
CHAPTER 7

Classifying a Pirouette

7.1 Introduction
A pirouette is a familiar step in ballet. There are many types of pirouettes. We will focus on
an en dehors (outside) pirouette from fourth position. The dancer pliés (does a deep knee bend)
then straightens her legs producing both an upward force to get on the tip of her pointe shoe
and a torque to turn about her axis of revolution.

In this chapter, we will classify pirouettes. Four dancers will each do ten double pirouettes,
and we will use them to train the deep learning network. The network can then be used to
classify pirouettes.

This chapter will involve real-time data acquisition and deep learning. We will spend a
considerable amount of time in this chapter creating software to interface with the hardware.
While it is not deep learning, it is important to know how to get data from sensors for use in
deep learning work. We give code snippets in this chapter. Only a few can be cut and pasted
into the MATLAB command window. You’ll need to run the software in the downloadable
library. Also remember, you will need the Instrument Control Toolbox for this project.

Our subject dancers showing a pirouette are shown in Figure 7.1. We have three female
dancers and one male dancer. Two of the women are wearing pointe shoes. The measurements
will be accelerations, angular rates, and orientation. There really isn’t any limit to the move-
ments the dancers could do. We asked them all to do double pirouettes starting from fourth
position and returning to fourth position. Fourth position is with one foot behind the other and
separated by a quarter meter or so. This is in contrast to fifth position where the feet are right
against each other. Each is shown at the beginning, middle, and end of the turn. All have
slightly different positions, though all are doing very good pirouettes. There is no one ‘‘right”
pirouette. If you were to watch the turns, you would not be able to see that they are that different.
The goal is to develop a neural network that can classify their pirouettes.

This kind of tool would be useful in any physical activity. An athlete could train a neural
network to learn any important movement. For example, a baseball pitcher’s pitch could be
learned. The trained network could be used to compare the same movement at any other time
to see if it has changed. A more sophisticated version, possibly including vision, might suggest
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Figure 7.1: Dancers doing pirouettes. The stages are from left to right.
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Table 7.1: LPMS-B2: 9-Axis Inertial Measurement Unit (IMU).

Parameter Description
Bluetooth 2.1 + EDR / Low Energy (LE) 4.1
Communication distance < 20 m
Orientation range Roll: ±180◦; Pitch: ±90◦; Yaw: ±180◦

Resolution < 0.01◦

Accuracy < 0.5◦(static), < 2◦ RMS (dynamic)
Accelerometer 3 axes, ±2/± 4/± 8/± 16 g, 16 bits
Gyroscope 3 axes ±125/± 245/± 500/± 1000/± 2000◦/s, 16 bits
Data output format 2 Raw data / Euler angle / Quaternion
Data transmission rate up to 2400Hz

Figure 7.2: LPMS-B2: 9-Axis Inertial Measurement Unit (IMU). The on/off button is high-
lighted on the right.

On/O  Button

how to fix problems or identify what has changed. This would be particularly valuable for
rehabilitation.

7.1.1 Inertial Measurement Unit

Our sensing means will be the LPMS-B2 IMU with its parameters shown in Table 7.1 that has
Bluetooth. The range is sufficient to work in a ballet studio.

The IMU has many other outputs that we will not use. A close up of the IMU is shown in
Figure 7.2.

We will first work out the details of the data acquisition. We will then build a deep learning
algorithm to train the system and later to take data and classify the pirouette as being a pirouette
done by a particular dancer. We’ll build up the data acquisition by first writing the MATLAB
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code to acquire the data. We will then create functions to display the data. We will then
integrate it all into a GUI. Finally, we will create the deep learning classification system.

7.1.2 Physics

A pirouette is a complex multiflexible body problem. The pirouette is initiated by the dancer
doing a pliè and then using his or her muscles to generate a torque about the spin axis and
forces to get onto her pointe shoe and over her center of mass. Her muscles quickly stop the
translational motion so that she can focus on balancing as she is turning. The equation of
rotational motion is known as Euler’s equation and is

T = Iω̇ + ω×Iω (7.1)

where ω is the angular rate and I is our inertia. T is our external torque. The external torque is
due to a push off the floor and gravity. This is vector equation. The vectors are T and ω. I is a
3×3 matrix.

T =

⎡
⎣

Tx

Ty

Tz

⎤
⎦ (7.2)

ω =

⎡
⎣

ωx

ωy

ωz

⎤
⎦ (7.3)

Each component is a value about a particular axis. For example, Tx is the torque about the
x-axis attached to the dancer. Figure 7.3 shows the system. We will only be concerned with
rotation assuming all translational motion is damped. If the dancer’s center of mass is not above
the box of her pointe shoe, she will experience an overturning torque.

The dynamical model is three first-order couple differential equations. Angular rate ω is the
state, that is, the quantity being differentiated. The equation says that the external torque (due
to pushing off the floor or due to pointe shoe drag) is equal to the angular acceleration plus the
Euler coupling term. This equation assumes that the body is rigid. For a dancer, it means she
is rotating and no part is moving with respect to any other part. Now in a proper pirouette, this
is never true if you are spotting! But let’s suppose you are one of those dancers who don’t spot.
Let’s forget about the angular rate coupling term, which only matters if the angular rate is large.
Let’s just look at the first two terms which are T = Iω̇. Expanded

⎡
⎣

Tx

Ty

Tz

⎤
⎦ =

⎡
⎣

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

⎤
⎦
⎡
⎣

ω̇x

ω̇y

ω̇z

⎤
⎦ (7.4)

Let’s look at the equation for Tz . We just multiply the first row of the inertia matrix times
the angular rate vector.

Tz = Ixzω̇x + Iyzω̇y + Izzω̇z (7.5)
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Figure 7.3: The center of mass of the dancer. External forces act at the center of mass. Rotations
are about the center of mass.

1.65 m
0.24 m

g

This means a torque around the z-axis influences the angular rates about all 3 axes.
We can write out the required torque.

⎡
⎣

Tx

Ty

Tz

⎤
⎦ =

⎡
⎣

Ixz
Iyz
Izz

⎤
⎦ ω̇z (7.6)

This is the perfect pirouette push off because it only creates rotation about the vertical axis,
which is what we want in a pirouette. To this you need to add the forces needed to get on pointe
with your center of mass over your pointe shoe tip.

While turning, the only significant external torque is due to friction between the pointe shoe
tip and the floor. Friction resists both turning motion and translational motion. You don’t want
a slight side force, perhaps due to a less than great partner, to cause you to slide.

Our IMU measures angular rates and linear accelerations. Angular rates are the quantities
in Euler equations. However, since the IMU is not at the dancer’s center of mass, it will also
measure angular accelerations along with the acceleration of the center of mass. We locate it at
the dancer’s waist so it is not too far from the spin axis but it still sees a component.

aω = r×IMUω̇ (7.7)

where rIMU is the vector from the dancer’s center of mass to the IMU.
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For a dancer doing a pirouette, Euler’s equation is not sufficient. A dancer can transfer
momentum internally to stop a pirouette and needs a little jump to get on demi-pointe or pointe.
To model this, we add additional terms.

