
RAY 
 TRACING 
 GEMS
HIGH-QUALITY AND REAL-TIME RENDERING 
WITH DXR AND OTHER APIS

EDITED BY
ERIC HAINES
TOMAS AKENINE-MÖLLER
SECTION EDITORS
ALEXANDER KELLER
MORGAN MCGUIRE
JACOB MUNKBERG
MATT PHARR

PETER SHIRLEY
INGO WALD
CHRIS WYMAN



Ray Tracing Gems
High-Quality and Real-Time Rendering 

with DXR and Other APIs

Edited by Eric Haines and Tomas Akenine-Möller

Section Editors  
Alexander Keller
Morgan McGuire
Jacob Munkberg
Matt Pharr
Peter Shirley
Ingo Wald
Chris Wyman



Ray Tracing Gems: High-Quality and Real-Time Rendering  
with DXR and Other APIs

ISBN-13 (pbk): 978-1-4842-4426-5		         ISBN-13 (electronic): 978-1-4842-4427-2
https://doi.org/10.1007/978-1-4842-4427-2

Library of Congress Control Number: 2019934207

Copyright © 2019 by NVIDIA

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial 
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in 
this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as 
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material 
contained herein.

Open Access  This book is licensed under the terms of the Creative Commons  
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.
org/licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this book or parts of it.

The images or other third party material in this book are included in the book's Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need 
to obtain permission directly from the copyright holder.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by NVIDIA

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,  
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer 
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses 
are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at 
www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on 
GitHub via the book's product page, located at www.apress.com/9781484244265. For more detailed information, 
please visit www.apress.com/source-code.

Printed on acid-free paper

Edited by  
Eric Haines
Tomas Akenine-Möller
Section Editors:  
Alexander Keller
Morgan McGuire

Jacob Munkberg
Matt Pharr
Peter Shirley
Ingo Wald
Chris Wyman

https://doi.org/10.1007/978-1-4842-4427-2


iii

Preface���������������������������������������������������������������������������������������������������� xiii

Foreword�������������������������������������������������������������������������������������������������� xv

Contributors�������������������������������������������������������������������������������������������� xxi

Notation�������������������������������������������������������������������������������������������������� xliii

Table of Contents

PART I: Ray Tracing Basics���������������������������������������������������������������� 5

Chapter 1: Ray Tracing Terminology����������������������������������������������������������� 7

1.1 ��Historical Notes���������������������������������������������������������������������������������������7

1.2 ��Definitions������������������������������������������������������������������������������������������������8

Chapter 2: What is a Ray?������������������������������������������������������������������������� 15

2.1 ��Mathematical Description of a Ray��������������������������������������������������������15

2.2 ��Ray Intervals������������������������������������������������������������������������������������������17

2.3 ��Rays in DXR��������������������������������������������������������������������������������������������18

2.4 ��Conclusion����������������������������������������������������������������������������������������������19

Chapter 3: Introduction to DirectX Raytracing������������������������������������������ 21

3.1 ��Introduction��������������������������������������������������������������������������������������������21

3.2 ��Overview�������������������������������������������������������������������������������������������������21

3.3 ��Getting Started���������������������������������������������������������������������������������������22

3.4 ��The DirectX Raytracing Pipeline������������������������������������������������������������23

3.5 ��New HLSL Support for DirectX Raytracing��������������������������������������������25

3.6 ��A Simple HLSL Ray Tracing Example����������������������������������������������������28

3.7 ��Overview of Host Initialization for DirectX Raytracing���������������������������30

3.8 ��Basic DXR Initialization and Setup���������������������������������������������������������31



iv

  3.9 ��Ray Tracing Pipeline State Objects������������������������������������������������������37

3.10 ��Shader Tables���������������������������������������������������������������������������������������41

3.11 ��Dispatching Rays����������������������������������������������������������������������������������43

3.12 ��Digging Deeper and Additional Resources������������������������������������������44

3.13 ��Conclusion��������������������������������������������������������������������������������������������45

Chapter 4: A Planetarium Dome Master Camera�������������������������������������� 49

4.1 ��Introduction��������������������������������������������������������������������������������������������49

4.2 ��Methods��������������������������������������������������������������������������������������������������50

4.3 ��Planetarium Dome Master Projection Sample Code����������������������������58

Chapter 5: Computing Minima and Maxima of Subarrays������������������������� 61

5.1 ��Motivation�����������������������������������������������������������������������������������������������61

5.2 ��Naive Full Table Lookup�������������������������������������������������������������������������62

5.3 ��The Sparse Table Method�����������������������������������������������������������������������62

5.4 ��The (Recursive) Range Tree Method������������������������������������������������������64

5.5 ��Iterative Range Tree Queries�����������������������������������������������������������������66

5.6 ��Results���������������������������������������������������������������������������������������������������69

5.7 ��Summary������������������������������������������������������������������������������������������������69

PART II: Intersections and Efficiency����������������������������������������������� 75

Chapter 6: A Fast and Robust Method for Avoiding Self-Intersection������� 77

6.1 ��Introduction��������������������������������������������������������������������������������������������77

6.2 ��Method����������������������������������������������������������������������������������������������������78

6.3 ��Conclusion����������������������������������������������������������������������������������������������84

Chapter 7: Precision Improvements for  Ray/Sphere Intersection����������� 87

7.1 ��Basic Ray/Sphere Intersection��������������������������������������������������������������87

7.2 ��Floating-Point Precision Considerations�����������������������������������������������89

7.3 ��Related Resources���������������������������������������������������������������������������������93

Table of Contents



v

Chapter 8: Cool Patches: A Geometric Approach to  
Ray/Bilinear Patch Intersections�������������������������������������������������������������� 95

8.1 ��Introduction and Prior Art����������������������������������������������������������������������95

8.2 ��GARP Details����������������������������������������������������������������������������������������100

8.3 ��Discussion of Results���������������������������������������������������������������������������102

8.4 ��Code�����������������������������������������������������������������������������������������������������105

Chapter 9: Multi-Hit Ray Tracing in DXR������������������������������������������������� 111

9.1 ��Introduction������������������������������������������������������������������������������������������111

9.2 ��Implementation������������������������������������������������������������������������������������113

9.3 ��Results�������������������������������������������������������������������������������������������������119

9.4 ��Conclusions������������������������������������������������������������������������������������������124

Chapter 10: A Simple Load-Balancing Scheme with  
High Scaling Efficiency��������������������������������������������������������������������������� 127

10.1 ��Introduction����������������������������������������������������������������������������������������127

10.2 ��Requirements�������������������������������������������������������������������������������������128

10.3 ��Load Balancing����������������������������������������������������������������������������������128

10.4 ��Results�����������������������������������������������������������������������������������������������132

PART III: Reflections, Refractions, and Shadows��������������������������� 137

Chapter 11: Automatic Handling of Materials in Nested Volumes����������� 139

11.1 ��Modeling Volumes������������������������������������������������������������������������������139

11.2 ��Algorithm�������������������������������������������������������������������������������������������142

11.3 ��Limitations�����������������������������������������������������������������������������������������146

Chapter 12: A Microfacet-Based Shadowing Function to  
Solve the Bump Terminator Problem������������������������������������������������������ 149

12.1 ��Introduction����������������������������������������������������������������������������������������149

12.2 ��Previous Work������������������������������������������������������������������������������������150

12.3 ��Method������������������������������������������������������������������������������������������������151

12.4 ��Results�����������������������������������������������������������������������������������������������157

Table of Contents



vi

Chapter 13: Ray Traced Shadows: Maintaining Real-Time  
Frame Rates������������������������������������������������������������������������������������������� 159

13.1 ��Introduction����������������������������������������������������������������������������������������159

13.2 ��Related Work��������������������������������������������������������������������������������������161

13.3 ��Ray Traced Shadows��������������������������������������������������������������������������162

13.4 ��Adaptive Sampling�����������������������������������������������������������������������������164

13.5 ��Implementation����������������������������������������������������������������������������������171

13.6 ��Results�����������������������������������������������������������������������������������������������175

13.7 ��Conclusion and Future Work�������������������������������������������������������������179

Chapter 14: Ray-Guided Volumetric Water Caustics in  
Single Scattering Media with DXR����������������������������������������������������������� 183

14.1 ��Introduction����������������������������������������������������������������������������������������183

14.2 ��Volumetric Lighting and Refracted Light�������������������������������������������186

14.3 ��Algorithm�������������������������������������������������������������������������������������������189

14.4 ��Implementation Details���������������������������������������������������������������������197

14.5 ��Results�����������������������������������������������������������������������������������������������198

14.6 ��Future Work����������������������������������������������������������������������������������������200

14.7 ��Demo��������������������������������������������������������������������������������������������������200

PART IV: Sampling������������������������������������������������������������������������� 205

Chapter 15: On the Importance of Sampling������������������������������������������� 207

15.1 ��Introduction����������������������������������������������������������������������������������������207

15.2 ��Example: Ambient Occlusion�������������������������������������������������������������208

15.3 ��Understanding Variance���������������������������������������������������������������������213

15.4 ��Direct Illumination�����������������������������������������������������������������������������216

15.5 ��Conclusion������������������������������������������������������������������������������������������221

Chapter 16: Sampling Transformations Zoo������������������������������������������� 223

16.1 ��The Mechanics of Sampling���������������������������������������������������������������223

16.2 ��Introduction to Distributions��������������������������������������������������������������224

Table of Contents



vii

16.3 ��One-Dimensional Distributions���������������������������������������������������������226

16.4 ��Two-Dimensional Distributions���������������������������������������������������������230

16.5 ��Uniformly Sampling Surfaces������������������������������������������������������������234

16.6 ��Sampling Directions���������������������������������������������������������������������������239

16.7 ��Volume Scattering������������������������������������������������������������������������������243

16.8 ��Adding to the Zoo Collection��������������������������������������������������������������244

Chapter 17: Ignoring the Inconvenient When Tracing Rays��������������������� 247

17.1 ��Introduction����������������������������������������������������������������������������������������247

17.2 ��Motivation�������������������������������������������������������������������������������������������247

17.3 ��Clamping��������������������������������������������������������������������������������������������250

17.4 ��Path Regularization���������������������������������������������������������������������������251

17.5 ��Conclusion������������������������������������������������������������������������������������������252

Chapter 18: Importance Sampling of Many Lights on the GPU���������������� 255

18.1 ��Introduction����������������������������������������������������������������������������������������255

18.2 ��Review of Previous Algorithms����������������������������������������������������������257

18.3 ��Foundations����������������������������������������������������������������������������������������259

18.4 ��Algorithm�������������������������������������������������������������������������������������������265

18.5 ��Results�����������������������������������������������������������������������������������������������271

18.6 ��Conclusion������������������������������������������������������������������������������������������280

PART V: Denoising and Filtering���������������������������������������������������� 287

Chapter 19: Cinematic Rendering in UE4 with  Real-Time  
Ray Tracing and Denoising���������������������������������������������������������������������� 289

19.1 ��Introduction����������������������������������������������������������������������������������������289

19.2 ��Integrating Ray Tracing in Unreal Engine 4����������������������������������������290

19.3 ��Real-Time Ray Tracing and Denoising����������������������������������������������300

19.4 ��Conclusions����������������������������������������������������������������������������������������317

Table of Contents



viii

Chapter 20: Texture Level of Detail Strategies for  
Real-Time Ray Tracing��������������������������������������������������������������������������� 321

20.1 ��Introduction����������������������������������������������������������������������������������������321

20.2 ��Background����������������������������������������������������������������������������������������323

20.3 ��Texture Level of Detail Algorithms����������������������������������������������������324

20.4 ��Implementation����������������������������������������������������������������������������������336

20.5 ��Comparison and Results��������������������������������������������������������������������338

20.6 ��Code����������������������������������������������������������������������������������������������������342

Chapter 21: Simple Environment Map Filtering Using  
Ray Cones and Ray Differentials������������������������������������������������������������� 347

21.1 ��Introduction����������������������������������������������������������������������������������������347

21.2 ��Ray Cones�������������������������������������������������������������������������������������������348

21.3 ��Ray Differentials���������������������������������������������������������������������������������349

21.4 ��Results�����������������������������������������������������������������������������������������������349

Chapter 22: Improving Temporal Antialiasing with  
Adaptive Ray Tracing������������������������������������������������������������������������������ 353

22.1 ��Introduction����������������������������������������������������������������������������������������353

22.2 ��Previous Temporal Antialiasing���������������������������������������������������������355

22.3 ��A New Algorithm��������������������������������������������������������������������������������356

22.4 ��Early Results��������������������������������������������������������������������������������������363

22.5 ��Limitations�����������������������������������������������������������������������������������������366

22.6 ��The Future of Real-Time Ray Traced Antialiasing�����������������������������367

22.7 ��Conclusion������������������������������������������������������������������������������������������368

PART VI: Hybrid Approaches and Systems������������������������������������� 375

Chapter 23: Interactive Light Map and Irradiance Volume  
Preview in Frostbite�������������������������������������������������������������������������������� 377

23.1 ��Introduction����������������������������������������������������������������������������������������377

23.2 ��GI Solver Pipeline�������������������������������������������������������������������������������378

23.3 ��Acceleration Techniques��������������������������������������������������������������������393

Table of Contents



ix

23.4 ��Live Update�����������������������������������������������������������������������������������������398

23.5 ��Performance and Hardware���������������������������������������������������������������400

23.6 ��Conclusion������������������������������������������������������������������������������������������405

Chapter 24: Real-Time Global Illumination with Photon Mapping���������� 409

24.1 ��Introduction����������������������������������������������������������������������������������������409

24.2 ��Photon Tracing�����������������������������������������������������������������������������������411

24.3 ��Screen-Space Irradiance Estimation�������������������������������������������������418

24.4 ��Filtering����������������������������������������������������������������������������������������������425

24.5 ��Results�����������������������������������������������������������������������������������������������430

24.6 ��Future Work����������������������������������������������������������������������������������������434

Chapter 25: Hybrid Rendering for Real-Time Ray Tracing���������������������� 437

25.1 ��Hybrid Rendering Pipeline Overview�������������������������������������������������437

25.2 ��Pipeline Breakdown���������������������������������������������������������������������������439

25.3 ��Performance��������������������������������������������������������������������������������������468

25.4 ��Future�������������������������������������������������������������������������������������������������469

25.5 ��Code����������������������������������������������������������������������������������������������������469

Chapter 26: Deferred Hybrid Path Tracing���������������������������������������������� 475

26.1 ��Overview���������������������������������������������������������������������������������������������475

26.2 ��Hybrid Approach���������������������������������������������������������������������������������476

26.3 ��BVH Traversal�������������������������������������������������������������������������������������478

26.4 ��Diffuse Light Transport����������������������������������������������������������������������481

26.5 ��Specular Light Transport�������������������������������������������������������������������485

26.6 ��Transparency��������������������������������������������������������������������������������������487

26.7 ��Performance��������������������������������������������������������������������������������������488

Chapter 27: Interactive Ray Tracing Techniques for  
High-Fidelity Scientific Visualization������������������������������������������������������ 493

27.1 ��Introduction����������������������������������������������������������������������������������������493

27.2 ��Challenges Associated with Ray Tracing Large Scenes��������������������494

Table of Contents



x

27.3 ��Visualization Methods������������������������������������������������������������������������500

27.4 ��Closing Thoughts�������������������������������������������������������������������������������512

PART VII: Global Illumination��������������������������������������������������������� 519

Chapter 28: Ray Tracing Inhomogeneous Volumes��������������������������������� 521

28.1 ��Light Transport in Volumes����������������������������������������������������������������521

28.2 ��Woodcock Tracking����������������������������������������������������������������������������522

28.3 ��Example: A Simple Volume Path Tracer��������������������������������������������524

28.4 ��Further Reading���������������������������������������������������������������������������������530

Chapter 29: Efficient Particle Volume Splatting in a Ray Tracer������������� 533

29.1 ��Motivation�������������������������������������������������������������������������������������������533

29.2 ��Algorithm�������������������������������������������������������������������������������������������534

29.3 ��Implementation����������������������������������������������������������������������������������535

29.4 ��Results�����������������������������������������������������������������������������������������������539

29.5 ��Summary��������������������������������������������������������������������������������������������539

Chapter 30: Caustics Using Screen-Space Photon Mapping�������������������� 543

30.1 ��Introduction����������������������������������������������������������������������������������������543

30.2 ��Overview���������������������������������������������������������������������������������������������544

30.3 ��Implementation����������������������������������������������������������������������������������545

30.4 ��Results�����������������������������������������������������������������������������������������������552

30.5 ��Code����������������������������������������������������������������������������������������������������553

Chapter 31: Variance Reduction via Footprint Estimation in  
the Presence of Path Reuse�������������������������������������������������������������������� 557

31.1 ��Introduction����������������������������������������������������������������������������������������557

31.2 ��Why Assuming Full Reuse Causes a Broken MIS Weight�����������������559

31.3 ��The Effective Reuse Factor����������������������������������������������������������������560

31.4 ��Implementation Impacts��������������������������������������������������������������������565

31.5 ��Results�����������������������������������������������������������������������������������������������566

Table of Contents



xi

Chapter 32: Accurate Real-Time Specular Reflections with  
Radiance Caching������������������������������������������������������������������������������������ 571

32.1 ��Introduction����������������������������������������������������������������������������������������571

32.2 ��Previous Work������������������������������������������������������������������������������������573

32.3 ��Algorithm�������������������������������������������������������������������������������������������575

32.4 ��Spatiotemporal Filtering��������������������������������������������������������������������587

32.5 ��Results�����������������������������������������������������������������������������������������������598

32.6 ��Conclusion������������������������������������������������������������������������������������������604

32.7 ��Future Work����������������������������������������������������������������������������������������605

Table of Contents



xiii

Preface
Ray tracing has finally become a core component of real-time rendering. We 
now have consumer GPUs and APIs that accelerate ray tracing, but we also need 
algorithms with a focus on making it all run at 60 frames per second or more, while 
providing high-quality images for each frame. These methods are what this book is 
about.

