
1
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_1

CHAPTER 1

Introduction
Welcome to the world of Bazel!

In case you haven’t heard about it, Bazel is the open source version of the build

system used at Google (Alphabet). To give a sense of scale, Bazel was designed to solve

some of the core problems of building at Google, namely, having to build literally

millions of lines of code across a multitude of languages, efficiently and correctly, for

multiple platforms (e.g., server, mobile, desktop) and different hardware architectures.

While the build system was initially internal to Google, it was released to open source

a few years ago. Since that time, it has continued to evolve into a high-performance,

powerful, yet simple build system for production-level needs.

�What This Book Is
Beginning Bazel is meant as a gentle and practical introduction into using the Bazel build

system. As you progress through the book, you will learn the basics of Bazel through a

series of targeted examples.

These examples are aimed at teaching the core concepts and constructs of Bazel,

including how to set up some basic build targets, construct and cultivate your workspace

to pull in new language rules, and easily build both command line and mobile

applications within the same project across multiple languages.

Through the course of this book, you will build examples in various languages, tying

them together in a cohesive fashion and generating working binaries that could run on a

server and on mobile (with examples covering both Android and iOS).

�What This Book Is Not
Beginning Bazel is not a comprehensive reference manual. While you will learn some of

the core commands for Bazel, there are many options and avenues that are not covered

https://doi.org/10.1007/978-1-4842-5194-2_1

2

in this book (perhaps a future sequel will explore some of the areas). Fortunately, Bazel’s

documentation is excellent: https://docs.bazel.build. This has the information on

latest and greatest advancements happening for Bazel.

Also, while Bazel is able to build most languages, this text only covers a very small

fraction of them. Fortunately, the patterns that you will learn in this book are applicable

across most of the languages that you are likely to encounter and use with Bazel.

New language rules are popping up all the time, so it is worthwhile to check out the

main GitHub organization at https://github.com/bazelbuild. Additionally, Awesome

Bazel (www.awesomebazel.com) is a great site for a curated set of Bazel rules and very

worthwhile to check out to see some fun new possibilities for the language.

�Features of Bazel
One of the chief goals of Bazel is to make sure that your builds are hermetic, that is,

that the build dependencies (including both dependent libraries and build tools) are

well known and independent of anything that may or may not be installed on any given

machine. Ideally, any build can be reproduced using only the tools within the given

project’s workspace.

To this end, Bazel takes special care to ensure that you are explicitly specifying all

of your dependencies and eschewing any “magic” in creating your build. Some might

object that this is removing a degree of convenience. However, in reality this explicit

specification allows both Bazel and the user to reason intelligently about the builds and

provide tools to help diagnose and fix issues as they occur.

Bazel has many features that make it attractive as a build system:

•	 High-level, extensible build language

•	 Explicit dependency management

•	 Advanced visibility rules

•	 Explicit workspace management

•	 Remote build execution and caching

•	 Build dependency analysis

•	 Fast, correct builds

Chapter 1 Introduction

https://docs.bazel.build
https://github.com/bazelbuild
http://www.awesomebazel.com

3

�High-Level Build Language
Bazel provides a very simple yet powerful set of constructs. These include (but are not

limited to)

•	 Commands (such as build and test)

•	 Rules (e.g., for handling different languages)

•	 Packages (to collate a set of rules and dependencies together)

•	 Workspaces (to define the working files, outputs, and dependencies

of your project)

Additionally, Starlark (formerly Skylark) is Bazel’s build language (inspired by

Python). Starlark can further extend Bazel to create new language rules, macros to assist

in development, and so on.

�Explicit Dependency Management
As previously mentioned, Bazel requires explicit dependency declaration. There is no

proverbial “free lunch” with Bazel as it favors being explicit over any kind of implicit

“magic” (e.g., the location of the header files in C++). When creating a build target (e.g., a

library), you are required to specify each of the files (or some directive collating all of the

files); if you don’t specify it, Bazel will not see it.

Additionally, as you depend upon other targets (e.g., another library), this

dependency must be defined explicitly; otherwise, your build will likely fail. In the limit,

this explicit declaration of dependencies from one target to another forms a directed

dependency graph.

Finally, the directed dependency graph in Bazel is and always must be a directed

acyclic graph. That is, there are no cycles allowed within a Bazel dependency graph. This

is important when attempting to create coherent builds, since cycles in the build tree

imply the need for some kind of heuristic to break the cycle (or let the cycle break the

build). Attempting to create a cycle within a dependency graph and then build against it

will immediately cause Bazel to break the build and warn you of the error.