T = Iω̇ + ω× [Iω + uIi(Ωi + ωz) + uIh(Ωh + ωz)] + u (Ti + Th) (7.8)

Ti = Ii

(
Ω̇i + ω̇z

)
(7.9)

Th = Ih

(
Ω̇h + ω̇z

)
(7.10)

F = mz̈ (7.11)

where m is the mass, F is the vertical force, and z is the vertical direction. Ii is the internal
inertia for control, and Ih is the head inertia. I includes both of these already. That is, I is the
total body inertia that includes the internal ‘‘wheel,” body, and head. Ti is the internal torque.
Th is the head torque (for spotting). The internal torques, Ti, and Th are between the body and
the internal ‘‘wheel” or head. For example, Th causes the head to move one way and the body
the other. If you are standing, the torque you produce from your feet against the floor prevents
your body from rotating. T is the external torque due to friction and the initial push off by the
feet. The unit vector is

u =

⎡
⎣

0
0
1

⎤
⎦ (7.12)

There are six equations in total. The first is a vector equation with three components, the second
two are scalar equations. The vector equation is three equations, and each scalar equation is
just one equation. We can use these to create a simulation of a dancer. The second component
models all z-axis internal rotation, including spotting.

7.2 Data Acquisition
7.2.1 Problem

We want to get data from the Bluetooth IMU.

7.2.2 Solution

We will use the MATLAB bluetooth function. We’ll create a function to read data from the
IMU.

120



CHAPTER 7 CLASSIFYING A PIROUETTE

Figure 7.4: The IMU is connected to the bluetooth device from a MacBook Pro via USB C and
a ubiquitous Mac dongle. This is only for charging purposes. Once it is charged, you can use
without the dongle.

7.2.3 How It Works

We will write an interface to the bluetooth device. First make sure the IMU is charged. Connect
it to your computer as shown in Figure 7.4. Push the button on the back. This turns it on and
off. The status is indicated by the LED. The IMU comes with support software from the vendor,
but you will not need any of their software as MATLAB does all the hard work for you.

Let’s try commanding the IMU. Type btInfo = instrhwinfo(’Bluetooth’)and
you should get the following:

>> btInfo = instrhwinfo(’Bluetooth’)

btInfo =

HardwareInfo with properties:

RemoteNames: {’LPMSB2-4B31D6’}
RemoteIDs: {’btspp://00043E4B31D6’}

BluecoveVersion: ’BlueCove-2.1.1-SNAPSHOT’
JarFileVersion: ’Version 4.0’

Access to your hardware may be provided by a support package. Go to the
Support Package Installer to learn more.

This shows that your IMU is discoverable. There is no support package available from the
MathWorks. Now type b = Bluetooth(btInfo.RemoteIDs1,1) (this can be slow).
The number is the channel. The Bluetooth function requires the Instrument Control Toolbox
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for MATLAB.

>> b = Bluetooth(btInfo.RemoteIDs{1},1)

Bluetooth Object : Bluetooth-btspp://00043E4B31D6:1

Communication Settings
RemoteName: LPMSB2-4B31D6
RemoteID: btspp://00043e4b31d6
Channel: 1
Terminator: ’LF’

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Note that the Communication State Status shows closed. We need to open the device by
typing fopen(b). If you don’t have this device, just type

>> btInfo = instrhwinfo(’Bluetooth’)
btInfo =

HardwareInfo with properties:

RemoteNames: []
RemoteIDs: []

BluecoveVersion: ’BlueCove-2.1.1-SNAPSHOT’
JarFileVersion: ’Version 4.0’

Access to your hardware may be provided by a support package. Go to the
Support Package Installer to learn more.

This says it cannot recognize remote names or ids. You may need a support package for your
device in this case.

Click connect and the device will open. Now type a= fscanf(b) and you will get a
bunch of unprintable characters. We now have to write code to command the device. We will
leave the device in streaming mode. The data unit format is shown in Table 7.2. Each packet is
really 91 bytes long even though the table only shows 67 bytes. The 67 bytes are all the useful
data.

We read the binary and put it into a data structure using DataFromIMU. typecast
converts from bytes to float.
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Table 7.2: Reply data.

Byte Content (hex) Meaning
0 3A Packet Start
1 01 OpenMAT ID LSB (ID=1)
2 00 OpenMAT MSB
3 09 Command No. LSB (9d = GET SENSOR DATA)
4 00 Command No. MSB
5 00 Data Length LSB
6 00 Data Length MSB
7--10 xxxxxxxx Timestamp
11--14 xxxxxxxx Gyroscope data x-axis
15--18 xxxxxxxx Gyroscope data y-axis
19--22 xxxxxxxx Gyroscope data z-axis
23--26 xxxxxxxx Accelerometer x-axis
27--30 xxxxxxxx Accelerometer y-axis
31--34 xxxxxxxx Accelerometer z-axis
35--38 xxxxxxxx Magnetometer x-axis
39--42 xxxxxxxx Magnetometer y-axis
43--46 xxxxxxxx Magnetometer z-axis
47--50 xxxxxxxx Orientation quaternion q0
51--54 xxxxxxxx Orientation quaternion q1
55--58 xxxxxxxx Orientation quaternion q2
59--62 xxxxxxxx Orientation quaternion q3
63 xx Check sum LSB
64 xx Check sum MSB
65 0D Message end byte 1
66 0A Message end byte 2

DataFromIMU.m
25 function d = DataFromIMU( a )
26

27 d.packetStart = dec2hex(a(1));
28 d.openMATIDLSB = dec2hex(a(2));
29 d.openMATIDMSB = dec2hex(a(3));
30 d.cmdNoLSB = dec2hex(a(4));
31 d.cmdNoMSB = dec2hex(a(5));
32 d.dataLenLSB = dec2hex(a(6));
33 d.dataLenMSB = dec2hex(a(7));
34 d.timeStamp = BytesToFloat( a(8:11) );
35 d.gyro = [ BytesToFloat( a(12:15) );...
36 BytesToFloat( a(16:19) );...
37 BytesToFloat( a(20:23) )];
38 d.accel = [ BytesToFloat( a(24:27) );...
39 BytesToFloat( a(28:31) );...
40 BytesToFloat( a(32:35) )];
41 d.quat = [ BytesToFloat( a(48:51) );...
42 BytesToFloat( a(52:55) );...
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43 BytesToFloat( a(56:59) );...
44 BytesToFloat( a(60:63) )];
45 d.msgEnd1 = dec2hex(a(66));
46 d.msgEnd2 = dec2hex(a(67));
48

49 %% DataFromIMU>BytesToFloat
50 function r = BytesToFloat( x )
51

52 r = typecast(uint8(x),’single’);

We’ve wrapped all of this into the script BluetoothTest.m. We print out a few samples
of the data to make sure our bytes are aligned correctly.

