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CHAPTER 26

Deferred Hybrid Path Tracing
Thomas Willberger, Clemens Musterle, and Stephan Bergmann 
Enscape GmbH

ABSTRACT

We describe a hybrid rendering approach that leverages existing rasterization-
based techniques and combines them with ray tracing in order to achieve real-
time global illumination. We reduce the number of traced rays by trying to find 
an intersection in screen space and reuse information from previous frames 
via reprojection and filtering. Artificial lighting is stored in nodes of the spatial 
acceleration structure to ensure efficient memory access. Our techniques require 
no manual preprocessing and only a few seconds of precomputation. They were 
developed as a real-time rendering solution for architectural design but can be 
applied to other purposes as well.

26.1	 �OVERVIEW

Despite recent advances in GPU-accelerated ray tracing, it remains challenging 
to seamlessly scale ray tracing–based algorithms across a large variety of scene 
complexities while maintaining acceptable performance. This is especially true for 
scenarios (unlike games) where no artist can define to what extent and detail level 
ray tracing should be applied. We aim to provide global illumination on mostly static 
scene content without perceivable precomputation and with few assumptions about 
the scene.

To do so, we first render the scene to a G-buffer and then spawn rays from G-buffer 
pixels to evaluate the lighting. For each ray, we try to find intersections in screen 
space because, if successful, this is usually faster than tracing the ray in a spatial 
data structure. Additionally, we use fully lit pixels from the previous frame to get 
accumulated multiple-bounce lighting. If tracing in screen space is not successful, 
we continue tracing in a spatial data structure, in our case a bounding volume 
hierarchy (BVH), while keeping the visual quality degradation as low as possible. 
Figure 26-1 shows an actual image resulting from our implementation.
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26.2	 �HYBRID APPROACH

We treat specular and diffuse lighting components separately to improve efficiency 
(e.g., reuse the view-independent diffuse component from the previous frame). 
The pipeline is shown in Figure 26-2. Both lighting components have the following 
overall concepts in common:

Figure 26-1.  Image rendered using the described approach. The majority of the required rays 
were traced in screen space while the reflection rays for the glass surfaces were traced in the BVH 
because the geometry reflected in the glass is offscreen. The scene contains a variety of materials that 
integrate plausibly with the scene’s lighting, although most areas are only lit indirectly. Rays traced 
in the BVH result in one indirect bounce, while screen-space hits will benefit from recursive multiple 
bounces. (Image courtesy of Vilhelm Lauritzen Arkitekter for Novo Nordisk fonden, project “LIFE.”)

Figure 26-2.  Overview of the ray creation scheme for both diffuse and specular BRDFs.
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	1.	 Ray heuristic: First, we decide whether or not we need a new 
ray. This is done by reprojecting the previous frame’s unfiltered 
results with respect to the camera motion where possible, then 
comparing this for each pixel with a target ray count.

	2.	 Screen-space traversal: We start the traversal in the last frame’s 
depth buffer (Figure 26-3). Since we only use one Z-buffer layer, 
we assume a certain thickness t, proportional to the field of view 
and distance from the current march position to the camera, 
defined by

				    ( )d
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where αfov is the camera’s field of view, d is the fragment’s distance to 
the camera, and w is the width and h the height of the screen in pixels. 
This thickness approximation is necessary to avoid rays penetrating 
closed surfaces at pixel edges where large depth gradients are 
present. For higher resolutions and a decreasing field of view, we need 
less thickness because the depth differentials become smaller. This 
solution does not guarantee watertightness, as it does not consider 
the geometric normal. However, for most scenarios this is sufficiently 
accurate. The relation to the screen resolution ensures watertight 
surfaces independent from the resolution or camera distance.

We have to choose a rather small thickness to avoid false hits. During 
the screen-space ray march, it is possible that a sampling point lies 
behind (farther away from the camera than) the depth buffer, yet too 

Figure 26-3.  Ray traversal in screen space. The front layer depth of the Z-buffer (purple line 
segments) is assumed to have a thickness t. This helps to prevent rays from penetrating closed 
surfaces (green ray). To minimize errors, we discard a screen-space ray when it enters areas behind 
the assumed thickness of the front layer (yellow ray) and continue tracing it in the BVH.
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far away to be within the accepted thickness range. We lack reliable 
information about the occluded geometry. Therefore, the ray is not 
counted as being a hit, so we immediately stop the screen-space 
traversal. We classify such a ray as no-hit because we cannot be sure 
if there is more geometry that is not present in screen space.