Prefaces are easy to skip, but we want to make sure you to know two things:

>> Supplementary code and other materials related to this book can be found 
linked at http://raytracinggems.com.

>> All the content in this book is open access.

The second sounds unexciting, but it means you can freely copy and redistribute 
any chapter, or the whole book, as long as you give appropriate credit and 
you are not using it for commercial purposes. The specific license is Creative 
Commons Attribution 4.0 International License (CC-BY-NC-ND), https://
creativecommons.org/licenses/by-nc-nd/4.0/. We put this into place so that 
authors, and everyone else, could disseminate the information in this volume as 
quickly as possible.

Thanks are in order, and the support from everyone involved has been one of the 
great pleasures of working on this project. When we approached Aaron Lefohn, 
David Luebke, Steven Parker, and Bill Dally at NVIDIA with the idea of making a 
Gems-style book on ray tracing, they immediately thought that it was a great idea 
to put into reality. We thank them for helping make this happen.

We are grateful to Anthony Cascio and Nadeem Mohammad for help with the 
website and submissions system, and extra thanks to Nadeem for his contract 
negotiations, getting the book to be open access and free in electronic-book form.

The time schedule for this book has been extremely tight, and without the 
dedication of NVIDIA’s creative team and the Apress publisher production team, 
the publication of this book would have been much delayed. Many on the NVIDIA 
creative team generated the Project Sol imagery that graces the cover and the 
beginnings of the seven parts. We want to particularly thank Amanda Lam, Rory 
Loeb, and T.J. Morales for making all figures in the book have a consistent style, 

http://raytracinggems.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


xiv

along with providing the book cover design and part introduction layouts. We also 
want to thank Dawn Bardon, Nicole Diep, Doug MacMillan, and Will Ramey at 
NVIDIA for their administrative support.

Natalie Pao and the production team at Apress have our undying gratitude. They 
have labored tirelessly with us to meet our submission deadline, along with 
working through innumerable issues along the way.

In addition, we want to thank the following people for putting in extra effort to help 
make the book that much better: Pontus Andersson, Andrew Draudt, Aaron Knoll, 
Brandon Lloyd, and Adam Marrs.

Major credit goes out to our dream team of section editors, Alexander Keller, 
Morgan McGuire, Jacob Munkberg, Matt Pharr, Peter Shirley, Ingo Wald, and Chris 
Wyman, for their careful reviewing and editing, and for finding external reviewers 
when needed.

Finally, there would be no book without the chapter authors, who have generously 
shared their experiences and knowledge with the graphics community. They have 
worked hard to improve their chapters in many different ways, often within hours 
or minutes of us asking for just one more revision, clarification, or figure. Thanks to 
you all!

—Eric Haines and Tomas Akenine-Möller
January 2019

Preface



xv

Foreword
by Turner Whitted and Martin Stich

Simplicity, parallelism, and accessibility. These are themes that come to mind with 
ray tracing. I never thought that ray tracing would provide the ultimate vehicle for 
global illumination, but its simplicity continues to make it appealing. Few graphics 
rendering algorithms are as easy to visualize, explain, or code. This simplicity 
allows a novice programmer to easily render a couple of transparent spheres 
and a checkerboard illuminated by point light sources. In modern practice the 
implementation of path tracing and other departures from the original algorithm 
are a bit more complicated, but they continue to intersect simple straight lines with 
whatever lies along their paths.

The term “embarrassingly parallel” was applied to ray tracing long before there 
was any reasonable parallel engine on which to run it. Today ray tracing has met its 
match in the astonishing parallelism and raw compute power of modern GPUs.

Accessibility has always been an issue for all programmers. Decades ago if a 
computer did not do what I wanted it to do, I would walk around behind it and 
make minor changes to the circuitry. (I am not joking.) In later years it became 
unthinkable to even peer underneath the layers of a graphics API to add 
customization. That changed subtly a couple of decades ago with the gradual 
expansion of programmable shading. The flexibility of today’s GPUs along with 
supporting programming tools provide unprecedented access to the full computing 
potential of parallel processing elements.

So how did this all lead to real-time ray tracing? Obviously the challenges of 
performance, complexity, and accuracy have not deterred graphics programmers 
as they simultaneously advanced quality and speed. Graphics processors have 
evolved as well, so that ray tracing is no longer a square peg in a round hole. The 
introduction of explicit ray tracing acceleration features into graphics hardware is 
a major step toward bringing real-time ray tracing into common usage. Combining 
the simplicity and inherent parallelism of ray tracing with the accessibility and 
horsepower of modern GPUs brings real-time ray tracing performance within the 
reach of every graphics programmer. However, getting a driver’s license isn’t the 
same as winning an automobile race. There are techniques to be learned. There is 
experience to be shared. As with any discipline, there are tricks of the trade.



xvi

When those tricks and techniques are shared by the experts who have contributed 
to this text, they truly become gems.

—Turner Whitted
December 2018

∗  ∗  ∗

It is an amazing time to be in graphics! We have entered the era of real-time ray 
tracing—an era that everyone knew would arrive eventually, but until recently 
was considered years, maybe decades, away. The last time our field underwent 
a “big bang” event like this was in 2001, when the first hardware and API support 
for programmable shading opened up a world of new possibilities for developers. 
Programmable shading catalyzed the invention of a great number of rendering 
techniques, many of which are covered in books much like this one (e.g., Real-
Time Rendering and GPU Gems, to name a few). The increasing ingenuity behind 
these techniques, combined with the growing horsepower and versatility of 
GPUs, has been the main driver of real-time graphics advances over the past few 
years. Games and other graphics applications look beautiful today thanks to this 
evolution.

And yet, while progress continues to be made to this day, to a degree we have 
reached a limit on what is possible with rasterization-based approaches. In 
particular, when it comes to simulating the behavior of light (the essence of 
realistic rendering), the improvements have reached a point of diminishing returns. 
The reason is that any form of light transport simulation fundamentally requires 
an operation that rasterization cannot provide: the ability to ask “what is around 
me?” from any given point in the scene. Because this is so essential, most of the 
important rasterization techniques invented over the past decades are at their 
cores actually clever workarounds for just that limitation. The approach that they 
typically take is to pre-generate some data structure containing approximate scene 
information and then to perform lookups into that structure during shading.

Shadow maps, baked light maps, screen-space buffers for reflections and ambient 
occlusion, light probes, and voxel grids are all examples of such workarounds. 
The problem that they have in common is the limited fidelity of the helper data 
structures on which they rely. The structures necessarily contain only simplified 
representations, as precomputing and storing them at the quantity and resolutions 
required for accurate results is infeasible in all but the most trivial scenarios. As a 
result, the techniques based on these data structures all have unavoidable failure 
cases that lead to obvious rendering artifacts or missing effects altogether. This 

Foreword



xvii

is why contact shadows do not look quite right, objects behind the camera are 
missing in reflections, indirect lighting detail is too crude, and so on. Furthermore, 
manual parameter tuning is usually needed for these techniques to produce their 
best results.

Enter ray tracing. Ray tracing is able to solve these cases, elegantly and accurately, 
because it provides precisely the basic operation that rasterization techniques try to 
emulate: allowing us to issue a query, from anywhere in the scene, into any direction 
we like and find out which object was hit where and at what distance. It can do this 
by examining actual scene geometry, without being limited to approximations. As a 
result, computations based on ray tracing are exact enough to simulate all kinds of 
light transport at a very fine level of detail. There is no substitute for this capability 
when the goal is photorealism, where we need to determine the complicated paths 
along which photons travel through the virtual world. Ray tracing is a fundamental 
ingredient of realistic rendering, which is why its introduction to the real-time 
domain was such a significant step for computer graphics.

Using ray tracing to generate images is not a new idea, of course. The origins date 
back to the 1960s, and applications such as film rendering and design visualization 
have been relying on it for decades to produce lifelike results. What is new, 
however, is the speed at which rays can be processed on modern systems. Thanks 
to dedicated ray tracing silicon, throughput on the recently introduced NVIDIA 
Turing GPUs is measured in billions of rays per second, an order of magnitude 
improvement over the previous generation. The hardware that enables this level 
of performance is called RT Core, a sophisticated unit that took years to research 
and develop. RT Cores are tightly coupled with the streaming multiprocessors 
(SMs) on the GPU and implement the critical “inner loop” of a ray trace operation: 
the traversal of bounding volume hierarchies (BVHs) and intersection testing of 
rays against triangles. Performing these computations in specialized circuits not 
only executes them much faster than a software implementation could, but also 
frees up the generic SM cores to do other work, such as shading, while rays are 
processed in parallel. The massive leap in performance achieved through RT 
Cores laid the foundation for ray tracing to become feasible in demanding real-time 
applications.

Enabling applications—games in particular—to effectively utilize RT Cores also 
required the creation of new APIs that integrate seamlessly into established 
ecosystems. In close collaboration with Microsoft, DirectX Raytracing (DXR) 
was developed and turned into an integral part of DirectX 12. Chapter 3 provides 
an introduction. The NV_ray_tracing extension to Vulkan exposes equivalent 
concepts in the Khronos API.

Foreword



xviii

The key design decisions that went into these interfaces were driven by the desire 
to keep the overall abstraction level low (staying true to the direction of DirectX 12 
and Vulkan), while at the same time allowing for future hardware developments 
and different vendor implementations. On the host API side, this meant putting 
the application in control of aspects such as resource allocations and transfers, 
shader compilation, BVH construction, and various forms of synchronization. 
Ray generation and BVH construction, which execute on the GPU timeline, are 
invoked using command lists to enable multithreaded dispatching and seamless 
interleaving of ray tracing work with raster and compute. The concept of shader 
tables was specifically developed to provide a lightweight way of associating scene 
geometry with shaders and resources, avoiding the need for additional driver-
side data structures that track scene graphs. To GPU device code, ray tracing is 
exposed through several new shader stages. These stages provide programmable 
hooks at natural points during ray processing—when an intersection between a 
ray and the scene occurs, for example. The control flow of a ray tracing dispatch 
therefore alternates between programmable stages and fixed-function (potentially 
hardware-accelerated) operations such as BVH traversal or shader scheduling. 
This is analogous to a traditional graphics pipeline, where programmable shader 
execution is interleaved with fixed-function stages like the rasterizer (which itself 
can be viewed as a scheduler for fragment shaders). With this model, GPU vendors 
have the ability to evolve the fixed-function hardware architecture without breaking 
existing APIs.

Fast ray tracing GPUs and APIs are now widely available and have added a 
powerful new tool to the graphics programmer’s toolbox. However, by no means 
does this imply that real-time graphics is a solved problem. The unforgiving frame 
rate requirements of real-time applications translate to ray budgets that are far 
too small to naively solve full light transport simulations with brute force. Not 
unlike the advances of rasterization tricks over many years, we will see an ongoing 
development of clever ray tracing techniques that will narrow the gap between 
real-time performance and offline-rendered “final pixel” quality. Some of these 
techniques will build on the vast experience and research in the field of non-real-
time production rendering. Others will be unique to the demands of real-time 
applications such as game engines. Two great case studies along those lines, 
where graphics engineers from Epic, SEED, and NVIDIA have pushed the envelope 
in some of the first DXR-based demos, can be found in Chapters 19 and 25.

As someone fortunate enough to have played a role in the creation of NVIDIA’s ray 
tracing technology, finally rolling it out in 2018 has been an extremely rewarding 
experience. Within a few months, real-time ray tracing went from being a research 
niche to a consumer product, complete with vendor-independent API support, 

Foreword



xix

dedicated hardware in mainstream GPUs, and—with EA’s Battlefield V —the first 
AAA game title to ship accelerated ray traced effects. The speed at which ray 
tracing is being adopted by game engine providers and the level of enthusiasm 
that we are seeing from developers are beyond all expectations. There is clearly 
a strong desire to take real-time image quality to a level possible only with ray 
tracing, which in turn inspires us at NVIDIA to keep pushing forward with the 
technology. Indeed, graphics is still at the beginning of the ray tracing era: The 
coming decade will see even more powerful GPUs, advances in algorithms, the 
incorporation of artificial intelligence into many more aspects of rendering, and 
game engines and content authored for ray tracing from the ground up. There is a 
lot to be done before graphics is “good enough,” and one of the tools that will help 
reach the next milestones is this book.

Eric Haines and Tomas Akenine-Möller are graphics veterans whose work has 
educated and inspired developers and researchers for decades. With this book, 
they focus on the area of ray tracing at just the right time as the technology gathers 
unprecedented momentum. Some of the top experts in the field from all over the 
industry have shared their knowledge and experience in this volume, creating an 
invaluable resource for the community that will have a lasting impact on the future 
of graphics.

—Martin Stich
DXR & RTX Raytracing Software Lead, NVIDIA

December 2018

Foreword



xxi

Maksim Aizenshtein is a senior system software engineer at 
NVIDIA in Helsinki. His current work and research focuses 
on real-time ray tracing and modern rendering engine 
design. His previous position was 3DMark team lead at UL 
Benchmarks. Under his lead, the 3DMark team implemented 
ray tracing support with the DirectX Raytracing API, as 
well as devised new rendering techniques for real-time ray 
tracing. He also led the development and/or contributed to 
various benchmarks released by UL Benchmarks. Before 
UL Benchmarks, at Biosense-Webster, he was responsible 

for GPU-based rendering in new medical imaging systems. Maksim received his BSc in 
computer science from Israel’s Institute of Technology in 2011. 

Tomas Akenine-Möller is a distinguished research scientist 
at NVIDIA, Sweden, since 2016, and currently on leave from 
his position as professor in computer graphics at Lund 
University. Tomas coauthored Real-Time Rendering and 
Immersive Linear Algebra and has written 100+ research 
papers. Previously, he worked at Ericsson Research and Intel.

 

Johan Andersson is the CTO at Embark, working on exploring 
the creative potential of new technologies. For the past  
18 years he has been working with rendering, performance, 
and core engine systems at SEED, DICE, and Electronic Arts 
and was one of the architects on the Frostbite game engine. 
Johan is a member of multiple industry and hardware advisory 
boards and has frequently presented at GDC, SIGGRAPH, and 
other conferences on topics such as rendering, performance, 
game engine design, and GPU architecture.

Contributors



xxii

Magnus Andersson joined NVIDIA in 2016 and is a senior 
software developer, mainly focusing on ray tracing. He 
received an MS in computer science and engineering and 
a PhD in computer graphics from Lund University in 2008 
and 2015, respectively. Magnus’s PhD studies were funded 
by the Intel Corporation, and his research interests include 
stochastic rasterization techniques and occlusion culling.

 

Dietger van Antwerpen is a senior graphics software 
engineer at NVIDIA in Berlin. He wrote his graduate thesis 
on the topic of physically based rendering on the GPU and 
continues working on professional GPU renderers at NVIDIA 
since 2012. He is an expert in physically based light transport 
simulation and parallel computing. Dietger has contributed 
to the NVIDIA Iray light transport simulation and rendering 
system and the NVIDIA OptiX ray tracing engine.

 

Diede Apers is a rendering engineer at Frostbite in 
Stockholm. He graduated in 2016 from Breda University of 
Applied Sciences with a master’s degree in game technology. 
Prior to that he did an internship at Larian Studios while 
studying digital arts and entertainment at Howest University 
of Applied Sciences.

 

Colin Barré-Brisebois is a senior rendering engineer at 
SEED, a cross-disciplinary team working on cutting-edge 
future technologies and creative experiences at Electronic 
Arts. Prior to SEED, he was a technical director/principal 
rendering engineer on the Batman Arkham franchise at 
WB Games Montreal, where he led the rendering team 
and graphics technology initiatives. Before WB, he was a 
rendering engineer on several games at Electronic Arts, 
including Battlefield 3, Need For Speed, Army of TWO, Medal 
of Honor, and others. He has also presented at several 
conferences (GDC, SIGGRAPH, HPG, I3D) and has publications 
in books (GPU Pro series), the ACM, and on his blog. 

Contributors



xxiii

Jasper Bekkers is a rendering engineer at SEED, a 
cross-disciplinary team working on cutting-edge future 
technologies and creative experiences at Electronic Arts. 
Prior to SEED, he was a rendering engineer at OTOY, 
developing cutting-edge rendering techniques for the Brigade 
and Octane path tracers. Before OTOY he was a rendering 
engineer at Frostbite in Stockholm, working on Mirror’s Edge, 
FIFA, Dragon Age, and Battlefield titles.

 
Stephan Bergmann is a rendering engineer at Enscape in 
Karlsruhe, Germany. He is also a PhD candidate in computer 
science from the computer graphics group at the Karlsruhe 
Institute of Technology (KIT), where he worked before joining 
Enscape in 2018. His research included sensor-realistic 
image synthesis for industrial applications and image-based 
rendering. It was also at the KIT where he graduated in 
computer science in 2006. He has worked as a software and 
visual computing engineer since 2000 in different positions in 
the consumer electronics and automotive industries.

 
Nikolaus Binder is a senior research scientist at 
NVIDIA. Before joining NVIDIA he received his MS degree 
in computer science from the University of Ulm, Germany, 
and worked for Mental Images as a research consultant. His 
research, publications, and presentations are focused on 
quasi-Monte Carlo methods, photorealistic image synthesis, 
ray tracing, and rendering algorithms with a strong emphasis 
on the underlying mathematical and algorithmic structure.

 

Contributors



xxiv

Jiri Bittner is an associate professor at the Department of 
Computer Graphics and Interaction of the Czech Technical 
University in Prague. He received his PhD in 2003 from the 
same institution. For several years he worked as a researcher 
at Technische Universität Wien. His research interests 
include visibility computations, real-time rendering, spatial 
data structures, and global illumination. He participated in a 
number of national and international research projects and 
several commercial projects dealing with real-time rendering 
of complex scenes.