BluetoothTest.m
1 %% Script to read binary from the IMU
2

3 % Find available Bluetooth devices
4 btInfo = instrhwinfo(’Bluetooth’)
5

6 % Display the information about the first device discovered
7 btInfo.RemoteNames(1)
8 btInfo.RemoteIDs(1)
9

10 % Construct a Bluetooth Channel object to the first Bluetooth device
11 b = Bluetooth(btInfo.RemoteIDs{1}, 1);
12

13 % Connect the Bluetooth Channel object to the specified remote device
14 fopen(b);
15

16 % Get a data structure
17 tic
18 t = 0;
19 for k = 1:100
20 a = fread(b,91);
21 d = DataFromIMU( a );
22 fprintf(’%12.2f [%8.1e %8.1e %8.1e] [%8.1e %8.1e %8.1e] [%8.1f %8.1f

%8.1f %8.1f]\n’,t,d.gyro,d.accel,d.quat);
23 t = t + toc;
24 tic
25 end

When we run the script we get the following output.

>> BluetoothTest

btInfo =

HardwareInfo with properties:

RemoteNames: {’LPMSB2-4B31D6’}
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RemoteIDs: {’btspp://00043E4B31D6’}
BluecoveVersion: ’BlueCove-2.1.1-SNAPSHOT’
JarFileVersion: ’Version 4.0’

Access to your hardware may be provided by a support package. Go to the
Support Package Installer to learn more.

ans =

1x1 cell array

{’LPMSB2-4B31D6’}

ans =

1x1 cell array

{’btspp://00043E4B31D6’}

ans =

1x11 single row vector

1.0000 0.0014 0.0023 -0.0022 0.0019 -0.0105 -0.9896
0.9200 -0.0037 0.0144 0.3915

ans =

1x11 single row vector

2.0000 -0.0008 0.0023 -0.0016 0.0029 -0.0115 -0.9897
0.9200 -0.0037 0.0144 0.3915

ans =

1x11 single row vector

3.0000 0.0004 0.0023 -0.0025 0.0028 -0.0125 -0.9900
0.9200 -0.0037 0.0144 0.3915

The first number in each row vector is the sample, the next three are the angular rates from
the gyro, the next three the accelerations, and the last four the quaternion. The acceleration is
mostly in the -z direction which means that +z is in the button direction. Bluetooth, like all
wireless connections, can be problematic. If you get this error

Index exceeds the number of array elements (0).

Error in BluetoothTest (line 7)
btInfo.RemoteNames(1)
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turn the IMU on and off. You might also have to restart MATLAB at times. This is because
RemoteNames is empty, and this test is assuming it will not be. MATLAB then gets confused.

7.3 Orientation
7.3.1 Problem

We want to use quaternions to represent the orientation of our dancer in our deep learning
system.

7.3.2 Solution

Implement basic quaternion operations. We need quaternion operations to process the quater-
nions from the IMU.

7.3.3 How It Works

Quaternions are the preferred mathematical representation of orientation. Propagating a quater-
nion requires fewer operations than propagating a transformation matrix and avoids singulari-
ties that occur with Euler angles. A quaternion has four elements, which corresponds to a unit
vector a and angle of rotation φ about that vector. The first element is termed the ‘‘scalar com-
ponent’’ s, and the next three elements are the ‘‘vector’’ components v. This notation is shown
as follows [21]:

q =

⎡
⎢⎢⎣

q0
q1
q2
q3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

s
v1
v2
v3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos φ
2

a1 sin
φ
2

a2 sin
φ
2

a3 sin
φ
2

⎤
⎥⎥⎥⎦ (7.13)

The ‘‘unit’’ quaternion which represents zero rotation from the initial coordinate frame has
a unit scalar component and zero vector components. This is the same convention used on the
Space Shuttle, although other conventions are possible.

q0 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ (7.14)

In order to transform a vector from one coordinate frame a to another b using a quaternion qab,
the operation is

ub = qTabuaqab (7.15)

126



CHAPTER 7 CLASSIFYING A PIROUETTE

using quaternion multiplication with the vectors defined as quaternions with a scalar part equal
to zero, or

xa =

⎡
⎢⎢⎣

0
xa(1)
xa(2)
xa(3)

⎤
⎥⎥⎦ (7.16)

For example, the quaternion

⎡
⎢⎢⎣

0.7071
0.7071
0.0
0.0

⎤
⎥⎥⎦ (7.17)

represents a pure rotation about the x-axis. The first element is 0.7071 and equals the cos(90◦/2).
We cannot tell the direction of rotation from the first element. The second element is the 1 com-
ponent of the unit vector, which in this case is

⎡
⎣

1.0
0.0
0.0

⎤
⎦ (7.18)

times the argument sin(90◦/2). Since the sign is positive, the rotation must be a positive 90◦

rotation.
We only need one routine that converts the quaternion, which comes from the IMU, into a

transformation matrix for visualization. We do this because multiplying a 3× n array of vectors
for the vertices of our 3D model by a matrix is much faster than transforming each vector with
a quaternion.

QuaternionToMatrix.m
1 2*(q(2)*q(4)+q(1)*q(3));...
2 2*(q(2)*q(3)+q(1)*q(4)),...
3 q(1)ˆ2-q(2)ˆ2+q(3)ˆ2-q(4)ˆ2,...
4 2*(q(3)*q(4)-q(1)*q(2));...
5 2*(q(2)*q(4)-q(1)*q(3)),...
6 2*(q(3)*q(4)+q(1)*q(2)),...
7 q(1)ˆ2-q(2)ˆ2-q(3)ˆ2+q(4)ˆ2];

Note that the diagonal terms have the same form. The off-diagonal terms also all have the
same form.
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7.4 Dancer Simulation
7.4.1 Problem

We want to simulate a dancer for readers who don’t have access to the hardware.

7.4.2 Solution

We will write a right-hand side for the dancer based on the preceding equations and write a
simulation with a control system.

7.4.3 How It Works

The right-hand side implements the dancer model. It includes an internal control ‘‘wheel” and
a degree of freedom for the head movement. The default data structure is returned if you call it
without arguments.

RHSDancer.m
33 %% RHSDANCER Implements dancer dynamics
34 % This is a model of dancer with one degree of translational freedom
35 % and 5 degrees of rotational freedom including the head and an

internal
36 % rotational degree of freedom.
37 %% Form:
38 % xDot = RHSDancer( x, ˜, d )
39 %% Inputs
40 % x (11,1) State vector [r;v;q;w;wHDot;wIDot]
41 % t (1,1) Time (unused) (s)
42 % d (1,1) Data structure for the simulation
43 % .torque (3,1) External torque (Nm)
44 % .force (1,1) External force (N)
45 % .inertia (3,3) Body inertia (kg-mˆ2)
46 % .inertiaH (1,1) Head inertia (kg-mˆ2)
47 % .inertiaI (1,1) Inner inertia (kg-mˆ2)
48 % .mass (1,1) Dancer mass (kg)
49 %
50 %% Outputs
51 % xDot (11,1) d[r;v;q;w;wHDot;wIDot]/dt
52

53 function xDot = RHSDancer( ˜, x, d )
54

55 % Default data structure
56 if( nargin < 1 )
57 % Based on a 0.15 m radius, 1.4 m long cylinders
58 inertia = diag([8.4479 8.4479 0.5625]);
59 xDot = struct(’torque’,[0;0;0],’force’,0,’inertia’,inertia,...
60 ’mass’,50,’inertiaI’,0.0033,’inertiaH’,0.0292,’torqueH’,0,’torqueI’

,0);
61 return
62 end
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The remainder mechanizes the equations given earlier. We add an additional equation for
the integral of the z-axis rate. This makes the control system easier to write. We also include
the gravitational acceleration in the force equation.