Reading from the last frame’s irradiance result, however, is inaccurate 
because some of the lighting information is view-dependent. To solve 
this, we store a buffer without the view-dependent components 
(specular) or alpha-blended geometry. This introduces an energy loss, 
which is currently compensated by a constant factor. The ray march 
result is written into a buffer of ray lengths. Then, we reconstruct 
the fetch position in the last frame’s buffer for a subsequent pass to 
leverage the texture cache usage during traversal.

	3.	 BVH traversal: We continue the ray traversal in our BVH, at the 
position where our screen space cast ends, and evaluate a 
radiance value. In the case of no hit, we write a skybox fetch into 
the accumulation buffer, which stores the radiance sum of all 
ray casts. This fetch can be slightly biased to reduce variance by 
reading from a filtered mip level depending on the estimated lobe 
size.

	4.	 Filtering: Before compositing the traversal result, we employ a 
spatial filter followed by a temporal filter.

26.3	 �BVH TRAVERSAL

The range of complexity of our customers’ scenes is rather large. To make sure 
that we can handle even large scenes with a reasonable impact on performance 
and memory requirements, our BVH does not contain all the scene geometry. 
This means that at any given time only a subset of the whole scene is included in 
the BVH. This subset is usually centered around the camera, which is achieved by 
continuously and asynchronously constructing the BVH, depending on the camera’s 
position, and results in geometry being removed and added while the camera 
moves in the scene. Due to the temporal caching of various radiance buffers, 
the geometric change is mostly smooth. However, on some surfaces that lack a 
stable temporal accumulation, like alpha-blended geometry, it can be noticeable. 
The challenge is to include only the visually most relevant objects within our 
performance budget in the BVH.
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26.3.1	 �GEOMETRY SELECTION

To select the relevant geometry, the total scene geometry has to be divided into 
meaningful parts that can be independently selected for inclusion in the BVH. This 
partition can be done at the hierarchy level of objects, but it was apparent that 
objects with a high triangle count needed to be subdivided further, so we included 
an automatic subdivision. We define a score function per object that describes the 
visual importance j,

				    aj p
d 2

,= 	 (2)

where a is the projected surface area and d is the object’s distance to the camera, 
making the first term comparable to the object’s subtended solid angle as seen 
from the camera. The second term p is an object-specific importance factor that 
is greater than one for emissive surfaces because their absence will have a larger 
visual impact than non-emissive surfaces, for which p = 1.

All objects are ordered by their visual importance j. Depending on the desired quality 
level, we define a total cost budget that is allowed to ensure the desired frame 
rate. We include the objects with the highest importance score until that budget is 
reached. Beside the polygon count, the cost is also multiplied by an efficiency factor 
that tries to predict how many axis-aligned bounding box tests are necessary to 
successfully intersect a primitive or leave the model’s bounding box. For this factor, 
we use a heuristic based on the number of shared vertices in the triangle meshes. 
This heuristic is motivated by our experience that if triangles rarely share vertices 
(as in the case of vegetation), traversal performance is usually less efficient.

We end up with BVH trees with less than 10 MB that are uploaded from CPU to GPU 
in a couple of milliseconds. This delay can usually be hidden by double buffering.

26.3.2	 �VERTEX PREPROCESSING

For each vertex in the BVH, we precompute a single irradiance value during BVH 
construction. This is done to avoid having to continue tracing the BVH after the first 
hit, which would be expensive because the rays will be increasingly incoherent and 
thus incur higher computation and memory access cost. For each vertex in the 
BVH, we compute an irradiance value using all the lights whose area of influence 
include the vertex. To test the visibility, we trace a shadow ray for each vertex-
light combination. When these precomputed irradiance values are used in our 
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lighting computation when tracing, a path from a G-buffer pixel in the BVH has the 
following consequences/simplifications:

>> We will include paths with two bounces in our lighting calculation when tracing 
within the BVH, although it is only a rather coarse approximation.

