
CHAPTER 12

Orbit Determination

12.1 Introduction
Determining orbits from measurements has been done for hundreds of years. The general ap-
proach is to take a series of measurements of the object from the ground. This is a set of angles
at different times. Given the location on the Earth, and this set of data, one can reconstruct the
orbit. Ideal orbits, which make the assumption that the Earth’s gravity is a point at the center of
the Earth, are conic sections. Those that stay near the Earth are ellipses. These can be defined
as a set of orbital elements. In this chapter, we will design a neural network to find the values
for two of the elements. Our model will be simpler than that which astronomers must use. We
will assume that all of our orbits are in the Earth’s equatorial plane and that the observer is at
the center of the Earth.

The purpose of this chapter is to show that a neural net can do orbit determination. For
comparison with traditional methods, see the classic textbook from 1965 by Escobal [11].

12.2 Generating the Orbits
12.2.1 Problem

We want to create a set of orbits for testing and training a neural net.

12.2.2 Solution

Implement a random orbit generator using Keplerian propagation of elements.

12.2.3 How It Works

An orbit involves at least two bodies, for example, a planet and a spacecraft. In the ideal two-
body case, the two bodies rotate about the common center of mass, known as the barycenter.
For all practical spacecraft cases, the spacecraft mass itself is negligible, and this means that the
satellite follows a conic section path about the primary body’s center of mass. A conic section
is a curve that fits on a cone, as shown in Figure 12.1. Two conics, a circle and ellipse, are
drawn. Hyperbolas and parabolas are also conic sections, but we will only look at elliptical
orbits in this chapter.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas, Practical MATLAB Deep Learning,
https://doi.org/10.1007/978-1-4842-5124-9 12

227

https://doi.org/10.1007/978-1-4842-5124-9_12

CHAPTER 12 ORBIT DETERMINATION

Figure 12.1: Ellipse and circle on a cone and viewed along their normal.

-1.5 -1 -0.5 0 0.5 1 1.5 2
x

-1

-0.5

0

0.5

1

y

Circle
Ellipse

The code that draws this picture is in the following script. It calls two functions, Cone and
ConicSectionEllipse. r0 and h are only needed to draw the cone. The algorithm only
cares about theta, the cone half angle.

ConicSection.m
1 theta = pi/4;
2 h = 4;
3 r0 = h*sin(theta);
4

5 ang = linspace(0,2*pi);
6 a = 2;
7 b = 1;
8 cA = cos(ang);
9 sA = sin(ang);

10 n = length(cA);
11 c = 0.5*h*sin(theta)*[cA;sA;ones(1,n)];
12 e = [a*cA;b*sA;zeros(1,n)];
13

14 % Show a planar representation
15 NewFigure(’Orbits’);
16 plot(c(1,:),c(2,:),’b’)
17 hold on
18 plot(e(1,:),e(2,:),’g’)
19 grid
20 xlabel(’x’)
21 ylabel(’y’)
22 axis image
23 legend(’Circle’,’Ellipse’);
24

25 [z,phi,x] = ConicSectionEllipse(a,b,theta);
26 ang = pi/2 + phi;
27 e = [cos(ang) 0 sin(ang);0 1 0; -sin(ang) 0 cos(ang)]*e;
28 e(1,:) = e(1,:) + x;
29 e(3,:) = e(3,:) + h - z;
30

31 Cone(r0,h,40);

228

CHAPTER 12 ORBIT DETERMINATION

32 hold on
33 plot3(c(1,:),c(2,:),2*ones(1,n),’r’,’linewidth’,2);
34 plot3(e(1,:),e(2,:),e(3,:),’b’,’linewidth’,2);
35 line([x x],[-b b],[h-z h-z],’color’,’g’,’linewidth’,2);
36 view([0 1 0])

The view is set to look along the y-axis which is the axis of rotation for the ellipse. The function
Cone draws the cone. line draws the axis of rotation that is along the short axis.

