'])

 data['education'] = np.where(data['education'] == 'basic.4y',

 'basic', data['education'])

 data['education'] = np.where(data['education'] == 'high.school',

'high_school', data.education)

 data['education'] = np.where(data['education'] == 'professional.course',

'professional', data['education'])

 data['education'] = np.where(data['education'] == 'university.degree',

'university', data['education'])

 print ('engineered "education" categories:')

 print (data.education.unique(), br)

 print ('target value counts:')

 print (data.y.value_counts(), br)

 data_X = data.loc[:, data.columns != 'y']

 cat_vars = ['job', 'marital', 'education', 'default', 'housing',

'loan', 'contact', 'month', 'day_of_week', 'poutcome']

 data_new = pd.get_dummies(data_X, columns=cat_vars)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

54

 X = data_new.values

 y = data.y.values

 attributes = list(data_X)

 rf = RandomForestClassifier(random_state=0, n_estimators=100)

 rf.fit(X, y)

 rf_name = rf.__class__.__name__

 feature_importances = rf.feature_importances_

 importance = sorted(zip(feature_importances, attributes), reverse=True)

 n = 5

 print (n, 'most important features' + ' (' + rf_name + '):')

 [print (row) for i, row in enumerate(importance) if i < n]

 print ()

 features_file = 'data/features'

 np.save(features_file, attributes)

 features = np.load('data/features.npy')

 print ('features:')

 print (features, br)

 y_file = 'data/y'

 X_file = 'data/X'

 np.save(y_file, y)

 np.save(X_file, X)

 d = {}

 dvc = data.y.value_counts()

 d['no'], d['yes'] = dvc['no'], dvc['yes']

 dvc_file = 'data/value_counts'

 np.save(dvc_file, d)

 d = np.load('data/value_counts.npy')

 print ('class counts:', d)

After executing code from Listing 2-5, your output should resemble the following:

original "education" categories:

['basic.4y' 'high.school' 'basic.6y' 'basic.9y' 'professional.course'

 'unknown' 'university.degree' 'illiterate']

engineered "education" categories:

['basic' 'high_school' 'professional' 'unknown' 'university' 'illiterate']

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

55

target value counts:

no 36548

yes 4640

Name: y, dtype: int64

5 most important features (RandomForestClassifier):

(0.28697175347986037, 'job')

(0.08761238456151103, 'month')

(0.0797624194551633, 'age')

(0.05492109153356108, 'day_of_week')

(0.04027613029914145, 'marital')

features:

['age' 'job' 'marital' 'education' 'default' 'housing' 'loan' 'contact'

'month' 'day_of_week' 'duration' 'campaign' 'pdays' 'previous' 'poutcome'

'emp.var.rate' 'cons.price.idx' 'cons.conf.idx' 'euribor3m' 'nr.employed']

class counts: {'no': 36548, 'yes': 4640}

The code example begins by importing requisite packages. The main block reads

the data and displays the original values from the education feature. The code continues

by feature engineering the feature and displays the new values. Notice how difficult it

is to feature engineer just a single feature. Next, categorical features are encoded by the

pandas get_dummies function to one hot encoding (OHE) vectors. Scikit-Learn expects

feature data to be numeric, which is why we need to encode them.

OHE vectors are also called dummy variables. OHE is a good choice since it is one of

the most common methods for dealing with categorical data in machine learning. OHE

takes each category value and turns it into a binary vector of size i (where i is the number

of values in category i) and makes all columns equal to zero except the category column.

For example, marital status is either “married,” “single,” or “divorced” in our data set. If

someone is married, OHE encodes a [1 0 0] vector. If single, OHE encodes a [0 1 0] vector.

Finally, if divorced, OHE encodes a [0 0 1] vector. Simply, the 1 bit is hot to indicate the

category that fits the data element.

The code then creates feature set X and target y from the transformed data set.