63 % Use local variables
64 v = x(2);
65 q = x(3:6);
66 w = x(7:9);
67 wI = x(10);
68 wH = x(11);
69

70 % Unit vector
71 u = [0;0;1];
72

73 % Gravity
74 g = 9.806;
75

76 % Attitude kinematics (not mentioned in the text)
77 qDot = QIToBDot( q, w );
78

79 % Rotational dynamics Equation 7.6
80 wDot = d.inertia\(d.torque - Skew(w)*(d.inertia*w + d.inertiaI*(wI +

w(3))...
81 + d.inertiaH*(wH + w(3))) - u*(d.torqueI + d.torqueH));
82 wHDot = d.torqueH/d.inertiaH - wDot(3);
83 wIDot = d.torqueI/d.inertiaI - wDot(3);
84

85 % Translational dynamics
86 vDot = d.force/d.mass - g;
87

88 % Assemble the state vector
89 xDot = [v; vDot; qDot; wDot; wHDot; wIDot; w(3)];

The simulation setup gets default parameters from RHSDancer.

1 d = RHSDancer;
2 n = 800;
3 dT = 0.01;
4 xP = zeros(16,n);
5 x = zeros(12,1);
6 x(3) = 1;
7 g = 9.806;
8 dancer = ’Robot_1’;

It then sets up the control system. We use a proportional derivative controller for z position
and a rate damper to stop the pirouette. The position control is done by the foot muscles. The
rate damping is our internal damper wheel.

13 % Control system for 2 pirouettes in 6 seconds
14 tPirouette = 6;
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15 zPointe = 6*0.0254;
16 tPointe = 0.1;
17 kP = tPointe/dT;
18 omega = 4*pi/tPirouette;
19 torquePulse = d.inertia(3,3)*omega/tPointe;
20 tFriction = 0.1;
21 a = 2*zPointe/tPointeˆ2 + g;
22 kForce = 1000;
23 tau = 0.5;
24 thetaStop = 4*pi - pi/4;
25 kTorque = 200;
26 state = zeros(10,n);

The simulation loop calls the right-hand side and the control system. We call RHSDancer.m
to get the linear acceleration.

1 %% Simulate
2 for k = 1:n
3 d.torqueH = 0;
4 d.torqueI = 0;
5

6 % Get the data for use in the neural network
7 xDot = RHSDancer(0,x,d);
8

9 state(:,k) = [x(7:9);0;0;xDot(2);x(3:6)];
10

11 % Control
12 if( k < kP )
13 d.force = d.mass*a;
14 d.torque = [0;0;torquePulse];
15 else
16 d.force = kForce*(zPointe-x(1) -x(2)/tau)+ d.mass*g;
17 d.torque = [0;0;-tFriction];
18 end
19

20 if( x(12) > thetaStop )
21 d.torqueI = kTorque*x(9);
22 end
23

24 xP(:,k) = [x;d.force;d.torque(3);d.torqueH;d.torqueI];
25 x = RungeKutta(@RHSDancer,0,x,dT,d);
26 end

The control system includes a torque and force pulse to get the pirouette going.

1 % Control
2 if( k < kP )
3 d.force = d.mass*a;
4 d.torque = [0;0;torquePulse];
5 else
6 d.force = kForce*(zPointe-x(1) -x(2)/tau)+ d.mass*g;
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7 d.torque = [0;0;-tFriction];
8 end

The remainder of the script plots the results and outputs the data, which would have come
from the IMU, into a file.

Simulation results for a double pirouette are shown in Figure 7.5. We stop the turn at 6.5
seconds, hence the pulse.

You can create different dancers by varying the mass properties and the control parameters.

zPointe = 6*0.0254;
tPointe = 0.1;
tFriction = 0.1;
kForce = 1000;
tau = 0.5;
kTorque = 200;

We didn’t implement spotting control (looking at the audience as much as possible during
the turn). It would rotate the head so that it faces forward whenever the head was within 90

Figure 7.5: Simulation of a double pirouette.
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degrees or so of front. We’d need to add a head angle for that purpose to the right-hand side,
much like we added the z-axis angle.

7.5 Real-Time Plotting
7.5.1 Problem

We want to display data from the IMU in real time. This will allow us to monitor the pirouettes.

7.5.2 Solution

Use plot with drawnow to implement multiple figures of plots.

7.5.3 How It Works

The main function is a switch statement with two cases. The function also has a built-in demo.
The first case, initialize, initializes the plot figures. It stores everything in a data structure
that is returned on each function call. This is one way for a function to have a memory. We
return the data structure from each subfunction.

GUIPlots.m
27 switch( lower(action) )
28 case ’initialize’
29 g = Initialize( g );
30

31 case ’update’
32 g = Update( g, y, t );
33

34 end

The first case, initialize, initializes the figure window.

35 %% GUIPlots>Initialize
36 function g = Initialize( g )
37

38 lY = length(g.yLabel);
39

40 % Create tLim if it does not exist
41 if( ˜isfield(g, ’tLim’ ) )
42 g.tLim = [0 1];
43 end
44

45 g.tWidth = g.tLim(2) - g.tLim(1);
46

47 % Create yLim if it does not exist
48 if( ˜isfield( g, ’yLim’ ) )
49 g.yLim = [-ones(lY,1), ones(lY,1)];
50 end
51

52 % Create the plots
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53 lP = length(g.yLabel);
54 y = g.pos(2); % The starting y position
55 for k = 1:lP
56 g.h(k) = subplot(lP,1,k);
57 set(g.h(k),’position’,[g.pos(1) y g.pos(3) g.pos(4)]);
58 y = y - 1.4*g.pos(4);
59 g.hPlot(k) = plot(0,0);
60 g.hAxes(k) = gca;
61 g.yWidth(k) = (g.yLim(k,2) - g.yLim(k,1))/2;
62 set(g.hAxes(k),’nextplot’,’add’,’xlim’,g.tLim);
63 ylabel( char(g.yLabel{k}) )
64 grid on
65 end
66 xlabel( g.tLabel );

The second case, update, updates the data displayed in the plot. It leaves the existing figures,
subplots, and labels in place and just updates the plots of the line segments with new data. It can
change the size of the axes as needed. The function adds a line segment for each new data point.
This way no storage is needed external to the plot. It reads xdata and ydata and appends the
new data to those arrays.

