
Beginning
Bazel

Building and Testing for Java, Go,
and More
—
P.J. McNerney

Beginning Bazel
Building and Testing for Java,

Go, and More

P.J. McNerney

Beginning Bazel: Building and Testing for Java, Go, and More

ISBN-13 (pbk): 978-1-4842-5193-5 ISBN-13 (electronic): 978-1-4842-5194-2
https://doi.org/10.1007/978-1-4842-5194-2

Copyright © 2020 by P.J. McNerney

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Editorial Operations Manager: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484251935. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

P.J. McNerney
Blackhawk, CO, USA

https://doi.org/10.1007/978-1-4842-5194-2

iii

Chapter 1: Introduction��� 1

What This Book Is �� 1

What This Book Is Not ��� 1

Features of Bazel �� 2

High-Level Build Language �� 3

Explicit Dependency Management �� 3

Advanced Visibility Features �� 4

Explicit Workspace Management �� 4

Remote Build Execution and Caching �� 4

Build Dependency Analysis �� 4

Fast, Correct Builds (and Tests) ��� 4

Who This Book Is For (and Possibly Not For) ��� 5

Chapter 2: Setup and Installation ��� 7

MacOS ��� 8

Installing Xcode ��� 8

Installing Bazel �� 9

Installing Java ��� 10

Verifying Your Python Version �� 10

Ubuntu Linux ��� 11

Installing Required Packages �� 11

Installing Bazel �� 11

Installing Java ��� 12

Table of Contents

About the Author ��� ix

About the Technical Reviewer ��� xi

iv

Windows ��� 13

Setting Up Your System ��� 13

Installing Required Applications �� 15

Bazel Installation ��� 17

Final Word ��� 21

Chapter 3: Your First Bazel Project ��� 23

Setting Up Your Workspace ��� 23

Adding Source Code �� 24

Hello World, Java Style �� 24

Specifying the BUILD Targets �� 25

Building Your Targets ��� 25

Creating and Using Dependencies ��� 28

Testing Your Build Targets�� 33

Build (and Clean) the World ��� 38

Build Everything (In a Directory) �� 38

Build Everything (At This Directory and Below) ��� 39

Clean (Mostly) Everything �� 39

Final Word ��� 40

Chapter 4: WORKSPACE File Functionality �� 43

WORKSPACE Files ��� 43

Adding New Rules to WORKSPACE �� 44

A Deeper Dive into the Load Path �� 45

Finding the bazel_tools Repository ��� 46

Loading Multiple Rules at the Same Time ��� 48

Referencing Other Dependencies ��� 48

http_archive �� 49

git_repository �� 50

http_archive vs� git_repository �� 52

Employing a New Language �� 53

Locating the Go Language Rules Repository ��� 56

Table of ConTenTs

v

Chapter 5: A Simple Echo Client/Server Program �� 57

Setting Up Your Workspace ��� 57

Go Echo Server�� 58

Java Echo Client �� 60

Naming the Echo Client and Server ��� 62

Echoing Between Programs �� 65

Upgrading to JSON �� 67

JSON in Go ��� 67

JSON in Java ��� 70

Executing the Echo Client/Server with JSON �� 72

Final Word: Duplication of Effort�� 74

Chapter 6: Protocol Buffers and Bazel�� 75

Setting Up Your Workspace ��� 76

Creating Your First Protocol Buffer �� 76

Using the Protocol Buffer in Java �� 79

Creating the Java Proto Library Target �� 79

Using Your Java Protocol Buffer Target�� 80

Using the Protocol Buffer in Go ��� 83

Creating the Go Proto Library Target ��� 84

Using Your Go Protocol Buffer Target ��� 85

Echo Using Protocol Buffers �� 88

Dependency Tracking and Management ��� 90

Change Management in Action �� 91

Final Word ��� 94

Chapter 7: Code Organization and Bazel �� 97

Setup ��� 97

Separating the Protocol Buffers �� 98

Referencing Build Targets Outside of the Current Package �� 99

Table of ConTenTs

vi

Target Visibility �� 101

Package Visibility ��� 102

Individual Target Visibility �� 105

Mixing Package and Target Visibilities �� 107

Separating the Client and Server Code ��� 108

Separating the Echo Server Code �� 108

Separating the Echo Client Code ��� 110

Cleaning Up ��� 112

Final Word ��� 113

Chapter 8: gRPC and Bazel ��� 115

Setup ��� 115

Dependency Discussion �� 117

Defining the gRPC in Protocol Buffers �� 118

Upgrading the Client to Use gRPC ��� 121

Upgrading the Server to Use gRPC ��� 124

Running the Client and the Server �� 127

Adding Another RPC �� 129

Final Word ��� 134

Chapter 9: Bazel and Android ��� 135

Setup ��� 135

Workspace ��� 135

Android Studio ��� 137

Creating the Emulator �� 141

Creating the Android Echo Client in Bazel ��� 146

Starting Up the Android Emulator Instance ��� 151

Bazel Mobile Install ��� 153

Adding gRPC Support �� 155

Running the Android Client Against the Backend �� 160

Final Word ��� 162

Table of ConTenTs

vii

Chapter 10: Bazel and iOS �� 165

Setup ��� 165

Workspace �� 166

Creating the iOS Client in Bazel �� 167

Building for iOS �� 172

Running the iOS Client in the Xcode Simulator ��� 174

Executing the App on the Xcode Simulator ��� 177

Adding the gRPC to the iOS Application �� 182

Final Word ��� 188

Index ��� 189

Table of ConTenTs

ix

About the Author

P.J. McNerney is a developer with over 20 years experience as a software engineer,

having worked for a variety of companies, including Google, DreamWorks Animation,

Insomniac Games, Goldman Sachs, and Major League Baseball. He lives in Colorado

with beloved wife, children, and their dogs.

xi

About the Technical Reviewer

Laurent LeBrun is a software engineer at Google in Munich. He has been working

with Bazel since 2011 and helped open-source it in 2015. He led the design and

implementation of Starlark, to provide an extension mechanism to Bazel.

In the past, he has worked on a contract basis with Microsoft using the F# language.

In his free time, he creates real time 3D animations as part of the demo scene.

1
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_1

CHAPTER 1

Introduction
Welcome to the world of Bazel!

In case you haven’t heard about it, Bazel is the open source version of the build

system used at Google (Alphabet). To give a sense of scale, Bazel was designed to solve

some of the core problems of building at Google, namely, having to build literally

millions of lines of code across a multitude of languages, efficiently and correctly, for

multiple platforms (e.g., server, mobile, desktop) and different hardware architectures.

While the build system was initially internal to Google, it was released to open source

a few years ago. Since that time, it has continued to evolve into a high-performance,

powerful, yet simple build system for production-level needs.

 What This Book Is
Beginning Bazel is meant as a gentle and practical introduction into using the Bazel build

system. As you progress through the book, you will learn the basics of Bazel through a

series of targeted examples.

These examples are aimed at teaching the core concepts and constructs of Bazel,

including how to set up some basic build targets, construct and cultivate your workspace

to pull in new language rules, and easily build both command line and mobile

applications within the same project across multiple languages.

Through the course of this book, you will build examples in various languages, tying

them together in a cohesive fashion and generating working binaries that could run on a

server and on mobile (with examples covering both Android and iOS).

 What This Book Is Not
Beginning Bazel is not a comprehensive reference manual. While you will learn some of

the core commands for Bazel, there are many options and avenues that are not covered

2

in this book (perhaps a future sequel will explore some of the areas). Fortunately, Bazel’s

documentation is excellent: https://docs.bazel.build. This has the information on

latest and greatest advancements happening for Bazel.

Also, while Bazel is able to build most languages, this text only covers a very small

fraction of them. Fortunately, the patterns that you will learn in this book are applicable

across most of the languages that you are likely to encounter and use with Bazel.

New language rules are popping up all the time, so it is worthwhile to check out the

main GitHub organization at https://github.com/bazelbuild. Additionally, Awesome

Bazel (www.awesomebazel.com) is a great site for a curated set of Bazel rules and very

worthwhile to check out to see some fun new possibilities for the language.

 Features of Bazel
One of the chief goals of Bazel is to make sure that your builds are hermetic, that is,

that the build dependencies (including both dependent libraries and build tools) are

well known and independent of anything that may or may not be installed on any given

machine. Ideally, any build can be reproduced using only the tools within the given

project’s workspace.

To this end, Bazel takes special care to ensure that you are explicitly specifying all

of your dependencies and eschewing any “magic” in creating your build. Some might

object that this is removing a degree of convenience. However, in reality this explicit

specification allows both Bazel and the user to reason intelligently about the builds and

provide tools to help diagnose and fix issues as they occur.

Bazel has many features that make it attractive as a build system:

• High-level, extensible build language

• Explicit dependency management

• Advanced visibility rules

• Explicit workspace management

• Remote build execution and caching

• Build dependency analysis

• Fast, correct builds

Chapter 1 IntroduCtIon

https://docs.bazel.build
https://github.com/bazelbuild
http://www.awesomebazel.com

3

 High-Level Build Language
Bazel provides a very simple yet powerful set of constructs. These include (but are not

limited to)

• Commands (such as build and test)

• Rules (e.g., for handling different languages)

• Packages (to collate a set of rules and dependencies together)

• Workspaces (to define the working files, outputs, and dependencies

of your project)

Additionally, Starlark (formerly Skylark) is Bazel’s build language (inspired by

Python). Starlark can further extend Bazel to create new language rules, macros to assist

in development, and so on.

 Explicit Dependency Management
As previously mentioned, Bazel requires explicit dependency declaration. There is no

proverbial “free lunch” with Bazel as it favors being explicit over any kind of implicit

“magic” (e.g., the location of the header files in C++). When creating a build target (e.g., a

library), you are required to specify each of the files (or some directive collating all of the

files); if you don’t specify it, Bazel will not see it.

Additionally, as you depend upon other targets (e.g., another library), this

dependency must be defined explicitly; otherwise, your build will likely fail. In the limit,

this explicit declaration of dependencies from one target to another forms a directed

dependency graph.

Finally, the directed dependency graph in Bazel is and always must be a directed

acyclic graph. That is, there are no cycles allowed within a Bazel dependency graph. This

is important when attempting to create coherent builds, since cycles in the build tree

imply the need for some kind of heuristic to break the cycle (or let the cycle break the

build). Attempting to create a cycle within a dependency graph and then build against it

will immediately cause Bazel to break the build and warn you of the error.

Chapter 1 IntroduCtIon

4

 Advanced Visibility Features
One of the best features of Bazel is the ability to limit the visibility of your packages

and targets. That is, you can effectively reduce the scope of what packages can actually

depend upon your build targets. While similar features exist in languages like Java (i.e.,

package visibility) and C++ (i.e., namespaces), Bazel creates the ability to constrain

visibility of dependencies to any language.

 Explicit Workspace Management
Similar to dependency graph management, Bazel also gives you the ability to fully

specify the dependencies of your workspace on any other dependencies, including

external repos. This gives you the ability to pull in code, files, and so on from other

sources, often through specific versions of the external dependencies. This helps provide

guarantees of correctness while still giving you flexibility.

 Remote Build Execution and Caching
Although Bazel executes locally by default, Bazel also allows you to set up a distributed

build system with intelligent caching. This capability is incredibly useful for speeding up

individual builds as well as helping to accelerate development across an entire team.

 Build Dependency Analysis
Another powerful feature is the ability to analyze a build target’s dependencies. For

anyone who has ever tried to introspect into a build product and asked, “How did that

get in there?” Bazel’s ability to understand a build target’s dependency graph will come

as a welcome tool. This is incredibly useful for simplifying dependencies, optimization,

and so on.

 Fast, Correct Builds (and Tests)
While all the other features are grand in their own right, together they help to provide the

most important feature of all for Bazel: efficient and reliable builds (and, consequently,

tests). At the end of the day, the purpose of a build system is to transform code and data

into working applications in a speedy and correct fashion.

Chapter 1 IntroduCtIon

5

Bazel utilizes its many features to create a coherent and optimized method of

building products. In addition, it has an intelligent caching system to ensure that

rebuilding (since development is mostly all about rebuilding) is quick and correct, with

little need for cleaning.

When all is said and done, the best feature of Bazel is that it works quickly, simply,

and correctly. You can put together a simple Bazel project, execute it, and then easily

extend it over time.

 Who This Book Is For (and Possibly Not For)
Beginning Bazel is aimed at introducing Bazel to everyone. The degree of utility you get

out of Bazel, however, will largely be determined by what kinds of problems you are

trying to solve.

As indicated at the beginning of this chapter, Bazel was originally designed to solve

the problems around efficiently and correctly building a massive code base for multiple

languages, platforms, and architectures. However, Bazel also scales really nicely, from

the simplest application to a full-stack set of microservices and mobile applications.

Indeed, Bazel may be most useful if you…

• …are starting from scratch and want a build system that is going to

scale with your needs

• …want to coherently build and depend upon multiple languages

• …want out-of-the-box support for defining and running tests

• …want to easily build against multiple architectures

• …want intelligent caching of build products

• …want deterministic outputs every time you build

• …want a production-level build system

• …are willing to operate within the boundaries of Bazel

This last point may seem a bit strange; however, Bazel is an opinionated build

system. In order to ensure the guarantees of speed and correctness, it will actively

prevent you from doing counterproductive things (e.g., circular build dependencies).

Additionally, Bazel operates best when it is the primary build system. While it can work

Chapter 1 IntroduCtIon

6

with other build systems (although this is outside the scope of this book), you are going

to maximize the power and utility of Bazel by using it everywhere in your project.

To that end, it is worthwhile to point out that Bazel might not be for everyone. In

particular, you might not find that much utility in Bazel under the following situations:

• You are only dealing with a single language (e.g., Java, Kotlin) for a

specific purpose (e.g., server-side programming, Android). In this

case, you might find existing tools (e.g., Gradle) may be just fine for

your needs.

• You have a single, small project that is focused only on a single

architecture with limited requirements on additional libraries

(e.g., programming for iOS). Again, you might find that existing tools

(e.g., Xcode project) are fine.

• You are already happy with your existing build system.

On this last point, you may already have a perfectly good build system, in which case,

Bazel may just be a curiosity.

Additionally, you may already be an expert in Bazel; in this case, this book may not

provide that much utility for you (in which case, you might want to give it to a friend to

share your love of Bazel).

However, for everyone else, you might have just found the best build system for your

needs.

Chapter 1 IntroduCtIon

7
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_2

CHAPTER 2

Setup and Installation
Before we start building, we need to install Bazel and any other tools and frameworks

required (e.g., compilers). In this chapter, we will demonstrate the necessary steps

among several operating systems.

Note Throughout the course of this book, we will be using Bazel version 1.0.0.
Bazel is evolving rapidly, with new capabilities and configurations coming all the
time. In this evolution, there may be changes to the dependencies which require
tweaks to the build code. For the sake of the examples here, it is best for you to
normalize against version 1.0.0. Once you have gotten the hang of Bazel, you can
upgrade to later versions and tweak the examples as necessary.

We will cover the installation instructions for the following operating systems:

Windows, MacOS, and Ubuntu Linux. Additional installation instructions may be found

at https://docs.bazel.build/versions/master/install.html.

Since we are focused on version 1.0.0 of Bazel, we can find the installation binaries

required for all of our platforms at https://github.com/bazelbuild/bazel/releases/.

For all operating systems, we will need some basic tools in order to bootstrap Bazel.

These include the tools and frameworks for building and running Python, Java, and C++.

Although we won’t be explicitly building any C++ projects in the course of this book, we

will be depending upon projects which do build C++ (e.g., Protocol Buffers).

https://docs.bazel.build/versions/master/install.html
https://github.com/bazelbuild/bazel/releases/

8

Note Java, Python, and C++ are “special” with regard to Bazel because they
largely comprise the built-in languages whose rules come out of the box with
Bazel. That is, the rules for building libraries and binary using these languages
come as a part of Bazel itself.

Other languages that we will build over the course of this book are Go and Swift;
however, we don’t need to explicitly download tools for them. Instead, we will see
that by virtue of depending upon external projects and registering the appropriate
toolchains, we will get the components to build these languages for “free.” There
will be more on this in later chapters.

 MacOS
 Installing Xcode
For installation on MacOS, we will first need to install Xcode for performing the basic

build actions. The simplest way to retrieve Xcode is to open the App Store application on

MacOS and download the application.

Figure 2-1. Retrieving Xcode from the App Store

ChaPTer 2 SeTuP and InSTallaTIOn

9

Once you have downloaded the application, you will need to open the application

and accept the license agreement.

Alternatively, you can accept the license agreement on the command line. To do so,

open a terminal window and execute the following:

~$ sudo xcodebuild -license accept

 Installing Bazel
Once you have set up Xcode, you are now ready to install Bazel onto your machine.

Download the Bazel binary installer for 1.0.0. This can be found at https://github.

com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-installer-

darwin-x86_64.sh.

After this has downloaded, navigate to the directory (e.g., Downloads) to which you

have downloaded the installation script. As a precaution, you may need to first ensure

that you can execute the installation script by changing the file’s permissions. Once

done, you can then run installation.

~$ cd Downloads

~/Downloads$ chmod +x bazel-1.0.0-installer-darwin-x86_64.sh

~/Downloads$./bazel-1.0.0-installer-darwin-x86_64.sh –user

The –-user flag installs Bazel to ~/bin (i.e., your user’s bin directory). To ensure that

you can run Bazel, make sure that ~/bin is in your default paths. Add the following to

your ~/.zshrc (or .bashrc if you are using a version of MacOs earlier than Catalina) file.

export PATH="$PATH:$HOME/bin"

Once you have added this in, source your ~/.zshrc (or ~/.bashrc) file to make sure the

new path is picked up.

~$ source ~/.zshrc

Now you are all set to run Bazel on MacOS. You can easily verify this on the command

line using the version directive, which will output what version of Bazel you are using.

~$ bazel --version

bazel 1.0.0

ChaPTer 2 SeTuP and InSTallaTIOn

https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-installer-darwin-x86_64.sh
https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-installer-darwin-x86_64.sh
https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-installer-darwin-x86_64.sh

10

 Installing Java
You will need at least Java 8 for the examples presented in this book. For MacOS 10.7 and

above, Java is no longer installed by default; instead, we need to explicitly download and

install it.

Head over to https://java.com/en/download/mac_download.jsp to download Java.

Once you have downloaded the file to your computer, follow the instructions to install

Java on your computer.

Once you are done, open a terminal and verify that you have successfully installed

Java on your computer by running the following:

~$ java -version

java version "1.8.0_181"

Java(TM) SE Runtime Environment (build 1.8.0_181-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)java

 Verifying Your Python Version
By default, Python comes packaged with your MacOS machine. You will need at least

Python 2.7.15 in order to run the examples in this book. To verify that you have a

sufficient version of Python on your computer, open a terminal to verify your version.

~$ python --version

Python 2.7.15

Note at the time of this writing, both Python 2 and Python 3 work with Bazel,
with a migration path currently in place to get to the latter. You can set your default
to be one or the other; however, this is considered outside the scope of this book
for the sake of the examples presented therein; currently they should work with
either version.

ChaPTer 2 SeTuP and InSTallaTIOn

https://java.com/en/download/mac_download.jsp

11

 Ubuntu Linux
 Installing Required Packages
Installation on Ubuntu is very similar to MacOS. However, in this case, instead of

downloading Xcode, we will be installing a set of required packages (i.e., pkg-config, zip,

g++, zlib1g-dev, unzip, python3).

Open a terminal window and execute the following command:

~$ sudo apt-get install pkg-config zip g++ zlib1g-dev unzip python3

This may require you to install additional packages as well. Press “Y” when asked if

additional packages should be installed.

 Installing Bazel
Having retrieved the prerequisites, you are ready to download Bazel. Retrieve

the installation script from https://github.com/bazelbuild/bazel/releases/

download/1.0.0/bazel-1.0.0-installer-linux-x86_64.sh.

Open a terminal and navigate to the location where you downloaded the file (e.g.,

~/.Downloads). It may be necessary to set the permissions to execute the file. After that

is taken care of, you can run the execution.

~$ cd Downloads

~/Downloads$ chmod +x bazel-1.0.0-installer-linux-x86_64.sh

~/Downloads$./bazel-1.0.0-installer-linux-x86_64.sh --user

The –-user flag installs Bazel to ~/bin (i.e., your user’s bin directory). To ensure that

you can run Bazel, make sure that ~/bin is in your default paths. Add the following to

your ~/.bashrc file:

export PATH="$PATH:$HOME/bin"

Once you have added this in, source your ~/.bashrc file to make sure the new path is

picked up.

~$ source ~/.bashrc

ChaPTer 2 SeTuP and InSTallaTIOn

https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-installer-linux-x86_64.sh
https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-installer-linux-x86_64.sh

12

Now you are all set to run Bazel on Ubuntu. You can easily verify this on the

command line using the version directive, which will output what version of Bazel you

are using.

~$ bazel –-version

bazel 1.0.0

 Installing Java
To ensure that we are installing the correct version of Java (via OpenJDK), we first need

to check your version of Ubuntu. Open a terminal and execute the following:

~$ lsb_release -a

No LSB modules area available

Distributor ID: Ubuntu

Description: Ubuntu 16.04.5 LTS

Release: 16.04

Codename: xenial

If you are using Ubuntu 16.04, then you will need to use OpenJDK 8. Run the

following command line:

~$ sudo apt-get install openjdk-8-jdk

If you are using Ubuntu 18.04, then you will need to use Open JDK 11. Run the

following command line instead:

~$ sudo apt-get install openjdk-11-jdk

In each case, it may be necessary to install additional packages in order to complete

the Java installation.

After you are done with installation, verify the version of Java you have installed by

running the following:

~$ java -version

openjdk version "1.8.0_222"

OpenJDK Runtime Environment (build 1.8.0_222-8u222-b10-

1ubuntu1~16.04.1-b10)

OpenJDK 64-Bit Server VM (build 25.222-b10, mixed mode)

ChaPTer 2 SeTuP and InSTallaTIOn

13

 Windows
 Setting Up Your System
In order to use Bazel, it is recommended that you have 64-bit Windows 10, version 1703

or above. To check your Windows version, open Settings.

Figure 2-2. Windows Settings

Select System ➤ About. The information you need is under Windows Specification.

ChaPTer 2 SeTuP and InSTallaTIOn

14

Figure 2-3. Verifying the OS build of Windows

Additionally, you will need to enable Developer Mode in order to develop on your

machine. Go to Settings ➤ Update & Security ➤ For developers.

ChaPTer 2 SeTuP and InSTallaTIOn

15

Under Use developer features, select Developer mode. It may be necessary to wait for

the Developer package to be downloaded.

 Installing Required Applications
You will need several applications prior to actually retrieving Bazel itself.

 Visual C++ Redistributable for Visual Studio 2015

This package contains the runtime components required for executing C++ applications

built using Visual Studio 2015. Navigate to www.microsoft.com/en-us/download/

developer-tools.aspx and search for Visual C++ Redistributable for Visual Studio 2015.

Figure 2-4. Enabling Developer Mode

ChaPTer 2 SeTuP and InSTallaTIOn

http://www.microsoft.com/en-us/download/developer-tools.aspx
http://www.microsoft.com/en-us/download/developer-tools.aspx

16

Download the package and install it on your computer.

 MSYS2

MSYS2 is a platform that provides some basic tools for software distribution and

building; in this context, we will be most interested in the fact that it provides a bash

shell for Windows. It also provides a package management system to make it easy to

install software, similar to what might be seen in Linux (e.g., through apt-get) or MacOS

(e.g., through something like Homebrew).

Figure 2-5. Retrieving the Visual C++ Redistributable Packages

ChaPTer 2 SeTuP and InSTallaTIOn

17

Figure 2-6. Installing MSYS2 to your computer

Navigate to www.msys2.org/ and download MSYS2 for x86_64. Install the software on

your computer; for simplicity, use the default installation path.

Once you have completed installation, open an MSYS2 terminal. You will need to

install several packages (i.e., zip, unzip, patch, diffutils, and git). Execute the following

command within the terminal:

pjmcn@WINDOWS-HOME MSYS~

$ pacman -S zip unzip patch diffutils git

You may need to install additional packages in order to complete the installations.

 Bazel Installation
Having taken care of the necessary components, you are now ready to download and

install Bazel itself. Retrieve the executable from https://github.com/bazelbuild/

bazel/releases/download/1.0.0/bazel-1.0.0-windows-x86_64.exe.

ChaPTer 2 SeTuP and InSTallaTIOn

http://www.msys2.org/
https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-windows-x86_64.exe
https://github.com/bazelbuild/bazel/releases/download/1.0.0/bazel-1.0.0-windows-x86_64.exe

18

Unlike Linux and MacOS, the downloaded executable is the Bazel executable; there

is no separate installation script. Once you have downloaded the application, move the

application to a directory (e.g., C:\Users\<user name>\bin) and rename it to bazel.exe.

Add the path to your MSYS2 .bashrc file.

export PATH="$PATH:/c/Users/<username>/bin"

Once you have added this in, source your ~/.bashrc file to make sure the new path is

picked up.

~$ source ~/.bashrc

Now you are all set to run Bazel on Windows. You can easily verify this on the

command line using the version directive, which will output what version of Bazel you

are using.

pjmcn@WINDOWS-HOME MSYS~

$ bazel –-version

bazel 1.0.0

 Installing Language Support

In order to work with several languages (C++, Java, and Python), you will need to install

the appropriate supporting frameworks and applications.

C++

Although we will not be directly building C++ applications within this book, there are

several libraries upon which we will depend which require C++ support. Navigate to

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-

studio- 2019. Download the Build Tools Installer and run the installation.

ChaPTer 2 SeTuP and InSTallaTIOn

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019

19

Figure 2-7. Retrieving the Build Tools for Visual Studio 2019

During the course of installation, make sure you select the C++ build tools.

ChaPTer 2 SeTuP and InSTallaTIOn

20

Java

Many examples in this book do use Java. Navigate to www.oracle.com/technetwork/

java/javase/downloads/index.html. You will need to download at least Java SE

Development Kit 10 for Windows x64. Download an appropriate installation executable

and install it on your computer.

Note MSYS2 has difficulty with spaces within paths. The default path places
Java into Program Files. In order to avoid any issues, you should change your
installation path to someplace without spaces (e.g., C:\users\<user name>\bin\
Java\<jdk-version>\).

As you did with Bazel, make sure to add in the path to your Java installation into the

PATH of your bash shell within your .bashrc file.

export PATH="$PATH:/c/Users/<user name>/bin/Java/<jdk-version>/bin"

Additionally, you will need to also set your JAVA_HOME variable.

export JAVA_HOME="/c/Users/<user name>/bin/Java/<jdk-version>"

Figure 2-8. Installing the C++ build tools

ChaPTer 2 SeTuP and InSTallaTIOn

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

21

Source the .bashrc and confirm that Java is all set within MSYS2.

pjmcn@WINDOWS-HOME MSYS~

$ source .bashrc

pjmcn@WINDOWS-HOME MSYS~

$ java --version

java version "11.0.4" 2019-07-16 LTS

Java™ SE Runtime Environment 18.9 (build 11.0.4+10-LTS)

Java Hotspot™ 64-Bit Server VM 18.9 (build 11.0.4+10-LTS, mixed mode)

Python

Finally, in order to build for Python, you will need to download either Python 2.7 or

3 for Windows. Navigate to www.python.org/downloads/release/python-2716 and

download the Windows x86-64 MSI Installer. After you have downloaded the installer,

execute it in order to install Python.