 
Jakub Boksansky is a research scientist at the Department 
of Computer Graphics and Interaction of Czech Technical 
University in Prague, where he completed his MS in computer 
science in 2013. Jakub found his interest in computer 
graphics while developing web-based computer games using 
Flash and later developed and published several image effect 
packages for the Unity game engine. His research interests 
include ray tracing and advanced real-time rendering 
techniques, such as efficient shadows evaluation and image-
space effects.

 
Juan Cañada is a lead engineer at Epic Games, where 
he leads the tracing development in the Unreal Engine 
engineering team. Before, Juan was head of the Visualization 
Division at Next Limit Technologies, where he led the Maxwell 
Render team for more than 10 years. He also was a teacher of 
data visualization and big data at the IE Business School.

 

Contributors



xxv

Petrik Clarberg is a senior research scientist at NVIDIA since 
2016, where he pushes the boundaries of real-time rendering. 
His research interests include physically based rendering, 
sampling and shading, and hardware/API development of 
new features. Prior to his current role Petrik was a research 
scientist at Intel since 2008 and cofounder of a graphics 
startup. Participation in the 1990s demo scene inspired him 
to pursue graphics and get a PhD in computer science from 
Lund University.

 
David Cline received a PhD in computer science from 
Brigham Young University in 2007. After graduating, he 
worked as a postdoctoral scholar at Arizona State University 
and then went to Oklahoma State University, where he 
worked as an assistant professor until 2018. He is currently 
a software developer at NVIDIA working in the real-time ray 
tracing group in Salt Lake City.

 

Alejandro Conty Estevez is a senior rendering engineer at 
Sony Pictures Imageworks since 2009 and has developed 
several components of the physically based rendering 
pipeline such as BSDFs, lighting, and integration algorithms, 
including Bidirectional Path Tracing and other hybrid 
techniques. Previous to that he was the creator and main 
developer of YafRay, an opensource render engine released 
around 2003. He received an MS in computer science from 
Oviedo University in Spain in 2004.

 

Petter Edblom is a software engineer on the Frostbite 
rendering team at Electronic Arts. Previously, he was at DICE 
for several game titles, including Star Wars Battlefront I and II 
and Battlefield 4 and V. He has a master’s degree in computing 
science from Umeå University.

 

Contributors



xxvi

Christiaan Gribble is a principal research scientist and 
the team lead for high-performance computing in the 
Applied Technology Operation at the SURVICE Engineering 
Company. His research explores the synthesis of interactive 
visualization and high-performance computing, focusing 
on algorithms, architectures, and systems for predictive 
rendering and visual simulation applications. Prior to joining 
SURVICE in 2012, Gribble held the position of associate 
professor in the Department of Computer Science at Grove 
City College. Gribble received a BS in mathematics from 

Grove City College in 2000, an MS in information networking from Carnegie Mellon 
University in 2002, and a PhD in computer science from the University of Utah in 2006.

 
Holger Gruen started his career in three-dimensional 
real-time graphics over 25 years ago writing software 
rasterizers. In the past he has worked for game middleware, 
game companies, military simulation companies, and GPU 
hardware vendors. He currently works within NVIDIA’s 
European developer technology team to help developers get 
the best out of NVIDIA’s GPUs.

 

Johannes Günther is a senior graphics software engineer 
at Intel. He is working on high-performance, ray tracing–
based visualization libraries. Before joining Intel Johannes 
was a senior researcher and software architect for many 
years at Dassault Systèmes’ 3DEXCITE. He received a PhD in 
computer science from Saarland University.

 

Contributors



xxvii

Eric Haines currently works at NVIDIA on interactive ray 
tracing. He coauthored the books Real-Time Rendering and 
An Introduction to Ray Tracing, edited The Ray Tracing News, 
and cofounded the Journal of Graphics Tools and the Journal 
of Computer Graphics Techniques. He is also the creator and 
lecturer for the Udacity MOOC Interactive 3D Graphics.

 

Henrik Halén is a senior rendering engineer at SEED, a 
cross-disciplinary team working on cutting-edge future 
technologies and creative experiences at Electronic Arts. 
Prior to SEED, he was a senior rendering engineer at 
Microsoft, developing cutting-edge rendering techniques 
for the Gears of War franchise. Before Microsoft he was a 
rendering engineer at Electronic Arts studios in Los Angeles 
and at DICE in Stockholm, working on Mirror’s Edge, Medal of 
Honor, and Battlefield titles. He has presented at conferences 
such as GDC, SIGGRAPH, and Microsoft Gamefest.

 
David Hart is an engineer on NVIDIA’s OptiX team. He has an 
MS in computer graphics from Cornell and spent 15 years 
making CG films and games for DreamWorks and Disney. 
Prior to joining NVIDIA, David founded and sold a company 
that makes an online multi-user WebGL whiteboard. David 
has a patent on digital hair styling and a side career as an 
amateur digital artist using artificial evolution. David’s goal is 
to make pretty pictures using computers, and to build great 
tools to that end along the way.

 

Contributors



xxviii

Sébastien Hillaire is a rendering engineer within the 
Frostbite engine team at Electronic Arts. You can find him 
pushing visual quality and performance in many areas, such 
as physically based shading, volumetric simulation and 
rendering, visual effects, and post-processing, to name a few. 
He obtained his PhD in computer science from the French 
National Institute of Applied Science in 2010, during which he 
focused on using gaze tracking to visually enhance the virtual 
reality user experience.

 
Antti Hirvonen currently leads graphics engineering at UL 
Benchmarks. He joined UL in 2014 as a graphics engineer 
to follow his passion for real-time computer graphics after 
having worked many years in other software fields. Over the 
years Antti has made significant contributions to 3DMark, the 
world-renowned gaming benchmark, and related internal 
development tools. His current interests include modern 
graphics engine architecture, real-time global illumination, 
and more. Antti holds an MSc (Technology) in computer 
science from Aalto University.

 
Johannes Jendersie is a PhD student at the Technical 
University Clausthal, Germany. His current research 
focuses on the improvement of Monte Carlo light transport 
simulations with respect to robustness and parallelization. 
Johannes received a BA in computer science and an MS in 
computer graphics from the University of Magdeburg in 2013 
and 2014, respectively.

 

Contributors



xxix

Tero Karras is a principal research scientist at NVIDIA 
Research, which he joined in 2009. His current research 
interests revolve around deep learning, generative models, 
and digital content creation. He has also had a pivotal role in 
NVIDIA’s real-time ray tracing efforts, especially related to 
efficient acceleration structure construction and dedicated 
hardware units.

 

Alexander Keller is a director of research at NVIDIA. Before, 
he was the chief scientist of mental images, where he 
was responsible for research and the conception of future 
products and strategies including the design of the NVIDIA 
Iray light transport simulation and rendering system. Prior 
to industry, he worked as a full professor for computer 
graphics and scientific computing at Ulm University, where he 
cofounded the UZWR (Ulmer Zentrum für wissenschaftliches 
Rechnen) and received an award for excellence in teaching. 
Alexander Keller has more than three decades of experience 

in ray tracing, pioneered quasi-Monte Carlo methods for light transport simulation, and 
connected the domains of machine learning and rendering. He holds a PhD, has authored 
more than 30 granted patents, and has published more than 50 research articles.

 
Patrick Kelly is a senior rendering programmer at Epic 
Games, working on real-time ray tracing with Unreal Engine. 
Before entering real-time rendering, Patrick spent nearly 
a decade working in offline rendering at studios such as 
DreamWorks Animation, Weta Digital, and Walt Disney 
Animation Studios. Patrick received a BS in computer science 
from the University of Texas at Arlington in 2004 and an MS in 
computing from the University of Utah in 2008.

 

Contributors



xxx

Hyuk Kim is currently working as an engine and graphics 
programmer for Dragon Hound at NEXON Korea, devCAT 
Studio. He decided to become a game developer after 
being inspired by John Carmack’s original Doom. His main 
interests are related to real-time computer graphics in the 
game industry. He has a master’s degree focused on ray 
tracing from Sogang University. Currently his main interest 
is technology for moving from offline to real-time rendering 
for algorithms such as ray tracing, global illumination, and 
photon mapping.

 

Aaron Knoll is a developer technology engineer at NVIDIA 
Corporation. He received his PhD in 2009 from the University 
of Utah and has worked in high-performance computing 
facilities including Argonne National Laboratory and 
Texas Advanced Computing Center. His research focuses 
on ray tracing techniques for large-scale visualization in 
supercomputing environments. He was an early adopter and 
contributor to the OSPRay framework and now works on 
enabling ray traced visualization with NVIDIA OptiX.

 
Samuli Laine is a principal research scientist at NVIDIA. His 
current research focuses on the intersection of neural 
networks, computer vision, and computer graphics. 
Previously he has worked on efficient GPU ray tracing, 
voxel-based geometry representations, and various methods 
for computing realistic illumination. He completed both his 
MS and PhD in computer science at Helsinki University of 
Technology in 2006.

 

Contributors



xxxi

Andrew Lauritzen is a senior rendering engineer at SEED, 
a cross-disciplinary team working on cutting-edge future 
technologies and creative experiences at Electronic Arts. 
Before that, Andrew was part of the Advanced Technology 
Group at Intel, where he worked to improve the algorithms, 
APIs, and hardware used for rendering. He received his 
MMath in computer science from the University of Waterloo 
in 2008, where his research was focused on variance shadow 
maps and other shadow filtering algorithms.

 

Nick Leaf is a software engineer at NVIDIA and PhD student 
in computer science at the University of California, Davis. 
His primary research concentration is large-scale analysis 
and visualization, with an eye toward in situ visualization in 
particular. Nick completed his BS in physics and computer 
science at the University of Wisconsin in 2008.

 

Pascal Lecocq is a senior rendering engineer at Sony Picture 
Imageworks since 2017. He received a PhD in computer 
science from the University of Paris-Est Marne-la-Vallée in 
2001. Prior to Imageworks, Pascal has worked successively at 
Renault, STT Systems, and Technicolor, were he investigated 
and developed real-time rendering techniques for driving 
simulators, motion capture, and the movie industry. His main 
research interests focus on real-time shadows, area-light 
shading, and volumetrics but also on efficient path tracing 
techniques for production rendering.

 

Contributors



xxxii

Edward Liu is a senior research scientist at NVIDIA Applied 
Deep Learning Research, where he explores the exciting 
intersection between deep learning, computer graphics, 
and computer vision. Before his current role, he worked on 
other teams at NVIDIA such as the Developer Technology and 
the Real-Time Ray Tracing teams, where he contributed to 
the research and development of various novel features on 
future GPU architectures, including real-time ray tracing, 
image reconstruction, and virtual reality rendering. He has 
also spent time optimizing performance for GPU applications. 
In his spare time, he enjoys traveling and landscape 
photography.

 
Ignacio Llamas is the director of real-time ray tracing 
software at NVIDIA, where he leads a team of rendering 
engineers working on real-time rendering with ray tracing 
and pushing NVIDIA’s RTX technology to the limit. He has 
worked at NVIDIA for over a decade, in multiple roles 
including driver development, developer technology, 
research, and GPU architecture.

 

Adam Marrs is a computer scientist in the Game Engines and 
Core Technology group at NVIDIA, where he works on real-
time rendering for games and film. His experience includes 
work on commercial game engines, shipped game titles, real-
time ray tracing, and published graphics research. He holds 
a PhD and an MS in computer science from North Carolina 
State University and a BS in computer science from Virginia 
Polytechnic Institute.

 

Contributors



xxxiii

Morgan McGuire is a distinguished research scientist at 
NVIDIA in Toronto. He researches real-time graphics systems 
for novel user experiences. Morgan is the author or coauthor 
of The Graphics Codex, Computer Graphics: Principles and 
Practice (third edition), and Creating Games. He holds faculty 
appointments at Williams College, the University of Waterloo, 
and McGill University, and he previously worked on game and 
graphics technology for Unity and the Roblox, Skylanders, Titan 
Quest, Call of Duty, and Marvel Ultimate Alliance game series.

 
Peter Messmer is a principal engineer at NVIDIA and leads 
the high-performance computing visualization group. He 
focuses on developing tools and methodologies enabling 
scientists to use the GPU’s visualization capabilities to gain 
insight into their simulation results. Prior to joining NVIDIA, 
Peter developed and used massively parallel simulation 
codes to investigate plasma physics phenomena. Peter holds 
an MS and a PhD in physics from Eidgenössische Technische 
Hochschule (ETH) Zurich, Switzerland.

 

Pierre Moreau is a PhD student in the computer graphics 
group at Lund University in Sweden and a research intern 
at NVIDIA in Lund. He received a BSc from the University of 
Rennes 1 and an MSc from the University of Bordeaux, both in 
computer science. His current research focuses on real-time 
photorealistic rendering using ray tracing or photon splatting. 
Outside of work, he enjoys listening to and playing music, 
as well as learning more about GPU hardware and how to 
program it.

 

R. Keith Morley is currently a development technology 
engineer at NVIDIA, responsible for helping key partners 
design and implement ray tracing–based solutions on NVIDIA 
GPUs. His background is in physically based rendering, and 
he worked in feature film animation before joining NVIDIA.  
He is one of the original developers of NVIDIA’s Optix ray 
tracing API. 

Contributors



xxxiv

Jacob Munkberg is a senior research scientist in NVIDIA’s 
real-time rendering research group. His current research 
focuses on machine learning for computer graphics. Prior to 
NVIDIA, he worked in Intel’s Advanced Rendering Technology 
team and cofounded Swiftfoot Graphics, specializing in culling 
technology. Jacob received his PhD in computer science 
from Lund University and his MS in engineering physics from 
Chalmers University of Technology.

 
Clemens Musterle is a rendering engineer and currently is 
working as the team lead for rendering at Enscape. In 2015 
he received an MS in computer science from the Munich 
University of Applied Sciences with a strong focus on real-
time computer graphics. Before joining the Enscape team 
in 2015, he worked several years at Dassault Systèmes’ 
3DEXCITE.

 

Jim Nilsson received his PhD in computer architecture from 
Chalmers University of Technology in Sweden. He joined 
NVIDIA in October 2016, and prior to NVIDIA, he worked in the 
Advanced Rendering Technology group at Intel.

 

Matt Pharr is a research scientist at NVIDIA, where he works 
on ray tracing and real-time rendering. He is the author of 
the book Physically Based Rendering, for which he and the 
coauthors were awarded a Scientific and Technical Academy 
Award in 2014 for the book’s impact on the film industry.

 

Contributors



xxxv

Matthias Raab joined Mental Images (later NVIDIA ARC) 
in 2007, where he initially worked as a rendering software 
engineer on the influential ray tracing system Mental Ray. He 
has been heavily involved in the development of the GPU-
based photorealistic renderer NVIDIA Iray since its inception, 
where he contributed in the areas of material description and 
quasi-Monte Carlo light transport simulation. Today he is part 
of the team working on NVIDIA’s Material Definition Language 
(MDL).

 

Alexander Reshetov received his PhD from the Keldysh 
Institute for Applied Mathematics in Russia. He joined NVIDIA 
in January 2014. Prior to NVIDIA, he worked for 17 years at 
Intel Labs on three-dimensional graphics algorithms and 
applications, and for two years at the Super-Conducting 
Super-Collider Laboratory in Texas, where he designed the 
control system for the accelerator.

 

Charles de Rousiers is a rendering engineer within the 
Frostbite engine team at Electronic Arts. He works lighting, 
material, and post-processes, and he helped to move the 
engine onto physically based rendering principles. He 
obtained his PhD in computer science at Institut National de 
Recherche en Informatique et en Automatique (INRIA) in 2011, 
after studying realistic rendering of complex materials.

 

Contributors



xxxvi

Rahul Sathe works as a senior DevTech engineer at 
NVIDIA. His current role involves working with game 
developers to improve the game experience on GeForce 
graphics and prototyping algorithms for new and upcoming 
architectures. Prior to this role, he worked in various 
capacities in research and product groups at Intel. He is 
passionate about all aspects of 3D graphics and its hardware 
underpinnings. He attended school at Clemson University and 
the University of Mumbai. While not working on rendering-
related things, he likes running, biking, and enjoying good 
food with his family and friends.

 
Daniel Seibert is a senior graphics software engineer at 
NVIDIA in Berlin. Crafting professional renderers for a living 
since 2007, he is an expert in quasi-Monte Carlo methods 
and physically based light transport simulation. Daniel has 
contributed to the Mental Ray renderer and the NVIDIA Iray 
light transport simulation and rendering system, and he is 
one of the designers of MDL, NVIDIA’s Material Definition 
Language.

 

Atte Seppälä works as a graphics software engineer at UL 
Benchmarks. He holds an MSc (Technology) in computer 
science from Aalto University and has worked at UL 
Benchmarks since 2015, developing the 3DMark and VRMark 
benchmarks.

 

Contributors



xxxvii

Peter Shirley is a distinguished research scientist at 
NVIDIA. He was formally a cofounder two software 
companies and was a professor/researcher at Indiana 
University, Cornell University, and the University of Utah. He 
received a BS in physics from Reed College in 1985 and a PhD 
in computer science from the University of Illinois in 1991. He 
is the coauthor of several books on computer graphics and a 
variety of technical articles. His professional interests include 
interactive and high dynamic range imaging, computational 
photography, realistic rendering, statistical computing, 
visualization, and immersive environments.

 

Niklas Smal works as a graphics software engineer at UL 
Benchmarks. He joined the company in 2015 and has been 
developing 3DMark and VRMark graphics benchmarks. 
Niklas holds a BSc (Technology) in computer science and is 
currently finishing his MSc at Aalto University.

 

Josef Spjut is a research scientist at NVIDIA working on 
esports, augmented reality, and ray tracing. Prior to joining 
NVIDIA, he was a visiting professor in the department of 
engineering at Harvey Mudd College. He received a PhD from 
the Hardware Ray Tracing group at the University of Utah 
and a BS from the University of California, Riverside, both in 
computer engineering.