Feature importance is displayed with the help of RandomForestClassifier. Next, X and

y are saved in NumPy files. Finally, class counts are created, saved, and displayed. It is

useful to view class counts to see the balance between targets.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

56

Notice that we have more no values than yes values. So, the data set is a bit

imbalanced. This occurrence is commonly referred to as imbalanced class distribution,

which is when the number of observations belonging to one class is significantly lower

than those belonging to other classes. In our case, the balance between yes and no is

about 12.6%. So, we don’t have a major problem. A rate (or event rate) less than 5% is a

problem because machine learning algorithms can produce unsatisfactory classification

when this happens.

Now that bank data is prepared, we can run experiments to identify high-performing

classification algorithms as demonstrated in the next code example, which is shown

in Listing 2-6. Keep in mind that many hours of experimentation led to the choice of

algorithms for this example.

Listing 2-6. Classifying bank data

import numpy as np, pandas as pd, random

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier,\

 ExtraTreesClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

def get_scores(model, xtrain, ytrain, xtest, ytest, scoring):

 ypred = model.predict(xtest)

 train = model.score(xtrain, ytrain)

 test = model.score(xtest, y_test)

 f1 = f1_score(ytest, ypred, average=scoring)

 return (train, test, f1)

def prep_data(data, target):

 d = [data[i] for i, _ in enumerate(data)]

 t = [target[i] for i, _ in enumerate(target)]

 return list(zip(d, t))

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

57

def create_sample(d, n, replace='yes'):

 if replace == 'yes': s = random.sample(d, n)

 else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

 Xs = [row[0] for i, row in enumerate(s)]

 ys = [row[1] for i, row in enumerate(s)]

 return np.array(Xs), np.array(ys)

if __name__ == "__main__":

 br = '\n'

 X = np.load('data/X.npy')

 y = np.load('data/y.npy')

 print ('full data set shape for X and y:')

 print (X.shape, y.shape, br)

 X_train, X_test, y_train, y_test = train_test_split\

 (X, y, random_state=0)

 et = ExtraTreesClassifier(random_state=0, n_estimators=100)

 et.fit(X_train, y_train)

 et_scores = get_scores(et, X_train, y_train, X_test, y_test, 'micro')

 print (et.__class__.__name__ + '(train, test, f1_score):')

 print (et_scores, br)

 rf = RandomForestClassifier(random_state=0, n_estimators=100)

 rf.fit(X_train, y_train)

 rf_scores = get_scores(rf, X_train, y_train, X_test, y_test, 'micro')

 print (rf.__class__.__name__ + '(train, test, f1_score):')

 print (rf_scores, br)

 sample_size = 4000

 data = prep_data(X, y)

 Xs, ys = create_sample(data, sample_size, replace='no')

 print ('sample data set shape for X and y:')

 print (Xs.shape, ys.shape, br)

 X_train, X_test, y_train, y_test = train_test_split\

 (Xs, ys, random_state=0)

 scaler = StandardScaler().fit(X_train)

 X_train_std, X_test_std = scaler.transform(X_train),\

 scaler.transform(X_test)

 knn = KNeighborsClassifier().fit(X_train, y_train)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

58

 knn_scores = get_scores(knn, X_train, y_train, X_test, y_test, 'micro')

 print (knn.__class__.__name__ + '(train, test, f1_score):')

 print (knn_scores, br)

 svm = SVC(random_state=0, gamma='scale')

 svm.fit(X_train_std, y_train)

 svm_scores = get_scores(svm, X_train_std, y_train, X_test_std, y_test,

'micro')

 print (svm.__class__.__name__ + '(train, test, f1_score):')

 print (svm_scores, br)

 knn_name, svm_name = knn.__class__.__name__,\

 svm.__class__.__name__

 y_pred_knn = knn.predict(X_test)

 cm_knn = confusion_matrix(y_test, y_pred_knn)

 cm_knn_T = cm_knn.T

 y_pred_svm = svm.predict(X_test_std)

 cm_svm = confusion_matrix(y_test, y_pred_svm)

 cm_svm_T = cm_svm.T

 plt.figure(knn.__class__.__name__)

 ax = plt.axes()