Once again, make sure you add the path to Python into the PATH of your bash shell.

export PATH="$PATH:/c/Python27"

Source the .bashrc and confirm that python is all set within MSYS2.

pjmcn@WINDOWS-HOME MSYS~

$ source .bashrc

pjmcn@WINDOWS-HOME MSYS~

$ python –-version

Python 2.7.16

 Final Word
At this stage, you should be able to execute the Bazel examples within this book. For

additional operating systems that you may want to install Bazel on, navigate to https://

docs.bazel.build/versions/master/install.html.

Having taken care of the scaffolding necessary to run Bazel, you are now ready to

jump in and start having some fun.

ChaPTer 2 SeTuP and InSTallaTIOn

http://www.python.org/downloads/release/python-2716
https://docs.bazel.build/versions/master/install.html
https://docs.bazel.build/versions/master/install.html

23
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_3

CHAPTER 3

Your First Bazel Project
Now that you’ve downloaded and set up Bazel, the real fun begins. We’ll start with a

small project just to get started and then build (no pun intended) from there.

By the end of this chapter, you will have your first Bazel project up and running and

be able to build and test code.

 Setting Up Your Workspace
Prior to adding any code, we establish a new Bazel project by creating a WORKSPACE file to

a given directory.

Create a directory for your project and create an empty WORKSPACE file:

$ mkdir chapter_03 (or <name of your directory>)

$ cd chapter_03 (or <name of your directory>)

chapter_03$ touch WORKSPACE

The location of the WORKSPACE file should always be at the root of your Bazel project.

Within your Bazel project, all paths will be relativized to the WORKSPACE file. As you create

your various build targets in various directories, you will be able to refer to them relative

to the WORKSPACE file.

However, this is just the tip of the iceberg of the powers of the WORKSPACE file. Later

on, we will see how to use the WORKSPACE file to

• Add new remote code repositories to your workspace (which you can

then refer to later on)

• Add new rules for compiling in different languages

For now, however, the empty WORKSPACE file alone gives us a lot to work with, so we

will start from there.

24

 Adding Source Code
While the WORKSPACE file defines the root of your Bazel project, you will define a source

directory (possibly multiple source directories) into which to place your code. Code

organization is one reason for this, since you will want to have some kind of structure.

However, there is at least one more good reason: Bazel is going to create new

sub-directories in the same location as your WORKSPACE directory. We will get into the

particulars of these directories shortly, since they pertain to the build products that come

out of the Bazel build processes.

Create a directory for your source code:

chapter_03$ mkdir src (or your favorite directory name)

Caution When considering what to call your directory, do not use one of the
following names:

• bazel-bin

• bazel-out

• bazel-testlogs

• bazel-chapter_03 (or bazel-<name of your directory>)

If you haven’t guessed yet, these are the special directories that Bazel creates.
Creating a directory that aliases with one of these is asking for trouble, so please
save yourself a lot of headache by just picking a different name (like src). Also,
while the preceding directories are indicative of the current version of Bazel, it is
advisable to avoid any directories following a pattern of “bazel-*”.

 Hello World, Java Style
Out of the box (at the time of this writing), Bazel supports C++, Java, and Python without

any additional configuration. To start, we will create a (slightly modified) Java version of

Hello World. (Don’t worry. We’ll get more complex; this is just to get started.)

In your preferred code editor, create the file HelloWorld.java and write the following.

ChApter 3 Your FIrst BAzel projeCt

25

Listing 3-1. A simple Java program

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World!);

 }

}

Save that file to disk, under your src directory.

 Specifying the BUILD Targets
With the code created, we can now turn our attention to the basic Bazel components

required to actually build your work.

Within your src directory, create the file BUILD and write and save the following.

Listing 3-2. Your first BUILD file

java_binary(

 name = "HelloWorld",

 srcs = ["HelloWorld.java"],

)

In this example, HelloWorld is a build target; that is, HelloWorld is a unit that can be

identified and built.

 Building Your Targets
Having defined something to build, we are now ready to actually build it. Before we do,

however, let’s jump back up to root directory, the one with the WORKSPACE file inside of it.

Let’s list the contents within:

chapter_03$ ls

WORKSPACE

src (or your favorite directory name)

Additionally, let’s confirm the contents within the src directory. This

chapter_03$ ls src

BUILD HelloWorld.java

ChApter 3 Your FIrst BAzel projeCt

26

This is the clean state of your Bazel project, where nothing has been built. Let’s

change that.

 Build the Binary

To build your first project, run the following from the command line:

chapter_03$ bazel build src:HelloWorld

Breaking the arguments to the bazel command down a bit

• build

• This specifies that you are building/compiling/assembling the

given target.

• src

• This specifies the directory which contains your desired build

target.

• In this example, the directory is rather shallow; however, you

can (and will) specify any number of valid directory paths to

supplement this argument.

• :HelloWorld

• This is the actual build target within the src directory.

• A given directory can have one or more buildable targets in Bazel.

Assuming that all has gone to plan, your output should be something like this:

INFO: Analysed target //src:HelloWorld (19 packages loaded, 550 targets

configured).

INFO: Found 1 target...

Target //src:HelloWorld up-to-date:

 bazel-bin/src/HelloWorld.jar

 bazel-bin/src/HelloWorld

INFO: Elapsed time: 0.144s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action.

ChApter 3 Your FIrst BAzel projeCt

27

 Running the Binary

Having built your executable, you can run it using the following:

chapter_03$ bazel-bin/src/HelloWorld

Hello, World!

However, for practical development, you will not want to constantly flip between

building the executable and then directly executing the binary. Fortunately, you don’t

have to; Bazel provides the facility to directly build and run your executable.

Similar to how you built the executable in the first place, you can directly run the

executable via

chapter_03% bazel run src:HelloWorld

INFO: Analysed target //src:HelloWorld (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:HelloWorld up-to-date:

 bazel-bin/src/HelloWorld.jar

 bazel-bin/src/HelloWorld

INFO: Elapsed time: 0.217s, Critical Path: 0.07s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 2 total actions

INFO: Build completed successfully, 2 total actions

Hello, World!

Note one item to notice in both runs is the line regarding (X packages loaded,
Y targets configured). this provides a rough indication about the state of the
cache for your project. In the first example, these were nonzero values, indicating
that work needed to be done on dependencies in order to produce your target.
In the second example, both of these were 0, indicating that the build should be
fully cached. Bazel loads packages and targets only when something changes,
intelligently rebuilding only what is necessary.

ChApter 3 Your FIrst BAzel projeCt

28

 Creating and Using Dependencies
Creating a single binary is fine; however, it is certainly not practical for development.

In practice, we want to separate our programs into finer grain components. Finer grain

components have many advantages, including being more shareable, easier to test,

faster to build, and easier to optimize the build.

In this particular case, there isn’t much we can pull out of our original example, so

let’s add some new functionality.

Within your src directory, create a new file IntMultiplier.java and add the

following code.

Listing 3-3. IntMultiplier.java

public class IntMultiplier {

 private int a;

 private int b;

 public IntMultiplier(int a, int b) {

 this.a = a;

 this.b = b;

 }

 public int GetProduct() {

 return a * b;

 }

}

Don’t add anything to the BUILD file yet; we will first attempt to add our new class to

our binary.

Listing 3-4. Adding IntMultiplier to HelloWorld.java

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World!");

 IntMultiplier im = new IntMultiplier(3, 4);

 System.out.println(im.GetProduct());

 }

}

ChApter 3 Your FIrst BAzel projeCt

29

Now let’s try to run our build for HelloWorld again:

chapter_03% bazel run src:HelloWorld

INFO: Analysed target //src:HelloWorld (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

ERROR: /Users/pj/Dropbox/Books/Beginning_Bazel/code_samples/chapter_03/src/

BUILD:6:1: Building src/HelloWorld.jar (1 source file) failed (Exit 1)

src/HelloWorld.java:5: error: cannot find symbol

 IntMultiplier im = new IntMultiplier(3, 4);

 ^

 symbol: class IntMultiplier

 location: class HelloWorld

src/HelloWorld.java:5: error: cannot find symbol

 IntMultiplier im = new IntMultiplier(3, 4);

 ^

 symbol: class IntMultiplier

 location: class HelloWorld

Target //src:HelloWorld failed to build

Use --verbose_failures to see the command lines of failed build steps.

INFO: Elapsed time: 0.246s, Critical Path: 0.10s

INFO: 0 processes.

FAILED: Build did NOT complete successfully

In this case, the build failed because it was unable to find IntMultiplier. This

illustrates one of Bazel’s most important qualities: there is nothing implicit in the build;

you need to explicitly specify everything, including all dependencies. Bazel will not

automagically find anything in the same directory, package, and so on.

We can solve this issue in one of two ways:

• Add the new source files to the binary.

• Create a new library upon which the binary will depend.

We will explore both of these methods.

ChApter 3 Your FIrst BAzel projeCt

30

 Adding IntMulitplier.java to java_binary

In this case, we can just add IntMultiplier.java as another source for the HelloWorld

build target.

Listing 3-5. Adding to the HelloWorld srcs

java_binary(

 name = "HelloWorld",

 srcs = [

 "HelloWorld.java",

 "IntMultiplier.java",

],

)

Now, let’s try rerunning HelloWorld:

chapter_03% bazel run src:HelloWorld

INFO: Analysed target //src:HelloWorld (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:HelloWorld up-to-date:

 bazel-bin/src/HelloWorld.jar

 bazel-bin/src/HelloWorld

INFO: Elapsed time: 0.141s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

Hello, World!

12

By explicitly listing the files the target depends upon, HelloWorld is able to

successfully build and run.

However, while this solution works, it is still sub-optimal; as it stands, IntMultiplier

could easily be reused in other places; at the moment, it is locked within the HelloWorld

binary.

ChApter 3 Your FIrst BAzel projeCt

31

 Creating a java_library Dependency

Instead of adding the file to the HelloWorld build target, let’s instead create an entirely

separate dependency. This time, instead of creating a java_binary build target, we are

going to introduce a new type of build target, java_library.

As the name implies, the java_library build target is meant to encapsulate some

shared collection of Java functionality. Once created, the java_library may then

be depended upon by other build targets (which includes other java_library build

targets).

Listing 3-6. Creating the java_library dependency

java_library(

 name = "LibraryExample",

 srcs = ["IntMultiplier.java"],

)

Having created a new build target, let’s build it directly:

chapter_03% bazel build src:LibraryExample

INFO: Analysed target //src:LibraryExample (1 packages loaded, 2 targets

configured).

INFO: Found 1 target...

Target //src:LibraryExample up-to-date:

 bazel-bin/src/libLibraryExample.jar

INFO: Elapsed time: 0.203s, Critical Path: 0.06s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 2 total actions

However, as expected and in contrast to our HelloWorld example, we are not able to

run this particular build target. Attempting to do so results in the following error:

chapter_03% bazel run src:LibraryExample

ERROR: Cannot run target //src:LibraryExample: Not executable

INFO: Elapsed time: 0.097s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (0 packages loaded)

FAILED: Build did NOT complete successfully (0 packages loaded)

ChApter 3 Your FIrst BAzel projeCt

32

 Depending on Build Targets

Now that we have created the build target, we will make HelloWorld depend upon the

target.

Listing 3-7. Adding a dependency to HelloWorld

java_binary(

 name = "HelloWorld",

 srcs = ["HelloWorld.java"],

 deps = [":LibraryExample"],

)

Now let’s rerun HelloWorld:

chapter_03% bazel run src:HelloWorld

INFO: Analysed target //src:HelloWorld (1 packages loaded, 4 targets

configured).

INFO: Found 1 target...

Target //src:HelloWorld up-to-date:

 bazel-bin/src/HelloWorld.jar

 bazel-bin/src/HelloWorld

INFO: Elapsed time: 0.955s, Critical Path: 0.78s

INFO: 3 processes: 1 darwin-sandbox, 2 worker.

INFO: Build completed successfully, 7 total actions

INFO: Build completed successfully, 7 total actions

Hello, World!

12

The pattern of binary and library targets in Bazel is a universal pair of constructs,

regardless of language. Generally speaking, the number of <insert language>_binary

targets you create will be relatively small; they will correspond to the number of output

executables you wish to create. In contrast, the number of <insert language>_library

build targets you create will be relatively large.

ChApter 3 Your FIrst BAzel projeCt

33

 Testing Your Build Targets
One of the chief advantages of creating smaller build units is that they become far

easier to test. Having created some modular functionality, let’s set up a test to verify the

functionality.

 Setting Up Testing Dependencies

Prior to creating a test, we will first need to set up some required dependencies.

Within your project’s root directory, create a new directory, third_party, and two

sub-directories therein, hamcrest and junit:

chapter_03$ mkdir third_party

chapter_03$ mkdir third_party/hamcrest

chapter_03$ mkdir third_party/junit

Follow the instructions from the following site https://github.com/junit-team/

junit4/wiki/download-and-install to download the following jars:

• hamcrest-core-1.3.jar

• junit-4.12.jar

Move the jars into their respective directories under third_party. In order to utilize

these jars, we will make use of yet another type of build target, java_import.

Let’s create a new BUILD file to contain the java_import build target.

Listing 3-8. BUILD file for third_party targets

package(default_visibility = ["//visibility:public"])

java_import(

 name = "junit4",

 jars = [

 "hamcrest/hamcrest-core-1.3.jar",

 "junit/junit-4.12.jar",

]

)

ChApter 3 Your FIrst BAzel projeCt

https://github.com/junit-team/junit4/wiki/download-and-install
https://github.com/junit-team/junit4/wiki/download-and-install

34

Note A sharp observer will note that we have slipped in a new directive,
package, into the BUILD file. We will dive further into this in a later chapter to
control the visibility of build targets toward other targets. For now, it is sufficient to
know that this directive enables the targets contained within this BUILD file to be
visible to any other BUILD targets in any other BUILD file.

Save the BUILD file to the third_party directory. You can test that it is set up correctly

by running

chapter_03$ bazel build third_party:junit4

INFO: Analysed target //third_party:junit4 (2 packages loaded, 25 targets

configured).

INFO: Found 1 target...

Target //third_party:junit4 up-to-date (nothing to build)

INFO: Elapsed time: 0.157s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

 Creating the java_test Build Target

Now let’s create a test for our functionality using the java_test build target.

Listing 3-9. IntMultiplierTest.java

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class IntMultiplierTest {

 @Test

 public void testIntMultiplier() throws Exception {

 IntMultiplier im = new IntMultiplier(3, 4);

 assertEquals(12, im.GetProduct());

 }

}

Save to src/IntMultiplierTest.java.

Now let’s add a new build target to the BUILD file.

ChApter 3 Your FIrst BAzel projeCt

35

Listing 3-10. Adding java_test to BUILD

java_test(

 name = "LibraryExampleTest",

 srcs = ["IntMultiplierTest.java"],

 deps = [

 ":LibraryExample",

 "//third_party:junit4",

],

 test_class = "IntMultiplierTest",

)

Run your newly created test:

chapter_03$ bazel test src:LibraryExampleTest

INFO: Build options --collect_code_coverage, --instrumentation_filter, and

--test_timeout have changed, discarding analysis cache.

INFO: Analysed target //src:LibraryExampleTest (0 packages loaded,

617 targets configured).

INFO: Found 1 test target...

Target //src:LibraryExampleTest up-to-date:

 bazel-bin/src/LibraryExampleTest.jar

 bazel-bin/src/LibraryExampleTest

INFO: Elapsed time: 2.710s, Critical Path: 2.40s

INFO: 3 processes: 1 darwin-sandbox, 2 worker.

INFO: Build completed successfully, 7 total actions

//src:LibraryExampleTest

PASSED in 0.4s

Executed 1 out of 1 test: 1 test passes.

INFO: Build completed successfully, 7 total actions

As expected, the test passes.

Just to verify, let’s add one more test case. This time, let’s initially create a failing test,

just to see what happens.

ChApter 3 Your FIrst BAzel projeCt

36

Listing 3-11. Add a failing test

public class IntMultiplierTest {

 @Test

 public void testIntMultiplier() throws Exception {

 IntMultiplier im = new IntMultiplier(3, 4);

 assertEquals(12, im.GetProduct());

 }

 @Test

 public void testIntMultiplier_Failure() throws Exception {

 IntMultiplier im = new IntMultiplier(4, 5);

 assertEquals(21, im.GetProduct());

 }

}

Save the file and re-execute the test:

chapter_03$ bazel test src:LibraryExampleTest

INFO: Analysed target //src:LibraryExampleTest (20 packages loaded,

617 targets configured).

INFO: Found 1 test target...

FAIL: //src:LibraryExampleTest (see <some_local_directory>/execroot/__

main__/bazel-out/darwin-fastbuild/testlogs/src/LibraryExampleTest/

test.log)

Target //src:LibraryExampleTest up-to-date:

 bazel-bin/src/LibraryExampleTest.jar

 bazel-bin/src/LibraryExampleTest

INFO: Elapsed time: 13.038s, Critical Path: 2.91s

INFO: 3 processes: 1 darwin-sandbox, 2 worker.

INFO: Build completed, 1 test FAILED, 7 total actions

//src:LibraryExampleTest

FAILED in 0.3s

 <some_local_directory>/execroot/__main__/bazel-out/darwin-fastbuild/

testlogs/src/LibraryExampleTest/test.log

From the (rather obvious) failure, Bazel outputs info to the aforementioned test.log

file. Cracking open this file reveals the following.

ChApter 3 Your FIrst BAzel projeCt

37

Listing 3-12. Failure found in test.log file

There was 1 failure:

1) testIntMultiplier_Failure(IntMultiplierTest)

java.lang.AssertionError: expected:<21> but was:<20>

Note that the actual output may be vastly more verbose, but the preceding code is

sufficient for us to diagnose and repair the problem. Let’s correct the issue and rerun the

test.

Listing 3-13. Correcting the failing test

public class IntMultiplierTest {

 ...

 @Test

 public void testIntMultiplier_Failure() throws Exception {

 IntMultiplier im = new IntMultiplier(4, 5);

 assertEquals(20, im.GetProduct());

 }

}

Rerunning the test:

chapter_03$ bazel test src:LibraryExampleTest

INFO: Analysed target //src:LibraryExampleTest (0 packages loaded,

0 targets configured).

INFO: Found 1 test target...

Target //src:LibraryExampleTest up-to-date:

 bazel-bin/src/LibraryExampleTest.jar

 bazel-bin/src/LibraryExampleTest

INFO: Elapsed time: 0.717s, Critical Path: 0.56s

INFO: 2 processes: 1 darwin-sandbox, 1 worker.

INFO: Build completed successfully, 3 total actions

//src:LibraryExampleTest

PASSED in 0.3s

ChApter 3 Your FIrst BAzel projeCt

38

 Build (and Clean) the World
Before we wrap up, let’s look at a couple more pieces of core Bazel functionality.

 Build Everything (In a Directory)
In the preceding examples, we built each of the build targets individually. While this is

fine when doing development on individual components, this is obviously not a scalable

process.

Bazel has built-in functionality for building multiple types of targets at the same

time. For example, instead of building each of the build targets within the src directory,

we could order Bazel to build all of them at once by running

chapter_03$ bazel build src:all

INFO: Analysed 3 targets (20 packages loaded, 619 targets configured).

INFO: Found 3 targets...

INFO: Elapsed time: 8.892s, Critical Path: 5.87s

INFO: 9 processes: 6 darwin-sandbox, 3 worker.

INFO: Build completed successfully, 16 total actions

In this case, :all is not a particular build target; it is a meta-target that tells Bazel to

literally build all build targets within a given package (i.e., directory).

In a similar fashion, we could tell Bazel to build everything in the third_party

directory as well:

chapter_03$ bazel build third_party:all

INFO: Analysed target //third_party:junit4 (13 packages loaded, 520 targets

configured).

INFO: Found 1 target...

Target //third_party:junit4 up-to-date (nothing to build)

INFO: Elapsed time: 1.467s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

The :all target works not only for building but for all of the Bazel commands (e.g.,

bazel test <insert target>).

ChApter 3 Your FIrst BAzel projeCt

39

It might already be obvious, but do not name any of your build targets “all.” this
will only lead to confusion.

 Build Everything (At This Directory and Below)
Once again, the preceding build all command works great when dealing with

particular directories; however, it would again become tedious if having to build for all

directories in this manner. Fortunately, Bazel once again comes to our rescue with yet

another command to help out.

Run the following command from your workspace root:

chapter_03$ bazel build ...

INFO: Analysed 4 targets (20 packages loaded, 620 targets configured).

INFO: Found 4 targets...

INFO: Elapsed time: 7.234s, Critical Path: 5.78s

INFO: 9 processes: 6 darwin-sandbox, 3 worker.

INFO: Build completed successfully, 16 total actions

This time, the "..." meta-target is telling Bazel to build everything at the current

directory as well as everything below this directory. When executed at the root level of

your workspace, this will build everything in your workspace. Use caution when building

like this, although this may very well be a great way to start your morning after updating

your local repository.

As with the :all meta-target, the "..." meta-target will also work with the other

Bazel commands (e.g., test).

Additionally, you can scope “…” to particular directories. For instance, you could

have used “bazel build src/…” in order to build everything under the src directory.

 Clean (Mostly) Everything
As good as Bazel is at managing dependencies, you may get to some point in time where

you need to just clean the world and start over. Cleaning in Bazel is as simple as

chapter_03$ bazel clean

INFO: Starting clean.

ChApter 3 Your FIrst BAzel projeCt

40

That’s really it. If you do a quick ls on your root directory, you will notice that none

of the bazel-* directories are there any longer; all of the outputs, caches, and so on have

been removed. Of course, they will return upon your next Bazel command that builds

your targets.

 Final Word
Congratulations! You have just created and wired together your first set of Bazel targets,

encompassing a host of different pieces of functionality:

• java_binary

• Representing and creating a Java executable

• java_library

• Encapsulating a shareable piece of Java functionality

• java_import

• Wrapping one or more preexisting jar files into a unit that can be

depended upon

• java_test

• Creating a test for verifying the expected behavior of the java_

library

With even this small subset of Bazel build targets, you have sufficient functionality to

create, organize, test, and run a Java program.

Notably, this chapter focused exclusively on Java targets in order to illustrate Bazel

functionality. However, the pattern of {language}_binary, {language}_library, and

{language}_test will become familiar for the various languages that Bazel (and its

extensions) supports.

For example:

• C/C++ (built-in support from Bazel)

• cc_binary, cc_library, cc_test

ChApter 3 Your FIrst BAzel projeCt

41

• Python (built-in support from Bazel)

• py_binary, py_library, py_test

• Go (supplied by external rules)

• go_binary, go_library, go_test

Of course, each language supported by Bazel may also have some language-specific

constructs (e.g., java_import); however, even in these cases, there are features that are

largely common to all types of build targets (e.g., name, visibility, dependencies, etc.).

In the following chapters, we will focus less on a specific language and dive further

into some of the structural elements of Bazel itself, namely, around the BUILD and the

WORKSPACE files.

EXERCISE – PYTHON HELLOWORLD

throughout this chapter, we have only been focused on creating java targets. however, out

of the box, Bazel has the ability to target java, python, and C++. Now that you have done the

helloWorld exercise for java, create it using python.

since one of the hallmarks of Bazel is handling multiple languages at the same time, you can

create a similar set of HelloWorld python targets within the same BUILD file as your java

targets. practically speaking, you are unlikely to do this in real life; however, it does illustrate

Bazel’s ability to handle multiple targets, across languages, within the same BUILD file. Your

python executable will end up in a py_binary build target.

Finally, you can also create similar IntMultiplier functionality in its own py_library

build target as well as a corresponding set of tests within its py_test build target. unlike

java, python comes “batteries included” and packages up its own unit test framework,

obviating the need to create something similar to the junit4 build target for java.

ChApter 3 Your FIrst BAzel projeCt

43
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_4

CHAPTER 4

WORKSPACE File
Functionality
In our last chapter, we created and ran our first Bazel project, focusing mostly on the

bare minimum to get something up and running. During the course of that chapter, we

employed two specially named files: BUILD and, to a much lesser extent, WORKSPACE. While

the use of the BUILD file was apparent, we (intentionally) left the WORKSPACE file alone. In

this chapter, we are going to explore a greater set of functionalities for the WORKSPACE file.

Note This chapter will give a high-level overview of the WORKSPACE file;
however, performing the exercises will be crucial to starting to get a feel for how it
actually works.

 WORKSPACE Files
In the last chapter, we left the WORKSPACE file completely blank. For that particular

example, we did not need to add anything else, since we were only making use of all the

functionality that comes out of the box from Bazel.

In particular, there were two distinct characteristics of that last exercise:

• All code was within a single, local repository.

• The only rules and build targets required came out of the box from Bazel.

In practice, however, this combination is usually not viable for most projects. You

will need to depend upon additional functionality and, in all likelihood, employ other

languages or types of build targets for your projects. The WORKSPACE file is the place to set

the stage for the body of functionality and rules required by your project.

44

 Adding New Rules to WORKSPACE
As stated earlier, Bazel comes with out-of-the-box support for a number of build Rules.

For example, there are rules that define how to build, compile, link, etc. for C++, Java,

Python, and so on. Additionally, a vanilla Bazel project also defines utility rules that are

used to define how resources (e.g., data files) should be packaged and referenced within

your project.

One of the most powerful aspects of Bazel is the ability to add new rules to expand

its capabilities. By adding new rules to our project’s workspace, we can add in retrieve

remote dependencies, add in new languages, and more.

Notably, there are rules which are packaged with Bazel that are not automatically

loaded by default. This enables you as a project creator to have explicit control over what

rules you want to have available within your project.

The basic command that we will use to load in new rules is load, which is built into

Bazel.

Note The load command will be used both within WORKSPACE and BUILD files.
As you might have guessed, we will end up using this to explicitly pull into new
types of functionality into our BUILD file as well.

The basic structure for using load is

load("//local/path/to/my:file.bzl", "symbol_to_load")

This will cause load to pull in the file found within the local path and load the

specified symbol into the local environment; when placed into the WORKSPACE file, this

will load the symbol into the local environment.

For a practical example of using load, we will used it to pull the http_archive rule

into the WORKSPACE. Let’s create a new project directory. This time, however, we will cheat

a bit and copy our last chapter’s work. Before we copy, we will first need to clean out any

existing build outputs, to avoid accidentally pulling them over:

$ cd chapter_03

chapter_03$ bazel clean

chapter_03$ cd ..