 

Contributors



xxxviii

Tomasz Stachowiak is a software engineer with a passion 
for shiny pixels and low-level GPU hacking. He enjoys fast 
compile times, strong type systems, and making the world a 
weirder place.

 

Clifford Stein is a software engineer at Sony Pictures 
Imageworks, where he works on their in-house version of 
the Arnold renderer. For his contributions to Arnold, Clifford 
was awarded an Academy Scientific and Engineering Award 
in 2017. Prior to joining Sony, he was at STMicroelectronics, 
working on a variety of projects from machine vision 
to advanced rendering architectures, and at Lawrence 
Livermore National Laboratory, where he did research on 
simulation and visualization algorithms. Clifford holds a BS 
from Harvey Mudd College and an MS and PhD from the 
University of California, Davis.

 
John E. Stone is a senior research programmer in the 
Theoretical and Computational Biophysics Group at the 
Beckman Institute for Advanced Science and Technology 
and an associate director of the NVIDIA CUDA Center 
of Excellence at the University of Illinois. John is the 
lead developer of Visual Molecular Dynamics (VMD), a 
high-performance molecular visualization tool used by 
researchers all over the world. His research interests include 
scientific visualization, GPU computing, parallel computing, 
ray tracing, haptics, and virtual environments. John was 

awarded as an NVIDIA CUDA Fellow in 2010. In 2015 he joined the Khronos Group Advisory 
Panel for the Vulkan Graphics API. In 2017 and 2018 he was awarded as an IBM Champion 
for Power for innovative thought leadership in the technical community. John also provides 
consulting services for projects involving computer graphics, GPU computing, and high-
performance computing. He is a member of ACM SIGGRAPH and IEEE.

 

Contributors



xxxix

Robert Toth is a senior software engineer at NVIDIA in Lund, 
Sweden, working on ray tracing driver development. He 
received an MS in engineering physics at Lund University in 
2008. Robert worked as a research scientist in the Advanced 
Research Technology team at Intel for seven years developing 
algorithms for the Larrabee project and for integrated 
graphics solutions, with a research focus on stochastic 
rasterization methods, shading systems, and virtual reality.

 

Carsten Wächter spent his entire career in ray tracing 
software, including a decade of work on the Mental Ray and 
Iray renderers. Holding multiple patents and inventions in this 
field, he is now leading a team at NVIDIA involved in core GPU 
acceleration for NVIDIA ray tracing libraries. After finishing 
his diploma, he then received his PhD from the University of 
Ulm for accelerating light transport using new quasi-Monte 
Carlo methods for sampling, along with memory efficient and 
fast algorithms for ray tracing. In his spare time he preserves 
pinball machines, both in the real world and via open source 
pinball emulation and simulation.

 

Ingo Wald is a director of ray tracing at NVIDIA. He received 
his master’s degree from Kaiserslautern University and his 
PhD from Saarland University (both on ray tracing–related 
topics). He then served as a post-doctorate at the Max-
Planck Institute Saarbrücken, as a research professor at the 
University of Utah, and as technical lead for Intel’s software-
defined rendering activities (in particular, Embree and 
OSPRay). Ingo has coauthored more than 75 papers, multiple 
patents, and several widely used software projects around 
ray tracing. His interests still revolve around all aspects of 

efficient and high-performance ray tracing, from visualization to production rendering, 
from real-time to offline rendering, and from hard- to software.

 

Contributors



xl

Graham Wihlidal is a senior rendering engineer at SEED, 
a cross-disciplinary team working on cutting-edge future 
technologies and creative experiences at Electronic Arts. 
Before SEED, Graham was on the Frostbite rendering team, 
implementing and supporting technology used in many hit 
games such as Battlefield, Dragon Age: Inquisition, Plants vs. 
Zombies, FIFA, Star Wars: Battlefront, and others. Prior to 
Frostbite, Graham was a senior engineer at BioWare for many 
years, shipping numerous titles including the Mass Effect and 
Dragon Age trilogies and Star Wars: The Old Republic. Graham 
is also a published author and has presented at a number of 
conferences.

 

Thomas Willberger is the CEO and founder of Enscape. 
Enscape offers workflow-integrated real-time rendering 
and is used by more than 80 of the top 100 architectural 
companies. His topics of interest include image filtering, 
volumetrics, machine learning, and physically based shading. 
He received a BS in mechanical engineering from the 
Karlsruhe Institute of Technology (KIT) in 2011.

 

Michael Wimmer is currently an associate professor at 
the Institute of Visual Computing and Human-Centered 
Technology at Technische Universität (TU) Wien, where he 
heads the Rendering and Modeling Group. His academic 
career started with his MSc in 1997 at TU Wien, where he also 
obtained his PhD in 2001. His research interests are real-time 
rendering, computer games, real-time visualization of urban 
environments, point-based rendering, reconstruction of urban 
models, procedural modeling, and shape modeling. He has 
coauthored over 130 papers in these fields. He also coauthored 

the book Real-Time Shadows. He regularly serves on program committees of the important 
conferences in the field, including ACM SIGGRAPH, SIGGRAPH Asia, Eurographics, IEEE VR, 
EGSR, ACM I3D, SGP, SMI, and HPG. He is currently an associate editor of IEEE Transactions on 
Visualization and Computer Graphics, Computer Graphics Forum, and Computers & Graphics. He 
was papers cochair of Eurographics Symposium on Rendering 2008, Pacific Graphics 2012, 
Eurographics 2015, and Eurographics Workshop on Graphics and Cultural Heritage 2018.

 

Contributors



xli

Chris Wyman is a principal research scientist at NVIDIA, 
where he works to develop new real-time rendering 
algorithms using rasterization, ray tracing, and hybrid 
techniques. He uses whatever tools seem appropriate for the 
problem at hand, having applied techniques including deep 
learning, physically based light transport, and dirty raster 
hacks during his career. Chris received a PhD in computer 
science from the University of Utah and a BS from the 
University of Minnesota, and he taught at the University of 
Iowa for nearly 10 years. 

Contributors



xliii

Notation
Here we summarize the notation used in this book. Vectors are denoted by bold 
lowercase letters, e.g., v, and matrices by bold uppercase letters, e.g., M. Scalars 
are lowercase, italicized letters, e.g., a and v. Points are uppercase, e.g., P. The 
components of a vector are accessed as

( )
0

1

2

x

y x y z

z

v v
v v v v v ,

vv

æ ö æ ö
ç ÷ ç ÷= = =ç ÷ ç ÷
ç ÷ ç ÷

è øè ø

T
v                    (1)

where the latter shows the vector transposed, i.e., so a column becomes a row. To 
simplify the text, we sometimes also use v = (vx, vy, vz), i.e., where the scalars are 
separated by commas, which indicates that it is a column vector shown transposed. 
We use column vectors by default, which means that matrix-vector multiplication is 
denoted Mv. The components of a matrix are accessed as

( )
00 01 02

10 11 12 0 1 2

20 21 22

m m m
m m m , , ,
m m m

æ ö
ç ÷= =ç ÷
ç ÷
è ø

M m m m                   (2)

where mi, i ∈ {0, 1, 2}, are the column vectors of the matrix. For normalized vectors, 
we use the following shorthand notation:

ˆ ,=
dd
d                                 (3)

i.e., if there is a hat over the vector, it is normalized. A transposed vector and 
matrix are denoted vT and MT, respectively. The key elements of our notation are 
summarized in the following table:



xliv

Notation What It Represents

P Point
v Vector
v̂ Normalized vector
M Matrix

A direction vector on a sphere is often denoted by ω and the entire set of directions 
on a (hemi)sphere is Ω. Finally, note that the cross product between two vectors is 
written as a × b and their dot product is a · b.

Notation





PART I

RAY TRACING  
BASICS



5

PART I

Ray Tracing Basics

Today, rasterization dominates real-time rendering across most application 
domains, so many readers looking for real-time rendering tips may have last 
encountered ray tracing during coursework years, possibly decades ago. This 
part contains various introductory chapters to help brush up on the basics, build a 
common vocabulary, and provide other simple (but useful) building blocks.

Chapter 1, “Ray Tracing Terminology,” defines common terms used throughout the 
book and references seminal research papers that introduced these ideas. For 
novice readers, a confusing and evolving variety of overlapping and poorly named 
terms awaits as you dig into the literature; reading papers from 30 years ago can 
be an exercise in frustration without understanding how terms evolved into those 
used today. This chapter provides a basic road map. 

Chapter 2, “What Is a Ray?,” covers a couple common mathematical definitions 
of a ray, how to think about them, and which formulation is typically used for 
modern APIs. While a simple chapter, separating the basics of this fundamental 
construct may help remind readers that numerical precision issues abound. 
For rasterization, precision issues occur with z-fighting and shadow mapping; in 
ray tracing, every ray query requires care to avoid spurious intersections (more 
extensive coverage of precision issues comes in Chapter 6).

Recently, Microsoft introduced DirectX Raytracing, an extension to the DirectX 
raster API. Chapter 3, “Introduction to DirectX Raytracing,” provides a brief 
introduction to the abstractions, mental model, and new shader stages introduced 
by this programming interface. Additionally, it walks through and explains the 
steps needed to initialize the API and provides pointers to sample code to help get 
started. 

Ray tracers allow trivial construction of arbitrary camera models, unlike typical 
raster APIs that restrict cameras to those defined by 4 × 4 projection matrices. 
Chapter 4, “A Planetarium Dome Master Camera,” provides the mathematics 
and sample code to build a ray traced camera for a 180° hemispherical dome 
projection, e.g., for planetariums. The chapter also demonstrates the simplicity of 
adding stereoscopic rendering or depth of field when using a ray tracer. 



6

Chapter 5, “Computing Minima and Maxima of Subarrays,” describes three 
computation methods (with various computational trade-offs) for a fundamental 
algorithmic building block: computing the minima or maxima of arbitrary subsets 
of an array. On the surface, evaluating such queries is not obviously related to ray 
tracing, but it has applications in domains such as scientific visualization, where ray 
queries are commonly used.

The information in this part should help you get started with both understanding 
the basics of modern ray tracing and the mindset needed to efficiently render  
using it.

Chris Wyman



7© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_1

CHAPTER 1

Ray Tracing Terminology
Eric Haines and Peter Shirley 
NVIDIA

�ABSTRACT

This chapter provides background information and definitions for terms used 
throughout this book.

1.1	 �HISTORICAL NOTES

Ray tracing has a rich history in disciplines that track the movement of light in an 
environment, often referred to as radiative transfer. Graphics practitioners have 
imported ideas from fields such as neutron transport [2], heat transfer [6], and 
illumination engineering [11]. Since so many fields have studied these concepts, 
terminology evolves and sometimes diverges between and within disciplines. 
Classic papers may then appear to use terms incorrectly, which can be confusing.

The fundamental quantity of light moving along a ray is the SI unit spectral radiance, 
which remains constant along a ray (in a vacuum) and often behaves intuitively like 
the perceptual concept brightness. Before the term was standardized, spectral 
radiance was often called “intensity” or “brightness.” In computer graphics 
we usually drop “spectral,” as non-spectral radiance, a bulk quantity over all 
wavelengths, is never used.

Graphics-specific terminology related to rays has evolved over time. Almost 
all modern ray tracers are recursive and Monte Carlo; few now bother to call 
their renderer a “recursive Monte Carlo” ray tracer. In 1968, Appel [1] used rays 
to render images. In 1979, Whitted [16] and Kay and Greenberg [9] developed 
recursive ray tracing to depict accurate refraction and reflection. In 1982, Roth [13] 
used inside/outside interval lists along rays, as well as local instancing, to create 
renderings (and volume estimates) of CSG models.



8

In 1984, Cook et al. [4] presented distributed or distribution ray tracing. Elsewhere, 
this method is often called stochastic ray tracing1 to avoid confusion with distributed 
processing. The key insight of randomly sampling to capture effects such as depth 
of field, fuzzy reflections, and soft shadows is used in virtually every modern ray 
tracer. The next few years after 1984 saw researchers rephrasing rendering using 
traditional radiative transfer methods. Two important algorithms were introduced 
in 1986. Kajiya [8] referred to the integral transport equation as the rendering 
equation. He tried various solutions, including a Monte Carlo approach he named 
path tracing. Immel, Cohen, and Greenberg [7] wrote the same transport equation in 
different units and solved it with a finite element method now called radiosity.

Since the rephrasing of the graphics problem using classic transport methods three 
decades ago, a great deal of work has explored how to numerically solve the problem. 
Key algorithmic changes include the bidirectional [10, 14] and path-based [15]  
methods introduced in the 1990s. Many details, including how to implement these 
techniques in practice, are discussed in Pharr, Jakob, and Humphreys’s  
book [12].

1.2	 �DEFINITIONS

We highlight important terms used in this book. No standard set of terms exists, 
other than terms with standardized units, but our definitions reflect current usage 
in the field.

Ray casting is the process of finding the closest, or sometimes just any, object along 
a ray. See Chapter 2 for the definition of a ray. A ray leaves the camera through a 
pixel and travels until it hits the closest object. As part of shading this hit point, a 
new ray could be cast toward a light source to determine if the object is shadowed. 
See Figure 1-1.

1�The name derives from another paper by Cook [3], where he discusses using nonuniform sampling to avoid 
aliasing artifacts by turning them into noise.

RAY TRACING GEMS



9

Ray tracing uses the ray casting mechanism to recursively gather light contributions 
from reflective and refractive objects. For example, when a mirror is encountered, 
a ray is cast from a hit point on the mirror in the reflection direction. Whatever 
this reflection ray intersects affects the final shading of the mirror. Likewise, 
transparent or glass objects may spawn both a reflection and a refraction ray. This 
process occurs recursively, with each new ray potentially spawning additional 
reflection and refraction rays. Recursion is usually given some cutoff limit, such 
as a maximum number of bounces. This tree of rays is evaluated back up its chain 
to give a color. As before, each intersection point can be queried whether it is 
shadowed by casting a ray toward each light source. See Figure 1-2.

Figure 1-1.  Ray casting. A ray travels from the camera’s location through a grid of pixels into the 
scene. At each location another ray is cast toward the light to determine if the surface is illuminated or 
in shadow. (Illustration after Henrik, “Ray tracing (graphics),” Wikipedia.)

 Ray Tracing Terminology



10

In Whitted or classical ray tracing, surfaces are treated as perfectly shiny and 
smooth, and light sources are represented as directions or infinitesimal points. 
In Cook or stochastic ray tracing, more rays can be emitted from nodes in the ray 
tree to produce various effects. For example, imagine a spherical light instead 
of a point source. Surfaces can now be partially illuminated, so we might shoot 
numerous rays toward different locations on the sphere to approximate how much 
illumination arrives. When integrating area light visibility, fully shadowed points lie 
in the umbra; partially lit points are inside the penumbra. See Figure 1-3.

Figure 1-2.  Ray tracing. Three rays travel from the camera into the scene. The top, green ray directly 
hits a box. The middle, purple ray hits a mirror and reflects to pick up the back of the box. The bottom, 
blue ray hits a glass sphere, spawning reflection and refraction rays. The refraction ray in turn 
generates two more child rays, with the one traveling through the glass spawning two more.

Figure 1-3.  An area light casts a soft penumbra shadow region, with the umbra being fully in shadow.

RAY TRACING GEMS



11

By shooting numerous rays in a cone around the reflection direction and blending 
the results, we get glossy instead of mirrored reflections. See Figure 1-4. This idea 
of spreading samples can also be used to model translucency, depth of field, and 
motion blur effects.

In the real world many sources emit light, which works its way to the eye by various 
means, including refraction and reflection. Glossy surfaces reflect light in many 
directions, not just along the reflection direction; diffuse or matte surfaces disperse 
light in a wider spread still. In path tracing we reverse the light’s scattering 
behavior, using the outgoing direction and the material to help determine the 
importance of various incoming directions to the surface’s shade.

Tracking such complex light transport quickly becomes overwhelming and can 
easily lead to inefficient rendering. To create an image, we just need the light 
passing through the camera’s lens from a specific set of directions. Recursive ray 
tracing in its various forms reverses the physical process, generating rays from the 
eye in directions that we know will affect the image.

In Kajiya-style or path tracing light reflects off matte surfaces in the scene, allowing 
for all light paths in the real world (except phase effects such as diffraction). Here 
a path refers to a series of light-object interactions that starts at the camera and 
ends at a light.

Each surface intersection location needs to estimate the contributions of light from 
all directions surrounding it, combined with its surface’s reflective properties. For 
example, a red wall next to a white ceiling will reflect red light onto the ceiling, and 
vice versa. Further interreflection between the wall and ceiling occurs, as each 
further reflects this reflected light, which can then affect the other. By recursively 
summing up these effects from the eye’s view, terminating only when a light is 
encountered, a true, physically based image can be formed.

The working phrase here is “can be”—if we shoot a set of, say, a thousand 
rays from an intersection point on a rough surface, then for each of those rays 

Figure 1-4.  Mirror, glossy, and diffuse reflection rays. Left: the incoming light is reflected in a single 
direction off a mirrored surface. Middle: the surface is polished, such as brass, reflecting light near 
the reflection direction and giving a glossy appearance. Right: the material is diffuse or matte, such as 
plaster, and incoming light scatters in all directions.

 Ray Tracing Terminology



12

we recursively send another thousand each, on and on until a light source is 
encountered for each ray, and we could be computing a single pixel for nearly 
forever. Instead, when a ray is cast from the eye and hits a visible surface, a path 
tracer will spawn just one ray in a useful direction from a surface. This ray in turn 
will spawn a new ray, on and on, with the set of rays forming a path. Blending 
together a number of paths traced for a pixel gives an estimate of the true radiance 
for the pixel, a result that improves as more paths are evaluated. Path tracing can, 
with proper care, give an unbiased result, one matching physical reality.