The solution that is used to draw the conic sections is derived in the last section of this chap-
ter. The orbit may be elliptical, with an eccentricity less than 1, parabolic with an eccentricity
equal to 1, or hyperbolic with an eccentricity greater than 1. Figure 12.2 shows the geometry
of an elliptical orbit. This is a planar orbit in which the orbital motion is two-dimensional. The
semi-major axis a is

a =
ra + rp

2
(12.1)

where ra is the apoapsis (apogee for the Earth) radius, or point furthest from the central planet,
and rp is the periapsis radius (perigee for the Earth), or closest point to the planet. The eccen-
tricity, e, of the orbit is

e =
ra − rp
ra + rp

(12.2)

When ra = rp, the orbit is circular and e = 0. This formula is not meaningful for parabolic
or hyperbolic orbits. Figure 12.2 shows three angular measurements, M mean anomaly, E
eccentric anomaly, and ν true anomaly. All are measured from periapsis. The mean anomaly is

Figure 12.2: Elliptical orbit.

PeriapsisApoapsis

Gravitational center

r
E M

a

229

CHAPTER 12 ORBIT DETERMINATION

related to the mean orbit rate n through a simple function of time.

M = M0 + n(t− t0) (12.3)

The eccentric anomaly is the angle to the current position as projected onto the ellipse’s circum-
scribing circle, drawn in blue. It is related to the mean anomaly by Kepler’s equation.

M = E − e sinE (12.4)

This equation needs to be solved numerically in general, but for small values of e, e < 0.1, this
approximation can be used.

E ≈ M + e sinM +
1

2
e2 sin 2M (12.5)

This is because apoapsis is not well defined for very small e. Higher-order formulas can also
be found. The true anomaly is related to the eccentric anomaly through the equation

tan
ν

2
=

√
1 + e

1− e
tan

E

2
(12.6)

Finally, the orbit radius is

r =
a(1− e)(1 + e)

1 + e cos ν
(12.7)

If e > 1 in this equation, r will go to ∞, as is expected for parabolic or hyperbolic orbits.
Seven parameters are necessary to define an orbit of a spacecraft about a spherically sym-

metric body. One is the gravitational parameter, generally denoted by the symbol μ. The
gravitational parameter is

μ = G(m1 +m2) (12.8)

where m1 is the mass central body and m2 is the mass of the orbiting body. G is the gravitational
constant with units of m3/kg/s2. For the Earth, G = 6.6774 × 10−11. μ for the Earth is
3.98600436 ×108 m3/s2. There are many ways of representing the other six elements. The two
most popular sets are position and velocity (r and v) vectors, and Keplerian orbital elements.
Each representation uses six independent variables to describe the orbit, plus μ. Both are shown
in Figure 12.3.

The Keplerian elements are defined as follows. Two elements define the elliptical orbit.
The size of the orbit is determined by the semi-major axis a, which is the average of the perigee
radius and apogee radius. The size and shape of the orbit are defined by the eccentricity, e.
Two elements define the orbital plane. Ω is the longitude which is the right ascension of the
ascending node, or the angle from the +X axis of the reference frame to the line where the
orbit plane intersects the xy-plane. i is the inclination and is the angle between the xy-plane
and the orbit plane. ω is the argument of perigee and is the angle in the orbit plane between the
ascending node line and perigee (where the orbit is closest to the center of the central body). ν
is the true anomaly and is the angle between perigee and the spacecraft. The mean anomaly M
may be used in the element set instead of ν. M or ν tells us where the spacecraft is in its orbit.

230

CHAPTER 12 ORBIT DETERMINATION

Figure 12.3: Orbital elements. The underlying plot was drawn using DrawEllipticOrbit.

