
Hands-on 
Scikit-Learn for 
Machine Learning 
Applications

Data Science Fundamentals with Python
—
David Paper



Hands-on Scikit-Learn  
for Machine Learning 

Applications
Data Science Fundamentals  

with Python

David Paper



Hands-on Scikit-Learn for Machine Learning Applications: Data Science 
Fundamentals with Python

ISBN-13 (pbk): 978-1-4842-5372-4   		     ISBN-13 (electronic): 978-1-4842-5373-1
https://doi.org/10.1007/978-1-4842-5373-1

Copyright © 2020 by David Paper 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484253724. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

David Paper
Logan, UT, USA

https://doi.org/10.1007/978-1-4842-5373-1


For my mother, brothers, and friends.



v

Chapter 1: Introduction to Scikit-Learn��������������������������������������������������������������������� 1

Machine Learning�������������������������������������������������������������������������������������������������������������������������� 1

Anaconda��������������������������������������������������������������������������������������������������������������������������������������� 2

Scikit-Learn����������������������������������������������������������������������������������������������������������������������������������� 3

Data Sets���������������������������������������������������������������������������������������������������������������������������������������� 3

Characterize Data�������������������������������������������������������������������������������������������������������������������������� 4

Simple Classification Data�������������������������������������������������������������������������������������������������������� 4

Complex Classification Data��������������������������������������������������������������������������������������������������� 14

Regression Data��������������������������������������������������������������������������������������������������������������������� 21

Feature Scaling���������������������������������������������������������������������������������������������������������������������������� 27

Dimensionality Reduction������������������������������������������������������������������������������������������������������������ 30

Chapter 2: Classification from Simple Training Sets����������������������������������������������� 37

Simple Data Sets�������������������������������������������������������������������������������������������������������������������������� 38

Classifying Wine Data������������������������������������������������������������������������������������������������������������� 38

Classifying Digits�������������������������������������������������������������������������������������������������������������������� 43

Classifying Bank Data������������������������������������������������������������������������������������������������������������� 52

Classifying make_moons������������������������������������������������������������������������������������������������������� 64

Chapter 3: Classification from Complex Training Sets�������������������������������������������� 71

Complex Data Sets����������������������������������������������������������������������������������������������������������������������� 71

Classifying fetch_20newsgroups������������������������������������������������������������������������������������������� 71

Classifying MNIST������������������������������������������������������������������������������������������������������������������� 79

Classifying fetch_lfw_people������������������������������������������������������������������������������������������������� 95

Table of Contents

About the Author������������������������������������������������������������������������������������������������������ ix

About the Technical Reviewer���������������������������������������������������������������������������������� xi

Introduction������������������������������������������������������������������������������������������������������������ xiii



vi

Chapter 4: Predictive Modeling Through Regression�������������������������������������������� 105

Regression Data Sets����������������������������������������������������������������������������������������������������������������� 105

Regressing tips�������������������������������������������������������������������������������������������������������������������������� 106

Regressing boston��������������������������������������������������������������������������������������������������������������������� 117

Regressing wine data���������������������������������������������������������������������������������������������������������������� 122

Chapter 5: Scikit-Learn Classifier Tuning from Simple Training Sets�������������������� 137

Tuning Data Sets������������������������������������������������������������������������������������������������������������������������ 139

Tuning Iris Data�������������������������������������������������������������������������������������������������������������������������� 140

Tuning Digits Data���������������������������������������������������������������������������������������������������������������������� 144

Tuning Bank Data����������������������������������������������������������������������������������������������������������������������� 149

Tuning Wine Data����������������������������������������������������������������������������������������������������������������������� 157

Chapter 6: Scikit-Learn Classifier Tuning from Complex Training Sets����������������� 165

Tuning Data Sets������������������������������������������������������������������������������������������������������������������������ 166

Tuning fetch_1fw_people���������������������������������������������������������������������������������������������������������� 166

Tuning MNIST����������������������������������������������������������������������������������������������������������������������������� 175

Tuning fetch_20newsgroups������������������������������������������������������������������������������������������������������ 184

Chapter 7: Scikit-Learn Regression Tuning����������������������������������������������������������� 189

Tuning Data Sets������������������������������������������������������������������������������������������������������������������������ 190

Tuning tips��������������������������������������������������������������������������������������������������������������������������������� 190

Tuning boston����������������������������������������������������������������������������������������������������������������������������� 199

Tuning wine�������������������������������������������������������������������������������������������������������������������������������� 208

Chapter 8: Putting It All Together�������������������������������������������������������������������������� 215

The Journey������������������������������������������������������������������������������������������������������������������������������� 215

Value and Cost��������������������������������������������������������������������������������������������������������������������������� 216

MNIST Value and Cost���������������������������������������������������������������������������������������������������������������� 218

Explaining MNIST to Money People�������������������������������������������������������������������������������������� 222

Explaining Output to Money People�������������������������������������������������������������������������������������� 222

Explaining the Confusion Matrix to Money People��������������������������������������������������������������� 223

Table of Contents



vii

Explaining Visualizations to Money People��������������������������������������������������������������������������� 224

Value and Cost���������������������������������������������������������������������������������������������������������������������� 224

fetch_lfw_people Value and Cost���������������������������������������������������������������������������������������������� 225

Explaining fetch_lfw_people to Money People�������������������������������������������������������������������� 229

Explaining Output to Money People�������������������������������������������������������������������������������������� 229

Explaining Visualizations to Money People��������������������������������������������������������������������������� 230

Value and Cost���������������������������������������������������������������������������������������������������������������������� 230

fetch_20newsgroups Value and Cost����������������������������������������������������������������������������������������� 231

Explaining fetch_20newsgroups to Money People��������������������������������������������������������������� 235

Explaining Output to Money People�������������������������������������������������������������������������������������� 235

Explaining the Confusion Matrix to Money People��������������������������������������������������������������� 235

Value and Cost���������������������������������������������������������������������������������������������������������������������� 236

Index���������������������������������������������������������������������������������������������������������������������� 239

Table of Contents



ix

About the Author

Dr. David Paper is a professor at Utah State University in 

the Management Information Systems department. He is 

the author of two books – Web Programming for Business: 

PHP Object-Oriented Programming with Oracle and Data 

Science Fundamentals for Python and MongoDB. He has over 

70 publications in refereed journals such as Organizational 

Research Methods, Communications of the ACM, Information 

& Management, Information Resource Management 

Journal, Communications of the AIS, Journal of Information 

Technology Case and Application Research, and Long Range 

Planning. He has also served on several editorial boards 

in various capacities, including associate editor. Besides 

growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, 

Inc., and the Phoenix Small Business Administration. He has performed IS consulting 

work for IBM, AT&T, Octel, Utah Department of Transportation, and the Space 

Dynamics Laboratory. Dr. Paper’s teaching and research interests include data science, 

machine learning, process reengineering, object-oriented programming, and change 

management.  



xi

About the Technical Reviewer

Jojo Moolayil is an artificial intelligence, deep learning, 

machine learning, and decision science professional and 

published author of three books: Smarter Decisions –  

The Intersection of Internet of Things and Decision Science, 

Learn Keras for Deep Neural Networks, and Applied 

Supervised Learning with R. He has worked with industry 

leaders on several high-impact and critical data science 

and machine learning projects across multiple verticals. 

He is currently associated with Amazon Web Services as a 

research scientist – AI. 

Jojo was born and raised in Pune, India, and graduated 

from the University of Pune with a major in Information 

Technology Engineering. He started his career with Mu 

Sigma Inc., the world’s largest pure-play analytics provider, and worked with the leaders 

of many Fortune 50 clients. He later worked with Flutura – an IoT analytics start-up – and 

GE, the pioneer and leader in Industrial AI.

He currently resides in Vancouver, BC. Apart from authoring books on deep learning, 

decision science, and IoT, Jojo has also been a technical reviewer for various books on 

the same subject with Apress and Packt publications. He is an active Data Science tutor 

and maintains a blog at http://blog.jojomoolayil.com.

•	 Jojo’s personal web site: www.jojomoolayil.com

•	 Business e-mail: mail@jojomoolayil.com 

http://blog.jojomoolayil.com/
http://www.jojomoolayil.com/


xiii

Introduction

We apply the popular Scikit-Learn library to demonstrate machine learning exercises 

with Python code to help readers solve machine learning problems. The book is 

designed for those with intermediate programming skills and some experience with 

machine learning algorithms. We focus on application of the algorithms rather than 

theory. So, readers should read about the theory online or from other sources if 

appropriate. The reader should also be willing to spend a lot of time working through 

the code examples because they are pretty deep. But, the effort will pay off because the 

examples are intended to help the reader tackle complex problems.

The book is organized into eight chapters. Chapter 1 introduces the topic of 

machine learning, Anaconda, and Scikit-Learn. Chapters 2 and 3 introduce algorithmic 

classification. Chapter 2 classifies simple data sets and Chapter 3 classifies complex 

ones. Chapter 4 introduces predictive modeling with regression. Chapters 5 and 6 

introduce classification tuning. Chapter 5 tunes simple data sets and Chapter 6 tunes 

complex ones. Chapter 7 introduces predictive modeling regression tuning. Chapter 8 

puts all knowledge together to review and present findings in a holistic manner.

Download this book’s example data by clicking the Download source code button 

found on the book’s catalog page at https://www.apress.com/us/book/9781484253724​.

https://www.apress.com/us/book/9781484253724


1
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_1

CHAPTER 1

Introduction to  
Scikit-Learn
Scikit-Learn is a Python library that provides simple and efficient tools for implementing 

supervised and unsupervised machine learning algorithms. The library is accessible 

to everyone because it is open source and commercially usable. It is built on NumPY, 

SciPy, and matplolib libraries, which means it is reliable, robust, and core to the 

Python language.

Scikit-Learn is focused on data modeling rather than data loading, cleansing, 

munging or manipulating. It is also very easy to use and relatively clean of 

programming bugs.

�Machine Learning
Machine learning is getting computers to program themselves. We use algorithms to 

make this happen. An algorithm is a set of rules used to calculate or problem solve 

with a computer.

Machine learning advocates create, study, and apply algorithms to improve 

performance on data-driven tasks. They use tools and technology to answer questions 

about data by training a machine how to learn.



2

The goal is to build robust algorithms that can manipulate input data to predict 

an output while continually updating outputs as new data becomes available. Any 

information or data sent to a computer is considered input. Data produced by a 

computer is considered output.

In the machine learning community, input data is referred to as the feature set and 

output data is referred to as the target. The feature set is also referred to as the feature 

space. Sample data is typically referred to as training data. Once the algorithm is trained 

with sample data, it can make predictions on new data. New data is typically referred to 

as test data.

Machine learning is divided into two main areas: supervised and unsupervised 

learning. Since machine learning typically focuses on prediction based on known 

properties learned from training data, our focus is on supervised learning.

Supervised learning is when the data set contains both inputs (or the feature set) 

and desired outputs (or targets). That is, we know the properties of the data. The goal 

is to make predictions. This ability to supervise algorithm training is a big part of why 

machine learning has become so popular.

To classify or regress new data, we must train on data with known outcomes. We 

classify data by organizing it into relevant categories. We regress data by finding the 

relationship between feature set data and target data.

With unsupervised learning, the data set contains only inputs but no desired outputs 

(or targets). The goal is to explore the data and find some structure or way to organize it. 

Although not the focus of the book, we will explore a few unsupervised learning scenarios.

�Anaconda
You can use any Python installation, but I recommend installing Python with Anaconda 

for several reasons. First, it has over 15 million users. Second, Anaconda allows easy 

installation of the desired version of Python. Third, it preinstalls many useful libraries 

for machine learning including Scikit-Learn. Follow this link to see the Anaconda 

package lists for your operating system and Python version: https://docs.anaconda.

com/anaconda/packages/pkg-docs/. Fourth, it includes several very popular editors 

including IDLE, Spyder, and Jupyter Notebooks. Fifth, Anaconda is reliable and well-

maintained and removes compatibility bottlenecks.

Chapter 1  Introduction to Scikit-Learn 

https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/


3

You can easily download and install Anaconda with this link: https://www.anaconda.com/

download/. You can update with this link: https://docs.anaconda.com/anaconda/install/

update-version/. Just open Anaconda and follow instructions. I recommend updating to the 

current version.

�Scikit-Learn
Python’s Scikit-Learn is one of the most popular machine learning libraries. It is built on 

Python libraries NumPy, SciPy, and Matplotlib. The library is well-documented, open 

source, commercially usable, and a great vehicle to get started with machine learning. 

It is also very reliable and well-maintained, and its vast collection of algorithms can be 

easily incorporated into your projects. Scikit-Learn is focused on modeling data rather 

than loading, manipulating, visualizing, and summarizing data. For such activities, other 

libraries such as NumPy, pandas, Matplotlib, and seaborn are covered as encountered. 

The Scikit-Learn library is imported into a Python script as sklearn.

�Data Sets
A great way to understand machine learning application is by working through Python 

data-driven code examples. We use either Scikit-Learn, UCI Machine Learning, or 

seaborn data sets for all examples. The Scikit-Learn data sets package embeds some 

small data sets for getting started and helpers to fetch larger data sets commonly used in 

the machine learning library to benchmark algorithms on data from the world at large. 

The UCI Machine Learning Repository maintains 468 data sets to serve the machine 

learning community. Seaborn provides an API on top of Matplotlib that offers simplicity 

when working with plot styles, color defaults, and high-level functions for common 

statistical plot types that facilitate visualization. It also integrates nicely with Pandas 

DataFrame functionality.

We chose the data sets for our examples because the machine learning community 

uses them for learning, exploring, benchmarking, and validating, so we can compare our 

results to others while learning how to apply machine learning algorithms.

Chapter 1  Introduction to Scikit-Learn 

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://docs.anaconda.com/anaconda/install/update-version/
https://docs.anaconda.com/anaconda/install/update-version/


4

Our data sets are categorized as either classification or regression data. Classification 

data complexity ranges from simple to relatively complex. Simple classification data 

sets include load_iris, load_wine, bank.csv, and load_digits. Complex classification data 

sets include fetch_20newsgroups, MNIST, and fetch_1fw_people. Regression data sets 

include tips, redwine.csv, whitewine.csv, and load_boston.

�Characterize Data
Before working with algorithms, it is best to understand the data characterization. Each 

data set was carefully chosen to help you gain experience with the most common aspects 

of machine learning. We begin by describing the characteristics of each data set to better 

understand its composition and purpose. Data sets are organized by classification and 

regression data.

Classification data is further organized by complexity. That is, we begin with simple 

classification data sets that are not complex so that the reader can focus on the machine 

learning content rather than on the data. We then move onto more complex data sets.

�Simple Classification Data
Classification is a machine learning technique for predicting the class upon which 

a dependent variable belongs. A class is a discrete response. In machine learning, a 

dependent variable is typically referred to as the target. A class is predicted based upon 

the independent variables of a data set. Independent variables are typically referred 

to as the feature set or feature space. Feature space is the collection of features used to 

characterize the data.

Simple data sets are those with a limited number of features. Such a data set is 

referred to as one with a low-dimensional feature space.

�Iris Data

The first data set we characterize is load_iris, which consists of Iris flower data. Iris is 

a multivariate data set consisting of 50 samples from each of three species of iris (Iris 

setosa, Iris virginica, and Iris versicolor). Each sample contains four features, namely, 

length and width of sepals and petals in centimeters. Iris is a typical test case for machine 

learning classification. It is also one of the best known data sets in the data science 

literature, which means you can test your results against many other verifiable examples.

Chapter 1  Introduction to Scikit-Learn 



5

The first code example shown in Listing 1-1 loads Iris data, displays its keys, shape 

of the feature set and target, feature and target names, a slice from the DESCR key, and 

feature importance (from most to least).

Listing 1-1.  Characterize the Iris data set

from sklearn import datasets

from sklearn.ensemble import RandomForestClassifier

if __name__ == "__main__":

    br = '\n'

    iris = datasets.load_iris()

    keys = iris.keys()

    print (keys, br)

    X = iris.data

    y = iris.target

    print ('features shape:', X.shape)

    print ('target shape:', y.shape, br)

    features = iris.feature_names

    targets = iris.target_names

    print ('feature set:')

    print (features, br)

    print ('targets:')

    print (targets, br)

    print (iris.DESCR[525:900], br)

    rnd_clf = RandomForestClassifier(random_state=0,

                                     n_estimators=100)

    rnd_clf.fit(X, y)

    rnd_name = rnd_clf.__class__.__name__

    feature_importances = rnd_clf.feature_importances_

    importance = sorted(zip(feature_importances, features),

                        reverse=True)

    print ('most important features' + ' (' + rnd_name + '):')

    [print (row) for i, row in enumerate(importance)]

Chapter 1  Introduction to Scikit-Learn 



6

Go ahead and execute the code from Listing 1-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 1-1 should resemble the following:

dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 

'filename'])

features shape: (150, 4)

target shape: (150,)

feature set:

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal  

width (cm)']

targets:

['setosa' 'versicolor' 'virginica']

    ============== ==== ==== ======= ===== ====================

                    Min  Max   Mean    SD   Class Correlation

    ============== ==== ==== ======= ===== ====================

    sepal length:   4.3  7.9   5.84   0.83    0.7826

    sepal width:    2.0  4.4   3.05   0.43   -0.4194

    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)

    petal width:

most important features (RandomForestClassifier):

(0.4604447396171521, 'petal length (cm)')

(0.4241162651271012, 'petal width (cm)')

(0.09090795402103086, 'sepal length (cm)')

(0.024531041234715754, 'sepal width (cm)')

The code begins by importing datasets and RandomForestClassifier packages. 

RandomForestClassifier is an ensemble learning method that constructs a multitude of 

decision trees at training time and outputs the class that is the mode of the classes.

In this example, we are only using it to return feature importance. The main block 

begins by loading data and displaying its characteristics. Loading feature set data into 

variable X and target data into variable y is convention in the machine learning community.

Chapter 1  Introduction to Scikit-Learn 



7

The code concludes by training RandomForestClassifier on the pandas data, so it 

can return feature importance. When actually modeling data, we convert pandas data to 

NumPy for optimum performance. Keep in mind that the keys are available because the 

data set is embedded in Scikit-Learn.

Notice that we only took a small slice from DESCR, which holds a lot of information 

about the data set. I always recommend displaying at least the shape of the original data 

set before embarking on any machine learning experiment.

Tip R andomForestClassifier is a powerful machine learning algorithm that not 
only models training data, but returns feature importance.

�Wine Data

The next data set we characterize is load_wine. The load_wine data set consists of 178 

data elements. Each element has thirteen features that describe three target classes. It 

is considered a classic in the machine learning community and offers an easy multi-

classification data set.

The next code example shown in Listing 1-2 loads wine data and displays its keys, 

shape of the feature set and target, feature and target names, a slice from the DESCR key, 

and feature importance (from most to least).

Listing 1-2.  Characterize load_wine

from sklearn.datasets import load_wine

from sklearn.ensemble import RandomForestClassifier

if __name__ == "__main__":

    br = '\n'

    data = load_wine()

    keys = data.keys()

    print (keys, br)

    X, y = data.data, data.target

    print ('features:', X.shape)

    print ('targets', y.shape, br)

    print (X[0], br)

    features = data.feature_names

Chapter 1  Introduction to Scikit-Learn 



8

    targets = data.target_names

    print ('feature set:')

    print (features, br)

    print ('targets:')

    print (targets, br)

    rnd_clf = RandomForestClassifier(random_state=0,

                                     n_estimators=100)

    rnd_clf.fit(X, y)

    rnd_name = rnd_clf.__class__.__name__

    feature_importances = rnd_clf.feature_importances_

    importance = sorted(zip(feature_importances, features),

                        reverse=True)

    n = 6

    print (n, 'most important features' + ' (' + rnd_name + '):')

    [print (row) for i, row in enumerate(importance) if i < n]

After executing code from Listing 1-2, your output should resemble the following:

dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])

features: (178, 13)

targets (178,)

[1.423e+01 1.710e+00 2.430e+00 1.560e+01 1.270e+02 2.800e+00 3.060e+00

 2.800e-01 2.290e+00 5.640e+00 1.040e+00 3.920e+00 1.065e+03]

feature set:

['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium',  

'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 

'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']

targets:

['class_0' 'class_1' 'class_2']

6 most important features (RandomForestClassifier):

(0.19399882779940295, 'proline')

(0.16095401215681593, 'flavanoids')

Chapter 1  Introduction to Scikit-Learn 



9

(0.1452667364559143, 'color_intensity')

(0.11070045042456281, 'alcohol')

(0.1097465262717493, 'od280/od315_of_diluted_wines')

(0.08968972021098301, 'hue')

Tip T o create (instantiate) a machine learning algorithm (model), just assign it to 
a variable (e.g., model = algorithm()). To train based on the model, just fit it to the 
data (e.g., model.fit(X, y)).

The code begins by importing load_wine and RandomForestClassifier. The main 

block displays keys, loads data into X and y, displays the first vector from feature set X, 

displays shapes, and displays feature set and target information. The code concludes 

by training X with RandomForestClassifier, so we can display the six most important 

features. Notice that we display the first vector from feature set X to verify that all features 

are numeric.

�Bank Data

The next code example shown in Listing 1-3 works with bank data. The bank.csv data 

set is composed of direct marketing campaigns from a Portuguese banking institution. 

The target is described by whether a client will subscribe (yes/no) to a term deposit 

(target label y). It consists of 41188 data elements with 20 features for each element. 

A 10% random sample of 4119 data elements is also available from this site for more 

computationally expensive algorithms such as svm and KNeighborsClassifier.

Listing 1-3.  Characterize bank data

import pandas as pd

if __name__ == "__main__":

    br = '\n'

    f = 'data/bank.csv'

    bank = pd.read_csv(f)

    features = list(bank)

Chapter 1  Introduction to Scikit-Learn 



10

    print (features, br)

    X = bank.drop(['y'], axis=1).values

    y = bank['y'].values

    print (X.shape, y.shape, br)

    print (bank[['job', 'education', 'age', 'housing',

                 'marital', 'duration']].head())

After executing code from Listing 1-3, your output should resemble the following:

['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 

'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 

'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 

'euribor3m', 'nr.employed', 'y']

(41188, 20) (41188,)

         job    education  age housing  marital  duration

0  housemaid     basic.4y   56      no  married       261

1   services  high.school   57      no  married       149

2   services  high.school   37     yes  married       226

3     admin.     basic.6y   40      no  married       151

4   services  high.school   56      no  married       307

The code example begins by importing the pandas package. The main block loads 

bank data from a CSV file into a Pandas DataFrame and displays the column names 

(or features). To retrieve column names from pandas, all we need to do is make the 

DataFrame a list and assign the result to a variable. Next, feature set X and target y are 

created. Finally, X and y shapes are displayed as well as a few choice features.

�Digits Data

The final code example in this subsection is load_digits. The load_digits data set consists 

of 1797 8 × 8 handwritten images. Each image is represented by 64 pixels (based on an 

8 × 8 matrix), which make up the feature set. Ten targets are predicted represented by 

digits zero to nine.

Listing 1-4 contains the code that characterizes load_digits.

Chapter 1  Introduction to Scikit-Learn 



11

Listing 1-4.  Characterize load_digits

import numpy as np

from sklearn.datasets import load_digits

import matplotlib.pyplot as plt

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    print (digits.keys(), br)

    print ('2D shape of digits data:', digits.images.shape, br)

    X = digits.data

    y = digits.target

    print ('X shape (8x8 flattened to 64 pixels):', end=' ')

    print (X.shape)

    print ('y shape:', end=' ')

    print (y.shape, br)

    i = 500

    print ('vector (flattened matrix) of "feature" image:')

    print (X[i], br)

    print ('matrix (transformed vector) of a "feature" image:')

    X_i = np.array(X[i]).reshape(8, 8)

    print (X_i, br)

    print ('target:', y[i], br)

    print ('original "digits" image matrix:')

    print (digits.images[i])

    plt.figure(1, figsize=(3, 3))

    plt.title('reshaped flattened vector')

    plt.imshow(X_i, cmap='gray', interpolation='gaussian')

    plt.figure(2, figsize=(3, 3))

    plt.title('original images dataset')

    plt.imshow(digits.images[i], cmap='gray',

               interpolation='gaussian')

    plt.show()

Chapter 1  Introduction to Scikit-Learn 



12

After executing code from Listing 1-4, your output should resemble the following:

dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])

2D shape of digits data: (1797, 8, 8)

X shape (8x8 flattened to 64 pixels): (1797, 64)

y shape: (1797,)

vector (flattened matrix) of "feature" image:

[ 0.  0.  3. 10. 14.  3.  0.  0.  0.  8. 16. 11. 10. 13.  0.  0.  0.  7.

 14.  0.  1. 15.  2.  0.  0.  2. 16.  9. 16. 16.  1.  0.  0.  0. 12. 16.

 15. 15.  2.  0.  0.  0. 12. 10.  0.  8.  8.  0.  0.  0.  9. 12.  4.  7.

 12.  0.  0.  0.  2. 11. 16. 16.  9.  0.]

matrix (transformed vector) of a "feature" image:

[[ 0.  0.  3. 10. 14.  3.  0.  0.]

 [ 0.  8. 16. 11. 10. 13.  0.  0.]

 [ 0.  7. 14.  0.  1. 15.  2.  0.]

 [ 0.  2. 16.  9. 16. 16.  1.  0.]

 [ 0.  0. 12. 16. 15. 15.  2.  0.]

 [ 0.  0. 12. 10.  0.  8.  8.  0.]

 [ 0.  0.  9. 12.  4.  7. 12.  0.]

 [ 0.  0.  2. 11. 16. 16.  9.  0.]]

target: 8

original "digits" image matrix:

[[ 0.  0.  3. 10. 14.  3.  0.  0.]

 [ 0.  8. 16. 11. 10. 13.  0.  0.]

 [ 0.  7. 14.  0.  1. 15.  2.  0.]

 [ 0.  2. 16.  9. 16. 16.  1.  0.]

 [ 0.  0. 12. 16. 15. 15.  2.  0.]

 [ 0.  0. 12. 10.  0.  8.  8.  0.]

 [ 0.  0.  9. 12.  4.  7. 12.  0.]

 [ 0.  0.  2. 11. 16. 16.  9.  0.]]

Listing 1-4 also displays Figures 1-1 and 1-2. Figure 1-1 is a reshaped flattened vector 

of the 500th image in the data set. Each data element in feature set X is represented as a 

flattened vector of 64 pixels because Scikit-Learn cannot recognize an 8 × 8 image matrix, 

Chapter 1  Introduction to Scikit-Learn 



13

so we must reshape the 500th vector to an 8 × 8 image matrix to visualize. Figure 1-2 is 

the 500th image taken directly from the images data set that is available when we load 

the data into variable digits.

Figure 1-1.  Reshaped flattened vector of the 500th data element

Figure 1-2.  Original image matrix of the 500th data element

Chapter 1  Introduction to Scikit-Learn 



14

The code begins by importing numpy, load_digits, and matplotlib packages. The 

main block places load_digits into the digits variable and displays its keys: data, target, 

target_names, images, and DESCR. It continues by displaying the two-dimensional (2D)  

shape of images contained in images. Data in images are represented by 1797 8 × 8 

matrices. Next, feature data (represented as vectors) are placed in X and target data in y.

A feature vector is one that contains information about an object’s important 

characteristics. Data in data are represented by 1797 64-pixel feature vectors. A simple 

feature representation of an image is the raw intensity value of each pixel. So, an 8 × 8 

image is represented by 64 pixels. Machine learning algorithms process feature data as 

vectors, so each element in data must be a one-dimensional (1D) vector representation 

of its 2D image matrix.

Tip  Feature data must be composed of vectors to work with machine learning 
algorithm.

The code continues by displaying the feature vector of the 500th image. Next, 

the 500th feature vector is transformed from its flattened 1D vector shape into a 2D 

image matrix and displayed with the NumPy reshape function. The code continues 

by displaying the target value y of the 500th image. Next, the 500th image matrix is 

displayed by referencing images.

The reason we transformed the image from its 1D flattened vector state to the 2D 

image matrix is that most data sets don’t include an images object like load_data. So, 

to visualize and process data with machine learning algorithms, we must be able to 

manually flatten images and transform flattened images back to their original 2D matrix 

shape.

The code concludes by visualizing the 500th image in two ways. First, we use the 

flattened vector X_i. Second, we reference images. While machine learning algorithms 

require feature vectors, function imshow requires 2D image matrices to visualize.

�Complex Classification Data
Now let’s work with more complex data sets. Complex data sets are those with a very 

high number of features. Such a data set is referred to as one with a high-dimensional 

feature space.

Chapter 1  Introduction to Scikit-Learn 



15

�Newsgroup Data

The first data set we characterize is fetch_20newsgroups, which consists of 

approximately 18000 posts on 20 topics. Data is split into train-test subsets. The split is 

based on messages posted before and after a specific date.

Listing 1-5 contains the code that characterizes fetch_20newsgroups.

Listing 1-5.  Characterize fetch_20newsgroups

from sklearn.datasets import fetch_20newsgroups

if __name__ == "__main__":

    br = '\n'

    train = fetch_20newsgroups(subset='train')

    test = fetch_20newsgroups(subset='test')

    print ('data:')

    print (train.target.shape, 'shape of train data')

    print (test.target.shape, 'shape of test data', br)

    targets = test.target_names

    print (targets, br)

    categories = ['rec.autos', 'rec.motorcycles', 'sci.space',

                  'sci.med']

    train = fetch_20newsgroups(subset='train',

                               categories=categories)

    test = fetch_20newsgroups(subset='test',

                              categories=categories)

    print ('data subset:')

    print (train.target.shape, 'shape of train data')

    print (test.target.shape, 'shape of test data', br)

    targets = train.target_names

    print (targets)

After executing code from Listing 1-5, your output should resemble the following:

data:

(11314,) shape of train data

(7532,) shape of test data

Chapter 1  Introduction to Scikit-Learn 



16

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.

pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 

'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 

'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.

christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.

misc', 'talk.religion.misc']

data subset:

(2379,) shape of train data

(1584,) shape of test data

['rec.autos', 'rec.motorcycles', 'sci.med', 'sci.space']

The code begins by importing fetch_20newsgroups. The main block begins by 

loading train and test data and displaying their shapes. Training data consists of 11314 

postings, while test data consists of 7532 postings. The code continues by displaying 

target names and categories. Next, train and test data are created from a subset of 

categories. The code concludes by displaying shapes and target names of the subset.

�MNIST Data

The next data set we characterize is MNIST. MNIST (Modified National Institute of 

Standards and Technology) is a large database of handwritten digits commonly used 

for training and testing in the machine learning community and other industrial image 

processing applications. MNIST contains 70000 examples of handwritten digit images 

labeled from 0 to 9 of size 28 × 28. Each target (or label) is stored as a digit value. The 

feature set is a matrix of 70000 28 × 28 images automatically flattened to 784 pixels each. 

So, each of the 70000 data elements is a vector of length 784. The target set is a vector of 

70000 digit values.

Listing 1-6 contains the code that characterizes MNIST.

Listing 1-6.  Characterize MNIST

import numpy as np

from random import randint

import matplotlib.pyplot as plt

def find_image(data, labels, d):

Chapter 1  Introduction to Scikit-Learn 



17

    for i, row in enumerate(labels):

        if d == row:

            target = row

            X_pixels = np.array(data[i])

            return (target, X_pixels)

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    target = np.load('data/mnist_targets.npy')

    print ('labels (targets):')

    print (target, br)

    print ('feature set shape:')

    print (X.shape, br)

    print ('target set shape:')

    print (y.shape, br)

    indx = randint(0, y.shape[0]-1)

    target = y[indx]

    X_pixels = np.array(X[indx])

    print ('the feature image consists of', len(X_pixels),

           'pixels')

    X_image = X_pixels.reshape(28, 28)

    plt.figure(1, figsize=(3, 3))

    title = 'image @ indx ' + str(indx) + ' is digit ' \

            + str(int(target))

    plt.title(title)

    plt.imshow(X_image, cmap='gray')

    digit = 7

    target, X_pixels = find_image(X, y, digit)

    X_image = X_pixels.reshape(28, 28)

    plt.figure(2, figsize=(3, 3))

    title = 'find first ' + str(int(target)) + ' in dataset'

    plt.title(title)

    plt.imshow(X_image, cmap='gray')

    plt.show()

Chapter 1  Introduction to Scikit-Learn 



18

After executing code from Listing 1-6, your output should resemble the following:

labels (targets):

[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

feature set shape:

(70000, 784)

target set shape:

(70000,)

the feature image consists of 784 pixels

Listing 1-6 also displays Figures 1-3 and 1-4. Figure 1-3 is the reshaped image of digit 

1 at index 6969. Figure 1-4 is the first image of digit 7 in the data set.

Figure 1-3.  Reshaped flattened vector of image at index 6969

Chapter 1  Introduction to Scikit-Learn 



19

The code begins by importing randint and other requisite packages. Function find_

image locates the first occurrence of an image. The main block loads data from NumPy 

files into feature set X, target y, and target. Variable target holds target labels. It continues 

by displaying the shape of X and y. Feature set X consists of 70000 784-pixel vectors, so 

each image consists of 28 × 28 pixels.

Target y consists of 70000 labels. Next, a random integer between 0 and 69999 is 

generated, so we can display a random image from the data set. The random integer in 

our case is 6969. The image at index 6969 is digit 1. The size of the image is displayed 

to verify that it is 784 pixels. We then reshape vector 6969 to a 28 × 28 matrix, so we can 

visualize with function imshow. The code concludes by finding the first digit 7 and 

displaying it.

�Faces Data

The final data set characterized in this subsection is fetch_1fw_people. The fetch_1fw_

people data set is used for classifying labeled faces. It contains 1288 face images and 

seven targets. Each image is represented by a 50 × 37 matrix of pixels, so the feature set 

has 1850 features (based on a 50 × 37 matrix). In all, the data consists of 1288 labeled 

faces composed of 1850 pixels each predicting seven targets.

Figure 1-4.  Image of first digit 7 in the data set

Chapter 1  Introduction to Scikit-Learn 



20

Listing 1-7 contains the code that characterizes fetch_1fw_people.

Listing 1-7.  Characterize fetch_1fw_people

import numpy as np

import matplotlib.pyplot as plt

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    targets = np.load('data/faces_targets.npy')

    print ('shape of feature and target data:')

    print (X.shape)

    print (y.shape, br)

    print ('target faces:')

    print (targets)

    X_i = np.array(X[0]).reshape(50, 37)

    image_name = targets[y[0]]

    fig, ax = plt.subplots()

    image = ax.imshow(X_i, cmap='bone')

    plt.title(image_name)

    plt.show()

After executing code from Listing 1-7, your output should resemble the following:

shape of feature and target data:

(1288, 1850)

(1288,)

target faces:

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'

 'Gerhard Schroeder' 'Hugo Chavez' 'Tony Blair']

Listing 1-7 also displays Figure 1-5. Figure 1-5 is the reshaped image of the first data 

element in the data set.

Chapter 1  Introduction to Scikit-Learn 



21

The code begins by importing requisite packages. The main block loads data into 

X, y, and targets from NumPy files. The code continues by printing shapes of X and y. X 

contains 1288 1850-pixel vectors and y contains 1288 target values. Target labels are then 

displayed. The code concludes by reshaping the first feature vector to a 50 × 37 image 

and displaying it with function imshow.

�Regression Data
We now change gears away from classification and move into regression. Regression is a 

machine learning technique for predicting a numerical value based on the independent 

variables (or feature set) of a data set. That is, we are measuring the impact of the feature 

set on a numerical output. The first data set we characterize for regression is tips.

�Tips Data

The tips data set is integrated with the seaborn library. It consists of food server tips in 

restaurants and related factors including tip, price of meal, and time of day. Specifically, 

features include total_bill (price of meal), tip (gratuity), sex (male or female), smoker 

Figure 1-5.  Reshaped image of the first data element in the data set

Chapter 1  Introduction to Scikit-Learn 



22

(yes or no), day (Thursday, Friday, Saturday, or Sunday), time (day or night), and size 

of the party. Features are coded as follows: total_bill (US dollars), tip (US dollars), sex 

(0=male, 1=female), smoker (0=no, 1=yes), day (3=Thur, 4=Fri, 5= Sat, 6=Sun). Tips data 

is represented by 244 elements with six features predicting one target. The target being 

tips received from customers.

Listing 1-8 characterizes tips data.

Listing 1-8.  Characterize the tips data set

import numpy as np, pandas as pd, seaborn as sns

if __name__ == "__main__":

    br = '\n'

    sns.set(color_codes=True)

    tips = sns.load_dataset('tips')

    print (tips.head(), br)

    X = tips.drop(['tip'], axis=1).values

    y = tips['tip'].values

    print (X.shape, y.shape)

After executing code from Listing 1-8, your output should resemble the following:

   total_bill   tip     sex smoker  day    time  size

0       16.99  1.01  Female     No  Sun  Dinner     2

1       10.34  1.66    Male     No  Sun  Dinner     3

2       21.01  3.50    Male     No  Sun  Dinner     3

3       23.68  3.31    Male     No  Sun  Dinner     2

4       24.59  3.61  Female     No  Sun  Dinner     4

(244, 6) (244,)

The code begins by loading tips as a Pandas DataFrame, displaying the first five 

records, converting data to NumPy, and displaying the feature set and target shapes. 

Seaborn data is automatically loaded as a Pandas DataFrame. We couldn’t get feature 

importance because RandomForestClassifier expects numeric data. It takes a great deal 

of data wrangling to get the data set into this form. We will transform categorical data to 

numeric in later chapters.

Chapter 1  Introduction to Scikit-Learn 



23

�Red and White Wine

The next two data sets we characterize are redwine.csv and whitewine.csv. Data sets 

redwine.csv and whitewine.csv relate to red and white wine quality, respectively. Both 

wines are composed of variants of the Portuguese Vinho Verde wine.

The feature set consists of eleven attributes. The input attributes are based on 

objective tests like pH (acidity or basicity of a substance) and alcohol (percent by 

volume). Output quality is based on sensory data reported as the median of at least three 

wine expert evaluations. Each expert graded wine quality on a scale from 0 (very bad) to 

10 (very excellent). The red wine data set has 1599 instances while the white wine data 

set has 4898.

Listing 1-9 characterizes redwine.csv.

Listing 1-9.  Characterize redwine

import pandas as pd

from sklearn.ensemble import RandomForestRegressor

if __name__ == "__main__":

    br = '\n'

    f = 'data/redwine.csv'

    red_wine = pd.read_csv(f)

    X = red_wine.drop(['quality'], axis=1)

    y = red_wine['quality']

    print (X.shape)

    print (y.shape, br)

    features = list(X)

    rfr = RandomForestRegressor(random_state=0,

                                n_estimators=100)

    rfr_name = rfr.__class__.__name__

    rfr.fit(X, y)

    feature_importances = rfr.feature_importances_

    importance = sorted(zip(feature_importances, features),

                        reverse=True)

    n = 3

    print (n, 'most important features' + ' (' + rfr_name + '):')

    [print (row) for i, row in enumerate(importance) if i < n]

Chapter 1  Introduction to Scikit-Learn 



24

    for row in importance:

        print (row)

    print ()

    print (red_wine[['alcohol', 'sulphates', 'volatile acidity',

                     'total sulfur dioxide', 'quality']]. head())

After executing code from Listing 1-9, your output should resemble the following:

(1599, 11)

(1599,)

3 most important features (RandomForestRegressor):

(0.27432500255956216, 'alcohol')

(0.13700073893077233, 'sulphates')

(0.13053941311188708, 'volatile acidity')

(0.27432500255956216, 'alcohol')

(0.13700073893077233, 'sulphates')

(0.13053941311188708, 'volatile acidity')

(0.08068199773601588, 'total sulfur dioxide')

(0.06294612644261727, 'chlorides')

(0.057730976351602854, 'pH')

(0.055499749756166, 'residual sugar')

(0.05198192402458334, 'density')

(0.05114079873500658, 'fixed acidity')

(0.049730883807319035, 'free sulfur dioxide')

(0.04842238854446754, 'citric acid')

   alcohol  sulphates  volatile acidity  total sulfur dioxide  quality

0      9.4       0.56              0.70                  34.0      5.0

1      9.8       0.68              0.88                  67.0      5.0

2      9.8       0.65              0.76                  54.0      5.0

3      9.8       0.58              0.28                  60.0      6.0

4      9.4       0.56              0.70                  34.0      5.0

The code example begins by loading pandas and RandomForestRegressor packages. 