Most modern ray tracers use more than one ray per pixel as part of an underlying 
Monte Carlo (MC) algorithm. Cook-style and Kajiya-style algorithms are examples. 
These methods all have some understanding of various probability density functions 
(PDFs) over some spaces. For example, in a Cook-style ray tracer we might include 
a PDF over the lens area. In a path-based method the PDF would be over paths in 
what is called a path space.

Making the sampling PDF for a Monte Carlo algorithm nonuniform in order to 
reduce error is known as importance sampling. Creating random samples using 
low-discrepancy patterns of samples with number-theoretic methods, rather 
than conventional pseudo-random number generators, is known as Quasi-Monte 
Carlo (QMC) sampling. To a large extent, computer graphics practitioners use the 
standard terminology of the fields of MC and QMC. However, this practice can give 
rise to confusing synonyms. For example, “direct illumination with shadow rays” in 
graphics are an example of “next event estimation” in MC/QMC.

From a formal perspective, renderers are solving the transport equation, also 
commonly called the rendering equation for the graphics-specific problem. This is 
usually written as an energy-balanced equation at a point on a surface. Notation 
varies somewhat in the literature, but there is increasing similarity to this form:

	
( ) ( ) ( )

S

L P, f P, , L P, d
2

o o o i i i i icos .w w w w q wò= ∣ ∣
	

(1)

Here, Lo is the radiance leaving the surface at point P in direction ωo, and the 
surface property f is the bidirectional reflectance distribution function (BRDF). This 
function is also commonly denoted with fr or ρ. Also, Li is the incoming light along 
direction ωi, and the angle between the surface normal and the incoming light 
direction is θi, with ∣ cos θi∣ accounting for geometric dropoff due to this angle. By 
integrating the effect of light from all surfaces and objects, not just light sources, in 
all incoming directions and folding in the effect of the surface’s BRDF, we obtain the 
radiance, essentially the color of the ray. As Li normally is computed recursively, 
i.e., all the surfaces visible from point P must in turn have radiance values 

RAY TRACING GEMS



13

calculated for them, path tracing and related methods are used to choose among 
all the possible paths, with the goal of casting each ray along the path in a direction 
that is significant in computing a good approximation of the effect of all possible 
directions.

The location point P is often left out as implicit. Also, the wavelength λ can be added 
as a function input. There are also more general equations that include participating 
media, such as smoke or fog, and physical optics effects, such as diffraction.

Related to participating media, ray marching is the process of marching along a ray 
by some interval, sampling it along the ray’s direction. This method of casting a 
ray is often used for volume rendering, where there is no specific surface. Instead, 
at each location the effect of light on the volume is computed by some means. An 
alternative to ray marching is to simulate the collisions in a volume.

Ray marching, typically under some variant of Hart’s sphere tracing algorithm [5], 
is also used to describe the process of intersecting a surface defined by an implicit 
distance equation or inside/outside test by sampling points along the ray in a 
search for the surface. The “sphere” in this case is a sphere of equidistant points 
from the surface; it has nothing to do with intersecting spheres. Following our 
earlier notation, this process would ideally be called “sphere casting” instead of 
“sphere tracing.” This type of intersection testing is commonly seen in demoscene 
programs and is popularized online by the Shadertoy website.

We have touched upon just the basics of ray-related rendering techniques and the 
terminology used. See this book’s website http://raytracinggems.com for a 
guide to further resources.

�REFERENCES

	 [1]	� Appel, A. Some Techniques for Shading Machine Renderings of Solids. In AFIPS ’68 Spring Joint 
Computer Conference (1968), pp. 37–45.

	 [2]	� Arvo, J., and Kirk, D. Particle Transport and Image Synthesis. Computer Graphics (SIGGRAPH) 24, 
4 (1990), 63–66.

	 [3]	� Cook, R. L. Stochastic Sampling in Computer Graphics. ACM Transactions on Graphics 5, 1 (Jan. 
1986), 51–72.

	 [4]	� Cook, R. L., Porter, T., and Carpenter, L. Distributed Ray Tracing. Computer Graphics (SIGGRAPH) 
18, 3 (1984), 137–145.

	 [5]	� Hart, J. C. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit 
Surfaces. The Visual Computer 12, 10 (Dec 1996), 527–545.

	 [6]	� Howell, J. R., Menguc, M. P., and Siegel, R. Thermal Radiation Heat Transfer. CRC Press, 2015.

 Ray Tracing Terminology

http://raytracinggems.com


14

	   [7]	� Immel, D. S., Cohen, M. F., and Greenberg, D. P. A Radiosity Method for Non-Diffuse 
Environments. Computer Graphics (SIGGRAPH) 20, 4 (Aug. 1986), 133–142.

	   [8]	 Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH) (1986), 143–150.

	   [9]	� Kay, D. S., and Greenberg, D. Transparency for Computer Synthesized Images. Computer 
Graphics (SIGGRAPH) 13, 2 (1979), 158–164.

	 [10]	 Lafortune, E. P. Bidirectional Path Tracing. In Compugraphics (1993), pp. 145–153.

	 [11]	� Larson, G. W., and Shakespeare, R. Rendering with Radiance: The Art and Science of Lighting 
Visualization. Booksurge LLC, 2004.

	 [12]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [13]	� Roth, S. D. Ray Casting for Modeling Solids. Computer Graphics and Image Processing 18, 2 (1982), 
109–144.

	 [14]	� Veach, E., and Guibas, L. Bidirectional Estimators for Light Transport. In Photorealistic Rendering 
Techniques (1995), pp. 145–167.

	 [15]	� Veach, E., and Guibas, L. J. Metropolis Light Transport. In Proceedings of SIGGRAPH (1997), 
pp. 65–76.

	 [16]	� Whitted, T. An Improved Illumination Model for Shaded Display. Communications of the ACM 23, 6 
(June 1980), 343–349.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


15© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_2

CHAPTER 2

What is a Ray?
Peter Shirley, Ingo Wald, Tomas Akenine-Möller, and Eric Haines 
NVIDIA

ABSTRACT

We define a ray, show how to use ray intervals, and demonstrate how to specify a 
ray using DirectX Raytracing (DXR).

2.1	 �MATHEMATICAL DESCRIPTION OF A RAY

For ray tracing, an important computational construct is a three-dimensional ray. 
In both mathematics and ray tracing, a ray usually refers to a three-dimensional 
half-line. A ray is usually specified as an interval on a line. There is no implicit 
equation for a line in three dimensions analogous to the two-dimensional line 
y = mx + b, so usually the parametric form is used. In this chapter, all lines, points, 
and vectors are assumed to be three-dimensional.

A parametric line can be represented as a weighted average of points A and B:

			   ( ) ( )P t t A tB1 .= - +
	 (1)

In programming, we might think of this representation as a function P(t) that takes 
a real number t as input and returns a point P. For the full line, the parameter 
can take any real value, i.e., t ∈ [−∞, +∞], and the point P moves continuously 
along the line as t changes, as shown in Figure 2-1. To implement this function, 
we need a way to represent points A and B. These can use any coordinate system, 
but Cartesian coordinates are almost always used. In APIs and programming 
languages, this representation is often called a vec3 or float3 and contains three 
real numbers x, y, and z. The same line can be represented with any two distinct 
points along the line. However, choosing different points changes the location 
defined by a given t-value.



16

Figure 2-1.  How varying values of t give different points on the ray.

Figure 2-2.  A ray P(t) = O + td, described by an origin O and a ray direction d, which in this case is 
d = B − A. We often are interested in only positive intersections, i.e., where the points found are in front 
of the origin (t > 0). We depict this limitation by drawing the line as dashed behind the origin.

It is common to use a point and a direction vector rather than two points.  
As visualized in Figure 2-2, we can choose our ray direction d as B − A and our  
ray origin O as point A, giving

			   ( ) .P t O t= + d
	 (2)

For various reasons, e.g., computing cosines between vectors via dot products, 
some programs find it useful to restrict d to be a unit vector d̂, i.e., normalized. One 
useful consequence of normalizing direction vectors is that t directly represents 
the signed distance from the origin. More generally, the difference in any two 
t-values is then the actual distance between the points,

			   ( ) ( )P t P t t t1 2 2 1 .- = -
	 (3)

For general vectors d, this formula should be scaled by the length of d,

			   ( ) ( )- = -P t P t t t1 2 2 1 .d
	 (4)

RAY TRACING GEMS



17

2.2	 �RAY INTERVALS

With the ray formulation from Equation 2, our mental picture is of a ray as a semi-
infinite line. However, in ray tracing a ray frequently comes with an additional 
interval: the range of t-values for which an intersection is useful. Generally, 
we specify this interval as two values, tmin and tmax, which bound the t-value to 
t ∈ [tmin, tmax]. In other words, if an intersection is found at t, that intersection will not 
be reported if t < tmin or t > tmax. See Figure 2-3.

Figure 2-3.  In this example there is a light source at L and we want to search for intersections 
between only O and L. A ray interval [tmin, tmax] is used to limit the search for intersections for t-values 
to [tmin, tmax]. To avoid precision problems, this restriction is implemented by setting the ray interval to 
[ε, 1 − ε], giving the interval shown in light blue in this illustration.

A maximum value is given when hits beyond a certain distance do not matter, such 
as for shadow rays. Assume that we are shading point P and want to query visibility 
of a light at L. We create a shadow ray with origin at O = P, unnormalized direction 
vector d = L − P, tmin = 0, and tmax = 1. If an intersection occurs with t in [0, 1], the 
ray intersects geometry occluding the light. In practice, we often set tmin = ε and 
tmax = 1 − ε, for a small number ε. This adjustment helps avoid self-intersections due 
to numerical imprecision; using floating-point mathematics, the surface on which 
P lies may intersect our ray at a small, nonzero value of t. For non-point lights the 
light’s primitive should not occlude the shadow ray, so we shorten the interval 
using tmax = 1 − ε. With perfect mathematics, this problem disappears using an open 
interval, ignoring intersections at precisely t = 0 and 1. Since floating-point precision 
is limited, use of ε fudge factors are a common solution. See Chapter 6 for more 
information about how to avoid self-intersections.

 What is a Ray?



18

In implementations using normalized ray directions, we could instead use O = P, 

L P
L P
-

=
-

d , tmin = ε, and tmax = l − ε, where l = ‖L − P‖ is the distance to the light source  

L. Note that this epsilon must be different than the previous epsilon, as t now  
has a different range.

Some renderers use unit-length vectors for all or some ray directions. Doing so 
allows efficient cosine computations via dot products with other unit vectors, and it 
can make it easier to reason about the code, in addition to making it more readable. 
As noted earlier, a unit length means that the ray parameter t can be interpreted 
as a distance without scaling by the direction vector’s length. However, instanced 
geometry may be represented using a transformation for each instance. Ray/object 
intersection then requires transforming the ray into the object’s space, which 
changes the length of the direction vector. To properly compute t in this new space, 
this transformed direction should be left unnormalized. In addition, normalization 
costs a little performance and can be unnecessary, as for shadow rays. Because of 
these competing benefits, there is no universal recommendation of whether to use 
unit direction vectors.

2.3	 �RAYS IN DXR

This section presents the definition of a ray in DirectX Raytracing [3]. In DXR, a ray 
is defined by the following structure:

1 struct RayDesc

2 {

3     float3 Origin;

4     float  TMin;

5     float3 Direction;

6     float  TMax;

7 };

The ray type is handled differently in DXR, where a certain shader program is 
associated with each different type of ray. To trace a ray with the TraceRay() 
function in DXR, a RayDesc is needed. The RayDesc::Origin is set to the origin 
O of our ray, the RayDesc::Direction is set to the direction d, and the t-interval 
(RayDesc::TMin and RayDesc::TMax) must be initialized as well. For example, for 
an eye ray (RayDesc eyeRay) we set eyeRay.TMin = 0.0 and eyeRay.TMax = 
FLT_MAX, which indicates that we are interested in all intersections that are in front 
of the origin.

RAY TRACING GEMS



19

2.4	 �CONCLUSION

This chapter shows how a ray is typically defined and used in a ray tracer, and 
gave the DXR API’s ray definition as an example. Other ray tracing systems, such 
as OptiX [1] and the Vulkan ray tracing extension [2], have minor variations. For 
example, OptiX explicitly defines a ray type, such as a shadow ray. These systems 
have other commonalities, such as the idea of a ray payload. This is a data structure 
that can be defined by the user to carry additional information along with the ray 
that can be accessed and edited by separate shaders or modules. Such data is 
application specific. At the core, in every rendering system that defines a ray, you 
will find the ray’s origin, direction, and interval.

REFERENCES

	 [1]	� NVIDIA. OptiX 5.1 Programming Guide. http://raytracing-docs.nvidia.com/optix/
guide/index.html, Mar. 2018.

	 [2]	� Subtil, N. Introduction to Real-Time Ray Tracing with Vulkan. NVIDIA Developer Blog, https://
devblogs.nvidia.com/vulkan-raytracing/, Oct. 2018.

	 [3]	� Wyman, C., Hargreaves, S., Shirley, P., and Barré-Brisebois, C. Introduction to DirectX 
RayTracing. SIGGRAPH Courses, Aug. 2018.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 What is a Ray?

http://raytracing-docs.nvidia.com/optix/guide/index.html
http://raytracing-docs.nvidia.com/optix/guide/index.html
https://devblogs.nvidia.com/vulkan-raytracing/
https://devblogs.nvidia.com/vulkan-raytracing/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


21© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_3

CHAPTER 3

Introduction to DirectX Raytracing
Chris Wyman and Adam Marrs  
NVIDIA

ABSTRACT

Modern graphics APIs such as DirectX 12 expose low-level hardware access and 
control to developers, often resulting in complex and verbose code that can be 
intimidating for novices. In this chapter, we hope to demystify the steps to set up 
and use DirectX for ray tracing.

3.1	 �INTRODUCTION

At the 2018 Game Developers Conference, Microsoft announced the DirectX 
Raytracing (DXR) API, which extends DirectX 12 with native support for ray tracing. 
Beginning with the October 2018 update to Windows 10, the API runs on all DirectX 
12 GPUs, either using dedicated hardware acceleration or via a compute-based 
software fallback. This functionality enables new options for DirectX renderers, 
ranging from full-blown, film-quality path tracers to more humble ray-raster 
hybrids, e.g., replacing raster shadows or reflections with ray tracing.

As with all graphics APIs, a few prerequisites are important before diving into 
code. This chapter assumes a knowledge of ray tracing fundamentals, and we 
refer readers to other chapters in this book, or introductory texts [4, 10], for the 
basics. Additionally, we assume familiarity with GPU programming; to understand 
ray tracing shaders, experience with basic DirectX, Vulkan, or OpenGL helps. For 
lower-level details, prior experience with DirectX 12 may be beneficial.

3.2	 �OVERVIEW

GPU programming has three key components, independent of the API: (1) the  
GPU device code, (2) the CPU host-side setup process, and (3) the sharing of  
data between host and device. Before we discuss each of these components, 
Section 3.3 walks through important software and hardware requirements to get 
started building and running DXR-based programs.

We then talk about each core component, starting with how to code DXR shaders 
in Sections 3.4, 3.5, and 3.6. The high-level shading language (HLSL) code for DXR 
looks similar to a serial CPU ray tracer written in C++. Using libraries to abstract 



22

the host-side graphics API (e.g., Falcor [2]), even beginners can build interesting 
GPU-accelerated ray tracers quickly. An example of this is shown in Figure 3-1, 
which was rendered using Falcor extended with a simple path tracer.

Figure 3-1.  The Amazon Lumberyard Bistro rendered with a DirectX-based path tracer.

Section 3.7 provides an overview of the DXR host-side setup process and describes 
the mental model that drives the new API. Section 3.8 covers in detail the host-side 
steps needed to initialize DXR, build the required ray acceleration structures, and 
compile ray tracing shaders. Sections 3.9 and 3.10 introduce the new ray tracing 
pipeline state objects and shader tables, respectively, defining data sharing between 
host and GPU. Finally, Section 3.11 shows how to configure and launch rays.

DirectX abstracts the ray acceleration structure, unlike in software renderers where 
choosing this structure is a key choice impacting performance. Today’s consensus 
suggests bounding volume hierarchies (BVHs) have better characteristics than other 
data structures, so the first half of this chapter refers to acceleration structures as 
bounding volume hierarchies, even though DirectX does not mandate use of BVHs. 
Initializing the acceleration structure is detailed in Section 3.8.1.

3.3	 �GETTING STARTED

To get started building DirectX Raytracing applications, you need a few standard 
tools. DXR only runs on Windows 10 RS5 (and later), also know as version 1809 or 
the October 2018 update. Check your Windows version by running winver.exe or by 
opening Settings → System → About.

After verifying your operating system, install an updated version of the Windows SDK  
including the headers and libraries with DXR functionality. This requires Windows 10  
SDK 10.0.17763.0 or above. This may also be called Windows 10 SDK version 1809. 

RAY TRACING GEMS



23

You need Visual Studio or a similar compiler. Both the professional and free 
community versions of Visual Studio 2017 work.

Finally, ray tracing requires a GPU that supports DirectX 12 (check by running 
dxdiag.exe). Having hardware-accelerated ray tracing improves performance 
dramatically for complex scenes and higher resolutions. Tracing a few rays per 
pixel may be feasible on older GPUs, especially when using simple scenes or lower 
resolutions. For various reasons, ray tracing typically requires more memory 
than rasterization. Hardware with less onboard memory may exhibit terrible 
performance due to thrashing.

3.4	 �THE DIRECTX RAYTRACING PIPELINE

A traditional GPU raster pipeline contains numerous programmable stages where 
developers write custom shader code to control the image generated. DirectX 
Raytracing introduces a new ray primitive and flexible per-ray data storage (see 
Section 3.5.1) plus five new shader stages, shown in the simplified pipeline diagram 
in Figure 3-2. These shaders enable launching rays, controlling ray/geometry 
intersections, and shading the identified hits:

	1.	 The ray generation shader starts the pipeline, allowing developers to specify 
which rays to launch using the new built-in TraceRay() shader function. 
Similar to traditional compute shaders, it executes on a regular one-, two-, or 
three-dimensional grid of samples.