To summarize, the Keplerian elements are

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

a
i
Ω
ω
e
M

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.9)

The orbit period, with units of seconds, is

P = 2π

√
a3

μ
(12.10)

The orbit parameter, with units of distance (conventionally km), is

p = a(1− e)(1 + e) (12.11)

The in-plane position and velocity are

rp =
p

1 + e cos ν

⎡
⎣ cos ν

sin ν
0

⎤
⎦ (12.12)

vp =

√
μ

p

⎡
⎣ − sin ν

e+ cos ν
0

⎤
⎦ (12.13)

231

CHAPTER 12 ORBIT DETERMINATION

The transformation matrix from planar to three-dimensional coordinates is

c =

⎡
⎣ cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i

sinΩ cosω + cosΩ sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i
sinω sin i cosω sin i cos i

⎤
⎦

(12.14)
That is

r = crp (12.15)

v = cvp (12.16)

For the purposes of creating the neural net, we will look at orbits with the inclination, i = 0,
and the ascending node, Ω = 0. The transformation matrix reduces to a rotation about z.

c =

⎡
⎣ cosω − sinω 0

sinω cosω 0
0 0 1

⎤
⎦ (12.17)

We now want to propagate the orbit forward in time. There are two alternative approaches
for doing so. One approach is to use Keplerian propagation, where we keep five of the elements
constant, and simply march the mean anomaly forward in time at a constant rate of n =

√
μ/a3.

At each point in time, we can convert the set of six orbital elements into a new position and
velocity. This approach is limited though, in that it assumes the orbit follows a Keplerian
orbit (the only external foci is the gravitation of a central body with uniform mass distribution).
The second approach, which gives us more flexibility, for external forces like thrust and drag
is to numerically integrate the dynamic equations of motion. The state equations for orbit
propagation are

v̇ = −μ
r

|r|3 + a (12.18)

ṙ = v (12.19)

The terms on the right-hand side of the velocity derivative equation are the point mass gravity
acceleration with additional acceleration a. This is implemented in RHSOrbit.

1 function xDot = RHSOrbit(˜,x,d)
2

3 r = x(1:2);
4 v = x(3:4);
5 xDot = [v;-d.mu*r/(r’*r)ˆ1.5 + d.a];

We will create a script that simulates multiple orbits. The simulation will use RHSOrbit.
The first part of the orbit generation script sets up the random orbital elements.

232

CHAPTER 12 ORBIT DETERMINATION

Orbits.m
1 %% Generate Orbits for angles-only element estimation
2 % Saves a mat-file called OrbitData.
3 %% See also
4 % El2RV, RungeKutta, RHSOrbit, TimeLabel, PlotSet
5

6 nEl = 500; % Number of sets of data
7 d = struct; % Initialize
8 d.mu = 3.98600436e5; % Gravitational parameter, kmˆ3/sˆ2
9 d.a = [0;0]; % Perturbing acceleration

10

11 % Random elements
12 e = 0.6*rand(1,nEl); % Eccentricity
13 a = 8000 + 1000*randn(1,nEl); % Semi-major axis
14 M = 0.25*pi*rand(1,nEl); % Mean anomaly

The next section runs the simulations and saves the angles. Each simulation has 2000 steps,
and each step is 2 seconds. We are only using one in ten points for the orbit determination.
We save the orbital elements for testing the neural network. We are not applying any external
acceleration. We could have used Kepler propagation, but by simulating the orbit, we have the
option for studying how well the neural network performs with disturbances.

1 % Set up the simulation
2 nSim = 2000; % Number of simulation steps
3 dT = 2; % Time step
4

5 % Only use some of the sim steps
6 jUse = 1:10:nSim;
7

8 % Data for Deep Learning
9 data = cell(nEl,1);

10

11 %% Simulate each of the orbits
12 x = zeros(4,nSim);
13 t = (0:(nSim-1))*dT;
14 el(nEl) = struct(’a’,7000,’e’,0); % initialize struct array
15

16 for k = 1:nEl
17 [r,v] = El2RV([a(k) 0 0 0 e(k) M(k)]);
18 x = [r(1:2);v(1:2)];
19 xP = zeros(4,nSim);
20 for j = 1:nSim
21 xP(:,j) = x;
22 x = RungeKutta(@RHSOrbit, 0, x, dT, d);
23 end
24 data{k} = atan2(xP(2,jUse),xP(1,jUse));
25 el(k).a = a(k);
26 el(k).e = e(k);
27 end

233

CHAPTER 12 ORBIT DETERMINATION

Figure 12.4: The last test orbit. The measured angle is on the right. These are only showing the
data used in orbit determination.