The main block loads redwine.csv into a Pandas DataFrame. It then displays feature and 

target shapes. The code concludes by training pandas data with RandomForestRegressor, 

Chapter 1  Introduction to Scikit-Learn 



25

displaying the three most important features, and displaying the first five records from 

the data set. RandomForestRegressor is also an ensemble algorithm, but it is used when 

the target is numeric or continuous.

Tip A lways hard-code random_state (e.g., random_state=0) for algorithms that 
use this parameter to stabilize results.

The white wine example follows the exact same logic, but output differs in terms of 

data set size and feature importance.

Listing 1-10 characterizes whitewine.csv.

Listing 1-10.  Characterize whitewine

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestRegressor

if __name__ == "__main__":

    br = '\n'

    f = 'data/whitewine.csv'

    white_wine = pd.read_csv(f)

    X = white_wine.drop(['quality'], axis=1)

    y = white_wine['quality']

    print (X.shape)

    print (y.shape, br)

    features = list(X)

    rfr = RandomForestRegressor(random_state=0,

                                n_estimators=100)

    rfr_name = rfr.__class__.__name__

    rfr.fit(X, y)

    feature_importances = rfr.feature_importances_

    importance = sorted(zip(feature_importances, features),

                        reverse=True)

    n = 3

    print (n, 'most important features' + ' (' + rfr_name + '):')

    [print (row) for i, row in enumerate(importance) if i < n]

    print ()

Chapter 1  Introduction to Scikit-Learn 



26

    print (white_wine[['alcohol', 'sulphates',

                       'volatile acidity',

                       'total sulfur dioxide',

                       'quality']]. head())

After executing code from Listing 1-10, your output should resemble the following:

(4898, 11)

(4898,)

3 most important features (RandomForestRegressor):

(0.24186185906056268, 'alcohol')

(0.1251626059551235, 'volatile acidity')

(0.11524332271725685, 'free sulfur dioxide')

   alcohol  sulphates  volatile acidity  total sulfur dioxide  quality

0      8.8       0.45              0.27                 170.0      6.0

1      9.5       0.49              0.30                 132.0      6.0

2     10.1       0.44              0.28                  97.0      6.0

3      9.9       0.40              0.23                 186.0      6.0

4      9.9       0.40              0.23                 186.0      6.0

�Boston Data

The final data set we characterize is load_boston. The load_boston data set contains 

housing prices from various Boston locations. It consists of 506 records with 13 features 

and a target. Target values represent the median value of owner-occupied homes.

Listing 1-11 characterizes load_boston.

Listing 1-11.  Characterize load_boston

from sklearn.datasets import load_boston

from sklearn.ensemble import RandomForestRegressor

if __name__ == "__main__":

    br = '\n'

    boston = load_boston()

    print (boston.keys(), br)

    print (boston.feature_names, br)

Chapter 1  Introduction to Scikit-Learn 



27

    X = boston.data

    y = boston.target

    print ('feature shape', X.shape)

    print ('target shape', y.shape, br)

    keys = boston.keys()

    rfr = RandomForestRegressor(random_state=0,

                                n_estimators=100)

    rfr.fit(X, y)

    features = boston.feature_names

    feature_importances = rfr.feature_importances_

    importance = sorted(zip(feature_importances, features),

                        reverse=True)

    [print(row) for i, row in enumerate(importance) if i < 3]

After executing code from Listing 1-11, your output should resemble the following:

dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'

 'B' 'LSTAT']

feature shape (506, 13)

target shape (506,)

(0.45730362625767496, 'RM')

(0.35008661885681375, 'LSTAT')

(0.06518862820215894, 'DIS')

The code begins by importing load_boston and RandomForestRegressor. The main 

block displays the keys, loads data into X and y, and displays features and data shapes. 

The code continues by creating RandomForestRegressor and training it with X and y so 

that feature importance can be displayed.

�Feature Scaling
Feature scaling is standardizing feature set data. Feature scaling is important when 

feature set data is highly varying in magnitudes, units, and range. If such data is not 

scaled, some machine learning algorithms may underperform because they fail to 

Chapter 1  Introduction to Scikit-Learn 



28

properly account for feature set data variance. To mitigate the problem, we standardize 

the variance. Standardization rescales features to the properties of a standard normal 

distribution with mean of zero (μ = 0) and standard deviation of one (σ = 1). That is, we 

rescale features by removing the mean and scaling to unit variance.

Scikit-Learn applies StandardScaler, which standardizes features by removing 

the mean and scaling to unit variance. The code example shown in Listing 1-12 

demonstrates how StandardScaler works with a machine learning algorithm.

Listing 1-12.  Scaling load_digits

import numpy as np

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.linear_model import SGDClassifier

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    X_train, X_test, y_train, y_test =\

             train_test_split(X, y, random_state=0)

    sgd = SGDClassifier(random_state=0, max_iter=1000,

                        tol=0.001)

    sgd.fit(X_train, y_train)

    sgd_name = sgd.__class__.__name__

    print ('<<' + sgd_name + '>>', br)

    y_pred = sgd.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ('unscaled \'test\' accuracy:', accuracy)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    sgd_std = SGDClassifier(random_state=0, max_iter=1000,

                            tol=0.001)

Chapter 1  Introduction to Scikit-Learn 



29

    sgd_std.fit(X_train_std, y_train)

    y_pred = sgd_std.predict(X_test_std)

    accuracy = accuracy_score(y_test, y_pred)

    print ('scaled \'test\' accuracy:', np.round(accuracy, 4))

After executing code from Listing 1-12, your output should resemble the following:

<<SGDClassifier>>

unscaled 'test' accuracy: 0.92

scaled 'test' accuracy: 0.9333

The code example begins by loading train_test_split, SGDClassifier, StandardScaler, 

accuracy_score, and other requisite packages. train_test_split splits vectors (data 

elements) from the data set into random train-test subsets. The train subset is used by 

machine learning algorithms for training while the test subset is used for validation.

Splitting data into train-test subsets is foundational to machine learning because 

models learn from train data while test data is considered new data that has never 

been seen by the model. Since test data has never been seen by the model, we can be 

confident that our accuracy score is valid. So, never use test data for training!

SGDClassifier is a classification algorithm that implements regularized linear 

models with stochastic gradient descent (SGD) learning. The gradient of the loss (or 

error) is estimated each sample at a time and the model is updated along the way with 

a decreasing strength schedule (or learning rate). Classification is predicting the target 

of given data points. Targets are also called classes, labels, or categories. Classification is 

covered in depth in the next two chapters.

accuracy_score is used to compute accuracy. The main block begins by placing load_

digits into feature set X and target y. The code continues by splitting X and y into train-test 

subsets. X_train and y_train are used for training. X_test and y_test are used for validation. 

Next, the model is created and assigned to variable sgd. The model is then trained with 

X_train and y_train. Predictions are then made from X_test and assigned to y_pred. 

Typically, predictions are made from test data, but we can predict from train data to see 

how well our model is performing. The code continues by scaling train data, training the 

model with scaled data, and displaying accuracy. Notice scaling improved accuracy.

Chapter 1  Introduction to Scikit-Learn 



30

�Dimensionality Reduction
Dimensionality (or feature) reduction is reducing the number of random variables 

under consideration by obtaining a set of principal variables (or components). Principal 

components are a set of values of linearly uncorrelated variables.

The premise is that data contains some features that are either redundant or 

irrelevant and can thereby be removed without too much information loss. Keep in 

mind, however, that dimensionality reduction always incurs some information loss.

Dimensionality reduction can simplify models, reduce training time, reduce 

overfitting, and avoid the curse of dimensionality. Overfitting is when a model trains the 

data too well. That is, the model understands the data perfectly but also incurs noise (or 

error). So, unwanted noise becomes part of how the model understands the data. The 

curse is prominent when working with data in high-dimensional space (that can consist 

of hundreds or thousands of dimensions) because it makes analyzing and organizing 

data very difficult. It is much easier to work with data in low-dimensional space like 2D 

or three-dimensional (3D) space common to the human experience.

Dimensionality reduction is useful for unsupervised learning. Unsupervised learning 

draws inferences from feature data without knowing their respective labeled responses (or 

targets). Unsupervised learning is useful for exploring hidden patterns or groupings in data.

Three common Scikit-Learn dimensionality reduction techniques are principal 

component analysis (PCA), LinearDiscriminantAnalysis (LDA), and Isomap. PCA and 

LDA are linear dimensionality reduction methods. Isomap is a nonlinear dimensionality 

reduction method.

The first code example shown in Listing 1-13 leverages PCA and LDA on Iris to 

identify clusters.

Listing 1-13.  PCA and LDA Iris dimensionality reduction

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

from sklearn.discriminant_analysis import\

     LinearDiscriminantAnalysis

import seaborn as sns, matplotlib.pyplot as plt

if __name__ == "__main__":

    br = '\n'

    iris = load_iris()

Chapter 1  Introduction to Scikit-Learn 



31

    X = iris.data

    y = iris.target

    pca = PCA(n_components=0.95)

    X_reduced = pca.fit_transform(X)

    components = pca.n_components_

    model = PCA(n_components=components)

    model.fit(X)

    X_2D = model.transform(X)

    iris_df = sns.load_dataset('iris')

    iris_df['PCA1'] = X_2D[:, 0]

    iris_df['PCA2'] = X_2D[:, 1]

    print (iris_df[['PCA1', 'PCA2']].head(3), br)

    sns.set(color_codes=True)

    sns.lmplot('PCA1', 'PCA2', hue='species',

               data=iris_df, fit_reg=False)

    plt.suptitle('PCA reduction')

    lda = LinearDiscriminantAnalysis(n_components=2)

    transform_lda = lda.fit_transform(X, y)

    iris_df['LDA1'] = transform_lda[:,0]

    iris_df['LDA2'] = transform_lda[:,1]

    print (iris_df[['LDA1', 'LDA2']].head(3))

    sns.lmplot('LDA1', 'LDA2', hue='species',

               data=iris_df, fit_reg=False)

    plt.suptitle('LDA reduction')

    plt.show()

After executing code from Listing 1-13, your output should resemble the following:

       PCA1      PCA2

0 -2.684126  0.319397

1 -2.714142 -0.177001

2 -2.888991 -0.144949

       LDA1      LDA2

0  8.061800  0.300421

1  7.128688 -0.786660

2  7.489828 -0.265384

Chapter 1  Introduction to Scikit-Learn 



32

Listing 1-13 also displays Figures 1-6 and 1-7. Figure 1-6 demonstrates how 

dimensionality reduction with PCA is useful for unsupervised learning visualization of 

clusters. Figure 1-7 demonstrates how dimensionality reduction with LDA is useful for 

unsupervised learning visualization of clusters.

Figure 1-6.  PCA dimensionality reduction

Chapter 1  Introduction to Scikit-Learn 



33

The code example begins by importing PCA, LinearDiscriminantAnalysis, and 

other requisite packages. PCA reduces the dimensionality of data consisting of 

many correlated variables while retaining most of its variation (or information). 

LinearDiscriminantAnalysis is discriminant function analysis, which is the act of 

distributing things into groups, classes, or categories of the same type.

The main block loads Iris into X and y. It continues by creating a PCA model with 5% 

information loss and transforming X into 2D space so we can determine the optimum 

number of principle components automatically. Next, the model is created and trained 

on the data. The code continues by loading Iris into a Pandas DataFrame so we can slice 

off the two principal components for visualization. The code continues by creating a 

LDA model and training it on the data.

Notice that LDA trains on both X and y data while PCA only trains on X. The code 

concludes by creating slices of the two principal components for visualization. Both 

methods do a great job of visualizing clusters for the three Iris species.

The final code example shown in Listing 1-14 uses Isomap to identify clusters on 

load_digits.

Figure 1-7.  LDA dimensionality reduction

Chapter 1  Introduction to Scikit-Learn 



34

Listing 1-14.  Isomap visualization

from sklearn.datasets import load_digits

from sklearn.manifold import Isomap

import matplotlib.pyplot as plt

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    print ('feature data shape:', X.shape)

    iso = Isomap(n_components=2)

    iso_name = iso.__class__.__name__

    iso.fit(digits.data)

    data_projected = iso.transform(X)

    print ('project data to 2D:', data_projected.shape)

    project_1, project_2 = data_projected[:, 0],\

                           data_projected[:, 1]

    plt.figure(iso_name)

    plt.scatter(project_1, project_2, c=y, edgecolor='none',

                alpha=0.5, cmap='jet')

    plt.colorbar(label='digit label', ticks=range(10))

    plt.clim(-0.5, 9.5)

    plt.show()

After executing code from Listing 1-14, your output should resemble the following:

feature data shape: (1797, 64)

project data to 2D: (1797, 2)

Listing 1-14 also displays Figure 1-8, which demonstrates Isomap visualization on 

load_digits.

Chapter 1  Introduction to Scikit-Learn 



35

The code example begins by importing Isomap and other requisite packages. The 

main block loads digit data into X and y and displays the shape of feature set X. The code 

continues by creating the Isomap model, projecting data onto 2D space, slicing principle 

components into variables project_1 and project_2, and visualizing. Isomap does an 

excellent job of identifying digit clusters 0-9.

Isomap is an excellent visualization tool for nonlinear data. Since load_digits data is 

nonlinear, Isomap worked well.

Figure 1-8.  Isomap visualization of clusters on load_digits

Chapter 1  Introduction to Scikit-Learn 



37
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_2

CHAPTER 2

Classification from Simple 
Training Sets
Classification is the problem of predicting a discrete class label. Classes are also called 

targets, labels, or categories. Classification is applied by training a classifier algorithm on 

training data to predict how new data is classified.

A machine learning classification data set consists of features (X) and targets (y) 

where input variables X describe known discrete output variables y. Feature data is 

typically referred to as the feature set (or feature space). Classification is considered 

supervised learning because we know the targets that correspond to the feature set.

Whew! That’s a lot. So, let’s look at a simple example to help you understand how 

classification works. Suppose we have a data set consisting of four categories of fruit, 

namely, “apple,” “orange,” “lemon,” and “lime.” Each data element (or row) describes one 

piece of fruit (the target) by its mass, width, height, and color (the features). So, an apple 

can be distinguished from an orange by different values of mass, width, height, and color.

In the example, the class label is the type of fruit. Each type of fruit is discrete. That is, 

an apple is easily distinguished from the other types of fruits. The goal is to predict type 

of fruit based on its mass, width, height, and color.

To train a data set, we split data into train-test subsets. Train data features are 

referred to as X_train and targets as y_train. Test data features are referred to as X_test 

and targets as y_test. We then build a classification model to train on X_train and y_train 

data. Once the model is trained, we can validate and predict from X_test and y_test data 

because the model has not seen the test data. By holding test data out of the training 

process, it effectively acts as new data.

Tip  Never train on test data to keep it pure.



38

A typical train-test split is 70%/30%, but the ratio should be chosen based on the size 

of the data set. If the data set is small, a 30% test set may not contain all of the classes 

or enough information to properly validate. Also, the distribution of different classes in 

both train and test sets should be equal to the actual data set. The best way to ensure 

this distribution is to split train-test subsets randomly. Fortunately, Scikit-Learn’s train_

test_split package randomizes the split automatically, but its default train-test split is 

75%/25%.

I recommend some general steps when tackling machine learning problems. First, 

always split data for training and validations purposes. Second, try scaling data to 

potentially improve performance. Third, experiment with training and test sizes. Fourth, 

always begin with a baseline model, simple algorithm or an algorithm based on prior 

experience with a data set. And, start with an algorithm’s default hyperparameters. Fifth, 

experiment with more complex models since Scikit-Learn is efficient and allows easy 

model substitution. When working with big data sets, try drawing random samples to 

reduce computational expense. When working with high-dimensional data sets, try 

dimensionality reduction with PCA or LDA to reduce computational expense. Sixth, 

tune the best algorithms identified in earlier steps to get the best performance. Finally, 

experiment some more. Machine learning is very time intensive and rigorous, so be 

patient and don’t give up.

Tip  Always begin training with an algorithm’s default hyperparameters.

�Simple Data Sets
We concentrate on four simple data sets to introduce machine learning classification: 

wine, digits, banking, and make_moons. We didn’t introduce make_moons in Chapter 1  

because it is contrived. That is, Scikit-Learn provides the foundation for make_moons 

and we construct it as we see fit.

�Classifying Wine Data
The code example shown in Listing 2-1 classifies wine data.

Chapter 2  Classification from Simple Training Sets



39

Listing 2-1.  Classify load_wine data

from sklearn.datasets import load_wine

from sklearn.preprocessing import StandardScaler

from sklearn.discriminant_analysis import\

     LinearDiscriminantAnalysis as LDA

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import train_test_split

from sklearn import metrics

from random import *

if __name__ == "__main__":

    br = '\n'

    data = load_wine()

    X = data.data

    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, test_size=0.30, random_state=0)

    lda = LDA().fit(X_train, y_train)

    print (lda, br)

    lda_name = lda.__class__.__name__

    y_pred = lda.predict(X_train)

    accuracy = metrics.accuracy_score(y_train, y_pred)

    accuracy = str(accuracy * 100) + '%'

    print (lda_name + ':')

    print ('train:', accuracy)

    y_pred_test = lda.predict(X_test)

    accuracy = metrics.accuracy_score(y_test, y_pred_test)

    accuracy = str(round(accuracy * 100, 2)) + '%'

    print ('test: ', accuracy, br)

    print('Confusion Matrix', lda_name)

    print(metrics.confusion_matrix(y_test, lda.predict(X_test)), br)

    std_scale = StandardScaler().fit(X_train)

    X_train = std_scale.transform(X_train)

    X_test = std_scale.transform(X_test)

Chapter 2  Classification from Simple Training Sets



40

    sgd = SGDClassifier(max_iter=5, random_state=0)

    print (sgd, br)

    sgd.fit(X_train, y_train)

    sgd_name = sgd.__class__.__name__

    y_pred = sgd.predict(X_train)

    y_pred_test = sgd.predict(X_test)

    print (sgd_name + ':')

    print('train: {:.2%}'.format(metrics.accuracy_score\(y_train, y_pred)))

    �print('test:  {:.2%}\n'.format(metrics.accuracy_score\(y_test, y_pred_

test)))

    print('Confusion Matrix', sgd_name)

    print(metrics.confusion_matrix(y_test, sgd.predict(X_test)), br)

    n, ls = 100, []

    for i, row in enumerate(range(n)):

        rs = randint(0, 100)

        sgd = SGDClassifier(max_iter=5, random_state=0)

        sgd.fit(X_train, y_train)

        y_pred = sgd.predict(X_test)

        accuracy = metrics.accuracy_score(y_test, y_pred)

        ls.append(accuracy)

    avg = sum(ls) / len(ls)

    print ('MCS (true test accuracy):', avg)

Go ahead and execute the code from Listing 2-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 2-1 should resemble the following:

LinearDiscriminantAnalysis(�n_components=None, priors=None, shrinkage=None, 

solver='svd', store_covariance=False, tol=0.0001)

LinearDiscriminantAnalysis:

train: 100.0%

test:  98.15%

Chapter 2  Classification from Simple Training Sets



41

Confusion Matrix LinearDiscriminantAnalysis

[[19  0  0]

 [ 1 21  0]

 [ 0  0 13]]

SGDClassifier(alpha=0.0001, average=False, class_weight=None,

       early_stopping=False, epsilon=0.1, eta0=0.0,

       fit_intercept=True, l1_ratio=0.15,

       learning_rate='optimal', loss='hinge', max_iter=5,

       n_iter=None, n_iter_no_change=5, n_jobs=None,

       penalty='l2', power_t=0.5, random_state=0, shuffle=True,

       tol=None, validation_fraction=0.1, verbose=0,

       warm_start=False)

SGDClassifier:

train: 100.00%

test:  100.00%

Confusion Matrix SGDClassifier

[[19  0  0]

 [ 0 22  0]

 [ 0  0 13]]

MCS (true test accuracy): 1.0

The code begins by importing metrics, random, and requisite packages. The 

main block begins by loading data and splitting it into train-test subsets. Notice that 

we adjusted the test size to 30%. Next, a LinearDiscriminantAnalysis (LDA) model 

is created and trained on the train set. You can fiddle with test size to see if your 

accuracy improves. But, don’t make it too big. Your model needs training data to better 

understand and learn.

Tip T o see a model’s hyperparameters, just print the variable that holds the 
model after creation (e.g., print (lda)).

Chapter 2  Classification from Simple Training Sets



42

LDA was introduced in Chapter 1 as an unsupervised learning model for 

dimensionality reduction. LDA is a very interesting model in that it performs 

unsupervised dimensionality reduction and supervised classification.

Data scaling doesn’t improve LDA performance, so the model trains on unscaled 

data. Accuracy scores are then computed on both train and test subsets. Performance 

accuracy is typically reported only on test data. However, it is useful to get train and test 

accuracy to see how well the model fits the data. In this case, the model fits the data very 

well because train accuracy and test accuracy are very similar. If train accuracy is well 

above test accuracy, the model is overfitting the data.

The code continues by displaying a confusion matrix. A confusion matrix describes 

the performance of a classification model (or classifier) on a set of test data for which 

the true values are known. The diagonal consisting of 19, 21, and 13 is where the model 

correctly classified. The model only misclassified one data element from the test set, 

which makes perfect sense with a test accuracy of over 98%. Next, we scale data because 

SGDClassifier is known to perform better with scaled data. The model is trained, and 

train and test accuracy are displayed along with the confusion matrix. With this model, 

classification was perfect.

The final part of the code is optional. It employs Monte Carlo experiments to 

validate performance of the SGDClassifier on the wine data. Monte Carlo experiments 

use randomness to solve deterministic (or supervised) problems. With a perfect test 

accuracy of 100%, we should be a bit skeptical. So, we ran 100 Monte Carlo experiments 

to obtain the actual test performance. As you can see, we get 100%!

Monte Carlo experiments are a fantastic method for deriving accuracy, but are 

incredibly computationally expensive. We were safe in this cased because the data 

set is small and simple. With big data sets with high-dimensional data, Monte Carlo 

experiments are not very practical.

LinearDiscriminantAnalysis and SGDClassifier were not chosen randomly. The 

algorithms were identified strategically as best performers through rigorous trial-and-

error experimentation and research.

Tip E ach data set is different, so choose algorithms strategically through  
trial-and-error experimentation and of course research.

Chapter 2  Classification from Simple Training Sets



43

�Classifying Digits
The first code example shown in Listing 2-2 loads the data and splits it into train-

test subsets. Next, data is trained with classifiers GaussianNB, SGDClassifier, and 

svm. Algorithm svm is the best performer. The code then identifies and visualizes 

misclassifications. The code concludes by visualizing the first misclassification.

Listing 2-2.  Classify load_digits data

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.linear_model import SGDClassifier

from sklearn.svm import SVC

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

import seaborn as sns

def find_misses(test, pred):

    return [i for i, row in enumerate(test) if row != pred[i]]

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    gnb = GaussianNB().fit(X_train, y_train)

    gnb_name = gnb.__class__.__name__

    y_pred = gnb.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print (gnb_name + ' \'test\' accuracy:', accuracy)

    scaler = StandardScaler()

Chapter 2  Classification from Simple Training Sets



44

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    sgd = SGDClassifier(random_state=0, max_iter=1000, tol=0.001)

    sgd_name = sgd.__class__.__name__

    sgd.fit(X_train_std, y_train)

    y_pred = sgd.predict(X_test_std)

    accuracy = accuracy_score(y_test, y_pred)

    print (sgd_name + ' \'test\' accuracy:', accuracy)

    svm = SVC(gamma='auto').fit(X_train_std, y_train)

    svm_name = svm.__class__.__name__

    y_pred = svm.predict(X_test_std)

    accuracy = accuracy_score(y_test, y_pred)

    print (svm_name + ' \'test\' accuracy:', accuracy, br)

    indx = find_misses(y_test, y_pred)

    print ('total misclassifications (' + str(svm_name) +\ '):', len(indx), br)

    print ('pred', 'actual')

    misses = [(y_pred[row], y_test[row], i)

              for i, row in enumerate(indx)]

    [print (row[0], '  ', row[1]) for row in misses]

    img_indx = misses[0][2]

    img_pred = misses[0][0]

    img_act = misses[0][1]

    text = str(img_pred)

    print(classification_report(y_test, y_pred))

    cm = confusion_matrix(y_test, y_pred)

    plt.figure(1)

    ax = plt.axes()

    sns.heatmap(cm.T, annot=True, fmt="d",

                cmap='gist_ncar_r', ax=ax)

    title = svm_name + ' confusion matrix'

    ax.set_title(title)

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    test_images = X_test.reshape(-1, 8, 8)

    plt.figure(2)

Chapter 2  Classification from Simple Training Sets



45

    plt.title('1st misclassifcation')

    plt.imshow(test_images[img_indx], cmap='gray', interpolation='gaussian')

    plt.text(0, 0.05, text, color='r', bbox=dict(facecolor='white'))

    plt.show()

After executing code from Listing 2-2, your output should resemble the following:

GaussianNB 'test' accuracy: 0.8333333333333334

SGDClassifier 'test' accuracy: 0.9377777777777778

SVC 'test' accuracy: 0.9822222222222222

total misclassifications (SVC): 8

pred actual

7    2

1    8

7    9

9    5

4    7

4    3

2    8

4    1

              precision    recall  f1-score   support

           0       1.00      1.00      1.00        37

           1       0.98      0.98      0.98        43

           2       0.98      0.98      0.98        44

           3       1.00      0.98      0.99        45

           4       0.93      1.00      0.96        38

           5       1.00      0.98      0.99        48

           6       1.00      1.00      1.00        52

           7       0.96      0.98      0.97        48

           8       1.00      0.96      0.98        48

           9       0.98      0.98      0.98        47

   micro avg       0.98      0.98      0.98       450

   macro avg       0.98      0.98      0.98       450

weighted avg       0.98      0.98      0.98       450

Chapter 2  Classification from Simple Training Sets



46

Listing 2-2 also displays Figures 2-1 and 2-2. Figure 2-1 displays the confusion matrix 

for the best performing algorithm, which is svm. You see SVC displayed because we 

are implementing the SVC implementation of the svm algorithm. SVC implementation 

utilizes C-support vector classification, which is represented as svm.SVC in Scikit-

Learn. Figure 2-2 displays the first misclassification from the prediction set, which 

is digit 2 misclassified as digit 7. If we look at the confusion matrix, we can see this 

misclassification at the intersection of predicted value row for digit 7 and true value 

column for digit 2. So, the true value (digit 2) was incorrectly predicted (or misclassified) 

as digit 7.

Figure 2-1.  Confusion matrix for the svm.SVC algorithm

Chapter 2  Classification from Simple Training Sets



47

The code example begins by importing GaussianNB, confusion_matrix, and 

classification_report as well as other requisite packages. GaussianNB is an excellent 

baseline algorithm because it is fast, performs well with many classification problems, 

and has few hyperparameters to tune.

Tip I f you have no experience with a classification data set, GaussianNB is a 
great place to start because it is simple, fast, easy to understand, and has few 
hyperparameters to tune.

Function find_misses returns a list of misclassified digits. The main block loads data, 

splits it into train-test subsets, and trains with GaussianNB, SGDClassifier, and svm.

GaussianNB is a probabilistic classifier based on applying Bayes’ theorem with 

strong independence assumptions between features. SGDClassifier is a classifier that 

implements a plain stochastic gradient descent learning routine that supports different 

loss functions and penalties for classification. Support vector machine (svm) builds a 

model that assigns new examples to one category or the other.

The code then displays test accuracy for all three models. Since svm.SVC scores 

the highest, we use it to identify misclassifications. Total misclassifications are then 

displayed. The code continues by displaying how each misclassification was rendered. 

So, the first misclassified digit was 2 and it was misclassified as 7.

Figure 2-2.  First misclassification from the prediction set

Chapter 2  Classification from Simple Training Sets



48

Next, the code creates a classification report (for the svm.SVC algorithm) that 

presents precision, recall, and f1_score scores for each digit. Accuracy is a great way to 

report a score, but f1_score, especially, is one to consider including because it is the most 

conservative.

The code concludes by displaying a svm.SVC confusion matrix and the first 

misclassification where 2 was misclassified as 7. The figure is also interesting because it 

presents the actual image of digit 2 with the way it was classified in red as digit 7.

Once a great performing algorithm is identified for a data set, I highly recommend 

creating a confusion matrix visualization. Not only it easy to understand how well an 

algorithm classified targets, it allows deeper scrutiny of where the algorithm didn’t 

perform as expected.

Tip  Creating a confusion matrix visualization is an excellent way to get a sense 
of how an algorithm performs.

Although we obtained a high accuracy score from svm in the previous example, 

Scikit-Learn allows us to substitute classifiers very easily. So, the next code example goes 

a bit crazy by training wine data with six additional classifiers. Keep in mind that the data 

set is small and simple. With larger and more complex data, substituting classifiers can 

be computationally expensive.

The next code example shown in Listing 2-3 classifies wine data with several Scikit-

Learn algorithms to identify promising ones for improved performance.

Listing 2-3.  Classifying load_digits with various algorithms

import humanfriendly as hf

import time

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression,\

     LogisticRegressionCV

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier, GradientBoostingClassifier

from sklearn.preprocessing import StandardScaler

Chapter 2  Classification from Simple Training Sets



49

from sklearn.metrics import accuracy_score

from sklearn.metrics import f1_score

def get_scores(model, Xtest, ytest, avg):

    y_pred = model.predict(Xtest)

    accuracy = accuracy_score(ytest, y_pred)

    f1 = f1_score(ytest, y_pred, average=avg)

    return (accuracy, f1)

def get_time(time):

    return hf.format_timespan(time, detailed=True)

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    lr = LogisticRegression(random_state=0, solver='lbfgs',

                            multi_class='auto', max_iter=4000)

    lr.fit(X_train_std, y_train)

    lr_name = lr.__class__.__name__

    acc, f1 = get_scores(lr, X_test_std, y_test, 'micro')

    print (lr_name + ' scaled \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    softmax = LogisticRegression(multi_class="multinomial",

                                 solver="lbfgs", max_iter=4000,

                                 C=10, random_state=0)

    softmax.fit(X_train_std, y_train)

    acc, f1 = get_scores(softmax, X_test_std, y_test, 'micro')

    print (lr_name + ' (softmax) scaled \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

Chapter 2  Classification from Simple Training Sets



50

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X_train_std, y_train)

    rf_name = rf.__class__.__name__

    acc, f1 = get_scores(rf, X_test_std, y_test, 'micro')

    print (rf_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et.fit(X_train, y_train)

    et_name = et.__class__.__name__

    acc, f1 = get_scores(et, X_test, y_test, 'micro')

    print (et_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    gboost_clf = GradientBoostingClassifier(random_state=0)

    gb_name = gboost_clf.__class__.__name__

    gboost_clf.fit(X_train, y_train)

    acc, f1 = get_scores(gboost_clf, X_test, y_test, 'micro')

    print (gb_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    knn_clf = KNeighborsClassifier().fit(X_train, y_train)

    knn_name = knn_clf.__class__.__name__

    acc, f1 = get_scores(knn_clf, X_test, y_test, 'micro')

    print (knn_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1, br)

    start = time.perf_counter()

    lr_cv = LogisticRegressionCV(�random_state=0, cv=5, multi_class='auto', 

max_iter=4000)

    lr_cv_name = lr_cv.__class__.__name__

    lr_cv.fit(X, y)

    end = time.perf_counter()

    elapsed_ls = end - start

    timer = get_time(elapsed_ls)

    print (lr_cv_name + ' timer:', timer)

    acc, f1 = get_scores(lr_cv, X_test, y_test, 'micro')

    print (lr_cv_name + ' \'test\':')

    print ('accuracy:', acc, ', f1_score:', f1)

Chapter 2  Classification from Simple Training Sets



51

After executing code from Listing 2-3, your output should resemble the following:

LogisticRegression scaled 'test':

accuracy: 0.9733333333333334 , f1_score: 0.9733333333333334

LogisticRegression (softmax) scaled 'test':

accuracy: 0.9644444444444444 , f1_score: 0.9644444444444444

RandomForestClassifier 'test':

accuracy: 0.9755555555555555 , f1_score: 0.9755555555555555

ExtraTreesClassifier 'test':

accuracy: 0.9822222222222222 , f1_score: 0.9822222222222222

GradientBoostingClassifier 'test':

accuracy: 0.9622222222222222 , f1_score: 0.9622222222222222

KNeighborsClassifier 'test':

accuracy: 0.98 , f1_score: 0.98

LogisticRegressionCV timer: 49 seconds and 38.45 milliseconds

LogisticRegressionCV 'test':

accuracy: 0.9822222222222222 , f1_score: 0.9822222222222222

The code begins by importing humanfriendly, time, LogisticRegression, 

LogisticRegressionCV, KNeighborsClassifier, GradientBoostingClassifier, and 

ExtraTreesClassifier as well as other requisite packages. Function get_scores returns 

accuracy and f1_score. Function get_time returns elapsed time. It facilitates finding how 

long it takes an algorithm to train a data set.

LogisticRegression is a classification algorithm traditionally limited to only two-class 

classification problems. Softmax (multinomial logistic regression) classification uses 

logistic regression for multiclass classification. RandomForestClassifier is an ensemble 

learning method that constructs a multitude of decision trees at training time and 

outputs the class that is the mode of the classes. ExtraTreesClassifier implements a meta 

estimator that fits a number of randomized decision trees (or extra trees) on various 

subsamples of the data set and uses averaging to improve predictive accuracy and 

control overfitting. GradientBoostingClassifier produces a prediction model in the form 

of weak prediction models (typically decision trees). KNeighborsClassifier implements 

the k-nearest neighbors’ vote where input consists of the k closest training examples in 

Chapter 2  Classification from Simple Training Sets



52

the feature space. Feature space refers to the n-dimensions where your features exist. 

LogisticRegression uses a logistic function to model data. LogisticRegressionCV uses 

logistic regression to implement cross-validation estimation.

Cross-validation (CV) divides data into n number of subsets and iterates n times. 

Through each iteration, one of the n subsets is held out as the test set while the rest 

are used for training. Every iteration uses a different subset. So, accuracy and error 

are averaged over all n trials. The resultant accuracy is very good, but CV can be 

computationally expensive.

GradientBoostingClassifier and ExtraTreesClassifier are ensemble methods similar 

to RandomForestClassifier in that they fit (or train) a number of decision trees on the 

data and average results to improve predictive accuracy.

Tip  You may have to install the humanfriendly package since it isn’t installed 
automatically by Anaconda. Open a new Anaconda prompt and install as shown in 
Listing 2-4.

Listing 2-4.  Install a new package

pip install humanfriendly

The main block begins by loading and splitting data into train-test subsets. Each 

of the algorithms train the data and scores are displayed. Notice that over 46 seconds 

are consumed by LogisticRegressionCV. Although all of the algorithms performed 

admirably, we still couldn’t beat 98.22% accuracy.

�Classifying Bank Data
The first code example shown in Listing 2-5 loads bank data from a CSV file. Next, the 

education feature is engineered to make it more presentable.

Feature engineering is creating features (based on domain knowledge of the 

data) that make machine learning algorithms work. Although feature engineering is 

fundamental to machine learning application, it is both difficult and expensive.

The code then transforms categorical features to numerical to enable algorithm 

training. This transformation is typically referred to as encoding.

Chapter 2  Classification from Simple Training Sets



53

Tip M achine learning algorithms only operate on numerical data.

Finally, the five most important features are displayed along with data features and 

class counts. The feature set and targets are saved in NumPy files.

Listing 2-5.  Engineering and wrangling bank data

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestClassifier

if __name__ == "__main__":

    br = '\n'

    f = 'data/bank.csv'

    data = pd.read_csv(f)

    print ('original "education" categories:')

    print (data.education.unique(), br)

    data['education'] = np.where(data['education'] == 'basic.9y',

                                 'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.6y',

                                 'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.4y',

                                 'basic', data['education'])

    data['education'] = np.where(�data['education'] == 'high.school',  

'high_school', data.education)

    data['education'] = np.where(�data['education'] == 'professional.course', 

'professional', data['education'])

    data['education'] = np.where(�data['education'] == 'university.degree', 

'university', data['education'])

    print ('engineered "education" categories:')

    print (data.education.unique(), br)

    print ('target value counts:')

    print (data.y.value_counts(), br)

    data_X = data.loc[:, data.columns != 'y']

    cat_vars = [�'job', 'marital', 'education', 'default', 'housing', 

'loan', 'contact', 'month', 'day_of_week', 'poutcome']

    data_new = pd.get_dummies(data_X, columns=cat_vars)

Chapter 2  Classification from Simple Training Sets



54

    X = data_new.values

    y = data.y.values

    attributes = list(data_X)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X, y)

    rf_name = rf.__class__.__name__

    feature_importances = rf.feature_importances_

    importance = sorted(zip(feature_importances, attributes), reverse=True)

    n = 5

    print (n, 'most important features' + ' (' + rf_name + '):')

    [print (row) for i, row in enumerate(importance) if i < n]

    print ()

    features_file = 'data/features'

    np.save(features_file, attributes)

    features = np.load('data/features.npy')

    print ('features:')

    print (features, br)

    y_file = 'data/y'

    X_file = 'data/X'

    np.save(y_file, y)

    np.save(X_file, X)

    d = {}

    dvc = data.y.value_counts()

    d['no'], d['yes'] = dvc['no'], dvc['yes']

    dvc_file = 'data/value_counts'

    np.save(dvc_file, d)

    d = np.load('data/value_counts.npy')

    print ('class counts:', d)

After executing code from Listing 2-5, your output should resemble the following:

original "education" categories:

['basic.4y' 'high.school' 'basic.6y' 'basic.9y' 'professional.course'

 'unknown' 'university.degree' 'illiterate']

engineered "education" categories:

['basic' 'high_school' 'professional' 'unknown' 'university' 'illiterate']

Chapter 2  Classification from Simple Training Sets



55

target value counts:

no     36548

yes     4640

Name: y, dtype: int64

5 most important features (RandomForestClassifier):

(0.28697175347986037, 'job')

(0.08761238456151103, 'month')

(0.0797624194551633, 'age')

(0.05492109153356108, 'day_of_week')

(0.04027613029914145, 'marital')

features:

['age' 'job' 'marital' 'education' 'default' 'housing' 'loan' 'contact' 

'month' 'day_of_week' 'duration' 'campaign' 'pdays' 'previous' 'poutcome' 

'emp.var.rate' 'cons.price.idx' 'cons.conf.idx' 'euribor3m' 'nr.employed']

class counts: {'no': 36548, 'yes': 4640}

The code example begins by importing requisite packages. The main block reads 

the data and displays the original values from the education feature. The code continues 

by feature engineering the feature and displays the new values. Notice how difficult it 

is to feature engineer just a single feature. Next, categorical features are encoded by the 

pandas get_dummies function to one hot encoding (OHE) vectors. Scikit-Learn expects 

feature data to be numeric, which is why we need to encode them.

OHE vectors are also called dummy variables. OHE is a good choice since it is one of 

the most common methods for dealing with categorical data in machine learning. OHE 

takes each category value and turns it into a binary vector of size i (where i is the number 

of values in category i) and makes all columns equal to zero except the category column. 