Chapter 1 Introduction

4

�Advanced Visibility Features
One of the best features of Bazel is the ability to limit the visibility of your packages

and targets. That is, you can effectively reduce the scope of what packages can actually

depend upon your build targets. While similar features exist in languages like Java (i.e.,

package visibility) and C++ (i.e., namespaces), Bazel creates the ability to constrain

visibility of dependencies to any language.

�Explicit Workspace Management
Similar to dependency graph management, Bazel also gives you the ability to fully

specify the dependencies of your workspace on any other dependencies, including

external repos. This gives you the ability to pull in code, files, and so on from other

sources, often through specific versions of the external dependencies. This helps provide

guarantees of correctness while still giving you flexibility.

�Remote Build Execution and Caching
Although Bazel executes locally by default, Bazel also allows you to set up a distributed

build system with intelligent caching. This capability is incredibly useful for speeding up

individual builds as well as helping to accelerate development across an entire team.

�Build Dependency Analysis
Another powerful feature is the ability to analyze a build target’s dependencies. For

anyone who has ever tried to introspect into a build product and asked, “How did that

get in there?” Bazel’s ability to understand a build target’s dependency graph will come

as a welcome tool. This is incredibly useful for simplifying dependencies, optimization,

and so on.

�Fast, Correct Builds (and Tests)
While all the other features are grand in their own right, together they help to provide the

most important feature of all for Bazel: efficient and reliable builds (and, consequently,

tests). At the end of the day, the purpose of a build system is to transform code and data

into working applications in a speedy and correct fashion.

Chapter 1 Introduction

5

Bazel utilizes its many features to create a coherent and optimized method of

building products. In addition, it has an intelligent caching system to ensure that

rebuilding (since development is mostly all about rebuilding) is quick and correct, with

little need for cleaning.

When all is said and done, the best feature of Bazel is that it works quickly, simply,

and correctly. You can put together a simple Bazel project, execute it, and then easily

extend it over time.

�Who This Book Is For (and Possibly Not For)
Beginning Bazel is aimed at introducing Bazel to everyone. The degree of utility you get

out of Bazel, however, will largely be determined by what kinds of problems you are

trying to solve.

As indicated at the beginning of this chapter, Bazel was originally designed to solve

the problems around efficiently and correctly building a massive code base for multiple

languages, platforms, and architectures. However, Bazel also scales really nicely, from

the simplest application to a full-stack set of microservices and mobile applications.

Indeed, Bazel may be most useful if you…

•	 …are starting from scratch and want a build system that is going to

scale with your needs

•	 …want to coherently build and depend upon multiple languages

•	 …want out-of-the-box support for defining and running tests

•	 …want to easily build against multiple architectures

•	 …want intelligent caching of build products

•	 …want deterministic outputs every time you build

•	 …want a production-level build system

•	 …are willing to operate within the boundaries of Bazel

This last point may seem a bit strange; however, Bazel is an opinionated build

system. In order to ensure the guarantees of speed and correctness, it will actively

prevent you from doing counterproductive things (e.g., circular build dependencies).

Additionally, Bazel operates best when it is the primary build system. While it can work

Chapter 1 Introduction

6

with other build systems (although this is outside the scope of this book), you are going

to maximize the power and utility of Bazel by using it everywhere in your project.

To that end, it is worthwhile to point out that Bazel might not be for everyone. In

particular, you might not find that much utility in Bazel under the following situations:

•	 You are only dealing with a single language (e.g., Java, Kotlin) for a

specific purpose (e.g., server-side programming, Android). In this

case, you might find existing tools (e.g., Gradle) may be just fine for

your needs.

•	 You have a single, small project that is focused only on a single

architecture with limited requirements on additional libraries

(e.g., programming for iOS). Again, you might find that existing tools

(e.g., Xcode project) are fine.

•	 You are already happy with your existing build system.

On this last point, you may already have a perfectly good build system, in which case,

Bazel may just be a curiosity.

Additionally, you may already be an expert in Bazel; in this case, this book may not

provide that much utility for you (in which case, you might want to give it to a friend to

share your love of Bazel).

However, for everyone else, you might have just found the best build system for your

needs.

Chapter 1 Introduction

	Chapter 1: Introduction
	What This Book Is
	What This Book Is Not
	Features of Bazel
	High-Level Build Language
	Explicit Dependency Management
	Advanced Visibility Features
	Explicit Workspace Management
	Remote Build Execution and Caching
	Build Dependency Analysis
	Fast, Correct Builds (and Tests)

	Who This Book Is For (and Possibly Not For)