$ cp -r chapter_03 chapter_04

$ cd chapter_04

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

45

In the previous chapter, we had left the WORKSPACE file completely empty and relied

solely on the build-in rules. Now let’s start to add a bit of new functionality into the

WORKSPACE file.

In your favorite editor, open the WORKSPACE file and write the following.

Listing 4-1. A simple load command

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

Save that file to disk.

Congratulations! You’ve just added some functionality into your WORKSPACE file. Of

course, that functionality does not actually do anything at the moment (we will get to

that in the next section).

Note A sharp observer will once again notice the introduction of a new file type:
.bzl. Although outside the scope of this book, it is sufficient to know that .bzl
files are used to define rules for Bazel (e.g., build rules) and give us the ability to
expand Bazel’s capabilities (e.g., the addition of new languages).

 A Deeper Dive into the Load Path
If you are taking a close look at the load path from the preceding example, you might

notice something interesting: that particular path does not exist within your file system.

So, where is this coming from?

The very first element of the path is @bazel_tools. The @ signifies to Bazel that you

are loading from a particular Bazel repository, called bazel_tools. The file path beneath

to the right of bazel_tools specifies a particular path to a file within that repository.

This is an important detail, since this is going to become very important shortly. As

your project begins to reference functionality found in other Bazel repositories, you will

disambiguate those repositories using a name. This allows you to create absolute paths

to the build targets you require for your project.

At this point in time, you still haven’t pulled in any external repositories, so where did

bazel_tools actually come from? The bazel_tools repository is special and (sort of)

comes “out of the box.”

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

46

This is essential since it comes with some important functionality, not the least of

which is the ability to pull in other repositories. Consider this a bootstrapping repository

you acquire by virtue of installing Bazel and creating a WORKSPACE.

 Finding the bazel_tools Repository
If you decide to go hunting a bit, you can find the location of the bazel_tools repository

in a project. First, however, let’s clean up our existing project:

chapter_04$ bazel clean

Now, if you attempt to locate the bazel_tools repository in our current project, you

will be left wanting:

chapter_04$ ls -1

WORKSPACE

src

third_party

Notice that all we have here are the directories and files that we had created

previously; our clean command has eradicated all build products, dependencies,

outputs, and so on. At this point in time, the Bazel project is effectively untouched; no

Bazel commands have actually been executed. Bazel strives to never download more

than it needs at a given point in time; as such it won’t even download bazel_tools to a

given WORKSPACE unless it absolutely needs to.

Now, let’s rerun a valid build command from the prior chapter:

chapter_04$ bazel build src:LibraryExampleTest

chapter_04$ ls -1

WORKSPACE

bazel-bin

bazel-chapter_04

bazel-out

bazel-testlogs

src

third_party

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

47

This time, we’re going to dive a bit deeper into the generated files, specifically into

bazel-chapter_04:

chapter_04$ cd bazel-chapter_04

chapter_04/bazel-chapter_04$ ls -1

bazel-out

external

src

third_party

chapter_04$ cd external

chapter_04/bazel-chapter_04/external$ ls -1

bazel_tools

(other directories may be here)

Congratulations! You’ve found the repository. Notably, where it is located illustrates

a few important points about Bazel.

Note For the curious, if you continue to explore through the bazel_tools directory,
you will find the tools/build_defs/repo directory there. This is where you previously
had loaded the http.bzl file from.

First, that your project is individually meant to be the definitive source of truth.

There is not a central location across all of your projects where a common bazel_tools

repository exists; each project is meant to get its own version of a repository (although

this doesn’t prevent Bazel from doing some optimization behind the scenes to share

repositories via file linking).

Secondly, that Bazel will not download a dependency unless it is absolutely required

to do so. We will revisit this later on in this chapter; however, even if you create new

external dependencies in your WORKSPACE file, if you never use anything from said

dependencies, Bazel will not download them. This goes to the heart of the notion that by

making everything explicit, Bazel can do some cool optimizations.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

48

 Loading Multiple Rules at the Same Time
Before we leave this section, it is worthwhile to know that it is possible to have multiple

rules within the same file. While you could execute multiple load commands in order to

pull in the desired functionality, you can also just retrieve all the necessary symbols at once.

The format for this is

load("//local/path/to/my:file.bzl", "symbol_to_load_1", "symbol_to_load_2",

"symbol_to_load_3")

That is, you can simply append to the load command as many symbols that you want

to load from a given file. For a practical example, refer to the following.

Listing 4-2. A load command that pulls in multiple symbols

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive",

"http_file")

This will load both the http_archive and http_file symbols into your workspace.

 Referencing Other Dependencies
In the last chapter, we explicitly downloaded the JUnit libraries and added these directly

to our project. This fits really well into the model that Bazel prefers (i.e., a monorepo).

However, Bazel provides the ability to reference other external dependencies in a

couple of different ways. This provides some additional flexibility by allowing you to add

to your project without ingesting the dependencies explicitly.

There are a few rules in the WORKSPACE file which can be used to pull down

dependencies external to your project. In practice, two of the most prominent ones

(which you will see in various Bazel projects) are

• http_archive

• git_repository

Note that while these rules used to be out of the box for earlier versions of Bazel, you

need to load them explicitly to get them into your project.

Each of these rules are designed to retrieve remote Bazel repositories and make their

contains targets available as dependencies for your project.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

49

 http_archive
http_archive is used to reference and retrieve a compressed Bazel repository, given

a path to said compressed file. Once the compressed repository has been retrieved, it

is decompressed, and the contained rules, targets, and so on can be used within your

project.

The most basic, stripped-down form of http_archive is the following.

Listing 4-3. Example http_archive

http_archive (

 name = "foo",

 urls = ["http://my_favorite_url.com/path/to/archive.zip"],

)

Let’s break down the preceding code a little bit. The preceding rule specifies

to retrieve the repository from the location http://my_favorite_url.com/path/

to/archive.zip. Assuming this is successful, the archived file will be retrieved,

downloaded, and decompressed (if it hasn’t been already), making the content available

for use.

Now, earlier we discussed how we needed to use the label bazel_tools in order to

use any functionality within that repository. In a similar fashion, in order to make use of

any functionality in our new repository foo, we need to use label @foo.

To make all of this a little more concrete, let’s get a real http_archive example. Let’s

add the following to your chapter_04 WORKSPACE file.

Listing 4-4. http_archive for Go language rules

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive (

 name = "io_bazel_rules_go",

 urls = ["https://github.com/bazelbuild/rules_go/releases/download/

v0.19.5/rules_go-v0.19.5.tar.gz"],

)

Save your WORKSPACE file.

As you can imagine, this will pull down the compressed repository for the Go

language rules and decompress it, making the repository’s targets available for use. As

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

50

we explored earlier, this repository will ultimately end up in the chapter_04/bazel-

chapter_04/external directory (notably, it won’t be there right away, for reasons we

discussed earlier in the chapter).

In order to make use of any functionality within the repository, we need to make sure

we are properly specifying said functionality. To illustrate, let’s add the following to the

WORKSPACE file, just under our http_archive directive.

Listing 4-5. Retrieving functionality for Go

load("@io_bazel_rules_go//go:deps.bzl", "go_rules_dependencies",

"go_register_toolchains")

Save this to your WORKSPACE file.

You should notice that you needed to specify @io_bazel_rules_go to form the

correct path to get access to the underlying functionality.

 git_repository
While http_archive is focused on retrieving a compressed archive of a Bazel repository

(whether it is part of an SCM system or not), git_repository is used to clone a git

repository and check it out at a given commit (or tag).

Once again, let’s start with a bare-bones example. Note that we need to explicitly

load the git_repository rule as we did with http_archive.

Listing 4-6. Loading and using the git_repository

load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")

git_repository(

 name = "foo",

 remote = "http://my_favorite_url.com/path/to/repo.git",

 commit = "some_commit_hash_to_check_out_repo",

)

Having broken down http_archive, there are some features that look very similar. In

this case, name operates identically, acting as a disambiguating label for the repository.

Similar to http_archive’s urls parameter, remote specifies the path to the Git repo that

we want to clone (e.g., on some place like GitHub.com). The only major difference is the

commit, in order to specify the version of the repo to actually retrieve.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

http://github.com

51

 Retrieving a Git Repository

Once again, now let’s motivate this with a real example. Add the following to your

WORKSPACE file.

Listing 4-7. Retrieving the repository for Go

load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")

git_repository(

 name = "io_bazel_rules_go",

 remote = "https://github.com/bazelbuild/rules_go.git",

 commit = "f5cfc31d4e8de28bf19d0fb1da2ab8f4be0d2cde",

)

Caution The specific commit hash used here is only current as of the time of this
writing; you may need to check the repo for a more current one.

Prior to saving this into your WORKSPACE file, it is highly recommended to comment

out the http_archive version of the same request. Otherwise, you will have the same

name represented between your http_archive version and your git_repository

version. Bazel will disambiguate which one “wins” by taking the last one in the file;

however, for the sake of clarity, you shouldn’t add ambiguity to your WORKSPACE file in

your dependencies.

Save your WORKSPACE file.

 Fine Print on git_repository

Although git_repository clones a remote git repository into your Bazel project, this

does not actually confer the ability to work with it as you would with a normal git

repository. That is, you cannot go into the directory that contains the Git repo (e.g.,

bazel-chapter_04/external/<name of git repository>) and start performing a

typical set of git operations (e.g., commit, push, etc.). And, given where the repository is

placed, this should make sense: all of the bazel-* directories are ephemeral. All of them

can be removed by a simple act of bazel clean, which could easily eliminate any locally

created changes.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

52

One way to make edits to an external git repository and have it reflect into your

project is to clone that repo separately, make and commit your changes, and then update

your project’s commit hash to match with the newly created commits. Admittedly, this

may not be the smoothest workflow; however, remember that Bazel constantly is focused

on reproducibility. Explicitly tracking the dependencies is one of the keys that gives

Bazel its power.

There is another way to work with git_repository; instead of using the commit

hash, we refer to a tag added for the commit. An example can be seen as follows.

Listing 4-8. Using the tag instead of the commit hash

git_repository(

 name = "foo",

 remote = "http://my_favorite_url.com/path/to/repo.git",

 tag = "<my_favorite_tag>"

)

Now instead of being locked onto a specific commit hash, you track to a particular

tag; if you make updates to the Git repo (and subsequently update the tag), your project

will get the version corresponding to the tag.

As an alternative to both tag and commit, you can also use “branch” to refer to a

specific branch of a Git repo.

Note you must choose among “tag,” “commit,” or “branch” to refer to a
particular version of the code; you cannot use more than one at the same time.

While this makes working with external repos more convenient, this provides a

much weaker guarantee than the commit hash. While this can be convenient for doing

development, it can also lead to issues in practice, since you are dependent upon what

amounts to a floating version of code.

 http_archive vs. git_repository
Both http_archive and git_repository are tools for referencing external Bazel

repositories; however, this raises the question “Given the option between the two, which

should I use?” For example, GitHub provides both git repositories (obviously) and archives.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

53

As a default, the recommendation from Bazel is to prefer http_archive. This makes

sense, since it provides the strongest guarantee of reproducibility (i.e., the archive is

static for a given version). It is also faster to download and extract an archive than to

clone a reposition. Additionally, it obviates the need to install git to build a project. This

is especially a good idea for dependencies whose versions are expected to change slowly.

Note Strictly speaking, the contents of even an http_archive url may change.
in order to strengthen the guarantee for retrieving the correct files for the sake of
reproducibility, there is another attribute, sha256, which contains the expected
ShA-256 of the archive to retrieve. Although this field is omitted for simplicity here,
for real development, you should set this field in order to ensure the hermeticity of
the build.

On the other hand, if an archive is unavailable or you need to work with external

dependencies that are changing rapidly, then git_repository may make a lot more

sense (especially given the aforementioned ability to work with git tags).

As a last word, Bazel projects favor being monolithic, so one avenue to consider is to

avoid using external dependencies and pull in the necessary code into your project. This

is not always possible or convenient but does provide the strongest guarantees for your

builds.

 Employing a New Language
While Bazel comes with several languages out of the box, we need to be able to add more

languages as needed to our project. In case you have not guessed it, we will add support

for Go into our project.

Let’s make use of some of the tools that we have picked up along the way. Make sure

the following is within your WORKSPACE file.

Listing 4-9. Loading the Go language rules

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive (

 name = "io_bazel_rules_go",

 urls = ["https://github.com/bazelbuild/rules_go/releases/download/

v0.19.5/rules_go-v0.19.5.tar.gz"],

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

54

)

load("@io_bazel_rules_go//go:deps.bzl", "go_rules_dependencies",

"go_register_toolchains")

go_rules_dependencies()

go_register_toolchains()

Save the WORKSPACE file.

You’ve seen most of that example previously, with the exception of the last two lines.

The last two lines invoke the loaded rules to set up the Go language with your project.

Note unlike many constructs and patterns in Bazel, the above two lines should
not be considered a canonical example for all languages. each new language has
its own set of one or more rules for setup, so the function names will likely be
slightly different each time.

Having set up the Go rules, let’s create a new target with them. Once again, we’ll start

with a basic example.

chapter_04$ cd src

chapter_04/src$ touch hello_world.go

Let’s create a simple Go program.

Listing 4-10. Hello World in Go

package main

import "fmt"

func main() {

 fmt.Println("Hello, World!")

}

Save this to hello_world.go.

Now, let’s crack open the BUILD file in the src directory so we can create the Go

target. However, prior to actually creating the target, we need to explicitly load up the Go

rules.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

55

Add the following to the BUILD file.

Listing 4-11. Loading the Go language rules

load("@io_bazel_rules_go//go:def.bzl", "go_binary")

Note that we are loading up using the label @io_bazel_rules_go in order to correctly

refer to the packages we need for the rules. Before we save, let’s also add the new Go target.

Listing 4-12. Create the go_binary target

go_binary(

 name = "hello_world_go",

 srcs = ["hello_world.go"],

)

Save to the BUILD file. Now we should be able to actually build and run the target:

chapter_04/src$ bazel run :hello_world_go

INFO: Analysed target //src:go_hello_world (23 packages loaded, 6239

targets configured).

INFO: Found 1 target...

Target //src:go_hello_world up-to-date:

 bazel-bin/src/darwin_amd64_stripped/go_hello_world

INFO: Elapsed time: 3.221s, Critical Path: 1.08s

INFO: 6 processes: 6 darwin-sandbox.

INFO: Build completed successfully, 10 total actions

INFO: Build completed successfully, 10 total actions

Hello, World!

Congratulations! You now have added a new language and created a target for it!

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

56

 Locating the Go Language Rules Repository
Earlier we looked for the bazel_tools repository, which only appeared after we had

performed a build that actually required it. In the same fashion, you should now have a

repository for the Go language rules. Let’s take a quick look to confirm:

chapter_04/src$ cd ../bazel-chapter_04/external

chapter_04/bazel-chapter_04/external$ ls -1

bazel_tools

io_bazel_rules_go

(possible other repos)

Previously, Bazel only pulls down the dependencies required to build your requested

target. If you performed a clean action, followed by a build of a non-Go target (e.g., the

earlier Java targets), you would find that io_bazel_rules_go would not exist within your

bazel-chapter_04/external directory, despite the fact that both targets exist in the

same BUILD file.

EXERCISE – ADD YET ANOTHER LANGUAGE

Throughout the section on the WORKSPACE file, we’ve been building up the knowledge for

adding a new language into your project. now that you have the tools for this, you should

continue to explore adding new languages to your project.

Go to https://github.com/bazelbuild and look through the various rules packages

they have available. notably, while there will be many common languages there, some rule

sets might be outside of the bazelbuild organization. if you don’t find a language to your

liking, you can find an even larger list at Awesome Bazel (https://awesomebazel.com).

Select your favorite language, set up your WORKSPACE file, and create a build target for that

language.

ChApTer 4 WOrKSpACe File FunCTiOnAliTy

https://github.com/bazelbuild
https://awesomebazel.com

57
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_5

CHAPTER 5

A Simple Echo Client/
Server Program
In the last chapter, you learned the basics of the WORKSPACE file, learning how to add

external dependencies, including new languages. In this chapter, we are going to build

off of that work to create a simple pair of programs, in different languages (one in Java,

the other in Go), to round trip messages between the two of them.

 Setting Up Your Workspace
Let’s create a new directory for our work:

$ mkdir chapter_05

$ cd chapter_05

chapter_05$ touch WORKSPACE

We are going to pull in the Go rules that we utilized in the last chapter. Open your

newly created WORKSPACE file and add the following.

Listing 5-1. Adding in the Go rules

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive (

 name = "io_bazel_rules_go",

 urls = ["https://github.com/bazelbuild/rules_go/releases/download/

v0.19.5/rules_go-v0.19.5.tar.gz"],

)

58

load("@io_bazel_rules_go/go:deps.bzl", "go_rules_dependencies",

"go_register_toolchains")

go_rules_dependencies()

go_register_toolchains()

Save your WORKSPACE file.

For this particular example, we are going to put all of our code into a single

directory. In practice, you will likely want to separate out the code by language for the

sake of organization.

Now let’s create a directory for our work and an accompanying BUILD file:

chapter_05$ mkdir src

chapter_05$ cd src

chapter_05/src$ touch BUILD

As you have seen previously, some languages (e.g., C++, Java, etc.) come out of the

box with Bazel; as such, we don’t need to explicitly load in those rules. However, as you

saw in the previous chapter, we need to explicitly load the rules for other languages. In

this case, we are going to load in the Go rules.

Open the BUILD file and add the following.

Listing 5-2. Loading the Go language rules

load("@io_bazel_rules_go//go:def.bzl", "go_library", "go_binary")

Save your BUILD file.

Now let’s create some programs. We will start with the Go version.

 Go Echo Server
We will start with a simple Go echo server. As the name implies, its main job is to accept

incoming connections, read the bytes off the connection, and return a (modified)

version of the same bytes back.

Chapter 5 a Simple eCho Client/Server program

59

Listing 5-3. Simple Go echo server

package main

import (

 "log"

 "net"

)

func main() {

 log.Println("Spinning up the Echo Server in Go...")

 listen, error := net.Listen("tcp", ":1234")

 if error != nil {

 log.Panicln("Unable to listen: " + error.Error())

 }

 defer listen.Close()

 connection, error := listen.Accept()

 if error != nil {

 log.Panicln("Cannot accept a connection! Error: " + error.Error())

 }

 log.Println("Receiving on a new connection")

 defer connection.Close()

 defer log.Println("Connection now closed.")

 buffer := make([]byte, 2048)

 size, error := connection.Read(buffer)

 if error != nil {

 log.Println("Cannot read from the buffer! Error: " + error.Error())

 }

 data := string(buffer[:size])

 log.Println("Received data: " + data)

 connection.Write([]byte("Echoed from Go: " + data))

}

Save this to chapter_05/src/echo_server.go.

Just to walk through the code a bit, the Go echo server will start listening for

connections on port “1234.” Once it has accepted a connection, it will read off the data

Chapter 5 a Simple eCho Client/Server program

60

from that connection, modify it slightly (i.e., prepending “Echoed from Go:”), and then

send that modified data back to the sender. For the sake of simplicity, once it has echoed

the data, it will close up shop.

Now let’s create the entry within the BUILD file for the build target.

Listing 5-4. Go echo server build target

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

)

Save the BUILD file.

Now it’s time to actually build and run the echo server:

chapter_05/src$ bazel run :echo_server

INFO: Analysed target //src:echo_server (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_server up-to-date:

 bazel-bin/src/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.125s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

2019/06/02 17:49:07 Spinning up the Echo Server in Go...

At this point, it is going to just be hanging around forever, since it has no one to

connect to it. Kill the process and let’s fix that. We’ll be putting down Go for a moment

and jumping over to the Java.

 Java Echo Client
As the name implies, we will be creating a program to connect to our echo server.

The echo client will attempt to connect to the server, read in some data from the user,

transmit that to the server, and then write out whatever it gets back from the server.

Chapter 5 a Simple eCho Client/Server program

61

Listing 5-5. Simple Java echo client

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.net.Socket;

public class EchoClient {

 public static void main (String args[]) {

 System.out.println("Spinning up the Echo Client in Java...");

 try {

 final Socket socketToServer = new Socket("localhost", 1234);

 final BufferedReader inputFromServer = new BufferedReader(

 new InputStreamReader(socketToServer.getInputStream()));

 final BufferedReader commandLineInput = new BufferedReader(

 new InputStreamReader(System.in));

 System.out.println("Waiting on input from the user...");

 final String inputFromUser = commandLineInput.readLine();

 if (inputFromUser != null) {

 System.out.println("Received by Java: " + inputFromUser);

 final PrintWriter outputToServer =

 new PrintWriter(socketToServer.getOutputStream(), true);

 outputToServer.println(inputFromUser);

 System.out.println(inputFromServer.readLine());

 }

 socketToServer.close();

 } catch (Exception e) {

 System.err.println("Error: " + e);

 }

 }

}

Save the preceding code to the file chapter_05/src/EchoClient.java.

The EchoClient attempts to create a local connection to a server on port 1234.

Assuming success, it then reads a single line of data from the user, sends it over the

connection, and prints the response from the server. Once again, for the sake of

simplicity, this will run only once and then shut down.

Chapter 5 a Simple eCho Client/Server program

62

Now let’s add its entry into the BUILD file.

Listing 5-6. Java echo client build target

java_binary(

 name = "EchoClient",

 srcs = ["EchoClient.java"],

)

Save this to the BUILD file.

Let’s run this on its own to make sure that we can build and run:

chapter_05/src$ bazel run :EchoClient

INFO: Analysed target //src:EchoClient (0 packages loaded, 2 targets

configured).

INFO: Found 1 target...

Target //src:EchoClient up-to-date:

 bazel-bin/src/EchoClient.jar

 bazel-bin/src/EchoClient

INFO: Elapsed time: 0.342s, Critical Path: 0.12s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 2 total actions

INFO: Build completed successfully, 2 total actions

Spinning up the Echo Client in Java...

Error: java.net.ConnectException: Connection refused (Connection refused)

Congratulations! Your program successfully runs… and then terminates because

there is nothing to connect to. No worries, we will correct this in a moment.

 Naming the Echo Client and Server
An astute reader would notice that the name of our Java target has a different style from

the name in our Go target.

Specifically, we have one name formed primarily through underscores and one

through camel casing.

Chapter 5 a Simple eCho Client/Server program

63

Listing 5-7. Build targets

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

)

java_binary(

 name = "EchoClient",

 srcs = ["EchoClient.java"],

)

To be clear, this is not an editorial mistake in this case; there is actually some reason

to the difference, at least for Java. For the Java binary build target, the name of the target

is also used as a shorthand to inform Bazel what is the main class within the set of

sources.

To illustrate, let’s modify the name of the java_binary build target to match the style

of the go_binary build target.

Listing 5-8. Modified java_binary name style

java_binary(

 name = "echo_client",

 srcs = ["EchoClient.java"],

)

Save this change to the BUILD file.

Building still works as expected:

chapter_05/src$ bazel build :echo_client

INFO: Analysed target //src:echo_client (1 packages loaded, 2 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.261s, Critical Path: 0.09s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 3 total actions

Chapter 5 a Simple eCho Client/Server program

64

However, you will find that you cannot actually run the program:

chapter_05/src$ bazel run :echo_client

INFO: Analysed target //src:echo_client (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.137s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

Error: Could not find or load main class echo_client

Without any additional guidance, the java_binary rule makes use of the name of the

build target to infer the class in which the main function lives (or more to the point, the

class whose main function should be used). In our modified case, Bazel is attempting to

find the class echo_client, which does not exist.

This outcome should make sense. Although the Bazel rule has a convenience to elide

the specification of the main class with the build target’s name, failing that convention, it

will not attempt to implicitly select a class with a potential main class. As illustrated, this

is even in the case where there is only one class.

Fortunately, we can add an explicit declaration to make things work again.

Listing 5-9. Explicitly listing the java_binary main class

java_binary(

 name = "echo_client",

 srcs = ["EchoClient.java"],

 main_class = "EchoClient",

)

Save this change to the BUILD file.

Running will now work as before:

Chapter 5 a Simple eCho Client/Server program

65

chapter_05/src$ bazel run :echo_client

INFO: Analysed target //src:echo_client (1 packages loaded, 2 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.204s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 2 total actions

INFO: Build completed successfully, 2 total actions

Spinning up the Echo Client in Java...

Error: java.net.ConnectException: Connection refused (Connection refused)

The preceding code is a reminder that Bazel wants everything as explicit as possible.

True, some of the rules do provide some shortcuts to make life easier, but ultimately

Bazel does not want dependency management or build specification to be “magical.”

By making our dependencies, build specifications, and so on explicit, Bazel is able

to perform optimizations and guarantees to make our builds fast, stable, and well

understood.

Now, let’s actually run our programs together.

 Echoing Between Programs
Having created our client and our server programs, now it is time to run them together.

You will need two different instances of your shell to run each of these.

Within your first shell, let’s get the server back up and running:

chapter_05/src$ bazel run :echo_server

INFO: Analysed target //src:echo_server (0 packages loaded, 2 targets

configured).

INFO: Found 1 target...

Target //src:echo_server up-to-date:

 bazel-bin/src/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.210s, Critical Path: 0.00s

INFO: 0 processes.

Chapter 5 a Simple eCho Client/Server program

66

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

2019/06/02 18:50:31 Spinning up the Echo Server in Go...

That will hold until it actually gets a connection; let’s provide one. Open your second

shell and run the client program:

chapter_05/src$ bazel run :echo_client

INFO: Analysed target //src:echo_client (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.284s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

Spinning up the Echo Client in Java...

Waiting on input from the user...

Now, just enter in some text that you want to send and press enter. In your second

shell (the client), you should have something like this:

chapter_05/src$ bazel run :echo_client

<omitted from above>

Spinning up the Echo Client in Java...

Waiting on input from the user...

Hello, friends!

Received by Java: Hello, friends!

Echoed from Go: Hello, friends!

The client program should have also cleanly exited.

Looking at your first shell (the server), you should have something like this:

chapter_05/src$ bazel run :echo_server

<omitted from above>

2019/06/02 18:50:31 Spinning up the Echo Server in Go...

Chapter 5 a Simple eCho Client/Server program

67

2019/06/02 18:52:28 Receiving on a new connection

2019/06/02 18:53:25 Received data: Hello, friends!

2019/06/02 18:53:25 Connection now closed.

As with the client, your server should now have also cleanly exited. Congratulations!

You have created an echo client and server in different languages in Bazel!

 Upgrading to JSON
Sending byte strings back and forth is a good start, but it is not a scalable way to send

messages. In this section, we will pivot over to using JSON to transmit data over the data

connection. In the process, we will tie together some concepts we have been building

over the last few chapters.

For the sake of illustration, we will construct a simple JSON message, which has the

following data.

Listing 5-10. Simple JSON message

{

 "message": "This is my message",

 "value": 1234.56

}

 JSON in Go
Go provides out-of-the-box support for marshaling and unmarshaling data between

JSON and an instance of a Go struct. First, we will create a Go struct to define the

transmission message.