For example, marital status is either “married,” “single,” or “divorced” in our data set. If 

someone is married, OHE encodes a [1 0 0] vector. If single, OHE encodes a [0 1 0] vector. 

Finally, if divorced, OHE encodes a [0 0 1] vector. Simply, the 1 bit is hot to indicate the 

category that fits the data element.

The code then creates feature set X and target y from the transformed data set. 

Feature importance is displayed with the help of RandomForestClassifier. Next, X and 

y are saved in NumPy files. Finally, class counts are created, saved, and displayed. It is 

useful to view class counts to see the balance between targets.

Chapter 2  Classification from Simple Training Sets



56

Notice that we have more no values than yes values. So, the data set is a bit 

imbalanced. This occurrence is commonly referred to as imbalanced class distribution, 

which is when the number of observations belonging to one class is significantly lower 

than those belonging to other classes. In our case, the balance between yes and no is 

about 12.6%. So, we don’t have a major problem. A rate (or event rate) less than 5% is a 

problem because machine learning algorithms can produce unsatisfactory classification 

when this happens.

Now that bank data is prepared, we can run experiments to identify high-performing 

classification algorithms as demonstrated in the next code example, which is shown 

in Listing 2-6. Keep in mind that many hours of experimentation led to the choice of 

algorithms for this example.

Listing 2-6.  Classifying bank data

import numpy as np, pandas as pd, random

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

def get_scores(model, xtrain, ytrain, xtest, ytest, scoring):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    f1 = f1_score(ytest, ypred, average=scoring)

    return (train, test, f1)

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

Chapter 2  Classification from Simple Training Sets



57

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X.npy')

    y = np.load('data/y.npy')

    print ('full data set shape for X and y:')

    print (X.shape, y.shape, br)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et.fit(X_train, y_train)

    et_scores = get_scores(et, X_train, y_train, X_test, y_test, 'micro')

    print (et.__class__.__name__ + '(train, test, f1_score):')

    print (et_scores, br)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X_train, y_train)

    rf_scores = get_scores(rf, X_train, y_train, X_test, y_test, 'micro')

    print (rf.__class__.__name__ + '(train, test, f1_score):')

    print (rf_scores, br)

    sample_size = 4000

    data = prep_data(X, y)

    Xs, ys = create_sample(data, sample_size, replace='no')

    print ('sample data set shape for X and y:')

    print (Xs.shape, ys.shape, br)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (Xs, ys, random_state=0)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    knn = KNeighborsClassifier().fit(X_train, y_train)

Chapter 2  Classification from Simple Training Sets



58

    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test, 'micro')

    print (knn.__class__.__name__ + '(train, test, f1_score):')

    print (knn_scores, br)

    svm = SVC(random_state=0, gamma='scale')

    svm.fit(X_train_std, y_train)

    svm_scores = get_scores(�svm, X_train_std, y_train, X_test_std, y_test, 

'micro')

    print (svm.__class__.__name__ + '(train, test, f1_score):')

    print (svm_scores, br)

    knn_name, svm_name = knn.__class__.__name__,\

                         svm.__class__.__name__

    y_pred_knn = knn.predict(X_test)

    cm_knn = confusion_matrix(y_test, y_pred_knn)

    cm_knn_T = cm_knn.T

    y_pred_svm = svm.predict(X_test_std)

    cm_svm = confusion_matrix(y_test, y_pred_svm)

    cm_svm_T = cm_svm.T

    plt.figure(knn.__class__.__name__)

    ax = plt.axes()

    sns.heatmap(cm_knn_T, annot=True, fmt="d", cmap='gist_ncar_r', cbar=False)

    ax.set_title(str(knn_name) + ' confusion matrix')

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    plt.figure(str(svm_name) + ' confusion matrix' )

    ax = plt.axes()

    sns.heatmap(cm_svm_T, annot=True, fmt="d", cmap='gist_ncar_r', cbar=False)

    ax.set_title(svm_name)

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    cnt_no, cnt_yes = 0, 0

    for i, row in enumerate(y_test):

        if row == 'no': cnt_no += 1

        elif row == 'yes': cnt_yes += 1

    cnt_no, cnt_yes = str(cnt_no), str(cnt_yes)

    print ('true =>', 'no: ' + cnt_no + ', yes: ' + cnt_yes, br)

Chapter 2  Classification from Simple Training Sets



59

    p_no, p_nox = cm_knn_T[0][0], cm_knn_T[0][1]

    p_yes, p_yesx = cm_knn_T[1][1], cm_knn_T[1][0]

    print ('knn classification report:')

    print ('predict \'no\':', p_no, '(' +\str(p_nox) + ' misclassifed)')

    print ('predict \'yes\':', p_yes, '(' +\str(p_yesx) + ' misclassifed)', br)

    p_no, p_nox = cm_svm_T[0][0], cm_svm_T[0][1]

    p_yes, p_yesx = cm_svm_T[1][1], cm_svm_T[1][0]

    print ('svm classification report:')

    print ('predict \'no\':', p_no, '(' +\str(p_nox) + ' misclassifed)')

    print ('predict \'yes\':', p_yes, '(' +\str(p_yesx) + ' misclassifed)')

    plt.show()

After executing code from Listing 2-6, your output should resemble the following:

full data set shape for X and y:

(41188, 61) (41188,)

ExtraTreesClassifier(train, test, f1_score):

(1.0, 0.9009420219481402, 0.9009420219481401)

RandomForestClassifier(train, test, f1_score):

(0.9999676281117478, 0.9121103233951636, 0.9121103233951636)

sample data set shape for X and y:

(4000, 61) (4000,)

KNeighborsClassifier(train, test, f1_score):

(0.9323333333333333, 0.916, 0.916)

SVC(train, test, f1_score):

(0.9376666666666666, 0.92, 0.92)

true => no: 902, yes: 98

knn classification report:

predict 'no': 869 (51 misclassifed)

predict 'yes': 47 (33 misclassifed)

svm classification report:

predict 'no': 883 (61 misclassifed)

predict 'yes': 37 (19 misclassifed)

Chapter 2  Classification from Simple Training Sets



60

Listing 2-6 also displays Figures 2-3 and 2-4. Figure 2-3 displays the confusion matrix 

for KNeighborsClassifier and Figure 2-4 displays the confusion matrix for svm.SVC.

Figure 2-3.  KNeighborsClassifier confusion matrix

Figure 2-4.  svm.SVC confusion matrix

Chapter 2  Classification from Simple Training Sets



61

The code begins by importing requisite packages. Function get_scores returns train 

and test accuracy scores. Function prep_data converts NumPy matrices to lists of vectors 

for easier manipulation of data elements for sampling. Function create_sample builds a 

random sample and returns it as X and y NumPy matrices.

Scikit-Learn algorithms can only train data represented as NumPy. The main 

block loads X and y from NumPy files created in the previous example. X and y are 

split into train-test subsets. The code then trains data with ExtraTreesClassifier and 

RandomForestClassifier. A sample of 4000 is drawn so that we can efficiently train with 

KNeighborsClassifier and svm.SVC. These two algorithms are excellent classifiers, but 

are computationally expensive with large data sets.

Confusion matrices for KNeighborsClassifier and svm.SVC are then displayed 

because they fit the data better. That is, accuracy was better and there was less overfitting 

with these models. The code concludes by calculating the balance of target values for the 

data and misclassifications by KNeighborsClassifier and svm.

Of note is that KNeighborsClassifier and svm.SVC performed better than the other 

algorithms based on a sample less than 10% of the original data. This is actually very 

impressive!

The UCI Machine Learning Repository includes a randomly selected sample from 

the bank data with 10% of the examples. For completeness, the next example shown in 

Listing 2-7 tests accuracy on this sample.

Listing 2-7.  Classifying UCI Irvine sample bank data

import pandas as pd, numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

def get_scores(model, xtrain, ytrain, xtest, ytest, scoring):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    f1 = f1_score(ytest, ypred, average=scoring)

    return (train, test, f1)

Chapter 2  Classification from Simple Training Sets



62

if __name__ == "__main__":

    br = '\n'

    f = 'data/bank_sample.csv'

    data = pd.read_csv(f)

    print ('data shape:', data.shape, br)

    data['education'] =\

                      np.where(data['education'] == 'basic.9y',

                               'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.6y',

                                 'basic', data['education'])

    data['education'] = np.where(data['education'] == 'basic.4y',

                                 'basic', data['education'])

    data['education'] = np.where(�data['education'] == 'high.school',  

'high_school', data.education)

    data['education'] = np.where(�data['education'] == 'professional.course', 

'professional', data['education'])

    data['education'] = np.where(�data['education'] == 'university.degree', 

'university', data['education'])

    data_X = data.loc[:, data.columns != 'y']

    cat_vars = [�'job', 'marital', 'education', 'default', 'housing', 

'loan', 'contact', 'month', 'day_of_week', 'poutcome']

    data_new = pd.get_dummies(data_X, columns=cat_vars)

    attributes = list(data_X)

    y = data.y.values

    X = data_new.values

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf.fit(X_train, y_train)

    rf_name = rf.__class__.__name__

    rf_scores = get_scores(rf, X_train, y_train, X_test, y_test, 'micro')

    print (rf.__class__.__name__ + '(train, test, f1_score):')

    print (rf_scores, br)

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et.fit(X_train, y_train)

Chapter 2  Classification from Simple Training Sets



63

    et_name = et.__class__.__name__

    et_scores = get_scores(et, X_train, y_train, X_test, y_test, 'micro')

    print (et.__class__.__name__ + '(train, test, f1_score):')

    print (et_scores, br)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test, 'micro')

    print (knn.__class__.__name__ + '(train, test, f1_score):')

    print (knn_scores, br)

    svm = SVC(random_state=0, gamma='scale')

    svm.fit(X_train_std, y_train)

    svm_scores = get_scores(�svm, X_train_std, y_train, X_test_std, y_test, 

'micro')

    print (svm.__class__.__name__ + '(train, test, f1_score):')

    print (svm_scores)

After executing code from Listing 2-7, your output should resemble the following:

data shape: (4119, 21)

RandomForestClassifier(train, test, f1_score):

(1.0, 0.9058252427184466, 0.9058252427184466)

ExtraTreesClassifier(train, test, f1_score):

(1.0, 0.8990291262135922, 0.8990291262135922)

KNeighborsClassifier(train, test, f1_score):

(0.9323405632890903, 0.8883495145631068, 0.8883495145631068)

SVC(train, test, f1_score):

(0.9494982194885077, 0.9, 0.9)

The code begins by importing requisite packages. Function get_scores returns 

accuracy scores. The main block loads the sample, engineers the education feature, and 

encodes categorical features to OHE form. We had to feature engineer education for this 

example because we didn’t draw the sample from the full data set upon which we had 

already engineered the feature.

Chapter 2  Classification from Simple Training Sets



64

The code continues by loading NumPy data into X and y, splitting it into train-test 

subsets, and training with RandomForestClassifier. Accuracy is then displayed. The 

remainder of the code trains with ExtraTreesClassifier, KNeighborsClassifier, and svm.

SVC and displays accuracy scores.

The sample we created performed at least as well as the one from the UCI repository. 

Our sample was even a bit smaller, which means that our sampling technique is more 

than adequate.

�Classifying make_moons
Scikit-Learn make_moons data is used primarily to visualize clustering and classification 

algorithms. However, it is also a great data set to get a sense of how classification 

algorithms attempt to separate binary target labels (or binary classification). 

Deployment of make_moons describes two interleaving circles with associated data 

points in 2D space.

Through visualization, we can easily see the separation between the two (or binary) 

labels. If human eyes can easily differentiate such separation in 2D space, classification 

algorithms should be able to do the same. We can test this with an example.

The first code example shown in Listing 2-8 creates a data set with 1000 elements, 

places feature data and its associated target into a Pandas DataFrame, and plots the 

result. Each feature element represents an x and y coordinate for plotting in 2D space. 

Each target represents the feature’s label, which is a binary value of either 0 or 1.

Listing 2-8.  Plot make_moons

import matplotlib.pyplot as plt, pandas as pd

from sklearn import datasets

if __name__ == "__main__":

    br = '\n'

    X, y = datasets.make_moons(�n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))

    colors = {0:'magenta', 1:'cyan'}

    fig, ax = plt.subplots()

    data = df.groupby('label')

    for key, label in data:

Chapter 2  Classification from Simple Training Sets



65

        label.plot(�ax=ax, kind='scatter', x='x', y='y', label=key, 

color=colors[key])

    plt.show()

After executing code from Listing 2-8, your output should resemble the following 

visualization shown in Figure 2-5:

The next code example shown in Listing 2-9 creates a make_moons data set 

of 1000 elements, splits it into train-test subsets, and trains with svm.SVC and 

KNeighborsClassifier. I intentionally picked these two algorithms because I knew they 

would do a great job of binary classification since they look at every data point.

Listing 2-9.  Classify make_moons

from sklearn import datasets

from sklearn.neighbors import KNeighborsClassifier

from sklearn import svm

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Figure 2-5.  Visualization of randomly generated make_moons data

Chapter 2  Classification from Simple Training Sets



66

def get_scores(model, Xtrain, Xtest, ytrain, ytest):

    y_ptrain = model.predict(Xtrain)

    y_ptest = model.predict(Xtest)

    acc_train = accuracy_score(ytrain, y_ptrain)

    acc_test = accuracy_score(ytest, y_ptest)

    name = model.__class__.__name__

    return (name, acc_train, acc_test)

if __name__ == "__main__":

    br = '\n'

    X, y = datasets.make_moons(�n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    X_train, X_test, y_train, y_test = train_test_split(�X, y, random_

state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    accuracy = get_scores(knn, X_train, X_test, y_train, y_test)

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2], br)

    svm = svm.SVC(gamma='scale', random_state=0)

    svm.fit(X_train, y_train)

    accuracy = get_scores(svm, X_train, X_test, y_train, y_test)

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2])

After executing code from Listing 2-9, your output should resemble the following:

<<KNeighborsClassifier>>

train: 0.9666666666666667 test: 0.964

<<SVC>>

train: 0.9653333333333334 test: 0.96

The code example begins by importing requisite packages. Function get_scores 

returns model name and train and test accuracy scores. The main block begins by 

loading sample data and splitting it into train-test subsets. It continues by training data 

with KNeighborsClassifier and svm.SVC and reporting accuracy scores. As expected, 

both algorithms recognized the labels very accurately with essentially no overfitting.

Chapter 2  Classification from Simple Training Sets



67

The final code example shown in Listing 2-10 extends our knowledge by splitting 

data into train, test, and validate subsets. KNeighborsClassifier is used to train and 

enable reporting.

Listing 2-10.  Classify make_moons on train, validate, and test subsets

from sklearn.datasets import make_moons

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

def get_scores(model, Xtrain, ytrain, Xtest, ytest, Xvalid, yvalid):

    y_ptrain = model.predict(Xtrain)

    y_ptest = model.predict(Xtest)

    y_pvalid = model.predict(Xvalid)

    acc_train = accuracy_score(ytrain, y_ptrain)

    acc_test = accuracy_score(ytest, y_ptest)

    acc_valid = accuracy_score(yvalid, y_pvalid)

    name = model.__class__.__name__

    return (name, acc_train, acc_test, acc_valid)

if __name__ == "__main__":

    br = '\n'

    X_train, y_train = make_moons(�n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    X_test, y_test = make_moons(�n_samples=1000, shuffle=True, noise=0.2, 

random_state=0)

    X_valid, y_valid = make_moons(�n_samples=10000, shuffle=True, noise=0.2, 

random_state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    accuracy = get_scores(�knn, X_train, y_train, X_test, y_test, X_valid, 

y_valid)

    print ('train test valid split (technique 1):')

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2], 'valid:', accuracy[3])

    print ('sample split:', X_train.shape, X_test.shape, X_valid.shape)

    print ()

Chapter 2  Classification from Simple Training Sets



68

    X, y = make_moons(n_samples=1000, shuffle=True, noise=0.2, random_state=0)

    X_train, X_test, y_train, y_test = train_test_split(�X, y, test_size=0.2, 

random_state=0)

    X_train, X_val, y_train, y_val = train_test_split(�X_train, y_train, 

test_size=0.25, 

random_state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    accuracy = get_scores(�knn, X_train, y_train, X_test, y_test, X_valid, 

y_valid)

    print ('train test valid split (technique 2):')

    print ('<<' + str(accuracy[0]) + '>>')

    print ('train:', accuracy[1], 'test:', accuracy[2], 'valid:', accuracy[3])

    print ('sample split:', X_train.shape, X_test.shape, X_val.shape)

After executing code from Listing 2-10, your output should resemble the following:

train test valid split (technique 1):

<<KNeighborsClassifier>>

train: 0.969 test: 0.969 valid: 0.9688

sample split: (1000, 2) (1000, 2) (10000, 2)

train test valid split (technique 2):

<<KNeighborsClassifier>>

train: 0.9616666666666667 test: 0.975 valid: 0.9694

sample split: (600, 2) (200, 2) (200, 2)

The code begins importing requisite packages. Function get_scores is expanded 

to account for validation scores. The main block begins by creating three separate 

test, train, and validation subsets. With this technique, we create three data sets of 

the same size. Although this technique produces excellent results, it is much more 

computationally expensive as data sets become larger and larger. Actually, this 

technique is three times more expensive because three data sets are created and 

trained. KNeighborsClassifier is used to train, validate, and test. The second technique 

is very common because it splits one data set into train, validate, and test. Again, 

KNeighborsClassifier is used. Results from both techniques are comparable and 

excellent as expected.

Chapter 2  Classification from Simple Training Sets



69

Tip T est data should only be used once a model is completely trained from 
training and validation phases so it can provide an unbiased evaluation of a final 
model fit on training data.

In industry, machine learning engineers experiment with data problems by splitting 

it into train, test, and validate subsets prior to training. Training data is used to fit (or 

train) the model. The model sees and learns from training data.

Validation data is used to evaluate a model. Machine learning engineers use 

validation data to fine-tune the model’s hyperparameters. Test data provides an 

unbiased evaluation of a final model fit based on what was learned from fitting training 

data and tuning hyperparameters with validation data.

Chapter 2  Classification from Simple Training Sets



71
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_3

CHAPTER 3

Classification from  
Complex Training Sets
Classification from complex data is handled exactly as with simple data. Data is loaded 

into feature set X and target y. X data is composed of a matrix of vectors where each 

vector represents a data element and y data is composed of a vector of targets. However, 

complex data is composed of a high number of features (hundreds to thousands). Such a 

data set is commonly referred to as one with a high-dimensional feature space. Text data 

is also complex because each document must be converted into vectors of numerical 

values suitable for machine learning algorithms.

�Complex Data Sets
We concentrate on three complex data sets: fetch_20newsgroups, MNIST, and 

fetch_lfw_people. fetch_20newsgroups is composed of thousands of newsgroup posts 

(documents). MNIST is composed of thousands of 28 × 28 images where each image is 

represented by 784 pixels. fetch_lfw_people is composed of 1288 50 × 37 images where 

each image is represented by 1850 pixels.

�Classifying fetch_20newsgroups
Since Scikit-Learn algorithms won’t accept raw text, we need to transform it to feature 

vectors that can be used as input. TfidfVectorizer transforms text (represented as raw 

documents) into a matrix `54321` of TF-IDF features (feature vectors that can be used as 

input to an estimator).

TF-IDF (term frequency-inverse document frequency) is a numerical statistic 

intended to reflect the importance of a word in a document. TF-IDF is one of the most 



72

popular term-weighting schemes with 83% of text-based recommender system usage in 

digital libraries.

TF-IDF is a very big topic. We won’t go into too much detail because we just 

want to use it to identify word importance. However, it is important to know that 

word importance is determined by the TF-IDF weight and importance increases 

proportionally to the number of times a word appears in a document.

The problem with just looking at word frequency is that some words like “the,” “is,” 

and “of” may not be important. So, we can also look at the inverse document frequency, 

which decreases the weight for commonly used words and increases the weight for 

words that are not used very much. Fortunately, Scikit-Learn includes the TfidfVectorizer 

package that efficiently combines word and inverse word frequency to extract 

meaningful information.

Text transformation into feature data differs from images. Image transformation 

involves flattening matrices into feature vectors of the same length. With text, each 

document typically differs in size. So, we need a technique like TF-IDF to transform a 

document into a matrix of TF-IDF features acceptable to Scikit-Learn algorithms. Text 

transformation is also more complex because word counts impact word importance in a 

document.

Text classification features are related to word counts or frequencies, so let’s 

use a classifier suited to this purpose. MultinomialNB is a naïve Bayes classifier for 

multinomial models suitable for classification with discrete features such as word counts 

for text classification.

The first code example shown in Listing 3-1 classifies fetch_20newsgroups data. You 

may have to wait a bit the first time you load this data set, so be patient. After the first 

loading, you won’t experience delays.

Listing 3-1.  Classify fetch_20newsgroups data

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.metrics import confusion_matrix, f1_score

import matplotlib.pyplot as plt

import seaborn as sns

Chapter 3  Classification from Complex Training Sets 



73

def predict_category(s, m, t):

    pred = m.predict([s])

    return t[pred[0]]

if __name__ == "__main__":

    br = '\n'

    train = fetch_20newsgroups(subset='train')

    test = fetch_20newsgroups(subset='test')

    print (train.target_names, br)

    categories = ['rec.autos', 'rec.motorcycles', 'sci.space', 'sci.med']

    train = fetch_20newsgroups(subset='train', categories=categories)

    test = fetch_20newsgroups(subset='test', categories=categories)

    print ('data subset:')

    print (train.target.shape, 'shape of train data')

    print (test.target.shape, 'shape of test data', br)

    targets = train.target_names

    mnb_clf = make_pipeline(TfidfVectorizer(), MultinomialNB())

    print ('<<' + mnb_clf.__class__.__name__ + '>>', br)

    mnb_clf.fit(train.data, train.target)

    labels = mnb_clf.predict(test.data)

    f1 = f1_score(test.target, labels, average='micro')

    print ('f1_score', f1, br)

    cm = confusion_matrix(test.target, labels)

    plt.figure('confusion matrix')

    sns.heatmap(�cm.T, square=True, annot=True, fmt='d', cmap='gist_ncar_r', 

xticklabels=train.target_names, yticklabels=train.target_

names, cbar=False)

    print ('sci.med predictions:')

    print (cm.T[2][2], 'correct predictions')

    print (cm.T[2][0], 'misclassified as rec.autos')

    print (cm.T[2][3], 'misclassified as sci.space')

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    plt.tight_layout()

    print ('\n***PREDICTIONS***:')

    y_pred = predict_category('payload on the mars rover', mnb_clf, targets)

Chapter 3  Classification from Complex Training Sets 



74

    print (y_pred)

    y_pred = predict_category(�'car broke down on the highway', mnb_clf, 

targets)

    print (y_pred)

    y_pred = predict_category('dad died of cancer', mnb_clf, targets)

    print (y_pred)

Go ahead and execute the code from Listing 3-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 3-1 should resemble the following:

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.

pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 

'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 

'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.

christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.

misc', 'talk.religion.misc']

data subset:

(2379,) shape of train data

(1584,) shape of test data

<<Pipeline>>

f1_score 0.9621212121212122

sci.med predictions:

370 correct predictions

1 misclassified as rec.autos

7 misclassified as sci.space

***PREDICTIONS***:

sci.space

rec.autos

sci.med

Listing 3-1 also displays Figure 3-1. Figure 3-1 shows the confusion matrix for the 

MultinomialNB classification with TfidfVectorizer text transformation.

Chapter 3  Classification from Complex Training Sets 



75

Figure 3-1.  Confusion matrix for the classification experiment

The code begins by importing fetch_20newsgroups, TfidfVectorizer, MultinomialNB, 

and a few other familiar packages. Function predict_category is used to predict class 

label from new data. The main block begins by loading train and test documents from 

fetch_20newsgroups. Next, it displays the target categories from the data set. The code 

continues by creating a subset of train and test data with four categories that I chose to 

use for this experiment. Keep in mind that you can create your own subsets.

The subset train and test data sets are used for modeling. Data shapes 

are then displayed. Next, a pipeline model is created with TfidfVectorizer and 

MultinomialNB. TfidfVectorizer extracts text and turns it into vectors of numerical values 

so that MultinomialNB can train it.

Tip T ext data must be converted into numerical form for algorithmic processing.

Chapter 3  Classification from Complex Training Sets 



76

A labels vector is created to hold predictions from the test data subset. Accuracy score 

(f1_score) is displayed. The f1_score is a weighted average of the precision and recall 

scores. It is thereby a more conservative estimate. A f1_score over 96% is really good!

A confusion matrix is created to give us a sense of how well our model classified test 

data. We transpose the matrix (cm.T) so that predicted labels are on the vertical axis and 

true (actual) labels are on the horizontal axis. You don’t have to transpose, but it is easier 

for me to interpret results.

The diagonal of the confusion matrix shows correct classifications. That is, for 

rec.autos we made 389 correct classifications, rec.motorcycles we made 383 correct 

classifications, sci.med we made 370 correct predictions, and sci.space we made 383 

correct classification. Misclassifications are those off the diagonal. For example, we 

misclassified one sci.med as rec.autos and seven as sci.space.

The code ends by making predictions from the trained model on completely new 

data. The text “payload on the mars rover” is classified as sci.space, which is correct! The 

next two text strings also predict correctly. Since model accuracy is over 96%, we can be 

pretty sure that our predictions are solid.

There is one problem with the previous example. The algorithm is able to get a sense 

of the meaning of the text from headers, footers, and quotes. That is, the algorithm we 

chose is quite clever.

To create a more realistic example, we can remove headers, footers, and quotes from 

the text documents as shown in the next example in Listing 3-2.

Listing 3-2.  Classify fetch_20newsgroups removing identifying information

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.metrics import confusion_matrix, f1_score

import matplotlib.pyplot as plt

import seaborn as sns

def predict_category(s, m, t):

    pred = m.predict([s])

    return t[pred[0]]

Chapter 3  Classification from Complex Training Sets 



77

if __name__ == "__main__":

    br = '\n'

    train = fetch_20newsgroups(subset='train')

    test = fetch_20newsgroups(subset='test')

    categories = ['rec.autos', 'rec.motorcycles', 'sci.space', 'sci.med']

    train = fetch_20newsgroups(�subset='train', categories=categories, 

remove=('headers', 'footers', 'quotes'))

    test = fetch_20newsgroups(�subset='test', categories=categories, 

remove=('headers', 'footers', 'quotes'))

    targets = train.target_names

    mnb_clf = make_pipeline(TfidfVectorizer(), MultinomialNB())

    print ('<<' + mnb_clf.__class__.__name__ + '>>', br)

    mnb_clf.fit(train.data, train.target)

    labels = mnb_clf.predict(test.data)

    f1 = f1_score(test.target, labels, average='micro')

    print ('f1_score', f1, br)

    cm = confusion_matrix(test.target, labels)

    plt.figure('confusion matrix')

    sns.heatmap(�cm.T, square=True, annot=True, fmt='d', cmap='gist_ncar_r', 

xticklabels=train.target_names, yticklabels=train.target_

names, cbar=False)

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    plt.tight_layout()

    print ('***PREDICTIONS***:')

    y_pred = predict_category('payload on the mars rover', mnb_clf, targets)

    print (y_pred)

    y_pred = predict_category('car broke down on the highway', mnb_clf, targets)

    print (y_pred)

    y_pred = predict_category('dad died of cancer', mnb_clf, targets)

    print (y_pred)

    plt.show()

Chapter 3  Classification from Complex Training Sets 



78

Your output from executing Listing 3-2 should resemble the following:

<<Pipeline>>

f1_score 0.8440656565656567

***PREDICTIONS***:

sci.space

rec.autos

sci.med

Listing 3-2 also displays Figure 3-2. Figure 3-2 shows the confusion matrix once 

headers, footers, and quotes are removed.

Figure 3-2.  Confusion matrix without headers, footers, and quotes

Chapter 3  Classification from Complex Training Sets 



79

The code is very similar to the previous example except we remove headers, footers, 

and quotes from both train and test subsets. Notice that the f1_score dropped to a bit 

over 84%, which is quite a big drop! This is a more realistic scenario because text data 

may not include identifying information.

It appears that predictions from new data are correct, but notice that the text I predict 

from are pretty clear. That is, it is pretty easy for our trained model to make the correct 

prediction because the text has words in it that point directly to the right category. For 

instance, payload on the mars rover is definitely sci.space because the phrase contains 

the word mars.

The confusion matrix is a great visual in this case because it shows that there are 

a lot of misclassifications, especially trying to distinguish between rec.autos and rec.

motorcycles. Of course, this makes a lot of sense because cars and motorcycles are much 

more alike than the other two categories in our subset.

Misclassifications are also a great place to search for improvements in algorithms 

and data. Maybe more data is required to increase accuracy. Maybe the algorithm is 

misclassifying because some or all of its hyperparameters need adjustment.

�Classifying MNIST
MNIST was introduced in Chapter 1 as a large database of handwritten digits commonly 

used for training and testing in the machine learning community and other industrial 

image processing applications. As review, MNIST contains 70000 handwritten digit 

images labeled from 0 to 9 of size 28 × 28. Each target is stored as a digit value. The 

feature set is a matrix of 70000 28 × 28 images automatically flattened to 784 pixels each.

�Training with the Entire MNIST Data Set

The next two code examples train the entire MNIST data set. Since MNIST data consists 

of high-dimensional feature space, we only train it with select classifiers to reduce 

training time.

The first code example shown in Listing 3-3 trains MNIST data with 

RandomForestClassifier and ExtraTreesClassifier, compares accuracy scores, visualizes 

confusion matrices, and visualizes a misclassification scenario.

Chapter 3  Classification from Complex Training Sets 



80

Listing 3-3.  Classify MNIST data

import numpy as np, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

def get_time(time):

    return hf.format_timespan(time, detailed=True)

def find_misses(test, pred):

    return [i for i, row in enumerate(test) if row != pred[i]]

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    rf_name = rf.__class__.__name__

    print ('<<' + rf_name + '>>')

    start = time.perf_counter()

    rf.fit(X_train, y_train)

    end = time.perf_counter()

    elapsed_ls = end - start

    timer = get_time(elapsed_ls)

    rf_name = rf.__class__.__name__

    y_pred = rf.predict(X_test)

Chapter 3  Classification from Complex Training Sets 



81

    accuracy = accuracy_score(y_test, y_pred)

    print ('\'test\' accuracy:', accuracy)

    print (rf_name + ' timer:', timer, br)

    cm = confusion_matrix(y_test, y_pred)

    plt.figure(1)

    ax = plt.axes()

    sns.heatmap(cm.T, annot=True, fmt="d", cmap='gist_ncar_r', ax=ax)

    ax.set_title(rf_name + 'confustion matrix')

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    et_name = et.__class__.__name__

    print ('<<' + et_name + '>>')

    start = time.perf_counter()

    et.fit(X_train, y_train)

    end = time.perf_counter()

    elapsed_ls = end - start

    timer = get_time(elapsed_ls)

    y_pred = et.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ('\'test\' accuracy:', accuracy)

    print (et_name + ' timer:', timer, br)

    cm = confusion_matrix(y_test, y_pred)

    plt.figure(2)

    ax = plt.axes()

    sns.heatmap(cm.T, annot=True, fmt="d", cmap='gist_ncar_r', ax=ax)

    ax.set_title(et_name + 'confustion matrix')

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    indx = find_misses(y_test, y_pred)

    print ('pred', 'actual')

    misses = [(y_pred[row], y_test[row], i)

              for i, row in enumerate(indx)]

    [print (row[0], '  ', row[1]) for i, row in enumerate(misses)

     if i < 5]

    print()

Chapter 3  Classification from Complex Training Sets 



82

    img_act = y_test[indx[0]]

    img_pred = y_pred[indx[0]]

    print ('actual', img_act)

    print ('pred', img_pred)

    text = str(img_pred)

    test_images = X_test.reshape(-1, 28, 28)

    plt.figure(3)

    plt.imshow(test_images[indx[0]], cmap='gray', interpolation='gaussian')

    plt.text(0, 0.05, text, color='r', bbox=dict(facecolor='white'))

    title = str(img_act) + ' misclassified as ' + text

    plt.title(title)

    plt.show()

Your output from executing Listing 3-3 should resemble the following:

<<RandomForestClassifier>>

'test' accuracy: 0.9687428571428571

RandomForestClassifier timer: 29 seconds and 620.77 milliseconds

<<ExtraTreesClassifier>>

'test' accuracy: 0.9727428571428571

ExtraTreesClassifier timer: 30 seconds and 462.9 milliseconds

pred actual

3.0    9.0

7.0    3.0

4.0    9.0

2.0    3.0

3.0    9.0

actual 9.0

pred 3.0

Listing 3-3 also displays Figures 3-3, 3-4, and 3-5. Figure 3-3 shows the confusion 

matrix for RandomForestClassifier. Figure 3-4 shows the confusion matrix for 

ExtraTreesClassifier. Figure 3-5 show the first misclassification.

Chapter 3  Classification from Complex Training Sets 



83

Figure 3-3.  RandomForestClassifier confusion matrix

Chapter 3  Classification from Complex Training Sets 



84

Figure 3-5.  The first misclassification

Figure 3-4.  ExtraTreesClassifier confusion matrix

Chapter 3  Classification from Complex Training Sets 



85

The code begins by importing requisite packages. Function get_time returns the 

time it takes to train. Function find_misses returns a list of misclassifications. The main 

block loads MNIST from NumPy files into X and y, converts X into float for algorithmic 

consumption, and splits data into train-test subsets.

The code continues by training data with RandomForestClassifier and 

ExtraTreesClassifier. For both algorithms, accuracy and training time are displayed, and 

confusion matrices are created and visualized. Next, the first five misclassifications are 

displayed. Finally, the first misclassification (pred: 3.0, actual: 9.0) is visualized. Notice 

that it does take some time for training (approximately 30 seconds for each algorithm). 

The reason is that MNIST data is composed of high-dimensional feature space.

Notice that it is easy for humans to see that the digit is 9, but not so easy for a 

machine because the prediction was digit 3. This visualization as well as the confusion 

matrices is really important because it can help data scientists improve prediction 

performance by adjusting the data, experimenting with different algorithms, or 

improving the algorithms.

The next code example shown in Listing 3-4 splits data into train-test subsets 

manually for increased flexibility. That is, we can granularly adjust train-test subset sizes.

Listing 3-4.  Classify MNIST with manual train-test shuffle

import numpy as np, humanfriendly as hf

import time

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

    X_train, X_test, y_train, y_test = X[:60000], X[60000:],\

                                       y[:60000], y[60000:]

    shuffle_index = np.random.permutation(60000)

Chapter 3  Classification from Complex Training Sets 



86

    X_train, y_train = X_train[shuffle_index],\

                       y_train[shuffle_index]

    et = ExtraTreesClassifier(random_state=0, n_estimators=100)

    start = time.perf_counter()

    et.fit(X_train, y_train)

    end = time.perf_counter()

    elapsed_ls = end - start

    print (hf.format_timespan(elapsed_ls, detailed=True))

    et_name = et.__class__.__name__

    y_pred = et.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print (et_name + ' \'test\':', end=' ')

    print ('accuracy:', accuracy, br)

    rpt = classification_report(y_test, y_pred)

    print (rpt)

Your output from executing Listing 3-4 should resemble the following:

36 seconds and 533.76 milliseconds

ExtraTreesClassifier 'test': accuracy: 0.9706

              precision    recall  f1-score   support

         0.0       0.97      0.99      0.98       980

         1.0       0.99      0.99      0.99      1135

         2.0       0.97      0.97      0.97      1032

         3.0       0.97      0.96      0.96      1010

         4.0       0.97      0.97      0.97       982

         5.0       0.97      0.97      0.97       892

         6.0       0.98      0.98      0.98       958

         7.0       0.97      0.97      0.97      1028

         8.0       0.97      0.96      0.96       974

         9.0       0.95      0.95      0.95      1009

   micro avg       0.97      0.97      0.97     10000

   macro avg       0.97      0.97      0.97     10000

weighted avg       0.97      0.97      0.97     10000

Chapter 3  Classification from Complex Training Sets 



87

The code begins by importing classification_report and other requisite packages. 

The classification report displays precision, recall, F1, and support scores for the model.

Precision is the ability of a classifier not to label an instance positive that is actually 

negative. Recall is the ability of a classifier to find all positive instances. F1_score is a 

weighted harmonic mean of precision and recall where the best score is 1.0 and the 

worst is 0.0. F1_scores are generally lower than accuracy measures as they embed 

precision and recall into their computation. Support is the number of actual occurrences 

of the class in the specified data set.

The main block loads MNIST into X and y and manually shuffles data into  

train-test subsets. In this case, we used more data for training. Specifically, 60000 

for training and 10000 for testing. We have more training data, which can be a 

good experiment if we have enough data to work with. Next, we trained with 

ExtraTreesClassifier since it performed better than RandomForestClassifier on MNIST in 

the previous example. Finally, accuracy score and a classification report are presented.

Tip M anually shuffle data into train-test subsets if you desire more flexibility.

�Training MNIST Sample Data

The first code example shown in Listing 3-5 creates a random sample of 4000 

data elements from MNIST to enable efficient training with svm.SVC and 

KNeighborsClassifier. Both of these algorithms are excellent classifiers, but they are 

known to be computationally expensive with high-dimensional feature space data sets.

Listing 3-5.  Classify MNIST with sample data

import numpy as np, random, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn import svm

from sklearn.neighbors import KNeighborsClassifier

import matplotlib.pyplot as plt

Chapter 3  Classification from Complex Training Sets 



88

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d)

               for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

    sample_size = 4000

    data = prep_data(X, y)

    Xs, ys = create_sample(data, sample_size, replace='no')

    X_train, X_test, y_train, y_test = train_test_split(

        Xs, ys, test_size=0.10, random_state=0)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    svm = svm.SVC(random_state=0, gamma='scale')

    svm_name = svm.__class__.__name__

    print ('<<', svm_name, '>>')

    start = time.perf_counter()

Chapter 3  Classification from Complex Training Sets 



89

    svm.fit(X_train_std, y_train)

    see_time('train:')

    start = time.perf_counter()

    y_pred = svm.predict(X_test_std)

    see_time('predict:')

    start = time.perf_counter()

    train_score = svm.score(X_train_std, y_train)

    test_score = svm.score(X_test_std, y_test)

    see_time('score:')

    print ('train score:', train_score, 'test score', test_score, br)

    knn = KNeighborsClassifier()

    knn_name = knn.__class__.__name__

    print ('<<', knn_name, '>>')

    start = time.perf_counter()

    knn.fit(X_train, y_train)

    see_time('train:')

    start = time.perf_counter()

    y_pred = knn.predict(X_test)

    see_time('predict:')

    start = time.perf_counter()

    train_score = knn.score(X_train, y_train)

    test_score = knn.score(X_test, y_test)

    see_time('score:')

    print ('train score:', train_score, 'test score:', test_score)

Your output from executing Listing 3-5 should resemble the following:

train: 6 seconds and 538.51 milliseconds

predict: 780.46 milliseconds

score: 7 seconds and 755.28 milliseconds

train score: 0.9802777777777778 test score 0.9075

<< KNeighborsClassifier >>

train: 116.53 milliseconds

predict: 1 second and 605.23 milliseconds

score: 15 seconds and 924.84 milliseconds

train score: 0.9519444444444445 test score: 0.91

Chapter 3  Classification from Complex Training Sets 



90

The code begins by importing requisite packages. Function prep_data transforms 

data into a list of data elements for easier sampling. Function create_sample accepts 

prepared data and creates a random sample without replacement. Function see_time 

returns elapsed time.

The main block loads data into X and y. Next, a sample of 4000 data elements is 

created and split into train-test subsets. The code continues by training the sample with 

svm.SVC and KNeighborsClassifier.

We needed to draw a random sample with these algorithms because they are 

computationally expensive when training large data sets, especially those with  

a high-dimensional feature space.