Figure 3-2.  A simplified view of the new DirectX Raytracing pipeline, including the five new shader 
stages (in blue): the ray generation, intersection, any-hit, closest-hit, and miss shaders. The complexity 
occurs in the traversal loop (the large gray outline, most of the figure), where rays are tested against 
bounding volume nodes and potential hits are identified and ordered to determine the closest hit. Not 
shown are potential recursive calls to TraceRay() from the closest-hit and miss shaders.

 Introduction to DirectX Raytracing



24

	2.	 Intersection shaders define the computations for ray intersections with 
arbitrary primitives. A high-performance default is provided for ray/triangle 
intersections.

	3.	 Any-hit shaders1 allow controllably discarding otherwise valid intersections, 
e.g., ignoring alpha-masked geometry after a texture lookup.

	4.	 A closest-hit shader executes at the single closest intersection along each ray. 
Usually, this computes the color at the intersection point, similar to a pixel 
shader in the raster pipeline.

	5.	 A miss shader executes whenever a ray misses all geometry in the scene. This 
allows, for example, lookups into an environment map or a dynamic skylight 
model.

Consider the pseudocode below for a simple CPU ray tracer, as you might find in 
an introductory textbook [9]. The code loops over an output image, computing a 
direction for each ray, traversing the acceleration structure, intersecting geometry 
in overlapping acceleration structure nodes, querying if these intersections are 
valid, and shading the final result.

 

1�Despite the name, any-hit shaders do not run once per intersection, mostly for performance reasons. By default, 
they may run a variable, implementation-dependent number of times per ray. Read the specification closely to 
understand and control the behavior for more complex use cases.

RAY TRACING GEMS



25

At least for standard use cases, the new DXR shaders have correspondences 
with parts of this simple ray tracer. The launch size of the ray generation shader 
corresponds to the image dimensions. Camera computations to generate each 
pixel’s ray occur in the ray generation shader.

While a ray traverses the bounding volume hierarchy, actual intersections of 
primitives in the leaf node logically occur in DirectX intersection shaders, and 
detected intersections can be discarded in the any-hit shader. Finally, once a ray 
has completed its traversal through the acceleration structure, it is either shaded 
in the closest-hit shader or given a default color in the miss shader.

3.5	 �NEW HLSL SUPPORT FOR DIRECTX RAYTRACING

Augmenting the standard HLSL data types, texture and buffer resources, and 
built-in functions (see the DirectX documentation [5]), Microsoft added various 
built-in intrinsics to support the functionality needed for ray tracing. New intrinsic 
functions fall into five categories:

	1.	 Ray traversal functions spawn rays and allow control of their execution.

	2.	 Launch introspection functions query launch dimensions and identify which ray 
(or pixel) the current thread is processing. These functions are valid in any ray 
tracing shader.

	3.	 Ray introspection functions query ray parameters and properties and are 
available whenever you have an input ray (all ray tracing shaders except the 
ray generation shader).

	4.	 Object introspection functions query object and instance properties and are 
usable whenever you have an input primitive (intersection, any-hit, and 
closest-hit shaders).

	5.	 Hit introspection functions query properties of the current intersection. 
Properties are largely user defined, so these functions allow communication 
between intersection and hit shaders. These functions are available only 
during any-hit and closest-hit shaders.

3.5.1	 �LAUNCHING A NEW RAY IN HLSL

The most important new function, TraceRay(), launches a ray. Logically, this 
behaves akin to a texture fetch: it pauses your shader for a variable (and potentially 
large) number of GPU clocks, resuming execution when results are available 

 Introduction to DirectX Raytracing



26

for further processing. Ray generation, closest-hit, and miss shaders can call 
TraceRay(). These shaders can launch zero, one, or many rays per thread.  
The code for a basic ray launch looks as follows:

1 RaytracingAccelerationStructure scene;             // �Scene BVH from C++

2 RayDesc ray = { rayOrigin, minHitDist, rayDirection, maxHitDist };

3 UserDefinedPayloadStruct payload = { ... <initialize here>... };

4

5 TraceRay( scene, RAY_FLAG_NONE, instancesToQuery,  // What geometry?

6            hitGroup, numHitGroups, missShader,     // Which shaders?

7            ray,                                    // �What ray to trace?

8            payload );                              // �What data to use?

The user-defined payload structure contains per-ray data persistent over a ray’s 
lifetime. Use it to maintain ray state during traversal and return results from 
TraceRay(). DirectX defines the RayDesc structure to store ray origin, direction, 
and minimum and maximum hit distances (ordered to pack in two float4s). Ray 
intersections outside the specified interval are ignored. The acceleration structure 
is defined via the host API (see Section 3.8.1).

The first TraceRay() parameter selects the BVH containing your geometry. 
Simple ray tracers often use a single BVH, but independently querying multiple 
structures can allow varying behavior for different geometry classes (e.g., 
transparent/opaque, dynamic/static). The second parameter contains flags that 
alter ray behavior, e.g., specifying additional optimizations valid on the ray. The 
third parameter is an integer instance mask that allows skipping geometry based 
on per-instance bitmasks; this should be 0xFF to test all geometry.

The fourth and fifth parameters help select which hit group to use. A hit group 
consists of an intersection, closest-hit, and any-hit shader (some of which may 
be null). Which set is used depends on these parameters and what geometry type 
and BVH instance are tested. For basic ray tracers, there is typically one hit group 
per ray type: for example, primary rays might use hit group 0, shadow rays use 
hit group 1, and global illumination rays use hit group 2. In that case, the fourth 
parameter selects the ray type and the fifth specifies the number of different types.

The sixth parameter specifies which miss shader to use. This simply indexes into 
the list of miss shaders loaded. The seventh parameter is the ray to trace, and the 
eighth parameter should be this ray’s user-defined persistent payload structure.

RAY TRACING GEMS



27

3.5.2	 �CONTROLLING RAY TRAVERSAL IN HLSL

Beyond specifying flags at ray launch, DirectX provides three additional functions 
to control ray behavior in intersection and any-hit shaders. Call ReportHit() in 
custom intersection shaders to identify where the ray hits a primitive. An example 
of this is the following:

1 if ( doesIntersect( ray, curPrim ) ) {

2     PrimHitAttrib hitAttribs = { ... <initialize here>... };

3     uint hitType = <user-defined-value>;

4     ReportHit( distToHit, hitType, hitAttribs );

5 }

The inputs to ReportHit() are the distance to the intersection along the ray, a 
user-definable integer specifying the type of hit, and a user-definable hit attributes 
structure. The hit type is available to hit shaders as an 8-bit unsigned integer 
returned by HitKind(). It is useful for determining properties of a ray/primitive 
intersection, such as face orientation, but is highly customizable since it is user 
defined. When a hit is reported by the built-in triangle intersector, HitKind() returns 
either D3D12_HIT_KIND_TRIANGLE_FRONT_FACE or D3D12_HIT_KIND_TRIANGLE_
BACK_FACE. Hit attributes are passed as a parameter to any-hit and closest-hit 
shaders. When using the built-in triangle intersector, hit shaders use a parameter of 
type BuiltInTriangleIntersectionAttributes. Also, note that ReportHit() 
returns true if the hit is accepted as the closest hit encountered thus far.

Call the function IgnoreHit() in an any-hit shader to stop processing the current 
hit point. This returns execution to the intersection shader (and ReportHit() 
returns false) and behaves similarly to a discard call in raster except that 
modifications to the ray payload are preserved.

Call the function AcceptHitAndEndSearch() in an any-hit shader to accept 
the current hit, skip any unsearched BVH nodes, and immediately continue to the 
closest-hit shader using the currently closest hit. This is useful for optimizing 
shadow ray traversal because these rays simply determine whether anything is hit 
without triggering more complex shading and lighting evaluations.

3.5.3	 �ADDITIONAL HLSL INTRINSICS

All ray tracing shaders can query the current ray launch dimensions 
and the index of a thread’s ray with DispatchRaysDimensions() or 
DispatchRaysIndex(), respectively. Note that both functions return a uint3, 
as ray launches can be one, two, or three dimensional.

For introspection, WorldRayOrigin(), WorldRayDirection(), RayTMin(), and 
RayFlags() respectively return the origin, direction, minimum traversal distance, 

 Introduction to DirectX Raytracing



28

and ray flags provided to TraceRay(). In the any-hit and closest-hit shaders, 
RayTCurrent() returns the distance to the current hit. In the intersection shader, 
RayTCurrent() returns the distance to the closest hit (which may change during 
shader execution). During the miss shader, RayTCurrent() returns the maximum 
traversal distance specified to TraceRay().

During intersection, any-hit, and closest-hit shaders, a number of object 
introspection intrinsics are available:

>> InstanceID() returns a user-defined identifier for the current instance.

>> InstanceIndex() and PrimitiveIndex() return system-defined identifiers 
for the current instance and primitive.

>> ObjectToWorld3x4() and ObjectToWorld4x3() are transposed matrices 
that transform from object space to world space.

>> WorldToObject3x4() and WorldToObject4x3() return the matrix from 
world space to object space.

>> ObjectRayDirection() and ObjectRayOrigin() provide ray data 
transformed into the instance’s coordinate space.

3.6	 �A SIMPLE HLSL RAY TRACING EXAMPLE

To provide a more concrete example of how this works in practice, consider the 
following HLSL snippet. It defines a ray instantiated by the function ShadowRay(), 
which returns 0 if the ray is occluded and 1 otherwise (i.e., a “shadow ray”). As 
ShadowRay() calls TraceRay(), it can only be called in ray generation, closest-
hit, or miss shaders. Logically, the ray assumes it is occluded unless the miss 
shader executes, when we definitively know the ray is unoccluded. This allows us to 
avoid execution of closest-hit shaders (RAY_FLAG_SKIP_CLOSEST_HIT_SHADER) 
and to stop after any hit where occlusion occurs (RAY_FLAG_ACCEPT_FIRST_HIT_
AND_END_SEARCH).

 1 RaytracingAccelerationStructure scene;   // C++ puts built BVH here

 2

 3 struct ShadowPayload {                   // Define a ray payload

 4   float isVisible;                        // 0: occluded, 1: visible

 5 };

 6

 7 [shader("miss")]                         // Define miss shader #0

 8 void ShadowMiss(inout ShadowPayload pay) {

 9   pay.isVisible = 1.0f;                  // �We miss ! Ray unoccluded

10 }

11

RAY TRACING GEMS



29

12 [shader("anyhit")]                         // Add to hit group #0

13 void ShadowAnyHit(inout ShadowPayload pay,

14                   BuiltInTriangleIntersectionAttributes attrib) {

15   if ( isTransparent( attrib, PrimitiveIndex() ) )

16     IgnoreHit();                           // Skip transparent hits

17 }

18

19 float ShadowRay( float3 orig, float3 dir, float minT, float maxT ) {

20   RayDesc ray = { orig, minT, dir, maxT }; // Define our new ray.

21   ShadowPayload pay = { 0.0f };            // Assume ray is occluded

22   TraceRay( scene,

23             (RAY_FLAG_SKIP_CLOSEST_HIT_SHADER |

24             RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH),

25             0xFF, 0, 1, 0, ray, pay );     // Hit group 0; miss 0

26   return pay.isVisible;                    // Return ray payload

27 }

Note that this code uses a custom-written isTransparent() function to query the 
material system (based on primitive ID and hit point) to perform alpha testing.

With this in place, shadow rays can easily be cast from other shaders; for example, 
a simple ambient occlusion renderer may look as follows:

 1 Texture2D<float4> gBufferPos, gBufferNorm;  // Input G-buffer

 2 RWTexture2D<float4> output;                 // Output AO buffer

 3

 4 [shader("raygeneration")]

 5 void SimpleAOExample() {

 6   uint2 pixelID = DispatchRaysIndex().xy;   // What pixel are we on?

 7   float3 pos = gBufferPos[ pixelID ].rgb;   // AO rays from where?

 8   float3 norm = gBufferNorm[ pixelID ].rgb; // G-buffer normal

 9   float aoColor = 0.0f;

10   for (uint i = 0; i < 64; i++)             // Use 64 rays.

11     �aoColor += (1.0f/64.0f) * ShadowRay(pos, GetRandDir(norm), 1e-4);

12   output[ pixelID ] = float4( aoColor, aoColor, aoColor, 1.0f );

13 }

The GetRandDir() function returns a randomly chosen direction within the unit 
hemisphere defined by the surface normal, and the 1e−4 minT value passed to 
ShadowRay() is an offset to help avoid self-intersections (see Chapter 6 for more 
advanced options).

 Introduction to DirectX Raytracing



30

3.7	 �OVERVIEW OF HOST INITIALIZATION FOR DIRECTX RAYTRACING

Until now, we focused on the shader code necessary for DirectX Raytracing. If  
using an engine or framework supporting DXR, this should provide enough to  
get started. However, when starting from scratch, you also need some low-level  
DirectX host-side code to initialize your ray tracer. Detailed in Sections 3.8–3.11,  
key initialization steps include: 

	1.	 Initialize a DirectX device and verify that it supports ray tracing.

	2.	 Build a ray acceleration structure and specify your scene geometry.

	3.	 Load and compile your shaders.

	4.	 Define root signatures and shader tables to pass rendering parameters from 
the CPU to GPU.

	5.	 Define DirectX pipeline state objects for your ray tracing pipeline.

	6.	 Dispatch work to the GPU to actually trace the rays.

As with all DirectX 12 APIs, the ray tracing API is low level and verbose. Even 
simple samples [3] run over 1000 lines of C++ code after allocating all resources, 
performing validation, and checking for errors. For clarity and brevity, our code 
snippets in the following sections focus on new key functions and structures 
needed for ray tracing.

3.7.1	 �INSIGHT INTO THE MENTAL MODEL

When trying to understand these code snippets, remember the goals. Unlike 
rasterization, when ray tracing each ray may intersect arbitrary geometry and 
materials. Allowing for this flexibility while also achieving high performance means 
making available shader data for all potentially intersected surfaces on the GPU in 
a well-organized and easily indexable format. As a result, the process of tracing 
rays and shading intersected surfaces are coupled in DirectX, unlike offline or CPU 
ray tracers where these two operations are often independent.

Consider the new shader stages in Section 3.4. Ray generation shaders have a 
standard GPU programming model, where groups of threads launch in parallel, 
but the other shader programs effectively act as callbacks: run one when a ray hits 
a sphere, run another to shade a point on a triangle, and run a third when missing 
all geometry. Shaders get spawned, wake up, and need to identify work to perform 
without the benefit of a continuous execution history. If a spawned shader’s work 
depends on geometric properties, DirectX needs to understand this relationship, e.g., 
closest-hit shading may depend on a surface normal computed during intersection.

RAY TRACING GEMS



31

What information is needed to identify the correct shader to run for a surface? 
Depending on the complexity of your ray tracer, shaders may vary based on:

>> Ray type: Rays may need different computations (e.g., shadowing).

>> Primitive type: Triangles, spheres, cones, etc. may have different needs.

>> Primitive identifier: Each primitive may use a different material.

>> Instance identifier: Instancing may change the required shading.

In practice, shader selection by the DirectX runtime is a combination of parameters 
provided to TraceRay(), geometric information, and per-instance data.

To efficiently implement the flexible tracing and shading operations required by 
real-time ray tracing, DXR introduces two new data structures: the acceleration 
structure and shader table. Shader tables are especially important because they 
serve as the glue tying rays, geometry, and shading operations together. We talk 
about each of these in detail in Sections 3.8.1 and 3.10.

3.8	 �BASIC DXR INITIALIZATION AND SETUP

Host-side initialization and setup of DXR extends processes defined by DirectX 12. 
Creation of foundational objects such as adapters, command allocators, command 
queues, and fences is unchanged. A new device type, ID3D12Device5, includes 
functions to query GPU ray tracing support, determine memory requirements 
for ray tracing acceleration structures, and create ray tracing pipeline state 
objects (RTPSOs). Ray tracing functions reside in a new command list type, 
ID3D12GraphicsCommandList4, including functions for building and manipulating 
ray tracing acceleration structures, creating and setting ray tracing pipeline state 
objects, and dispatching rays. Sample code to create a device, query ray tracing 
support, and create a ray tracing command list follows:

 1 IDXGIAdapter1* adapter;              // Create as in raster-based code

 2 ID3D12CommandAllocator* cmdAlloc;    // Create as in raster-based code

 3 ID3D12GraphicsCommandList4* cmdList; // Command list for ray tracing

 4 ID3D12Device5* dev;                  // Device for ray tracing

 5 HRESULT hr;                          // Return type for D3D12 calls

 6

 7 // Create a D3D12 device capable of ray tracing.

 8 hr = D3D12CreateDevice(adapter, D3D_FEATURE_LEVEL_12_1,

 9                         _uuidof(ID3D12Device5), (void**)&dev);

10 if (FAILED(hr)) Exit("Failed to create device");

11

12 // Check if the D3D12 device actually supports ray tracing.

13 D3D12_FEATURE_DATA_D3D12_OPTIONS5 caps = {};

 Introduction to DirectX Raytracing



32

14 hr = dev->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS5,

15                               &caps, sizeof(caps));

16

17 if (FAILED(hr) || caps.RaytracingTier < D3D12_RAYTRACING_TIER_1_0)

18   Exit("Device or driver does not support ray tracing!");

19

20 // Create a command list that supports ray tracing.

21 hr = dev->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT,

22                             cmdAlloc, nullptr, IID_PPV_ARGS(& cmdList));

After device creation, ray tracing support is queried via 
CheckFeatureSupport() using the new D3D12_FEATURE_DATA_OPTIONS5 
structure. Ray tracing support falls into tiers defined by the D3D12_RAYTRACING 
_TIER enumeration. Currently, two tiers exist: D3D12_RAYTRACING_TIER_1_0 
and D3D12_RAYTRACING_TIER_NOT_SUPPORTED.