67 function g = Update( g, y, t )
68

69 % See if the time limits have been exceeded
70 if( t > g.tLim(2) )
71 g.tLim(2) = g.tWidth + g.tLim(2);
72 updateAxes = true;
73 else
74 updateAxes = false;
75 end
76

77 lP = length(g.yLabel);
78 for k = 1:lP
79 subplot(g.h(k));
80 yD = get(g.hPlot(k),’ydata’);
81 xD = get(g.hPlot(k),’xdata’);
82 if( updateAxes )
83 set( gca, ’xLim’, g.tLim );
84 set( g.hPlot(k), ’xdata’,[xD t],’ydata’,[yD y(k)]);
85 else
86 set( g.hPlot(k), ’xdata’,[xD t],’ydata’,[yD y(k)] );
87 end
88

89 end

The built-in demo plots six numbers. It updates the axes in time once. It sets up a figure
window with six plots. You need to create the figure and save the figure handle before calling
GUIPlots.

g.hFig = NewFig(’State’);

133



CHAPTER 7 CLASSIFYING A PIROUETTE

The pause in the demo just slows down plotting so that you can see the updates. The height
(the last number in g.pos) is the height of each plot. If you happen to set the locations of the
plots out of the figure window, you will get a MATLAB error. g.tLim gives the initial time
limits in second. The upper limit will expand as data is entered.

2 function Demo
3

4 g.yLabel = {’x’ ’y’ ’z’ ’x_1’ ’y_1’ ’z_1’};
5 g.tLabel = ’Time (sec)’;
6 g.tLim = [0 100];
7 g.pos = [0.100 0.88 0.8 0.10];
8 g.width = 1;
9 g.color = ’b’;

10

11 g.hFig = NewFig(’State’);
12 set(g.hFig, ’NumberTitle’,’off’ );
13

14 g = GUIPlots( ’initialize’, [], [], g );
15

16 for k = 1:200
17 y = 0.1*[cos((k/100))-0.05;sin(k/100)];
18 g = GUIPlots( ’update’, [y;y.ˆ2;2*y], k, g );
19 pause(0.1)
20 end
21

22 g = GUIPlots( ’initialize’, [], [], g );
23

24 for k = 1:200
25 y = 0.1*[cos((k/100))-0.05;sin(k/100)];
26 g = GUIPlots( ’update’, [y;y.ˆ2;2*y], k, g );
27 pause(0.1)
28 end

Figure 7.6 shows the real-time plots at the end of the demo.

7.6 Quaternion Display
7.6.1 Problem

We want to display the dancer’s orientation in real time.
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Figure 7.6: Real-time plots.
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7.6.2 Solution

Use patch to draw an OBJ model in a three-dimensional plot. The figure is easier to un-
derstand than the four quaternion elements. Our solution can handle 3-axis rotation although
typically we will only see single-axis rotation.

7.6.3 How It Works

We start with our Ballerina.obj file. It only has vertices and faces. A 3D drawing consists
of a set of vertices. Each vertex is a point in space. The vertices are organized into faces. Each
face is a triangle. Triangles are used for 3D drawings because they always form a plane. 3D
processing hardware is designed to work with triangles, so this also gives the fastest results.
The obj files for our software can only contain triangles. Each face can have only three ver-
tices. Generally, obj files can have any size polynomials, that is, faces with more than three
points. Most sources of obj files can provide tessellation services to convert polygons with
more than three vertices into triangles. LoadOBJ.m will not draw models with anything other
than triangular faces.

The main part of the function uses a case statement to handle the three actions. The first
action just returns the defaults, which is the name of the default obj file. The second reads in the
file and initializes the patches. The third updates the patches. patch is the MATLAB name
for a set of triangles. The function can be passed a figure handle. A figure handle tells it into
which figure the 3D model should be drawn. This allows it to be used as part of a GUI, as will
be shown in the next section.
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QuaternionVisualization.m
19 function m = QuaternionVisualization( action, x, f )
20

21 persistent p
22

23 % Demo
24 if( nargin < 1 )
25 Demo
26 return
27 end
28

29 switch( lower(action) )
30 case ’defaults’
31 m = Defaults;
32

33 case ’initialize’
34 if( nargin < 2 )
35 d = Defaults;
36 else
37 d = x;
38 end
39

40 if( nargin < 3 )
41 f = [];
42 end
43

44 p = Initialize( d, f );
45

46 case ’update’
47 if( nargout == 1 )
48 m = Update( p, x );
49 else
50 Update( p, x );
51 end
52 end

Initialize loads the obj file. It creates a figure and saves the object data structure. It
sets shading to interpolated and lighting to Gouraud. Gouraud is a type of lighting model named
after its inventor. It then creates the patches and sets up the axis system. We save handles to all
the patches for updating later. We also place a light.

53 function p = Initialize( file, f )
54

55 if( isempty(f) )
56 p.fig = NewFigure( ’Quaternion’ );
57 else
58 p.fig = f;
59 end
60

61 g = LoadOBJ( file );
62 p.g = g;
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63

64 shading interp
65 lighting gouraud
66

67 c = [0.3 0.3 0.3];
68

69 for k = 1:length(g.component)
70 p.model(k) = patch(’vertices’, g.component(k).v, ’faces’, g.

component(k).f, ’facecolor’,c,’edgecolor’,c,’ambient’,1,’
edgealpha’,0 );

71 end
72

73 xlabel(’x’);
74 ylabel(’y’);
75 zlabel(’z’);
76

77 grid
78 rotate3d on
79 set(gca,’DataAspectRatio’,[1 1 1],’DataAspectRatioMode’,’manual’)
80

81 light(’position’,10*[1 1 1])
82

83 view([1 1 1])

In Update we convert the quaternion to a matrix, because it is faster to matrix multiply all
the vertices with one matrix multiplication. The vertices are n by 3 so we transpose before the
matrix multiplication. We use the patch handles to update the vertices. The two options at the
end are to create movie frames or just update the drawing.

84 function m = Update( p, q )
85

86 s = QuaternionToMatrix( q );
87

88 for k = 1:length(p.model)
89 v = (s*p.g.component(k).v’)’;
90 set(p.model(k),’vertices’,v);
91 end
92

93 if( nargout > 0 )
94 m = getframe;
95 else
96 drawnow;
97 end

This is the built-in demo. We vary the 1 and 4 elements of the quaternion to get rotation
about the z-axis.

109 function Demo
110

111 QuaternionVisualization( ’initialize’, ’Ballerina.obj’ );
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Figure 7.7: Dancer orientation. The obj file is by the artist loft 22 and is available from Tur-
boSquid.

Figure 7.7 shows two orientations of the dancer during the demo. The demo produces an
animation of the dancer rotating about the z-axis. The rotation is slow because of the number of
vertices. The figure is not articulated so the entire figure is rotated as a rigid body. MATLAB
doesn’t make it easy to texture map so we don’t bother. In any case, the purpose of this function
is just to show orientation so it doesn’t matter.

7.7 Data Acquisition GUI
7.7.1 Problem

Build a data acquisition GUI to display the real-time data and output it into training sets.

7.7.2 Solution

Integrate all the preceding recipes into a GUI.

7.7.3 How It Works

We aren’t going to use MATLAB’s Guide to build our GUI. We will hand code it, which will
give you a better idea of how a GUI really works.

We will use nested functions for the GUI. The inner functions have access to all variables
in the outer functions. This also makes using callbacks easy as shown in the following code
snippet.

function DancerGUI( file )
function DrawGUI(h)
uicontrol( h.fig,’callback’,@SetValue);

function SetValue(hObject, ˜, ˜ )
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% do something
end

end
end

A callback is a function called by a uicontrol when the user interacts with the control.
When you first open the GUI, it will look for the bluetooth device. This can take a while.