For each algorithm, train, predict, and score times are reported. To this point, we 

have only captured train time. But, it is interesting to see how much time each phase 

of the training process occupies. For our sample, KNeighborsClassifier reported 

respectable results with less overfitting than svm.SVC.

Tip  You can easily experiment with sample size by adjusting the sample_size 
variable.

The next MNIST example shown in Listing 3-6 leverages PCA to allow an increased 

sample size of 7000 without too much added computational expense.

Listing 3-6.  Classify MNIST with sample data and PCA

import numpy as np, random, humanfriendly as hf

import time

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn import svm

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt, seaborn as sns

Chapter 3  Classification from Complex Training Sets 



91

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d)

               for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    f1 = f1_score(ytest, ypred, average='macro')

    return (ypred, train, test, f1)

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

    data = prep_data(X, y)

    sample_size = 7000

    Xs, ys = create_sample(data, sample_size, replace='no')

    pca = PCA(n_components=0.95, random_state=0)

    Xs_reduced = pca.fit_transform(Xs)

    print ('sample feature shape:', Xs.shape)

Chapter 3  Classification from Complex Training Sets 



92

    components = pca.n_components_

    print ('feature components with PCA:', components, br)

    X_train, X_test, y_train, y_test = train_test_split(

        Xs_reduced, ys, test_size=0.10, random_state=0)

    scaler = StandardScaler().fit(X_train)

    X_train_std, X_test_std = scaler.transform(X_train),\

                              scaler.transform(X_test)

    start = time.perf_counter()

    svm = svm.SVC(random_state=0).fit(X_train_std, y_train)

    svm_name = svm.__class__.__name__

    svm_scores = get_scores(svm, X_train_std, y_train, X_test_std, y_test)

    cm_svm = confusion_matrix(y_test, svm_scores[0])

    see_time(svm_name + ' total training time:')

    print (svm_name + ':', svm_scores[1], svm_scores[2], svm_scores[3], br)

    start = time.perf_counter()

    knn = KNeighborsClassifier().fit(X_train, y_train)

    knn_name = knn.__class__.__name__

    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test)

    cm_knn = confusion_matrix(y_test, knn_scores[0])

    see_time(knn_name + ' total training time:')

    print (knn_name + ':', knn_scores[1], knn_scores[2], knn_scores[3])

    plt.figure(svm_name)

    ax = plt.axes()

    sns.heatmap(cm_svm.T, annot=True, fmt="d", cmap='gist_ncar_r', ax=ax)

    ax.set_title(str(svm_name) + ' confustion matrix')

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    plt.figure(knn_name)

    ax = plt.axes()

    sns.heatmap(cm_knn.T, annot=True, fmt="d", cmap='gist_ncar_r', ax=ax)

    ax.set_title(str(knn_name) + ' confustion matrix')

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    plt.show()

Chapter 3  Classification from Complex Training Sets 



93

Your output from executing Listing 3-6 should resemble the following:

sample feature shape: (7000, 784)

feature components with PCA: 150

SVC total training time: 14 seconds and 290.91 milliseconds

SVC: 0.9955555555555555 0.9428571428571428 0.9425480948692136

KNeighborsClassifier total training time: 10 seconds and 313.37 

milliseconds

KNeighborsClassifier: 0.9601587301587302 0.9371428571428572 

0.9358573966927535

Listing 3-6 also displays Figures 3-6 and 3-7. Figure 3-6 shows the confusion matrix 

for svm.SVC. Figure 3-7 shows the confusion matrix for KNeighborsClassifier.

Figure 3-6.  Confusion matrix for svm.SVC

Chapter 3  Classification from Complex Training Sets 



94

The code example begins by importing requisite packages. Function prep_data 

creates a list of data elements for easier processing. Function create_sample creates a 

random sample of 7000 data elements without replacement. Function see_time returns 

elapsed time. Function get_scores returns scores.

The main block begins by loading data into X and y. Next, a random sample of 7000 

data elements is created. PCA is leveraged to reduce the 784 features to 150 with 5% 

information loss. The feature set is created from the PCA model. The original sample 

shape is displayed as well as the reduced feature components from PCA. Next, svm.SVC 

and KNeighborsClassifier are trained on the sample. The total training time and scoring 

are displayed for each model. Scores are reported as train accuracy, test accuracy, and 

test f1_score, respectively. The code concludes by creating and displaying confusion 

matrices for each model.

Notice that using the larger sample of 7000 resulted in a better fit for both models. 

That is, we have less overfitting.

Figure 3-7.  Confusion matrix for KNeighborsClassifier

Chapter 3  Classification from Complex Training Sets 



95

Sampling is very common practice in industry as data sets become larger and larger. 

Sampling can drastically reduce computational expense while providing a good idea 

of the predictive capability of even the most computationally expensive algorithms. 

In addition, dimensionality reduction in conjunction with sampling can reduce 

computational expense even more!

Tip  Dimensionality reduction with sampling can drastically reduce computational 
expense.

�Classifying fetch_lfw_people
The fetch_lfw_people consists of preprocessed images from Labeled Faces in the Wild 

(LFW), which is a database designed for studying unconstrained face recognition. 

LFW contains more than 13,000 images of faces collected from the Web. Each image is 

labeled with the name of the person pictured. To learn more about LFW, follow this link: 

http://vis-www.cs.umass.edu/lfw/. For our experiment, we only consider folks with a 

minimum of 70 pictures in the data set. Images are resized to a 0.4 aspect ratio.

The first code example shown in Listing 3-7 classifies fetch_lfw_people with svm.

SVC, which is one of the most useful algorithms for face recognition.

Listing 3-7.  Classify fetch_lfw_people data

import numpy as np

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    images = np.load('data/faces_images.npy')

    targets = np.load('data/faces_targets.npy')

    _, h, w = images.shape

Chapter 3  Classification from Complex Training Sets 

http://vis-www.cs.umass.edu/lfw/


96

    n_images = X.shape[0]

    n_features = X.shape[1]

    n_classes = len(targets)

    print ('features:', n_features)

    print ('images:', n_images)

    print ('classes:', n_classes, br)

    print ('target names:')

    print (targets, br)

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    pca = PCA(n_components=0.95, whiten=True, random_state=0)

    pca.fit(X_train)

    components = pca.n_components_

    eigenfaces = pca.components_.reshape((components, h, w))

    X_train_pca = pca.transform(X_train)

    pca_name = pca.__class__.__name__

    print ('<<' + pca_name + '>>')

    print ('features (after PCA):', components)

    print ('eigenface shape:', eigenfaces.shape, br)

    print (pca, br)

    svm = SVC(�kernel='rbf', class_weight='balanced', gamma='scale',  

random_state=0)

    svm_name = svm.__class__.__name__

    svm.fit(X_train_pca, y_train)

    X_test_pca = pca.transform(X_test)

    y_pred = svm.predict(X_test_pca)

    cr = classification_report(y_test, y_pred)

    print ('classification report <<' + svm_name+ '>>')

    print (cr)

    ls = [np.array(eigenfaces[i].reshape(h, w))

          for i, row in enumerate(range(9))]

    fig, ax = plt.subplots(3, 3, figsize=(5, 6))

    cnt = 0

    for row in [0, 1, 2]:

        for col in [0, 1, 2]:

            ax[row, col].imshow(ls[cnt], cmap='bone', aspect='auto')

Chapter 3  Classification from Complex Training Sets 



97

            ax[row, col].set_axis_off()

            cnt += 1

    plt.tight_layout()

    plt.show()

Your output from executing Listing 3-7 should resemble the following:

features: 1850

images: 1288

classes: 7

target names:

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'

 'Gerhard Schroeder' 'Hugo Chavez' 'Tony Blair']

<<PCA>>

features (after PCA): 135

eigenface shape: (135, 50, 37)

PCA(copy=True, iterated_power='auto', n_components=0.95,

  random_state=0, svd_solver='auto', tol=0.0, whiten=True)

classification report <<SVC>>

              precision    recall  f1-score   support

           0       1.00      0.61      0.76        28

           1       0.63      0.94      0.76        63

           2       0.90      0.75      0.82        24

           3       0.88      0.86      0.87       132

           4       0.75      0.75      0.75        20

           5       1.00      0.59      0.74        22

           6       0.90      0.82      0.86        33

   micro avg       0.82      0.82      0.82       322

   macro avg       0.87      0.76      0.79       322

weighted avg       0.85      0.82      0.82       322

Listing 3-7 also displays Figure 3-8. Figure 3-8 shows the eigenfaces created by PCA.

Chapter 3  Classification from Complex Training Sets 



98

The code example begins by loading requisite packages. The main block loads 

image data into feature set X, target set y, image matrices into variable images, and 

target names into variable targets. The code continues by splitting data into train-test 

subsets. Next, a PCA model is created with whitening set to True. Whitening is enabled to 

mitigate redundancy in the input data (or X_train).

Since each image consists of 1850 pixels, our feature set has 1850 dimensions. 

So, PCA allows us to reduce dimensions to 135. With fewer dimensions (or features), 

computational expense is reduced. Fewer features also reduce the complexity of the 

model, which can mitigate overfitting.

PCA attempts to represent training data variance with as few dimensions as possible 

by keeping the most important features. When PCA is used with images, the remaining 

features are commonly called eigenfaces. Eigenfaces represent the principal set of images 

that are projected onto each data example from the train set to obtain independent 

features. That is, eigenfaces are used by the algorithm to learn from the data.

Figure 3-8.  Eigenfaces created by PCA

Chapter 3  Classification from Complex Training Sets 



99

PCA trains on X_train data with 5% information loss. Next, PCA components 

and eigenfaces (or best remaining features) are determined. The code continues by 

transforming X_train with PCA into X_train_pca with 135 features (rather than 1850). We 

then train X_train_pca with svm and create the prediction set y_pred so we can create a 

classification report. The code ends by creating images from the first nine data elements 

from eigenfaces. For further reading, visit:http://efavdb.com/machine-learning-for-

facial-recognition-3/.

Tip P CA is not only a good model for unsupervised learning experiments,  
it enables dimensionality reduction on train sets that result in faster processing and 
less overfitting for supervised learning experiments.

The next code example shown in Listing 3-8 trains data exactly as in the previous 

example, but this time we visualize the first correct classification and the first 

misclassification. The code continues by visualizing four random predictions. The 

code may seem very complex, but much of the effort is tied to creating nice visuals with 

Matplotlib. If you haven’t already figured it out, Matplotlib is not very user friendly.

Listing 3-8.  Classify fetch_lfw_people data and visualize

import numpy as np

from random import randint

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

import matplotlib.pyplot as plt

def find_misses(test, pred):

    return [i for i, row in enumerate(test) if row != pred[i]]

def find_hit(n, ls):

    return True if n in ls else False

def build_fig(indx, pos, color, one, two):

    X_i = np.array(X_test[indx]).reshape(50, 37)

    t = targets[y_test[indx]]

    p = targets[y_pred[indx]]

Chapter 3  Classification from Complex Training Sets 

http://efavdb.com/machine-learning-for-facial-recognition-3/
http://efavdb.com/machine-learning-for-facial-recognition-3/


100

    ax = fig.add_subplot(pos)

    image = ax.imshow(X_i,  cmap='bone')

    ax.set_axis_off()

    ax.set_title(t)

    ax.text(one, two, p, color=color, bbox=dict(facecolor='white'))

def chk_acc(rnds):

    logic = [1 if y_test[row] == y_pred[row] else 0 for row in rnds]

    colors = ['g' if row == 1 else 'r' for row in logic]

    return colors

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    images = np.load('data/faces_images.npy')

    targets = np.load('data/faces_targets.npy')

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    pca = PCA(n_components=0.95, whiten=True, random_state=0)

    pca.fit(X_train)

    X_train_pca = pca.transform(X_train)

    pca_name = pca.__class__.__name__

    svm = SVC(�kernel='rbf', class_weight='balanced', gamma='scale',  

random_state=0)

    svm_name = svm.__class__.__name__

    svm.fit(X_train_pca, y_train)

    X_test_pca = pca.transform(X_test)

    y_pred = svm.predict(X_test_pca)

    misses = find_misses(y_test, y_pred)

    miss = misses[0]

    hit = 1

    X_hit = np.array(X_test[hit]).reshape(50, 37)

    y_test_hit = targets[y_test[hit]]

    y_pred_hit = targets[y_pred[hit]]

    X_miss = np.array(X_test[miss]).reshape(50, 37)

    y_test_miss = targets[y_test[miss]]

    y_pred_miss = targets[y_pred[miss]]

Chapter 3  Classification from Complex Training Sets 



101

    fig = plt.figure('1st Hit and Miss')

    fig.suptitle('Visualize 1st Hit and Miss', fontsize=18, fontweight='bold')

    build_fig(hit, 121, 'g', 0.4, 1.9)

    build_fig(miss, 122, 'r', 0.4, 1.9)

    rnd_ints = [randint(0, y_test.shape[0]-1) for row in range(4)]

    colors = chk_acc(rnd_ints)

    fig = plt.figure('Four Random Predictions')

    build_fig(rnd_ints[0], 221, colors[0], .9, 4.45)

    build_fig(rnd_ints[1], 222, colors[1], .9, 4.45)

    build_fig(rnd_ints[2], 223, colors[2], .9, 4.45)

    build_fig(rnd_ints[3], 224, colors[3], .9, 4.45)

    plt.tight_layout()

    plt.show()

Listing 3-8 displays Figures 3-9 and 3-10. Figure 3-9 is a visualization of the first hit 

(or correct classification) and first miss (misclassification) from the training experiment. 

Figure 3-10 is a visualization of four random predictions.

Figure 3-9.  First hit and miss from the training experiment

Chapter 3  Classification from Complex Training Sets 



102

Figure 3-10.  Four random predictions

The code begins by importing requisite packages. Function find_misses returns the 

index of misclassifications from the test set. Function find_hit assists in finding whether 

an index provided was classified correctly.

Function find_hit is not enacted in the code provided, but you can test it yourself by 

feeding an index and the list of misses into the function. If the function returns True, the 

prediction was correct; otherwise the prediction was misclassified. I tested the function 

with index 1 and the function returned True.

Function build_figure enables us build the visualizations. Although the code appears 

complex, it is really just meticulous. That is, it just takes time to position the text properly. 

Function chk_acc returns red for a misclassification and green for a correct one.

The main block loads data and trains exactly as in the previous example. The 

remaining code creates the visualizations. The first visual displays the first correct 

classification and the first misclassification from the test set. So, the Colin Powell image 

Chapter 3  Classification from Complex Training Sets 



103

was correctly classified at index 1 (2nd data element in the test set). The George W. Bush 

image was misclassified as Colin Powell, and it happens to be at index 0 (first data 

element in the test set).

The second visual was created by generating four random numbers and using them 

as indices for visualization from the test set. Our visualization shows three of four correct 

classifications. The only misclassification was Hugo Chavez misclassified as Colin Powell.

Keep in mind that each time you run the code, you will see different images because 

we randomly generate indices. In addition, you are more than likely to see four correct 

classifications because our accuracy is 85%.

The final code example shown in Listing 3-9 is included for completeness. I want to 

show you how to use LDA dimensionality reduction rather than PCA. In this case, LDA 

performed poorly, but it may perform better given a different data set.

Listing 3-9.  Dimensionality reduction with LDA

import numpy as np

from sklearn.decomposition import PCA

from sklearn.discriminant_analysis import\

     LinearDiscriminantAnalysis

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report

import warnings

if __name__ == "__main__":

    br = '\n'

    warnings.filterwarnings('ignore')

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    pca = PCA(n_components=0.95, whiten=True, random_state=0)

    pca.fit(X_train)

    components = pca.n_components_

    lda = LinearDiscriminantAnalysis(n_components=components)

    lda.fit(X_train, y_train)

    X_train_lda = lda.transform(X_train)

Chapter 3  Classification from Complex Training Sets 



104

    svm = SVC(�kernel='rbf', class_weight='balanced', gamma='scale',  

random_state=0)

    svm_name = svm.__class__.__name__

    svm.fit(X_train_lda, y_train)

    X_test_lda = lda.transform(X_test)

    y_pred = svm.predict(X_test_lda)

    cr = classification_report(y_test, y_pred)

    print ('classification report <<' + svm_name+ '>>')

    print (cr)

Your output from executing Listing 3-9 should resemble the following:

classification report <<SVC>>

              precision    recall  f1-score   support

           0       1.00      0.21      0.35        28

           1       0.84      0.49      0.62        63

           2       0.69      0.38      0.49        24

           3       0.56      0.96      0.71       132

           4       0.50      0.15      0.23        20

           5       0.73      0.36      0.48        22

           6       0.67      0.42      0.52        33

   micro avg       0.61      0.61      0.61       322

   macro avg       0.71      0.43      0.49       322

weighted avg       0.68      0.61      0.58       322

The code is short because the performance is so much lower than PCA (68% vs. 85% 

accuracy). Why should we create eigenfaces, predictions, and visualizations if PCA is the 

better model? Notice that we use PCA to determine the best number of components with 

5% information loss, which is then used by LDA for prediction with svm.SVC.

Chapter 3  Classification from Complex Training Sets 



105
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_4

CHAPTER 4

Predictive Modeling 
Through Regression
While classification is the problem of predicting a discrete class label for an example, 

regression predictive modeling (or just regression) is the problem of learning the strength 

of association between independent variables (or features) and continuous dependent 

variables (or outcomes). A continuous output variable is a real value such as an integer or 

floating point value often quantified as amounts and sizes.

Simply, regression attempts to learn how strong the relationship is between features 

and outcomes. Formally, regression approximates a mapping function (f) from input 

variables (X) to a continuous output variable (y). An algorithm capable of learning a 

regression predictive model is called a regression algorithm. Since regression predicts a 

quantity, the performance must be measured as error in those predictions.

Performance of regression can be gauged in many ways, but the most common is to 

calculate root mean squared error (RMSE). A benefit of RMSE is that units of the error 

score are the same as the predicted value. While regression predictions can be evaluated 

using RMSE, classification predictions cannot.

�Regression Data Sets
We concentrate on four data sets: tips, boston, and wine (red and white). tips data is 

composed of food server tips in restaurants and related factors including tip, price of 

meal, and time of day. boston data is composed of housing prices from various Boston 

locations. wine data is composed of two data sets (red and white) that consist of variants 

of Portuguese Vinho Verde wine.



106

�Regressing tips
The first code example shown in Listing 4-1 loads tips data from a CSV file, conducts 

feature engineering by converting categorical features to dummy features, adds new 

data to the existing data set, imputes new data, displays feature importance, trains data 

with the LinearRegression algorithm, and predicts. In this case, we learn from multiple 

linear regression because we are training data on multiple features and one continuous 

dependent target.

Listing 4-1.  Predicting from tips with get_dummies encoding

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestRegressor

from sklearn.impute import SimpleImputer

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

if __name__ == "__main__":

    br = '\n'

    tips = pd.read_csv('data/tips.csv')

    print ('original data shape:', tips.shape, br)

    target = tips['tip']

    data = tips.drop(['tip'], axis=1)

    data = pd.get_dummies(data, columns=['sex', 'smoker','day', 'time'])

    d = {'sex_Male':'male', 'sex_Female':'female',

         'smoker_Yes':'smoker', 'smoker_No':'non-smoker',

         'day_Thur':'th', 'day_Fri':'fri', 'day_Sat':'sat',

         'day_Sun':'sun', 'time_Lunch':'lunch',

         'time_Dinner':'dinner'}

    data = data.rename(index=str, columns=d)

    X = data.values

    y = target.values

    print ('X and y shapes (post conversion):')

    print (X.shape, y.shape, br)

Chapter 4  Predictive Modeling Through Regression



107

    X_vector = np.array([30.00, 'NaN', 1, 0, 1, 0, 0, 0, 0, 1, 1, 0])

    y_vector = np.array([4.5])

    X = np.vstack([X, X_vector])

    y = np.append(y, y_vector)

    print ('new X and y data point:')

    print (X[244], y[244], br)

    X_vectors = np.array([[24.99, 'NaN',0, 1, 0, 1, 1, 0, 0, 0, 0, 1],

                         [19.99, 'NaN',1, 0, 1, 0, 0, 0, 0, 1, 1, 0]])

    y_vectors = np.array([[3.5], [2.0]])

    X = np.vstack([X, X_vectors])

    y = np.append(y, y_vectors)

    print ('new X and y data points:')

    print (X[245], y[245])

    print (X[246], y[246], br)

    imputer = SimpleImputer()

    imputer.fit(X)

    X = imputer.transform(X)

    print ('new data shape:', X.shape, br)

    print ('new records post imputation (features and targets):')

    print (X[244], y[244])

    print (X[245], y[245])

    print (X[246], y[246], br)

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X, y)

    print ('feature importance (first 6 features):')

    feature_importances = rfr.feature_importances_

    features = list(data.columns.values)

    importance = sorted(zip(feature_importances, features), reverse=True)

    [print (row) for i, row in enumerate(importance) if i < 6]

    print ()

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

Chapter 4  Predictive Modeling Through Regression



108

    model = LinearRegression()

    model_name = model.__class__.__name__

    print ('<<' + model_name + '>>', br)

    model.fit(X_train, y_train)

    y_pred = model.predict(X_test)

    rmse = np.sqrt(mean_squared_error(y_test, y_pred))

    print (rmse, '(rmse)', br)

    print ('predict from new data:')

    p1 = [X[244]]

    p2 = [X[245], X[246]]

    y1, y2 = model.predict(p1), model.predict(p2)

    print (y[244], y1[0])

    print (y[245], y2[0])

    print (y[246], y2[1])

    X_file = 'data/X_tips'

    y_file = 'data/y_tips'

    np.save(X_file, X)

    np.save(y_file, y)

Go ahead and execute the code from Listing 4-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 4-1 should resemble the following:

original data shape: (244, 7)

X and y shapes (post conversion):

(244, 12) (244,)

new X and y data point:

['30.0' 'NaN' '1' '0' '1' '0' '0' '0' '0' '1' '1' '0'] 4.5

new X and y data points:

['24.99' 'NaN' '0' '1' '0' '1' '1' '0' '0' '0' '0' '1'] 3.5

['19.99' 'NaN' '1' '0' '1' '0' '0' '0' '0' '1' '1' '0'] 2.0

new data shape: (247, 12)

Chapter 4  Predictive Modeling Through Regression



109

new records post imputation (features and targets):

[30.          2.56967213   1.        0.          1.          0.

  0.          0.           0.        1.          1.          0.        ] 4.5

[24.99        2.56967213   0.        1.          0.          1.

  1.          0.           0.        0.          0.          1.        ] 3.5

[19.99        2.56967213   1.        0.          1.          0.

  0.          0.           0.        1.          1.          0.        ] 2.0

feature importance (first 6 features):

(0.7597845511444519, 'total_bill')

(0.0643775334380493, 'size')

(0.03663421916266647, 'non-smoker')

(0.033603977117169975, 'smoker')

(0.026410154999617023, 'sat')

(0.02186564474599064, 'sun')

<<LinearRegression>>

0.9474705746817206 (rmse)

predict from new data:

4.5 3.827512419066452

3.5 3.56649951075833

2.0 2.941595038244732

The code example begins by importing RandomForestRegressor, SimpleImputer, 

and mean_square_error as well as other requisite packages. The main block begins 

by loading tips data from a CSV file. It continues by feature engineering categorical 

variables with the pandas get_dummies function. As a reminder, feature engineering is 

using domain knowledge of the data set to create features that enable machine learning 

algorithms to work more effectively.

Pandas get_dummies one hot encodes by default. For example, sex is either female or 

male. With one-hot encoding, female becomes [1, 0] and male [0, 1]. Feature engineering 

must be conducted in this case because Scikit-Learn only works with numerical data. 

Next, feature set X and target y are created. Notice that the data shape now has twelve 

features as a result of one-hot encoding.

The next part of the code adds three new records to the data set. Also notice that 

we added a NaN feature, which means that the feature has no discernable value. 

Chapter 4  Predictive Modeling Through Regression



110

Scikit-Learn algorithms cannot handle Nan features, so we impute feature means with 

the SimpleImputer class. Imputation is the process of replacing missing data with 

substituted values. We next display the new records. Notice that all Nan values are 

replaced with their feature mean.

Tip I mputation is a common technique for replacing missing data with 
substituted ones.

The last part of the code begins by displaying the six most important features with 

the help of RandomForestRegressor, which is a meta estimator that fits classifying 

decision trees on the data and uses averaging to improve performance and mitigate 

overfitting. Next, data is split into train-test subsets and trained with LinearRegression 

so we can calculate RMSE. LinearRegression models the relationship between features 

and the target. Finally, we make predictions from the new data where the 1st value is the 

actual target and the second is our prediction, and save X and y as NumPy files for future 

processing.

Tip T he goal of regression is to minimize (reduce) RMSE.

The next code example shown in Listing 4-2 uses DictVectorizer rather than  

get_dummies as an alternative option to one-hot encode categorical data.

Listing 4-2.  Predicting from tips with DictVectorizer encoding

import pandas as pd, numpy as np

from sklearn.feature_extraction import DictVectorizer

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from random import randint

if __name__ == "__main__":

    br = '\n'

    tips = pd.read_csv('data/tips.csv')

    data = tips.drop(['tip'], axis=1)

    target = tips['tip']

Chapter 4  Predictive Modeling Through Regression



111

    v = ['sex', 'smoker', 'day', 'time']

    ls = data[v].to_dict(orient='records')

    vector = DictVectorizer(sparse=False, dtype=int)

    d = vector.fit_transform(ls)

    print ('one hot encoding:')

    print (d[0:3], br)

    print ('encoding order:')

    encode_order = vector.get_feature_names()

    print (encode_order, br)

    data = data.drop(['sex', 'smoker', 'day', 'time'], axis=1)

    X = data.values

    print ('feature shape after removing categorical columns:')

    print (X.shape, br)

    Xls, dls = X.tolist(), d.tolist()

    X = [np.array(row + dls[i]) for i, row in enumerate(Xls)]

    X = np.array(X)

    y = target.values

    print ('feature shape after adding encoded data back:')

    print (X.shape, br)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    model = LinearRegression(fit_intercept=True)

    model_name = model.__class__.__name__

    print ('<<' + model_name  +  '>>', br)

    model.fit(X_train, y_train)

    y_pred = model.predict(X_test)

    rmse = np.sqrt(mean_squared_error(y_test, y_pred))

    print (rmse, '(rmse)', br)

    print ('predict 1st test set element (actual/prediction):')

    print (y_test[0], y_pred[0], br)

    rints = [randint(0, y.shape[0]-1) for row in range(3)]

    print ('random integers:', rints, br)

    p = [X[rints[0]], X[rints[1]], X[rints[2]]]

    y_p = model.predict(p)

    y_p = list(np.around(y_p, 2))

Chapter 4  Predictive Modeling Through Regression



112

    print (y_p, '(predicted)')

    print ([y[rints[0]], y[rints[1]], y[rints[2]]], '(actual)')

Your output from executing Listing 4-2 should resemble the following:

One hot encoding:

[[0 0 1 0 1 0 1 0 1 0]

 [0 0 1 0 0 1 1 0 1 0]

 [0 0 1 0 0 1 1 0 1 0]]

encoding order:

['day=Fri', 'day=Sat', 'day=Sun', 'day=Thur', 'sex=Female', 'sex=Male', 

'smoker=No','smoker=Yes', 'time=Dinner', 'time=Lunch']

feature shape after removing categorical columns:

(244, 2)

feature shape after adding encoded data back:

(244, 12)

<<LinearRegression>>

0.9636287548943022 (rmse)

predict 1st test set element (actual/prediction):

2.64 2.8121130438023094

random integers: [202, 13, 143]

[2.19, 3.21, 4.52] (predicted)

[2.0, 3.0, 5.0] (actual)

The code begins by importing DictVectorizer as well as other requisite packages. 

The main block loads tips data, strips away feature tip and places the remaining features 

in variable data, and places feature tip in variable target. Next, we indicate features that 

need encoding by placing them in variable v.

The code continues by stripping away only features that need encoding and placing 

the result in variable ls. A DictVectorizer instance is then created and placed in variable 

vector. DictVectorizer is a Scikit-Learn technique that transforms lists of feature-value 

mappings to vectors.

Chapter 4  Predictive Modeling Through Regression



113

Data in vector is the then fitted (or trained) and transformed to one-hot encoded 

values, and the result is placed in variable d. To see encoding order, use function get_

feature_names. Next, encoded features are dropped from variable data so we can start 

building feature set X. Whew!

The code continues by creating a list based on X and another based on d so we can 

concatenate X with one-hot encoded values contained in d. All that remains is to convert 

X and y to NumPy values. The code ends by splitting X and y into train-test subsets, 

training with LinearRegression, calculating RMSE, and making predictions. RMSE is a bit 

higher because we didn’t add new data like in the previous example.

Tip U se get_dummies for one-hot encoding in most instances.

Although DictVectorizer is more difficult to implement than get_dummies, it has 

the advantage of being sparse. That is, absent features need not be stored. In addition, 

DictVectorizer is a useful representation transformation for training sequence classifiers 

in Natural Language Processing models that typically work by extracting feature 

windows around a particular word of interest.

The final code example in this section shown in Listing 4-3 loads engineered data 

(from NumPy files) into X and y, and calculates RMSE for several regression algorithms 

that implement regularization. Regularization is a technique used to reduce error by 

fitting a function (or algorithm) appropriately on a given data set to mitigate overfitting.

Listing 4-3.  Predicting from tips with regression regularization models

import numpy as np

from sklearn.linear_model import LinearRegression, Ridge,\

     Lasso, ElasticNet, SGDRegressor

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import StandardScaler

def get_scores(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

Chapter 4  Predictive Modeling Through Regression



114

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_tips.npy')

    y = np.load('data/y_tips.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    print ('rmse:')

    lr = LinearRegression().fit(X_train, y_train)

    rmse, lr_name = get_scores(lr, X_test, y_test)

    print (rmse, '(' + lr_name + ')')

    rr = Ridge(random_state=0).fit(X_train, y_train)

    rmse, rr_name = get_scores(rr, X_test, y_test)

    print (rmse, '(' + rr_name + ')')

    lasso = Lasso(random_state=0).fit(X_train, y_train)

    rmse, lasso_name = get_scores(lasso, X_test, y_test)

    print (rmse, '(' + lasso_name + ')')

    en = ElasticNet(random_state=0).fit(X_train, y_train)

    rmse, en_name = get_scores(en, X_test, y_test)

    print (rmse, '(' + en_name + ')')

    sgdr = SGDRegressor(random_state=0, max_iter=1000, tol=0.001)

    sgdr.fit(X_train, y_train)

    rmse, sgdr_name = get_scores(sgdr, X_test, y_test)

    print (rmse, '(' + sgdr_name + ')', br)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    print ('rmse std:')

    lr_std = LinearRegression().fit(X_train_std, y_train)

    rmse, lr_name = get_scores(lr_std, X_test_std, y_test)

    print (rmse, '(' + lr_name + ')')

    rr_std = Ridge(random_state=0).fit(X_train_std, y_train)

    rmse, rr_name = get_scores(rr_std, X_test_std, y_test)

    print (rmse, '(' + rr_name + ')')

    lasso_std = Lasso(random_state=0).fit(X_train_std, y_train)

Chapter 4  Predictive Modeling Through Regression



115

    rmse, lasso_name = get_scores(lasso_std, X_test_std, y_test)

    print (rmse, '(' + lasso_name + ')')

    en_std = ElasticNet(random_state=0)

    en_std.fit(X_train_std, y_train)

    rmse, en_name = get_scores(en_std, X_test_std, y_test)

    print (rmse, '(' + en_name + ')')

    sgdr_std = SGDRegressor(random_state=0, max_iter=1000, tol=0.001)

    sgdr_std.fit(X_train_std, y_train)

    rmse, sgdr_name = get_scores(sgdr_std, X_test_std, y_test)

    print (rmse, '(' + sgdr_name + ')')

Your output from executing Listing 4-3 should resemble the following:

rmse:

0.9474705746817206 (LinearRegression)

0.9469115898683899 (Ridge)

0.9439950256305224 (Lasso)

0.9307377813721578 (ElasticNet)

1.7005504977258326 (SGDRegressor)

rmse std:

0.9007751177881488 (LinearRegression)

0.9014055340745654 (Ridge)

1.333812899498391 (Lasso)

1.1310151423347359 (ElasticNet)

0.9021020134681715 (SGDRegressor)

The code example begins by importing Ridge, Lasso, ElasticNet, SGDRegressor, and 

other requisite packages. Function get_scores returns RMSE. The main block begins by 

loading data from NumPy files into X and y. Next, data is split into train-test subsets.

The remainder of the code trains data with LinearRegression and several regression 

models that implement regularization. Ridge, Lasso, ElasticNet, and SGDRegressor are 

popular Scikit-Learn regression algorithms introduced to regularize LinearRegression. 

Regularization reduces error by fitting a model appropriately on a given train set to 

mitigate overfitting. That is, regularization discourages learning a more complex model 

to mitigate the risk of overfitting.

Chapter 4  Predictive Modeling Through Regression



116

Tip U se regularization to reduce error and minimize overfitting with regression 
models.

Ridge regression imposes a penalty on the size of the coefficients. Lasso regression 

derives solutions with fewer parameter values (or a sparse model) that effectively 

reduces the number of variables upon which the solution is dependent.

Lasso uses L1 regularization and Ridge uses L2 regularization.

The key difference between L1 and L2 is the penalty term. Ridge adds squared 

magnitude of coefficient as penalty to the loss function to mitigate overfitting. Lasso 

(Least Absolute Shrinkage and Selection Operator) adds absolute value of magnitude 

of coefficient as penalty to the loss function, which works well when we have a huge 

number of features.

A loss (cost) function is one that maps an event (or values) of one or more features 

onto a real number that represents a cost associated with the event. The main difference 

between techniques is that Lasso shrinks the less important features’ coefficient to zero, 

which effectively removes them from consideration. Lasso provides the same results for 

dense and sparse data, and with sparse data the speed is improved.

ElasticNet regression embraces both L1 and L2 penalties as the regularizer. 

Combining L1 and L2 allows for learning a sparse model where few of the weights 

are nonzero like Lasso while still maintaining the regularization properties of Ridge. 

ElasticNet is at its best with multiple features that are correlated. A practical advantage 

of leveraging the tradeoff between Lasso and Ridge is that it allows ElasticNet to inherit 

some of Ridge’s stability under rotation while still performing well with a sparse model.

SGDRegressor performs by minimizing a regularized empirical loss with stochastic 

gradient descent (SGD). That is, the gradient of the loss is estimated with each sample, 

and the model is then updated along the way with a decreasing strength schedule 

(or learning rate). The regularizer is a penalty added to the loss function that shrinks 

parameters toward zero using either L1 (Lasso) or L2 (Ridge), or a combination of both 

(ElasticNet).

So, choice of regularization technique is highly dependent on the nature of the 

data. Sparse data would indicate beginning with Lasso. Creating overly complex models 

would indicate turning to Ridge. ElasticNet offers a compromise. SGDRegressor attempts 

to do it all. With relatively small data sets, trying all of these techniques offers no 

problems. But, large data sets are a different story because of the enormous processing 

time required (or high computational expense).

Chapter 4  Predictive Modeling Through Regression



117

Notice that sometimes scaling (or standardization) improves performance and 

sometimes it doesn’t. For instance, scaling helped with LinearRegression, Ridge, and 

SGDRegressor but hurt with Lasso and ElasticNet.

Tip E xperimentation is an excellent way to improve performance if you have the 
time, patience, and computing resources.

�Regressing boston
The first code example shown in Listing 4-4 displays feature importance from the boston 

data set, trains with RandomForestRegressor, and calculates RMSE with and without noise.

Listing 4-4.  Exploring boston data with RandomForestRegressor

import numpy as np, pandas as pd

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error

if __name__ == "__main__":

    br = '\n'

    boston = load_boston()

    X = boston.data

    y = boston.target

    print ('feature shape', X.shape)

    print ('target shape', y.shape, br)

    keys = boston.keys()

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X, y)

    features = boston.feature_names

    feature_importances = rfr.feature_importances_

    importance = sorted(zip(feature_importances, features), reverse=True)

Chapter 4  Predictive Modeling Through Regression



118

    [print (row) for row in importance]

    print ()

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X_train, y_train)

    rfr_name = rfr.__class__.__name__

    y_pred = rfr.predict(X_test)

    rmse = np.sqrt(mean_squared_error(y_test, y_pred))

    print (rfr_name + ' (rmse):', rmse, br)

    cols = list(features) + ['target']

    data = pd.DataFrame(data=np.c_[X, y], columns=cols)

    print ('boston dataset sample:')

    print (data[[�'RM', 'LSTAT', 'DIS', 'CRIM', 'NOX', 'PTRATIO', 'target']].

head(3), br)

    print ('data set before removing noise:', data.shape)

    noise = data.loc[data['target'] >= 50]

    data = data.drop(noise.index)

    print ('data set without noise:', data.shape, br)

    X = data.loc[:, data.columns != 'target'].values

    y = data['target'].values

    print ('cleansed feature shape:', X.shape)

    print ('cleansed target shape:', y.shape, br)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X_train, y_train)

    y_pred = rfr.predict(X_test)

    rmse = np.sqrt(mean_squared_error(y_test, y_pred))

    print (rfr_name + ' (rmse):', rmse)

    X_file = 'data/X_boston'

    y_file = 'data/y_boston'

    np.save(X_file, X)

    np.save(y_file, y)

Chapter 4  Predictive Modeling Through Regression



119

Your output from executing Listing 4-4 should resemble the following:

feature shape (506, 13)

target shape (506,)

(0.45730362625767496, 'RM')

(0.35008661885681375, 'LSTAT')

(0.06518862820215894, 'DIS')

(0.040989617257001, 'CRIM')

(0.02024797563034355, 'NOX')

(0.015576365835498516, 'PTRATIO')

(0.015524054184831321, 'TAX')

(0.011764308556043926, 'AGE')

(0.011324966974602932, 'B')

(0.005912139937999768, 'INDUS')

(0.003916064249793193, 'RAD')

(0.0011173446269339175, 'ZN')

(0.0010482894303040916, 'CHAS')

RandomForestRegressor (rmse): 4.091149842219918

boston dataset sample:

      RM  LSTAT     DIS     CRIM    NOX  PTRATIO  target

0  6.575   4.98  4.0900  0.00632  0.538     15.3    24.0

1  6.421   9.14  4.9671  0.02731  0.469     17.8    21.6

2  7.185   4.03  4.9671  0.02729  0.469     17.8    34.7

data set before removing noise: (506, 14)

data set without noise: (490, 14)

cleansed feature shape: (490, 13)

cleansed target shape: (490,)

RandomForestRegressor (rmse): 3.37169151536684

The code example begins by importing requisite packages. The main block 

loads boston data from sklearn.datasets into X and y and displays the shape. Next, 

RandomForestRegressor trains on the full data set (X and y) to create and display feature 

importance. The code continues by splitting data into train-test subsets and training 

(X_train, y_train) with RandomForestRegressor. RMSE is calculated and displayed.

Chapter 4  Predictive Modeling Through Regression



120

Random Forest is an ensemble technique capable of performing both regression and 

classification by using multiple decision trees and bagging. Bagging involves training 

each decision tree on a different data sample with replacement. The idea is to combine 

multiple decision trees to determine the result rather than relying on individual  

decision trees.

The code continues by reading X and y into a Pandas DataFrame and displaying 

the first three records. The noise is then removed from the DataFrame and saved 

into X and y. The cleansed data is split into train-test subsets and trained with 

RandomForestRegressor. Notice that RMSE is quite a bit lower (less error) with the 

cleansed data. The code concludes by saving X and y as NumPy files.

Sixteen data points have an MEDV value of 50.0, which likely contain missing or 

censored values and can be considered noise. So, we removed them from consideration. 