>> We simplify the shading in the BVH traversal, to the extent that we only include 
diffuse shading components, and the irradiance at each point on the triangle’s 
surface is assumed to be a barycentric interpolation of the irradiance of the 
triangle’s vertices.

To avoid errors that are too perceptually noticeable due to the second 
simplification, we subdivide triangles where the difference between adjacent 
vertices’ irradiance values exceeds a pre-configured threshold.

26.3.3	 �SHADING

To avoid an additional access to material data or UV coordinates, we store only 
a single albedo value per triangle in the BVH. The texture’s albedo is therefore 
averaged when creating the BVH. For cutout masks, we calculate the number of 
visible pixels and approximate the ratio with a procedural cutout pattern, which can 
be cheaply evaluated in the intersection shader after the triangle/ray intersection 
test discards the hit. While these approximations work well for diffuse lighting, 
the missing material and texture information can become apparent for sharp 
specular reflections. Therefore, we sample the surface’s albedo texture for glossy 
specular reflections. This mode is optional and can be disabled to ensure higher 
performance in scenarios like virtual reality.

The total shading then consists of the per-vertex artificial lighting amount, the 
shadow mapped sunlight, and an ambient amount to compensate for missing 
multiple bounces, which is only applied at the last ray intersection. The ambient 
amount is proportional to an atmosphere skybox read (convolved with a cosine 
distribution) and an ambient occlusion factor. We approximate ambient occlusion 
by multiplying an exponential function with −d being the ray distance toward the 
surface and k being a scaling factor that is chosen empirically. This is a hemisphere 
estimation with only one sample, but it helps to reduce the ambient factor in indoor 
scenarios to avoid light leaking leading to an ambient factor

			   ( )skybox vertex sun ,dka m e r r r-= + + 	 (3)

where m is the albedo and r represents various radiance sources.
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26.4	 �DIFFUSE LIGHT TRANSPORT

In this section we describe the way we handle diffuse and near-diffuse indirect 
light. Descriptions within the following subsections explain the key blocks in 
Figure 26-2 and what happens in them. Figure 26-4 shows an example of user-
generated content.

For every material, we divide the outgoing radiance into a diffuse and a specular 
component. The specular component is characterized by the amount of light that is 
reflected according to the Fresnel function, whereas the diffuse part may penetrate 
the surface and is independent of the view vector (at least in simpler models like 
Lambert). The diffuse lobe is generally larger, which results in a higher number of 
samples to reach convergence. Conversely, the diffuse component has less spatial 
variance, which allows for more aggressive filtering approaches that incorporate a 
larger spatial pixel neighborhood.

26.4.1	 �RAY HEURISTIC

The challenge in a sampling strategy is that we want to get a pseudo-random 
sample distribution that contains as much information as possible within the radius 
of the filter that is applied later. Current offline renderers use sampling strategies 
that maximize the spatial and temporal sample variety to increase the convergence 
rate, like correlated multi-jitter sampling [9]. We chose a simpler logic because of 
different circumstances:

>> Usually, samples for an image pixel are not dependent on past samples that 
have been accumulated on other image areas or previous frames via screen-
space intersections. In our case, samples are accumulated along multiple 
screen- and view-space positions (due to the reprojection), distributed across 
several frames.

Figure 26-4.  Images showing various light transport scenarios in architecture. Left: the sunlight can 
be adjusted dynamically, with all other lights and scene contents usually updating in a fraction of a 
second. Right: much of the visual scene content is visible in the image, which allows for an accurate 
multiple-bounce approximation using screen-space rays. (Images courtesy of Sergio Fernando.)

 Deferred Hybrid Path Tracing



482

>> The ray traversals itself are comparatively cheap, which makes complex 
sampling logic unattractive.

>> The bias, introduced by sample reuse and lighting approximations, is larger 
than the potential convergence gain of a more advanced Quasi-Monte Carlo 
approach.