Everything in DrawGUI has access to variables in DancerGUI. The GUI is shown in
Figure 7.8. The 3D orientation display is in the upper left corner. Real-time plots are on the
right. Buttons are on the lower left, and the movie window is on the right.

The upper left picture shows the dancer’s orientation. The plots on the right show angular
rates and accelerations from the IMU. From top to bottom of the buttons

1. Turn the 3D on/off. The default model is big, so unless you add your own model with
fewer vertices, it should be set to off.

2. The text box to its right is the name of the file. The GUI will add a number to the right
of the name for each run.

3. Save saves the current data to a file.

4. Calibrate sets the default orientation and sets the gyro rates and accelerations to whatever
it is reading when you hit the button. The dancer should be still when you hit calibrate. It
will automatically compute the gravitational acceleration and subtract it during the test.

5. Quit closes the GUI.

6. Clear data clears out all the internal data storage.

7. Start/Stop starts and stops the GUI.

The remaining three lines display the time, the angular rate vector, and the acceleration vector
as numbers. This is the same data that is plotted.

The first part creates the figure and draws the GUI. It initializes all the fields for GUIPlots.
It reads in a default picture for the movie window as a placeholder.

DancerGUI.m
16 function DancerGUI( file )
17

18 % Demo
19 if( nargin < 1 )
20 DancerGUI(’Ballerina.obj’);
21 return
22 end
23

24 % Storage of data need by the deep learning system
25 kStore = 1;
26 accelStore = zeros(3,1000);
27 gyroStore = zeros(3,1000);
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Figure 7.8: Data acquisition GUI.

28 quatStore = zeros(4,1000);
29 timeStore = zeros(1,1000);
30 time = 0;
31 on3D = false;
32 quitNow = false;
33

34 sZ = get(0,’ScreenSize’) + [99 99 -200 -200];
35

36 h.fig = figure(’name’,’Dancer Data Acquisition’,’position’,sZ,’units’,’
pixels’,...

37 ’NumberTitle’,’off’,’tag’,’DancerGUI’,’color’,[0.9 0.9 0.9]);
38

39 % Plot display
40 gPlot.yLabel = {’\omega_x’ ’\omega_y’ ’\omega_z’ ’a_x’ ’a_y’ ’a_z’};
41 gPlot.tLabel = ’Time (sec)’;
42 gPlot.tLim = [0 100];
43 gPlot.pos = [0.45 0.88 0.46 0.1];
44 gPlot.color = ’b’;
45 gPlot.width = 1;
46

47 % Calibration
48 q0 = [1;0;0;0];
49 a0 = [0;0;0];
50
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51 dIMU.accel = a0;
52 dIMU.quat = q0;
53

54 % Initialize the GUI
55 DrawGUI;

The notation

1 ’\omega_x’

is latex format. This will generate ωx.
The next part tries to find Bluetooth. It first sees if Bluetooth is available at all. It then

enumerates all Bluetooth devices. It looks through the list to find our IMU.

2 if( ˜isempty(btInfo.RemoteIDs) )
3 % Display the information about the first device discovered
4 btInfo.RemoteNames(1)
5 btInfo.RemoteIDs(1)
6 for iB = length(btInfo.RemoteIDs)
7 if( strcmp(btInfo.RemoteNames(iB),’LPMSB2-4B31D6’) )
8 break;
9 end

10 end
11 b = Bluetooth(btInfo.RemoteIDs{iB}, 1);
12 fopen(b); % No output allowed for some reason
13 noIMU = false;
14 a = fread(b,91);
15 dIMU = DataFromIMU( a );
16 else
17 warndlg(’The IMU is not available.’, ’Hardware Configuration’)
18 noIMU = true;
19 end

The following is the run loop. If no IMU is present, it synthesizes data. If the IMU is
found, the GUI reads data from the IMU in 91 byte chunks. The uiwait is to wait until the
user hits the start button. When used for testing, the IMU should be on the dancer. The dancer
should remain still when the start button is pushed. It will then calibrate the IMU. Calibration
fixes the quaternion reference and removes the gravitational acceleration. You can also hit the
calibration button at any time.

20 % Wait for user input
21 uiwait;
22 % The run loop
23 time = 0;
24 tic
25 while(1)
26 if( noIMU )
27 omegaZ = 2*pi;
28 dT = toc;
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29 time = time + dT;
30 tic
31 a = omegaZ*time;
32 q = [cos(a);0;0;sin(a)];
33 accel = [0;0;sin(a)];
34 omega = [0;0;omegaZ];
35 else
36 % Query the bluetooth device
37 a = fread(b,91);
38 pause(0.1); % needed so not to overload the bluetooth device
39

40 dT = toc;
41 time = time + dT;
42 tic
43

44 % Get a data structure
45 if( length(a) > 1 )
46 dIMU = DataFromIMU( a );
47 end
48 accel = dIMU.accel - a0;
49 omega = dIMU.gyro;
50 q = QuaternionMultiplication(q0,dIMU.quat);
51

52 timeStore(1,kStore) = time;
53 accelStore(:,kStore) = accel;
54 gyroStore(:,kStore) = omega;
55 quatStore(:,kStore) = q;
56 kStore = kStore + 1;
57 end

58 dIMU = DataFromIMU( a );
59 end
60 accel = dIMU.accel - a0;
61 omega = dIMU.gyro;

This code closes the GUI and displays the IMU data.

62 if( quitNow )
63 close( h.fig )
64 return
65 else
66 if( on3D )
67 QuaternionVisualization( ’update’, q );
68 end
69 set(h.text(1),’string’,sprintf(’[%5.2f;%5.2f;%5.2f] m/sˆ2’,accel));
70 set(h.text(2),’string’,sprintf(’[%5.2f;%5.2f;%5.2f] rad/s’,omega));
71 set(h.text(3),’string’,datestr(now));
72 gPlot = GUIPlots( ’update’, [omega;accel], time, gPlot );
73 end
74 end
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The drawing code uses uicontrol to create all the buttons. GUIPlots and
QuaternionVisualization are also initialized. The uicontrol that require an action
have callbacks.

75 if( quitNow )
76 close( h.fig )
77 return
78 else
79 if( on3D )
80 QuaternionVisualization( ’update’, q );
81 end
82 set(h.text(1),’string’,sprintf(’[%5.2f;%5.2f;%5.2f] m/sˆ2’,accel));
83 set(h.text(2),’string’,sprintf(’[%5.2f;%5.2f;%5.2f] rad/s’,omega));
84 set(h.text(3),’string’,datestr(now));
85 gPlot = GUIPlots( ’update’, [omega;accel], time, gPlot );
86 end
87 end
88

89 %% DancerGUI>DrawButtons
90 function DrawGUI
91

92 % Plots
93 gPlot = GUIPlots( ’initialize’, [], [], gPlot );
94

95 % Quaternion display
96 subplot(’position’,[0.05 0.5 0.4 0.4],’DataAspectRatio’,[1 1 1],’

PlotBoxAspectRatio’,[1 1 1] );
97 QuaternionVisualization( ’initialize’, file, h.fig );
98

99 % Buttons
100 f = {’Acceleration’, ’Angular Rates’ ’Time’};
101 n = length(f);
102 p = get(h.fig,’position’);
103 dY = p(4)/20;
104 yH = p(4)/21;
105 y = 0.5;
106 x = 0.15;
107 wX = p(3)/6;
108

109 % Create pushbuttons and defaults
110 for k = 1:n
111 h.pushbutton(k) = uicontrol( h.fig,’style’,’text’,’string’,f{k},’

position’,[x y wX yH]);
112 h.text(k) = uicontrol( h.fig,’style’,’text’,’string’,’’, ’

position’,[x+wX y 2*wX yH]);
113 y = y + dY;
114 end
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uicontrol takes parameter pairs, except for the first argument that can be a figure handle.
There are lot of parameter pairs. The easiest way to explore them is to type

h = uicontrol;
get(h)

All types of uicontrol that handle user interaction have ‘‘callbacks” that are func-
tions that do something when the button is pushed or menu item is selected. We have five
uicontrol with callbacks. The first uses uiwait and uiresume to start and stop data
collection.