 sns.heatmap(cm_knn_T, annot=True, fmt="d", cmap='gist_ncar_r', cbar=False)

 ax.set_title(str(knn_name) + ' confusion matrix')

 plt.xlabel('true label')

 plt.ylabel('predicted label')

 plt.figure(str(svm_name) + ' confusion matrix')

 ax = plt.axes()

 sns.heatmap(cm_svm_T, annot=True, fmt="d", cmap='gist_ncar_r', cbar=False)

 ax.set_title(svm_name)

 plt.xlabel('true label')

 plt.ylabel('predicted label')

 cnt_no, cnt_yes = 0, 0

 for i, row in enumerate(y_test):

 if row == 'no': cnt_no += 1

 elif row == 'yes': cnt_yes += 1

 cnt_no, cnt_yes = str(cnt_no), str(cnt_yes)

 print ('true =>', 'no: ' + cnt_no + ', yes: ' + cnt_yes, br)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

59

 p_no, p_nox = cm_knn_T[0][0], cm_knn_T[0][1]

 p_yes, p_yesx = cm_knn_T[1][1], cm_knn_T[1][0]

 print ('knn classification report:')

 print ('predict \'no\':', p_no, '(' +\str(p_nox) + ' misclassifed)')

 print ('predict \'yes\':', p_yes, '(' +\str(p_yesx) + ' misclassifed)', br)

 p_no, p_nox = cm_svm_T[0][0], cm_svm_T[0][1]

 p_yes, p_yesx = cm_svm_T[1][1], cm_svm_T[1][0]

 print ('svm classification report:')

 print ('predict \'no\':', p_no, '(' +\str(p_nox) + ' misclassifed)')

 print ('predict \'yes\':', p_yes, '(' +\str(p_yesx) + ' misclassifed)')

 plt.show()

After executing code from Listing 2-6, your output should resemble the following:

full data set shape for X and y:

(41188, 61) (41188,)

ExtraTreesClassifier(train, test, f1_score):

(1.0, 0.9009420219481402, 0.9009420219481401)

RandomForestClassifier(train, test, f1_score):

(0.9999676281117478, 0.9121103233951636, 0.9121103233951636)

sample data set shape for X and y:

(4000, 61) (4000,)

KNeighborsClassifier(train, test, f1_score):

(0.9323333333333333, 0.916, 0.916)

SVC(train, test, f1_score):

(0.9376666666666666, 0.92, 0.92)

true => no: 902, yes: 98

knn classification report:

predict 'no': 869 (51 misclassifed)

predict 'yes': 47 (33 misclassifed)

svm classification report:

predict 'no': 883 (61 misclassifed)

predict 'yes': 37 (19 misclassifed)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

60

Listing 2-6 also displays Figures 2-3 and 2-4. Figure 2-3 displays the confusion matrix

for KNeighborsClassifier and Figure 2-4 displays the confusion matrix for svm.SVC.

Figure 2-3. KNeighborsClassifier confusion matrix

Figure 2-4. svm.SVC confusion matrix

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

61

The code begins by importing requisite packages. Function get_scores returns train

and test accuracy scores. Function prep_data converts NumPy matrices to lists of vectors

for easier manipulation of data elements for sampling. Function create_sample builds a

random sample and returns it as X and y NumPy matrices.

Scikit-Learn algorithms can only train data represented as NumPy. The main

block loads X and y from NumPy files created in the previous example. X and y are

split into train-test subsets. The code then trains data with ExtraTreesClassifier and

RandomForestClassifier. A sample of 4000 is drawn so that we can efficiently train with

KNeighborsClassifier and svm.SVC. These two algorithms are excellent classifiers, but

are computationally expensive with large data sets.

Confusion matrices for KNeighborsClassifier and svm.SVC are then displayed

because they fit the data better. That is, accuracy was better and there was less overfitting

with these models. The code concludes by calculating the balance of target values for the

data and misclassifications by KNeighborsClassifier and svm.

Of note is that KNeighborsClassifier and svm.SVC performed better than the other

algorithms based on a sample less than 10% of the original data. This is actually very

impressive!