-8000 -7500 -7000 -6500 -6000 -5500 -5000 -4500
x (km)

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

y
(k

m
)

0 5 10 15 20 25 30 35
Time (min)

-4

-3

-2

-1

0

1

2

3

4

A
ng

le
 (r

ad
)

The final part plots the orbits and saves the data to a file.

1 %% Save for the Deep Learning algorithm
2 save(’OrbitData’,’data’,’el’);

The last orbit is shown in Figure 12.4. The jump in angle is due to angles being defined
from −π to +π. We could have used unwrap to get rid of this jump. We are only measuring
for part of an orbit. We can set up the simulation to measure any part of an orbit, or even
multiple orbits.

12.3 Training and Testing
12.3.1 Problem

We want to build a deep learning system to compute the eccentricity and semi-major axis for
an orbit from angle measurements.

12.3.2 Solution

The orbit history is a time series of angles. We will take angles at uniform time intervals. We
will use fitnet to fit the data.

234

CHAPTER 12 ORBIT DETERMINATION

12.3.3 How It Works

We load in the data from the mat file and separate it into training and testing sets.

OrbitNeuralNet.m
1 %% Train and test the Orbit Neural Net
2 %% See also:
3 % Orbits, fitnet, configure, train, sim, cascadeforwardnet,

feedforwardnet
4

5 s = load(’OrbitData’);
6 n = length(s.data);
7 nTrain = floor(0.9*n);
8

9 %% Set up the training and test sets
10 kTrain = randperm(n,nTrain);
11 sTrain = s.data(kTrain);
12 nSamp = size(sTrain{1},2);
13 xTrain = zeros(nSamp,nTrain);
14 aMean = mean([s.el(:).a]);
15

16 for k = 1:nTrain
17 xTrain(:,k) = sTrain{k}(1,:);
18 end
19

20 elTrain = s.el(kTrain);
21 yTrain = [elTrain.a;elTrain.e];
22 yTrain(1,:) = yTrain(1,:)/aMean;
23 % Normalize the data so it is the same magnetic as the eccentricity
24 kTest = setdiff(1:n,kTrain);
25 sTest = s.data(kTest);
26 nTest = n-nTrain;
27 xTest = zeros(nSamp,nTest);
28 for k = 1:nTest
29 xTest(:,k) = sTest{k}(1,:);
30 end
31

32 elTest = s.el(kTest);
33 yTest = [elTest.a;elTest.e];
34 yTest(1,:) = yTest(1,:)/aMean;

The neural network will use sequences of angles and their related times as the input. The
output will be the two orbital elements: semi-major axis and eccentricity. In general, if we know
the position and velocity at a point in the orbit, we can always compute the orbital elements.
This is done in the function El2RV. Although we don’t directly measure velocity, it can be
estimated by differencing position measurements. With angle-only measurements, we don’t
have a measure of range. The question is, can the neural network infer the range from the time
variation of the angles?

We train the network using fitnet. Note that we normalized the semi-major axis so that
the magnitude is the same order as the eccentricity. This improves the fitting.

235

CHAPTER 12 ORBIT DETERMINATION

1 %% Train the network
2 net = fitnet(10);
3

4 net = configure(net, xTrain, yTrain);
5 net.name = ’Orbit’;
6 net = train(net,xTrain,yTrain);

We use the test data to test the network.

1 %% Test the network
2 yPred = sim(net,xTest);
3 yPred(1,:) = yPred(1,:)*aMean;
4 yTest(1,:) = yTest(1,:)*aMean;
5 yM = mean(yPred-yTest,2);
6 yTM = mean(yTest,2);
7 fprintf(’\nFit Net\n’);
8 fprintf(’Mean semi-major axis error %12.4f (km) %12.2f %%\n’,yM(1),100*

abs(yM(1))/yTM(1));
9 fprintf(’Mean eccentricity error %12.4f %12.2f %%\n’,yM(2),100*

abs(yM(2))/yTM(2));
10 %% Plot the results
11 yL = {’a’ ’e’};
12 yLeg = {’Predicted’,’True’};
13 PlotSet(1:nTest,[yPred;yTest],’x label’,’Test’,’y label’,yL,...
14 ’figure title’,’Predictions using Fitnet’,’plot set’,{[1 3] [2 4]},...
15 ’legend’,{yLeg yLeg});

The results are best for fitnet. However, the results will vary with each run.