3 % Start/Stop button callback
4 function StartStop(hObject, ˜, ˜ )
5 if( hObject.Value )
6 uiresume;
7 else
8 SaveFile;
9 uiwait

10 end
11 end

The second uses questdlg to ask if you want to save the data that has been stored in the
GUI. This produces the modal dialog shown in Figure 7.9.

12 % Quit button callback
13 function Quit(˜, ˜, ˜ )
14 button = questdlg(’Save Data?’,’Exit Dialog’,’Yes’,’No’,’No’);
15 switch button
16 case ’Yes’
17 % Save data
18 case ’No’
19 end
20 quitNow = true;
21 uiresume
22 end

Figure 7.9: Modal dialog.
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The third, Clear, clears the data storage arrays. It resets the quaternion to a unit quater-
nion.

23 % Clear button callback
24 function Clear(˜, ˜, ˜ )
25 kStore = 1;
26 accelStore = zeros(3,1000);
27 gyroStore = zeros(3,1000);
28 quatStore = zeros(4,1000);
29 timeStore = zeros(1,1000);
30 time = 0;
31 end

The fourth, calibrate, runs the calibration procedure.

32 % Calibrate button callback
33 function Calibrate(˜, ˜, ˜ )
34 a = fread(b,91);
35 dIMU = DataFromIMU( a );
36 a0 = dIMU.accel;
37 q0 = dIMU.quat;
38 QuaternionVisualization( ’update’, q0 )
39 end

The fifth, SaveFile, saves the recorded data into a mat file for use by the deep learning
algorithm.

40 % Save button call back
41 function SaveFile(˜,˜,˜)
42 cd TestData
43 fileName = get(h.matFile,’string’);
44 s = dir;
45 n = length(s);
46 fNames = cell(1,n-2);
47 for kF = 3:n
48 fNames{kF-2} = s(kF).name(1:end-4);
49 end
50 j = contains(fNames,fileName);
51 m = 0;
52 if( ˜isempty(j) )
53 for kF = 1:length(j)
54 if( j(kF))
55 f = fNames{kF};
56 i = strfind(f,’_’);
57 m = str2double(f(i+1:end));
58 end
59 end
60 end
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We make it easier for the user to save files by reading the directory and adding a number to
the end of the dancer filename that is one greater than the last filename number.

7.8 Making the IMU Belt
7.8.1 Problem

We need to attach the IMU to our dancer.

7.8.2 Solution

We use the arm strap that is available from the manufacturer. We buy an elastic belt and make
one that fits around the dancer’s waist.

7.8.3 How It Works

Yes, software engineers need to sew. Figure 7.10 shows the process. The two products used to
make the data acquisition belt are

1. LPMS-B2 Holder (available from Life Performance Research)

2. Men’s No Show Elastic Stretch Belt Invisible Casual Web Belt Quick Release Flat Plastic
Buckle (available from Amazon)

Remove the holder from the LPMS-B2 Holder. Cut the belt at the buckle and slide the
holder onto the belt. Sew the belt at the buckle.

The sensor on a dancer is shown in Figure 7.11. We had the dancer stand near the laptop
during startup. We didn’t have any range problems during the experiments. We didn’t try it
with across the floor movement as one would have during grande allegro.

Figure 7.10: Elastic belt manufacturing. We use the two items on the left to make the one on
the right.
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Figure 7.11: Dancer with the sensor belt. The blue light means it is collecting data.

7.9 Testing the System
7.9.1 Problem

We want to test the data acquisition system. This will find any problems with the data acquisi-
tion process.

7.9.2 Solution

Have a dancer do changements, which are small jumps changing the foot position on landing.

7.9.3 How It Works

The dancer puts on the sensor belt, we push the calibrate button, then she does a series of
changements. She stands about 2 m from your computer to make acquisition easier. The dancer
will do small jumps, known as changements. A changement is a small jump where the feet
change positions starting from fifth position. If the right foot is in fifth position front at the
start, it is in the back at the finish. Photos are shown in Figure 7.12.

The time scale is a bit long. You can see that the calibration does not lead us to a natural
orientation in the axis system in the GUI. It doesn’t matter from a data collection point of view
but is an improvement we should make in the future. The changement is shown in Figure 7.13.
The dancer is still at the beginning and end.

The interface to the bluetooth device doesn’t do any checking or stream control. Some blue-
tooth data collection errors occur from time to time. Typically, they happen after 40 seconds of
data collection.

147



CHAPTER 7 CLASSIFYING A PIROUETTE

Figure 7.12: Dancer doing a changement. Notice the feet when she is preparing to jump. The
second image shows her feet halfway through the jump.

Figure 7.13: Data collected during the changement.
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index exceeds the number of array elements (0).
Error in instrhwinfo>bluetoothCombinedDevices (line 976)

uniqueBTName = allBTName(uniqueRowOrder);
Error in instrhwinfo (line 206)

tempOut = bluetoothCombinedDevices(tempOut);
Error in DataAcquisition (line 13)
btInfo = instrhwinfo(’Bluetooth’);

If this happens, turn the device on and off. Restart MATLAB if that doesn’t work.
Another bluetooth error is

ans =
1x1 cell array

{’LPMSB2-4B31D6’}
ans =
1x1 cell array

{’btspp://00043E4B31D6’}
Error using Bluetooth (line 104)
Cannot Create: Java exception occurred:
java.lang.NullPointerException

at com.mathworks.toolbox.instrument.BluetoothDiscovery.
searchDevice(BluetoothDiscovery.java:395)

at com.mathworks.toolbox.instrument.BluetoothDiscovery.
discoverServices(BluetoothDiscovery.java:425)

at com.mathworks.toolbox.instrument.BluetoothDiscovery.
hardwareInfo(BluetoothDiscovery.java:343)

at com.mathworks.toolbox.instrument.Bluetooth.<init>(Bluetooth.
java:205).

This is a MATLAB error and requires restarting MATLAB. It doesn’t happen very often. We
ran the entire data collection with four dancers doing ten pirouettes each without ever experi-
encing the problem.

7.10 Classifying the Pirouette
7.10.1 Problem

We want to classify the pirouettes of our four dancers.