We start by sampling a cosine distribution, which is given by a 642 pixel tiled blue 
noise texture with a Cranley Patterson rotation [2] of a Halton 2, 3 sequence [4] that 
alternates each frame. The desired sample-per-pixel count depends on the quality 
settings and the amount of direct light. If our history reprojection (see 26.4.2) of 
the diffuse radiance buffer contains more than that many samples, no new ray 
is cast. We account for view-dependent diffuse models by multiplying a function 
that depends on the dot product of the normal vector n and the view vector v and a 
roughness factor, similar to the precomputed specular DFG (distribution, Fresnel, 
geometry) term [6]. This decoupling from the view vector is necessary to allow 
reuse of the samples from different view angles.

Once we decide to query a new ray, the request is appended to a list (according 
to the ray queue in Figure 26-2). This request is then used by the screen-space 
traversal. If we find a valid hit in the previous frame’s depth buffer, the result 
is written into the radiance accumulation texture (radiance buffer). If not, a ray 
traversal in the global BVH is initiated.

26.4.2	 �LAST FRAME’S REPROJECTION

The purpose of reprojection is to reuse shading information from previous frames. 
However, between two frames the camera generally moves, so the color and 
shading information contained in a certain pixel is possibly no longer valid for this 
pixel but needs to be reprojected to a new pixel location. The reprojection happens 
in screen space only and is agnostic of the origin of the stored radiance (BVH or 
screen-space ray traversal). This can be done for diffuse shading only because it is 
view-independent.

For a successful reprojection, we need to determine whether the shading point 
in question (i.e., the currently processed pixel) was visible in the previous frame; 
otherwise we cannot reproject. To determine whether we have a reliable source for 
color information, we consider the motion vector and check if the previous frame’s 
depth buffer content for the processed shading point is consistent with the motion 
vector. If it is not, we probably have a disocclusion at the current position and need 
to request a new ray.
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Another reason to request a new ray is the change of the geometric configuration: 
As the camera moves through the scene, some surfaces change their distance and 
angle to the camera. This causes a geometric distortion of the image content in 
screen space. When reprojecting the diffuse radiance buffer, geometric distortions 
have to be considered. We want to achieve a constant density of rays per screen 
pixel, and the described geometric distortions can change the local sample density. 
We store the radiance premultiplied by the number of samples that we were able to 
accumulate and use the alpha channel to store the sample count. The reprojection 
pass has to weigh the history pixels with a bilinear filter and apply a distortion 
factor b, according to Equation 4, for each of the four unfiltered fetches. Note that 
this factor can be ≥ 1, for example when moving away from a wall. The distortion 
factor is expressed as
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where d is the pixel’s distance to the camera and v is the view vector.

Figure 26-5 illustrates scene areas where reprojection caused the ray heuristic to 
request a new ray, either due to disocclusions or due to insufficient sample density.

26.4.3	 �TEMPORAL AND SPATIAL FILTERING VIA OPTIMIZED MULTI-PASS

Image filters quickly become bandwidth bound due to the large number of memory 
reads. One way to alleviate this is to apply a sparse filter, recursively, in multiple 
iterations n with s samples. The effective amount of samples contributing to the 
filter result is sn. If this sparsity is randomly distributed with a seed that varies 
within a 3 × 3 pixel window, the result can be filtered with a neighborhood clamp 
temporal filter [7]. The neighborhood clamp filter creates a rolling exponential 

Figure 26-5.  This image highlights the areas where a new diffuse ray is requested (green). Left: the 
camera is stationary. Due to the temporal antialiasing camera subpixel offset, the reprojection fails 
at geometry edges. Right: the camera is moving to the right. New rays are requested at geometric 
occlusions and areas that were not present in the previous view. Note the partially green walls due to a 
decrease in the density of accumulated samples.
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average of the pixel value and leverages the assumption that the old pixel is a blend 
of the new pixel’s neighborhood to reject pixel history, therefore avoiding ghosting. 
The clamp window can be spatially extended to reduce flickering [11], which in turn 
increases ghosting.