For more information on noise in the boston data set, consult the following link: 

https://www.ritchieng.com/machine-learning-project-boston-home-prices/.

The final code example in this section shown in Listing 4-5 loads the cleansed (noise 

removed) boston data and calculates RMSE with LinearRegression, regularization 

models, and RandomForestRegressor.

Listing 4-5.  Exploring boston data with regression algorithms

import numpy as np

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression, Ridge,\

     Lasso, ElasticNet, SGDRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import StandardScaler

def get_scores(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_boston.npy')

Chapter 4  Predictive Modeling Through Regression

https://www.ritchieng.com/machine-learning-project-boston-home-prices/


121

    y = np.load('data/y_boston.npy')

    print ('feature shape', X.shape)

    print ('target shape', y.shape, br)

    X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=0)

    print ('rmse:')

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X_train, y_train)

    rmse, rfr_name = get_scores(rfr, X_test, y_test)

    print (rmse, '(' + rfr_name + ')')

    lr = LinearRegression().fit(X_train, y_train)

    rmse, lr_name = get_scores(lr, X_test, y_test)

    print (rmse, '(' + lr_name + ')')

    ridge = Ridge(random_state=0).fit(X_train, y_train)

    rmse, ridge_name = get_scores(ridge, X_test, y_test)

    print (rmse, '(' + ridge_name + ')')

    lasso = Lasso(random_state=0).fit(X_train, y_train)

    rmse, lasso_name = get_scores(lasso, X_test, y_test)

    print (rmse, '(' + lasso_name + ')')

    en = ElasticNet(random_state=0).fit(X_train, y_train)

    rmse, en_name = get_scores(en, X_test, y_test)

    print (rmse, '(' + en_name + ')')

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    sgdr_std = SGDRegressor(random_state=0, max_iter=1000, tol=0.001)

    sgdr_std.fit(X_train_std, y_train)

    rmse, sgdr_name = get_scores(sgdr_std, X_test_std, y_test)

    print (rmse, '(' + sgdr_name + ' - scaled)')

Chapter 4  Predictive Modeling Through Regression



122

Your output from executing Listing 4-5 should resemble the following:

feature shape (490, 13)

target shape (490,)

rmse:

3.37169151536684 (RandomForestRegressor)

4.236710574387242 (LinearRegression)

4.2526986026173486 (Ridge)

5.097231463859832 (Lasso)

4.88844846745213 (ElasticNet)

4.410035683951274 (SGDRegressor - scaled)

The code begins by importing requisite packages. Function get_scores returns RMSE 

and algorithm name. The main block begins by loading data from NumPy files and 

splitting it into train-test subsets. Data is then trained with RandomForestRegressor, 

LinearRegression, Ridge, Lasso, ElasticNet, and SGDRegressor. Notice that 

RandomForestRegressor outperformed all of the regularization algorithms as its RMSE is 

the lowest.

�Regressing wine data
The first code example shown in Listing 4-6 loads red wine data from a CSV file, displays 

feature importance, and saves data to NumPy files.

Listing 4-6.  Exploring and saving red wine data

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestRegressor

if __name__ == "__main__":

    br = '\n'

    f = 'data/redwine.csv'

    red_wine = pd.read_csv(f)

    X = red_wine.drop(['quality'], axis=1)

    y = red_wine['quality']

    print (X.shape)

Chapter 4  Predictive Modeling Through Regression



123

    print (y.shape, br)

    features = list(X)

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X, y)

    feature_importances = rfr.feature_importances_

    importance = sorted(zip(feature_importances, features), reverse=True)

    for row in importance:

        print (row)

    print ()

    print (red_wine[['alcohol', 'sulphates', 'volatile acidity',

                     'total sulfur dioxide', 'quality']]. head())

    X_file = 'data/X_red'

    y_file = 'data/y_red'

    np.save(X_file, X)

    np.save(y_file, y)

Your output from executing Listing 4-6 should resemble the following:

(1599, 11)

(1599,)

(0.27432500255956216, 'alcohol')

(0.13700073893077233, 'sulphates')

(0.13053941311188708, 'volatile acidity')

(0.08068199773601588, 'total sulfur dioxide')

(0.06294612644261727, 'chlorides')

(0.057730976351602854, 'pH')

(0.055499749756166, 'residual sugar')

(0.05198192402458334, 'density')

(0.05114079873500658, 'fixed acidity')

(0.049730883807319035, 'free sulfur dioxide')

(0.04842238854446754, 'citric acid')

Chapter 4  Predictive Modeling Through Regression



124

   alcohol  sulphates  volatile acidity  total sulfur dioxide  quality

0      9.4       0.56              0.70                  34.0      5.0

1      9.8       0.68              0.88                  67.0      5.0

2      9.8       0.65              0.76                  54.0      5.0

3      9.8       0.58              0.28                  60.0      6.0

4      9.4       0.56              0.70                  34.0      5.0

The code begins by importing requisite packages. The main block loads red wine 

data from a CSV file. Next, feature set X is created by stripping off the target column 

quality from the Pandas DataFrame, and then target y is created from the quality 

column. X and y shapes are then displayed. The code concludes by displaying feature 

importance with the help of RandomForestRegressor and saving data to NumPy files.

The next code example shown in Listing 4-7 experiments with red wine data using a 

variety of regression algorithms.

Listing 4-7.  Exploring red wine data with regression algorithms

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression,\

     Ridge, Lasso, ElasticNet, SGDRegressor

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import PolynomialFeatures

from sklearn.pipeline import Pipeline

import matplotlib.pyplot as plt, seaborn as sns

def get_scores(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

if __name__ == "__main__":

    br = '\n'

    d = dict()

    X = np.load('data/X_red.npy')

    y = np.load('data/y_red.npy')

Chapter 4  Predictive Modeling Through Regression



125

    X_train, X_test, y_train, y_test =  train_test_split(

        X, y, test_size=0.2, random_state=0)

    print ('rmse (unscaled):')

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X_train, y_train)

    rmse, rfr_name = get_scores(rfr, X_test, y_test)

    d['rfr'] = [rmse]

    print (rmse, '(' + rfr_name + ')')

    lr = LinearRegression().fit(X_train, y_train)

    rmse, lr_name = get_scores(lr, X_test, y_test)

    d['lr'] = [rmse]

    print (rmse, '(' + lr_name + ')')

    ridge = Ridge(random_state=0).fit(X_train, y_train)

    rmse, ridge_name = get_scores(ridge, X_test, y_test)

    d['ridge'] = [rmse]

    print (rmse, '(' + ridge_name + ')')

    lasso = Lasso(random_state=0).fit(X_train, y_train)

    rmse, lasso_name = get_scores(lasso, X_test, y_test)

    d['lasso'] = [rmse]

    print (rmse, '(' + lasso_name + ')')

    en = ElasticNet(random_state=0).fit(X_train, y_train)

    rmse, en_name = get_scores(en, X_test, y_test)

    d['en'] = [rmse]

    print (rmse, '(' + en_name + ')')

    sgdr = SGDRegressor(random_state=0, max_iter=1000, tol=0.001)

    sgdr.fit(X_train, y_train)

    rmse, sgdr_name = get_scores(sgdr, X_test, y_test)

    print (rmse, '(' + sgdr_name + ')', br)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    print ('rmse scaled:')

    lr_std = LinearRegression().fit(X_train_std, y_train)

Chapter 4  Predictive Modeling Through Regression



126

    rmse, lr_std_name = get_scores(lr_std, X_test_std, y_test)

    print (rmse, '(' + lr_std_name + ')')

    rr_std = Ridge(random_state=0).fit(X_train_std, y_train)

    rmse, rr_std_name = get_scores(rr_std, X_test_std, y_test)

    print (rmse, '(' + rr_std_name + ')')

    lasso_std = Lasso(random_state=0).fit(X_train_std, y_train)

    rmse, lasso_std_name = get_scores(lasso_std, X_test_std, y_test)

    print (rmse, '(' + lasso_std_name + ')')

    en_std = ElasticNet(random_state=0).fit(X_train_std, y_train)

    rmse, en_std_name = get_scores(en_std, X_test_std, y_test)

    print (rmse, '(' + en_std_name + ')')

    sgdr_std = SGDRegressor(random_state=0, max_iter=1000, tol=0.001)

    sgdr_std.fit(X_train_std, y_train)

    rmse, sgdr_std_name = get_scores(sgdr_std, X_test_std, y_test)

    d['sgdr_std'] = [rmse]

    print (rmse, '(' + sgdr_std_name + ')', br)

    pipe = Pipeline([('poly', PolynomialFeatures(degree=2)),

                     ('linear', LinearRegression())])

    model = pipe.fit(X_train, y_train)

    rmse, poly_name = get_scores(model, X_test, y_test)

    d['poly'] = [rmse]

    print (PolynomialFeatures().__class__.__name__, '(rmse):')

    print (rmse, '(' + poly_name + ')')

    algo, rmse = [], []

    for key, value in d.items():

        algo.append(key)

        rmse.append(value[0])

    plt.figure('RMSE')

    sns.set(style="whitegrid")

    ax = sns.barplot(algo, rmse)

    plt.title('Red Wine Algorithm Comparison')

Chapter 4  Predictive Modeling Through Regression



127

    plt.xlabel('regressor')

    plt.ylabel('RMSE')

    plt.show()

Your output from executing Listing 4-7 should resemble the following:

rmse (unscaled):

0.5694654840286635 (RandomForestRegressor)

0.6200574149384266 (LinearRegression)

0.6185762657415644 (Ridge)

0.7455442007369433 (Lasso)

0.7450232657227877 (ElasticNet)

51120537008.37402 (SGDRegressor)

rmse scaled:

0.6216027053463463 (LinearRegression)

0.6215826846730879 (Ridge)

0.7584549718351333 (Lasso)

0.7584549718351333 (ElasticNet)

0.6234205584462227 (SGDRegressor)

PolynomialFeatures (rmse):

0.6382400985644077 (Pipeline)

Listing 4-7 also displays Figure 4-1. Figure 4-1 provides a visualization of RMSE 

scores for the algorithms used in this experiment.

Chapter 4  Predictive Modeling Through Regression



128

The code begins by importing PolynomialFeatures, Pipeline, seaborn, and other 

requisite packages. Function get_scores returns RMSE and model name. The main 

block begins by creating a dictionary to store the best RMSE scores from the training 

experiments. Algorithms train data with and without scaling, and the best score is saved 

in dictionary d. Next, data is split into train-test subsets.

The code continues by training unscaled data with LinearRegression, Ridge, 

Lasso, ElasticNet, SGDRegressor, and RandomForestRegressor. The best performing 

algorithm on this data set is RandomForestRegressor with a RMSE of approximately 

0.569. The code then trains scaled data with LinearRegression, Ridge, Lasso, ElasticNet, 

and SGDRegressor. The best performing algorithm on this data set is Ridge with a 

RMSE of approximately 0.622, which is not better than its unscaled RMSE. Although 

RMSE SGDRegressor was not the best performer, notice how much scaling impacts the 

algorithm! Finally, unscaled data is trained with PolynomialFeatures.

PolynomialFeatures offers an opportunity to improve performance by transforming 

inputs rather than improving a model. Polynomial regression allows for a linear 

Figure 4-1.  Red wine RMSE score comparison

Chapter 4  Predictive Modeling Through Regression



129

combination of an input raised to varying degrees. In this example, we square inputs 

(degree=2) to explore impact on performance. To train data, we pipe PolynomialFeatures 

to LinearRegression.

We can experiment with degree to see what happens to performance. We can cube 

inputs (degree=3), quadruple inputs (degree=4), and so on. Polynomial models can 

be very useful for nonlinear machine learning experiments, but be careful with high-

order polynomial models because they generally are not well-behaved. That is, they 

can produce dramatic unwanted fluctuations. Regularization can mitigate polynomial 

misbehavior.

Training with PolynomialFeatures is accomplished by piping the transformed input 

(squaring data) into LinearRegression. The code concludes by creating a visualization 

based on the best RMSE scores stored in dictionary d.

The next code example shown in Listing 4-8 experiments with polynomial fitting. 

In the previous example, we squared input data, trained the model, and calculated 

RMSE. In this one, we take input data to the second (squared), third, and fourth power, 

train each model, and calculate and display RMSE for comparison. Another change 

from the previous code is instead of piping PolynomialFeatures into LinearRegression, 

we transform train and test data with the PolynomialFeatures algorithm. We then train 

LinearRegression with the transformed data. Once data is trained, we display RMSE for 

each experiment.

Listing 4-8.  Polynomial fitting with red wine data

import numpy as np, pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import PolynomialFeatures

def get_scores(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

if __name__ == "__main__":

    br = '\n'

    d = dict()

Chapter 4  Predictive Modeling Through Regression



130

    X = np.load('data/X_red.npy')

    y = np.load('data/y_red.npy')

    X_train, X_test, y_train, y_test =  train_test_split(

        X, y, test_size=0.2, random_state=0)

    poly = PolynomialFeatures(degree=2)

    poly.fit(X_train, y_train)

    X_train_poly = poly.transform(X_train)

    lr = LinearRegression().fit(X_train_poly, y_train)

    X_test_poly = poly.transform(X_test)

    rmse, lr_name = get_scores(lr, X_test_poly, y_test)

    print (rmse, '(squared polynomial fitting)')

    poly = PolynomialFeatures(degree=3)

    poly.fit(X_train, y_train)

    X_train_poly = poly.transform(X_train)

    lr = LinearRegression().fit(X_train_poly, y_train)

    X_test_poly = poly.transform(X_test)

    rmse, lr_name = get_scores(lr, X_test_poly, y_test)

    print (rmse, '(cubic polynomial fitting)')

    poly = PolynomialFeatures(degree=4)

    poly.fit(X_train, y_train)

    X_train_poly = poly.transform(X_train)

    lr = LinearRegression().fit(X_train_poly, y_train)

    X_test_poly = poly.transform(X_test)

    rmse, lr_name = get_scores(lr, X_test_poly, y_test)

    print (rmse, '(quartic polynomial fitting)')

Your output from executing Listing 4-8 should resemble the following:

0.6382400985644077 (squared polynomial fitting)

0.8284645679714848 (cubic polynomial fitting)

97.85391125320886 (quartic polynomial fitting)

The code imports requisite packages. Function get_scores returns RMSE and  

model name. The main block loads data into X and y. It continues by splitting data 

into train-test subsets. Next, train and test data is fitted with PolynomialFeatures with 

squared input data (degree=2). Train data is then transformed. LinearRegression trains 

Chapter 4  Predictive Modeling Through Regression



131

on the transformed data and RMSE is displayed. The same process is followed with 

degree=3 and degree=4. For this data set, squaring the input provides the best RMSE.

Tip P olynomialFeatures can be a very useful technique for modeling nonlinear 
data sets, and it is easy to implement.

The next code example shown in Listing 4-9 loads white wine data from a CSV file, 

displays feature importance, and saves data to NumPy files.

Listing 4-9.  Exploring and saving white wine data

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestRegressor

if __name__ == "__main__":

    br = '\n'

    f = 'data/whitewine.csv'

    white_wine = pd.read_csv(f)

    X = white_wine.drop(['quality'], axis=1)

    y = white_wine['quality']

    print (X.shape)

    print (y.shape, br)

    features = list(X)

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X, y)

    feature_importances = rfr.feature_importances_

    importance = sorted(zip(feature_importances, features), reverse=True)

    for row in importance:

        print (row)

    print ()

    print (white_wine[[�'alcohol', 'sulphates', 'volatile acidity',  

'total sulfur dioxide', 'quality']]. head())

    X_file = 'data/X_white'

    y_file = 'data/y_white'

    np.save(X_file, X)

    np.save(y_file, y)

Chapter 4  Predictive Modeling Through Regression



132

Your output from executing Listing 4-9 should resemble the following:

(4898, 11)

(4898,)

(0.24186185906056268, 'alcohol')

(0.1251626059551235, 'volatile acidity')

(0.11524332271725685, 'free sulfur dioxide')

(0.07170261049200727, 'pH')

(0.06940456299270928, 'total sulfur dioxide')

(0.06899334812486085, 'residual sugar')

(0.06259740092261244, 'chlorides')

(0.06227404207074219, 'sulphates')

(0.061557623671947746, 'density')

(0.060982526101159625, 'citric acid')

(0.060220097891017656, 'fixed acidity')

   alcohol  sulphates  volatile acidity  total sulfur dioxide  quality

0      8.8       0.45              0.27                 170.0      6.0

1      9.5       0.49              0.30                 132.0      6.0

2     10.1       0.44              0.28                  97.0      6.0

3      9.9       0.40              0.23                 186.0      6.0

4      9.9       0.40              0.23                 186.0      6.0

The code begins by importing requisite packages. The main block loads white wine 

data from a CSV file. Next, feature set X is created by stripping off the target column 

quality from the Pandas DataFrame, and target y is created from the quality column. X 

and y shapes are then displayed. Notice that the white wine data set is composed of 4898 

data elements while red wine data was much smaller at 1599. The code concludes by 

displaying feature importance with the help of RandomForestRegressor and saving data 

to NumPy files.

The final code example shown in Listing 4-10 experiments with white wine data 

using a variety of regression algorithms.

Chapter 4  Predictive Modeling Through Regression



133

Listing 4-10.  Exploring white wine data with regression algorithms

import numpy as np, pandas as pd

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression,\

     Ridge, Lasso, ElasticNet, SGDRegressor

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import PolynomialFeatures

from sklearn.pipeline import Pipeline

import matplotlib.pyplot as plt, seaborn as sns

def get_scores(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

if __name__ == "__main__":

    br = '\n'

    d = dict()

    X = np.load('data/X_white.npy')

    y = np.load('data/y_white.npy')

    X_train, X_test, y_train, y_test =  train_test_split(

        X, y, test_size=0.2, random_state=0)

    print ('rmse (unscaled):')

    rfr = RandomForestRegressor(random_state=0, n_estimators=100)

    rfr.fit(X_train, y_train)

    rmse, rfr_name = get_scores(rfr, X_test, y_test)

    d['rfr'] = [rmse]

    print (rmse, '(' + rfr_name + ')')

    lr = LinearRegression().fit(X_train, y_train)

    rmse, lr_name = get_scores(lr, X_test, y_test)

    d['lr'] = [rmse]

    print (rmse, '(' + lr_name + ')')

    ridge = Ridge(random_state=0).fit(X_train, y_train)

Chapter 4  Predictive Modeling Through Regression



134

    rmse, ridge_name = get_scores(ridge, X_test, y_test)

    d['ridge'] = [rmse]

    print (rmse, '(' + ridge_name + ')')

    lasso = Lasso(random_state=0).fit(X_train, y_train)

    rmse, lasso_name = get_scores(lasso, X_test, y_test)

    d['lasso'] = [rmse]

    print (rmse, '(' + lasso_name + ')')

    en = ElasticNet(random_state=0).fit(X_train, y_train)

    rmse, en_name = get_scores(en, X_test, y_test)

    d['en'] = [rmse]

    print (rmse, '(' + en_name + ')', br)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    print ('rmse scaled:')

    sgd = SGDRegressor(max_iter=1000, tol=0.001, random_state=0)

    sgd.fit(X_train_std, y_train)

    rmse, sgd_name = get_scores(sgd, X_test_std, y_test)

    d['sgd'] = [rmse]

    print (rmse, '(' + sgd_name + ')', br)

    pipe = Pipeline([('poly', PolynomialFeatures(degree=2)),

                     ('linear', LinearRegression())])

    model = pipe.fit(X_train, y_train)

    rmse, pf_name = get_scores(model, X_test, y_test)

    d['poly'] = [rmse]

    print (PolynomialFeatures().__class__.__name__,'(rmse):')

    print (rmse, '(' + pf_name + ')')

    poly = PolynomialFeatures(degree=2)

    poly.fit(X_train, y_train)

    X_train_poly = poly.transform(X_train)

    lr = LinearRegression().fit(X_train_poly, y_train)

    X_test_poly = poly.transform(X_test)

    rmse, lr_name = get_scores(lr, X_test_poly, y_test)

Chapter 4  Predictive Modeling Through Regression



135

    print (rmse, '(without Pipeline)')

    algo, rmse = [], []

    for key, value in d.items():

        algo.append(key)

        rmse.append(value[0])

    plt.figure('RMSE')

    sns.set(style="whitegrid")

    ax = sns.barplot(algo, rmse)

    plt.title('White Wine Algorithm Comparison')

    plt.xlabel('regressor')

    plt.ylabel('RMSE')

    plt.show()

Your output from executing Listing 4-10 should resemble the following:

rmse (unscaled):

0.687111151629689 (RandomForestRegressor)

0.8123086554972433 (LinearRegression)

0.8141615403447382 (Ridge)

0.9255803421282806 (Lasso)

0.9242810596011943 (ElasticNet)

rmse scaled:

0.8092835779827245 (SGDRegressor)

PolynomialFeatures (rmse):

0.7767527802246017 (Pipeline)

0.7767527802246017 (without Pipeline)

Listing 4-10 also displays Figure 4-2. Figure 4-2 provides a visualization of RMSE 

scores for the algorithms used in this experiment.

Chapter 4  Predictive Modeling Through Regression



136

The code begins by importing requisite packages. Function get_scores returns RMSE 

and model name. The main block begins by creating a dictionary to store the best RMSE 

scores from the training experiments. It continues by loading white wine data into X and 

y from NumPy files. Data is then split into train-test subsets. Next, algorithms train data 

with and without scaling, and the best score is saved in dictionary d.

The code continues by training unscaled data with LinearRegression, Ridge, Lasso, 

ElasticNet, SGDRegressor, and RandomForestRegressor. The best performing algorithm 

on this data set is RandomForestRegressor with a RMSE of approximately 0.687. The 

code then trains scaled data with SGDRegressor. I had already determined (through 

experimentation not shown here) that RMSE for Ridge, Lasso, and ElasticNet was not 

improved with scaling, so I didn’t include the code. Finally, unscaled data is trained with 

PolynomialFeatures with and without Pipeline. Since both RMSE scores are identical, it 

shouldn’t matter which technique is used.

Figure 4-2.  White wine RMSE score comparison

Chapter 4  Predictive Modeling Through Regression



137
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_5

CHAPTER 5

Scikit-Learn Classifier 
Tuning from Simple 
Training Sets
Tuning is the process of maximizing an algorithm’s performance without overfitting, 

underfitting, or creating high variance. Overfitting is when an algorithm trains data so 

exactly that it may fail to fit new data or predict future results reliably. Overfitting usually 

occurs when a model is too complex for the data it is trying to train. An overly complex 

model trains data very well, but also fits noise that is not a part of the data. So, when used 

to train new data, noise is introduced causing unpredictable results.

Underfitting is when an algorithm cannot adequately capture the underlying 

structure of the data. An underfitting model underperforms because it is not complex 

enough to capture the meaning of the data. High variance is when an algorithm 

introduces too much error into prediction resulting in poor performance.

High-performance tuning is accomplished by selecting optimal hyperparameters 

from a model. A model hyperparameter is a configuration external to the model and 

whose value cannot be estimated from data. Most machine learning algorithms have a set 

of hyperparameters. Some algorithms have few and others have many. Algorithms with 

fewer hyperparameters are easier to tune because there are less adjustments to consider.

Tuning machine learning algorithms is very difficult because it is often a 

nonintuitive, time-consuming, and systematic trial-and-error process. Difficulty is 

exacerbated because hyperparameters must be set manually before training can even 

begin. Tuning expertise can be enhanced by reading scholarly articles, industry books, 

online articles (e.g., Scikit-Learn documentation), watching YouTube videos, experience 

with data and data sets, diligence, hard work, and just plain practice.



138

Machine learning algorithms chosen for our tuning examples are not a coincidence. 

I chose them based on many hours of experimentation, reading, and insight. Algorithms 

that performed best for a given data set were included and those that performed poorly 

were not.

Scikit-Learn offers two vehicles for optimizing hyperparameter tuning: 

GridSearchCV and RandomizedSearchCV. GridSearchCV performs an exhaustive search 

over specified parameter values for an estimator (or machine learning algorithm) and 

returns the best performing hyperparametric combination.

So, all we need to do is specify the hyperparameters with which we want to 

experiment and their range of values, and GridSearchCV performs all possible 

combinations of hyperparameter values using cross-validation. As such, we naturally 

limit our choice of hyperparameters and their range of values. Theoretically, we can 

specify a set of parameter values for ALL hyperparameters of a model, but such a search 

consumes vast computer resources and time.

RandomizedSearchCV evaluates based on a predetermined subset of 

hyperparameters, randomly selects a chosen number of hyperparametric pairs from 

a given domain, and tests only those selected. RandomizedSearchCV tends to be less 

computationally expensive and time consuming because it doesn’t evaluate every 

possible hyperparametric combination. This method greatly simplifies analysis without 

significantly sacrificing optimization. RandomizedSearchCV is often an excellent choice 

for high-dimensional data as it returns a good hyperparametric combination very quickly.

Tip  Tuning with GridSearchCV is suitable for an exhaustive search for the best 
performing hyperparameters given adequate computing resources. Tuning with 
RandomizedSearchCV is suitable for a good search or if tuning high-dimensional data.

Learning to tune classifiers can be accelerated by working through examples with a 

variety of data sets and classifiers. But, I also suggest following a structured process:

	 a)	 Always begin with default hyperparameters using baseline 

algorithms.

	 b)	 Experiment with training and test sizes.

	 c)	 Use dimensionality reduction when working with high-

dimensional data.

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



139

	 d)	 Draw random samples when working with large data sets.

	 e)	 Scale data (where appropriate) to potentially increase 

performance.

	 f )	 Use GridSearchCV or RandomizedSearchCV to tune.

	 g)	 Once tuned with baseline algorithms, experiment with complex 

algorithms.

A baseline algorithm is one with few hyperparameters, so it is easy to tune. It also 

allows us to establish baseline performance on a predictive modeling problem. Using 

a baseline provides a point of comparison with more advanced algorithms that you 

evaluate later in the tuning process.

Tip  Begin tuning with a baseline algorithm (with its default hyperparameters) to 
establish baseline performance.

Once an optimally tuned algorithm is created on sample data, experiment with the 

full data set if adequate computer resources are available. Although such experiments 

can be costly, at least we have an excellent model to work with. Imagine the expense of 

trial-and-error experiments without sampling!

Since tuning is a complex endeavor, it is a good idea to learn by working with 

simple data sets. By simple, we mean low-dimensional and small data sets. First, tuning 

simple data allows experimentation without extensive computational expense or 

time. Trial-and-error tuning experimentation on simple data sets consumes relatively 

little computer and people time. Second, simple data sets are easy to work with and 

understand. Third, we can use many, if not all, hyperparameters, with GridSearchCV or 

RandomizedSearchCV.

�Tuning Data Sets
We concentrate on four data sets: Iris, digits, banking, and wine. The Iris data set consists 

of 150 data elements representing three species of Iris. The digits data set consists of 

1797 digit images. The banking data set consists of 41188 data elements representing 

client subscriptions. The wine data set consists of 178 data elements representing  

wine quality.

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



140

�Tuning Iris Data
The code example shown in Listing 5-1 trains and tunes load_iris with 

KNeighborsClassifier, GridSearchCV, and RandomizedSearchCV. Since we use the 

humanfriendly package in the following code snippet and it is not usually preinstalled, 

please install as follows:

pip install humanfriendly

Listing 5-1.  Tuning Iris data with KNeighborsClassifier

import numpy as np, humanfriendly as hf

import time

from sklearn.datasets import load_iris

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import RandomizedSearchCV

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.model_selection import cross_val_score

def get_scores(model, Xtrain, ytrain, Xtest, ytest):

    y_pred = model.predict(Xtrain)

    train = accuracy_score(ytrain, y_pred)

    y_pred = model.predict(Xtest)

    test = accuracy_score(ytest, y_pred)

    return train, test, model.__class__.__name__

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



141

if __name__ == "__main__":

    br = '\n'

    iris = load_iris()

    X = iris.data

    y = iris.target

    targets = iris.target_names

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    knn = KNeighborsClassifier()

    print (knn, br)

    distances = [1, 2, 3, 4, 5]

    k_range = list(range(1, 31))

    leaf = [10]

    param_grid = dict(n_neighbors=k_range, p=distances, leaf_size=leaf)

    start = time.perf_counter()

    grid = GridSearchCV(knn, param_grid, cv=10, scoring='accuracy')

    grid.fit(X, y)

    see_time('GridSearchCV total tuning time:')

    bp = grid.best_params_

    print ()

    print ('best parameters:')

    print (bp, br)

    knn_best = KNeighborsClassifier(**bp).fit(X_train, y_train)

    train, test, name = get_scores(knn_best, X_train, y_train, X_test, y_test)

    print (name, 'train/test scores (GridSearchCV):')

    print (train, test, br)

    scores = get_cross(knn, X, y)

    print ('cross-val scores:')

    print (scores, br)

    print ('avg cross-val score:', np.mean(scores), br)

    d = grid.cv_results_

    print ('mean grid score:', np.mean(d['mean_test_score']), br)

    vector = [[3, 5, 4, 2]]

    vectors = [[2, 5, 3, 5], [1, 4, 2, 1]]

    y_pred = knn_best.predict(vector)

    print (targets[y_pred])

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



142

    y_preds = knn_best.predict(vectors)

    print (targets[y_preds], br)

    start = time.perf_counter()

    �rand = RandomizedSearchCV(�knn, param_grid, cv=10, random_state=0, 

scoring='accuracy', n_iter=10)

    rand.fit(X, y)

    see_time('RandomizedSearchCV total tuning time:')

    bp = rand.best_params_

    print()

    print ('best parameters:')

    print (bp, br)

    knn_best = KNeighborsClassifier(**bp).fit(X_train, y_train)

    train, test, name = get_scores(knn_best, X_train, y_train, X_test, y_test)

    print (name, 'train/test scores (RandomizedSearchCV):')

    print (train, test)

Go ahead and execute the code from Listing 5-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 5-1 should resemble the following:

KNeighborsClassifier(�algorithm='auto', leaf_size=30, metric='minkowski', 

metric_params=None, n_jobs=None, n_neighbors=5, p=2, 

weights='uniform')

GridSearchCV total tuning time: 7 seconds and 388.94 milliseconds

best parameters:

{'leaf_size': 10, 'n_neighbors': 6, 'p': 3}

KNeighborsClassifier train/test scores (GridSearchCV):

0.9732142857142857 0.9736842105263158

cross-val scores:

[1.         0.93333333 1.         1.         0.86666667 0.93333333

 0.93333333 1.         1.         1.        ]

avg cross-val score: 0.9666666666666668

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



143

mean grid score: 0.9673333333333333

['versicolor']

['versicolor' 'setosa']

RandomizedSearchCV total tuning time: 473.88 milliseconds

best parameters:

{'p': 3, 'n_neighbors': 13, 'leaf_size': 10}

KNeighborsClassifier train/test scores (RandomizedSearchCV):

0.9642857142857143 0.9736842105263158

The code begins by importing GridSearchCV, RandomizedSearchCV, cross_val_

score, and other requisite packages. Function get_scores returns train-test accuracy and 

algorithm name. Function get_cross returns cross-validation score. Function see_time 

returns elapsed time. The main block loads the data and splits it into train-test subsets. 

The hyperparameters for KNeighborsClassifier are then displayed.

Tip I t is always a good idea to display an algorithm’s hyperparameters before tuning.

We tune KNeighborsClassifier by adjusting p, leaf_size, and n_neighbors.

Tip  Scikit-Learn and other online documentation are good places to learn more 
about an algorithm’s hyperparameters.

p is the power parameter for the Minkowski metric that adjusts distances. Adjust 

leaf_size to reduce number of candidates for the neighbors. Adjust n_neighbors to control 

number of neighbors.

The code continues by creating the parameter grid for GridSearchCV. We want to test 

distances (or p) from 1 to 5, n_neighbors from 1 to 31, and leaf_size of 10. By assigning 

the list [10] to leaf_size, we override its default value.

Tip I f a hyperparameter is not included in the search, its default value is used. If 
a single value (as a list) is included in the search, its value overrides the default but 
doesn’t add computational expense to the search.

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



144

Next, we tune with GridSearchCV. Notice we use X and y because GridSearchCV 

conducts its own cross-validation of the data set. We continue by displaying the best 

parameters. We then use the best parameters with KNeighborsClassifier.

The results are excellent because the score is over 97% with an almost perfect fit. 

We run cross-validation on the train data to get an idea of how well an algorithm should 

perform. The cross-validation score is a bit under 97%, which means that our results 

are solid. Accuracy for a tuning experiment should approximate or exceed the cross-

validation score.

Tip  The cross-validation score approximates the best performance we can attain 
from an algorithm. So, our performance should be close or hopefully better.

We then calculate and display average score from GridSearchCV. With our 

tuned model, we make some predictions. The code concludes by tuning using 

RandomizedSearchCV with the same parameter grid. Scores are almost identical, but 

elapsed time is much better with RandomizedSearchCV!

�Tuning Digits Data
The code example shown in Listing 5-2 trains and tunes load_digits with 

KNeighborsClassifier, LogisticRegression, and GridSearchCV.

Listing 5-2.  Tuning digits data with two algorithms

import numpy as np, humanfriendly as hf

import time

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split,\

     cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

from sklearn.model_selection import GridSearchCV

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



145

def get_scores(model, Xtrain, ytrain, Xtest, ytest):

    y_pred = model.predict(Xtrain)

    train = accuracy_score(ytrain, y_pred)

    y_pred = model.predict(Xtest)

    test = accuracy_score(ytest, y_pred)

    return train, test, model.__class__.__name__

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    digits = load_digits()

    X = digits.data

    y = digits.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    knn = KNeighborsClassifier().fit(X_train, y_train)

    print (knn, br)

    train, test, name = get_scores(knn, X_train, y_train, X_test, y_test)

    knn_name, acc1, acc2 = name, train, test

    print (str(knn_name) + ':')

    print ('train:', np.round(acc1, 2),

           'test:', np.round(acc2, 2), br)

    param_grid = {'n_neighbors': np.arange(1, 31, 2),

                  'metric': ['euclidean', 'cityblock']}

    start = time.perf_counter()

    grid = GridSearchCV(knn, param_grid, cv=5, n_jobs=-1)

    grid.fit(X, y)

    see_time('GridSearchCV total tuning time:')

    best_params = grid.best_params_

    print (best_params, br)

    knn_tuned = KNeighborsClassifier(**best_params)

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



146

    knn_tuned.fit(X_train, y_train)

    train, test, name = get_scores(knn_tuned, X_train, y_train, X_test, y_test)

    knn_name, acc1, acc2 = name, train, test

    print (knn_name + ' (tuned):')

    print ('train:', np.round(acc1, 2),

           'test:', np.round(acc2, 2), br)

    lr = LogisticRegression(random_state=0, max_iter=4000,

                            multi_class='auto', solver='lbfgs')

    print (lr, br)

    lr.fit(X_train, y_train)

    train, test, name = get_scores(lr, X_train, y_train, X_test, y_test)

    lr_name, acc1, acc2 = name, train, test

    print (lr_name + ':')

    print ('train:', np.round(acc1, 2),

           'test:', np.round(acc2, 2), br)

    param_grid = {'penalty': ['l2'],

                  'solver': ['newton-cg', 'lbfgs', 'sag'],

                  'max_iter': [4000], 'multi_class': ['auto'],

                  'C': [0.001, 0.01, 0.1]}

    start = time.perf_counter()

    grid = GridSearchCV(lr, param_grid, cv=5, n_jobs=-1)

    grid.fit(X, y)

    see_time('GridSearchCV total tuning time:')

    bp = grid.best_params_

    print (bp)

    lr_tuned = LogisticRegression(**bp, random_state=0)

    lr_tuned.fit(X_train, y_train)

    train, test, name = get_scores(lr_tuned, X_train, y_train, X_test, y_test)

    lr_name, acc1, acc2 = name, train, test

    print (lr_name + ' (tuned):')

    print ('train:', np.round(acc1, 2),

           'test:', np.round(acc2, 2), br)

    print ('cross-validation score knn:')

    knn = KNeighborsClassifier()

    scores = get_cross(knn, X, y)

    print (np.mean(scores))

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



147

Your output from executing Listing 5-2 should resemble the following:

KNeighborsClassifier(algorithm='auto', leaf_size=30,

           metric='minkowski', metric_params=None, n_jobs=None,

           n_neighbors=5, p=2, weights='uniform')

KNeighborsClassifier:

train: 0.99 test: 0.98

GridSearchCV total tuning time: 9 seconds and 609.98 milliseconds

{'metric': 'euclidean', 'n_neighbors': 3}

KNeighborsClassifier (tuned):

train: 0.99 test: 0.99

LogisticRegression(C=1.0, class_weight=None, dual=False,

          fit_intercept=True, intercept_scaling=1, max_iter=4000,

          multi_class='auto', n_jobs=None, penalty='l2',

          random_state=0, solver='lbfgs', tol=0.0001, verbose=0,

          warm_start=False)

LogisticRegression:

train: 1.0 test: 0.95

GridSearchCV total tuning time: 12 seconds and 708.79 milliseconds

{'C': 0.01, 'max_iter': 4000, 'multi_class': 'auto', 'penalty': 'l2', 

'solver': 'lbfgs'}

LogisticRegression (tuned):

train: 0.99 test: 0.96

cross-validation score knn:

0.9739482872546906

The code begins by importing requisite packages. Function get_scores returns 

accuracy scores and model name. Function see_time returns elapsed time. The 

main block loads digit data into X and y and splits it into train-test subsets. Next, 

KNeighborsClassifier (with default hyperparameters) trains on the data, and results are 

displayed.

The code continues by tuning with GridSearchCV. For the tuning experiment, 

KNeighborsClassifier is the model, and we adjust n_neighbors and metric 

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



148

hyperparameters. From my experience and research, the number of neighbors is the 

most important hyperparameter to adjust for KNeighborsClassifier. Hyperparameter 

metric is the distance to use for the tree.

Tuning improved performance because we have an ideal fit. Of course, load_digits is 

heavily preprocessed, which makes it easy to tune. However, tuning is so complex that it 

is a good idea to work with simple data sets to learn the fundamentals.

The code continues by tuning with LogisticRegression. The algorithm (with its 

default parameters) is too complex as the results indicate overfitting. That is, the 

algorithm trains data perfectly, but test set accuracy is quite a bit lower.

Tip  When test accuracy is quite a bit lower than train accuracy, the training 
algorithm is too complex for the data set so overfitting occurs.

Tuning LogisticRegression with GridSearchCV reduces overfitting, but it doesn’t 

perform as well as KNeighborsClassifier on the data. The hyperparameters adjusted for 

this tuning experiment include penalty, solver, max_iter, and C. The penalty involves the 

type of regularization. The solver specifies the algorithm to use during the optimization 

process. The max_iter hyperparameter indicates the maximum number of iterations 

taken for the solver to converge. Finally, C indicates the inverse of regularization 

strength. Smaller values for C specify stronger regularization.

The code ends by conducting cross-validation with KNeighborsClassifier. We 

conducted cross-validation with this algorithm because it was the best performer on 

the data. Cross-validation is a resampling procedure used to evaluate machine learning 

model performance. In this case, our performance is approaching 99%, which is better 

than the cross-validation score. So, we are confident that performance of our best model 

(KNeighborsClassifier) is optimal. If cross-validation is very different than our best 

modeling experiment, we may be doing something wrong or need to continue tuning.

Tip  Given adequate computing resources, cross-validation is a great technique 
to test the veracity of your algorithms.

Although LogisticRegression didn’t perform as well as KNeighborsClassifier, tuning 

did improve performance. That is, test performance adjusted up while train performance 

adjusted down. When tuning adjusts train and test performance toward each other, we 

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



149

are making progress. However, if we are still not satisfied with performance, we should 

continue experimentation. But, at least we are moving in a positive direction.