The UCI Machine Learning Repository includes a randomly selected sample from

the bank data with 10% of the examples. For completeness, the next example shown in

Listing 2-7 tests accuracy on this sample.

Listing 2-7. Classifying UCI Irvine sample bank data

import pandas as pd, numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier,\

 ExtraTreesClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

def get_scores(model, xtrain, ytrain, xtest, ytest, scoring):

 ypred = model.predict(xtest)

 train = model.score(xtrain, ytrain)

 test = model.score(xtest, y_test)

 f1 = f1_score(ytest, ypred, average=scoring)

 return (train, test, f1)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

62

if __name__ == "__main__":

 br = '\n'

 f = 'data/bank_sample.csv'

 data = pd.read_csv(f)

 print ('data shape:', data.shape, br)

 data['education'] =\

 np.where(data['education'] == 'basic.9y',

 'basic', data['education'])

 data['education'] = np.where(data['education'] == 'basic.6y',

 'basic', data['education'])

 data['education'] = np.where(data['education'] == 'basic.4y',

 'basic', data['education'])

 data['education'] = np.where(data['education'] == 'high.school',

'high_school', data.education)

 data['education'] = np.where(data['education'] == 'professional.course',

'professional', data['education'])

 data['education'] = np.where(data['education'] == 'university.degree',

'university', data['education'])

 data_X = data.loc[:, data.columns != 'y']

 cat_vars = ['job', 'marital', 'education', 'default', 'housing',

'loan', 'contact', 'month', 'day_of_week', 'poutcome']

 data_new = pd.get_dummies(data_X, columns=cat_vars)

 attributes = list(data_X)

 y = data.y.values

 X = data_new.values

 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

 rf = RandomForestClassifier(random_state=0, n_estimators=100)

 rf.fit(X_train, y_train)

 rf_name = rf.__class__.__name__

 rf_scores = get_scores(rf, X_train, y_train, X_test, y_test, 'micro')

 print (rf.__class__.__name__ + '(train, test, f1_score):')

 print (rf_scores, br)

 et = ExtraTreesClassifier(random_state=0, n_estimators=100)

 et.fit(X_train, y_train)

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

63

 et_name = et.__class__.__name__

 et_scores = get_scores(et, X_train, y_train, X_test, y_test, 'micro')

 print (et.__class__.__name__ + '(train, test, f1_score):')

 print (et_scores, br)

 scaler = StandardScaler().fit(X_train)

 X_train_std, X_test_std = scaler.transform(X_train),\

 scaler.transform(X_test)

 knn = KNeighborsClassifier().fit(X_train, y_train)

 knn_scores = get_scores(knn, X_train, y_train, X_test, y_test, 'micro')

 print (knn.__class__.__name__ + '(train, test, f1_score):')

 print (knn_scores, br)

 svm = SVC(random_state=0, gamma='scale')

 svm.fit(X_train_std, y_train)

 svm_scores = get_scores(svm, X_train_std, y_train, X_test_std, y_test,

'micro')

 print (svm.__class__.__name__ + '(train, test, f1_score):')

 print (svm_scores)

After executing code from Listing 2-7, your output should resemble the following:

data shape: (4119, 21)

RandomForestClassifier(train, test, f1_score):

(1.0, 0.9058252427184466, 0.9058252427184466)

ExtraTreesClassifier(train, test, f1_score):

(1.0, 0.8990291262135922, 0.8990291262135922)

KNeighborsClassifier(train, test, f1_score):

(0.9323405632890903, 0.8883495145631068, 0.8883495145631068)

SVC(train, test, f1_score):

(0.9494982194885077, 0.9, 0.9)

The code begins by importing requisite packages. Function get_scores returns

accuracy scores. The main block loads the sample, engineers the education feature, and

encodes categorical features to OHE form. We had to feature engineer education for this

example because we didn’t draw the sample from the full data set upon which we had

already engineered the feature.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

64

The code continues by loading NumPy data into X and y, splitting it into train-test

subsets, and training with RandomForestClassifier. Accuracy is then displayed. The

remainder of the code trains with ExtraTreesClassifier, KNeighborsClassifier, and svm.