The fetch positions are chosen to minimize the amount of redundant fetches within 
this window, while staying in the desired radius. To do so, we calculate a list of 
source pixel fetch positions that are effectively included after n iterations of the 
filter. The loss function of our genetic evolution-based numerical optimization 
algorithm is the number of duplicate source pixel fetches within a final 3 × 3 pixel 
window. This ensures a maximum sample diversity within the temporal filter. The 
radius r should be chosen according to the size sseed of the diffuse ray direction 
seed texture in order to hide tiling artifacts according to r = sseed/n. This radius 
is unrelated to the 3 × 3 window for temporal accumulation, as the temporal 
accumulation happens after the filtering. Usually, we would weigh in a Gaussian 
distribution to model the relevance of nearby samples by the distance to sample. 
In a multi-pass approach, this is not necessary because iteratively sampling a 
circle-shaped kernel yields a suitable nonlinear falloff, without penalizing outer 
memory reads (see the article by Kawase [8]). None of the reads use hardware 
texture filtering to ensure discrete depth and normal weights from our aliased 
source buffers. Those G-buffer normals and view-space depths are then used to 
scale the bilateral weight, similar to a technique by Dammertz et al. [3]. Figure 26-6 
compares our multi-pass approach with that of Schied et al. [12]

Figure 26-6.  Left: spatiotemporal variance-guided filtering (SVGF) [12] (2.6 ms). Right: our multi-pass 
filter (0.5 ms). The total screen resolution is 1920 × 1080. Both filters cover the same maximum radius, 
with our filter being sparse and lacking the variance-based edge-stopping function. SVGF is more 
accurate at preserving indirect lighting details, at a higher cost. The sparse filtering allows the final 
temporal antialiasing filter to darken fireflies, whereas in SVGF that filter tends to locally illuminate the 
temporal antialiasing clamp window.
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26.5	 �SPECULAR LIGHT TRANSPORT

Unlike diffuse filtering, specular filtering is prone to visually overblur details in 
reflections. We have to carefully pick and weigh the samples that we merge to 
create an estimate of the specular lobe. Inspired by Stachowiak [13], we trace our 
specular rays in half resolution and resolve to full resolution afterward using a 
ratio estimator. The introduced bias is acceptable, and the estimator is able to 
preserve normal map details and roughness variations. The major challenge 
remains in reducing noise in high-variance scenarios, such as rough metallic 
surfaces, while adding as little bias as possible. During sampling, we only 
importance-sample our microfacet’s distribution term. The Fresnel and geometry 
terms are approximated by a lookup table [6].

26.5.1	 �TEMPORAL ACCUMULATION

Similar to the diffuse pass, we try to find the pixel’s history by reprojecting its 
position into our previous specular buffer. This is done by using the virtual ray 
length correction techniques of Stachowiak [13] and Aizenshtein [1]. To avoid 
artifacts due to hardware bilinear filtering, we have to weigh the four bilinear 
samples individually and keep track of the total weight. In a case where the 
reprojection fails completely, like a disocclusion, we can only use the newly 
upsampled result. We use a 3 × 3 Gaussian blurred version of the upsampled buffer 
with a nonlinearity, like the perceptual quantizer electro-optical transfer function 
(used as a gamma curve in high dynamic range video signal processing), to hide 
fireflies.

The variance-based neighborhood clamp of temporal filtering allows us to discard 
incorrect reprojections. However, if the targeted radiance is occasionally not part 
of the local YCoCg bounding box, then flickering occurs. This can be countered by 
biasing the specular lobe [13], applying a variance-based post filter after temporal 
accumulation [14], enlarging the spatial size of the neighborhood, or simply 
darkening the bright pixels that introduce the bias. We observe that the flickering 
is mostly caused by a temporally unstable maximum luminance component. 
Therefore, we chose to temporally smooth the maximum luminance of the resulting 
color clamp. This only requires storing one additional value and causes few side 
effects.
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26.5.2	 �REUSE OF DIFFUSE LOBE

The specular pass is performed after the diffuse pass. We reuse the filtered diffuse 
result in our specular pass for two reasons:

>> Low-variance fallback for high-roughness, dielectric specular lobes: Using the 
diffuse lobe as an approximation for the specular lobe is inaccurate. However, 
it is visually plausible since the lobe energy resides in a similar range. This 
saves performance on rough surfaces with moderate visual impact. For 
metals, we cannot rely on this simplification because the specular component 
is too visible.

>> Ambient lighting amount for the geometry in the reflection: In cases where we 
do not want to trace further and gather the incoming lighting at the hit point, 
we need to assume an ambient lighting factor. The reflective surface’s diffuse 
lighting proved to be a good approximation with little cost.