1 >> OrbitNeuralNet
2 >> OrbitNeuralNet
3

4 Fit Net
5 Mean semi-major axis error 31.9872 (km) 0.41 %
6 Mean eccentricity error 0.0067 2.48 %
7

8 Cascade Forward Net
9 Mean semi-major axis error -89.8603 (km) 1.15 %

10 Mean eccentricity error -0.0100 3.74 %
11

12 Feed Forward Net
13 Mean semi-major axis error 40.2986 (km) 0.52 %
14 Mean eccentricity error 0.0001 0.03 %

Figures 12.5, 12.6, and 12.7 show the test results. Both semi-major axis and eccentricity
results are reasonably good. You can experiment with different spans of data and different
sampling intervals. The code is in the script OrbitNeuralNet.m.

236

CHAPTER 12 ORBIT DETERMINATION

Figure 12.5: Test results using fitnet.

0 5 10 15 20 25 30 35 40 45 50
Test

5000

6000

7000

8000

9000

10000

a
Predicted
True

0 5 10 15 20 25 30 35 40 45 50
Test

0

0.2

0.4

0.6

0.8

e

Predicted
True

Figure 12.6: Test results using cascadeforwardnet.

0 5 10 15 20 25 30 35 40 45 50
Test

5000

6000

7000

8000

9000

10000

a

Predicted
True

0 5 10 15 20 25 30 35 40 45 50
Test

-0.2

0

0.2

0.4

0.6

e

Predicted
True

237

CHAPTER 12 ORBIT DETERMINATION

Figure 12.7: Test results using feedforwardnet.

0 5 10 15 20 25 30 35 40 45 50
Test

5000

6000

7000

8000

9000

10000
a

Predicted
True

0 5 10 15 20 25 30 35 40 45 50
Test

0

0.1

0.2

0.3

0.4

0.5

0.6

e

Predicted
True

We train the network using cascadeforwardnet. The code doesn’t change except for
the function name.

1 %% Train the cascade forward network
2 net = cascadeforwardnet(10);
3

4 net = configure(net, xTrain, yTrain);
5 net.name = ’Orbit’;
6 net = train(net,xTrain,yTrain);

We finally train it using feedforwardnet.

1 %% Train the feed forward network
2 net = feedforwardnet(10);
3

4 net = configure(net, xTrain, yTrain);
5 net.name = ’Orbit’;
6 net = train(net,xTrain,yTrain);

238

CHAPTER 12 ORBIT DETERMINATION

12.4 Implementing an LSTM
12.4.1 Problem

We want to build a long short-term memory neural net (LSTM) to estimate the orbital elements.
LSTMs have been demonstrated in previous chapters. They are an alternative to the functions
shown earlier.

12.4.2 Solution

The orbit history is a time series of angles. We will use a bidirectional LSTM to fit the data.
We will take angles at uniform time intervals.

12.4.3 How It Works

We load in the data from the mat file and separate it into training and testing sets. The data
format is different from the feedforward networks. xTrain is a cell array, but yTrain is a
matrix with a row for each cell array in xTrain.

OrbitLSTM.m
1 %% Script to train and test the Orbit LSTM
2 % It will estimate the orbit semi-major axis and eccentricity from a time
3 % sequence of angle measurements.
4 %% See also
5 % Orbits, sequenceInputLayer, bilstmLayer, dropoutLayer,

fullyConnectedLayer,
6 % regressionLayer, trainingOptions, trainNetwork, predict
7

8 s = load(’OrbitData’);
9 n = length(s.data);

10 nTrain = floor(0.9*n);
11

12 %% Set up the training and test sets
13 kTrain = randperm(n,nTrain);
14 aMean = mean([s.el(:).a]);
15 xTrain = s.data(kTrain);
16 nTest = n-nTrain;
17

18 elTrain = s.el(kTrain);
19 yTrain = [elTrain.a;elTrain.e]’;
20 yTrain(:,1) = yTrain(:,1)/aMean;
21 kTest = setdiff(1:n,kTrain);
22 xTest = s.data(kTest);
23

24 elTest = s.el(kTest);
25 yTest = [elTest.a;elTest.e]’;
26 yTest(:,1) = yTest(:,1)/aMean;

239

CHAPTER 12 ORBIT DETERMINATION

We train the network using trainNetwork.