For the most part, we need only create a plain data struct in Go with the necessary

fields. The only small change is that we need to add some annotation to specify the

mapping of the JSON key to the particular member of the struct.

Chapter 5 a Simple eCho Client/Server program

68

Listing 5-11. Simple JSON object in Go

package transmission_object

type TransmissionObject struct {

 Message string `json:"message"`

 Value float32 `json:"value"`

}

Within the chapter_05/src directory, save the preceding file to transmission_

object.go.

Now let’s create a go_library in the BUILD file to provide a build target for this

functionality. Open the chapter_05/src/BUILD file and add the following to it.

Listing 5-12. Adding the TransmissionObject as a go_library

go_library(

 name = "transmission_object_go",

 srcs = ["transmission_object.go"],

 importpath = "transmission_object",

)

Save the BUILD file

Now, let’s add the necessary functionality within your Go echo server. In this case,

we will read the incoming message, make a bit of modification to the values within the

message, and then send the modified message back.

Open echo_server.go and add the following lines.

Listing 5-13. Unmarshaling, modifying, and marshaling a JSON object in Go

package main

import (

 "encoding/json"

 "fmt"

 "log"

 "net"

 "transmission_object"

)

Chapter 5 a Simple eCho Client/Server program

69

func main() {

<omitted from above>

 data := buffer[:size]

 var transmissionObject transmission_object.TransmissionObject

 error = json.Unmarshal(data, &transmissionObject)

 if error != nil {

 log.Panicln(

 "Unable to unmarshal the buffer! Error: " +

 error.Error())

 }

 log.Println("Message = " + transmissionObject.Message)

 log.Println("Value = " + fmt.Sprintf("%f", transmissionObject.Value))

 transmissionObject.Message =

 "Echoed from Go: " + transmissionObject.Message

 transmissionObject.Value = 2 * transmissionObject.Value

 message, error := json.Marshal(transmissionObject)

 if error != nil {

 log.Panicln(

 "Unable to marshall the object! Error: " +

 error.Error())

 }

 connection.Write(message)

}

Save the changes to chapter_05/src/echo_server.go.

Finally, we need to update the BUILD file to have the correct dependencies for

echo_server. Open the BUILD file and make the following changes.

Listing 5-14. Updating the BUILD file

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

 deps = [":transmission_object_go"],

)

Chapter 5 a Simple eCho Client/Server program

70

Save the changes to chapter_05/src/BUILD.

Now let’s move onto the echo_client to make the necessary changes.

 JSON in Java
Go has built-in facilities for transforming JSON into instances of Go structs; Java,

unfortunately, does not have the same capabilities out of the box. Fortunately, we can

acquire similar behavior by using the GSON library.

 GSON Setup

Back in Chapter 3, you downloaded a jar file to the third_party directory; here we will

do the same again, this time to retrieve the GSON library.

First, create the third_party/gson directory:

chapter_05$ mkdir third_party

chapter_05$ cd third_party

chapter_05/third_party$ mkdir gson

Download the JAR from the following location:

http://central.maven.org/maven2/com/google/code/gson/gson/2.8.5/gson- -

2.8.5.jar.

Copy the JAR file to the third_party/gson directory. As before, we now create the

BUILD file for the external dependency.

Listing 5-15. Contents of the BUILD file for the third_party dependency

package(default_visibility = ["//visibility:public"])

java_import(

 name = "gson",

 jars = ["gson/gson-2.8.5.jar"]

)

Save the BUILD file to the third_party directory.

Chapter 5 a Simple eCho Client/Server program

http://central.maven.org/maven2/com/google/code/gson/gson/2.8.5/gson-2.8.5.jar
http://central.maven.org/maven2/com/google/code/gson/gson/2.8.5/gson-2.8.5.jar

71

 Adding the Transmission Object to EchoClient

Now we will create a TransmissionObject in Java (equivalent to what we did in Go) for

sending and receiving structured and typed info over the wire.

Listing 5-16. Transmission Object in Java

public class TransmissionObject {

 public String message;

 public float value;

}

Save the preceding code to chapter_05/src/TransmissionObject.java. Now let’s

update the BUILD file with a new java_library build target for this object.

Listing 5-17. Updating the BUILD file

java_library(

 name = "transmission_object_java",

 srcs = ["TransmissionObject.java"],

)

Save the changes to chapter_05/src/BUILD.

Now let’s add the changes to EchoClient.java to marshal the data, send the

message, and then print out the response from the echo server.

Listing 5-18. Adding transmission to the echo client

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

<omitted from above>

 System.out.println("Waiting on input from the user...");

 final String inputFromUser = commandLineInput.readLine();

 if (inputFromUser != null) {

 System.out.println("Received by Java: " + inputFromUser);

 TransmissionObject transmissionObject =

 new TransmissionObject();

Chapter 5 a Simple eCho Client/Server program

72

 transmissionObject.message = inputFromUser;

 transmissionObject.value = 3.145f;

 GsonBuilder builder = new GsonBuilder();

 Gson gson = builder.create();

 final PrintWriter outputToServer =

 new PrintWriter(socketToServer.getOutputStream(), true);

 outputToServer.println(gson.toJson(transmissionObject));

 System.out.println(inputFromServer.readLine());

 }

 socketToServer.close();

}

Save the preceding code to chapter_05/src/EchoClient.java. Finally, we can now

add the necessary updates to the BUILD file.

Listing 5-19. Updating the Java client with the new dependencies

java_binary(

 name = "echo_client",

 srcs = ["EchoClient.java"],

 main_class = "EchoClient",

 deps = [

 ":transmission_object_java",

 "//third_party:gson",

]

)

Save the preceding code to chapter_05/src/BUILD.

 Executing the Echo Client/Server with JSON
With all the pieces in place, let’s run the server and the client. Once again, you will need

two terminal instances in order to properly the run the client and server.

Chapter 5 a Simple eCho Client/Server program

73

First, we will run the echo server:

chapter_05/src$ bazel run :echo_server

INFO: Analysed target //src:echo_server (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_server up-to-date:

 bazel-bin/src/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.132s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

2019/06/04 00:27:23 Spinning up the Echo Server in Go...

In the second terminal instance, we will run the echo client:

chapter_05/src$ bazel run :echo_client

INFO: Analysed target //src:echo_client (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.115s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

Spinning up the Echo Client in Java...

Waiting on input from the user...

Let’s add the user input:

chapter_05/src$ bazel run :echo_client

<omitted from above>

Spinning up the Echo Client in Java...

Waiting on input from the user...

My Client Message

{"message":"Echoed from Go: My Client Message","value":6.29}

Chapter 5 a Simple eCho Client/Server program

74

Finally, let’s look at the console output from the echo server:

chapter_05/src$ bazel run :echo_server

<omitted from above>

2019/06/04 00:27:23 Spinning up the Echo Server in Go...

2019/06/04 00:29:08 Receiving on a new connection

2019/06/04 00:30:04 Message = My Client Message

2019/06/04 00:30:04 Value = 3.145000

Congratulations! You have successfully augmented your client and server programs

for transmitting JSON data between different languages.

 Final Word: Duplication of Effort
One unfortunate reality of using JSON is that we need to duplicate the data definitions

for each language. Should the data contract change, this means that every instance of

the data definition needs to be changed. This is an error-prone process and, while better

than simple strings transmission, still has a number of shortcomings.

As stated previously, one of the areas that Bazel excels is in multi-language support;

in the next chapter, we are going to lean into this capability as we add Protocol Buffer

support to our project.

EXERCISE – PYTHON CLIENT AND/OR SERVER

as with go, python has some handy capabilities for marshaling to/from python objects from

JSon. Create either a new client or a server in python.

Chapter 5 a Simple eCho Client/Server program

75
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_6

CHAPTER 6

Protocol Buffers and
Bazel
In the last chapter, you created a simple echo server and client, demonstrating some

of the power of Bazel to navigate and manage multiple languages with minimal setup.

A noted shortcoming from that example stems from the definition of the transmitted

object: both languages required independent definitions of the object. Over time, this

easily can cause a literal breakdown in communication as two (or more) definitions of

the transmitted object drift out of sync.

In this chapter, we are going to introduce a construct to handle this very problem, the

Protocol Buffer (often referred to as protobuf). Yet another creation from Google, Protocol

Buffers provide a way to describe the structure of objects in a declarative and type-

safe fashion and provide a wire format for serialization. Protocol Buffer definitions are

intrinsically language agnostic. Once created, a Protocol Buffer definition can then be

compiled into a particular language (there is vast language support for Protocol Buffers)

in order to read/write from the wire format into a language native object.

While Protocol Buffers are not wedded to Bazel per se, Bazel provides some fantastic

support for them, making it easy to add them to a project and make use of them across

multiple languages. In addition, due to Bazel’s dependency management, it is also very

easy to make a change at the Protocol Buffer definition and ensure that all the dependent

projects can at least compile against the new definition.

76

 Setting Up Your Workspace
We will start first with adding some very basic support to a WORKSPACE file for working

with Protocol Buffers. Let’s create a new directory for our work:

$ mkdir chapter_06

$ cd chapter_06

chapter_06$ touch WORKSPACE

Now let’s pull in the rules for working with Protocol Buffers. Open your WORKSPACE

file and add the following.

Listing 6-1. Adding support for Protocol Buffers

http_archive(

 name = "rules_proto",

 strip_prefix = "rules_proto-97d8af4dc474595af3900dd85cb3a29ad28cc313",

 urls = ["https://github.com/bazelbuild/rules_proto/archive/97d8af4dc474

595af3900dd85cb3a29ad28cc313.tar.gz",],

)

load("@rules_proto//proto:repositories.bzl", "rules_proto_dependencies",

"rules_proto_toolchains")

rules_proto_dependencies()

rules_proto_toolchains()

Save your WORKSPACE file.

As should be familiar from prior chapters, we are first retrieving the

Bazel repository with the required functionality and then calling setup

code particular to that repository (i.e., rules_proto_dependencies() and

rules_proto_toolchains()).

 Creating Your First Protocol Buffer
Having completed setup, we are ready to start creating some Protocol Buffers. Let’s

create a directory for our code and an initial file for our Protocol Buffer definition:

Chapter 6 protoCol Buffers and Bazel

77

chapter_06$ mkdir src

chapter_06$ cd src

chapter_06/src$ touch transmission_object.proto

Note an astute reader will note that in the prior chapter, we had started off
with creating our BUILD file before working with the code. this switch here is
intentional, and we will address it very shortly.

Let’s create a basic message for transmission. Open your transmission_object.

proto file and add the following.

Listing 6-2. Defining a simple Protocol Buffer

syntax = "proto3";

package transmission_object;

message TransmissionObject {

 float value = 1;

 string message = 2;

}

Save that to transmission_object.proto.

Let’s take a brief moment to examine what we have written. The initial line (syntax)

is used to specify to the compiler what version of Protocol Buffers is being used here (at

the time of this writing, the latest version of Protocol Buffers is version 3).

The following line (package) is used to define the conceptual package that this

Protocol Buffer is defined within. This is very similar to the Java or Go notions of packages.

Finally, we have the definition of the message itself. This most closely resembles a

C-style struct, with a name given to the object (TransmissionObject) and a basic set of

type-specified fields (i.e., value and message, with types float and string, respectively).

The one minor addition here is the addition of a field number; this is used to define

unique identifiers to each of the members of the message. This is important since these

are used to add and remove data members while keeping backward compatibility.

Now let’s create the build target for the Protocol Buffer. Add the following to your

BUILD file.

Chapter 6 protoCol Buffers and Bazel

78

Listing 6-3. Creating the build target for the Protocol Buffer

load("@rules_proto//proto:defs.bzl", "proto_library")

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

Save your BUILD file.

Note those already familiar with Bazel might find the explicit inclusion of
proto_library to be strange. the proto_library rule used to be a part of the
core of Bazel itself. this is an example of the evolution of Bazel by moving specific
constructs out of the core and into explicit packages.

At this stage, we technically have enough to start building our Protocol Buffer, so let’s

do that:

chapter_06/src$ bazel build :transmission_object_proto

INFO: Analysed target //src:transmission_object_proto (16 packages loaded,

624 targets configured).

INFO: Found 1 target...

Target //src:transmission_object_proto up-to-date:

 bazel-genfiles/src/transmission_object_proto-descriptor-set.proto.bin

INFO: Elapsed time: 80.442s, Critical Path: 24.91s

INFO: 184 processes: 184 darwin-sandbox.

INFO: Build completed successfully, 187 total actions

One of the first things that you should notice is that, for at least the first time you

build the Protocol Buffer target, there is a noticeable delay compared to executions in

prior chapters. In this case, the dependency for the Protocol Buffer compiler is both

being pulled down and being compiled for your target machine. Once the protobuf

compiler is itself compiled, then it can then compile your protobuf definition.

Don’t worry. This particular slowdown should only be limited to the first time you

actually run the Protocol Buffer compiler; once created, the Protocol Buffer compiler will

remain cached (until you change a dependency or execute bazel clean).

Chapter 6 protoCol Buffers and Bazel

79

 Using the Protocol Buffer in Java
Although we have successfully compiled the Protocol Buffer, all we really have done

is create a language-agnostic descriptor for it; in order to really make use of it, we will

need to create a language-specific target for it. We will start with creating one in Java.

Once again, we take advantage of the fact that Java, being one of the built-in languages of

Bazel, comes with support built-in for Java-based Protocol Buffers.

 Creating the Java Proto Library Target
Open your BUILD file and add the following.

Listing 6-4. Creating the Java Protocol Buffer library

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

)

Save the BUILD file. Let’s build the newly created target:

chapter_06/src$ bazel build :transmission_object_java_proto

INFO: Analysed target //src:transmission_object_java_proto (2 packages

loaded, 350 targets configured).

INFO: Found 1 target...

Target //src:transmission_object_java_proto up-to-date:

 bazel-bin/src/libtransmission_object_proto-speed.jar

 bazel-genfiles/src/transmission_object_proto-speed-src.jar

INFO: Elapsed time: 0.703s, Critical Path: 0.45s

INFO: 2 processes: 1 darwin-sandbox, 1 worker.

INFO: Build completed successfully, 3 total actions

Congratulations! You have a target that we can actually use in a Java program.

Note In this case, you did not need to explicitly load java_proto_library.
however, given Bazel’s evolution, bear in mind that some future iteration may
require you to explicitly load the rule.

Chapter 6 protoCol Buffers and Bazel

80

 Using Your Java Protocol Buffer Target
In the last chapter, you had created a simple Java echo client using JSON. Here, we will

make use of almost the same code for the Protocol Buffer example, with only a few minor

changes.

Create EchoClient.java within your src directory and add the following (changes

from the prior chapter in bold).

Listing 6-5. Protocol Buffer version of the echo client

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.net.Socket;

import transmission_object.TransmissionObjectOuterClass.TransmissionObject;

public class EchoClient {

 public static void main (String args[]) {

 System.out.println("Spinning up the Echo Client in Java...");

 try {

 final Socket socketToServer = new Socket("localhost", 1234);

 // Note we don't need the second BufferedReader here.

 final BufferedReader commandLineInput = new BufferedReader

(new InputStreamReader(System.in));

 System.out.println("Waiting on input from the user...");

 final String inputFromUser = commandLineInput.readLine();

 if (inputFromUser != null) {

 System.out.println("Received by Java: " + inputFromUser);

 TransmissionObject transmissionObject = TransmissionObject.

 newBuilder()

 .setMessage(inputFromUser)

 .setValue(3.145f)

 .build();

 transmissionObject.writeTo(socketToServer.getOutputStream());

 TransmissionObject receivedObject = TransmissionObject.

parseFrom(socketToServer.getInputStream());

Chapter 6 protoCol Buffers and Bazel

81

 System.out.println("Received Message from server: ");

 System.out.println(receivedObject);

 }

 socketToServer.close();

 } catch (Exception e) {

 System.err.println("Error: " + e);

 }

 }

}

Save this to EchoClient.java.

Let’s take a moment to examine the preceding code. The import statement that

brings in our generated Protocol Buffer is comprised of three main components:

• transmission_object

• This is the package as specified within the original

transmission_object.proto file.

• TransmissionObjectOuterClass

• This is a class generated to encapsulate any messages contained

within the Protocol Buffer definition.

• This is an artifact of Java’s one (outer)-class-per-file rule;

technically, we could have had multiple messages within our

Protocol Buffer file, but we can only have a single class within a

Java file.

• This allows us to create multiple Protocol Buffer messages for use

in Java.

• TransmissionObject

• The actual Java object that represents the original Protocol Buffer

message.

Within the code itself, the Java Protocol Buffer instance is created using a builder

pattern, which allows you to set the various fields and then generate an invariant

instance of the TransmissionObject. This object is then able to directly write itself to an

output stream as well as parse itself from an input stream.

Chapter 6 protoCol Buffers and Bazel

82

Finally, let’s create the build target so we can actually create our new version of

EchoClient. Open your BUILD file and add the following (again, changes from last

chapter in bold).

Listing 6-6. Creating the BUILD target for the EchoClient

java_binary(

 name = "echo_client",

 srcs = ["EchoClient.java"],

 main_class = "EchoClient",

 deps = [":transmission_object_java_proto"],

)

Now we can build the target:

chapter_06/src$ bazel build :echo_client

INFO: Analysed target //src:echo_client (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.219s, Critical Path: 0.06s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 2 total actions

Congratulations! You’ve successfully updated your client to use Protocol Buffers.

However, once again you have a client with nothing to connect to. Now, we will make the

necessary changes to the server side to also handle our Protocol Buffer definition.

Note one might be tempted to run this new version of our client against the last
chapter’s server. although you are welcome to do so, it is important to know that
this will not work, since the client and server are talking into different protocols
(Json vs. protocol Buffer); the bytes are going to be interpreted differently.

although protocol Buffers do support translation to/from Json, you would need to
explicitly specify that within the code.

Chapter 6 protoCol Buffers and Bazel

83

 Using the Protocol Buffer in Go
In the last section, we were able to take advantage of the fact that Java is one of the built-

in languages of Bazel to jump right into development. However, since Go is not one of

those core languages, we will need to do some additional setup. Fortunately, most of this

will look familiar from prior chapters.

Open your WORKSPACE file and add the following in bold prior to the specification for

retrieving rules_proto.

Listing 6-7. Adding the Go rules to the project

http_archive(

 name = "io_bazel_rules_go",

 urls = ["https://github.com/bazelbuild/rules_go/releases/download/

v0.19.5/rules_go-v0.19.5.tar.gz"],

)

load("@io_bazel_rules_go//go:deps.bzl", "go_rules_dependencies",

"go_register_toolchains")

go_rules_dependencies()

go_register_toolchains()

http_archive(

 name = "rules_proto",

 strip_prefix = "rules_proto-97d8af4dc474595af3900dd85cb3a29ad28cc313",

 urls = ["https://github.com/bazelbuild/rules_proto/archive/97d8af4dc474

595af3900dd85cb3a29ad28cc313.tar.gz",],

)

load("@rules_proto//proto:repositories.bzl", "rules_proto_dependencies",

"rules_proto_toolchains")

rules_proto_dependencies()

rules_proto_toolchains()

Save your WORKSPACE file.j

Chapter 6 protoCol Buffers and Bazel

84

Note In this particular instance, we specified to load io_bazel_rules_go prior
to rules_proto. the reason is that there can be conflicts between the underlying
dependencies between these two packages. ordering them in this fashion
removes the issue. however, this is an item to watch out for as you construct your
WORKSPACE dependencies moving forward.

 Creating the Go Proto Library Target
As with the inclusion of the Go functionality into our project, we will need to explicitly

bring the necessary rules into our BUILD file as we create our Go proto library target.

Open your BUILD file and add the following.

Listing 6-8. Creating the Go proto library target

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object"

)

Save your BUILD file. Let’s build your new target:

chapter_06/src$ bazel build :transmission_object_go_proto

INFO: Analysed target //src:transmission_object_go_proto (21 packages

loaded, 6358 targets configured).

INFO: Found 1 target...

...

Target //src:transmission_object_go_proto up-to-date:

 bazel-bin/src/darwin_amd64_stripped/transmission_object_go_proto%/

transmission_object.a

INFO: Elapsed time: 5.486s, Critical Path: 3.75s

INFO: 52 processes: 52 darwin-sandbox.

INFO: Build completed successfully, 54 total actions

Chapter 6 protoCol Buffers and Bazel

85

As with your prior experience when creating the Java Protocol Buffer target, you

likely will notice a slightly longer-than-normal build time. Once again, this is normal,

since the language-specific (i.e., Go) plug-in is being compiled; as before, after the first

time, this is cached, and later builds will go much quicker.

Once again, congratulations, since we now have a target that we can actually use in

our Go program. Now let’s modify our echo server to take advantage of this.

 Using Your Go Protocol Buffer Target
As with the echo client, in the last chapter, you had created a version of the echo server

that bounced back the received JSON message (with some modifications). As before,

we are going to be able to make some slight changes to our original program to handle

Protocol Buffers.

Create the file echo_server.go in src and add the following to it (as before, changes

from the prior chapter in bold).

Listing 6-9. Protocol Buffer version of the Go server

package main

import (

 "fmt"

 "log"

 "net"

 "transmission_object”

 "github.com/golang/protobuf/proto"

)

func main() {

 log.Println("Spinning up the Echo Server in Go...")

 listen, error := net.Listen("tcp", ":1234")

 if error != nil {

 log.Panicln("Unable to listen: " + error.Error())

 }

 defer listen.Close()

 connection, error := listen.Accept()

 if error != nil {

Chapter 6 protoCol Buffers and Bazel

86

 log.Panicln("Cannot accept a connection! Error: " + error.

Error())

 }

 log.Println("Receiving on a new connection")

 defer connection.Close()

 defer log.Println("Connection now closed.")

 buffer := make([]byte, 2048)

 size, error := connection.Read(buffer)

 if error != nil {

 log.Panicln(

 "Unable to read from the buffer! Error: " + error.Error())

 }

 data := buffer[:size]

 transmissionObject := &transmission_object.TransmissionObject{}

 error = proto.Unmarshal(data, transmissionObject)

 if error != nil {

 log.Panicln(

 "Unable to unmarshal the buffer! Error: " + error.Error())

 }

 log.Println("Message = " + transmissionObject.GetMessage())

 log.Println("Value = " +

 fmt.Sprintf("%f", transmissionObject.GetValue()))

 transmissionObject.Message = "Echoed from Go: " +

 transmissionObject.GetMessage()

 transmissionObject.Value = 2 ∗ transmissionObject.GetValue()

 message, error := proto.Marshal(transmissionObject)

 if error != nil {

 log.Panicln("Unable to marshal the object! Error: " + error.

Error())

 }

 connection.Write(message)

}

Chapter 6 protoCol Buffers and Bazel

87

Save this to echo_server.go.

While the changes are not a complete drop-in replacement for the JSON, the final

result is extremely close to what we had in the previous chapter.

Of particular note, we have to bring in a dependency on the proto library itself

(github.com/golang/protobuf/proto) in order to perform the unmarshaling/

marshaling of the object from/to the data streams. Unlike the previous dependency

on the encoding package in Go, we will need to account for this when we specify the

dependencies within the BUILD file.

Open the BUILD file and add the following to create the necessary build target

(differences from the last chapter in bold).

Listing 6-10. Adding the echo server build target

load("@io_bazel_rules_go//go:def.bzl", "go_binary")

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

 deps = [

 ":transmission_object_go_proto",

 "@com_github_golang_protobuf//proto:go_default_library",

],

)

Save your BUILD file.

DEPENDENCIES FROM DEPENDENCIES

an astute reader will notice that the dependency we have specified for the go_default_library

is not actually specified within the WorKspaCe file; however, the preceding code still compiles

without complaint.

the source of this additional dependency stems from the function that we called to set up

the additional dependencies for the Go rules (i.e., go_rules_dependencies), which pulled in

additional dependencies, including the above-listed one.

although technically this is “explicitly” specified within the WorKspaCe file, it is obfuscated by

the use of the dependencies function. In this case, we are taking advantage of the fact that all

of these versions of the particular dependencies are meant to work in concert.

Chapter 6 protoCol Buffers and Bazel

http://github.com/golang/protobuf/proto

88

If this is too implicit, then a couple things can be done: (1) explicitly specify a dependency

within the WorKspaCe file; this will replace the version of the implicit dependency. (2) pull the

dependency into your project (e.g., through a third_party directory).

the decision on which route to pursues relates to how tightly you want to control your

dependencies. (1) may be easier as a way to quickly get up and running and make it easier to

change dependencies later on. however, again, (2) provides the strongest guarantee for build

reproducibility.

Now we can build our echo server with Protocol Buffer support:

chapter_06/src$ bazel build :echo_server

INFO: Analysed target //src:echo_server (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_server up-to-date:

 bazel-bin/src/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.169s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

 Echo Using Protocol Buffers
Having reconstructed our echo client and server with Protocol Buffers, we are now ready

to have them start talking to each other again.

Open a terminal and start running the server:

chapter_06/src$ bazel run :echo_server

INFO: Analysed target //src:echo_server (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_server up-to-date:

 bazel-bin/src/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.169s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

2019/06/18 23:39:53 Spinning up the Echo Server in Go...

Chapter 6 protoCol Buffers and Bazel

89

Now let’s open a separate terminal and start up the client:

chapter_06/src$ bazel run :echo_client

INFO: Analysed target //src:echo_client (0 packages loaded, 0 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.249s, Critical Path: 0.10s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 2 total actions

INFO: Build completed successfully, 2 total actions

Spinning up the Echo Client in Java...

Waiting on input from the user...

Now, let’s give it a little bit of text:

chapter_06/src$ bazel run :echo_client

<omitted from above>

Spinning up the Echo Client in Java...

Waiting on input from the user...

Waiting on input from the user...

My Client Message

Received by Java: My Client Message

Received Message from server:

value: 6.29

message: "Echoed from Go: My Client Message"

Now let’s check out the console output from the echo server:

chapter_06/src$ bazel run :echo_server

<omitted from above>

2019/06/18 23:41:50 Receiving on a new connection

2019/06/18 23:43:34 Message = My Client Message

2019/06/18 23:43:34 Value = 3.145000

2019/06/18 23:43:34 Connection now closed.

Congratulations! You’ve recreated the echo client/server using Protocol Buffers.

Chapter 6 protoCol Buffers and Bazel

90

 Dependency Tracking and Management
Compared to the previous chapter, there are some slight formatting differences, but the

outputs are effectively the same. This begs an obvious question: Why did we reinvent

everything from the last chapter? The answer lies in how we manage changes to our

selected transmission object; this, in turn, showcases the ability of Bazel to perform

dependency management, even across multiple languages.

In the last chapter, the dependency trees for our echo client and server were as

follows:

As noted earlier, a major downfall is that the definitions for the JSON objects are

specific to each language without reference to one another. Any change in the API (i.e.,

by changing the JSON object) needs to be done in both locations, making it prone to

errors when you change it in one place and not the other.