26.5.3	 �PATH TRACED INDIRECT LIGHTING

Adding path traced indirect lighting is required for mirror-like surfaces. It is 
costly due to its incoherent memory reads and suffers from high variance. Liu [10] 
proposes filtering the indirect diffuse component along with the indirect diffuse 
component of the mirrored surfaces. To properly decouple the filtered lighting 
from albedo and direct light, we would need to store and fetch multiple additional 
buffers for our reflections. Instead, we chose to filter across the dimensions of 
the random seed texture (5 × 5 in our case) during the resolve pass, combined 
with a tone-mapped average to reduce fireflies. The filter is bilateral and takes 
the reflection ray length and G-buffer normal into account to preserve geometry 
silhouettes in reflections and normal map details. Both the special filtering and 
the indirect diffuse filtering is only applied for low-roughness metal surfaces, 
which makes the extra work affordable. A faster variant, without tracing additional 
rays, consists of the ambient factor combined with a screen-space ambient 
occlusion factor based on the ray lengths, which can be interpreted as virtual 
screen depth.

26.5.4	 �LOBE FOOTPRINT ESTIMATION

Similar to Liu’s work [10], we scale the number of filtering fetches according to the 
screen-space size of the projected reflection lobe footprint. This can be done by 
calculating the dimensions of a two-dimensional scale matrix.

Since most surfaces are not planar, we also need to estimate the local curvature 
and distort the footprint accordingly. This is done by computing the local derivatives 
of the G-buffer normal. The neighbors are chosen according to the eigenvectors of 
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the two-dimensional lobe distortion matrix, which describes the lobe elongation 
and shrinking in the tangent space, projected to screen-space units. The smallest 
derivative of both neighbors is used to avoid artifacts at geometry edges. Finally, 
the number of samples is proportional to the matrix’s determinant. If the filter 
size is smaller than 2  times the tracing resolution, we switch to a fixed 3 × 3 
pixel kernel instead. This ensures that we consider all neighbors, which increases 
the reconstruction quality when dealing with curved (or normal-mapped) glossy 
surfaces at half resolution tracing. This is summarized in the following code.

 1 mat2 footPrint;

 2 // "Bounce-off" direction

 3 footPrint[0] = normalize(ssNormal.xy);

 4 // Lateral direction

 5 footPrint[1] = vec2(footPrint[0].y, -footPrint[0].x);

 6

 7 �vec2 footprintScale = vec2(roughness*rayLength / (rayLength + sceneZ));

 8

 9 // On a convex surface, the estimated footprint is smaller.

10 vec3 plane0 = cross(ssV, ssNormal);

11 vec3 plane1 = cross(plane0, ssNormal);

12 // estimateCurvature(...) calculates the depth gradient from the

13 // G-buffer's depth along the directions stored in footPrint.

14 vec2 curvature = estimateCurvature(footPrint, plane0, plane1);

15 �curvature = 1.0 / (1.0 + CURVATURE_SCALE*square(ssNormal.z)*curvature);

16 footPrint[0] *= curvature.x;

17 footPrint[1] *= curvature.y;

18

19 // Ensure constant scale across different camera lenses.

20 footPrint *= KERNEL_FILTER / tan(cameraFov * 0.5);

21

22 // Scale according to NoV proportional lobe distortions. NoV contains

23 // the saturated dot product of the view vector and surface normal

24 footPrint[0] /= (1.0 - ELONGATION) + ELONGATION * NoV;

25 footPrint[1] *= (1.0 - SHRINKING) + SHRINKING * NoV;

26

27 for (i : each sample)

28 {

29     vec2 samplingPosition = fragmentCenter + footPrint * sample[i];

30     // ...

31 }

26.6	 �TRANSPARENCY

Alpha-blended surfaces’ reflections are more complex, since we do not want to 
store the pixel’s history for each alpha layer. This is possible but would increase 
the implementation’s memory requirements. Instead, we use the main temporal 
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antialiasing filter to take care of stochastic noise. This is acceptable because we 
assume that most alpha-blended surfaces (like glass) have a low roughness and 
therefore do not suffer from much variance during importance sampling of the 
specular distribution. Our order-independent transparency approach sorts the 
alpha pixels into layers before shading them, which allows us to employ different 
quality settings for each layer. We trace all layers in half resolution, just as for 
our specular component on opaque geometry. In contrast to the specular pass, 
we lack a G-buffer, which is why we cannot use the identical upscale algorithm. 
Instead, we implement a spatiotemporal shuffle by using blue noise–based offsets 
per pixel in the full resolution pass. This can be seen as a blur filter with only one 
fetch. Combined with the temporal antialiasing filter, this can be used to trade 
undersampling artifacts with noise.