1 %% Train the network with validation
2 numFeatures = 1;
3 numHiddenUnits1 = 100;
4 numHiddenUnits2 = 100;
5 numClasses = 2;
6

7 layers = [...
8 sequenceInputLayer(numFeatures)
9 bilstmLayer(numHiddenUnits1,’OutputMode’,’sequence’)

10 dropoutLayer(0.2)
11 bilstmLayer(numHiddenUnits2,’OutputMode’,’last’)
12 fullyConnectedLayer(numClasses)
13 regressionLayer]
14

15 maxEpochs = 20;
16

17 options = trainingOptions(’adam’, ...
18 ’ExecutionEnvironment’,’cpu’, ...
19 ’GradientThreshold’,1, ...
20 ’MaxEpochs’,maxEpochs, ...
21 ’Shuffle’,’every-epoch’, ...
22 ’ValidationData’,{xTest,yTest}, ...
23 ’ValidationFrequency’,5, ...
24 ’Verbose’,0, ...
25 ’Plots’,’training-progress’);
26

27 net = trainNetwork(xTrain,yTrain,layers,options);

options is given validation data. Note the cell array that is required for the validation
data.

1 ’ValidationData’,{xTest,yTest}, ...

We shuffle the data. This generally improves the results since the learning algorithm sees
the data in a different order on each epoch. We use the test data to test the network. predict
produces results based on the test data. This is the same data used for validation during learning.

The results are given as follows.

240

CHAPTER 12 ORBIT DETERMINATION

1 >> OrbitLSTM
2 layers =
3 6x1 Layer array with layers:
4

5 1 ’’ Sequence Input Sequence input with 1 dimensions
6 2 ’’ BiLSTM BiLSTM with 100 hidden units
7 3 ’’ Dropout 20% dropout
8 4 ’’ BiLSTM BiLSTM with 100 hidden units
9 5 ’’ Fully Connected 2 fully connected layer

10 6 ’’ Regression Output mean-squared-error
11

12 biLSTM
13 Mean semi-major axis error -63.4780 (km)
14 Mean eccentricity error 0.0024

We use two BiLSTM layers with a 20% dropout between layers. Dropout removes neurons
and helps prevent overfitting. Overfitting is when the results correspond too closely toward a
particular set of data. This makes it hard for the trained network to identify patterns in new
data. The first BiLSTM layer produces a sequence as its output. The second BiLSTM layer’s
’OutputMode’ is set to ’last’. The numClasses is 2 because we are estimating two
parameters. The fully connected layer connects the two BiLSTM outputs to the two parameters
we want to identify in the regression layer. The training window is shown in Figure 12.8. We
could have continued the training for more epochs as the root-mean-square error (RMSE) is
still improving.

This particular set of layers is to show you how to build a neural network. It is by no means
the ‘‘best” architecture for this problem. We did try a single LSTM layer and a single BiLSTM
layer worked better.

Figure 12.9 shows the test results. The results are not quite as good as the feedforward
nets given earlier. We’ve only used two layers. From Chapter 11, you see that ‘‘professional”
networks can have dozens if not hundreds of layers. The difference is due to the smaller number
of neurons in the LSTM. You can experiment with this network to improve the results.

In this chapter, we have compared two approaches, in MATLAB, to solving the orbit de-
termination problem. Using the MATLAB functions worked a bit better than the LSTM we
implemented. We made the argument of perigee constant to make the problem easier. The next
step would be to try and find the full set of orbital elements and then try to design a system that
works from a fixed point on the Earth. In the latter case, we would need to account for the ro-
tation of the Earth. Another improvement would be to take the measurements at different time
steps. For an elliptical orbit, taking many measurements at perigee is more productive than at
apogee because the spacecraft is moving faster. One could write a preprocessor to select inputs
to our neural network based on the angular change with respect to time. Orbit determination
systems, using algorithmic approaches, can also compute errors in the observer’s location. You
could also try other measurements, such as range and range rate. These measurements are used
for deep space and geosynchronous spacecraft.