SVC and displays accuracy scores.

The sample we created performed at least as well as the one from the UCI repository.

Our sample was even a bit smaller, which means that our sampling technique is more

than adequate.

 Classifying make_moons
Scikit-Learn make_moons data is used primarily to visualize clustering and classification

algorithms. However, it is also a great data set to get a sense of how classification

algorithms attempt to separate binary target labels (or binary classification).

Deployment of make_moons describes two interleaving circles with associated data

points in 2D space.

Through visualization, we can easily see the separation between the two (or binary)

labels. If human eyes can easily differentiate such separation in 2D space, classification

algorithms should be able to do the same. We can test this with an example.

The first code example shown in Listing 2-8 creates a data set with 1000 elements,

places feature data and its associated target into a Pandas DataFrame, and plots the

result. Each feature element represents an x and y coordinate for plotting in 2D space.

Each target represents the feature’s label, which is a binary value of either 0 or 1.

Listing 2-8. Plot make_moons

import matplotlib.pyplot as plt, pandas as pd

from sklearn import datasets

if __name__ == "__main__":

 br = '\n'

 X, y = datasets.make_moons(n_samples=1000, shuffle=True, noise=0.2,

random_state=0)

 df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))

 colors = {0:'magenta', 1:'cyan'}

 fig, ax = plt.subplots()

 data = df.groupby('label')

 for key, label in data:

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

65

 label.plot(ax=ax, kind='scatter', x='x', y='y', label=key,

color=colors[key])

 plt.show()

After executing code from Listing 2-8, your output should resemble the following

visualization shown in Figure 2-5:

The next code example shown in Listing 2-9 creates a make_moons data set

of 1000 elements, splits it into train-test subsets, and trains with svm.SVC and

KNeighborsClassifier. I intentionally picked these two algorithms because I knew they

would do a great job of binary classification since they look at every data point.

Listing 2-9. Classify make_moons

from sklearn import datasets

from sklearn.neighbors import KNeighborsClassifier

from sklearn import svm

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Figure 2-5. Visualization of randomly generated make_moons data

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

66

def get_scores(model, Xtrain, Xtest, ytrain, ytest):

 y_ptrain = model.predict(Xtrain)

 y_ptest = model.predict(Xtest)

 acc_train = accuracy_score(ytrain, y_ptrain)

 acc_test = accuracy_score(ytest, y_ptest)

 name = model.__class__.__name__

 return (name, acc_train, acc_test)

if __name__ == "__main__":

 br = '\n'

 X, y = datasets.make_moons(n_samples=1000, shuffle=True, noise=0.2,

random_state=0)

 X_train, X_test, y_train, y_test = train_test_split(X, y, random_

state=0)

 knn = KNeighborsClassifier().fit(X_train, y_train)

 accuracy = get_scores(knn, X_train, X_test, y_train, y_test)

 print ('<<' + str(accuracy[0]) + '>>')

 print ('train:', accuracy[1], 'test:', accuracy[2], br)

 svm = svm.SVC(gamma='scale', random_state=0)

 svm.fit(X_train, y_train)

 accuracy = get_scores(svm, X_train, X_test, y_train, y_test)

 print ('<<' + str(accuracy[0]) + '>>')

 print ('train:', accuracy[1], 'test:', accuracy[2])

After executing code from Listing 2-9, your output should resemble the following:

<<KNeighborsClassifier>>

train: 0.9666666666666667 test: 0.964

<<SVC>>

train: 0.9653333333333334 test: 0.96

The code example begins by importing requisite packages. Function get_scores

returns model name and train and test accuracy scores. The main block begins by

loading sample data and splitting it into train-test subsets. It continues by training data

with KNeighborsClassifier and svm.SVC and reporting accuracy scores. As expected,

both algorithms recognized the labels very accurately with essentially no overfitting.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

67

The final code example shown in Listing 2-10 extends our knowledge by splitting

data into train, test, and validate subsets. KNeighborsClassifier is used to train and

enable reporting.