3.8.1	 �GEOMETRY AND ACCELERATION STRUCTURES

Hierarchical scene representations are vital for high-performance ray tracing, as 
they reduce tracing complexity from linear to logarithmic in number of ray/primitive 
intersections. In recent years, researchers have explored various alternatives for 
these ray tracing acceleration structures, but today’s consensus is that variants 
of bounding volume hierarchies (BVHs) have the best characteristics. Beyond 
hierarchically grouping primitives, BVHs can also guarantee bounded memory usage.

DirectX acceleration structures are opaque, with the driver and underlying 
hardware determining data structure and memory layout. Existing 
implementations rely on BVHs, but vendors may choose alternate structures. 
DXR acceleration structures typically get built at runtime on the GPU and contain 
two levels: a bottom and a top level. Bottom-level acceleration structures (BLAS) 
contain geometric or procedural primitives. Top-level acceleration structures 
(TLAS) contain one or more bottom-level structures. This allows geometry 
instancing by inserting the same BLAS into the TLAS multiple times, each with 
different transformation matrices. Bottom-level structures are slower to build 
but deliver fast ray intersection. Top-level structures are fast to build, improving 
flexibility and reusability of geometry, but overuse can reduce performance. For 
best performance, bottom-level structures should overlap as little as possible.

Instead of rebuilding the BVH in dynamic scenes, acceleration structures can be 
“refit” if geometry topology remains fixed (only node bounds change). Refits cost 
an order of magnitude less than rebuilds, but repeated refits usually degrade 
ray tracing performance over time. To balance tracing and build costs, use an 
appropriate combination of refits and rebuilds.

RAY TRACING GEMS



33

3.8.1.1	 �BOTTOM-LEVEL ACCELERATION STRUCTURE

To create an acceleration structure, start by building the bottom levels. First, use 
D3D12_RAYTRACING_GEOMETRY_DESC structures to specify the vertex, index, and 
transformation data of geometry contained in the bottom-level structure. Note that 
ray tracing vertex and index buffers are not special, but are identical to the buffers 
used in rasterization. An example showing how to specify opaque geometry follows:

 1 struct Vertex {

 2     XMFLOAT3 position;

 3     XMFLOAT2 uv;

 4 };

 5

 6 vector<Vertex> vertices;

 7 vector<UINT> indices;

 8 ID3D12Resource* vb;         // Vertex buffer

 9 ID3D12Resource* ib;         // Index buffer

10

11 // Describe the geometry.

12 D3D12_RAYTRACING_GEOMETRY_DESC geometry;

13 geometry.Type = D3D12_RAYTRACING_GEOMETRY_TYPE_TRIANGLES;

14 geometry.Triangles.VertexBuffer.StartAddress =

15   vb->GetGPUVirtualAddress();

16 geometry.Triangles.VertexBuffer.StrideInBytes = sizeof(Vertex);

17 geo�metry.Triangles.VertexCount = static_cast<UINT>(vertices.size());

18 geometry.Triangles.VertexFormat = DXGI_FORMAT_R32G32B32_FLOAT;

19 geometry.Triangles.IndexBuffer = ib->GetGPUVirtualAddress();

20 geometry.Triangles.IndexFormat = DXGI_FORMAT_R32_UINT;

21 �geometry.Triangles.IndexCount = static_cast<UINT>(indices.size());

22 geometry.Triangles.Transform3x4 = 0;

23 geometry.Flags = D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE;

When describing BLAS geometry, use flags to inform ray tracing shaders  
about the geometry. For example, as we saw in Section 3.6, it is useful for shaders 
to know if intersected geometry is opaque or transparent. If geometry is opaque, 
specify D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE; otherwise, specify  
*_FLAG_NONE.

Next, query the memory needed to build the BLAS and store the fully built structure. 
Use the new GetRaytracingAccelerationStructurePrebuildInfo() device 
function to get sizes for the scratch and result buffers. The scratch buffer is used 
during the build process, and the result buffer stores the completed BLAS.

Build flags describe expected BLAS usage, allowing memory and performance 
optimizations. The D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BUILD_
FLAG_MINIMIZE_MEMORY and *_ALLOW_COMPACTION flags help reduce required 

 Introduction to DirectX Raytracing



34

memory. Other flags request additional desirable characteristics, such as faster 
tracing or build time (*_PREFER_FAST_TRACE or *_PREFER_FAST_BUILD) or 
allowing dynamic BVH refits (*_ALLOW_UPDATE). Here is a simple example:

 1 // Describe the bottom-level acceleration structure inputs.

 2 D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_INPUTS ASInputs = {};

 3 ASInputs.Type =

 4   D3D12_RAYTRACING_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL;

 5 ASInputs.DescsLayout = D3D12_ELEMENTS_LAYOUT_ARRAY;

 6

 7 // From previous code snippet

 8 ASInputs.pGeometryDescs = &geometry;

 9

10 ASInputs.NumDescs = 1;

11 ASInputs.Flags =

12   D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BUILD_FLAG_PREFER_FAST_TRACE;

13

14 // Get the memory requirements to build the BLAS.

15 D3D12_RAYTRACING_ACCELERATION_STRUCTURE_PREBUILD_INFO ASBuildInfo = {};

16 dev->GetRaytracingAccelerationStructurePrebuildInfo(

17                                            &ASInputs, &ASBuildInfo);

After determining the memory required, allocate GPU buffers for the BLAS.  
Both scratch and result buffers must support unordered access view (UAV), set 
with the D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS flag. Use  
D3D12_RESOURCE_STATE_RAYTRACING_ACCELERATION_STRUCTURE as the 
initial state for the final BLAS buffer. With geometry specified and BLAS memory 
allocated, we can build our acceleration structure. This looks as follows:

 1 ID3D12Resource* blasScratch;       // Create as described in text.

 2 ID3D12Resource* blasResult;        // Create as described in text.

 3

 4 // Describe the bottom-level acceleration structure.

 5 D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC desc = {};

 6 desc.Inputs = ASInputs;           // From previous code snippet

 7

 8 desc.ScratchAccelerationStructureData =

 9   blasScratch->GetGPUVirtualAddress();

10 desc.DestAccelerationStructureData =

11   blasResult->GetGPUVirtualAddress();

12

13 // Build the bottom-level acceleration structure.

14 cmdList->BuildRaytracingAccelerationStructure(&desc, 0, nullptr);

Since the BLAS may build asynchronously on the GPU, wait until building completes 
before using it. To do this, add a UAV barrier to the command list referencing the 
BLAS result buffer.

RAY TRACING GEMS



35

3.8.1.2	 �TOP-LEVEL ACCELERATION STRUCTURE

Building the TLAS is similar to building bottom-level structures, with a few small 
but important changes. Instead of providing geometry descriptions, each TLAS 
contains instances of geometry from a BLAS. Each instance has a mask that 
allows for rejecting entire instances on a per-ray basis, without any primitive 
intersections, in conjunction with parameters to TraceRay() (see Section 3.5.1). 
For example, an instance mask could disable shadowing on a per-object basis. 
Instances can each uniquely transform the BLAS geometry. Additional flags allow 
overrides to transparency, frontface winding, and culling. The following example 
code defines TLAS instances:

 1 // Describe the top-level acceleration structure instance(s).

 2 D3D12_RAYTRACING_INSTANCE_DESC instances = {};

 3 // Available in shaders

 4 instances.InstanceID = 0;

 5 // Choose hit group shader

 6 instances.InstanceContributionToHitGroupIndex = 0;

 7 // Bitwise AND with TraceRay() parameter

 8 instances.InstanceMask = 1;

 9 instances.Transform = &identityMatrix;

10 // Transparency? Culling?

11 instances.Flags = D3D12_RAYTRACING_INSTANCE_FLAG_NONE;

12 instances.AccelerationStructure = blasResult->GetGPUVirtualAddress();

After creating instance descriptions, upload them in a GPU buffer. Reference this 
buffer as a TLAS input when querying memory requirements. As with a BLAS, query 
memory needs using GetRaytracingAccelerationStructurePrebuildInfo(), 
but specify TLAS construction using type D3D12_RAYTRACING_ACCELERATION_
STRUCTURE_TYPE_TOP_LEVEL. Next, allocate scratch and result buffers and then 
call BuildRaytracingAccelerationStructure() to build the TLAS. As with 
the bottom level, placing a UAV barrier on the top-level result buffer ensures the 
acceleration structure build is complete before use.

3.8.2	 �ROOT SIGNATURES

Similar to function signatures in C++, DirectX 12 root signatures define the parameters 
that are passed to shader programs. These parameters store information used to 
locate resources (such as buffers, textures, or constants) that reside in GPU memory. 
DXR root signatures derive from existing DirectX root signatures, with two notable 
changes. First, ray tracing shaders may use either local or global root signatures. Local 
root signatures pull data from the DXR shader table (see Section 3.10) and initialize the 
D3D12_ROOT_SIGNATURE_DESC structure using the D3D12_ROOT_SIGNATURE_
FLAG_LOCAL_ROOT_SIGNATURE flag. This flag only applies to ray tracing, so avoid 

 Introduction to DirectX Raytracing



36

combining it with other signature flags. Global root signatures source data from 
DirectX command lists, require no special flags, and can be shared between graphics, 
compute, and ray tracing. The distinction between local and global signatures is useful 
to separate resources with varying update rates (e.g., per-primitive versus per-frame).

Second, all ray tracing shaders should use D3D12_SHADER_VISIBILITY_ALL for 
the visibility parameter in D3D12_ROOT_PARAMETER, using either local or global 
root signatures. As ray tracing root signatures share the command list state with 
compute, local root arguments are always visible to all ray tracing shaders. It is not 
possible to further narrow visibility.

3.8.3	 �SHADER COMPILATION

After building acceleration structures and defining root signatures, load and 
compile shaders with the DirectX shader compiler (dxc) [7]. Initialize the compiler 
using various helpers:

1 dxc::DxcDllSupport           dxcHelper;

2 IDxcCompiler*                compiler;

3 IDxcLibrary*                 library;

4 CComPtr<IDxcIncludeHandler>  dxcIncludeHandler;

5

6 dxcHelper.Initialize();

7 dxcHelper.CreateInstance(CLSID_DxcCompiler, &compiler);

8 dxcHelper.CreateInstance(CLSID_DxcLibrary, &library);

9 library->CreateIncludeHandler(&dxcIncludeHandler);

Next, use the IDxcLibrary class to load your shader source. This helper class 
compiles the shader code; specify lib_6_3 as the target profile. Compiled DirectX 
intermediate language (DXIL) bytecode gets stored in a IDxcBlob, which we use 
later to set up our ray tracing pipeline state object. As most applications use many 
shaders, encapsulating compilation into a helper function is useful. We show such 
a function and its usage in the following:

 1 void CompileShader(IDxcLibrary* lib, IDxcCompiler* comp,

 2                    LPCWSTR fileName, IDxcBlob** blob)

 3 {

 4     UINT32 codePage(0);

 5     IDxcBlobEncoding* pShaderText(nullptr);

 6     IDxcOperationResult* result;

 7

 8     // Load and encode the shader file.

 9     lib->CreateBlobFromFile(fileName, & codePage, & pShaderText);

10

11     // Compile shader; "main" is where execution starts.

12     comp->Compile(pShaderText, fileName, L"main", "lib_6_3",

13                   �nullptr, 0, nullptr, 0, dxcIncludeHandler, &result);

14

RAY TRACING GEMS



37

15     // Get the shader bytecode result.

16     result->GetResult(blob);

17 }

18

19 // Compiled shader DXIL bytecode

20 IDxcBlob *rgsBytecode, *missBytecode, *chsBytecode, *ahsBytecode;

21

22 // Call our helper function to compile the ray tracing shaders.

23 CompileShader(library, compiler, L"RayGen.hlsl", &rgsBytecode);

24 CompileShader(library, compiler, L"Miss.hlsl", &missBytecode);

25 CompileShader(library, compiler, L"ClosestHit.hlsl", &chsBytecode);

26 CompileShader(library, compiler, L"AnyHit.hlsl", &ahsBytecode);

3.9	 �RAY TRACING PIPELINE STATE OBJECTS

As rays can intersect anything in a scene, applications must specify in advance 
every shader that can execute. Similar to pipeline state objects (PSOs) in a raster 
pipeline, the new ray tracing pipeline state objects (RTPSOs) provide the DXR 
runtime with the full set of shaders and configuration information before execution. 
This reduces driver complexity and enables shader scheduling optimizations.

To construct an RTPSO, initialize a D3D12_STATE_OBJECT_DESC. There are 
two pipeline object types: a ray tracing pipeline (D3D12_STATE_OBJECT_TYPE_
RAYTRACING_PIPELINE) and a collection (D3D12_STATE_OBJECT_TYPE 
_COLLECTION). Collections are useful for parallel compilation of ray tracing 
shaders across multiple threads.

DXR ID3D12StateObjects are composed of many subobjects defining the 
pipeline’s shaders, root signatures, and configuration data. Construct those 
using various D3D12_STATE_SUBOBJECTs, and create objects by calling the 
CreateStateObject() device function. Query properties of RTPSOs, such as 
shader identifiers (see Section 3.10), using the ID3D12StateObjectProperties 
type. An example of this process follows:

 1 ID3D12StateObject* rtpso;

 2 ID3D12StateObjectProperties* rtpsoInfo;

 3

 4 // Define state subobjects for shaders, root signatures,

 5 // and configuration data.

 6 vector<D3D12_STATE_SUBOBJECT> subobjects;

 7 //...

 8

 9 // Describe the ray tracing pipeline state object.

 Introduction to DirectX Raytracing



38

10 D3D12_STATE_OBJECT_DESC rtpsoDesc = {};

11 rtpsoDesc.Type = D3D12_STATE_OBJECT_TYPE_RAYTRACING_PIPELINE;

12 rtpsoDesc.NumSubobjects = static_cast<UINT>(subobjects.size());

13 rtpsoDesc.pSubobjects = subobjects.data();

14

15 // Create the ray tracing pipeline state object.

16 dev->CreateStateObject(&rtpsoDesc, IID_PPV_ARGS(&rtpso));

17

18 // Get the ray tracing pipeline state object's properties.

19 rtpso->QueryInterface(IID_PPV_ARGS(&rtpsoInfo));

A ray tracing pipeline contains many different subobject types, including possible 
subobjects for local and global root signatures, GPU node masks, shaders, 
collections, shader configuration, and pipeline configuration. We cover only key 
subobjects, but DXR provides lots of flexibility for more complex cases; please 
consult the specification for comprehensive details.

Use D3D12_STATE_SUBOBJECT_TYPE_DXIL_LIBRARY to create subobjects for 
shaders. Use the compiled bytecode IDxcBlob (from Section 3.8.3) to provide a 
shader pointer and the compiled size. Use D3D12_EXPORT_DESC to specify the 
shader’s entry point and a unique shader identifier. Importantly, shader entry points 
must have unique names within an RTPSO. If multiple shaders reuse identical 
function names, put the name into the ExportToRename field, and create a new 
unique name in the Name field. The following shows an example:

 1 // Describe the DXIL Library entry point and name.

 2 D3D12_EXPORT_DESC rgsExportDesc = {};

 3 // Unique name (to reference elsewhere)

 4 rgsExportDesc.Name = L"Unique_RGS_Name";

 5 // Entry point in HLSL shader source

 6 rgsExportDesc.ExportToRename = L"RayGen";

 7 rgsExportDesc.Flags = D3D12_EXPORT_FLAG_NONE;

 8

 9 // Describe the DXIL library.

10 D3D12_DXIL_LIBRARY_DESC libDesc = {};

11 libDesc.DXILLibrary.BytecodeLength = rgsBytecode->GetBufferSize();

12 libDesc.DXILLibrary.pShaderBytecode = rgsBytecode->GetBufferPointer();

13 libDesc.NumExports = 1;

14 libDesc.pExports = &rgsExportDesc;

15

16 // Describe the ray generation shader state subobject.

17 D3D12_STATE_SUBOBJECT rgs = {};

18 rgs.Type = D3D12_STATE_SUBOBJECT_TYPE_DXIL_LIBRARY;

19 rgs.pDesc = &libDesc;

Create subobjects for miss, closest-hit, and any-hit shaders similarly. Groups of 
intersection, any-hit, and closest-hit shaders form hit groups. These shaders get 
executed once BVH traversal reaches a leaf node, depending on the primitives in 

RAY TRACING GEMS



39

the leaf. We need to create subobjects for each such cluster. Unique shader names 
specified in D3D12_EXPORT_DESC are used to “import” shaders into a hit group:

 1 // Describe the hit group.

 2 D3D12_HIT_GROUP_DESC hitGroupDesc = {};

 3 hitGroupDesc.ClosestHitShaderImport = L"Unique_CHS_Name";

 4 hitGroupDesc.AnyHitShaderImport = L"Unique_AHS_Name";

 5 hitGroupDesc.IntersectionShaderImport = L"Unique_IS_Name";

 6 hitGroupDesc.HitGroupExport = L"HitGroup_Name";

 7

 8 // Describe the hit group state subobject.

 9 D3D12_STATE_SUBOBJECT hitGroup = {};

10 hitGroup.Type = D3D12_STATE_SUBOBJECT_TYPE_HIT_GROUP;

11 hitGroup.pDesc = &hitGroupDesc;

User-defined payload and attribute structures pass data between shaders. 
Allocate runtime space for these structures using a D3D12_STATE_SUBOBJECT_
TYPE_RAYTRACING_SHADER_CONFIG subobject and D3D12_RAYTRACING_
SHADER_CONFIG to describe the sizes. Attribute structures have a relatively small 
DirectX-defined maximum size that you cannot exceed (currently 32 bytes).

 1 // Describe the shader configuration.