Compare this to the dependency tree created for our Protocol Buffer echo client and

server:

Figure 6-1. Dependency trees for the JSON echo client and server

Figure 6-2. Dependency tree for the Protocol Buffer echo client and server

Chapter 6 protoCol Buffers and Bazel

91

Now the dependency tree for the Protocol Buffer echo client and server is still

relatively simple and likely familiar to anyone coding at scale. However, the remarkable

aspects of it are the following: (a) we are tying together dependencies across three

languages (i.e., Java, Go, Protocol Buffer); (b) by doing so, we are solving the API change

management problem from the JSON client; and (c) we have done so using relatively

little setup code.

 Change Management in Action
Having set up our build dependency tree, now let’s see it work in practice. First, we will

ensure that all of our targets are already up to date.

Make sure that all of your targets are built using the special all target:

chapter_06/src$ bazel build :all

INFO: Analysed 5 targets (43 packages loaded, 7657 targets configured).

INFO: Found 5 targets...

INFO: Elapsed time: 12.039s, Critical Path: 1.03s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

Now let’s check the timestamp on our build targets of echo_client and echo_server:

chapter_06/src$ ll ../bazel-bin/src/echo_client.jar

-r-xr-xr-x 1 pj wheel 12168 Jun 18 22:06 ../bazel-bin/src/echo_client.jar

chapter_06/src$ ll ../bazel-bin/src/darwin_amd64_stripped/echo_server

-r-xr-xr-x 1 pj wheel 3595880 Jun 18 23:14 ../bazel-bin/src/darwin_

amd64_stripped/echo_server

Make a trivial change to the echo_sever.go, but still ensure it still compiles (e.g.,

change some text in a log statement). Now let’s rebuild everything again and recheck the

timestamps:

chapter_06/src$ bazel build :all

INFO: Analysed 5 targets (1 packages loaded, 126 targets configured).

INFO: Found 5 targets...

INFO: Elapsed time: 1.103s, Critical Path: 0.55s

INFO: 2 processes: 2 darwin-sandbox.

INFO: Build completed successfully, 3 total actions

Chapter 6 protoCol Buffers and Bazel

92

chapter_06/src$ ll ../bazel-bin/src/echo_client.jar

-r-xr-xr-x 1 pj wheel 12168 Jun 18 22:06 ../bazel-bin/src/echo_client.jar

chapter_06/src$ ll ../bazel-bin/src/darwin_amd64_stripped/echo_server

-r-xr-xr-x 1 pj wheel 3595880 Jun 20 03:10 ../bazel-bin/src/darwin_

amd64_stripped/echo_server

Unsurprisingly, Bazel only had to rebuild echo_server since our changes were

confined only to that target.

However, let’s make a more substantial change; let’s remove a field from the

TransmissionObject message.

Listing 6-11. Removing the Message field from TransmissionObject

syntax = "proto3";

package transmission_object;

message TransmissionObject {

 float value = 1;

 // string message = 2;

}

Now, let’s attempt to rebuild both echo_client and echo_server:

Figure 6-3. Changes to the echo_server only affect a single target

Chapter 6 protoCol Buffers and Bazel

93

Note You will notice that we add the flag keep_going (or a shortened
version of -k) to the build command. Without this, the “build everything”
command would stop at the first failure; using it, we see all targets that are failing.

chapter_06/src$ bazel build --keep_going :all

INFO: Analysed 5 targets (0 packages loaded, 0 targets configured).

INFO: Found 5 targets...

ERROR: chapter_06/src/BUILD:12:1: Couldn't build file src/echo_client.jar:

Building src/echo_

client.jar (1 source file) failed (Exit 1)

src/EchoClient.java:22: error: cannot find symbol

 .setMessage(inputFromUser)

 ^

 symbol: method setMessage(String)

 location: class Builder

ERROR: chapter_06/src/BUILD:27:1: Couldn't build file src/darwin_amd64_

stripped/echo_server%/

src/echo_server.a: GoCompile src/darwin_amd64_stripped/echo_server%/src/

echo_server.a failed (Exit 1) builder failed: error executing command

bazel-out/host/bin/external/go_sdk/builder compile -sdk external/go_sdk

-installsuffix darwin_amd64 -src src/echo_server.go -arc ... (remaining 12

argument(s) skipped)

Use --sandbox_debug to see verbose messages from the sandbox

compile: error running compiler: exit status 2

/private/var/tmp/_bazel_pj/e24198bf4e647dabf052e612ba765c04/sandbox/darwin-

sandbox/1/execroot/__main__/src/echo_server.go:41:47: transmissionObject

.GetMessage undefined (type *transmission_object.TransmissionObject has no

field or method GetMessage)

/private/var/tmp/_bazel_pj/e24198bf4e647dabf052e612ba765c04/sandbox/darwin-

sandbox/1/execroot/__main__/src/echo_server.go:44:20: transmissionObject.

Message undefined (type *transmission_object.TransmissionObject has no

field or method Message)

Chapter 6 protoCol Buffers and Bazel

94

/private/var/tmp/_bazel_pj/e24198bf4e647dabf052e612ba765c04/sandbox/darwin-

sandbox/1/execroot/__main__/src/echo_server.go:44:70: transmissionObject.

GetMessage undefined (type *transmission_object.TransmissionObject has no

field or method GetMessage)

INFO: Elapsed time: 0.364s, Critical Path: 0.18s

INFO: 0 processes.

FAILED: Build did NOT complete successfully

In this case, by changing the base dependency, we have dirtied our entire

dependency tree:

If you’d like, you can double check the modification date after you fix the code by

restoring the field.

 Final Word
In this chapter, you were able to very simply add and use the necessary functionality

for Protocol Buffers. Along the way, you also got to see firsthand the abilities of Bazel to

very easily and powerfully manage build dependencies, even between code written in

multiple languages. Although the examples here truly only scratched the surface, already

you should be able to see the possibilities provided by a simple and standard declarative

build language.

Figure 6-4. Changes to the transmission_object_proto affect all targets

Chapter 6 protoCol Buffers and Bazel

95

Protocol Buffers also reinforced Bazel’s capabilities at handling multiple languages

with ease. At the same time, you also got a glimpse into easily using Protocol Buffers for

serialization across multiple languages.

In later chapters, we will be returning to more use of Protocol Buffers with Bazel.

For the moment, however, we will take a step back and look at some facilities that Bazel

provides for code organization.

Chapter 6 protoCol Buffers and Bazel

97
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_7

CHAPTER 7

Code Organization
and Bazel
Over the last several chapters, the examples kept all of the code in a single directory.

While this was convenient for illustration purposes, this will not work in practice.

Furthermore, the examples often broke from established directory and package patterns

found (and even enforced) in certain languages (e.g., Java, Go, etc.). In this chapter,

we will correct the organizational shortcomings of prior chapters and demonstrate the

facilities Bazel provides for working within a hierarchical directory structure.

Note The directory structure we create here will be used throughout the rest of
the book.

 Setup
The majority of work we will do here reorganizes work from the prior chapter. For the

most part, we will not be creating any new functionality. To accelerate our work, let’s first

copy over the last chapter’s work into a new directory. Just before we do that, we will also

clean up any builds from our prior chapter:

$ cd chapter_06

chapter_06$ bazel clean

chapter_06$ ls

WORKSPACE src

98

Having cleaned up any prior cached files, now let’s copy over the last chapter’s work:

chapter_06$ cd ..

$ cp -rf chapter_06 chapter_07

$ cd chapter_07

chapter_07 $ ls

WORKSPACE src

If you would like, you can confirm that all is working as expected by executing a

build or run command for a target from the last chapter. If you do, also fire off a clean

command; though this is strictly not necessary, it will help with keeping your top-level

directory for the reorganization task.

 Separating the Protocol Buffers
There are many ways to reorganize your code (e.g., language, client vs. server, etc.);

beyond Bazel’s natural inclination toward a monorepo, however, this chapter does not

offer any kind of strong opinion on this matter (i.e., do what makes sense for your project).

However, one obvious separation that we can do here is to pull out the files at build

targets that encompass the various BUILD targets and definitions for the Protocol Buffers.

These are referenced by both the client and the server and are their own language, so

they can be easily pulled out from the current conglomerate directory.

First, let’s create a top-level directory (proto) and move the Protocol Buffer definition

from its current location:

chapter_07$ mkdir proto

chapter_07$ mv src/transmission_object.proto proto/

Next, we will create a new BUILD file, which will hold all of our protobuf build targets:

chapter_07$ cd proto/

chapter_07/proto$ touch BUILD

Listing 7-1. Protobuf-only BUILD file

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

proto_library(

 name = "transmission_object_proto",

ChapTer 7 Code organizaTion and Bazel

99

 srcs = ["transmission_object.proto"],

)

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

)

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object"

)

Save this to proto/BUILD.

Now, remove the corresponding targets (e.g., src:transmission_object_proto and

so on) from src/BUILD. This will temporarily render the other build targets within that

BUILD file unbuildable, but this will be fixed shortly.

Finally, let’s verify that our targets are building correctly within our new directory:

chapter_07/proto$ bazel build :all

INFO: Analysed 3 targets (23 packages loaded, 6994 targets configured).

INFO: Found 3 targets...

INFO: Elapsed time: 0.993s, Critical Path: 0.35s

INFO: 4 processes: 3 darwin-sandbox, 1 worker.

INFO: Build completed successfully, 5 total actions

 Referencing Build Targets Outside of the Current
Package
The previous examples had taken advantage of their colocation within the same

directory/package to easily specify the dependencies among BUILD targets. Since

everything was in the same location, each example’s build targets could specify local

build targets (or would refer to external dependencies).

In separating out our Protocol Buffer build targets into a separate package, we broke

our existing targets. Attempting to build one of our existing targets will lead to failure:

ChapTer 7 Code organizaTion and Bazel

100

chapter_07$ bazel build src:echo_client

ERROR: chapter_07/ src/BUILD:5:12: in deps attribute

 of java_binary rule //src:echo_client: target '//src:transmission_

object_java_proto' does not exist

ERROR: Analysis of target '//src:echo_client' failed; build aborted:

Analysis of target '//src:echo_client' failed; build aborted

INFO: Elapsed time: 0.117s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (1 packages loaded, 2 targets

configured)

Let’s correct each of our BUILD targets so that we can correctly refer to the newly

created, nonlocal Protocol Buffer dependencies. Open the src/BUILD file (changes in

bold).

Listing 7-2. Updating the src/BUILD dependencies

java_binary(

 name = "echo_client",

 srcs = ["EchoClient.java"],

 main_class = "EchoClient",

 deps = ["//proto:transmission_object_java_proto"],

)

load("@io_bazel_rules_go//go:def.bzl", "go_binary")

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

 deps = [

 "//proto:transmission_object_go_proto",

 "@com_github_golang_protobuf//proto:go_default_library",

],

)

Save the changes to src/BUILD.

One feature of Bazel is that, beyond the allowance for local dependencies, all

dependency references are absolute paths with respect to a particular WORKSPACE. For the

preceding examples, when we specified the dependencies on the newly created protobuf

ChapTer 7 Code organizaTion and Bazel

101

targets, this was done with respect to the root of the WORKSPACE (which is indicated by //).

This is an important point: dependencies are not specified using paths relative to the

current BUILD file. Although this may seem like an onerous requirement, it stems from

the general Bazel theme of making everything explicit.

As seen previously, we can also refer to dependencies that are pulled into

the WORKSPACE (e.g., our Go rules) by using the @ symbol prior to the name of the

dependency; this informs Bazel of a dependency that is nonlocal to the WORKSPACE.

However, despite having correctly referred to our newly created targets, we will run

into one more problem. To illustrate, let’s run our build one more time:

chapter_07$ bazel build src:echo_client

ERROR: /chapter_07/src/BUILD:1:1: in java_binary rule //src:echo_client:

target '//proto:transmission_object_java_proto' is not visible from

target '//src:echo_client'. Check the visibility declaration of the

former target if you think the dependency is legitimate

ERROR: Analysis of target '//src:echo_client' failed; build aborted:

Analysis of target '//src:echo_client' failed; build aborted

INFO: Elapsed time: 0.215s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (6 packages loaded, 390 targets

configured)

We will correct this problem within the next section.

 Target Visibility
Many object-oriented languages (e.g., Java, C++, Objective-C, etc.) have a concept of

visibility into an object’s member variables and functions. Typically, this is framed in the

concepts of interface (i.e., the public-facing API) and implementation (i.e., the code that

is used to actually perform the work). This division is hammered in countless coding

books to achieve a separation of concerns. In theory, this gives the implementation the

ability to change without affecting clients of said functionality; they all conform to the

same interface.

In many languages, visibility need not be a binary choice; it is possible to specify

visibility to some particular characteristic (e.g., members only visible to subclasses

ChapTer 7 Code organizaTion and Bazel

102

of a parent class, members only visible to the same Java package, etc.). This provides

flexibility in terms of what pieces should be visible and to whom.

Bazel contains a powerful mechanism for target visibility, enabling the architect of

the project to determine what should be visible and to whom. Notably, this is a language-

agnostic feature; any build target can take advantage of this particular Bazel feature,

regardless of whether the language itself implements a form of member visibility. This

enables us to determine which portions of our code should be considered valid for

“public” consumption (i.e., the interface) and which should be retained privately (i.e.,

the implementation).

Throughout the course of this book, we have ignored the notion of visibility. This

was enabled by virtue of all our code existing within the same directory and BUILD file

(i.e., within the same Bazel package); all targets within a given package are automatically

visible to one another. Additionally, without any additional specification, all targets

within a given package are, by default, invisible to any external targets. That is, unless

we actually make an explicit declaration regarding its visibility, a given target cannot be

depended upon outside of its own package.

Although this might seem like an onerous requirement, it is actually one of the most

powerful aspects of Bazel: as the author of your own code, you get to decide how best to

structure it for building and how best to structure it for clients to use. These two need not

be the same thing.

Since we do want clients external to a given package to make use of our code, we

will need to specify the visibility. There are two major ways to accomplish this: (1) the

package level and (2) the target level. We will explore both ways.

 Package Visibility
As mentioned earlier, the default is that all targets within a given package are unavailable

as dependencies by other targets which are external to the package. The simplest

approach we can take is to make all targets visible.

Open the proto/BUILD file and add the following directive.

Listing 7-3. Making all build targets visible

package(default_visibility = ["//visibility:public"])

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

ChapTer 7 Code organizaTion and Bazel

103

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

)

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object"

)

Save to proto/BUILD.

Now, let’s attempt to build src:echo_client again:

chapter_07$ bazel build src:echo_client

INFO: Analysed target //src:echo_client (1 packages loaded, 4 targets

configured).

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 3.221s, Critical Path: 2.83s

INFO: 2 processes: 1 darwin-sandbox, 1 worker.

INFO: Build completed successfully, 6 total actions

Now that we have updated the visibility of the dependencies, our build works as

expected (src:echo_server should also work, but that is left as an exercise to the reader).

Note once again, an astute reader will note that we have include yet-another-
new function(package) into our BUILD file. The package function exists to apply
the same metadata to all targets within a given package. in this case, we are only
using it to make modifications to the visibility.

ChapTer 7 Code organizaTion and Bazel

104

 Path-Specific Visibility

The prior section’s solution solved the immediate problem of getting the echo_client

and echo_server targets to build. However, the solution of making every target within

the package visible is heavy-handed to say the least. This kind of “all-or-nothing”

approach doesn’t really lend itself to good code organization; in the limit it is only

slightly better than putting everything into the same place.

Fortunately, we can do better. Bazel provides the ability to explicitly specify paths for

target visibility. In this case, let’s restrict access to only the src package.

Open the proto/BUILD file, and let’s modify our visibility specification.

Listing 7-4. Restricting the visibility to a specific package

package(default_visibility = ["//src:__pkg__"])

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

<omitted for brevity>

Save the proto/BUILD file.

Reconfirm that you are able to build both src:echo_client and src:echo_server.

Now you have reduced the visibility to only targets that are strictly within the src package.

Note although the //src:__pkg__ specification will allow access to
any proto target from within the src package, this specification does not
automatically include any subpackages of src. That is, if you had a package such
as //src/client, then the proto targets would not be visible to the targets
within //src/client.

This can easily be addressed by modifying the visibility specification from
__pkg__ to __subpackages__. This indicates that a given dependency should
be visible both to a particular package and any subpackages therein.

ChapTer 7 Code organizaTion and Bazel

105

 Individual Target Visibility
In the last section, we specified the visibility at the package level. While this is always

a good starting point, it still echoes the earlier “all-or-nothing” problem; we are still

making statements about the visibility across all of the targets within a given package. Yet

again, Bazel comes to the rescue.

Individual targets can declare their visibility; that is, each individual target can

specify what other packages may depend upon it. This includes having an individual

target make the blanket statement of visibility:public.

Open the proto/BUILD file; we are going to make some modifications to the

individual target visibilities.

Listing 7-5. Specifying visibility at the build target level

#package(default_visibility = ["//src: :__pkg__"])

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

 visibility = ["//src:__pkg__"],

)

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object",

)

Save proto/BUILD. Now, let’s verify once again that our src:echo_client still builds:

chapter_07$ bazel build src:echo_client

INFO: Analysed target //src:echo_client (1 packages loaded, 4 targets

configured).

ChapTer 7 Code organizaTion and Bazel

106

INFO: Found 1 target...

Target //src:echo_client up-to-date:

 bazel-bin/src/echo_client.jar

 bazel-bin/src/echo_client

INFO: Elapsed time: 0.207s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

However, you will get a different result when trying to build src:echo_server:

chapter_07$ bazel build src:echo_server

ERROR: chapter_07/src/BUILD:10:1: in go_binary rule //src:echo_server:

target '//proto:transmission_object_go_proto' is not visible from

target '//src:echo_server'. Check the visibility declaration of the

former target if you think the dependency is legitimate

ERROR: Analysis of target '//src:echo_server' failed; build aborted:

Analysis of target '//src:echo_server' failed; build aborted

INFO: Elapsed time: 0.109s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (0 packages loaded, 1 target

configured)

Here, we removed the package level directive to make every target visible to all of

src. Instead, we only made the transmission_object_java_proto target (required only by

echo_client) visible to the src package. The transmission_object_go_proto (required by

echo_server) is once again invisible.

Obviously, we can easily fix this. Reopen the proto/BUILD file and add the visibility

specification to transmission_object_go_proto.

Listing 7-6. Fixing the visibility for transmission_object_go_proto

#package(default_visibility = ["//src:echo_client"])

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

ChapTer 7 Code organizaTion and Bazel

107

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

 visibility = ["//src:__pkg__"],

)

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object",

 visibility = ["//src:__pkg__"],

)

Save the file to proto/BUILD and retry building src:echo_server:

chapter_07$ bazel build src:echo_server

INFO: Analysed target //src:echo_server (1 packages loaded, 4 targets

configured).

INFO: Found 1 target...

Target //src:echo_server up-to-date:

 bazel-bin/src/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.227s, Critical Path: 0.01s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

Having fixed the dependency visibility, all builds are now happy again.

 Mixing Package and Target Visibilities
Having demonstrated two different ways (i.e., both package and individual targets) to

express visibility, it is important to also mention how they interact with each other.

Simply put, package level visibility specifications act as a default value for all targets

within a package. Individual visibility specifications act as the final value for the visibility

of that particular target. That is, there is no attempt to merge the values between the

package and individual specifications; it is always a replacement operation.

Although this might seem draconian, an important thing to remember is that Bazel

seeks to make things explicit; complicated implicit merging among visibility rules

ChapTer 7 Code organizaTion and Bazel

108

does not serve this purpose. Yes, this might entail some extra typing when trying to

create some very particular rules; however, being explicit wins out over momentary

convenience.

Bazel provides a mitigating strategy to this verbosity through the construct of a

package_group. A package_group allows you to assign metadata (e.g., visibility rules)

across a set of packages. This provides a nice middle ground between assigning visibility

to individual targets and requiring a package-wide visibility policy.

 Separating the Client and Server Code
Having separated our protobuf code into its own package, we will also separate out the

client and server code into their own packages.

 Separating the Echo Server Code
Let’s first create a directory for the echo_server. For reasons that will become more

obvious later on (and in later chapters), we’ll create a sub-directory for the echo_server

and move the corresponding code into that directory:

chapter_07$ mkdir -p server/echo_server

chapter_07$ mv src/echo_server.go server/echo_server/echo_server.go

Now let’s create a server/echo_server/BUILD file. We will just copy the prior

definition for the echo_server build target in the original src/BUILD file.

Listing 7-7. Creating the server/echo_server/BUILD file

load("@io_bazel_rules_go//go:def.bzl", "go_binary")

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

 deps = [

 "//proto:transmission_object_go_proto",

 "@com_github_golang_protobuf//proto:go_default_library",

],

)

ChapTer 7 Code organizaTion and Bazel

109

Save that file to server/echo_server/BUILD. Trying to build this will simply

reintroduce the proto visibility issues we saw earlier. Let’s first update the visibility rules

for the necessary target.

Open the proto/BUILD file and make the following modifications.

Listing 7-8. Updating the visibility package for transmission_object_go_proto

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

 visibility = ["//src:__pkg__"],

)

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object",

 visibility = ["//server/echo_server:__pkg__"],

)

Save the changes to proto/BUILD. Now, we should be able to successfully build our

newly minted server/echo_server:echo_server target:

chapter_07$ bazel build server/echo_server:echo_server

INFO: Analysed target //server/echo_server:echo_server (2 packages loaded,

5 targets configured).

INFO: Found 1 target...

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.896s, Critical Path: 0.56s

INFO: 2 processes: 2 darwin-sandbox.

INFO: Build completed successfully, 5 total actions

ChapTer 7 Code organizaTion and Bazel

110

 Eliding the Build Target

One thing to note is that we have a duplication in the path to build the echo_server;

specifically, we see “echo_server” twice:

chapter_07$ bazel build server/echo_server:echo_server

One allowance that Bazel provides is eliding the build target when it is the same name

as its containing package. That is, the following invocation is functionally equivalent:

chapter_07$ bazel build server/echo_server

INFO: Analysed target //server/echo_server:echo_server (1 packages loaded,

2 targets configured).

INFO: Found 1 target...

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.217s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

While it might be tempting to cry foul at this point in time for Bazel, this convenience

is providing a very powerful convention: if a target has an identical name to the package

wherein it is contained, then it can be considered the “public”-facing target (i.e., the

interface) for that package. This normalizes and simplifies expectations from external

packages about which target(s) one should depend upon.

Notably, this convention is not a requirement of Bazel, but its existence is extremely

powerful and can help reduce cognitive load when creating and analyzing build

dependency trees.

 Separating the Echo Client Code
Having taken care of the server side of the equation, we finally turn our attention to

the client as well. In this case, we will create a very slightly different directory/package

structure; this is in anticipation of later chapters. As before, we will move the appropriate

code into the sub-directory:

chapter_07$ mkdir -p client/echo_client/command_line

chapter_07$ mv src/EchoClient.java client/echo_client/command_line/

EchoClient.java

ChapTer 7 Code organizaTion and Bazel

111

Now we need to create the appropriate BUILD file; once again, we will end up just

copying out the previous definition of the target.

Listing 7-9. Creating the client/echo_client/command_line/BUILD file

java_binary(

 name = "command_line",

 srcs = ["EchoClient.java"],

 main_class = "EchoClient",

 deps = ["//proto:transmission_object_java_proto"],

)

Save the changes down to the client/echo_client/command_line/BUILD file. Once

again, we will need to update the appropriate proto/BUILD target visibility; otherwise,

our echo_client target will once again fail to build.

Open proto/BUILD and make the following changes to the transmission_object_

java_proto.

Listing 7-10. Updating the visibility for transmission_object_java_proto

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

java_proto_library(

 name = "transmission_object_java_proto",

 deps = [":transmission_object_proto"],

 visibility = ["//client/echo_client:__subpackages__"],

)

go_proto_library(

 name = "transmission_object_go_proto",

 proto = ":transmission_object_proto",

 importpath = "transmission_object",

 visibility = ["//server/echo_server:__pkg__"],

)

ChapTer 7 Code organizaTion and Bazel

112

Save the file to proto/BUILD.

Note You might notice that we have created a slightly different specification for
the visibility for transmission_object_java_proto vs. its go counterpart. in
particular, while the go version was very specifically targeted toward the echo_
server package, the Java version has a wider set of potential packages (i.e.,
everything under the echo_client package). This is again done in anticipation of
upcoming chapters.

Having updated the visibility, let’s verify that our target still builds as expected

(taking advantage of the aforementioned target elision):

chapter_07$ bazel build client/echo_client/command_line

INFO: Analysed target //client/echo_client/command_line:command_line

(1 packages loaded, 2 targets configured).

INFO: Found 1 target...

Target //client/echo_client/command_line:command_line up-to-date:

 bazel-bin/client/echo_client/command_line/command_line.jar

 bazel-bin/client/echo_client/command_line/command_line

INFO: Elapsed time: 0.192s, Critical Path: 0.01s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

 Cleaning Up
Having stripped the original directory of basically everything, we can now get rid of it:

chapter_07$ rm -rf src

Just as a sanity check, we can reconfirm that everything builds as expected through a

blanket build command:

chapter_07$ bazel build ...

INFO: Analysed 5 targets (0 packages loaded, 0 targets configured).

INFO: Found 5 targets...

ChapTer 7 Code organizaTion and Bazel

113

INFO: Elapsed time: 0.188s, Critical Path: 0.01s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

Since we did not change any actual code, just move it around and create/reconfigure

BUILD files and targets; all functionality should work as before. Verification is left as an

exercise to the reader.

 Final Word
Over the course of the last chapter, you employed the tools of Bazel to reorganize the

code into a (more) scalable development structure. Although still toy examples, there

should be enough content to begin to use the constructs of Bazel to craft your code

structure into something easy to understand, scalable, and controllable.

Although what was done within this chapter represents one particular organization,

it should not be considered canonical by any means. For example, the location and

visibility of the Protocol Buffer and derived language-specific targets may be changed

(e.g., bring the language-specific proto targets closer to their actually usage). Another

example would be changing to a language-centric directory/package structure.

There is no “right” answer; there are trade-offs to each possibility. Regardless, Bazel

flexibly supports the type of code organization that best suits your needs while providing

tools that aid in maintaining this structure over time.

ChapTer 7 Code organizaTion and Bazel

115
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_8

CHAPTER 8

gRPC and Bazel
In Chapter 6, you discovered the use of Protocol Buffers to provide a succinct, well-

typed, and easily serialized data description that worked across languages. As a

corollary, Bazel provided an easy way to depend upon the Protocol Buffers. In this

chapter, we will explore the use of Protocol Buffers to also easily define APIs to work

across various languages.

The Protocol Buffer format is used to define APIs via gRPC, which is Google’s

way of creating remote procedure calls (RPCs). In a similar fashion to Protocol Buffers

normalizing data access across multiple languages, gRPC normalizes making RPCs from

clients to servers.

 Setup
We will build off of everything done in the last chapter. We will start by first copying

everything from the last chapter into a new directory (after verifying that we have

cleaned out all build products):

$ cd chapter_07

chapter_07$ bazel clean

chapter_07$ ls

WORKSPACE client proto server

chapter_07$ cd ..