7.10.2 Solution

Create an LSTM that classifies pirouettes according to dancer. The four labels are the dancer
names.
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Figure 7.14: A pirouette. Angular rate and linear acceleration are shown.
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7.10.3 How It Works

The script takes one file and displays it. Figure 7.14 shows a double pirouette. A turn takes
only a few seconds.

1 dancer = {’Ryoko’ ’Shaye’, ’Emily’, ’Matanya’};
2

3 %% Show one dancer’s data
4 cd TestData
5 s = load(’Ryoko_10.mat’);
6 yL = {’\omega_x’ ’\omega_y’ ’\omega_z’ ’a_x’ ’a_y’ ’a_z’};
7 PlotSet(s.time,s.state(1:6,:),’x label’,’Time (s)’,’y label’,yL,’figure

title’,dancer{1});

We load in the data and limit the range to 6 seconds. Sometimes the IMU would run longer
due to human error. We also remove sets that are bad.

DancerNN.m
1 %% Load in and process the data
2 n = 40;
3 % Get the data and remove bad data sets
4 i = 0;
5 for k = 1:length(dancer)
6 for j = 1:10
7 s = load(sprintf(’%s_%d.mat’,dancer{k},j));
8 cS = size(s.state,2);
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9 if( cS > 7 )
10 i = i + 1;
11 d{i,1} = s.state; %#ok<*SAGROW>
12 t{i,1} = s.time;
13 c(i,1) = k;
14 end
15 end
16 end
17

18 fprintf(’%d remaining data sets out of %d total.\n’,i,n)
19

20 for k = 1:4
21 j = length(find(c==k));
22 fprintf(’%7s data sets %d\n’,dancer{k},j)
23 end
24

25 n = i;
26

27 cd ..
28

29 % Limit the range to 6 seconds
30 tRange = 6;
31 for i = 1:n
32 j = find(t{i} - t{i,1} > tRange );
33 if( ˜isempty(j) )
34 d{i}(:,j(1)+1:end)= [];
35 end
36 end

We then train the neural network. We use a bidirectional LSTM to classify the sequences.
There are ten features, four quaternion measurements, three rate gyro, and three accelerometer.
The four quaternion numbers are coupled through the relationship

1 = q21 + q22 + q23 + q24 (7.19)

However, this should not impact the learning accuracy aside from slowing down the learning.
We then load in and process the data. Some data sets didn’t have any data and need to be

removed. We also limit the range to 6 seconds since sometimes the data collection did not stop
after the pirouette ended.

1 %% Load in and process the data
2 n = 40;
3 % Get the data and remove bad data sets
4 i = 0;
5 for k = 1:length(dancer)
6 for j = 1:10
7 s = load(sprintf(’%s_%d.mat’,dancer{k},j));
8 cS = size(s.state,2);
9 if( cS > 7 )

10 i = i + 1;
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11 d{i,1} = s.state; %#ok<*SAGROW>
12 t{i,1} = s.time;
13 c(i,1) = k;
14 end
15 end
16 end
17

18 fprintf(’%d remaining data sets out of %d total.\n’,i,n)
19

20 for k = 1:4
21 j = length(find(c==k));
22 fprintf(’%7s data sets %d\n’,dancer{k},j)
23 end
24

25 n = i;
26

27 cd ..
28

29 % Limit the range to 6 seconds
30 tRange = 6;
31 for i = 1:n
32 j = find(t{i} - t{i,1} > tRange );
33 if( ˜isempty(j) )
34 d{i}(:,j(1)+1:end)= [];
35 end
36 end
37

38 %% Set up the network
39 numFeatures = 10; % 4 quaternion, 3 rate gyros, 3 accelerometers
40 numHiddenUnits = 400;
41 numClasses = 4; % Four dancers
42

43 layers = [ ...
44 sequenceInputLayer(numFeatures)
45 bilstmLayer(numHiddenUnits,’OutputMode’,’last’)
46 fullyConnectedLayer(numClasses)
47 softmaxLayer
48 classificationLayer];
49 disp(layers)
50

51 options = trainingOptions(’adam’, ...
52 ’MaxEpochs’,60, ...
53 ’GradientThreshold’,1, ...
54 ’Verbose’,0, ...
55 ’Plots’,’training-progress’);

We then train the neural network. We use a bidirectional LSTM to classify the sequences.
This is a good choice because we have access to the full sequence. For a classifier using
bilstmLayer, we must set the ’outputMode’ to ’last’. This is followed by a fully
connected layer, a Softmax for producing normalized maximums, and finally the classification
layer.
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56 %% Train the network
57 nTrain = 30;
58 kTrain = randperm(n,nTrain);
59 xTrain = d(kTrain);
60 yTrain = categorical(c(kTrain));
61 net = trainNetwork(xTrain,yTrain,layers,options);
62

63 %% Test the network
64 kTest = setdiff(1:n,kTrain);
65 xTest = d(kTest);
66 yTest = categorical(c(kTest));
67 yPred = classify(net,xTest);
68

69 % Calculate the classification accuracy of the predictions.
70 acc = sum(yPred == yTest)./numel(yTest);
71 disp(’Accuracy’)
72 disp(acc);

>> DancerNN
36 remaining data sets out of 40 total.

Ryoko data sets 6
Shaye data sets 10
Emily data sets 10

Matanya data sets 10
5x1 Layer array with layers:

1 ’’ Sequence Input Sequence input with 10 dimensions
2 ’’ BiLSTM BiLSTM with 400 hidden units
3 ’’ Fully Connected 4 fully connected layer
4 ’’ Softmax softmax
5 ’’ Classification Output crossentropyex

The training GUI is shown in Figure 7.15. It converges fairly well.
We test neural network against the unused data.

14 kTrain = randperm(n,nTrain);
15 xTrain = d(kTrain);
16 yTrain = categorical(c(kTrain));
17 net = trainNetwork(xTrain,yTrain,layers,options);
18

19 %% Test the network
20 kTest = setdiff(1:n,kTrain);
21 xTest = d(kTest);
22 yTest = categorical(c(kTest));
23 yPred = classify(net,xTest);

Accuracy
0.8333
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Figure 7.15: Neural net training.

Table 7.3: Hardware.

Component Supplier Part Number Price
IMU LP-Research Inc. LPMS-B2: 9-Axis Inertial Measurement Unit $299.00
IMU Holder LP-Research Inc. LPMS-B2: Holder $30.00
Belt Amazon Men’s Elastic Stretch Belt Invisible Casual Trousers

Webbing Belt Plastic Buckle Black Fits 24” to 42”
$10.99

The result, > 80%, is pretty good considering the limited amount of data. Four Ryoko sets
were lost due to errors in data collection. It is interesting that the deep learning network could
distinguish the dancers’ pirouettes. The data itself did not show any easy-to-spot differences.
Calibration could have been done better to make the data more consistent between dancers. It
would have been interesting to collect data on multiple days. Other experiments would be to
classify pirouettes done in pointe shoes and without. We might also have had the dancers do
different types of turns to see if the network could still identify the dancer.

7.11 Hardware Sources
Table 7.3 gives the hardware used in this chapter along with the prices (in US dollars) at the
time of publication.
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