Tip A s tuning experimentation adjusts train and test scores toward each other, 
we know our tuning experiment is making progress.

�Tuning Bank Data
The first code example shown in Listing 5-3 tunes a random sample drawn from the 

bank data set with svm.SVC.

Listing 5-3.  Tuning a bank data random sample with svm.SVC

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split,\

     RandomizedSearchCV, cross_val_score

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    name = model.__class__.__name__

    return (name, train, test)

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



150

    else: s = [random.choice(d)

               for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_bank.npy')

    y = np.load('data/y_bank.npy')

    sample_size = 4000

    data = prep_data(X, y)

    Xs, ys = create_sample(data, sample_size, replace='no')

    Xs = StandardScaler().fit_transform(Xs)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (Xs, ys, random_state=0)

    svm = SVC(gamma='scale', random_state=0)

    print (svm, br)

    svm.fit(X_train, y_train)

    svm_scores = get_scores(svm, X_train, y_train, X_test, y_test)

    print (svm_scores[0] + ' (train, test):')

    print (svm_scores[1], svm_scores[2], br)

    Cs = [0.0001, 0.001]

    param_grid = {'C': Cs}

    start = time.perf_counter()

    rand = RandomizedSearchCV(�svm, param_grid, cv=3, n_jobs = -1,  

random_state=0, verbose=2, n_iter=2)

    rand.fit(X, y)

    see_time('RandomizedSearchCV total tuning time:')

    bp = rand.best_params_

    print (bp, br)

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



151

    svm_tuned = SVC(**bp, gamma='scale', random_state=0)

    svm_tuned.fit(X_train, y_train)

    svm_scores = get_scores(svm_tuned, X_train, y_train, X_test, y_test)

    print (svm_scores[0] + ' (train, test):')

    print (svm_scores[1], svm_scores[2], br)

    print ('cross-validation score:')

    svm = SVC(gamma='scale')

    scores = get_cross(svm, Xs, ys)

    print (np.mean(scores))

Your output from executing Listing 5-3 should resemble the following:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

  decision_function_shape='ovr', degree=3, gamma='scale',

  kernel='rbf', max_iter=-1, probability=False, random_state=0,

  shrinking=True, tol=0.001, verbose=False)

SVC (train, test):

0.949 0.893

Fitting 3 folds for each of 2 candidates, totalling 6 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:   55.4s 

remaining:   55.4s

[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:   57.0s finished

RandomizedSearchCV total tuning time: 1 minute, 31 seconds and 171.06 

milliseconds

{'C': 0.0001}

SVC (train, test):

0.891 0.875

cross-validation score:

0.9102441546509665

The code begins by importing RandomizedSearchCV, svm.SVC, and other requisite 

packages. Function get_scores returns accuracy scores and model name. Function 

prep_data prepares data for processing the sample in function create_sample. Function 

create_sample creates a random sample. Function see_time returns elapsed time.

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



152

The main block loads data, creates a sample of 4000 without replacement, and 

splits data into train-test subsets. Next, we scale data, train with svm.SVC (with default 

hyperparameters), and display results. The code continues by tuning svm.SVC with 

RandomizedSearchCV.

We only adjust the C hyperparameter, which is a regularization parameter that 

controls the trade-off between achieving a low error on training data and minimizing the 

norm of the weights. As we increase C, model complexity increases, which increases the 

chances of overfitting. Also notice that verbose is set to two (verbose=2).

The verbose parameter (not hyperparameter) controls the verbosity. The higher we 

set the number, the more messages we get. So, upon execution we notice messages about 

what is occurring during the tuning process. GridSearchCV also has a verbosity option.

By just tuning with two values of C, elapsed time is already over one minute! 

However, we seem to achieve a good fit. The cross-validation score confirms that we are 

doing well with svm.SVC, but could do even better with more tuning experimentation. 

That is, we might be able to squeeze a bit more performance out of svm.SVC with more 

experimentation.

Tip I f our best model test score is close to the cross-validation score, we don’t 
need to continue tuning.

Through a lot of tuning experimentation, I was able to drastically reduce tuning 

complexity. I didn’t begin with just two C values nor did I just tune with C. Moreover, I 

initially tried tuning with the entire data set but found it too computationally expensive, 

so I trained on a sample.

The next code example shown in Listing 5-4 tunes a random sample drawn from the 

bank data set with KNeighborsClassifier.

Listing 5-4.  Tuning a bank data random sample with KNeighborsClassifier

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split,\

     RandomizedSearchCV, cross_val_score

from sklearn.neighbors import KNeighborsClassifier

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



153

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    name = model.__class__.__name__

    return (name, train, test)

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d)

               for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_bank.npy')

    y = np.load('data/y_bank.npy')

    sample_size = 4000

    data = prep_data(X, y)

    Xs, ys = create_sample(data, sample_size, replace='no')

    X_train, X_test, y_train, y_test = train_test_split\

                                       (Xs, ys, random_state=0)

    knn = KNeighborsClassifier()

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



154

    print (knn, br)

    knn.fit(X_train, y_train)

    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test)

    print (knn_scores[0] + ' (train, test):')

    print (knn_scores[1], knn_scores[2], br)

    param_grid = {'n_neighbors': np.arange(1, 31, 2),

                  'metric': ['euclidean']}

    start = time.perf_counter()

    rand = RandomizedSearchCV(knn, param_grid, cv=3, n_jobs = -1,

                              random_state=0, verbose=2)

    rand.fit(X, y)

    see_time('RandomizedSearchCV total tuning time:')

    bp = rand.best_params_

    print (bp, br)

    file = 'data/bp_bank'

    np.save(file, bp)

    knn_tuned = KNeighborsClassifier(**bp).fit(X_train, y_train)

    knn_scores = get_scores(knn_tuned, X_train, y_train, X_test, y_test)

    print (knn_scores[0] + ' (train, test):')

    print (knn_scores[1], knn_scores[2], br)

    print ('cross-validation score:')

    knn = KNeighborsClassifier()

    scores = get_cross(knn, Xs, ys)

    print (np.mean(scores))

Your output from executing Listing 5-4 should resemble the following:

KNeighborsClassifier(algorithm='auto', leaf_size=30,

           metric='minkowski', metric_params=None, n_jobs=None,

           n_neighbors=5, p=2, weights='uniform')

KNeighborsClassifier (train, test):

0.927 0.906

Fitting 3 folds for each of 10 candidates, totalling 30 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  30 out of  30 | elapsed:   59.6s finished

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



155

RandomizedSearchCV total tuning time: 1 minute and 654.85 milliseconds

{'n_neighbors': 29, 'metric': 'euclidean'}

KNeighborsClassifier (train, test):

0.913 0.91

cross-validation score:

0.9032489046806542

The code begins by importing requisite packages. Function get_scores returns 

accuracy scores and model name. Function prep_data prepares data for processing the 

sample in function create_sample. Function create_sample creates a random sample. 

Function see_time returns elapsed time.

The main block loads data, creates a sample of 4000 without replacement, and 

splits data into train-test subsets. Next, we train with KNeighborsClassifier (with 

default hyperparameters) and display results. The code continues by tuning with 

RandomizedSearchCV. We adjust n_neighbors and force metric to euclidean. We also 

save best parameters for use in the next code example.

Through experimentation, I found that euclidean worked best. Tuning 

KNeighborsClassifier provided a much better fit than the model with default parameters. 

The cross-validation score confirms that we are doing well because it is very close to our 

test score. Notice that we did use 10 folds for cross-validation. My experience suggests 

that cross-validations of 5 or 10 seem to work well. However, be cautious as more cross-

validations increase processing time.

The final code example in this section shown in Listing 5-5 models the entire bank 

data set using KNeighborsClassifier with best parameters garnered from the previous 

tuning exercise.

Listing 5-5.  Tuning bank data with KNeighborsClassifier

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



156

    test = model.score(xtest, y_test)

    name = model.__class__.__name__

    return (name, train, test)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_bank.npy')

    y = np.load('data/y_bank.npy')

    bp = np.load('data/bp_bank.npy')

    bp = bp.tolist()

    print ('best parameters:')

    print (bp, br)

    X_train, X_test, y_train, y_test = train_test_split\

                                       (X, y, random_state=0)

    start = time.perf_counter()

    knn = KNeighborsClassifier(**bp)

    knn.fit(X_train, y_train)

    see_time('training time:')

    start = time.perf_counter()

    knn_scores = get_scores(knn, X_train, y_train, X_test, y_test)

    see_time('scoring time:')

    print ()

    print (knn_scores[0] + ' (train, test):')

    print (knn_scores[1], knn_scores[2])

Your output from executing Listing 5-5 should resemble the following:

best parameters:

{'n_neighbors': 29, 'metric': 'euclidean'}

training time: 461.58 milliseconds

scoring time: 10 seconds and 62.98 milliseconds

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



157

KNeighborsClassifier (train, test):

0.9154769997733968 0.9138584053607847

The code example imports requisite packages. Function get_scores returns accuracy 

scores and model name. Function see_time returns elapsed time. The main block loads 

bank data and best parameters for KNeighborsClassifier. Next, data is split into train-

test subsets. The code ends by training the model using best parameters and displaying 

results.

Results indicate we achieved a really good fit and entire processing time is under 

eleven seconds! So, tuning with random samples is a great way to reduce computational 

expense.

Tip  Random sampling is a computationally inexpensive way to tune.

�Tuning Wine Data
The first code example shown in Listing 5-6 leverages SGDClassifier and 

LinearDiscriminantAnalysis on load_wine.

Listing 5-6.  Exploring wine data with two classifiers

import numpy as np, random

from sklearn.datasets import load_wine

from sklearn.preprocessing import StandardScaler

from sklearn.discriminant_analysis\

     import LinearDiscriminantAnalysis as LDA

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import train_test_split,\

     cross_val_score

from sklearn import metrics

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



158

if __name__ == "__main__":

    br = '\n'

    wine = load_wine()

    X = wine.data

    y = wine.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    lda = LDA().fit(X_train, y_train)

    print (lda, br)

    lda_name = lda.__class__.__name__

    y_pred = lda.predict(X_train)

    accuracy = metrics.accuracy_score(y_train, y_pred)

    accuracy = str(accuracy * 100) + '%'

    print (lda_name + ':')

    print ('train:', accuracy)

    y_pred_test = lda.predict(X_test)

    accuracy = metrics.accuracy_score(y_test, y_pred_test)

    accuracy = str(round(accuracy * 100, 2)) + '%'

    print ('test: ', accuracy, br)

    print ('cross-validation:')

    scores = get_cross(lda, X, y)

    print (np.mean(scores), br)

    n, ls = 100, []

    for i, row in enumerate(range(n)):

        rs = random.randint(1, 100)

        sgd = LDA().fit(X_train, y_train)

        y_pred = lda.predict(X_test)

        accuracy = metrics.accuracy_score(y_test, y_pred)

        ls.append(accuracy)

    avg = sum(ls) / len(ls)

    print ('MCS')

    print (avg, br)

    X = StandardScaler().fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    sgd = SGDClassifier(max_iter=100, random_state=1)

    print (sgd, br)

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



159

    sgd.fit(X_train, y_train)

    sgd_name = sgd.__class__.__name__

    y_pred = sgd.predict(X_train)

    y_pred_test = sgd.predict(X_test)

    print (sgd_name + ':')

    print('train: {:.2%}'.format(metrics.accuracy_score\

                                 (y_train, y_pred)))

    print('test:  {:.2%}\n'.format(metrics.accuracy_score\

                                   (y_test, y_pred_test)))

    print ('cross-validation:')

    scores = get_cross(sgd, X, y)

    print (np.mean(scores), br)

    n, ls = 100, []

    for i, row in enumerate(range(n)):

        rs = random.randint(1, 100)

        sgd = SGDClassifier(max_iter=100).fit(X_train, y_train)

        y_pred = sgd.predict(X_test)

        accuracy = metrics.accuracy_score(y_test, y_pred)

        ls.append(accuracy)

    avg = sum(ls) / len(ls)

    print ('MCS:')

    print (avg)

Your output from executing Listing 5-6 should resemble the following:

LinearDiscriminantAnalysis(n_components=None, priors=None,

              shrinkage=None, solver='svd',

              store_covariance=False, tol=0.0001)

LinearDiscriminantAnalysis:

train: 100.0%

test:  97.78%

cross-validation:

0.9832989336085312

MCS

0.9777777777777754

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



160

SGDClassifier(alpha=0.0001, average=False, class_weight=None,

       early_stopping=False, epsilon=0.1, eta0=0.0,

       fit_intercept=True, l1_ratio=0.15,

       learning_rate='optimal', loss='hinge', max_iter=100,

       n_iter=None, n_iter_no_change=5, n_jobs=None,

       penalty='l2', power_t=0.5, random_state=1, shuffle=True,

       tol=None, validation_fraction=0.1, verbose=0,

       warm_start=False)

SGDClassifier:

train: 100.00%

test:  97.78%

cross-validation:

0.9616959064327485

MCS:

0.9966666666666663

The code begins by importing LinearDiscriminantAnalysis, SGDClassifier, and 

other requisite packages. The main block loads wine data, splits it into train-test sets, 

and trains with LinearDiscriminantAnalysis. The code continues by displaying accuracy 

scores, cross-validation, and MCS scores.

The cross-validation and MCS scores indicate that tuning most likely won’t increase 

test accuracy for LinearDiscriminantAnalysis. So, we won’t commence to tuning 

experiments. This example does, however, demonstrate that it is possible to obtain great 

accuracy scores without tuning experimentation. But, keep in mind that the load_wine 

data set is heavily processed. In industry, data is rarely this clean or as beautifully 

processed.

The next part of the code trains data with SGDClassifier. Notice that we scaled the 

data prior to splitting it into train-test subsets. I ran an experiment without scaling and 

obtained very poor results. So, SGDClassifier tends to benefit greatly from data scaling.

Scaling data for LinearDiscriminantAnalysis doesn’t change results, so we didn’t use 

scaled data for that experiment. Again, accuracy scores are excellent for SGDClassifier 

without tuning. Be cautious, however, when achieving perfect scores. I ran several 

experiments where I adjusted the random state parameter and the scores changed. Of 

course, the change wasn’t very drastic, but train-test scores weren’t perfect.

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



161

Although computationally expensive, MCS is a good indicator of how well an 

algorithm might perform on a data set. In the case of load_wine data, MCS is not a 

problem because the data set is small and isn’t composed of high-dimensional data. 

Cross-validation is also an excellent indicator of algorithm performance, but it tends to be 

more conservative than MCS. It is also much less expensive computationally than MCS.

We can adjust the random state parameter to modify results. By changing random 

state on SGDClassifier from 0 to 1, test accuracy dips to 97.78%. This is another reason to 

run cross-validation and MCS (given adequate computational resources) to get an idea 

of a baseline accuracy for a given algorithm on a data set.

Tip A djusting the random state parameter changes scoring results, so it is 
always a good idea to run cross-validation to establish a stable baseline accuracy 
score.

The final code example shown in Listing 5-7 conducts an experiment on load_wine 

with a variety of classifiers. I included this example to demonstrate how one might 

explore the viability of algorithms for a given data set. Of course, we have to account for 

computational expense. But, given the resources for running such an experiment, we 

might save time and money in the long run.

Listing 5-7.  Exploring wine data with a variety of classifiers

from sklearn.datasets import load_wine

from sklearn.neighbors import KNeighborsClassifier as knn

from sklearn.svm import SVC

from sklearn.gaussian_process import\

     GaussianProcessClassifier as gpc

from sklearn.gaussian_process.kernels import RBF as rbf

from sklearn.tree import DecisionTreeClassifier as dt

from sklearn.ensemble import RandomForestClassifier as rf,\

     AdaBoostClassifier as ada

from sklearn.naive_bayes import GaussianNB as gnb

from sklearn.discriminant_analysis import\

     QuadraticDiscriminantAnalysis as qda,\

     LinearDiscriminantAnalysis as lda

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



162

from sklearn.linear_model import SGDClassifier as sgd

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn import metrics

if __name__ == "__main__":

    br = '\n'

    wine = load_wine()

    X = wine.data

    y = wine.target

    X = StandardScaler().fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, test_size=.4, random_state=0)

    classifiers = [knn(3), qda(), lda(), gnb(),

                   SVC(kernel='linear', gamma='scale',

                       random_state=0),

                   ada(random_state=0), dt(random_state=0),

                   sgd(max_iter=100, random_state=0),

                   gpc(1.0 * rbf(1.0), random_state=0),

                   rf(random_state=0, n_estimators=100)]

    for clf in classifiers:

        clf.fit(X_train, y_train)

        train_score = clf.score(X_train, y_train)

        test_score = clf.score(X_test, y_test)

        name = clf.__class__.__name__

        print (name + '(train/test scores):')

        print (train_score, test_score)

Your output from executing Listing 5-7 should resemble the following:

KNeighborsClassifier(train/test scores):

0.9905660377358491 0.9027777777777778

QuadraticDiscriminantAnalysis(train/test scores):

0.9905660377358491 1.0

LinearDiscriminantAnalysis(train/test scores):

1.0 0.9722222222222222

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



163

GaussianNB(train/test scores):

0.9905660377358491 0.9444444444444444

SVC(train/test scores):

1.0 0.9722222222222222

AdaBoostClassifier(train/test scores):

1.0 0.9027777777777778

DecisionTreeClassifier(train/test scores):

1.0 0.9166666666666666

SGDClassifier(train/test scores):

1.0 0.9861111111111112

GaussianProcessClassifier(train/test scores):

1.0 0.9722222222222222

RandomForestClassifier(train/test scores):

1.0 0.9583333333333334

The code begins by loading requisite packages and a variety of classifiers including 

SGDClassifier and LinearDiscriminantAnalysis (demonstrated in the previous example). 

Keep in mind that this example is just an interesting experiment given appropriate 

computing resources.

The main block loads wine data, scales it, and splits it into train-test subsets. The 

code continues by creating a list of classifiers. The code concludes by iterating through 

the list of classifiers, training data with each classifier, and displaying accuracy scores.

From the results, the most viable classifiers for load_wine are SGDClassifier, 

LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis, svm.SVC, and 

GaussianProcessClassifier. RandomForestClassifier and GaussianNB also have potential, 

but less so than the ones listed first. QuadraticDiscriminantAnalysis produces an 

incredible fit with almost perfect scores!

We can tune the other algorithms to improve their performance, but my experience 

and this experiment tell me that we should work with the most promising algorithms to 

save time and money. This experiment is also a good way to get exposed to a variety of 

classification algorithms.

Chapter 5  Scikit-Learn Classifier Tuning from Simple Training Sets



165
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_6

CHAPTER 6

Scikit-Learn Classifier 
Tuning from Complex 
Training Sets
Now that we have practiced tuning low-dimensional (or simple) data, we are ready to 

experiment tuning high-dimensional (or complex) data sets. Low-dimensional data 

consists of a limited number of features, whereas high-dimensional data consists of a 

very high number of features.

The term most commonly used to describe the dimensionality of a data set in 

machine learning literature is feature space. Feature space refers to the collection 

of features used to characterize the data set. That is, feature space refers to the 

n-dimensions where your variables live (not including a target variable if it is present).

Consistent with tuning low-dimensional data, we follow a structured process when 

tuning high-dimensional data:

	 a)	 Always begin with default hyperparameters using baseline algorithms.

	 b)	 Experiment with training and test sizes.

	 c)	 Use dimensionality reduction when working with  

high-dimensional data.

	 d)	 Draw random samples when working with large data sets.

	 e)	 Scale data (where appropriate) to potentially increase performance.

	 f )	 Use GridSearchCV or RandomizedSearchCV to tune.

	 g)	 Once tuned with baseline algorithms, experiment with complex 

algorithms.



166

�Tuning Data Sets
We concentrate on three data sets: fetch_1fw_people, MNIST, and fetch_20newsgroups. 

The fetch_1fw_people data set contains 1288 face images and seven targets. Each face 

image is represented by a 50 × 37 matrix of pixels. The MNIST data set contains 70000 

examples of handwritten digit images labeled from 0 to 9. Each digit is represented by a 

28 × 28 matrix. The fetch_20newsgroups data set consists of approximately 18000 posts 

on 20 topics. Data is split into a training and testing sets. The split is based on messages 

posted before and after a specific date.

�Tuning fetch_1fw_people
Face recognition is a very complex topic in machine learning. But, Scikit-Learn provides 

fetch_1fw_people that is a wonderful data set upon which to experiment and learn. 

Through experience and experimentation, I identified two Scikit-Learn algorithms – 

SGDClassifier and svm.SVC – that work relatively well with the data set.

The first code example shown in Listing 6-1 tunes data with SGDClassifier.

Listing 6-1.  Tuning fetch_1fw_people with SGDClassifier

import numpy as np, humanfriendly as hf, warnings

import time

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split,\

     GridSearchCV, cross_val_score

from sklearn.linear_model import SGDClassifier

from sklearn.metrics import classification_report

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



167

if __name__ == "__main__":

    br = '\n'

    warnings.filterwarnings("ignore", category=DeprecationWarning)

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    pca = PCA(n_components=0.95, whiten=True, random_state=1)

    pca.fit(X_train)

    X_train_pca = pca.transform(X_train)

    X_test_pca = pca.transform(X_test)

    pca_name = pca.__class__.__name__

    print ('<<' + pca_name + '>>')

    print ('features (before PCA):', X.shape[1])

    print ('features (after PCA):', pca.n_components_, br)

    sgd = SGDClassifier(max_iter=1000, tol=.001, random_state=0)

    sgd.fit(X_train_pca, y_train)

    y_pred = sgd.predict(X_test_pca)

    cr = classification_report(y_test, y_pred)

    print (cr)

    sgd_name = sgd.__class__.__name__

    param_grid = {�'alpha': [1e-3, 1e-2, 1e-1, 1e0], 'max_iter': [1000], 

'loss': ['log', 'perceptron'], 'penalty': ['l1'],  

'tol': [.001]}

    grid = GridSearchCV(sgd, param_grid, cv=5)

    start = time.perf_counter()

    grid.fit(X_train_pca, y_train)

    see_time('training time:')

    print ()

    bp = grid.best_params_

    print ('best parameters:')

    print (bp, br)

    sgd = SGDClassifier(**bp, random_state=1)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



168

    sgd.fit(X_train_pca, y_train)

    y_pred = sgd.predict(X_test_pca)

    cr = classification_report(y_test, y_pred)

    print (cr)

    print ('cross-validation:')

    scores = get_cross(sgd, X_train_pca, y_train)

    print (np.mean(scores))

Go ahead and execute the code from Listing 6-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 6-1 should resemble the following:

<<PCA>>

features (before PCA): 1850

features (after PCA): 135

              precision    recall  f1-score   support

           0       0.89      0.57      0.70        28

           1       0.80      0.78      0.79        63

           2       0.83      0.62      0.71        24

           3       0.73      0.89      0.80       132

           4       0.55      0.55      0.55        20

           5       0.88      0.32      0.47        22

           6       0.67      0.73      0.70        33

   micro avg       0.74      0.74      0.74       322

   macro avg       0.76      0.64      0.67       322

weighted avg       0.76      0.74      0.73       322

training time: 7 seconds and 745.7 milliseconds

best parameters:

{'alpha': 0.001, 'loss': 'log', 'max_iter': 1000, 'penalty': 'l1', 'tol': 0.001}

              precision    recall  f1-score   support

           0       0.91      0.71      0.80        28

           1       0.79      0.79      0.79        63

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



169

           2       0.71      0.71      0.71        24

           3       0.84      0.86      0.85       132

           4       0.48      0.75      0.59        20

           5       0.83      0.45      0.59        22

           6       0.72      0.79      0.75        33

   micro avg       0.78      0.78      0.78       322

   macro avg       0.76      0.72      0.73       322

weighted avg       0.79      0.78      0.78       322

cross-validation:

0.7808966616425951

The first code example begins by importing requisite packages. Function see_time 

returns elapased time. The main block loads data into X and y, splits it into train-test 

subsets, and conducts PCA to reduce feature space dimensionality.

PCA is critical when tuning high-dimensional data because it drastically reduces 

computational expense with minimal information loss. The code then trains data with 

SGDClassifier (to obtain a baseline performance measure) and displays results. Next, 

tuning commences with GridSearchCV.

Tip P CA is a critical tuning tool because it reduces dimensionality on high-
dimensional data sets with minimal information loss, which results in drastically 
lower tuning time (or less computational expense).

We tune alpha, max_iter, loss, penalty, and tol hyperparameters. Hyperparameter 

alpha is the constant that multiplies the regularization term. Hyperparameter max_iter 

sets the maximum number of passes (or epochs) over training data. An epoch is one 

complete presentation of the data set to be learned by a machine.

Hyperparameter loss refers to the loss function used for the experiment. Machines 

learn by means of a loss function, which is a method for evaluating how well an algorithm 

models a given set of data. Hyperparameter penalty refers to the regularization term that 

is used by the model. Hyperparameter tol is the stopping criteria.

The two most important hyperparameters are alpha and penalty as they are directly 

related to the type and amount of regularization employed by the model.

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



170

The parameter grid is constructed next. Notice that alpha is the critical 

hyperparameter adjusted in this experiment. Through trial-and-error experiments, I 

determined that l1 penalty was the best option, so I hard-coded it into the grid to reduce 

tuning time. Once tuned, SGDClassifier trains on the data with the best parameters 

and displays results. Finally, cross-validation is conducted to ensure that the model is 

performing at its best (which it is).

Tip I t is much easier (and faster) to conduct tuning experiments by varying one 
or two hyperparameters at a time and keeping the others constant by hard-coding 
their values.

The second code example shown in Listing 6-2 tunes with svm.SVC. From 

experience, I knew that svm.SVC outperformed SGDClassifier, but I wanted to 

demonstrate at least some of the rigor inherent in the experimental process of tuning by 

including the first code example in the chapter.

Listing 6-2.  Tuning fetch_1fw_people with svm.SVC

import numpy as np, humanfriendly as hf

import time

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split,\

     GridSearchCV, cross_val_score

from sklearn.svm import SVC

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



171

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    images = np.load('data/faces_images.npy')

    targets = np.load('data/faces_targets.npy')

    _, h, w = images.shape

    n_images, n_features, n_classes = X.shape[0], X.shape[1],\

                                      len(targets)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    pca = PCA(n_components=0.95, whiten=True, random_state=0)

    pca.fit(X_train)

    components = pca.n_components_

    eigenfaces = pca.components_.reshape((components, h, w))

    X_train_pca = pca.transform(X_train)

    pca_name = pca.__class__.__name__

    print ('<<' + pca_name + '>>')

    print ('features (before PCA):', n_features)

    print ('features (after PCA):', components, br)

    X_i = np.array(eigenfaces[0].reshape(h, w))

    fig = plt.figure('eigenface')

    ax = fig.subplots()

    image = ax.imshow(X_i, cmap='bone')

    svm = SVC(random_state=0, gamma='scale')

    print (svm, br)

    svm.fit(X_train_pca, y_train)

    X_test_pca = pca.transform(X_test)

    y_pred = svm.predict(X_test_pca)

    cr = classification_report(y_test, y_pred)

    print (cr)

    svm_name = svm.__class__.__name__    

    param_grid = {�'C': [1e2, 1e3, 5e3], 'gamma': [0.001, 0.005, 0.01, 0.1], 

'kernel': ['rbf'], 'class_weight': ['balanced']}

    grid = GridSearchCV(svm, param_grid, cv=5)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



172

    start = time.perf_counter()

    grid.fit(X_train_pca, y_train)

    see_time('training time:')

    print ()

    bp = grid.best_params_

    print ('best parameters:')

    print (bp, br)

    svm = SVC(**bp)

    svm.fit(X_train_pca, y_train)

    y_pred = svm.predict(X_test_pca)

    print ()

    cr = classification_report(y_test, y_pred)

    print (cr, br)

    print ('cross-validation:')

    scores = get_cross(svm, X_train_pca, y_train)

    print (np.mean(scores), br)

    file = 'data/bp_face'

    np.save(file, bp)

    bp = np.load('data/bp_face.npy')

    bp = bp.tolist()

    print ('best parameters:')

    print (bp)

    plt.show()

Your output from executing Listing 6-2 should resemble the following:

<<PCA>>

features (before PCA): 1850

features (after PCA): 135

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

  decision_function_shape='ovr', degree=3, gamma='scale',

  kernel='rbf', max_iter=-1, probability=False, random_state=0,

  shrinking=True, tol=0.001, verbose=False)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



173

              precision    recall  f1-score   support

           0       1.00      0.43      0.60        28

           1       0.83      0.87      0.85        63

           2       0.94      0.62      0.75        24

           3       0.71      0.97      0.82       132

           4       1.00      0.70      0.82        20

           5       1.00      0.36      0.53        22

           6       0.96      0.73      0.83        33

   micro avg       0.80      0.80      0.80       322

   macro avg       0.92      0.67      0.74       322

weighted avg       0.84      0.80      0.78       322

training time: 18 seconds and 143.89 milliseconds

best parameters:

{'C': 100.0, 'class_weight': 'balanced', 'gamma': 0.005, 'kernel': 'rbf'}

              precision    recall  f1-score   support

           0       1.00      0.64      0.78        28

           1       0.76      0.92      0.83        63

           2       0.91      0.88      0.89        24

           3       0.88      0.92      0.90       132

           4       0.74      0.85      0.79        20

           5       1.00      0.64      0.78        22

           6       0.90      0.85      0.88        33

   micro avg       0.86      0.86      0.86       322

   macro avg       0.89      0.81      0.84       322

weighted avg       0.87      0.86      0.86       322

cross-validation:

0.8393624737627647

best parameters:

{'C': 100.0, 'class_weight': 'balanced', 'gamma': 0.005, 'kernel': 'rbf'}

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



174

Listing 6-2 also displays Figure 6-1, which is the first eigenface created by PCA.

The code begins by importing requisite packages. Function see_time returns 

elapsed time. The main block loads data into X and y, splits it into train-test subsets, 

and conducts PCA for dimensionality reduction. Baseline performance for svm.SVC is 

displayed for later comparison to the tuned svm.SVC score.

Tuning commences by constructing a grid with C, gamma, kernel, and class_weight 

hyperparameters. Hyperparameter C is the penalty parameter of the error term, so 

it is very important for tuning. Hyperparameter gamma is the kernel coefficient. 

Hyperparameter kernel specifies the kernel type to be used by the algorithm (e.g., linear). 

Hyperparameter class_weight is used to set the weight (or emphasis) of each class. 

Through experimentation, I found that the rbf kernel and balanced class weight were the 

best, so I hard-coded them into the grid.

Figure 6-1.  First eigenface created by PCA

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



175

My process of discovery is as follows: First, I kept all other hyperparameters constant 

and changed kernel to see the setting that yielded the best performance. Second, I kept 

kernel constant and changed class weight.

As you can tell by the grid, we vary C and gamma to improve performance. Once 

best parameters are determined, svm.SVC trains the data with them. Results are 

displayed along with cross-validation measures. We have done well with svm.SVC since 

we performed significantly better than the cross-validation score. We display the first 

eigenface from dimensionality reduction for completeness. Finally, best parameters are 

saved (and displayed).

�Tuning MNIST
MNIST is not a large data set with 70000 examples, but it has a high-dimensional 

feature space consisting of 784 features. Such feature space complexity increases 

computational expense, so we must take this into account when running experiments 

with computationally expensive algorithms like svm.SVC.

The first code example in Listing 6-3 tunes MNIST with RandomForestClassifier 

and ExtraTreesClassifier. These algorithms have numerous hyperparameters, but we 

only adjust a few. I was able to greatly simplify tuning from my experience with these 

algorithms. You can experiment further, but computational expense increases greatly as 

you adjust additional hyperparameters.

Listing 6-3.  Tuning with RandomForestClassifier and ExtraTreesClassifier

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split

from sklearn.model_selection import RandomizedSearchCV,\

     cross_val_score

from sklearn.ensemble import RandomForestClassifier,\

     ExtraTreesClassifier

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



176

    name = model.__class__.__name__

    return (name, train, test)

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

    data = prep_data(X, y)

    sample_size = 7000

    Xs, ys = create_sample(data, sample_size)

    rf = RandomForestClassifier(random_state=0, n_estimators=100)

    print (rf, br)

    params = {'class_weight': ['balanced'], 'max_depth': [10, 30]}

    random = RandomizedSearchCV(rf, param_distributions = params,

                                cv=3, n_iter=2, random_state=0)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



177

    start = time.perf_counter()

    random.fit(Xs, ys)

    see_time('RandomizedSearchCV total tuning time:')

    bp = random.best_params_

    print (bp, br)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    rf = RandomForestClassifier(**bp, random_state=0, n_estimators=100)

    start = time.perf_counter()

    rf.fit(X_train, y_train)

    rf_scores = get_scores(rf, X_train, y_train, X_test, y_test)

    see_time('total time:')

    print (rf_scores[0] + ' (train, test):')

    print (rf_scores[1], rf_scores[2], br)

    et = ExtraTreesClassifier(random_state=0, n_estimators=200)

    print (et, br)

    params = {'class_weight': ['balanced'], 'max_depth': [10, 30]}

    random = RandomizedSearchCV(et, param_distributions = params,

                                cv=3, n_iter=2, random_state=0)

    start = time.perf_counter()

    random.fit(Xs, ys)

    see_time('RandomizedSearchCV total tuning time:')

    bp = random.best_params_

    print (bp, br)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    et = ExtraTreesClassifier(**bp, random_state=0, n_estimators=200)

    start = time.perf_counter()

    et.fit(X_train, y_train)

    et_scores = get_scores(et, X_train, y_train, X_test, y_test)

    see_time('total time:')

    print (et_scores[0] + ' (train, test):')

    print (et_scores[1], et_scores[2], br)

    print ('cross-validation (et):')

    start = time.perf_counter()

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



178

    scores = get_cross(rf, X, y)

    see_time('total time:')

    print (np.mean(scores), br)

    file = 'data/bp_mnist_et'

    np.save(file, bp)

    bp = np.load('data/bp_mnist_et.npy')

    bp = bp.tolist()

    print ('best parameters:')

    print (bp)

Your output from executing Listing 6-3 should resemble the following:

RandomForestClassifier(bootstrap=True, class_weight=None,

            criterion='gini', max_depth=None,

            max_features='auto', max_leaf_nodes=None,

            min_impurity_decrease=0.0, min_impurity_split=None,

            min_samples_leaf='deprecated', min_samples_split=2,

            min_weight_fraction_leaf='deprecated',

            n_estimators=100, n_jobs=None, oob_score=False,

            random_state=0, verbose=0, warm_start=False)

RandomizedSearchCV total tuning time: 13 seconds and 398.73 milliseconds

{'max_depth': 30, 'class_weight': 'balanced'}

total time: 32 seconds and 589.23 milliseconds

RandomForestClassifier (train, test):

0.9999809523809524 0.9701142857142857

ExtraTreesClassifier(bootstrap=False, class_weight=None,

           criterion='gini', max_depth=None, max_features='auto',

           max_leaf_nodes=None, min_impurity_decrease=0.0,

           min_impurity_split=None,

           min_samples_leaf='deprecated', min_samples_split=2,

           min_weight_fraction_leaf='deprecated',

           n_estimators=200, n_jobs=None, oob_score=False,

           random_state=0, verbose=0, warm_start=False)

RandomizedSearchCV total tuning time: 23 seconds and 342.93 milliseconds

{'max_depth': 30, 'class_weight': 'balanced'}

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



179

total time: 1 minute, 8 seconds and 270.59 milliseconds

ExtraTreesClassifier (train, test):

1.0 0.9732

cross-validation (et):

total time: 5 minutes, 40 seconds and 788.07 milliseconds

0.9692001937716965

best parameters:

{'max_depth': 30, 'class_weight': 'balanced'}

The code begins by importing requisite packages. Function get_scores returns 

accuracy scores and model name. Function get_cross returns cross-validation score. 

Function prep_data prepares data for function create_sample. Function create sample 

creates a random sample with or without replacement. Function see_time returns 

elapsed time. The main block loads data, creates a random sample, and instantiates 

algorithm RandomForestClassifier.

Tuning commences by constructing a grid with class_weight and max_depth 

hyperparameters. Hyperparameter class_weight is used to set the weight (or emphasis) 

of each class. Hyperparameter max_depth is used to establish the maximum depth of the 

tree. Through many hours of experimentation, I found that these two parameters were 

key to increasing performance. Tuning continues by leveraging RandomizedSearchCV 

to obtain the best parameters. Notice that tuning time is only a bit over thirteen seconds 

because the grid is very simple.

Now we can test RandomForestClassifier with best parameters. Notice that we 

include hyperparameter n_estimators in the algorithm along with best parameters. 

Hyperparameter n_estimators represents the number of trees in the forest and may be 

the most important hyperparameter for improving performance.

We include n_estimators in the algorithm (instead of putting it in the grid) for two 

reasons. First, it is such an important hyperparameter that we can save time by adjusting 

it outside a tuning experiment. That is, we can adjust it very easily without adding 

computational expense to the tuning experiment. However, increasing its value does add 

computational expense to processing the algorithm. Second, it must be included with 

this algorithm to avoid an annoying warning.

Tuning ExtraTreesClassifier follows the exact same logic with only one difference. 

We increase n_estimators to 200 trees. Notice that this increase causes processing time to 

more than double, but performance is better.

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



180

Finally, we run cross-validation (on ExtraTreesClassifier) and save the best 

parameters from ExtraTreesClassifier for future processing. From the cross-validation 

score, we know that our accuracy scores are solid. However, cross-validation consumes 

over 5 minutes of processing time! You can comment out the cross-validation part of the 

code if you don’t want to wait.

On a positive note, cross-validation only needs to be executed once on an algorithm. 

I suggest that you run cross-validation before commencing a tuning experiment. You can 

then run trial-and-error experiments until you meet or exceed the cross-validation score.

Tip  Cross-validation need only be run once because it cannot be tuned.

Overall performance was good with accuracy over 97% with not too much overfitting. 

But, don’t be lulled into a false sense of security by working through my tuning 

experiments. Tuning consumes a lot of time and patience. I can only give you examples 

and hints to help you become a more accomplished data scientist.

I highly recommend timing tuning experiments, especially ones that are 

computationally expensive (such as tuning with numerous hyperparameters over 

various ranges of values). Otherwise, it is very difficult to get a sense of how well your 

experiment is proceeding. When I first began tuning machine learning algorithms, I 

didn’t time experiments. My progress was slow because I became very frustrated when I 

couldn’t differentiate tuning experiments by elapsed time.

Tip A lways time tuning experiments to gauge progress.

The next code example shown in Listing 6-4 tunes MNIST with svm.SVC.