$ cp -rf chapter_07 chapter_08

$ cd chapter_08

chapter_08$

Finally, we need to add more dependencies within the WORKSPACE file. Add in the

highlighted changes into your WORKSPACE file.

116

Listing 8-1. Adding the gRPC dependencies to the WORKSPACE

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

skylib_version = "0.8.0"

http_archive(

 name = "bazel_skylib",

 url = "https://github.com/bazelbuild/bazel-skylib/releases/download/{}/

bazel-skylib.{}.tar.gz".format(skylib_version, skylib_version),

)

<existing dependencies omitted for brevity>

http_archive(

 name = "io_grpc_grpc_java",

 strip_prefix = "grpc-java-1.24.0",

 urls = ["https://github.com/grpc/grpc-java/archive/v1.24.0.tar.gz"],

)

load("@io_grpc_grpc_java//:repositories.bzl", "grpc_java_repositories")

grpc_java_repositories()

http_archive(

 name = "bazel_gazelle",

 urls = ["https://github.com/bazelbuild/bazel-gazelle/releases/download/

v0.19.1/bazel-gazelle-v0.19.1.tar.gz"],

)

load("@bazel_gazelle//:deps.bzl", "gazelle_dependencies", "go_repository")

gazelle_dependencies()

go_repository(

 name = "org_golang_google_grpc",

 build_file_proto_mode = "disable",

 importpath = "google.golang.org/grpc",

 sum = "h1:J0UbZOIrCAl+fpTOf8YLs4dJo8L/owV4LYVtAXQoPkw=",

 version = "v1.22.0",

)

Chapter 8 grpC and Bazel

117

go_repository(

 name = "org_golang_x_net",

 importpath = "golang.org/x/net",

 sum = "h1:oWX7TPOiFAMXLq8o0ikBYfCJVlRHBcsciT5bXOrH628=",

 version = "v0.0.0-20190311183353-d8887717615a",

)

go_repository(

 name = "org_golang_x_text",

 importpath = "golang.org/x/text",

 sum = "h1:g61tztE5qeGQ89tm6NTjjM9VPIm088od1l6aSorWRWg=",

 version = "v0.3.0",

)

Save to the WORKSPACE file.

As one final item, we are going to create an empty BUILD file right next to our

WORKSPACE file. This is related to the use of Gazelle (discussed next).

chapter_08$ touch BUILD

 Dependency Discussion
It is worthwhile to take a moment and discuss some of the dependencies that we just

added, particularly for Go. The use of http_archive should be rote by this point in time.

 Skylib

The Skylib library contains a number of useful functions and rules that are used when

creating custom build rules. It is a common dependency that is used by many packages.

As such, you can run into issues when dependencies use multiple versions of this library.

In this case, we are adding in this library explicitly and asserting a version that will be

used throughout your WORKSPACE.

One thing to note about how we are including this particular version of Skylib.

If you notice, we are using the .format() function on the string in order to insert

the version into the path. This allows us to easily change the version later on. It also

demonstrates the use of Python-like features of Starlark to create richer specification of

our dependencies.

Chapter 8 grpC and Bazel

118

 Gazelle

Gazelle is unique in that it is a build file generator for Bazel projects. That is, it can auto-

magically generate BUILD files for a language from code (assuming, of course, that the

code is well formed). Gazelle supports Go out-of-the-box. Since Go has the very nice

property of being able to very explicitly specify dependencies within the code itself,

Gazelle is able to take advantage of this fact and generate BUILD files for you.

Gazelle also defines a repository rule for Go, aptly named go_repository. As you

might have already guessed, go_repository allows you to (a) specify an import path

from which to retrieve the necessary dependency and (b) auto-generate the necessary

BUILD files for the packages therein. As you can imagine, this can be of enormous help

when incorporating third party libraries (at least for Go) that do not already have Bazel

support.

The BUILD file at the root of your project functions as a location to configure options

for Gazelle, if you want to use its functionality in your own project. If the BUILD file is

missing, your project will fail to build.

 Defining the gRPC in Protocol Buffers
In a similar fashion to how we defined messages in Protocol Buffers in a language-

agnostic way, we can also define interfaces for RPCs. We will create a new file within the

proto directory to house the new API.

Listing 8-2. Defining the interface for the RPC

syntax = "proto3";

import "proto/transmission_object.proto";

package transceiver;

message EchoRequest {

 transmission_object.TransmissionObject from_client = 1;

}

message EchoResponse {

 transmission_object.TransmissionObject from_server = 1;

}

Chapter 8 grpC and Bazel

119

service Transceiver {

 rpc Echo (EchoRequest) returns (EchoResponse);

}

Save this to proto/transceiver.proto.

Let’s take a moment just to analyze these definitions. We locally define two messages

EchoRequest and EchoResponse to contain the request and response to the RPC,

respectively.

Notably, within both EchoRequest and EchoResponse, we include the earlier created

TransmissionObject message. Strictly speaking, there is nothing required in having the

same message being included in both the request and the response; we do this here only

to mirror the functionality that we have created in prior chapters. Additionally, nothing

requires having the messages for the request and response defined within the same file

as the interface; we do so here only for the sake of simplicity.

We then define a service Transceiver, within which we have a single RPC, Echo. In

the definition of Echo, we defined the required request and response.

Finally note that all we are doing here is defining the interface for our RPC. Beyond

that, nothing (here) defines its implementation.

In order to actually use and generate the RPC, we need to update our proto/BUILD

file with the appropriate build targets. Open the proto/BUILD file and add the following.

Listing 8-3. Defining the build targets for the Transceiver service

<omitted for brevity>

proto_library(

 name = "transceiver_proto",

 srcs = ["transceiver.proto"],

 deps = [

 ":transmission_object_proto",

]

)

go_proto_library(

 name = "transceiver_go_proto_grpc",

 compiler = "@io_bazel_rules_go//proto:go_grpc",

 proto = ":transceiver_proto",

 importpath = "transceiver",

Chapter 8 grpC and Bazel

120

 deps = [":transmission_object_go_proto",],

 visibility = ["//server/echo_server:__pkg__"],

)

java_proto_library(

 name = "transceiver_java_proto",

 deps = [":transceiver_proto"],

 visibility = ["//client/echo_client:__subpackages__"],

)

load("@io_grpc_grpc_java//:java_grpc_library.bzl", "java_grpc_library")

java_grpc_library(

 name = "transceiver_java_proto_grpc",

 srcs = [":transceiver_proto"],

 deps = [":transceiver_java_proto"],

 visibility = ["//client/echo_client:__subpackages__"],

)

Save the file to proto/BUILD.

As with the proto code, let’s examine what we’ve added here. The first new

build target should look familiar; it simply defines the proto_library target for the

transceiver.proto file. In a similar fashion, transceiver_java_proto should also look

very familiar, as it defines the build target for the Java version of transceiver.proto.

The transceiver_go_proto_grpc looks very similar to what we have seen

previously; the primary exception is addition of the compiler directive within go_proto_

library target. This defines the rule that should be used when compiling the target in

order to support gRPC. We use the standard rule found within the @io_bazel_rules_go

dependency.

Since we are using Go only on the server side, we set the visibility to only the server

subpackages.

The java_grpc_library does a similar job, except for defining the necessary target

for Java. In a complementary fashion, we set the visibility to only the client subpackages.

Just to confirm that all is working well, let’s build all the targets within the package:

chapter_08$ bazel build proto:all

INFO: Analysed 7 targets (0 packages loaded, 0 targets configured).

INFO: Found 7 targets...

Chapter 8 grpC and Bazel

121

INFO: Elapsed time: 0.316s, Critical Path: 0.07s

INFO: 3 processes: 3 darwin-sandbox.

INFO: Build completed successfully, 4 total actions

 Upgrading the Client to Use gRPC
Having defined the gRPC interface, we will now upgrade the client to use it. For the most

part, the code will look very similar to what we had done previously. We will highlight a

few of the changes that are needed for the basic version.

We had previously created a Java client that explicitly transmitted a serialized object.

We will make some modifications to the support using gRPC.

Open client/echo_client/command_line/EchoClient.java.

Listing 8-4. Using gRPC on the client side

import io.grpc.ManagedChannel;

import io.grpc.ManagedChannelBuilder;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import transmission_object.TransmissionObjectOuterClass.TransmissionObject;

import transceiver.TransceiverOuterClass.EchoRequest;

import transceiver.TransceiverOuterClass.EchoResponse;

import transceiver.TransceiverGrpc;

public class EchoClient {

 public static void main(String args[]) {

 System.out.println("Spinning up the Echo Client in Java...");

 try {

 final BufferedReader commandLineInput = new BufferedReader(new

InputStreamReader(System.in));

 System.out.println("Waiting on input from the user...");

 final String inputFromUser = commandLineInput.readLine();

 if (inputFromUser != null) {

 ManagedChannel channel =

 ManagedChannelBuilder

 .forAddress("localhost", 1234)

Chapter 8 grpC and Bazel

122

 .usePlaintext()

 .build();

 TransceiverGrpc.TransceiverBlockingStub stub =

 TransceiverGrpc.newBlockingStub(channel);

 EchoRequest request = EchoRequest.newBuilder()

 .setFromClient(

 TransmissionObject.newBuilder()

 .setMessage(inputFromUser)

 .setValue(3.145f)

 .build())

 .build();

 EchoResponse response = stub.echo(request);

 System.out.println("Received Message from server: ");

 System.out.println(response);

 channel.shutdownNow();

 }

 } catch (Exception e) {

 System.err.println("Error: " + e);

 }

 }

}

Save the file to client/echo_client/command_line/EchoClient.java.

Taking another moment to examine the changes, we first create a ManagedChannel

to open a channel on a specific port. This is then used to create a stub

(TransceiverBlockingStub) for actually making the RPC. For the sake of simplicity,

we use the most basic of stubs, which makes blocking calls for all of the service’s RPCs

(other, more flexible versions of the stub are possible, but are outside of the scope of

this book).

The stub provides local methods which forward the calls through the channel. Once

created, the stub makes it as easy to call an RPC as it would be a local method. The

request is formulated and then used to call into the method, with the expected response.

To complete the functionality, let’s upgrade the target in the client/echo_client/

command_line/BUILD file. As before, much of the original target remains the same, so we

can highlight the necessary changes.

Chapter 8 grpC and Bazel

123

Listing 8-5. Modifications for EchoClient to support gRPC

java_binary(

 name = "command_line",

 srcs = ["EchoClient.java"],

 main_class = "EchoClient",

 runtime_deps = [

 "@io_grpc_grpc_java//netty",

],

 deps = [

 "//proto:transmission_object_java_proto",

 "//proto:transceiver_java_proto",

 "//proto:transceiver_java_proto_grpc",

 "@io_grpc_grpc_java//api",

]

)

Save the file to client/echo_client/command_line/BUILD.

For what might be obvious at this point in time, we’ve added the new dependencies

from the proto subpackage. Additionally, we’ve added both a typical static dependency

(@io_grpc_grpc_java//api) as well as a new runtime dependency (@io_grpc_grpc_

java//netty).

In this latter case, we specify that this is a runtime dependency since it is not

explicitly requested in the code. If you attempted to remove runtime_deps, you would

find that building the program would work perfectly fine. However, attempting to run the

program would result in an error message requesting the runtime dependency.

We will build the target just to confirm that all is well:

chapter_08$ bazel build client/echo_client/command_line

INFO: Analysed target //client/echo_client/command_line:command_line (32

packages loaded, 317 targets configured).

INFO: Found 1 target...

Target //client/echo_client/command_line:command_line up-to-date:

 bazel-bin/client/echo_client/command_line/command_line.jar

 bazel-bin/client/echo_client/command_line/command_line

Chapter 8 grpC and Bazel

124

INFO: Elapsed time: 6.648s, Critical Path: 6.14s

INFO: 21 processes: 18 darwin-sandbox, 3 worker.

INFO: Build completed successfully, 25 total actions

Notably, we won’t be able to actually run the client yet; although we’ve successfully

created a client that uses gRPC, we still need a service that implements the RPC.

 Upgrading the Server to Use gRPC
To upgrade our server to use gRPC, we will need to register and fill in the functionality

for the RPCs. gRPC generates most of the scaffolding for us; we just need to register our

server and provide the appropriate methods to fulfill the contract.

As with the prior section, we can make some modifications on our existing code.

Notably, in this case, we will be making more extensive modifications in order to

support gRPC.

Open server/echo_server/echo_server.go and make the highlighted modifications.

Listing 8-6. Implementing the gRPC interface on the server side

package main

import (

 "fmt"

 "log"

 "net"

 "transceiver"

 "transmission_object"

 "golang.org/x/net/context"

 "google.golang.org/grpc"

)

type EchoServer struct{}

func (es *EchoServer) Echo(context context.Context, request *transceiver.

EchoRequest) (*transceiver.EchoResponse, error) {

 log.Println("Message = " + (*request).FromClient.GetMessage())

 log.Println("Value = " +

 fmt.Sprintf("%f", (*request).FromClient.GetValue()))

Chapter 8 grpC and Bazel

125

 server_message := "Received from client: " +

 (*request).FromClient.GetMessage()

 server_value := (*request).FromClient.Value * 2

 from_server := transmission_object.TransmissionObject{

 Message: server_message,

 Value: server_value,

 }

 return &transceiver.EchoResponse{

 FromServer: &from_server,

 }, nil

}

func main() {

 log.Println("Spinning up the Echo Server in Go...")

 listen, error := net.Listen("tcp", ":1234")

 if error != nil {

 log.Panicln("Unable to listen: " + error.Error())

 }

 defer listen.Close()

 defer log.Println("Connection now closed.")

 grpc_server := grpc.NewServer()

 transceiver.RegisterTransceiverServer(grpc_server, &EchoServer{})

 error = grpc_server.Serve(listen)

 if error != nil {

 log.Panicln("Unable to start serving! Error: " + error.Error())

 }

}

Save the changes to server/echo_server/echo_server.go.

Once again, let’s take a step back to examine the major changes. In this case, you’ve

created a Go struct EchoServer which has a specially named method Echo.

The Echo method takes in a Context object and the EchoRequest that we had defined

in the protobuf definition and returns the EchoResponse object. This method fulfills

the contract required by the interface definition. In terms of functionality, although the

body differs slightly from the prior version, you should be able to recognize the same

functionality.

Chapter 8 grpC and Bazel

126

Within the body of main, we created a new server and registered our EchoServer.

Having completed the setup, we then just start listening to incoming messages.

Now let’s finish upgrading the target in the BUILD file to support this new functionality.

Open server/echo_server/BUILD and make the following highlighted modifications.

Listing 8-7. Modification for echo_server to support gRPC

load("@io_bazel_rules_go//go:def.bzl", "go_binary")

go_binary(

 name = "echo_server",

 srcs = ["echo_server.go"],

 deps = [

 "//proto:transceiver_go_proto_grpc",

 "//proto:transmission_object_go_proto",

 "@org_golang_x_net//context:go_default_library",

 "@org_golang_google_grpc//:go_default_library",

]

)

Save your changes to server/echo_server/BUILD.

As before, the new org_golang_* dependencies are not invented from thin air;

they’ve come from the Go dependency that we had defined within the WORKSPACE file.

Now, let’s just do a sanity check on the build to make sure that it is all working as

expected:

chapter_08$ bazel build server/echo_server

INFO: Analysed target //server/echo_server:echo_server (0 packages loaded,

0 targets configured).

INFO: Found 1 target...

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 0.227s, Critical Path: 0.00s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

Chapter 8 grpC and Bazel

127

 Running the Client and the Server
Having completed both the client and the server, we are ready to actually use our new

functionality.

Open a new terminal window. We will first start running the server.

chapter_08$ bazel run server/echo_server

INFO: Analysed target //server/echo_server:echo_server (83 packages loaded,

7969 targets configured).

INFO: Found 1 target...

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 110.524s, Critical Path: 27.33s

INFO: 466 processes: 466 darwin-sandbox.

INFO: Build completed successfully, 467 total actions

INFO: Build completed successfully, 467 total actions

2019/07/23 05:11:30 Spinning up the Echo Server in Go...

Having gotten the server listening, let’s run the client to fire a response. Open a

second terminal window and run the following, adding some input at the end:

chapter_08$ bazel run client/echo_client/command_line

INFO: Analysed target //client/echo_client/command_line:command_line

(60 packages loaded, 919 targets configured).

INFO: Found 1 target...

Target //client/echo_client/command_line:command_line up-to-date:

 bazel-bin/client/echo_client/command_line/command_line.jar

 bazel-bin/client/echo_client/command_line/command_line

INFO: Elapsed time: 5.728s, Critical Path: 5.33s

INFO: 3 processes: 2 darwin-sandbox, 1 worker.

INFO: Build completed successfully, 4 total actions

INFO: Build completed successfully, 4 total actions

Spinning up the Echo Client in Java...

Waiting on input from the user...

This is a test using gRPC.

Received Message from server:

from_server {

Chapter 8 grpC and Bazel

128

 value: 6.29

 message: "Received from client: This is a test using gRPC."

}

We’ve successfully done the echo functionality using gRPC. However, let’s take a look

back at the server terminal to see the messages there:

chapter_08$ bazel run server/echo_server

<omitted for brevity>

INFO: Build completed successfully, 1 total action

2019/07/23 05:11:49 Spinning up the Echo Server in Go...

2019/07/23 05:15:02 Message = This is a test using gRPC.

2019/07/23 05:15:02 Value = 3.145000

As with your prior implementation, you see the message that was sent by the client.

However, there is one important difference to the functionality here: the server has not

exited. That is, the server is still running and waiting for new connections to come in.

To verify, switch back to your client terminal and do one more run:

chapter_08$ bazel run client/echo_client/command_line

<omitted for brevity>

Spinning up the Echo Client in Java...

Waiting on input from the user...

Still up and running

Received Message from server:

from_server {

 value: 6.29

 message: "Received from client: Still up and running"

}

Now let’s look back on the server terminal to see the messages:

chapter_08$ bazel run server/echo_server

<omitted for brevity>

2019/07/23 05:11:49 Spinning up the Echo Server in Go...

2019/07/23 05:15:02 Message = This is a test using gRPC.

2019/07/23 05:15:02 Value = 3.145000

2019/07/23 05:21:20 Message = Still up and running

2019/07/23 05:21:20 Value = 3.145000

Chapter 8 grpC and Bazel

129

This persistent functionality is available “out of the box” with gRPC. In switching

over to it, we’ve actually gained more functionality for roughly the same number of lines

of code.

 Adding Another RPC
One complaint which could arise is that you have written roughly the same amount of

code to perform the same actions as before. To further illustrate the power of what we

have created, we will quickly add one more RPC to the entire system.

Open proto/transceiver.proto and add the following highlighted lines.

Listing 8-8. Adding the interface for another RPC

syntax = "proto3";

import "proto/transmission_object.proto";

package transceiver;

message EchoRequest {

 transmission_object.TransmissionObject from_client = 1;

}

message EchoResponse {

 transmission_object.TransmissionObject from_server = 1;

}

message UpperCaseRequest {

 string original = 1;

}

message UpperCaseResponse {

 string upper_cased = 1;

}

service Transceiver {

 rpc Echo (EchoRequest) returns (EchoResponse);

 rpc UpperCase (UpperCaseRequest) returns (UpperCaseResponse);

}

Chapter 8 grpC and Bazel

130

Save the file to proto/transceiver.proto.

Note that all that was necessary was simply adding the new RPC declaration to the

service, along with some explicit messages for the request and response.

Now let’s add the implementation into the server. Open server/echo_server/echo_

server.go.

Listing 8-9. Adding the implementation to the server

import (

 "fmt"

 "log"

 "net"

 "strings"

 "transceiver"

 "transmission_object"

 "golang.org/x/net/context"

 "google.golang.org/grpc"

)

<omitted for brevity>

func (es *EchoServer) UpperCase(contest context.Context, request

*transceiver.UpperCaseRequest) (*transceiver.UpperCaseResponse, error) {

 log.Println("Original = " + (*request).GetOriginal())

 return &transceiver.UpperCaseResponse{

 UpperCased: strings.ToUpper((*request).GetOriginal()),

 }, nil

}

func main() {

 log.Println("Spinning up the Echo Server in Go...")

 listen, error := net.Listen("tcp", ":1234")

 if error != nil {

 log.Panicln("Unable to listen: " + error.Error())

 }

 defer listen.Close()

 defer log.Println("Connection now closed.")

Chapter 8 grpC and Bazel

131

 grpc_server := grpc.NewServer()

 transceiver.RegisterTransceiverServer(grpc_server, &EchoServer{})

 error = grpc_server.Serve(listen)

 if error != nil {

 log.Panicln("Unable to start serving! Error: " + error.Error())

 }

}

Save the changes to server/echo_server/echo_server.go.

Once again, note that all that was necessary was adding in the new method to the

struct.

Finally, let’s make the modifications needed on the client side. Open client/echo_

client/command_line/EchoClient.java.

Listing 8-10. Calling the new RPC from the client

import io.grpc.ManagedChannel;

import io.grpc.ManagedChannelBuilder;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import transmission_object.TransmissionObjectOuterClass.TransmissionObject;

import transceiver.TransceiverOuterClass.EchoRequest;

import transceiver.TransceiverOuterClass.EchoResponse;

import transceiver.TransceiverOuterClass.UpperCaseRequest;

import transceiver.TransceiverOuterClass.UpperCaseResponse;

import transceiver.TransceiverGrpc;

public class EchoClient {

 public static void main(String args[]) {

 System.out.println("Spinning up the Echo Client in Java...");

 try {

Chapter 8 grpC and Bazel

132

<omitted for brevity>

 UpperCaseRequest upperCaseRequest =

 UpperCaseRequest.newBuilder()

 .setOriginal(inputFromUser)

 .build();

 UpperCaseResponse upperCaseResponse =

 stub.upperCase(upperCaseRequest);

 System.out.println("Received upper cased:");

 System.out.println(upperCaseResponse);

 channel.shutdownNow();

 }

 } catch (Exception e) {

 System.err.println("Error: " + e);

 }

 }

}

Save your changes to client/echo_client/command_line/EchoClient.java.

Once again, all that was needed was simple, to create the appropriate constructs and

call the newly defined RPC. Let’s run a test to verify that all is well.

Open a terminal and start the server:

chapter_08$ bazel run server/echo_server

INFO: Analysed target //server/echo_server:echo_server (1 packages loaded,

594 targets configured).

INFO: Found 1 target...

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 1.409s, Critical Path: 0.03s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

2019/07/23 05:40:16 Spinning up the Echo Server in Go...

Chapter 8 grpC and Bazel

133

Now open the client terminal, and let’s run the client one more time:

chapter_08$ bazel run client/echo_client/command_line

INFO: Analysed target //client/echo_client/command_line:command_line

(2 packages loaded, 432 targets configured).

INFO: Found 1 target...

Target //client/echo_client/command_line:command_line up-to-date:

 bazel-bin/client/echo_client/command_line/command_line.jar

 bazel-bin/client/echo_client/command_line/command_line

INFO: Elapsed time: 0.616s, Critical Path: 0.27s

INFO: 1 process: 1 worker.

INFO: Build completed successfully, 2 total actions

INFO: Build completed successfully, 2 total actions

Spinning up the Echo Client in Java...

Waiting on input from the user...

This is the magic.

Received Message from server:

from_server {

 value: 6.29

 message: "Received from client: This is the magic."

}

Received upper cased:

upper_cased: "THIS IS THE MAGIC."

Congratulations! You’ve just added a new RPC into your system. Notably, this

required only a little bit more code in each location (definition, server, and client).

Moving forward, you could easily define vastly more functionality in a very ordered and

well-managed fashion.

Note Within the body of this last section, we never made any modifications to
our BUILD files, since no dependency changes were required. You were able to
just operate on the code and execute, confident in the knowledge that Bazel would
handle the necessary build steps.

Chapter 8 grpC and Bazel

134

 Final Word
Over the course of the last chapter, the focus was less on an any structural knowledge on

using Bazel than using it in a manner closer to actual development. You saw how Bazel’s

multi-language support worked hand in hand with gRPC to easily create new client–

server functionality.

Up until this point in time in the book, the focus has been mainly on looking at

functionality which effectively lives on a backend. That is, both the clients and servers

created thus far could easily be proxies for backend services talking to one another.

Although much of the communication theme will continue moving forward, we will

start to look at using Bazel to create purely client-side functionality in the form of mobile

applications. Once again, we will lean heavily on Bazel’s ability to work seamlessly across

languages to create these applications.

Chapter 8 grpC and Bazel

135
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_9

CHAPTER 9

Bazel and Android
In the prior chapters, you used Bazel to develop functionality that would most likely be

deployed to some backend server. However, Bazel can be (and is) used for more than just

backend projects, able to handle mobile clients as well. In this chapter, we will explore

using Bazel to build Android applications.

 Setup
As previously, we will be building off of our prior chapters. Again, first verify that all of

the Bazel-generated files are eliminated. Then, copy the work from the last chapter:

$ cd chapter_08

chapter_08$ bazel clean

chapter_08$ ls

WORKSPACE client proto server

chapter_08$ cd ..

$ cp -rf chapter_08 chapter_09

$ cd chapter_09

chapter_09$

 Workspace
As you might have already guessed, we need to augment our WORKSPACE file with an

additional dependency. In this case, we are specifying the rules for building an Android

project.

Open the WORKSPACE file and add the following.

136

Listing 9-1. Modifying the WORKSPACE file for the Android rules

<existing content omitted for brevity>

http_archive(

 name = "rules_android",

 urls = ["https://github.com/bazelbuild/rules_android/archive/v0.1.1.zip"],

 strip_prefix = "rules_android-0.1.1",

)

android_sdk_repository(name = "androidsdk")

Note In earlier chapters, we mentioned that there are certain rules that you get
out of the box (e.g., java_library, cc_library, etc.). The rules for android_
library and android_binary technically started as more out-of- the-box rules.
However, as Bazel has matured, they have begun removing rules from this core set
and creating explicit packages for these rules, for the sake of maintainability.

This should make sense from a development perspective; by making the rules
more modular and less part of a monolithic package, they can be revised at their
appropriate pace without requiring a rebuild of the entire Bazel system.

Within the WORKSPACE file, we are calling a rule android_sdk_repository. This is

used to specify the path to the Android SDK with respect to this project. In this particular

case, without any other additional specification within the rule itself, the rule defaults to

using the ANDROID_HOME environment variable. We will set this shortly.

Note The reliance on an environment variable in this case might set off some
alarms, given Bazel’s approach to maintaining control over its dependencies. In
this particular case, the environment variable may be considered a convenience;
however, it is possible to specify an explicit path to the Android SDKs, even relative
to your current WORKSPACE file, within the android_sdk_repository rule.

This kind of specification is highly useful when you are checking Android SDK
dependencies into source control. This once again returns Bazel to the type of
hermetic build that it prefers.