26.7	 �PERFORMANCE

The performance results were measured using NVIDIA Titan V hardware at a 
resolution of 1920 × 1080. The current implementation still uses custom shaders 
for traversal, instead of DirectX Raytracing, for example. The scene contains  
15 million polygons and represents an average architectural scene, as shown in 
Figure 26-7. The total frame time during these measurements was continuously 
below 9 ms.
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Figure 26-7.  Test scene for benchmarking. The scene was created in Autodesk Revit and includes 
various interior objects, trees, water, and a variety of materials.

Table 26-1 illustrates the timings of relevant sections in a real-time walkthrough 
scenario with our default high-quality configuration. Many system parameters 
can be adjusted to increase the quality and approach ground truth much more 
closely, e.g., for still images and videos, or to gain more performance for virtual 
reality (VR) rendering where low frame times are essential for the experience. 
Besides common parameters, like the number of samples and light bounces, the 
filter kernel sizes, and the number of BVH polygons, we also found adjusting the 
maximum ray lengths and the threshold for the specular-to-diffuse fallback (see 
26.5.2) to be effective tools to strike a balance between quality and frame time for 
the desired use case.
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26.7.1	 �STEREO RENDERING FOR VIRTUAL REALITY

For VR, we chose one eye to be dominant and alternate our choice each frame. For 
the dominant eye, we update the diffuse lighting. For the other eye, the past frame’s 
information is reprojected in the same way as we reproject our diffuse and specular 
buffers in a regular scene rendering cycle. However, this approach creates artifacts. 
Geometric occlusion causes holes during camera movement. Due to the stochastic 
nature of our sampling, differences in the integration results become apparent 
when viewed with a stereoscopic headset. The differences can be the result of 
different sampling seeds at the same world-space location. To address both issues, 
we reuse the newly updated information of the dominant eye by reprojecting it. 
It is then merged with a constant blend factor γ onto the other eye. If the past 
information of the identical eye from the last frame could not be used, but we have a 
successful reprojection, γ = 1.

For the diffuse ray heuristic, we increase the desired sample density at the center 
of the image. On outside regions, we also tolerate sample densities below one. 
These can occur after a reprojection, but are still acceptable in most scenarios. 
We use this foveation approach to concentrate our computational resources where 
they are most effective.

26.7.2	 �DISCUSSION

Our described global illumination algorithm is able to scale across different 
performance requirements. It can output high-quality images with multiple 
bounces, and with a different parameter set, it is able to reach the low frame 
times required for VR—with almost the same code path. Some of the state-of-
the-art image G-buffer–based techniques, like post-processed depth of field or 
motion blur, work sufficiently well while being highly efficient. Others, like shadow 

Table 26-1.  Pass times of specular and diffuse light transport. Timings of diffuse passes are given for 
one indirect bounce. The number of new rays depends on the success of the last frame’s reprojection. 
Therefore, camera movement causes higher workload. The diffuse filtering only depends on the 
percentage of geometry pixels visible on the screen. The specular tracing is performed in half 
resolution. Unlike the diffuse pass, the reprojection for specular light transport happens in the 
temporal filter. The spatial filter runtime increases with rough materials due to their larger footprint.
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mapping, can be improved by ray tracing. Replacing a high number of shadow-
mapped lights by ray tracing remains a performance challenge, yet it already 
promises high-quality results [5].

We also see room for improvement in the scalability of ray traced reflections on 
multiple alpha-blended layers. This is related to the calculation of subsurface 
scattering phenomena that are currently approximated by lighting in a volume 
texture in our case. For diffuse and specular integration, we would like to make 
specular ray tracing benefit from a ray heuristic, instead of equally sampling all 
screen regions each frame.
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