Listing 2-10. Classify make_moons on train, validate, and test subsets

from sklearn.datasets import make_moons

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

def get_scores(model, Xtrain, ytrain, Xtest, ytest, Xvalid, yvalid):

 y_ptrain = model.predict(Xtrain)

 y_ptest = model.predict(Xtest)

 y_pvalid = model.predict(Xvalid)

 acc_train = accuracy_score(ytrain, y_ptrain)

 acc_test = accuracy_score(ytest, y_ptest)

 acc_valid = accuracy_score(yvalid, y_pvalid)

 name = model.__class__.__name__

 return (name, acc_train, acc_test, acc_valid)

if __name__ == "__main__":

 br = '\n'

 X_train, y_train = make_moons(n_samples=1000, shuffle=True, noise=0.2,

random_state=0)

 X_test, y_test = make_moons(n_samples=1000, shuffle=True, noise=0.2,

random_state=0)

 X_valid, y_valid = make_moons(n_samples=10000, shuffle=True, noise=0.2,

random_state=0)

 knn = KNeighborsClassifier().fit(X_train, y_train)

 accuracy = get_scores(knn, X_train, y_train, X_test, y_test, X_valid,

y_valid)

 print ('train test valid split (technique 1):')

 print ('<<' + str(accuracy[0]) + '>>')

 print ('train:', accuracy[1], 'test:', accuracy[2], 'valid:', accuracy[3])

 print ('sample split:', X_train.shape, X_test.shape, X_valid.shape)

 print ()

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

68

 X, y = make_moons(n_samples=1000, shuffle=True, noise=0.2, random_state=0)

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=0)

 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size=0.25,

random_state=0)

 knn = KNeighborsClassifier().fit(X_train, y_train)

 accuracy = get_scores(knn, X_train, y_train, X_test, y_test, X_valid,

y_valid)

 print ('train test valid split (technique 2):')

 print ('<<' + str(accuracy[0]) + '>>')

 print ('train:', accuracy[1], 'test:', accuracy[2], 'valid:', accuracy[3])

 print ('sample split:', X_train.shape, X_test.shape, X_val.shape)

After executing code from Listing 2-10, your output should resemble the following:

train test valid split (technique 1):

<<KNeighborsClassifier>>

train: 0.969 test: 0.969 valid: 0.9688

sample split: (1000, 2) (1000, 2) (10000, 2)

train test valid split (technique 2):

<<KNeighborsClassifier>>

train: 0.9616666666666667 test: 0.975 valid: 0.9694

sample split: (600, 2) (200, 2) (200, 2)

The code begins importing requisite packages. Function get_scores is expanded

to account for validation scores. The main block begins by creating three separate

test, train, and validation subsets. With this technique, we create three data sets of

the same size. Although this technique produces excellent results, it is much more

computationally expensive as data sets become larger and larger. Actually, this

technique is three times more expensive because three data sets are created and

trained. KNeighborsClassifier is used to train, validate, and test. The second technique

is very common because it splits one data set into train, validate, and test. Again,

KNeighborsClassifier is used. Results from both techniques are comparable and

excellent as expected.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

69

Tip test data should only be used once a model is completely trained from
training and validation phases so it can provide an unbiased evaluation of a final
model fit on training data.

In industry, machine learning engineers experiment with data problems by splitting

it into train, test, and validate subsets prior to training. Training data is used to fit (or

train) the model. The model sees and learns from training data.

Validation data is used to evaluate a model. Machine learning engineers use

validation data to fine-tune the model’s hyperparameters. Test data provides an

unbiased evaluation of a final model fit based on what was learned from fitting training

data and tuning hyperparameters with validation data.

ChApter 2 ClAssifiCAtioN from simple trAiNiNg sets

	Chapter 2: Classification from Simple Training Sets
	Simple Data Sets
	Classifying Wine Data
	Classifying Digits
	Classifying Bank Data
	Classifying make_moons