CHApTer 9 BAzel AnD AnDroID

137

 Android Studio
In the course of this chapter, we are downloading Android Studio for the purpose of giving

us an easy Android emulator on which to run our work as well as create a convenient

location for the Android SDKs. Technically speaking, you can actually use the work you’ve

done with Bazel to drive an Android Studio (and IntelliJ) project (akin to using something

gradle). However, this integration is outside of the scope of this chapter of this book.

Note To that end, you might either have a favorite Android emulator you prefer
instead or want to just hook up your Android device to the computer to try this
out. In these cases, you can largely skip using Android Studio (though please take
particular care to make sure you have the Android SDKs you need as specified
under the upcoming environment section).

Go to https://developer.android.com/studio and follow the instructions for

downloading and installing Android Studio on your particular platform.

The version of Android Studio used for the examples in this book is 3.4.2. Later

versions may have visual changes, so the screenshots may not line up precisely.

 Environment

As indicated previously, we need to set the ANDROID_HOME environment variable in

order to ensure that Bazel knows where to find the Android SDKs. Make sure to set your

ANDROID_HOME variable in your environment with the value pointing to the location of the

Android SDK on your machine.

The default locations for the Android SDKs from Android Studio depends on the

particular OS. Set the environment variables as appropriate to your system:

For Linux:

export ANDROID_HOME=$HOME/Android/Sdk/

For MacOS:

export ANDROID_HOME=$HOME/Library/Android/sdk

For Windows:

set ANDROID_HOME=%LOCALAPPDATA%\Android\Sdk

CHApTer 9 BAzel AnD AnDroID

https://developer.android.com/studio

138

One thing to note is that the preceding commands will only set the environment

variable for the lifetime of your particular console session. You may want to consider

making these a part of the default profile for your particular console and OS.

Additionally, the preceding values are only the default locations for the SDK; it is

possible that during the course of installation of Android Studio, you may have installed

into a different location. In order to find that location, open the SDK Manager in

Android Studio.

Figure 9-1. Starting the SDK Manager in Android Studio

CHApTer 9 BAzel AnD AnDroID

139

Within the SDK Manager, you will be able to find the location of the Android

SDK. Use that value to set the value of the ANDROID_HOME environment variable.

 Downloading SDKs

While we have the SDK Manager up and running, we should also ensure that we have at

least one Android SDK to begin development. Select at least Android 8.1 (Oreo) (i.e., API

Level 27) and then click OK to begin downloading the SDKs (if you have selected more

than one).

Figure 9-2. Verifying the location of the Android SDK

CHApTer 9 BAzel AnD AnDroID

140

Once you’ve downloaded the SDK(s), click Finish.

Figure 9-3. Selecting versions of the Android SDK to download

CHApTer 9 BAzel AnD AnDroID

141

 Creating the Emulator
Finally, let’s create an instance of the Android Emulator. From the main screen, open the

AVD Manager.

Figure 9-4. Downloading the Android SDKs

CHApTer 9 BAzel AnD AnDroID

142

At this point, we don’t have any emulator profiles, so let’s create one by clicking

Create Virtual Device.

Figure 9-5. Starting the AVD Manager in Android Studio

CHApTer 9 BAzel AnD AnDroID

143

From the Select Hardware screen, select a device (e.g., Pixel 2) from the Phone

category and then click Next.

Figure 9-6. Creating a virtual device

CHApTer 9 BAzel AnD AnDroID

144

From the System Image screen, select the particular version (e.g., Oreo) of the

Android SDK that you want to use and then click Next.

Figure 9-7. Selecting a particular device

CHApTer 9 BAzel AnD AnDroID

145

Finally, you can give your particular emulation profile a name (if you would like).

Click Finish to complete the creation of your virtual device.

Figure 9-8. Selecting the version of the Android SDK

CHApTer 9 BAzel AnD AnDroID

146

 Creating the Android Echo Client in Bazel
Having done all the preparation, we are now ready to start actually creating our Android

application. In this case, we are going to create a mobile version of our echo client.

However, before we get to the actual gRPC code, we’ll start with a simple shell

version that just echoes locally (i.e., input text returns immediately). This is simply to get

used to the basics of developing an Android application in Bazel.

Let’s create a new directory for our Android work:

chapter_09$ cd client/echo_client/

chapter_09/client/echo_client$ mkdir android

chapter_09/client/echo_client$ cd android

chapter_09/client/echo_client/android$

Within the client/echo_client/android directory, create the

EchoClientMainActivity.java file and add the following.

Figure 9-9. Naming and completing the virtual device

CHApTer 9 BAzel AnD AnDroID

147

Listing 9-2. Creating a basic Android echo client

package client.echo_client.android;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class EchoClientMainActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.echo_client_main_activity);

 Button textSenderButton = findViewById(R.id.text_sender);

 EditText clientTextEditor = findViewById(R.id.text_input);

 TextView serverResultsText = findViewById(R.id.server_result_text);

 textSenderButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 serverResultsText.setText(clientTextEditor.getText().

toString());

 }});

 }

}

Save the file to EchoClientMainActivity.java. As evidenced in the preceding code,

we are creating a simple text editor to input text; upon the push of the button, the text is

then reflected in a text view.

Now let’s create the layout file that actually creates the UI:

chapter_09/client/echo_client/android$ mkdir -p res/layout

CHApTer 9 BAzel AnD AnDroID

148

Create the following file under client/echo_client/android/res/layout.

Listing 9-3. Creating the layout file

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:gravity="top"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <EditText

 android:id="@+id/text_input"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:inputType="text"/>

 <Button

 android:id="@+id/text_sender"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:text="Send to Server"/>

 <TextView

 android:id="@+id/server_result_text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:inputType="textMultiLine"

 android:text="Result text here"/>

</LinearLayout>

Save the file to echo_client_main_activity.xml under client/echo_client/

android/res/layout.

For our Android app, we also need an AndroidManifest.xml file.

CHApTer 9 BAzel AnD AnDroID

149

Listing 9-4. AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="client.echo_client.android"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="19"

 android:targetSdkVersion="27" />

 <application

 android:label="Beginning Bazel Android Echo Client">

 <activity

 android:name=".EchoClientMainActivity"

 android:label="Beginning Bazel Android Echo Client" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Save this to client/echo_client/android/AndroidManifest.xml.

Finally, let’s create our BUILD file and define our targets.

Listing 9-5. Creating the BUILD file for the Android client

load("@rules_android//android:rules.bzl", "android_library", "android_binary")

android_library(

 name = "echo_client_android_activity",

 srcs = ["EchoClientMainActivity.java"],

 manifest = "AndroidManifest.xml",

 custom_package = "client.echo_client.android",

 resource_files = [

 "res/layout/echo_client_main_activity.xml"

],

CHApTer 9 BAzel AnD AnDroID

150

)

android_binary(

 name = "echo_client_android_app",

 manifest = "AndroidManifest.xml",

 custom_package = "client.echo_client.android",

 deps = [":echo_client_android_activity",],

)

Save this to client/echo_client/android/BUILD.

Although the Android build rules are new, you have seen this pattern several times

throughout this book. As expected, we needed to explicitly load the android_library

and android_binary rules from the rules_android package.

For the each of the rules, there are a number of attributes that are familiar (i.e., name,

srcs, dep). There are a few attributes worth highlighting:

• manifest

• Points at the AndroidManifest.xml file.

• Required for both android_library and android_binary.

• resource_files

• Contains the set of Android resource files (e.g., layout.xml,

strings.xml, etc.).

• Strictly speaking, this is optional; however, in this particular

example, removing this attribute here will cause the build to

fail (since it no longer depends upon the files required for the

generated classes).

• custom_package

• This explicitly specifies the package used by the app.

• Both android_library and android_binary have an expectation

about the directory structure.

CHApTer 9 BAzel AnD AnDroID

151

• Specifically, they expect that the directory starts with either java

or javatests as a way of inferring the Java package.

• If the directory does not start with java, then it is necessary to

explicitly set the custom_package attribute.

Now, technically speaking, we did not strictly need to have both an android_library

instance and an android_binary instance. The android_binary rule actually has a

sufficient set of options that we could have put everything (i.e., Java sources and resource

files) we needed there. However, the separation here is intended to illustrate both rules.

Let’s run a test build to make sure that everything is working as intended. For the

sake of simplicity, we will just build the final binary:

chapter_09/client/echo_client/android$ bazel build :echo_client_android_app

INFO: Analyzed target //client/echo_client/android:echo_client_android_app

(1 packages loaded, 5 targets configured).

INFO: Found 1 target...

Target //client/echo_client/android:echo_client_android_app up-to-date:

 bazel-bin/client/echo_client/android/echo_client_android_app_deploy.jar

 bazel-bin/client/echo_client/android/echo_client_android_app_unsigned.apk

 bazel-bin/client/echo_client/android/echo_client_android_app.apk

INFO: Elapsed time: 0.935s, Critical Path: 0.70s

INFO: 3 processes: 3 darwin-sandbox.

INFO: Build completed successfully, 4 total actions

Congratulations! You have built your first Android application using Bazel. We are

now ready to test it out on the emulator.

 Starting Up the Android Emulator Instance
Having previously created your virtual device, you can now start it up. Open the AVD

Manager, which will now have a listing of all your virtual devices (in this example, there

is only one). Click the “play” button to start up an instance of your virtual device.

CHApTer 9 BAzel AnD AnDroID

152

You should see a blank screen as follows.

Figure 9-10. Starting the virtual device

CHApTer 9 BAzel AnD AnDroID

153

 Bazel Mobile Install
Having built and set up our emulator, we are now ready to deploy our application. On

first blush, we could make use of the Android Debug Bridge (ADB) commands to get our

application onto the emulator. However, Bazel provides a very useful command mobile-

install. In a similar fashion to run, mobile-install builds the target application and

then installs onto the connected device (in this case, the emulator).

As an added bonus, we can also add the option start_app in order to immediately

start the app as soon as it is installed. Using this option makes mobile-install a

functional mobile equivalent to run used in prior chapters.

Run the following command to build, deploy, and start the application:

chapter_09/client/echo_client/android$ bazel mobile-install --start_app

:echo_client_android_app

Figure 9-11. Emulator after start-up

CHApTer 9 BAzel AnD AnDroID

154

Congratulations! Your application is alive and will locally echo whatever you write

into the text editor.

Note The mobile-install command is not just a convenient proxy for the ADB
functionality. Since it is tied into the Bazel build system, it can also be used for
deploying incremental changes to your mobile applications. This can greatly
improve your development times, allowing you to take a more iterative approach
to working on various aspects of the mobile application (e.g., the UI). However, the
particulars around using this incremental deployment are outside of the scope of
this book.

Figure 9-12. Initial screen of the app

CHApTer 9 BAzel AnD AnDroID

155

 Adding gRPC Support
While the prior example was useful for creating a basic Android application, it is not

a very functional app. Carrying over our theme from prior chapters, let’s now add the

real echo client functionality to this application. Fortunately, you have already done the

heavy lifting in prior chapters; we get to reuse that here.

Before we jump into the Android code itself, we have to first make sure we add

the appropriate permission; otherwise, we will get errors when we attempt to perform

interprocess communication.

Open the AndroidManifest.xml file and add the following permission.

Listing 9-6. Adding permission to access networking to the Android app

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="client.echo_client.android"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="19"

 android:targetSdkVersion="27" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:label="Beginning Bazel Android Echo Client">

 <activity

 android:name=".EchoClientMainActivity"

 android:label="Beginning Bazel Android Echo Client" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Save the changes to AndroidManifest.xml.

Now let’s make the necessary changes to the Android code itself. Open the

EchoClientMainActivity.java file and add the following changes in bold.

CHApTer 9 BAzel AnD AnDroID

156

Listing 9-7. Modifying the Android client to support gRPC

package java.com.beginning_bazel.client.echo_client;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import io.grpc.ManagedChannel;

import io.grpc.ManagedChannelBuilder;

import transmission_object.TransmissionObjectOuterClass.TransmissionObject;

import transceiver.TransceiverOuterClass.EchoRequest;

import transceiver.TransceiverOuterClass.EchoResponse;

import transceiver.TransceiverGrpc;

public class EchoClientMainActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.echo_client_main_activity);

 Button textSenderButton = findViewById(R.id.text_sender);

 EditText clientTextEditor = findViewById(R.id.text_input);

 TextView serverResultsText = findViewById(R.id.server_result_text);

 textSenderButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 final String clientText =

 clientTextEditor.getText().toString();

 if (!clientText.isEmpty()) {

 ManagedChannel channel =

 ManagedChannelBuilder

CHApTer 9 BAzel AnD AnDroID

157

 .forAddress("10.0.2.2", 1234)

 .usePlaintext()

 .build();

 TransceiverGrpc.TransceiverBlockingStub stub =

 TransceiverGrpc.newBlockingStub(channel);

 EchoRequest request = EchoRequest.newBuilder()

 .setFromClient(

 TransmissionObject.newBuilder()

 .setMessage(clientText)

 .setValue(3.145f)

 .build();

 .build();

 try {

 EchoResponse response = stub.echo(request);

 serverResultsText.setText(response.toString());

 } catch (Throwable t) {

 Log.d("EchoClientMainActivity", "error:", t);

 } finally {

 channel.shutdown();

 }

 }

 }});

 }

}

Save the changes to EchoClientMainActivity.java.

Note A careful reader will note that we have changed the address from localhost
to 10.0.2.2. Within the emulator localhost refers to the emulated device, rather
than the machine the emulator is running on. Android Studio designates a special
Ip address (i.e., 10.0.2.2) in order to connect to processes running on your
development machine. You don’t need to change anything on the server side.

Should one decide to use a different emulation platform, please consult with that
platform’s documentation to see if it designates a different address (or uses a different
strategy) in order to connect to processes running on your development machine.

CHApTer 9 BAzel AnD AnDroID

158

All of the added code should look familiar to you; with only a couple of changes, it is

identical to the code on the command line Java client from the previous chapter.

Note In both the last chapter and this one, we are making use of the blocking
stub version for calling into the backend. Although convenient for us here, in
general, you would not want to make such an I/o call on a UI thread, since such a
call could make the UI unresponsive. Instead, you likely would want to investigate
some of the other generated versions (e.g., using a Future) of this call as a best fit
for your application.

Finally, let’s add the necessary dependencies to the BUILD file. Once again, this

should look very familiar to you, with few changes from the prior chapter.

Listing 9-8. Adding dependencies into the Android BUILD file

load("@rules_android//android:rules.bzl", "android_library", "android_binary")

android_library(

 name = "echo_client_android_activity",

 srcs = ["EchoClientMainActivity.java"],

 manifest = "AndroidManifest.xml",

 custom_package = "client.echo_client.android",

 resource_files = [

 "res/layout/echo_client_main_activity.xml"

],

 deps = [

 "//proto:transceiver_java_proto",

 "//proto:transceiver_java_proto_grpc",

 "//proto:transmission_object_java_proto",

 "@io_grpc_grpc_java//api",

 "@io_grpc_grpc_java//okhttp",

 "@io_grpc_grpc_java//stub",

],

)

android_binary(

 name = "echo_client_android_app",

CHApTer 9 BAzel AnD AnDroID

159

 manifest = "AndroidManifest.xml",

 deps = [":echo_client_android_activity",],

)

Note once again, an astute reader will see that we have replaced our former
@io_grpc_grpc_java//netty runtime dependency with the @io_grpc_
grpc_java/okhttp static dependency. To be sure, netty is most appropriate
for supporting both client and server functionality. OkHttp is designed to be
lightweight for client-only, hence its inclusion into Android here.

Save the changes to the BUILD file.

For sanity’s sake, let’s build the app once more. However, you might get a surprising

error message this time.

chapter_09/client/echo_client/android$ bazel build :echo_client_android_app

ERROR: <stack trace>

'single_file' is no longer supported. use allow_single_file instead. You

can use --incompatible_disable_deprecated_attr_params=false to temporarily

disable this check.

ERROR: <file_path>/external/io_grpc_grpc_java/protobuf-lite/BUILD.

bazel:1:1: error loading package '@com_google_protobuf_javalite//':

Extension file 'protobuf.bzl' has errors and referenced by '@io_grpc_grpc_

java//protobuf-lite:protobuf-lite'

ERROR: Analysis of target '//client/echo_client/android:echo_client_

android_app' failed; build aborted: error loading package '@com_google_

protobuf_javalite//': Extension file 'protobuf.bzl' has errors

In this particular case, you haven’t done anything wrong; you might have run into

this error due to the evolving nature of Bazel. In this case, one of your dependencies has

an error due to a deprecated attribute. All is not lost, however, and the highlighted line

above gives us an answer as to how to proceed.

If we add in the flag –-incompatible_disable_deprecated_attr_params=false to

the build (and mobile-install) command, you can see the issue correct itself.

CHApTer 9 BAzel AnD AnDroID

160

chapter_09/client/echo_client/android$ bazel build –-incompatible_disable_

deprecated_attr_params=false :echo_client_android_app

INFO: Writing tracer profile to '/private/var/tmp/_bazel_pj/72676801ec24996

691dac393febb05db/command.profile.gz'

INFO: Analyzed target //client/echo_client/android:echo_client_android_app

(80 packages loaded, 2140 targets configured).

INFO: Found 1 target...

Target //client/echo_client/android:echo_client_android_app up-to-date:

 bazel-bin/client/echo_client/android/echo_client_android_app_deploy.jar

 bazel-bin/client/echo_client/android/echo_client_android_app_unsigned.apk

 bazel-bin/client/echo_client/android/echo_client_android_app.apk

INFO: Elapsed time: 11.048s, Critical Path: 6.06s

INFO: 13 processes: 9 darwin-sandbox, 4 worker.

INFO: Build completed successfully, 14 total actions

Strictly speaking, although this works, this should not be considered a permanent

solution. When you actually encounter something like this, the correct solution will be

to fix the problem in the dependency (possibly submitting a change for it). This also

illustrates the advantage of keeping your advantages as local as possible, to make it

easier to control your own destiny.

One thing this does illustrate, however, is that Bazel, even in its own rapid evolution,

seeks to provide you with “escape valves” to keep development moving forward. While

not permanent solutions, these do enable you to more easily transition between versions

of the software.

 Running the Android Client Against the Backend
Having augmented our Android client to make RPCs against a local server, let’s now start

both the server and the client up.

Previously, you needed two console instances, since your client and server were both

command line tools. Here, you will be able to use just one.

First, let’s build, deploy, and start our updated Android app. Run the following

command:

bazel mobile-install --incompatible_disable_deprecated_attr_params=false

--start_app :echo_client_android_app

CHApTer 9 BAzel AnD AnDroID

161

After confirming that the application is up and running, run the following command

to start the server:

chapter_09$ bazel run server/echo_server

INFO: Deleting stale sandbox base /private/var/tmp/_bazel_pj/72676801ec2499

6691dac393febb05db/sandbox

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 16.670s, Critical Path: 0.30s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

INFO: Build completed successfully, 1 total action

2019/08/01 16:39:03 Spinning up the Echo Server in Go

Now, write up some text and click “Send to Server.” You should get a response in your

Android client, as follows.

Figure 9-13. Screen showcasing the app with displayed response from the backend

CHApTer 9 BAzel AnD AnDroID

162

Congratulations! You have created your Android echo client, communicating with

the local echo server.

 Final Word
Over the course of the latest chapter, you augmented your knowledge by learning how

to build Android applications using Bazel. Furthermore, you were able to take what

you have learned in earlier chapters to create an application that communicated with

the work you’ve done previously. Although this is clearly a toy example of remote

communication, it serves as a seed for larger projects.

Having demonstrated Bazel’s ability to work with building Android project, we will

expand in the next chapter to also work on iOS applications.

EXERCISE – USING JAVA LITE PROTOS ON ANDROID

over the course of the last chapter, you were able to make use of your work from earlier

chapters to easily add grpC support to your Android application. one note that was glossed

over during the course of this work is that the output of the java_proto_library tends

to be rather verbose in terms of sheer number of functions; that is, the number of generated

classes, inner classes, static classes, and so on tends to be large. While this is less of an issue

for programs that run on servers, this actually starts to become an issue at scale for Android

programs. Veterans of writing Android programs are familiar with the dreaded function count

within a single DeX file (i.e., 64K functions).

Although you can adopt a multidex strategy to handle this increased number of functions, this

can become complicated depending on the version of the Android SDK. Fortunately, at least

in the case of the java_proto_library, we have a viable alternative in the java_lite_

proto_library. This rule produces proto Java code that has fewer overall features, while

still retaining the core functionality that is used most of the time.

notably, the java_lite_proto_library is (currently) one of those out-of-the-box rules

which also requires some outside support (which might give an indication about the migration

path for this particular set of rules). The rule is specified nearly identically to the java_

proto_library. protos generated from java_lite_proto_library do not implement all
of the functionality of the original version but can be often used as drop-in replacements for

the most common use cases (as is the case here).

CHApTer 9 BAzel AnD AnDroID

163

Fortunately, you can easily get the support you need by adding the following lines to your

WORKSPACE file:

http_archive(

 name = "com_google_protobuf_javalite",

 strip_prefix = "protobuf-javalite",

 urls = ["https://github.com/google/protobuf/archive/javalite.zip"],

)

To that end, you will also need to ensure that the grpc library that you are using also produces

code that is compatible with the output of the java_lite_proto_library. Fortunately, our

existing rule of java_grpc_library already handles this for us; all you need to do is to add

the option flavor = "lite" to the application.

For example:

java_grpc_library(

 name = "transceiver_java_lite_proto_grpc",

 srcs = [":transceiver_proto"],

 deps = [":transceiver_java_lite_proto"],

 flavor = "lite",

 visibility = ["//client/echo_client:__subpackages__"],

)

once you’ve created your java_lite_proto_library and java_grpc_library (with

“lite” proto support) instances, redirect your app’s android_library to point at these

newly created rules. The way we are using protobufs in this instance means you don’t have

to change any of your Android code. You should be able to build and run the code, with no

functional change.

However, you should look at the size of your app before/after this change. You should see a

significant reduction in size (and if you really want to know the difference, use Android Studio’s

profiling tool to see the difference in the number of functions).

For toy projects, this difference will not amount to much; however, as you grow your Android

apps to significant sizes using protobufs, you will want to make use of the “lite” versions to

help keep your application sizes small and avoid the use of multidex.

CHApTer 9 BAzel AnD AnDroID

165
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2_10

CHAPTER 10

Bazel and iOS
In the previous chapter, you made use of Bazel to expand from command line programs,

suitable for servers, and leaped into the mobile world through Android. To complete the

work, we will create an equivalent client for iOS.

Note In this chapter, we are going to be creating an iOS project using the native
tools. However, since Xcode is only available on MacOS, you will only be able to
build this chapter’s project on an MacOS machine.

 Setup
Once again, we will be building off of our prior chapters. Verify that the prior chapter’s

Bazel-generated files are eliminated; then copy the prior work:

$ cd chapter_09

chapter_09$ bazel clean

chapter_09$ ls

WORKSPACE client proto server

chapter_09$ cd ..

$ cp -rf chapter_09 chapter_10

$ cd chapter_10

chapter_10$

Since you have already set up Xcode on your machine to build the examples in

the prior chapters, you should have everything that you need for developing your iOS

application.

166

 Workspace
Once again, we will add in dependencies to our WORKSPACE file to retrieve the rules

required for building an iOS project.

Open the WORKSPACE file and add the following.

Listing 10-1. Modifying the WORKSPACE for the iOS rules

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")

skylib_version = "0.8.0"

http_archive(

 name = "bazel_skylib",

 url = "https://github.com/bazelbuild/bazel-skylib/releases/download/{}/

bazel-skylib.{}.tar.gz".format(skylib_version, skylib_version),

)

git_repository(

 name ="build_bazel_rules_apple",

 commit="1445924a158a89ad634f562c84a600a3435ef8c2",

 remote="https://github.com/bazelbuild/rules_apple.git",

)

load(

 "@build_bazel_rules_apple//apple:repositories.bzl",

 "apple_rules_dependencies",

)

apple_rules_dependencies()

load(

 "@build_bazel_rules_swift//swift:repositories.bzl",

 "swift_rules_dependencies",

)

CHapter 10 Bazel and IOS

167

swift_rules_dependencies()

load(

 "@build_bazel_apple_support//lib:repositories.bzl",

 "apple_support_dependencies",

)

apple_support_dependencies()

<existing content omitted for brevity>

Save your changes to the WORKSPACE file.

Note In these particular changes, we are only explicitly calling into http_
archive for the build_bazel_rules_apple; however, we are clearly getting
multiple additional dependencies through the *_dependencies() functions. You
have seen this in earlier chapters, but it is worth calling out since we will explicitly
use rules from one of these additional packages (i.e., the build_bazel_rules_
swift package).

 Creating the iOS Client in Bazel
Similar to what you wrote under the Android example, we will start by creating a basic

iOS application, ahead of actually employing any gRPC code. Along the way, we will

explore a few of the fine points for building iOS applications under Bazel.

Let’s create a new directory for our iOS work. As expected, it will live within the client

directory, adjacent to the Android and command line clients:

chapter_10$ cd client/echo_client/

chapter_10/client/echo_client$ mkdir ios

chapter_10/client/echo_client$ cd ios

chapter_10/client/echo_client/ios$

Within the client/echo_client/ios directory, create the MainViewController.

swift file and add the following.

CHapter 10 Bazel and IOS

168

Listing 10-2. Creating the MainViewController

import UIKit

public class MainViewController : UIViewController {

 private let textInput = UITextField()

 private let sendButton = UIButton(type: UIButton.ButtonType.system)

 private let receivedText = UILabel()

 override public func viewDidLoad() {

 super.viewDidLoad()

 self.view.backgroundColor = .white

 textInput.placeholder = "Input text here"

 textInput.textColor = .black

 textInput.backgroundColor =.white

 textInput.isEnabled = true

 sendButton.setTitle("Send", for: UIControl.State.normal)

 sendButton.addTarget(self, action: #selector(send), for:

.touchUpInside)

 sendButton.isEnabled = true

 receivedText.numberOfLines = 0

 receivedText.text = "Received text will show up here."

 receivedText.backgroundColor = .gray

 receivedText.textColor = .black

 let stackView = UIStackView(arrangedSubviews: [self.textInput,

self.sendButton, self.receivedText])

 stackView.alignment = .fill

 stackView.axis = .vertical

 stackView.distribution = .fillEqually

 stackView.spacing = 10.0

 stackView.translatesAutoresizingMaskIntoConstraints = false

 self.view.addSubview(stackView)

 }

CHapter 10 Bazel and IOS

169

 override public func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 textInput.text = ""

 receivedText.text = ""

 }

 @objc func send(sender: UIButton!) {

 receivedText.text = textInput.text

 }

}

Save the file to MainViewController.swift. As we did with the Android version of

the client, we are creating a very simple local echo client, which just reflects the input

text to an output upon clicking Send.