Listing 6-4.  Tuning MNIST with svm.SVC

import numpy as np, humanfriendly as hf, random

import time

from sklearn.model_selection import train_test_split

from sklearn.model_selection import RandomizedSearchCV

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



181

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    name = model.__class__.__name__

    return (name, train, test)

def prep_data(data, target):

    d = [data[i] for i, _ in enumerate(data)]

    t = [target[i] for i, _ in enumerate(target)]

    return list(zip(d, t))

def create_sample(d, n, replace='yes'):

    if replace == 'yes': s = random.sample(d, n)

    else: s = [random.choice(d) for i, _ in enumerate(d) if i < n]

    Xs = [row[0] for i, row in enumerate(s)]

    ys = [row[1] for i, row in enumerate(s)]

    return np.array(Xs), np.array(ys)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

    data = prep_data(X, y)

    sample_size = 7000

    Xs, ys = create_sample(data, sample_size)

    pca = PCA(n_components=0.95, random_state=0)

    Xs = StandardScaler().fit_transform(Xs)

    Xs_reduced = pca.fit_transform(Xs)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



182

    X_train, X_test, y_train, y_test = train_test_split(

        Xs_reduced, ys, random_state=0)

    svm = SVC(gamma='scale', random_state=0)

    print (svm, br)

    start = time.perf_counter()

    svm.fit(X_train, y_train)

    svm_scores = get_scores(svm, X_train, y_train, X_test, y_test)

    print (svm_scores[0] + ' (train, test):')

    print (svm_scores[1], svm_scores[2])

    see_time('time:')

    print ()

    param_grid = {�'C': [30, 35, 40], 'kernel': ['poly'],  

'gamma': ['scale'], 'degree': [3], 'coef0': [0.1]}

    start = time.perf_counter()

    rand = RandomizedSearchCV(svm, param_grid, cv=3, n_jobs = -1,

                              random_state=0, n_iter=3, verbose=2)

    rand.fit(X_train, y_train)

    see_time('RandomizedSearchCV total tuning time:')

    bp = rand.best_params_

    print (bp, br)

    svm = SVC(**bp, random_state=0)

    start = time.perf_counter()

    svm.fit(X_train, y_train)

    svm_scores = get_scores(svm, X_train, y_train, X_test, y_test)

    print (svm_scores[0] + ' (train, test):')

    print (svm_scores[1], svm_scores[2])

    see_time('total time:')

Your output from executing Listing 6-4 should resemble the following:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

  decision_function_shape='ovr', degree=3, gamma='scale',

  kernel='rbf', max_iter=-1, probability=False, random_state=0,

  shrinking=True, tol=0.001, verbose=False)

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



183

SVC (train, test):

0.9845714285714285 0.9228571428571428

time: 13 seconds and 129.03 milliseconds

Fitting 3 folds for each of 3 candidates, totalling 9 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done   4 out of   9 | elapsed:   14.0s 

remaining:   17.6s

[Parallel(n_jobs=-1)]: Done   9 out of   9 | elapsed:   19.3s remaining:    

0.0s

[Parallel(n_jobs=-1)]: Done   9 out of   9 | elapsed:   19.3s finished

RandomizedSearchCV total tuning time: 23 seconds and 824.72 milliseconds

{'kernel': 'poly', 'gamma': 'scale', 'degree': 3, 'coef0': 0.1, 'C': 30}

SVC (train, test):

1.0 0.9542857142857143

total time: 10 seconds and 810.06 milliseconds

Like the first MNIST tuning code example, we take a random sample. But, we also 

use PCA for dimensionality reduction because of the immense computational expense 

inherent with svm.SVC.

Tip F or computationally expensive algorithms, we recommend drawing a random 
sample and using PCA for dimensionality reduction to speed processing.

The code begins by importing requisite packages. We already talked about the 

functions in the last example, so we don’t need to discuss it here.

The main block loads data and draws a random sample of 7000. PCA is used for 

dimensionality reduction with 5% information loss. Next, we scale training data because 

svm.SVC responds well to scaling. The code continues by splitting data into train-test 

subsets. Next, svm.SVC is trained with default parameters to gauge performance.

The code continues using RandomizedSearchCV to tune. We create a grid with 

hyperparameters C, kernel, gamma, degree, and coef0. We’ve already discussed 

hyperparameters C, kernel, and gamma, so we don’t need to do it again here. 

Hyperparameter degree represents the degree of the polynomial kernel function. 

We include it because we chose poly for the kernel. Hyperparameter coef0 is used in 

conjunction with degree for polynomial kernels.

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



184

Through experimentation, I found that hyperparameter C was the most important 

one to adjust. So, the grid only varies the values for C.

The code continues by using the best parameters from the tuning experiment with 

svm.SVC. We were able to increase test performance by quite a bit, but we still face 

overfitting.

We didn’t include cross-validation for two reasons. First, svm.SVC didn’t perform 

as well as ExtraTreeClassifier (so what’s the point?). Second, it takes an extraordinary 

amount of time to run cross-validation on svm.SVC with MNIST.

�Tuning fetch_20newsgroups
Like face recognition, text exploration is a very complex topic in machine learning. But, 

Scikit-Learn provides fetch_20newsgroups that is a wonderful data set upon which to 

experiment and learn.

Tuning complexity is greatly exacerbated because a pipelined model (with 

MultinomialNB and TfidfVectorizer) includes two sets of hyperparmeters (one from each 

algorithm).

Tuning MultinomialNB by itself is very easy because one need only adjust the alpha 

hyperparameter. Hyperparameter alpha allows us to adjust smoothing. However, tuning 

TfidfVectorizer is much more difficult as it includes numerous hyperparameters.

We encounter an even higher level of difficulty when tuning a pipelined model with 

RandomizedSearchCV because the names of the hyperparameters are different. Each 

hyperparameter from a pipelined model must be prefixed with the algorithm name so 

that RandomizedSearchCV can interpret correctly. This makes sense because algorithms 

can share the same hyperparameters.

The code example shown in Listing 6-5 tunes a pipelined model.

Listing 6-5.  Tuning fetch_20newsgroups with a pipelined model

import numpy as np, humanfriendly as hf

import time

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.metrics import f1_score

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



185

from sklearn.model_selection import RandomizedSearchCV,\

     cross_val_score

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

if __name__ == "__main__":

    br = '\n'

    train = fetch_20newsgroups(subset='train')

    test = fetch_20newsgroups(subset='test')

    categories = ['rec.autos', 'rec.motorcycles', 'sci.space', 'sci.med']

    train = fetch_20newsgroups(�subset='train', categories=categories, 

remove=('headers', 'footers', 'quotes'))

    test = fetch_20newsgroups(�subset='test', categories=categories, 

remove=('headers', 'footers', 'quotes'))

    targets = train.target_names

    mnb = MultinomialNB()

    tf = TfidfVectorizer()

    print (mnb, br)

    print (tf, br)

    pipe = make_pipeline(tf, mnb)

    pipe.fit(train.data, train.target)

    labels = pipe.predict(test.data)

    f1 = f1_score(test.target, labels, average='micro')

    print ('f1_score', f1, br)

    print (pipe.get_params().keys(), br)

    param_grid = {'tfidfvectorizer__ngram_range': [(1, 1), (1, 2)],

                  'tfidfvectorizer__use_idf': [True, False],

                  'multinomialnb__alpha': [1e-2, 1e-3],

                  'multinomialnb__fit_prior': [True, False]}

    start = time.perf_counter()

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



186

    rand = RandomizedSearchCV(�pipe, param_grid, cv=3, n_jobs = -1,  

random_state=0, n_iter=16, verbose=2)

    rand.fit(train.data, train.target)

    see_time('RandomizedSearchCV tuning time:')

    bp = rand.best_params_

    print ()

    print ('best parameters:')

    print (bp, br)

    rbs = rand.best_score_

    mnb = MultinomialNB(alpha=0.01)

    tf = TfidfVectorizer(ngram_range=(1, 1), use_idf=False)

    pipe = make_pipeline(tf, mnb)

    pipe.fit(train.data, train.target)

    labels = pipe.predict(test.data)

    f1 = f1_score(test.target, labels, average='micro')

    print ('f1_score', f1, br)

    file = 'data/bp_news'

    np.save(file, bp)

    bp = np.load('data/bp_news.npy')

    bp = bp.tolist()

    print ('best parameters:')

    print (bp, br)

    start = time.perf_counter()

    scores = get_cross(pipe, train.data, train.target)

    see_time('cross-validation:')

    print (np.mean(scores))

Your output from executing Listing 6-5 should resemble the following:

MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

TfidfVectorizer(analyzer='word', binary=False,

        decode_error='strict', dtype=<class 'numpy.float64'>,

        encoding='utf-8', input='content', lowercase=True,

        max_df=1.0, max_features=None, min_df=1,

        ngram_range=(1, 1), norm='l2', preprocessor=None,

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



187

        smooth_idf=True, stop_words=None, strip_accents=None,

        sublinear_tf=False, token_pattern='(?u)\\b\\w\\w+\\b',

        tokenizer=None, use_idf=True, vocabulary=None)

f1_score 0.8440656565656567

dict_keys(['memory', 'steps', 'tfidfvectorizer', 'multinomialnb', 

'tfidfvectorizer__analyzer', 'tfidfvectorizer__binary',  

'tfidfvectorizer__decode_error', 'tfidfvectorizer__dtype', 

'tfidfvectorizer__encoding', 'tfidfvectorizer__input',  

'tfidfvectorizer__lowercase', 'tfidfvectorizer__max_df',  

'tfidfvectorizer__max_features', 'tfidfvectorizer__min_df', 

'tfidfvectorizer__ngram_range', 'tfidfvectorizer__norm',  

'tfidfvectorizer__preprocessor', 'tfidfvectorizer__smooth_idf', 

'tfidfvectorizer__stop_words', 'tfidfvectorizer__strip_accents', 

'tfidfvectorizer__sublinear_tf', 'tfidfvectorizer__token_pattern', 

'tfidfvectorizer__tokenizer', 'tfidfvectorizer__use_idf', 

'tfidfvectorizer__vocabulary', 'multinomialnb__alpha',  

'multinomialnb__class_prior', 'multinomialnb__fit_prior'])

Fitting 3 folds for each of 16 candidates, totalling 48 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  25 tasks      | elapsed:    7.6s

[Parallel(n_jobs=-1)]: Done  48 out of  48 | elapsed:   12.4s finished

RandomizedSearchCV tuning time: 12 seconds and 747.04 milliseconds

best parameters:

{'tfidfvectorizer__use_idf': False, 'tfidfvectorizer__ngram_range': (1, 1), 

'multinomialnb__fit_prior': False, 'multinomialnb__alpha': 0.01}

f1_score 0.8611111111111112

best parameters:

{'tfidfvectorizer__use_idf': False, 'tfidfvectorizer__ngram_range': (1, 1), 

'multinomialnb__fit_prior': False, 'multinomialnb__alpha': 0.01}

cross-validation: 2 seconds and 750.36 milliseconds

0.8735201157292913

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



188

The code begins by importing requisite packages. Functions get_cross and 

see_time are next. The main block begins by creating train and test sets from the 

fetch_20newsgroups data set. Next, we create subcategories and split data into train-

test subsets. The code continues by creating a baseline pipeline model and displaying 

f1_score for later comparison to the tuned model.

Possible hyperparameters of the pipelined model can be displayed with pipe.get_

params().keys(). This is an important step because we must include the exact names for 

RandomizedSearchCV tuning.

Tip  You can (and should) display hyperparameters of a pipelined model with 
model_name.get_params().keys().

The parameter grid is created with tfidfvectorizer__ngram_range, tfidfvectorizer__

use_idf, multinomialnb__alpha, and multinomialnb__fit_prior.

Hyperparameter multinomialnb__alpha is exactly the same as alpha from 

MultinomialNB. The only difference is that prefix multinomialnb is included to 

inform RandomizedSearchCV the algorithm upon which it belongs. Hyperparameter 

multinomialnb__fit_prior indicates whether or not to learn class prior probabilities.

Hyperparameters tfidfvectorizer__ngram_range and tfidfvectorizer__use_idf belong to 

algorithm TfidfVectorizer as indicated by their prefixes. ngram_range indicates the upper 

and lower boundary of the range of n-values for different n-grams to be extracted from 

the document. use_idf enables or disables inverse-document-frequency reweighting.

Tuning commences with RandomizedSearchCV based on the parameter grid values. 

With tuning, we are able to increase performance to over 86%. However, cross-validation 

indicates that we can squeeze out a bit more performance from our model.

Chapter 6  Scikit-Learn Classifier Tuning from Complex Training Sets



189
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_7

CHAPTER 7

Scikit-Learn  
Regression Tuning
Regression predictive modeling (or just regression) is the problem of learning the 

strength of association between independent variables (or features) and continuous 

dependent variables (or outcomes). Tuning regression algorithms is similar to tuning 

classification algorithms. That is, we adjust a model’s hyperparameters until we arrive at 

an optimal solution.

The difference is that the goal of regression tuning is to reduce root mean squared 

error (RMSE), while the goal of classification tuning is to maximize accuracy. A benefit 

of RMSE is that units of the error score are the same as the predicted value. While 

regression predictions can be evaluated using RMSE, classification predictions cannot.

Tip  The goal of regression tuning is to minimize RMSE.

Machine learning algorithms chosen for our tuning examples are not a coincidence. 

I chose them based on many hours of experimentation, reading, and insight. Algorithms 

that performed best for a given data set were included, and those that performed poorly 

were not.

For regression experiments in this chapter, we leverage GridSearchCV for tuning.

Tip  Tuning with GridSearchCV is suitable for an exhaustive search for the  
best performing hyperparameters given adequate computing resources. Tuning 
with RandomizedSearchCV is suitable for a good search or if tuning high-
dimensional data.



190

Learning to tune regression algorithms can be accelerated by working through 

examples with a variety of data sets and regressors. But, I also suggest following a 

structured process:

	 a)	 Always begin with default hyperparameters using baseline 

algorithms.

	 b)	 Experiment with training and test sizes.

	 c)	 Use dimensionality reduction when working with high-

dimensional data.

	 d)	 Draw random samples when working with large data sets.

	 e)	 Scale data (where appropriate) to potentially increase 

performance.

	 f )	 Use GridSearchCV or RandomizedSearchCV to tune.

	 g)	 Once tuned with baseline algorithms, experiment with complex 

algorithms.

Tip  Begin tuning with a baseline algorithm (with its default hyperparameters) to 
establish baseline performance.

�Tuning Data Sets
We concentrate on four data sets: tips, boston, and wine (red and white). tips data is 

composed of food server tips in restaurants and related factors including tip, price of 

meal, and time of day. boston data is composed of housing prices from various Boston 

locations. wine data is composed two data sets (red and white) that consist of variants of 

Portuguese Vinho Verde wine.

�Tuning tips
The code example shown in Listing 7-1 calculates RMSE for a variety of regression 

algorithms based on unscaled and scaled data. Since tips is such a small data set, it is 

computationally inexpensive to run this type of experiment.

Chapter 7  Scikit-Learn Regression Tuning 



191

Listing 7-1.  Calculating RMSE for tips data with regression algorithms

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor as rfr,\

     AdaBoostRegressor as ada, GradientBoostingRegressor as gbr

from sklearn.linear_model import LinearRegression as lr,\

     BayesianRidge as bay, Ridge as rr, Lasso as l,\

     LassoLars as ll, ElasticNet as en,\

     ARDRegression as ard, RidgeCV as rcv

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor as dtr

from sklearn.neighbors import KNeighborsRegressor as knn

from sklearn.preprocessing import StandardScaler

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_tips.npy')

    y = np.load('data/y_tips.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    regressors = [lr(), bay(), rr(alpha=.5, random_state=0),

                  l(alpha=0.1, random_state=0), ll(), knn(),

                  ard(), rfr(random_state=0, n_estimators=100),

                  SVR(gamma='scale', kernel='rbf'),

                  rcv(fit_intercept=False), en(random_state=0),

                  dtr(random_state=0), ada(random_state=0),

                  gbr(random_state=0)]

    print ('unscaled:', br)

    for reg in regressors:

        reg.fit(X_train, y_train)

Chapter 7  Scikit-Learn Regression Tuning 



192

        rmse, name = get_error(reg, X_test, y_test)

        name = reg.__class__.__name__

        print (name + '(rmse):', end=' ')

        print (rmse)

    print ()

    print ('scaled:', br)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    for reg in regressors:

        reg.fit(X_train_std, y_train)

        rmse, name = get_error(reg, X_test_std, y_test)

        name = reg.__class__.__name__

        print (name + '(rmse):', end=' ')

        print (rmse)

Go ahead and execute the code from Listing 7-1. Remember that you can find the 

example from the book’s example download. You don’t need to type the example by 

hand. It’s easier to access the example download and copy/paste.

Your output from executing Listing 7-1 should resemble the following:

unscaled:

LinearRegression(rmse): 0.9474705746817206

BayesianRidge(rmse): 0.9245282337469829

Ridge(rmse): 0.9471900902779103

Lasso(rmse): 0.9158574785712037

LassoLars(rmse): 1.333812899498391

KNeighborsRegressor(rmse): 1.086204460049883

ARDRegression(rmse): 0.9264801346401996

RandomForestRegressor(rmse): 0.8850975551298138

SVR(rmse): 0.9441992099702836

RidgeCV(rmse): 0.9426372075893412

ElasticNet(rmse): 0.9307377813721578

DecisionTreeRegressor(rmse): 1.2994272932036561

AdaBoostRegressor(rmse): 0.932681302158466

GradientBoostingRegressor(rmse): 0.9112440690311495

Chapter 7  Scikit-Learn Regression Tuning 



193

scaled:

LinearRegression(rmse): 0.9007751177881488

BayesianRidge(rmse): 0.9096801291989541

Ridge(rmse): 0.9010890080377257

Lasso(rmse): 0.8785977911833892

LassoLars(rmse): 1.333812899498391

KNeighborsRegressor(rmse): 0.9613578099280607

ARDRegression(rmse): 0.8745960871430548

RandomForestRegressor(rmse): 0.893772251516372

SVR(rmse): 0.9749204385201592

RidgeCV(rmse): 3.1960055364135638

ElasticNet(rmse): 1.1310151423347359

DecisionTreeRegressor(rmse): 1.1835900827021861

AdaBoostRegressor(rmse): 0.986987944835978

GradientBoostingRegressor(rmse): 0.8908489427010696

The code begins by importing requisite packages and a variety of regression 

algorithms. Function get_error returns model name and RMSE. The main block begins 

by loading preprocessed tips data from NumPy files. Remember that we encoded tips 

data and saved it for future processing in Chapter 4.

Tip  Scikit-Learn allows you to experiment with a variety of algorithms to test 
performance without requiring contextual knowledge of them.

The code continues by splitting data into train-test subsets. Next, we create a list of 

regression algorithms. The code continues by training each algorithm on unscaled data 

and displaying results. The code then scales data, trains each algorithm on scaled data, 

and displays results.

Scaling data is a very important part of this experiment because many of the 

algorithms reported lower RMSE results than their unscaled brethren. The best 

performing algorithms with scaled data are Lasso and ARDRegression.

Tip  Scaling can be a very important technique during the tuning process.

Chapter 7  Scikit-Learn Regression Tuning 



194

So, the experiment was a success! It guided us to two algorithms upon which we can 

concentrate our tuning efforts.

The next code example shown in Listing 7-2 tunes tips with Lasso.

Listing 7-2.  Tuning tips with Lasso

import numpy as np, humanfriendly as hf

import time

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import Lasso

from sklearn.model_selection import GridSearchCV,\

     cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups,

                           scoring='neg_mean_squared_error')

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_tips.npy')

    y = np.load('data/y_tips.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

Chapter 7  Scikit-Learn Regression Tuning 



195

    lasso = Lasso(random_state=0, alpha=0.1)

    print (lasso, br)

    lasso.fit(X_train_std, y_train)

    rmse, name = get_error(lasso, X_test_std, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    alpha_lasso = [1e-1]

    params = {'alpha': alpha_lasso, 'positive': [True, False],

              'max_iter': [10, 50, 100]}

    grid = GridSearchCV(lasso, params, cv=5, n_jobs=-1, verbose=1)

    start = time.perf_counter()

    grid.fit(X_train, y_train)

    see_time('training time:')

    bp = grid.best_params_

    print (bp, br)

    lasso = Lasso(**bp, random_state=0).fit(X_train_std, y_train)

    rmse, name = get_error(lasso, X_test_std, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    start = time.perf_counter()

    scores = get_cross(lasso, X, y)

    see_time('cross-validation rmse:')

    rmse = np.sqrt(np.mean(scores) * -1)

    print (rmse)

Your output from executing Listing 7-2 should resemble the following:

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

   normalize=False, positive=False, precompute=False,

   random_state=0, selection='cyclic', tol=0.0001,

   warm_start=False)

Lasso(rmse): 0.8785977911833892

Chapter 7  Scikit-Learn Regression Tuning 



196

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  30 out of  30 | elapsed:    2.1s finished

training time: 2 seconds and 246.86 milliseconds

{'alpha': 0.1, 'max_iter': 10, 'positive': True}

Lasso(rmse): 0.8781319871042923

cross-validation rmse: 8.58 milliseconds

1.0379804468729155

The code begins by importing requisite packages. Function get_error returns 

RMSE. Function see_time returns elapsed time. Function get_cross returns cross_

validation RMSE.

The main block begins by loading preprocessed tips data. The code continues by 

splitting data into train-test subsets. Next, we scale data. We then train data with Lasso 

and display results for baseline comparison with the tuned RMSE.

Lasso is an algorithm that uses L1 penalty for regularization. We tune alpha, positive, 

and max_iter hyperparameters based on prior experimentation.

Hyperparameter alpha is the constant that multiplies the L1 penalty term. It is 

also the most important hyperparameter to tune with Lasso. Hyperparameter positive 

forces the coefficient to be positive. Hyperparameter max_iter represents the maximum 

number of iterations.

Tuning commences using GridSearchCV with grid params. With tuning, we were 

able to lower RMSE by a very small amount. Cross-validation reveals that we are doing 

very well.

Tip K eep in mind that function get_error returns negative mean squared error, so 
we have to make the result positive by multiplying it by -1 and taking the square 
root of the result to get RMSE.

The next code example shown in Listing 7-3 tunes tips with ARDRegression.

Chapter 7  Scikit-Learn Regression Tuning 



197

Listing 7-3.  Tuning tips with ARDRegression

import numpy as np, humanfriendly as hf

import time

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import ARDRegression

from sklearn.model_selection import GridSearchCV,\

     cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups,

                           scoring='neg_mean_squared_error')

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_tips.npy')

    y = np.load('data/y_tips.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

    ard = ARDRegression().fit(X_train_std, y_train)

    print (ard, br)

    rmse, name = get_error(ard, X_test_std, y_test)

Chapter 7  Scikit-Learn Regression Tuning 



198

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    iters = [50]

    a1 = [1e5, 1e4]

    a2 = [1e5, 1e4]

    params = {'n_iter': iters, 'alpha_1': a1, 'alpha_2': a2}

    grid = GridSearchCV(ard, params, cv=5, n_jobs=-1, verbose=1)

    start = time.perf_counter()

    grid.fit(X_train, y_train)

    see_time('training time:')

    bp = grid.best_params_

    print (bp, br)

    ard = ARDRegression(**bp).fit(X_train_std, y_train)

    rmse, name = get_error(ard, X_test_std, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    start = time.perf_counter()

    scores = get_cross(ard, X, y)

    see_time('cross-validation rmse:')

    rmse = np.sqrt(np.mean(scores) * -1)

    print (rmse)

Your output from executing Listing 7-3 should resemble the following:

ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

       copy_X=True, fit_intercept=True, lambda_1=1e-06,

       lambda_2=1e-06, n_iter=300, normalize=False,

       threshold_lambda=10000.0, tol=0.001, verbose=False)

ARDRegression(rmse): 0.8745960871430548

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  20 out of  20 | elapsed:    3.5s finished

training time: 4 seconds and 286.03 milliseconds

{'alpha_1': 10000.0, 'alpha_2': 100000.0, 'n_iter': 50}

Chapter 7  Scikit-Learn Regression Tuning 



199

ARDRegression(rmse): 0.8645625277607758

cross-validation rmse: 4 seconds and 10.17 milliseconds

1.0376527153700184

The code begins by importing requisite packages. Function get_error returns 

RMSE. Function see_time returns elapsed time. Function get_cross returns  

cross_validation RMSE.

The main block begins by loading preprocessed tips data. The code continues 

by splitting data into train-test subsets. Next, we scale data. We then train data with 

ARDRegression and display results for baseline comparison with the tuned RMSE.

ARDRegression (Automatic Relevance Determination Regression) fits a regression 

model with Bayesian Ridge Regression. Estimation of the model is accomplished by 

iteratively maximizing the marginal log-likelihood of the observations.

We tune with n_iter, alpha_1, and alpha_2. Hyperparameter n_iter is the maximum 

number of iterations. Hyperparameter alpha_1 is the shape parameter for the gamma 

distribution prior over the alpha parameter. Hyperparameter alpha_2 is the inverse scale 

parameter (or rate parameter) for the gamma distribution prior over the alpha parameter.

We are able to reduce RMSE with tuning. Also, cross-validation reveals that we are 

doing very well.

�Tuning boston
The code example shown in Listing 7-4 calculates RMSE for a variety of regression 

algorithms based on unscaled and scaled data. Since boston is a relatively small data set, 

it is computationally inexpensive to run this type of experiment.

Listing 7-4.  Calculating RMSE for boston data with regression algorithms

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor as rfr,\

     AdaBoostRegressor as ada, GradientBoostingRegressor as gbr

from sklearn.linear_model import LinearRegression as lr,\

     BayesianRidge as bay, Ridge as rr, Lasso as l,\

     LassoLars as ll, ElasticNet as en,\

Chapter 7  Scikit-Learn Regression Tuning 



200

     ARDRegression as ard, RidgeCV as rcv

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor as dtr

from sklearn.neighbors import KNeighborsRegressor as knn

from sklearn.preprocessing import StandardScaler

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_boston.npy')

    y = np.load('data/y_boston.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    regressors = [lr(), bay(), rr(alpha=.5, random_state=0),

                  l(alpha=0.1, random_state=0), ll(), knn(),

                  ard(), rfr(random_state=0, n_estimators=100),

                  SVR(gamma='scale', kernel='rbf'),

                  rcv(fit_intercept=False), en(random_state=0),

                  dtr(random_state=0), ada(random_state=0),

                  gbr(random_state=0)]

    print ('unscaled:', br)

    for reg in regressors:

        reg.fit(X_train, y_train)

        rmse, name = get_error(reg, X_test, y_test)

        name = reg.__class__.__name__

        print (name + '(rmse):', end=' ')

        print (rmse)

    print ()

    print ('scaled:', br)

    scaler = StandardScaler()

    X_train_std = scaler.fit_transform(X_train)

    X_test_std = scaler.fit_transform(X_test)

Chapter 7  Scikit-Learn Regression Tuning 



201

    for reg in regressors:

        reg.fit(X_train_std, y_train)

        rmse, name = get_error(reg, X_test_std, y_test)

        name = reg.__class__.__name__

        print (name + '(rmse):', end=' ')

        print (rmse)

Your output from executing Listing 7-4 should resemble the following:

unscaled:

LinearRegression(rmse): 4.236710574387242

BayesianRidge(rmse): 4.317939916221959

Ridge(rmse): 4.243658717030716

Lasso(rmse): 4.300740333025026

LassoLars(rmse): 8.754893348840868

KNeighborsRegressor(rmse): 5.9934937623789

ARDRegression(rmse): 4.28415048500826

RandomForestRegressor(rmse): 3.37169151536684

SVR(rmse): 7.100029068343849

RidgeCV(rmse): 4.392246392993031

ElasticNet(rmse): 4.88844846745213

DecisionTreeRegressor(rmse): 4.346328232622458

AdaBoostRegressor(rmse): 3.652816906059683

GradientBoostingRegressor(rmse): 3.1941117128039194

scaled:

LinearRegression(rmse): 4.398269524691269

BayesianRidge(rmse): 4.419543929268475

Ridge(rmse): 4.400075160458176

Lasso(rmse): 4.489952156682322

LassoLars(rmse): 8.754893348840868

KNeighborsRegressor(rmse): 4.757936288305807

ARDRegression(rmse): 4.383622227159

RandomForestRegressor(rmse): 4.053037237125816

SVR(rmse): 5.083294658978756

RidgeCV(rmse): 22.34757636411328

ElasticNet(rmse): 5.277752330669967

Chapter 7  Scikit-Learn Regression Tuning 



202

DecisionTreeRegressor(rmse): 5.2796587719252726

AdaBoostRegressor(rmse): 4.100148076529094

GradientBoostingRegressor(rmse): 3.7490071027496015

The code begins by importing requisite packages and a variety of regression 

algorithms. Function get_error returns model name and RMSE. The main block begins 

by loading cleansed boston data from NumPy files. Remember that we cleansed boston 

data and saved it for future processing in Chapter 4.

The code continues by splitting data into train-test subsets. Next, we create a list of 

regression algorithms. The code continues by training each algorithm on unscaled data 

and displaying results. The code then scales data, trains each algorithm on scaled data, 

and displays results.

The best performing algorithms in this experiment are GradientBoostingRegressor 

and RandomForestRegressor (both with unscaled data). So, scaling data did not add 

value with this data set.

The next code example shown in Listing 7-5 tunes the boston data set with 

GradientBoostingRegressor.

Listing 7-5.  Tuning boston data with GradientBoostingRegressor

import numpy as np, humanfriendly as hf, warnings, sys

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import GridSearchCV,\

     cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

Chapter 7  Scikit-Learn Regression Tuning 



203

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups,

                           scoring='neg_mean_squared_error')

if __name__ == "__main__":

    br = '\n'

    if not sys.warnoptions:

        warnings.simplefilter('ignore')

    X = np.load('data/X_boston.npy')

    y = np.load('data/y_boston.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    gbr = GradientBoostingRegressor(random_state=0)

    print (gbr, br)

    gbr.fit(X_train, y_train)

    rmse, name = get_error(gbr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    loss = ['ls', 'lad', 'huber']

    lr = [1e-2, 1e-1, 1e-0]

    n_est = [150, 200, 300, 500]

    alpha = [0.9]

    params = {'loss': loss, 'learning_rate': lr,

              'n_estimators': n_est, 'alpha': alpha}

    grid = GridSearchCV(gbr, params, cv=5, n_jobs=-1,

                        verbose=1, refit=False)

    start = time.perf_counter()

    grid.fit(X_train, y_train)

    see_time('training time:')

    bp = grid.best_params_

    print (bp, br)

    gbr = GradientBoostingRegressor(**bp, random_state=0)

    gbr.fit(X_train, y_train)

    rmse, name = get_error(gbr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

Chapter 7  Scikit-Learn Regression Tuning 



204

    start = time.perf_counter()

    scores = get_cross(gbr, X, y)

    see_time('cross-validation rmse:')

    rmse = np.sqrt(np.mean(scores) * -1)

    print (rmse)

Your output from executing Listing 7-5 should resemble the following:

GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse',

             init=None, learning_rate=0.1, loss='ls',

             max_depth=3, max_features=None,

             max_leaf_nodes=None, min_impurity_decrease=0.0,

             min_impurity_split=None,

             min_samples_leaf='deprecated', min_samples_split=2,

             min_weight_fraction_leaf='deprecated',

             n_estimators=100, n_iter_no_change=None,

             presort='auto', random_state=0, subsample=1.0,

             tol=0.0001, validation_fraction=0.1, verbose=0,

             warm_start=False)

GradientBoostingRegressor(rmse): 3.1941117128039194

Fitting 5 folds for each of 36 candidates, totalling 180 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  34 tasks      | elapsed:    3.1s

[Parallel(n_jobs=-1)]: Done 180 out of 180 | elapsed:    9.1s finished

training time: 9 seconds and 170.11 milliseconds

{'alpha': 0.9, 'learning_rate': 0.1, 'loss': 'huber', 'n_estimators': 300}

GradientBoostingRegressor(rmse): 3.0839764165411934

cross-validation rmse: 3 seconds and 258.29 milliseconds

3.7929403445012064

The code begins by importing GradientBoostingRegressor as well as other requisite 

packages. GradientBoostingRegressor performs gradient boosting for regression by 

building an additive model in a forward-stage fashion.

Chapter 7  Scikit-Learn Regression Tuning 



205

Function get_error returns the RMSE and model name for a given algorithm. 

Function see_time returns elapsed time. Function get_cross returns the negative mean 

squared error.

The main block loads boston data, splits it into train-test subsets, and trains data 

with GradientBoostingRegressor. The code continues by displaying RMSE with default 

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the 

model is tuned with hyperparameters loss, learning_rate, n_estimators, and alpha.

Hyperparameter loss is the loss function to be optimized. Hyperparameter 

learning_rate controls how much we adjust model learning with respect to the loss 

gradient. Hyperparameter n_estimators is the number of boosting stages to perform. 

Hypeparameter alpha is the alpha-quantile of the huber loss function.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our 

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

Tip  You may have to occasionally reboot your computer as tuning requires an 
enormous amount of computing resources.

The final code example in this section (shown in Listing 7-6) tunes the boston data 

set with RandomForestRegressor.

Listing 7-6.  Tuning boston data with RandomForestRegressor

import numpy as np, humanfriendly as hf, warnings, sys

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,\

     cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

Chapter 7  Scikit-Learn Regression Tuning 



206

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups,

                           scoring='neg_mean_squared_error')

if __name__ == "__main__":

    br = '\n'

    if not sys.warnoptions:

        warnings.simplefilter('ignore')

    X = np.load('data/X_boston.npy')

    y = np.load('data/y_boston.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    rfr = RandomForestRegressor(random_state=0)

    print (rfr, br)

    rfr.fit(X_train, y_train)

    rmse, name = get_error(rfr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    n_est = [100, 500, 1000]

    boot = [True, False]

    params = {'n_estimators': n_est, 'bootstrap': boot}

    grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1,

                        verbose=1, refit=False)

    start = time.perf_counter()

    grid.fit(X_train, y_train)

    see_time('training time:')

    bp = grid.best_params_

    print (bp, br)

    rfr = RandomForestRegressor(**bp, random_state=0)

    rfr.fit(X_train, y_train)

    rmse, name = get_error(rfr, X_test, y_test)

Chapter 7  Scikit-Learn Regression Tuning 



207

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    start = time.perf_counter()

    scores = get_cross(rfr, X, y)

    see_time('cross-validation rmse:')

    rmse = np.sqrt(np.mean(scores) * -1)

    print (rmse)

Your output from executing Listing 7-6 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion='mse',

           max_depth=None, max_features='auto',

           max_leaf_nodes=None, min_impurity_decrease=0.0,

           min_impurity_split=None,

           min_samples_leaf='deprecated', min_samples_split=2,

           min_weight_fraction_leaf='deprecated',

           n_estimators='warn', n_jobs=None, oob_score=False,

           random_state=0, verbose=0, warm_start=False)

RandomForestRegressor(rmse): 3.5587794792757004

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  30 out of  30 | elapsed:    8.3s finished

training time: 8 seconds and 453.84 milliseconds

{'bootstrap': True, 'n_estimators': 100}

RandomForestRegressor(rmse): 3.37169151536684

cross-validation rmse: 1 second and 845.76 milliseconds

3.6815463792891623

The code begins by importing RandomForestRegressor as well as other requisite 

packages. RandomForestRegressor fits a number of classifying decision trees on various 

subsamples of the data set and uses averaging to improve predictive accuracy and 

control overfitting.

Function get_error returns the RMSE and model name for a given algorithm. 

Function see_time returns elapsed time. Function get_cross returns the negative mean 

squared error.

Chapter 7  Scikit-Learn Regression Tuning 



208

The main block loads boston data, splits it into train-test subsets, and trains data 

with RandomForestRegressor. The code continues by displaying RMSE with default 

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the 

model is tuned with hyperparameters n_estimators and bootstrap.

Hyperparameter n_estimators is the number of trees in the forest. Hyperparameter 

bootstrap determines whether bootstrap samples are used when building trees.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our 

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

�Tuning wine
By running an experiment similar to those shown in Listings 7-1 and 7-4, we found that 

RandomForestRegressor (with unscaled data) delivered the lowest RMSE for both red 

and white wine data. Go ahead and create your own experiments to verify our results if 

you wish.

The code example shown in Listing 7-7 tunes the red wine data set with 

RandomForestRegressor.

Listing 7-7.  Tuning red wine data with RandomForestRegressor

import numpy as np, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,\

     cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

Chapter 7  Scikit-Learn Regression Tuning 



209

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups,

                           scoring='neg_mean_squared_error')

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_red.npy')

    y = np.load('data/y_red.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    rfr = RandomForestRegressor(random_state=0, n_estimators=10)

    print (rfr, br)

    rfr.fit(X_train, y_train)

    rmse, name = get_error(rfr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    n_est = [100, 500]

    boot = [True, False]

    params = {'n_estimators': n_est, 'bootstrap': boot}

    grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1, verbose=1)

    start = time.perf_counter()

    grid.fit(X_train, y_train)

    see_time('training time:')

    bp = grid.best_params_

    print (bp, br)

    rfr = RandomForestRegressor(**bp, random_state=0)

    rfr.fit(X_train, y_train)

    rmse, name = get_error(rfr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    start = time.perf_counter()

    scores = get_cross(rfr, X, y)

    see_time('cross-validation rmse:')

    rmse = np.sqrt(np.mean(scores) * -1)

    print (rmse)

Chapter 7  Scikit-Learn Regression Tuning 



210

Your output from executing Listing 7-7 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion='mse',

                      max_depth=None, max_features='auto',

                      max_leaf_nodes=None,

                      min_impurity_decrease=0.0,

                      min_impurity_split=None,

                      min_samples_leaf='deprecated',

                      min_samples_split=2,

                      min_weight_fraction_leaf='deprecated',

                      n_estimators=10, n_jobs=None,

                      oob_score=False, random_state=0, verbose=0,

                      warm_start=False)

RandomForestRegressor(rmse): 0.626079068488957

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  20 out of  20 | elapsed:    7.1s finished

training time: 7 seconds and 629.56 milliseconds

{'bootstrap': True, 'n_estimators': 100}

RandomForestRegressor(rmse): 0.5847897057917487

cross-validation rmse: 4 seconds and 804.96 milliseconds

0.6498982966515346

The code begins by importing requisite packages. Function get_error returns the 

RMSE and model name for a given algorithm. Function see_time returns elapsed time. 

Function get_cross returns the negative mean squared error.

The main block loads red wine data, splits it into train-test subsets, and trains data 

with RandomForestRegressor. The code continues by displaying RMSE with default 

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the 

model is tuned with hyperparameters n_estimators and bootstrap.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our 

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

The final code example shown in Listing 7-8 tunes the white wine data set with 

RandomForestRegressor.

Chapter 7  Scikit-Learn Regression Tuning 



211

Listing 7-8.  Tuning white wine data with RandomForestRegressor

import numpy as np, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,\

     cross_val_score

from sklearn.metrics import mean_squared_error

def get_error(model, Xtest, ytest):

    y_pred = model.predict(Xtest)

    return np.sqrt(mean_squared_error(ytest, y_pred)),\

           model.__class__.__name__

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def get_cross(model, data, target, groups=10):

    return cross_val_score(model, data, target, cv=groups,

                           scoring='neg_mean_squared_error')

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_white.npy')

    y = np.load('data/y_white.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    rfr = RandomForestRegressor(random_state=0, n_estimators=10)

    print (rfr, br)

    rfr.fit(X_train, y_train)

    rmse, name = get_error(rfr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    n_est = [100, 500]

    boot = [True, False]

Chapter 7  Scikit-Learn Regression Tuning 



212

    params = {'n_estimators': n_est, 'bootstrap': boot}

    grid = GridSearchCV(rfr, params, cv=5, n_jobs=-1, verbose=1)

    start = time.perf_counter()

    grid.fit(X_train, y_train)

    see_time('training time:')

    bp = grid.best_params_

    print (bp, br)

    rfr = RandomForestRegressor(**bp, random_state=0)

    rfr.fit(X_train, y_train)

    rmse, name = get_error(rfr, X_test, y_test)

    print (name + '(rmse):', end=' ')

    print (rmse, br)

    start = time.perf_counter()

    scores = get_cross(rfr, X, y)

    see_time('cross-validation rmse:')

    rmse = np.sqrt(np.mean(scores) * -1)

    print (rmse)

Your output from executing Listing 7-8 should resemble the following:

RandomForestRegressor(bootstrap=True, criterion='mse',

           max_depth=None, max_features='auto',

           max_leaf_nodes=None, min_impurity_decrease=0.0,

           min_impurity_split=None,

           min_samples_leaf='deprecated', min_samples_split=2,

           min_weight_fraction_leaf='deprecated',n_estimators=10,

           n_jobs=None, oob_score=False, random_state=0,

           verbose=0, warm_start=False)

RandomForestRegressor(rmse): 0.6966098665124181

Fitting 5 folds for each of 4 candidates, totalling 20 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done  20 out of  20 | elapsed:   18.7s finished

training time: 25 seconds and 709.64 milliseconds

{'bootstrap': True, 'n_estimators': 500}

Chapter 7  Scikit-Learn Regression Tuning 



213

RandomForestRegressor(rmse): 0.6728175517621279

cross-validation rmse: 1 minute, 24 seconds and 70.99 milliseconds 

0.7183073387927801

The code begins by importing requisite packages. Function get_error returns the 

RMSE and model name for a given algorithm. Function see_time returns elapsed time. 