241

CHAPTER 12 ORBIT DETERMINATION

Figure 12.8: Training window.

Figure 12.9: Test results using the bidirectional LSTM.

0 5 10 15 20 25 30 35 40 45 50
Test

5000

6000

7000

8000

9000

10000

11000

a

Predicted
True

0 5 10 15 20 25 30 35 40 45 50
Test

0

0.1

0.2

0.3

0.4

0.5

0.6

e

Predicted
True

242

CHAPTER 12 ORBIT DETERMINATION

12.5 Conic Sections
For a given ellipse and cone, we need to solve for the location of the center of the plane that
cuts the cone and its angle. The problem can be solved by working in the zy-plane. This is
shown in Figure 12.10. The equation for an ellipse is

x2

a2
+

y2

b2
= 1 (12.20)

The equation for a right circular cone is

x2 + y2 = γ2z2 (12.21)

Figure 12.10: Conic section.

243

CHAPTER 12 ORBIT DETERMINATION

where γ = cos θ and θ is the cone half angle. This is just saying that the radius of the cone at
position z is γz. The equation for a plane is

z = h (12.22)

That is, z is constant for all x and y. If we rotate this about the y-axis by α and translate it by x0,
we get the equation for the cone. The ellipse comes from the intersection of the plane with the
cone. b is along the y-axis. The angle between the plane that cuts the cone and the xy-plane is
α and is a function of a, b, and the cone half angle θ. The following equations are for θ = π/4.

tan2 α = 1− b2

a2
(12.23)

Noting that

φ =
π

2
− α (12.24)

The relationship between the plane and the vertical for a cone with a half angle of π
4 is then

φ =
π

2
− atan

√
1− b2

a2
(12.25)

The cone can be viewed in the plane. On the right side, the equation is

x = γx (12.26)

where γ = cos θ, where θ is the cone half angle. On the left side

x = −γx (12.27)

We then write the equations for the line along the major axis of the ellipse on each side of the
triangle. On the right

x = x0 + a cosα (12.28)

z = h− a sinα (12.29)

where α = π/2− φ. On the left

x = x0 − a cosα (12.30)

z = h+ a sinα (12.31)

Substituting into the equations for the cone, we get
[
1 −γ
1 γ

] [
x0
h

]
= a

[−γ sinα− cosα
cosα− γ sinα

]
(12.32)

The code that solves the equations follows. We could have solved the inverse analytically since
it is 2 by 2.

244

CHAPTER 12 ORBIT DETERMINATION

ConicSectionEllipse.m
1 function [h,phi,x] = ConicSectionEllipse(a,b,theta)
2

3 if(nargin < 1)
4 [h, phi, y] = ConicSectionEllipse(2,1,pi/4);
5 fprintf(’h = %12.4f\n’,h);
6 fprintf(’phi = %12.4f (rad)\n’,phi);
7 fprintf(’x = %12.4f\n’,y);
8 clear h
9 return

10 end
11

12 phi = pi/2 - atan(sqrt(1-bˆ2/aˆ2));
13

14 alpha = pi/2 - phi;
15 c = cos(alpha);
16 s = sin(alpha);
17 gamma = cos(theta);
18 f = a*[-gamma*s - c;c - gamma*s];
19 q = [1 -gamma;1 gamma]\f;
20 x = q(1);
21 h = q(2);

245

	12 Orbit Determination
	12.1 Introduction
	12.2 Generating the Orbits
	12.2.1 Problem
	12.2.2 Solution
	12.2.3 How It Works

	12.3 Training and Testing
	12.3.1 Problem
	12.3.2 Solution
	12.3.3 How It Works

	12.4 Implementing an LSTM
	12.4.1 Problem
	12.4.2 Solution
	12.4.3 How It Works

	12.5 Conic Sections