Note Unlike the android client, we are programmatically generating the UI
through code, rather than creating an equivalent .storyboard file. although the
Bazel rules for iOS do support using .storyboard files, the standard tool for
generating these files is Xcode itself (i.e., through the creation of a new project).
For the sake of simplicity, we choose to forego using a .storyboard file, since
the code for generating the UI is very straightforward.

In the Android example, we defined all of our application within a single file; here,

we will create one more (i.e., the AppDelegate file) in order to follow iOS convention.

Within the client/echo_client/ios directory, create the AppDelegate.swift file

and add the following.

Listing 10-3. Creating the basic AppDelegate

import UIKit

@UIApplicationMain

class AppDelegate: NSObject, UIApplicationDelegate {

 var window: UIWindow?

 func application(

 _ application: UIApplication, didFinishLaunchingWithOptions

 launchOptions: [UIApplication.LaunchOptionsKey : Any]?) -> Bool {

CHapter 10 Bazel and IOS

170

 window = UIWindow(frame: UIScreen.main.bounds)

 window?.makeKeyAndVisible()

 window?.rootViewController = MainViewController()

 return true

 }

}

Save the file to AppDelegate.swift.

Finally, we will need to create an Info.plist file to define some of the basic

attributes for our iOS application.

Within the client/echo_client/ios directory, create the Info.plist file and add

the following.

Listing 10-4. Creating the Info.plist file

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/

DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>CFBundleDevelopmentRegion</key>

 <string>en</string>

 <key>CFBundleExecutable</key>

 <string>$(EXECUTABLE_NAME)</string>

 <key>CFBundleIdentifier</key>

 <string>$(PRODUCT_BUNDLE_IDENTIFIER)</string>

 <key>CFBundleInfoDictionaryVersion</key>

 <string>6.0</string>

 <key>CFBundleName</key>

 <string>$(PRODUCT_NAME)</string>

 <key>CFBundlePackageType</key>

 <string>APPL</string>

 <key>CFBundleShortVersionString</key>

 <string>1.0</string>

 <key>CFBundleVersion</key>

 <string>1</string>

 <key>LSRequiresIPhoneOS</key>

CHapter 10 Bazel and IOS

171

 <true/>

 <key>UIRequiredDeviceCapabilities</key>

 <array>

 <string>arm64</string>

 </array>

 <key>UISupportedInterfaceOrientations</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 </array>

</dict>

</plist>

Save the file to Info.plist.

Within client/echo_client/ios directory, create a BUILD file and add the following

to it.

Listing 10-5. Creating the BUILD file for the iOS project

load("@build_bazel_rules_apple//apple:ios.bzl", "ios_application")

load("@build_bazel_rules_swift//swift:swift.bzl", "swift_library")

swift_library(

 name = "Lib",

 srcs = [

 "AppDelegate.swift",

 "MainViewController.swift",

],

)

ios_application(

 name = "EchoClient",

 bundle_id = "com.beginning-bazel.echo-client",

 families = ["iphone"],

 infoplists = [":Info.plist"],

 minimum_os_version = "11.0",

 deps = [":Lib"],

)

CHapter 10 Bazel and IOS

172

Save the BUILD file.

Given the work from prior chapters, nothing in the BUILD file should feel very foreign;

you’ve simply loaded up a new set of rules and used them to create some build targets.

In particular, swift_library should seem very familiar to similar instances in other

languages. For the ios_application, many of the attributes are new, but also should

make sense.

 Building for iOS
Having set up our code and BUILD rules, let’s now execute a build. Let’s start with the

EchoClient target:

chapter_10/client/echo_client/ios$ bazel build :EchoClient

INFO: Analyzed target //client/echo_client/ios:EchoClient (19 packages

loaded, 405 targets configured).

INFO: Found 1 target...

Target //client/echo_client/ios:EchoClient up-to-date:

 bazel-bin/client/echo_client/ios/EchoClient.ipa

INFO: Elapsed time: 9.965s, Critical Path: 9.48s

INFO: 10 processes: 7 darwin-sandbox, 2 local, 1 worker.

INFO: Build completed successfully, 36 total actions

Once again, this should look very familiar from prior chapters.

However, let’s also perform a build on the Lib target. Although we have effectively

successfully built this target as a dependency of EchoClient, it is worthwhile to have a

discussion around having sufficient context to build a target.

chapter_10/client/echo_client/ios$ bazel build :Lib

INFO: Analyzed target //client/echo_client/ios:Lib (25 packages loaded, 854

targets configured).

INFO: Found 1 target...

ERROR: chapter_10/client/echo_client/ios/BUILD:4:1: Compiling Swift module

client_echo_client_ios_Lib failed (Exit 1)

client/echo_client/ios/AppDelegate.swift:1:8: error: no such module 'UIKit'

import UIKit

 ^

Target //client/echo_client/ios:Lib failed to build

CHapter 10 Bazel and IOS

173

Use --verbose_failures to see the command lines of failed build steps.

INFO: Elapsed time: 4.094s, Critical Path: 0.15s

INFO: 0 processes.

FAILED: Build did NOT complete successfully

Although we have correctly set up the build targets, the build fails, with an error that

should seem strange. After all, UIKit is a core library for iOS applications; it is always

available when building an iOS application.

To understand what is going on, let us recall that Swift, as a language, is not bound

to only building for iOS; you can create a native application via Swift for many platforms.

Our initial specification within the BUILD file simply used swift_library; this alone

gives no information as to what platform the Swift library should be built. Indeed, by

default, it would be built for the MacOS platform (i.e., the system default).

In the case of ios_application, we are explicitly stating that this target should be

cross-compiled for the iOS platform, pulling in the appropriate SDKs required to properly

compile. Bazel has a property called configuration which encapsulates the environment’s

information when performing a build. By default, the configuration from a build target

will be applied to the dependencies. This is why you were able to successfully build all

of EchoClient earlier, since the ios_application had the proper configuration and this

applied to the dependencies.

To enable this for the swift_library alone, we can add some specification to the build

command in order to properly execute.

Execute the following, which adds the directive –-apple_platform_type=ios to the

command line:

chapter_10/client/echo_client/ios$ bazel build –-apple_platform_type=ios

:Lib

INFO: Build option --apple_platform_type has changed, discarding analysis

cache.

INFO: Analyzed target //client/echo_client/ios:Lib (3 packages loaded,

854 targets configured).

INFO: Found 1 target...

Target //client/echo_client/ios:Lib up-to-date:

 bazel-bin/client/echo_client/ios/Lib-Swift.h

 bazel-bin/client/echo_client/ios/client_echo_client_ios_Lib.swiftdoc

 bazel-bin/client/echo_client/ios/client_echo_client_ios_Lib.swiftmodule

 bazel-bin/client/echo_client/ios/libLib.a

CHapter 10 Bazel and IOS

174

INFO: Elapsed time: 4.139s, Critical Path: 3.72s

INFO: 2 processes: 1 darwin-sandbox, 1 worker.

INFO: Build completed successfully, 3 total actions

Having fully specified the platform, the build succeeds.

Note You might recall from the prior chapter that we did not have to contend with
specifying a platform explicitly. In the prior chapter, we used the rules android_
binary and android_library; like ios_application, these were sufficient
for specifying the targets’ build platform.

Note Once again, an astute reader will notice the first INFO message, stating
that the “analysis cache” has been discarded with the change in the build option.
recall that Bazel does a great deal of work to ensure the integrity of the build.
In order to make sure that errors do not creep into the system, it is necessary
to index the build products not only by what was built but also how it was built.
Building a target with different options (e.g., platform, debug vs. opt, etc.) is
basically equivalent to making a change to the target and all of its dependencies,
at least for the purposes of caching the results.

 Running the iOS Client in the Xcode Simulator
As we did for Android, we will take our initial build and run it on an iOS simulator to

verify that it works.

We will first set up an iPhone simulator instance. Open Xcode, and navigate to

Xcode ➤ Open Developer Tool ➤ Simulator.

CHapter 10 Bazel and IOS

175

Figure 10-1. Starting the Simulator

Having started Simulator, you can now close down Xcode (this is similar to what we

did in the last chapter with Android Studio).

In the Simulator application, let’s create a hardware device for an iPhone Xs with

iOS 12.4.

CHapter 10 Bazel and IOS

176

Figure 10-2. Selecting a Particular iOS Device to Simulate

This should create an instance of the iPhone Xs device simulator.

CHapter 10 Bazel and IOS

177

You are now ready to run the application on the simulator.

 Executing the App on the Xcode Simulator
In the prior chapter, we were able to use bazel mobile-install <android_target>

in order to build and install our application directly onto an Android simulator.

Unfortunately, mobile-install only works for Android simulator instances; we can’t use

exactly the same procedure for our iOS project. Attempting to do so would build but not

actually execute the target on the simulator.

Figure 10-3. iOS Simulator on Startup, for the Particular Device

CHapter 10 Bazel and IOS

178

We can approximate the same effect of the mobile-install by using some Xcode

commands directly. First, let’s make sure the build target is completely up to date. We

will take particular note of the location of the generated .ipa file:

chapter_10/client/echo_client/ios$ bazel build :EchoClient

Starting local Bazel server and connecting to it...

INFO: Analyzed target //client/echo_client/ios:EchoClient (44 packages

loaded, 1155 targets configured).

INFO: Found 1 target...

INFO: Deleting stale sandbox base /private/var/tmp/_bazel_pj/6ba16646dc915b

8e018ad2c967b485b8/sandbox

Target //client/echo_client/ios:EchoClient up-to-date:

 bazel-bin/client/echo_client/ios/EchoClient.ipa

INFO: Elapsed time: 12.762s, Critical Path: 0.39s

INFO: 0 processes.

INFO: Build completed successfully, 1 total action

The .ipa file is actually a zipped directory. Although we cannot directly install the .ipa

file onto the simulator, we can unzip it and install the underlying .app directory onto the

simulator. Let’s first unzip the .ipa file to get its underlying contents:

chapter_10/client/echo_client/ios$ cd ../../..

chapter_10$ unzip bazel-bin/client/echo_client/ios/EchoClient.ipa

Archive: bazel-bin/client/echo_client/ios/EchoClient.ipa

 creating: Payload/

 creating: Payload/EchoClient.app/

 creating: Payload/EchoClient.app/_CodeSignature/

 extracting: Payload/EchoClient.app/_CodeSignature/CodeResources

 extracting: Payload/EchoClient.app/EchoClient

 creating: Payload/EchoClient.app/Frameworks/

 extracting: Payload/EchoClient.app/Frameworks/libswiftCoreImage.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftObjectiveC.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftCore.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftCoreGraphics.dylib

CHapter 10 Bazel and IOS

179

 extracting: Payload/EchoClient.app/Frameworks/libswiftUIKit.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftMetal.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftDispatch.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftos.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftCoreFoundation.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftDarwin.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftQuartzCore.dylib

 extracting: Payload/EchoClient.app/Frameworks/libswiftFoundation.dylib

 extracting: Payload/EchoClient.app/Info.plist

 extracting: Payload/EchoClient.app/PkgInfo

Next, we will identify the active instance of the Xcode simulator by executing the

following command. We are looking for the ID of the active instance:

chapter_10$ xcrun simctl list | grep Booted

 iPhone Xs (1DE26879-2844-4036-ABE2-A6B718A9CADA) (Booted)

 Phone: iPhone Xs (1DE26879-2844-4036-ABE2-A6B718A9CADA) (Booted)

Although it appears that there are two active instances, a close inspection reveals

that the IDs are identical. Now, we are ready to install the application on the simulator.

Execute the following command:

chapter_10$ xcrun simctl install 1DE26879-2844-4036-ABE2-A6B718A9CADA

Payload/EchoClient.app

CHapter 10 Bazel and IOS

180

Within the application, you should see the following.

Figure 10-4. Installed Application on the Simulator

CHapter 10 Bazel and IOS

181

Click the EchoClient application. You should see the following.

Figure 10-5. Running the iOS EchoClient

For the basic application, you should also be able to tap on the input text box, write

some text, and have it locally echo to the output label.

CHapter 10 Bazel and IOS

182

Congratulations! You have created and installed your first iOS application using

Bazel!

 Adding the gRPC to the iOS Application
Finally, as you have done in prior chapters, let’s add the gRPC functionality. As you might

expect, the work required for iOS closely mimics what you did for the other clients.

Open proto/BUILD and add the following changes, highlighted in bold.

Figure 10-6. Running a Simple Echo Test (Local only)

CHapter 10 Bazel and IOS

183

Listing 10-6. Adding in the Swift protobuf rules

load("@io_bazel_rules_go//proto:def.bzl", "go_proto_library")

load("@io_grpc_grpc_java//:java_grpc_library.bzl", "java_grpc_library")

load("@build_bazel_rules_swift//swift:swift.bzl", "swift_grpc_library",

"swift_proto_library")

proto_library(

 name = "transmission_object_proto",

 srcs = ["transmission_object.proto"],

)

<content omitted for brevity>

swift_proto_library(

 name = "transmission_object_swift_proto",

 deps = [":transmission_object_proto"],

 visibility = ["//client/echo_client:__subpackages__"],

)

swift_proto_library(

 name = "transceiver_swift_proto",

 deps = [":transceiver_proto"],

 visibility = ["//client/echo_client:__subpackages__"],

)

swift_grpc_library(

 name = "transceiver_swift_proto_grpc",

 srcs = [":transceiver_proto"],

 flavor = "client",

 deps = [":transceiver_swift_proto"],

 visibility = ["//client/echo_client:__subpackages__"],

)

Save the file to proto/BUILD. The addition of the swift_proto_library and swift_

grpc_library rules should come as no surprise to you.

CHapter 10 Bazel and IOS

184

Note Both the swift_proto_library and the swift_grpc_library will
auto-generate Swift module names as a combination of the path (relative to the
root of the workspace) to the target and the target name itself. For example, in
this case, the module name for transmission_object_swift_proto, whose
relative path is /proto, will have a module name of proto_transmission_
object_swift_proto.

Having created these new targets, let’s add them into our iOS Application. Open the

client/echo_client/ios/BUILD file and add the following changes, highlighted in bold.

Listing 10-7. Adding in the Swift protobuf dependencies

load("@build_bazel_rules_apple//apple:ios.bzl", "ios_application")

load("@build_bazel_rules_swift//swift:swift.bzl", "swift_library")

swift_library(

 name = "Lib",

 srcs = [

 "AppDelegate.swift",

 "MainViewController.swift",

],

 deps = [

 "//proto:transmission_object_swift_proto",

 "//proto:transceiver_swift_proto",

 "//proto:transceiver_swift_proto_grpc",

],

)

ios_application(

 name = "EchoClient",

 bundle_id = "com.beginning-bazel.echo-client",

 families = ["iphone"],

 infoplists = [":Info.plist"],

 minimum_os_version = "11.0",

 deps = [":Lib"],

)

CHapter 10 Bazel and IOS

185

Now, we will add the Swift code for actually performing the gRPC call. Open client/

echo_client/ios/MainViewController.swift and add the following, highlighted in

bold.

Listing 10-8. Adding in the send/receive functionality

import UIKit

import proto_transmission_object_proto

import proto_transceiver_proto

import proto_transceiver_swift_proto_grpc

 <omitted for brevity>

 @objc func send(sender: UIButton!) {

 let client = Transceiver_TransceiverServiceClient(address:

"localhost:1234", secure: false)

 var transmissionObject = TransmissionObject_TransmissionObject()

 transmissionObject.message = textInput.text ?? ""

 transmissionObject.value = 3.14

 var request = Transceiver_EchoRequest()

 request.fromClient = transmissionObject

 let response = try? client.echo(request)

 if let response = response {

 receivedText.text = response.fromServer.textFormatString()

 }

 }

Save the changes to client/echo_client/ios/MainViewController.swift.

Note You might note that, unlike what you configured for the android Studio
simulator, we have reverted to using “localhost” for the address of our server. this
is the proper address for getting to your development machine from within the iOS
simulator.

CHapter 10 Bazel and IOS

186

Having added the gRPC functionality, let’s build and test our work:

chapter_10/client/echo_client/ios$ bazel build -–apple_platform_type=ios

client/echo_client/ios:EchoClient

INFO: Analyzed target //client/echo_client/ios:EchoClient (16 packages

loaded, 267 targets configured).

INFO: Found 1 target...

Target //client/echo_client/ios:EchoClient up-to-date:

 bazel-bin/client/echo_client/ios/EchoClient.ipa

INFO: Elapsed time: 1.851s, Critical Path: 0.09s

INFO: 0 processes.

INFO: Build completed successfully, 3 total actions

Note an astute reader will notice that we have added the --apple_platform_
type=ios directive to the command line. earlier, the ios_application was
sufficient to indicate how to compile swift_library target. In this case, since
we are generating code for a protobuf dependency (which, as of this writing, might
not yet properly handle the implicit toolchain transition), we explicitly specify the
build option.

Having successfully built the app, let’s get the newest version installed on the

simulator, repeating our earlier steps (with first removing our earlier unzipped directory):

chapter_10/client/echo_client/ios$ cd ../../..

chapter_10/client/echo_client/ios$ rm -rf Payload

chapter_10$ unzip bazel-bin/client/echo_client/ios/EchoClient.ipa

chapter_10$ xcrun simctl install 1DE26879-2844-4036-ABE2-A6B718A9CADA

Payload/EchoClient.app

Open the newly installed app within the iOS simulator. Now let’s run our server on

the terminal:

chapter_10$ bazel run server/echo_server

Target //server/echo_server:echo_server up-to-date:

 bazel-bin/server/echo_server/darwin_amd64_stripped/echo_server

INFO: Elapsed time: 14.009s, Critical Path: 12.36s

INFO: 324 processes: 324 darwin-sandbox.

CHapter 10 Bazel and IOS

187

INFO: Build completed successfully, 328 total actions

INFO: Build completed successfully, 328 total actions

2019/09/06 06:12:21 Spinning up the Echo Server in Go...

When you enter in the text within the iOS simulator and click Send, you should get a

familiar response in the output.

Figure 10-7. Running the Echo Test Using gRPC

Congratulations! You have successfully created an iOS application using Bazel, using

gRPC to communicate.

CHapter 10 Bazel and IOS

188

 Final Word
Throughout the course of this chapter, you expanded your Bazel knowledge for building

applications for iOS. As you imagine, it would be very easy to build other applications for

the MacOS family. As we saw in prior chapters, the given gRPC example is very much a

toy example; however, it could be easily augmented to become vastly more interesting

(e.g., a messaging application).

CHapter 10 Bazel and IOS

189
© P.J. McNerney 2020
P.J. McNerney, Beginning Bazel, https://doi.org/10.1007/978-1-4842-5194-2

Index

A
Android Debug Bridge (ADB)

commands, 153
Android platform

Android Studio, 137
client command, 160–162
client option

AndroidManifest.xml, 149
attributes, 150
binary, 151
BUILD file, 149
directory, 146
EchoClientMainActivity.java file, 146
emulator instance, 151, 152
layout file, 148
mobile installation, 153–155

Emulator
AVD Manager, 142
completion window, 146
creation, 141
hardware screen, 143
particular version, 144
virtual device, 143

environment, 137–139
gRPC, 155–161

AndroidManifest.xml file, 155
dependencies, 158
EchoClientMainActivity.java, 157
modification, 156

SDK Manager up and running, 139–141

setup, 135
version selection, 140
WORKSPACE file, 135, 136

B
Bazel build system

coherent and optimized method, 5
dependency analysis, 4
execution and caching, 4
explicit dependency declaration, 3
features of, 2
high-level build language, 3
installation instructions, 7
meaning, 1
microservices and mobile

applications, 5
situations, 6
visibility features, 4
workspace management, 4

C, D
Client/server program,

WORKSPACE file, 57–58
Code organization

BUILD file, 98
client and server code

build target, 110
echo_server code, 108, 109
protobuf code, 108

https://doi.org/10.1007/978-1-4842-5194-2

190

current package, 99–101
directory code, 112
echo client code, 110–112
protocol buffers, 98, 99
setup, 97, 98
src/BUILD file, 100
visibility

concept of, 101, 102
individual target, 105–107
language-agnostic feature, 102
mixing package level, 107
package, 102, 103
path-specific visibility, 104

E, F
Echo client/server program

echo programs, 65–67
Go echo server, 58–60
Go rules, 57
Java echo client

build targets, 63
java_binary name style, 63
name of, 62–65
source code, 60–62

JSON
duplication, 74
execution option, 72–74
Go struct, 67–70
Java, 70–72
simple message, 67

G, H
gRPC, see Remote procedure calls (RPCs)

I
iOS command

clients
AppDelegate.swift file, 169
BUILD file, 171
code and BUILD rules, 172–174
directory, 167
Info.plist file, 170
MainViewController file, 168

gRPC, 182–187
dependencies, 184
protobuf rules, 183
send/receive function, 185
testing option, 186

setup, 165
workspace, 166–167
Xcode simulator

app execution, 177–182
hardware device, 175
iPhone Xs device simulator, 176
welcome screen, 174

J, K, L
Java

GSON setup, 70
Transmission Object/EchoClient, 71

M, N, O
Mac OS X

Bazel installation, 9
Java, 10
Python version, 10
Xcode, 8, 9

Code organization (cont.)

Index

191

P, Q
Protocol buffer

BUILD file, 77
definition, 75, 76
dependencies, 87
dependency trees, 90–92, 94
echo client and server, 88, 89
Go

echo server build target, 87
proto library target, 84
rules, 83
server, 85, 86

Java
components, 81
echo client, 80, 82
Proto library target, 79

management, 91–94
transmission_object.proto file, 77
workspace, 76

R, S, T
Remote procedure

calls (RPCs), 115
client interaction, 121–124
definition messages, 118–121
implementation, 130
interface, 129
modifications, 131
protocol buffers, 118–121
running code, 127–129
server modification, 124–127
setup, 115
source code (client terminal), 133
transceiver service, 119

U, V
Ubuntu Linux

Bazel installation, 11
Java, 12
required packages, 11

W
Windows

Bazel installation, 17
C++ applications, 18, 19
Java, 20, 21
Python, 21

developer mode, 14
MSYS2, 16, 17
specification, 13
version setting, 13–15
Visual C++ redistributable, 15, 16

WORKSPACE file
bazel_tools repository, 46, 47
binary

command line, 26
running option, 27

build target, 25
build all command, 39
clean option, 39
directory, 38, 39

characteristics, 43
deeper dive, 45
dependencies

build target, 32
directory package, 29
HelloWorld.java, 28
IntMultiplier.java, 28
java_library dependency, 31–33

Index

192

directory creation, 23
external dependencies

git_repository, 50
http_archive, 49, 50
languages rules, 53–55
references, 48

git_repository
fine print on, 51, 52
load method, 50
retrieve, 51
tools, 52, 53

go language rules repository, 56
Hello World, 24
load command, 44

loading multiple rules, 48, 49
Python helloworld code, 41
root directory, 25
rules, 44
source code, 24
structure, 44
testing dependencies

failing test, 35
java_test build target, 34–37
set up, 33, 34
test.log file, 37

X, Y, Z
Xcode, 8, 9, 174–182

WORKSPACE file (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	What This Book Is
	What This Book Is Not
	Features of Bazel
	High-Level Build Language
	Explicit Dependency Management
	Advanced Visibility Features
	Explicit Workspace Management
	Remote Build Execution and Caching
	Build Dependency Analysis
	Fast, Correct Builds (and Tests)

	Who This Book Is For (and Possibly Not For)

	Chapter 2: Setup and Installation
	MacOS
	Installing Xcode
	Installing Bazel
	Installing Java
	Verifying Your Python Version

	Ubuntu Linux
	Installing Required Packages
	Installing Bazel
	Installing Java

	Windows
	Setting Up Your System
	Installing Required Applications
	Visual C++ Redistributable for Visual Studio 2015
	MSYS2

	Bazel Installation
	Installing Language Support
	C++
	Java
	Python

	Final Word

	Chapter 3: Your First Bazel Project
	Setting Up Your Workspace
	Adding Source Code
	Hello World, Java Style
	Specifying the BUILD Targets
	Building Your Targets
	Build the Binary
	Running the Binary

	Creating and Using Dependencies
	Adding IntMulitplier.java to java_binary
	Creating a java_library Dependency
	Depending on Build Targets

	Testing Your Build Targets
	Setting Up Testing Dependencies
	Creating the java_test Build Target

	Build (and Clean) the World
	Build Everything (In a Directory)
	Build Everything (At This Directory and Below)
	Clean (Mostly) Everything

	Final Word

	Chapter 4: WORKSPACE File Functionality
	WORKSPACE Files
	Adding New Rules to WORKSPACE
	A Deeper Dive into the Load Path
	Finding the bazel_tools Repository
	Loading Multiple Rules at the Same Time

	Referencing Other Dependencies
	http_archive
	git_repository
	Retrieving a Git Repository
	Fine Print on git_repository

	http_archive vs. git_repository
	Employing a New Language
	Locating the Go Language Rules Repository

	Chapter 5: A Simple Echo Client/Server Program
	Setting Up Your Workspace
	Go Echo Server
	Java Echo Client
	Naming the Echo Client and Server

	Echoing Between Programs
	Upgrading to JSON
	JSON in Go
	JSON in Java
	GSON Setup
	Adding the Transmission Object to EchoClient

	Executing the Echo Client/Server with JSON

	Final Word: Duplication of Effort

	Chapter 6: Protocol Buffers and Bazel
	Setting Up Your Workspace
	Creating Your First Protocol Buffer
	Using the Protocol Buffer in Java
	Creating the Java Proto Library Target
	Using Your Java Protocol Buffer Target

	Using the Protocol Buffer in Go
	Creating the Go Proto Library Target
	Using Your Go Protocol Buffer Target

	Echo Using Protocol Buffers
	Dependency Tracking and Management
	Change Management in Action

	Final Word

	Chapter 7: Code Organization and Bazel
	Setup
	Separating the Protocol Buffers
	Referencing Build Targets Outside of the Current Package
	Target Visibility
	Package Visibility
	Path-Specific Visibility

	Individual Target Visibility
	Mixing Package and Target Visibilities

	Separating the Client and Server Code
	Separating the Echo Server Code
	Eliding the Build Target

	Separating the Echo Client Code
	Cleaning Up

	Final Word

	Chapter 8: gRPC and Bazel
	Setup
	Dependency Discussion
	Skylib
	Gazelle

	Defining the gRPC in Protocol Buffers
	Upgrading the Client to Use gRPC
	Upgrading the Server to Use gRPC
	Running the Client and the Server
	Adding Another RPC
	Final Word

	Chapter 9: Bazel and Android
	Setup
	Workspace
	Android Studio
	Environment
	Downloading SDKs

	Creating the Emulator

	Creating the Android Echo Client in Bazel
	Starting Up the Android Emulator Instance
	Bazel Mobile Install

	Adding gRPC Support
	Running the Android Client Against the Backend
	Final Word

	Chapter 10: Bazel and iOS
	Setup
	Workspace
	Creating the iOS Client in Bazel
	Building for iOS

	Running the iOS Client in the Xcode Simulator
	Executing the App on the Xcode Simulator

	Adding the gRPC to the iOS Application
	Final Word

	Index