Function get_cross returns the negative mean squared error.

The main block loads white wine data, splits it into train-test subsets, and trains 

data with RandomForestRegressor. The code continues by displaying RMSE with default 

parameters to provide a baseline score for comparison to the tuned RMSE. Next, the 

model is tuned with hyperparameters n_estimators and bootstrap.

Tuning enabled a reduction in RMSE. We end by running cross-validation. Since our 

tuned RMSE is lower than the cross-validation RMSE, we are in good shape.

Chapter 7  Scikit-Learn Regression Tuning 



215
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1_8

CHAPTER 8

Putting It All Together
�The Journey
During our journey with machine learning, we worked with eleven data sets. Seven are 

classification data sets, while four are predictive modeling regression data sets.

Four of the classification data sets are simple. Three are complex. Simple data sets 

are those with few features. A data set with few features is typically referred to as one 

with a low-dimensional feature space. Complex data sets are those with many features. 

Such a data set is typically referred to as one with a high-dimensional feature space. All 

four of the predictive modeling regression (or just regression) data sets are simple in that 

their respective feature spaces have few features.

Feature space dimensionality in machine learning rests upon the notion that 

each feature represents one dimension. So, a feature set with a few features has low 

dimensionality and one with a lot of dimensions has high dimensionality. Feature space 

dimensionality is important in machine learning because a data set with  

a high-dimensional feature space is computationally expensive. That is, algorithmic 

machine learning with such data requires abundant computer resources.

Classification predicts the category the data belongs to, while regression predicts a 

numerical value based on previous observed data. So, classification is used to predict 

discrete responses like gender or a type of fruit. Regression is used to predict continuous 

values like housing prices or profits.

We continued our journey by demonstrating how machine learning algorithms learn 

from data. We began by training both simple and complex classification data sets with a 

variety of classification algorithms in Chapters 2 and 3. We then trained regression data 

sets with a variety of regression algorithms in Chapter 4.

For both classification and regression learning, we demonstrated how to 

make predictions from trained algorithms. Predictions allow us to see results from 

algorithmic training. With classification, we predict discreet targets based on new data. 



216

With regression, we predict continuous outcomes based on new data. In both cases, we 

used test data split from our full data set as new data. However, predictions are only as 

good as our training.

To assess training performance, we must know how to measure learning. For 

classification, we showed you how to derive accuracy. Accuracy is the percentage of 

predictions that we got right. For regression, we showed you how to derive RMSE (root 

mean squared error). RMSE is the difference between predicted values and the observed 

ones. Simply, RMSE measures error.

Although we showed you how to train data with machine learning algorithms, it is 

possible to increase performance with model tuning. So, we showed you how to tune 

classification algorithms in Chapters 5 and 6 as well as regression algorithms in  

Chapter 7. As you know, tuning is a very complex, arduous, time-consuming, and 

experimental process. So, you need patience and fortitude to improve performance 

through tuning.

Tuning is also a very effective way to reduce overfitting. Overfitting is when an 

algorithm is memorizing data instead of learning from it. You know your model is 

overfitting when your training accuracy is a lot higher than your test accuracy.

The machine learning journey, however, is just beginning.

�Value and Cost
Learning the technical side of machine learning is not enough. Data sets in industry 

tend to be large to extremely large. Even a large data set with a low-dimensional feature 

space can be computationally expensive. Imagine the computational expense of training 

an extremely large data set with a high-dimensional feature space! If tuning is included, 

computational expense and data scientist time can be exorbitant.

Data scientists want data in its natural raw state. They want to collect it from the 

source as it is generated. They don’t want to access data from relational databases or 

data stored in various forms in legacy systems. However, current legacy systems more 

often than not store data in relational databases. Furthermore, new data is often placed 

into the same systems. Finally, organizations have rules in place concerning who 

accesses data, how much can be accessed, and when it can be accessed.

Data scientists want raw data as it’s generated to match what actually happens in 

the natural world. That is, they want to mimic reality. Since the idea of machine learning 

is to learn from data, how, where, when, and why data is collected is paramount. 

Chapter 8  Putting It All Together



217

If the organization collects and processes data into its systems, the natural meaning  

(and timing) of the data is lost. And, data scientists may have great difficulty even getting 

the data they need.

So, not only do data scientists struggle to get data in its natural state, they must 

navigate all of the rules, security policies, and politics to access current or new data. 

Current organizational structures are not built to enable data scientists to get the data 

they want, when they want it, and in the form they want it. In addition, data scientists are 

a relatively new phenomenon in organizations. So, they tend to have less political clout, 

their role can be misunderstood, and what they do with data doesn’t match what has 

been done in the past.

Less political clout makes it very difficult to convince those with the financial 

resources (or money people) to allocate more funding for expensive computing 

resources above and beyond current allocations. If money people misunderstand the 

role of data scientists and how resources were allocated in the past, data scientists may 

not get the resources they require. Moreover, data scientists get paid very well and are 

extremely well-educated. Naturally, someone that gets paid more tends to increase 

jealously and turf battles. In addition, data scientists can be viewed as know-it-alls 

because of their education, newness to the organization, and differing views of data.

So, what can be done to convince money people to budget for data scientists’ data 

needs? First, we have to understand what is important to them. Second, we have to 

realize that they naturally want us to succeed because of the incredible rush to embrace 

machine learning in industry.

Only two things are critically important to money people – value and cost. Value is 

what determines the health and well-being of the organization. Cost is anything that 

detracts from the health and well-being of the organization. So, we must be able to 

present our case to money people that what we do is both valuable and reduces costs. 

We must also be cognizant that money people are not data scientists and most likely are 

not technically oriented.

The remainder of the chapter demonstrates value and cost to money people by 

presenting three complex code examples built in this book in very simple terms. Each code 

example is presented with output and explained simply with an emphasis on value and 

cost savings. The code is not explained. It is just included to demonstrate the complexity 

of algorithmic learning by showing what data scientists actually do. Finally, we chose the 

most complex data sets to prove that they can be explained to nontechnical people.

Chapter 8  Putting It All Together



218

�MNIST Value and Cost
We begin with the MNIST code example that was previously tuned, which is shown in 

Listing 8-1. We load the data, run the machine learning algorithm, and display results. 

We then explain results in business value and costs terms.

Listing 8-1.  MNIST value and cost

import numpy as np, humanfriendly as hf

import time

from sklearn.model_selection import train_test_split

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

def get_scores(model, xtrain, ytrain, xtest, ytest):

    ypred = model.predict(xtest)

    train = model.score(xtrain, ytrain)

    test = model.score(xtest, y_test)

    name = model.__class__.__name__

    return (name, train, test, ypred)

def see_time(note):

    end = time.perf_counter()

    elapsed = end - start

    print (note, hf.format_timespan(elapsed, detailed=True))

def find_misses(test, pred):

    return [i for i, row in enumerate(test) if row != pred[i]]

if __name__ == "__main__":

    br = '\n'

    X_file = 'data/X_mnist'

    y_file = 'data/y_mnist'

    X = np.load('data/X_mnist.npy')

    y = np.load('data/y_mnist.npy')

    X = X.astype(np.float32)

Chapter 8  Putting It All Together



219

    bp = np.load('data/bp_mnist_et.npy')

    bp = bp.tolist()

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    et = ExtraTreesClassifier(**bp, random_state=0, n_estimators=200)

    start = time.perf_counter()

    et.fit(X_train, y_train)

    et_scores = get_scores(et, X_train, y_train, X_test, y_test)

    see_time('total time:')

    print (et_scores[0] + ' (train, test):')

    print (et_scores[1], et_scores[2], br)

    y_pred = et_scores[3]

    cm = confusion_matrix(y_test, y_pred)

    plt.figure(1)

    ax = plt.axes()

    sns.heatmap(cm.T, annot=True, fmt="d", cmap='gist_ncar_r', ax=ax)

    ax.set_title(et_scores[0] + 'confustion matrix')

    plt.xlabel('true value')

    plt.ylabel('predicted value')

    indx = find_misses(y_test, y_pred)

    print ('pred', 'actual')

    misses = [(y_pred[row], y_test[row], i)

              for i, row in enumerate(indx)]

    [print (row[0], '  ', row[1]) for i, row in enumerate(misses)

     if i < 10]

    print()

    img_act = y_test[indx[0]]

    img_pred = y_pred[indx[0]]

    print ('actual', img_act)

    print ('pred', img_pred)

    text = str(img_pred)

    test_images = X_test.reshape(-1, 28, 28)

    plt.figure(2)

    plt.imshow(test_images[indx[0]], cmap='gray', interpolation='gaussian')

    plt.text(0, 0.05, text, color='r', bbox=dict(facecolor='white'))

Chapter 8  Putting It All Together



220

    title = str(img_act) + ' misclassified as ' + text

    plt.title(title)

    plt.show()

Your output from executing Listing 8-1 should resemble the following:

total time: 1 minute, 8 seconds and 650.43 milliseconds

ExtraTreesClassifier (train, test):

1.0 0.9732

pred actual

3.0    9.0

7.0    3.0

4.0    9.0

2.0    3.0

3.0    2.0

6.0    5.0

9.0    7.0

9.0    3.0

8.0    6.0

9.0    4.0

actual 9.0

pred 3.0

Listing 8-1 also displays Figures 8-1 and 8-2. Figure 8-1 shows the confusion matrix, 

and Figure 8-2 shows the first misclassification.

Chapter 8  Putting It All Together



221

Figure 8-1.  Confusion matrix

Figure 8-2.  First incorrect prediction

Chapter 8  Putting It All Together



222

�Explaining MNIST to Money People
The code example displays how well we learned from training the MNIST data set. 

MNIST data represents images of digits from 0 to 9. Each element in the data set consists 

of the image as a set of pixels and what the image represents. That is, the set of pixels 

(like the picture we see on a television screen) represents a number between 0 and 9.

For instance, the first data element in the MNIST data consists of a set of pixels that 

represent the digit 0. So, we can train the entire data set based upon the knowledge that 

each data element consists of a set of pixels upon which a digit image is composed and 

the actual digit as a number between 0 and 9.

�Explaining Output to Money People
The output shows us that we learned everything about the data set because training 

performance is 1.0 (or 100%). This sounds great, but we have to take into account how 

well we learn from new data.

Typically, machine learning practitioners slice off a piece of data from the data 

set and hide this from the training process. That is, they only train on a portion of the 

data and use what is learned on hidden (or untouched) data that was sliced off prior to 

training. The data that we learn from is called training data and the hidden data that is 

untouched during training is called test data.

Using what we learn from training data on new data (or test data) is critical because 

we predict future performance based upon test data. The reason we use test data for 

predicting the future is that the technical training process has never seen the test data. 

So, test data is representative of future data that we collect.

Training performance on test data (or new data) was 97.32%. So, training was 

successful because we are confident that over 97% of our predictions will be correct.

The rest of the output just displays some misclassifications (or errors) to help the 

machine learning expert verify results. Keep in mind that although performance is over 

97%, we still have 2.68% error.

Chapter 8  Putting It All Together



223

�Explaining the Confusion Matrix to Money People
The confusion matrix got its name because it can be confusing how each of the numbers 

in the matrix is derived. However, it is really simple to explain the actual output from the 

matrix.

The numbers down the left-hand side represent predictions (labeled as predicted 

value) for each digit, and the numbers across the bottom represent actual values (labeled 

as true value) for each digit. Correct predictions are the numbers on the diagonal from 

top left to bottom right. Incorrect predictions are the numbers not on the diagonal.

Our confusion matrix shows that we predicted 1621 0 digits correctly (top left). As we 

move down the diagonal, we see that we predicted 2011 1 digits correctly and so on.

To see prediction performance in more detail, we can look at predictions for each 

digit or how actual digits were predicted. To analyze predictions for each digit, we look at 

row values. To analyze how actual digits were predicted, we look at column values.

Let’s first look at digit 0 predictions, which are located along the top row from left to 

right. The first row value is 1621 (top left corner of confusion matrix), which represents 

correct predictions. So, we correctly predicted digit 0 1621 times. The remaining 

numbers along the row represent when we predicted digit 0, but the actual digit was 

some other value. For example, the last value in the top row is 11. So, we made eleven 

incorrect digit 0 predictions when the actual value was digit 9.

Now, let’s look at predictions when the actual value was digit 0 that are located up 

and down the first column. The first column value is 1621. Since this number is on the 

diagonal, it represents correct predictions of digit 0. However, digit 0 was incorrectly 

predicted as digit 2 two times, digit 5 one time, digit 6 four times, digit 7 one time, digit 8 

seven times, and digit 9 one time.

So, the results of a confusion matrix can be interpreted in two ways. One way is to 

look at prediction performance. The other way is to look at how an actual value was 

predicted. However, both ways lead to the same result.

For instance, a definite area for further study is to find out why digit 9 has so many 

incorrect predictions. The worst culprit is the value that shows twenty-eight (28) 

incorrect predictions. We can view this as predicting digit 9 incorrectly twenty-eight 

times when the actual value was digit 4. Conversely, we can view this as digit 4 being 

incorrectly predicted as digit 9 twenty-eight times.

The confusion matrix is an excellent way to see how well we predicted based on 

new data. It also provides a way to identify problem areas. For instance, we incorrectly 

Chapter 8  Putting It All Together



224

predicted digit 9 more times than any other digit. So, machine learning experts can 

identify where more work needs to be done to increase performance.

�Explaining Visualizations to Money People
The visualization shows the first incorrect prediction we made during training. We can 

clearly see that the actual digit is 9 (the large image in the middle), but it was classified 

as digit 3 (the small image in red positioned top left). Clues like this visualization can 

save time and money because we can at least speculate why training thought that the 

digit was 3 when it was really 9. Maybe training somehow saw the image with the top left 

opening closed, which would make it look like a 9.

�Value and Cost
Digit recognition is a valuable launching point onto more complex image recognition 

ventures like face recognition. What we learn from image recognition contributes 

directly to face recognition learning exercises.

We demonstrated that our training provides over 97% accuracy with new data. That 

is, we know that at least 97 out of 100 times our predictions are correct. So, we can use 

what we learned on other machine learning ventures with confidence.

We were also able to assess the literal cost. Our training cost was 2.68%. That is, we 

made incorrect predictions less than 3 times out of 100.

Finally, we can easily identify areas for potential improvement and cost savings 

with the help of the confusion matrix and visualization. The confusion matrix showed 

us where training misfired. The visualization gives clues as to why training may have 

made incorrect predictions. Although we only showed one visualization, we can produce 

visualizations of all of the incorrect predictions for further study.

The ability to efficiently locate potential problem areas saves machine learning 

experts time and money because they at least have educated clues where to focus their 

energy. Without such clues, they would be experimenting in the dark.

Training exercises with image recognition also offer potential competitive advantage. 

We can use such exercises to feed more complex image recognition experiments like face 

and text recognition. Image recognition offers the fundamentals to artificially recognize 

what people are communicating and how they appear. Since there is an incredible rush to 

move into machine learning, we can learn from this example its potential benefits and costs.

Chapter 8  Putting It All Together



225

Finally, image data like MNIST makes a strong case why machine learning experts 

need data in its raw form. Image data (of any kind) does not lend itself to storage in or 

access from relational or legacy systems. Machine learning experts need to get this data as 

it comes into the organization before others process and dilute it from its original form.

Computational expense is of course much harder to demonstrate to money people. 

However, this extremely simple example consumes over one minute just to run an 

already tuned algorithm. So, as we create more complex examples that are more 

computationally expensive, we can show money people more direct benefits like the 

ability to decipher written numbers accurately.

�fetch_lfw_people Value and Cost
We continue with the fetch_lfw_people code example that was previously tuned, which 

is shown in Listing 8-2. We load the data, run the machine learning algorithm, and 

display results. We then explain results in business value and costs terms.

Listing 8-2.  fetch_lfw_people value and cost

import numpy as np

from random import randint

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

import seaborn as sns

def find_misses(test, pred):

    return [i for i, row in enumerate(test) if row != pred[i]]

def find_hit(n, ls):

    return True if n in ls else False

def build_fig(indx, pos, color, one, two):

    X_i = np.array(X_test[indx]).reshape(50, 37)

    t = targets[y_test[indx]]

    p = targets[y_pred[indx]]

Chapter 8  Putting It All Together



226

    ax = fig.add_subplot(pos)

    image = ax.imshow(X_i,  cmap='bone')

    ax.set_axis_off()

    ax.set_title(t)

    ax.text(one, two, p, color=color,

            bbox=dict(facecolor='white'))

def chk_acc(rnds):

    logic = [1 if y_test[row] == y_pred[row] else 0

             for row in rnds]

    colors = ['g' if row == 1 else 'r' for row in logic]

    return colors

if __name__ == "__main__":

    br = '\n'

    X = np.load('data/X_faces.npy')

    y = np.load('data/y_faces.npy')

    bp = np.load('data/bp_face.npy')

    bp = bp.tolist()

    images = np.load('data/faces_images.npy')

    targets = np.load('data/faces_targets.npy')

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=0)

    pca = PCA(n_components=0.95, whiten=True, random_state=0)

    pca.fit(X_train)

    X_train_pca = pca.transform(X_train)

    X_test_pca = pca.transform(X_test)

    svm = SVC(**bp)

    svm.fit(X_train_pca, y_train)

    y_pred = svm.predict(X_test_pca)

    print ()

    cr = classification_report(y_test, y_pred)

    print (cr)

    misses = find_misses(y_test, y_pred)

    miss = misses[0]

    hit = 1

Chapter 8  Putting It All Together



227

    X_hit = np.array(X_test[hit]).reshape(50, 37)

    y_test_hit = targets[y_test[hit]]

    y_pred_hit = targets[y_pred[hit]]

    X_miss = np.array(X_test[miss]).reshape(50, 37)

    y_test_miss = targets[y_test[miss]]

    y_pred_miss = targets[y_pred[miss]]

    fig = plt.figure('1st Hit and Miss')

    fig.suptitle('Visualize 1st Hit and Miss',

                 fontsize=18, fontweight='bold')

    build_fig(hit, 121, 'g', 0.4, 1.9)

    build_fig(miss, 122, 'r', 0.4, 1.9)

    rnd_ints = [randint(0, y_test.shape[0]-1)

                for row in range(4)]

    colors = chk_acc(rnd_ints)

    fig = plt.figure('Four Random Predictions')

    build_fig(rnd_ints[0], 221, colors[0], .9, 4.45)

    build_fig(rnd_ints[1], 222, colors[1], .9, 4.45)

    build_fig(rnd_ints[2], 223, colors[2], .9, 4.45)

    build_fig(rnd_ints[3], 224, colors[3], .9, 4.45)

    plt.tight_layout()

    plt.show()

Your output from executing Listing 8-2 should resemble the following:

              precision    recall  f1-score   support

           0       1.00      0.64      0.78        28

           1       0.76      0.92      0.83        63

           2       0.91      0.88      0.89        24

           3       0.88      0.92      0.90       132

           4       0.74      0.85      0.79        20

           5       1.00      0.64      0.78        22

           6       0.90      0.85      0.88        33

   micro avg       0.86      0.86      0.86       322

   macro avg       0.89      0.81      0.84       322

weighted avg       0.87      0.86      0.86       322

Chapter 8  Putting It All Together



228

Figure 8-3.  First correct and first incorrect prediction

Listing 8-2 also displays Figures 8-3 and 8-4. Figure 8-3 shows a visualization of the 

first correct prediction and the first incorrect prediction. Figure 8-4 shows a visualization 

of four random predictions.

Chapter 8  Putting It All Together



229

�Explaining fetch_lfw_people to Money People
The code example displays how well we learned from training the fetch_lfw_people data 

set. The fetch_lfw_people data set is a collection of JPEG images of famous people. Each 

element in the data set consists of the image and the person represented by the image.

�Explaining Output to Money People
Training performance on test data (or new data) was 87%. This value is displayed at 

the bottom of the precision column on the left. So, we are confident that 87% of our 

predictions will be correct. But, this also means that we are incorrect 13% of the time. 

Of course, this example is a very simple and inexpensive one. As facial recognition 

Figure 8-4.  Four random predictions

Chapter 8  Putting It All Together



230

technology continues to improve dramatically, learning accuracy approaches perfection. 

However, costs associated with capturing images, extracting samples to create templates, 

comparing collected data with existing templates, and matching collected data with 

templates at an industrial level can be expensive.

Although facial recognition is a very complex topic, the visualizations make it easy to 

see how well we learned from the data. We only displayed four random predictions, but 

we could have displayed many more for further analysis.

�Explaining Visualizations to Money People
Both visualizations shown in Figures 8-3 and 8-4 represent predictions we made from 

what we learned from the data. Figure 8-3 shows a correct prediction (name in green 

embedded in the picture) and an incorrect prediction (name in red embedded in the 

picture). Figure 8-4 shows four random predictions. Notice that we made three correct 

predictions and only one incorrect one. That is, we correctly predicted Colin Powell, 

George W. Bush, and Ariel Sharon while we incorrectly predicted Hugo Chavez as 

George W. Bush.

�Value and Cost
Facial recognition is the fastest growing biometric technology with the sole purpose of 

identifying human faces. Excellent facial recognition technology is already being used by 

Apple’s iPhone X to unlock a smartphone.

A relevant area where facial recognition is critical is security. Organizations can 

protect their premises with this technology by tracking both employee and visitor 

movement in secure areas.

Another area is integration with existing software. Current facial recognition 

technology tools work well with existing security software. Such easy integration is great 

for business because organizations don’t need to spend additional money and time 

redeveloping their own systems to work with facial recognition technology.

Current facial recognition technology accuracy is higher than ever before with the 

advent of 3D facial recognition technology and infrared cameras. Accuracy, of course, is 

extremely important because false identification can be detrimental.

Facial recognition systems can be fully automated. So, organizations won’t need 

employees to monitor cameras.

Chapter 8  Putting It All Together



231

Finally, time fraud can be drastically reduced. Since everyone must pass a face-

scanning device to check in (or check out) for work or visit the premises, organizations 

don’t have to worry about buddy favors from security staff members. Also, the process is 

much faster because technology controls the check-in or check-out process. Technology 

can also keep a log of activities if problems occur.

However, data capture and processing costs can be high depending on how much 

data needs to be collected and processed. Initial and ongoing technology costs can also 

be substantial. Don’t forget that organizations still need competent people to monitor, 

fix, update, and upgrade the technology. The idea is to shift costs from manual processes 

to automated processes. In the short term, costs can be high, but automation should 

significantly reduce costs in the long term, improve process efficiency, and reduce 

human error.

Image quality can also be an issue. For instance, organizations can store images with 

different levels of quality. High-quality images require more storage space, but are better 

when matching against an actual face in real time. Of course, more storage is costly.

Surveillance angle is also an issue. Capturing a new image must be processed at 

different angles because an actual face in real time can be seen at different angles. 

People can also appear different by wearing sunglasses, being unshaven, emanating 

different facial expressions, and even having a different haircut.

The best technology takes these issues into account. Of course, the best technology 

costs money. However, people can’t do what computers can. One example is 

simultaneous comparison of faces against a database of thousands.

As facial recognition options become more cost competitive, organizations may have 

no choice but to get involved with the technology. We have already discussed the value 

and costs of facial recognition. So, cost savings with automation, higher accuracy, and 

less fraud offer competitive advantages that cannot be ignored.

�fetch_20newsgroups Value and Cost
We finish with the fetch_20newsgroups code example that was previously tuned, which 

is shown in Listing 8-3. We adopt a more realistic scenario by removing headers, footers, 

and quotes from the subset of documents that we train upon.

The reason we do this is to remove clues as to the subject of the document to ensure 

that machine learning algorithms can correctly identify meaning from text that is not 

Chapter 8  Putting It All Together



232

easily identifiable. Keep in mind that headers, footers, and quotes are not typically in 

most written documents and written communications.

We load the data, run the machine learning algorithm, and display results. We then 

explain results in business value and costs terms.

Listing 8-3.  fetch_20newsgroups value and cost

import numpy as np

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.metrics import f1_score, confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

def predict_category(s, m, t):

    pred = m.predict([s])

    return t[pred[0]]

if __name__ == "__main__":

    br = '\n'

    train = fetch_20newsgroups(subset='train')

    test = fetch_20newsgroups(subset='test')

    categories = ['rec.autos', 'rec.motorcycles', 'sci.space', 'sci.med']

    train = fetch_20newsgroups(�subset='train', categories=categories, 

remove=('headers', 'footers', 'quotes'))

    test = fetch_20newsgroups(�subset='test', categories=categories, 

remove=('headers', 'footers', 'quotes'))

    targets = train.target_names

    print ('targets:')

    print (targets, br)

    bp = np.load('data/bp_news.npy')

    bp = bp.tolist()

Chapter 8  Putting It All Together



233

    print ('best parameters:')

    print (bp, br)

    mnb = MultinomialNB(alpha=0.01, fit_prior=False)

    tf = TfidfVectorizer(ngram_range=(1, 1), use_idf=False)

    pipe = make_pipeline(tf, mnb)

    pipe.fit(train.data, train.target)

    labels = pipe.predict(test.data)

    f1 = f1_score(test.target, labels, average='micro')

    print ('f1_score', f1, br)

    labels = pipe.predict(test.data)

    cm = confusion_matrix(test.target, labels)

    plt.figure('confusion matrix')

    sns.heatmap(�cm.T, square=True, annot=True, fmt='d', xticklabels=train.

target_names, yticklabels=train.target_names, cbar=False)

    plt.xlabel('true label')

    plt.ylabel('predicted label')

    plt.tight_layout()

    print ('***PREDICTIONS***:')

    doc1 = 'imagine the stars ...'

    doc2 = 'crashed on highway without seatbelt'

    doc3 = 'dad hated the medicine ...'

    y_pred = predict_category(doc1, pipe, targets)

    print (y_pred)

    y_pred = predict_category(doc2, pipe, targets)

    print (y_pred)

    y_pred = predict_category(doc3, pipe, targets)

    print (y_pred)

    plt.show()

Chapter 8  Putting It All Together



234

Your output from executing Listing 8-3 should resemble the following:

targets:

['rec.autos', 'rec.motorcycles', 'sci.med', 'sci.space']

best parameters:

{'tfidfvectorizer__use_idf': False, 'tfidfvectorizer__ngram_range': (1, 1), 

'multinomialnb__fit_prior': False, 'multinomialnb__alpha': 0.01}

f1_score 0.8680555555555556

***PREDICTIONS***:

sci.space

rec.autos

sci.med

Listing 8-3 also displays Figure 8-5. Figure 8-5 shows the confusion matrix.

Figure 8-5.  Confusion matrix

Chapter 8  Putting It All Together



235

�Explaining fetch_20newsgroups to Money People
The code example demonstrates how well we learned from training the 

fetch_20newsgroups data set. The fetch_20newsgroups data set is a collection of 18000 

newsgroup posts on 20 topics. For this training example, we filtered down the data set 

into four subsets – autos, motorcycles, space, and medicine – to simplify and reduce 

computational expense.

�Explaining Output to Money People
We first display the subsets upon which we learn from. Next, we display the best 

parameters so that the machine learning expert can appropriately build the algorithm 

that provides the best performance.

Training performance on test data (or new data) was almost 87%. This value is 

displayed as the f1_score. So, we are confident that almost 87% of our predictions will be 

correct, but this also means that we are incorrect a bit over 13% of the time.

Finally, we make predictions from three simple documents. Notice that we as 

humans can easily predict what category imagine the stars… belongs to, but the learning 

experiment doesn’t have the vast knowledge about words that we do. It works with 

complex document manipulation techniques and machine learning algorithms to 

produce pretty good results.

�Explaining the Confusion Matrix to Money People
Since we already explained what a confusion matrix is and how it can be analyzed in the 

first code example, we won’t repeat it here. However, it does exhibit some interesting 

insights.

Notice on the first row, second column that we made 47 incorrect predictions. In 

this case, we incorrectly predicted autos when the actual values were motorcycles. This 

makes some sense because the learning algorithms have more trouble distinguishing 

between two types of vehicles than other incorrect predictions.

Conversely, we incorrectly predicted motorcycles incorrectly 34 times when 

the actual values were autos. We see again that the learning algorithms had trouble 

distinguishing between the two types of vehicles, so the majority of incorrect predictions 

were made when trying to distinguish between two types of vehicles.

Chapter 8  Putting It All Together



236

�Value and Cost
Extracting meaning from text is typically referred to as text mining. Text mining is a 

means to capture high-quality information from text. High-quality information has no 

value unless it leads to business insights (or value).

Since most data collected by organizations is never analyzed, text mining offers an 

efficient and hopefully effective means to do so. Just because an organization efficiently 

collects and mines text doesn’t mean that it can create value.

Value can be created in at least three impactful areas. First, it can enhance 

compliance and threat detection. Second, it can foster customer engagement. Third, it 

can facilitate better decision-making.

Mining text can greatly impact compliance issues by providing early fraud detection 

such as money laundering. Organizations also need ways to automate compliance 

to policies and procedures. Text mining can automate such processes by detecting 

noncompliance from textual inputs such as online forms, e-mails, texts, and other 

messaging services. Threats to security can also be detected by mining messages flowing 

in and out of an organization.

Costs can definitely be reduced through automation of compliance and threat 

detection services because less people are needed to manage administration of such 

procedures. Human error is also reduced if less people are involved.

Interaction with customers offers incredible opportunities for text mining. For 

instance, Amazon profiles user preferences to better inform customers of products they 

may want to purchase.

Text mining is a natural vehicle to get an idea of what customers are thinking. Maybe 

customers are dissatisfied with current services. Maybe customers want a product or 

service that is not currently offered. Once an organization figures out how to gain insight 

from customers, it can automate such processes. Automation saves time and money and 

reduces human error.

If an organization can gain insight into customer thinking, value is created. If an 

organization can automate such insights, competitive advantage is created. Imagine 

if your competitors aren’t involved in text mining. Even if they are involved with text 

mining, your organization’s competitive advantage is the ability to more efficiently and 

effectively manage customer insights.

Finally, text mining can lead to better business decisions. Data analysts and 

managers need data to provide business with accurate insights. Text mining offers a 

powerful vehicle for gaining accurate insights.

Chapter 8  Putting It All Together



237

Of course, initiating, implementing, administrating, and monitoring text mining 

activities come with costs. First, you need competent text mining people, sufficient 

computing resources, top-level support for leveraging text mining for business insight 

creation, and the ability to form teams composed of a mixture of technical and business 

members.

Text mining experts are great at implementing algorithms, but need help in defining 

the appropriate business insights an organization is seeking. So, a diverse team 

populated with a variety of team members with different aspects of the organization is 

very much needed. Competitive advantage can only be gained if your organization is 

better at text mining than your competition.

Chapter 8  Putting It All Together



239
© David Paper 2020 
D. Paper, Hands-on Scikit-Learn for Machine Learning Applications,  
https://doi.org/10.1007/978-1-4842-5373-1

Index

A
Anaconda, 2

B
Bank data sets, classification

feature engineering, 52, 53
KNeighborsClassifier confusion 

matrix, 60
loads data, 52
OHE vectors, 55
output, 54, 63
svm.SVC confusion matrix, 60
UCI Irvine sample, 61–63

Baseline algorithm, 47, 139

C
Confusion matrix, 42, 48

D
Data sets

classification
Bank data, 9, 10
digits data, 10, 12, 14
fetch_20newsgroups (see 

fetch_20newsgroups data sets)
Iris data, 4–7
labeled faces, 19–21
MNIST, 16, 18, 19
newsgroups, 15, 16

Wine data, 7–9
feature scaling

load digits, 28
SGDClassifier, 29

regression
Boston, 26, 27
red and white wine, 23–25
tips data set, 21, 22

Digits data
classify

algorithms, 56–59
confusion matrix, 46
executing code, 45
GaussianNB, 47
load data, 43
output, 51, 59
Scikit-Learn algorithms, 48, 50, 51

Dimensionality reduction
Isomap visualization, 34, 35
PCA and LDA Iris, 30, 32, 33
unsupervised learning, 30

E
ElasticNet regression, 116
ExtraTreesClassifier, 51, 85, 175

F
fetch_20newsgroups data sets

classification, 72–74

https://doi.org/10.1007/978-1-4842-5373-1


240

confusion matrix, 74–76, 78
identifying information, remove, 76–78
labels vector, 76
misclassifications, 79
MultinomialNB, 72
predictions, 79
subset train, 75
test data sets, 75
TfidfVectorizer package, 72
value and cost

confusion matrix, 234
confusion matrix to money  

people, 235
load data, 232, 233
to money people, 235
output to money people, 235
text mining, 236

fetch_lfw_people data set
build_figure, 102
classification, 95–97
eigenfaces, 97, 98
find_hit, 102
hit and miss, 101
LDA dimensionality, 103, 104
output, 104
PCA, 98, 99
random predictions, 101, 102
value and cost

facial recognition, 230, 231
load data, 225–227
to money people, 229
output to money people, 229
visualization, 228, 229
visualizations to money  

people, 230
visualization, 99–102

G, H, I, J
GaussianNB, 47
get_error function, 193
get_scores function, 157
GradientBoostingRegressor, 204

K
KNeighborsClassifier algorithm, 67, 68

L
Labeled Faces in the Wild (LFW), 95
Lasso regression, 116
LinearDiscriminantAnalysis (LDA), 30, 41
LogisticRegression, 51, 52
Loss function, 116, 169

M, N
Machine learning algorithms, 14, 138, 189
Make_moons data

classify
creating data, 65
KNeighborsClassifier, 67, 68
plot data, 64
visualization, 65

KNeighborsClassifier, 67
Modified National Institute of Standards 

and Technology (MNIST) data set
classification, 79–82
ExtraTreesClassifier confusion  

matrix, 82, 84
F1_score, 87
first misclassification, 82
misclassification, 84
NumPy, 85
precision, 87

fetch_20newsgroups data sets (cont.)

INDEX



241

RandomForestClassifier confusion 
matrix, 82, 83

recall, 87
support, 87
train-test subsets, 85, 86
sample data

classification, 87–89
KNeighborsClassifier, 90, 93, 94
PCA, 90–92
sampling, 95
svm.SVC, 93

value and cost
code, 218, 219
confusion matrix, 221
confusion matrix to money  

people, 223
digit recognition, 224
incorrect prediction, 221
to money people, 222
visualization to money people, 224

O
One hot encoding (OHE) vectors, 55

P, Q
predict_category function, 75
Principal component analysis (PCA), 30

R
RandomForestClassifier, 7, 51
RandomForestRegressor, 110, 207
Regression

boston
data points, 120
RandomForestRegressor, 117, 118
regression algorithms, 120

sample, 119
data sets, 105
DictVectorizer encoding, 110–112

target, 112
vector, 113

feature engineering, 109
get_dummies encoding, 106–109
imputation, 110
LinearRegression models, 110
Nan features, 109
Pandas, 109
RandomForestRegressor, 110
red wine data

exploring and saving, 122, 123
importing PolynomialFeatures, 128
polynomial fitting, 129, 130
regression algorithms, 124–127
RMSE score comparison, 127, 128
scaled data, 128
train-test subsets, 130
unscaled data, 128

regularization, 113–115
scaling, 117
white wine data

algorithms, 133–135
exploring and saving, 131, 132
regression algorithms, 132
RMSE score comparison, 135, 136
scaled data, 136
train-test subsets, 136
unscaled data, 136

Ridge regression, 116
Root mean squared error (RMSE), 189

S
see_time function, 157
SGDRegressor, 116

Index



242

Stochastic gradient descent (SGD), 19, 116
Supervised learning, 2

T, U, V
Term frequency-inverse document 

frequency (TF-IDF), 71
Text mining, 236, 237
Tune regression algorithms

boston
calculating RMSE, 199, 201
GradientBoostingRegressor,  

202, 203
RandomForestRegressor, 205, 207, 

208, 210, 211, 213
data sets, 190
structured process, 190
tips data

with ARDRegression, 196, 198, 199
calculating RMSE, 190, 192, 193
with Lasso, 194–196

Tuning data sets
fetch_1fw_people

hyperparameters, 174
PCA, 169, 172–174
with SGDClassifier, 166–168
with svm.SVC, 170, 171

fetch_20newsgroups
hyperparameters, 188
pipelined model, 184–187

MNIST
ExtraTreesClassifier, 175, 177
n_estimators, 179
output from executing, 178
PCA, 183
RandomForestClassifier, 175, 177
run cross-validation, 180

with svm.SVC, 180, 182
Tuning machine learning algorithms

bank data
C hyperparameter, 152
executing output, 151
KNeighborsClassifier, 155, 156
random sample, 149, 150

baseline algorithm, 139
digits data

with algorithm, 144, 146
cross-validation, 148
executing output, 147
LogisticRegression, 148

Iris data
executing code, 142, 143
GridSearchCV, 143, 144
with KNeighborsClassifier, 140, 141

KNeighborsClassifier, 152, 154, 155
RandomizedSearchCV, 138
structured process, 138
Trial-and-error experimentation, 139
wine data

classifiers, 157, 159
exploring classifiers variety, 

161–163
LinearDiscriminantAnalysis,  

159, 160

W, X, Y, Z
Wine data

classify
confusion matrix, 42
executing output, 40
LDA, 41
load data code, 39, 40
Monte Carlo experiments, 42

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Scikit-Learn
	Machine Learning
	Anaconda
	Scikit-Learn
	Data Sets
	Characterize Data
	Simple Classification Data
	Iris Data
	Wine Data
	Bank Data
	Digits Data

	Complex Classification Data
	Newsgroup Data
	MNIST Data
	Faces Data

	Regression Data
	Tips Data
	Red and White Wine
	Boston Data


	Feature Scaling
	Dimensionality Reduction

	Chapter 2: Classification from Simple Training Sets
	Simple Data Sets
	Classifying Wine Data
	Classifying Digits
	Classifying Bank Data
	Classifying make_moons


	Chapter 3: Classification from  Complex Training Sets
	Complex Data Sets
	Classifying fetch_20newsgroups
	Classifying MNIST
	Training with the Entire MNIST Data Set
	Training MNIST Sample Data

	Classifying fetch_lfw_people


	Chapter 4: Predictive Modeling Through Regression
	Regression Data Sets
	Regressing tips
	Regressing boston
	Regressing wine data

	Chapter 5: Scikit-Learn Classifier Tuning from Simple Training Sets
	Tuning Data Sets
	Tuning Iris Data
	Tuning Digits Data
	Tuning Bank Data
	Tuning Wine Data

	Chapter 6: Scikit-Learn Classifier Tuning from Complex Training Sets
	Tuning Data Sets
	Tuning fetch_1fw_people
	Tuning MNIST
	Tuning fetch_20newsgroups

	Chapter 7: Scikit-Learn Regression Tuning
	Tuning Data Sets
	Tuning tips
	Tuning boston
	Tuning wine

	Chapter 8: Putting It All Together
	The Journey
	Value and Cost
	MNIST Value and Cost
	Explaining MNIST to Money People
	Explaining Output to Money People
	Explaining the Confusion Matrix to Money People
	Explaining Visualizations to Money People
	Value and Cost

	fetch_lfw_people Value and Cost
	Explaining fetch_lfw_people to Money People
	Explaining Output to Money People
	Explaining Visualizations to Money People
	Value and Cost

	fetch_20newsgroups Value and Cost
	Explaining fetch_20newsgroups to Money People
	Explaining Output to Money People
	Explaining the Confusion Matrix to Money People
	Value and Cost


	Index