 2 D3D12_RAYTRACING_SHADER_CONFIG shdrConfigDesc = {};

 3 shdrConfigDesc.MaxPayloadSizeInBytes = sizeof(XMFLOAT4);

 4 shdrConfigDesc.MaxAttributeSizeInBytes =

 5   D3D12_RAYTRACING_MAX_ATTRIBUTE_SIZE_IN_BYTES;

 6

 7 // Create the shader configuration state subobject.

 8 D3D12_STATE_SUBOBJECT shdrConfig = {};

 9 shdrConfig.Type = D3D12_STATE_SUBOBJECT_TYPE_RAYTRACING_SHADER_CONFIG;

10 shdrConfig.pDesc = &shdrConfigDesc;

Configuring shaders requires more than adding a payload subobject to the pipeline 
state. We must also attach the configuration subobject with associated shaders 
(this allows payloads of multiple sizes within the same pipeline). After defining 
a shader configuration, use a D3D12_STATE_SUBOBJECT_TYPE_SUBOBJECT_
TO_EXPORTS_ASSOCIATION to specify which entry points from DXIL libraries to 
associate with a configuration object. An example is shown in the following code:

 1 // Create a list of shader entry point names that use the payload.

 2 const WCHAR* shaderPayloadExports[] =

 3    { L"Unique_RGS_Name", L"HitGroup_Name" };

 4

 5 // Describe the association between shaders and the payload.

 6 D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION assocDesc = {};

 7 assocDesc.NumExports = _countof(shaderPayloadExports);

 8 assocDesc.pExports = shaderPayloadExports;

 9 assocDesc.pSubobjectToAssociate = &subobjects[CONFIG_SUBOBJECT_INDEX];

10

 Introduction to DirectX Raytracing



40

11 // Create the association state subobject.

12 D3D12_STATE_SUBOBJECT association = {};

13 association.Type =

14   D3D12_STATE_SUBOBJECT_TYPE_SUBOBJECT_TO_EXPORTS_ASSOCIATION;

15 association.pDesc = &assocDesc;

Use D3D12_STATE_SUBOBJECT_TYPE_LOCAL_ROOT_SIGNATURE typed subobjects 
to specify local root signatures and provide a pointer to the serialized root 
signature:

1 ID3D12RootSignature* localRootSignature;

2

3 // Create a state subobject for a local root signature.

4 D3D12_STATE_SUBOBJECT localRootSig = {};

5 localRootSig.Type = D3D12_STATE_SUBOBJECT_TYPE_LOCAL_ROOT_SIGNATURE;

6 localRootSig.pDesc = &localRootSignature;

As with shader configurations, we must associate local root signatures and their 
shaders. Do this using the same pattern as the shader payload association above. 
With a D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION subobject, provide a 
shader name and the associated subobject pointer, in this case to a local root 
signature. Global root signatures do not require association subobjects, so simply 
create a D3D12_STATE_SUBOBJECT_TYPE_GLOBAL_ROOT_SIGNATURE subobject 
and point to the serialized global root signature.

 1 // Create a list of shader export names that use the root signature.

 2 const WCHAR* lrsExports[] =

 3   { L"Unique_RGS_Name", L"Unique_Miss_Name", L"HitGroup_Name" };

 4

 5 // Describe the association of shaders and a local root signature.

 6 D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION assocDesc = {};

 7 assocDesc.NumExports = _countof(lrsExports);

 8 assocDesc.pExports = lrsExports;

 9 assocDesc.pSubobjectToAssociate =

10   &subobjects[ROOT_SIGNATURE_SUBOBJECT_INDEX];

11

12 // Create the association subobject.

13 D3D12_STATE_SUBOBJECT association = {};

14 association.Type =

15   D3D12_STATE_SUBOBJECT_TYPE_SUBOBJECT_TO_EXPORTS_ASSOCIATION;

16 association.pDesc = &assocDesc;

RAY TRACING GEMS



41

All executable ray tracing pipeline objects must include a pipeline configuration 
subobject of type D3D12_STATE_SUBOBJECT_TYPE_RAYTRACING_PIPELINE 
_CONFIG. Describe the configuration using a D3D12_RAYTRACING_PIPELINE 
_CONFIG structure, which sets the maximum depth of recursive rays. Setting a 
maximum recursion helps guarantee that execution will complete and provides 
information to the driver for potential optimizations. Lower recursion limits can 
improve performance. Here is an example:

1 // Describe the ray tracing pipeline configuration.

2 D3D12_RAYTRACING_PIPELINE_CONFIG pipelineConfigDesc = {};

3 pipelineConfigDesc.MaxTraceRecursionDepth = 1;

4

5 // Create the ray tracing pipeline configuration state subobject.

6 D3D12_STATE_SUBOBJECT pipelineConfig = {};

7 pipelineConfig.Type =

8   D3D12_STATE_SUBOBJECT_TYPE_RAYTRACING_PIPELINE_CONFIG;

9 pipelineConfig.pDesc = &pipelineConfigDesc;

After creating the ray tracing pipeline state object and all associated subobjects, 
we can move on to building a shader table (Section 3.10). We will query the 
ID3D12StateObjectProperties object for details needed to construct shader 
table records.

3.10	 �SHADER TABLES

Shader tables are contiguous blocks of 64-bit aligned GPU memory containing ray 
tracing shader data and scene resource bindings. Illustrated in Figure 3-3, shader 
tables are filled with shader records. Shader records contain a unique shader 
identifier and root arguments defined by the shader’s local root signature. Shader 
identifiers are 32-bit chunks of data generated by an RTPSO and act as a pointer 
to a shader or hit group. Since shader tables are simply GPU memory owned and 
modified directly by the application, their layout and organization are incredibly 
flexible. As a result, the organization shown in Figure 3-3 is just one of many ways 
the records in a shader table may be arranged.

 Introduction to DirectX Raytracing



42

When spawning shaders during ray traversal, the shader table is consulted and 
shader records are read to locate shader code and resources. For instance, if a 
ray misses all geometry after traversing the acceleration structure, DirectX uses 
the shader table to locate the shader to invoke. For miss shaders, the index is 
computed as the address of the first miss shader plus the shader record stride 
times the miss shader index. This is written as

			 
( )( )Imiss&M[0] sizeof M[0] .+ ´

	
(1)

The miss shader index, Imiss, is provided as a parameter to TraceRay() in HLSL.

When selecting a shader record for a hit group (i.e., a combination of intersection, 
closest-hit, and any-hit shaders), the computation is more complex:

		
( ) ( )( )ray mult id offset&H[0] sizeof H[0] .I+ ´ + ´ +  

	
(2)

Here, Iray represents a ray type and is specified as part of TraceRay(). You can 
have different shaders for different primitives in your BVH: id  is an internally 
defined geometry identifier, defined based on primitive order in the bottom-level 
acceleration structure; mult  is specified as a parameter to TraceRay() and in 
simple cases represents the number of ray types; and offset  is a per-instance offset 
defined in your top-level acceleration structure.

To create a shader table, reserve GPU memory and fill it with shader records. The 
following example allocates space for three records: namely, a ray generation 
shader and its local data, a miss shader, and a hit group with its local data. 
When writing shader records to the table, query the shader’s identifier using the 

Figure 3-3.  A visualization of a DXR shader table and its shader records. Shader Records contain a 
shader identifier and root arguments used to look up resources.

RAY TRACING GEMS



43

GetShaderIdentifier() method of the ID3D12StateObjectProperties object. 
Use the shader name specified during RTPSO creation as the key to retrieve the 
shader identifier.

 1 # define TO_DESC(x)(*reinterpret_cast<D3D12_GPU_DESCRIPTOR_HANDLE*>(x))

 2 ID3D12Resource* shdrTable;

 3 ID3D12DescriptorHeap* heap;

 4

 5 // Copy shader records to the shader table GPU buffer.

 6 uint8_t* pData;

 7 HRESULT hr = shdrTable->Map(0, nullptr, (void**)&pData);

 8

 9 // [ Shader Record 0]

10 // Set the ray generation shader identifier.

11 memcpy (pData, rtpsoInfo->GetShaderIdentifier(L"Unqiue_RGS_Name"));

12

13 // Set the ray generation shader's data from the local root signature.

14 TO_DESC(pData + 32) = heap->GetGPUDescriptorHandleForHeapStart();

15

16 // [Shader Record 1]

17 // Set the miss shader identifier (no local root arguments to set).

18 pData += shaderRecordSize;

19 memcpy(pData, rtpsoInfo->GetShaderIdentifier(L"Unqiue_Miss_Name"));

20

21 // [Shader Record 2]

22 // Set the closest -hit shader identifier.

23 pData += shaderRecordSize;

24 memcpy(pData, rtpsoInfo->GetShaderIdentifier(L"HitGroup_Name"));

25

26 // Set the hit group's data from the local root signature.

27 TO_DESC(pData + 32) = heap->GetGPUDescriptorHandleForHeapStart();

28

29 shdrTable->Unmap(0, nullptr);

Shader tables are stored in application-owned GPU memory, which provides lots of 
flexibility. For instance, resource and shader updates can be optimized to touch as 
few shader records as required, or even be double or triple buffered, based on the 
application’s update strategy.

3.11	 �DISPATCHING RAYS

After completing the steps in Sections 3.8-3.10, we can finally trace rays. Since 
shader tables have arbitrary, flexible layouts, we need to describe our table using 
a D3D12_DISPATCH_RAYS_DESC before ray tracing begins. This structure points 
to shader table GPU memory and specifies which ray generation shaders, miss 
shaders, and hit groups to use. This information enables the DXR runtime to 
compute shader table record indices (described in Sections 3.7.1 and 3.10).

 Introduction to DirectX Raytracing



44

Next, specify the ray dispatch size. Similar to compute shaders, ray dispatches 
use a three-dimensional grid. If dispatching rays in two dimensions (e.g., for 
an image), ensure that the depth dimension is set to 1; default initialization sets 
it to zero, which will spawn no work. After configuring shader table pointers 
and dispatch dimensions, set the RTPSO with the new command list function 
SetPipelineState1(), and spawn rays using DispatchRays(). An example of 
this is shown in the following:

 1 // Describe the ray dispatch.

 2 D3D12_DISPATCH_RAYS_DESC desc = {};

 3

 4 // Set ray generation table information.

 5 desc.RayGenerationShaderRecord.StartAddress =

 6   shdrTable->GetGPUVirtualAddress();

 7 desc.RayGenerationShaderRecord.SizeInBytes = shaderRecordSize;

 8

 9 // Set miss table information.

10 uint32_t missOffset = desc.RayGenerationShaderRecord.SizeInBytes;

11 desc.MissShaderTable.StartAddress =

12   shdrTable->GetGPUVirtualAddress() + missOffset;

13 desc.MissShaderTable.SizeInBytes = shaderRecordSize;

14 desc.MissShaderTable.StrideInBytes = shaderRecordSize;

15

16 // Set hit group table information.

17 uint32_t hitOffset = missOffset + desc.MissShaderTable.SizeInBytes;

18 desc.HitGroupTable.StartAddress =

19   shdrTable->GetGPUVirtualAddress() + hitGroupTableOffset;

20 desc.HitGroupTable.SizeInBytes = shaderRecordSize;

21 desc.HitGroupTable.StrideInBytes = shaderRecordSize;

22

23 // Set the ray dispatch dimensions.

24 desc.Width = width;

25 desc.Height = height;

26 desc.Depth = 1;

27

28 commandList->SetPipelineState1(rtpso);     // Set the RTPSO.

29 commandList->DispatchRays(&desc);          // Dispatch rays!

3.12	 �DIGGING DEEPER AND ADDITIONAL RESOURCES

In this chapter, we have tried to provide an overview of the DirectX Raytracing 
extensions and of the appropriate mental model behind them. We have, in 
particular, focused on the basics of shader and host-side code that you need to get 
up and running with DXR. Whether you write your own DirectX host-side code or 
have some library (such as, for example, Falcor) provide it for you, from this point 
on using ray tracing gets much easier: once the basic setup is done, adding more 
ray tracing effects is often as simple as changing a few lines of shader code.

RAY TRACING GEMS



45

Obviously, our limited-length introductory chapter cannot go into greater depth. 
We encourage you to explore various other resources that provide basic DirectX 
infrastructure code, samples, best practices, and performance tips.

The SIGGRAPH 2018 course “Introduction to DirectX Raytracing” [12] is available 
on YouTube and provides an in-depth DXR shader tutorial [11] using the Falcor 
framework [2] to abstract low-level DirectX details, allowing you to focus on core 
light transport details. These tutorials walk through basics such as opening a 
window, simple G-buffer creation, and rendering using ambient occlusion as well 
as advanced camera models for antialiasing and depth of field, up to full multiple-
bounce global illumination. Figure 3-4 shows several examples rendered with the 
tutorial code.

Figure 3-4.  Sample renderings using the SIGGRAPH 2018 course “Introduction to DirectX Raytracing” 
tutorials.

Other useful tutorials include those focusing on lower-level host code, including 
Marrs’ API samples [3] that inspired the second half of this chapter, Microsoft’s 
set of introductory DXR samples [6], and the low-level samples from the Falcor 
team [1]. Additionally, NVIDIA has a variety of resource, including additional code 
samples and walkthroughs, on their developer blogs [8].

3.13	 �CONCLUSION

We have presented a basic overview of DirectX Raytracing that we hope helps 
demystify the concepts necessary to put together a basic hardware-accelerated 
ray tracer using DirectX, in addition to providing pointers to other resources to help 
you get started.

The shader model resembles prior ray tracing APIs and generally maps cleanly 
to pieces of a traditional CPU ray tracer. The host-side programming model may 
initially appear complex and opaque; just remember that the design needs to 
support arbitrary, massively parallel hardware that potentially spawns shaders 

 Introduction to DirectX Raytracing



46

without the benefit of a continuous execution history along each ray. New DXR 
pipeline state objects and shader tables help to specify data and shaders so such 
GPUs can spawn work arbitrarily as rays traverse the scene.

Given the complexities of DirectX 12 and the flexibility of ray tracing, we were 
unable to fully cover the API. Our goal was to provide enough information to get 
started. As you target more complex renderings, you will need to refer to the DXR 
specification or other documentation for further guidance. In particular, more 
complex shader compilation, default pipeline subobject settings, system limits, 
error handling, and tips for optimal performance all will require other references.

Our advice for getting starting: begin simply. Key problems revolve around 
correctly setting up the ray tracing pipeline state objects and the shader table, and 
these are much easier to debug with fewer, simple shaders. For example, basic 
ray traced shadowing or ambient occlusion using a rasterized G-buffer for primary 
visibility are good starting points.

With DirectX Raytracing and modern GPUs, shooting rays is faster than ever. 
However, ray tracing is not free. For at least the near future, you can assume at 
most a few rays per pixel. This means hybrid ray-raster algorithms, antialiasing, 
denoising, and reconstruction will all be vital to achieve high-quality renderings 
quickly. Other work in this book provides ideas on some of these topics, but many 
problems remain unsolved.

REFERENCES

	 [1]	� Benty, N. DirectX Raytracing Tutorials. https://github.com/NVIDIAGameWorks/
DxrTutorials, 2018. Accessed October 25, 2018.

	 [2]	� Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor 
Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor, July 2017.

	 [3]	� Marrs, A. Introduction to DirectX Raytracing. https://github.com/acmarrs/IntroToDXR, 
2018. Accessed October 25, 2018.

	 [4]	 Marschner, S., and Shirley, P. Fundamentals of Computer Graphics, fourth ed. CRC Press, 2015.

	 [5]	� Microsoft. Programming Guide and Reference for HLSL. https://docs.microsoft.com/
en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl. Accessed October 25, 
2018.

	 [6]	� Microsoft. D3D12 Raytracing Samples. https://github.com/Microsoft/DirectX-
Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing, 2018. 
Accessed October 25, 2018.

	 [7]	� Microsoft. DirectX Shader Compiler. https://github.com/Microsoft/
DirectXShaderCompiler, 2018. Accessed October 30, 2018.

RAY TRACING GEMS

https://github.com/NVIDIAGameWorks/DxrTutorials
https://github.com/NVIDIAGameWorks/DxrTutorials
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/acmarrs/IntroToDXR
https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://github.com/Microsoft/DirectXShaderCompiler
https://github.com/Microsoft/DirectXShaderCompiler


47

	 [8]	� NVIDIA. DirectX Raytracing Developer Blogs. https://devblogs.nvidia.com/tag/dxr/, 
2018. Accessed October 25, 2018.

	 [9]	� Shirley, P. Ray Tracing in One Weekend. Amazon Digital Services LLC, 2016. https://github.
com/petershirley/raytracinginoneweekend.

	 [10]	 Suffern, K. Ray Tracing from the Ground Up. A K Peters, 2007.

	 [11]	� Wyman, C. A Gentle Introduction To DirectX Raytracing. http://cwyman.org/code/
dxrTutors/dxr_tutors.md.html, 2018.

	 [12]	� Wyman, C., Hargreaves, S., Shirley, P., and Barré-Brisebois, C. Introduction to DirectX Raytracing. 
SIGGRAPH Courses, 2018. http://intro-to-dxr.cwyman.org, https://www.youtube.
com/watch?v=Q1cuuepVNoY.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Introduction to DirectX Raytracing

https://devblogs.nvidia.com/tag/dxr
https://github.com/petershirley/raytracinginoneweekend
https://github.com/petershirley/raytracinginoneweekend
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
http://intro-to-dxr.cwyman.org
https://www.youtube.com/watch?v=Q1cuuepVNoY
https://www.youtube.com/watch?v=Q1cuuepVNoY
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


49© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_4

CHAPTER 4

A Planetarium Dome Master Camera
John E. Stone 
Beckman Institute for Advanced Science and Technology,  
University of Illinois at Urbana-Champaign

ABSTRACT

This chapter presents a camera implementation for high-quality interactive ray 
tracing of planetarium dome master images using an azimuthal equidistant 
projection. Ray tracing is aptly suited for implementing a wide variety of special 
panoramic and stereoscopic projections without sacrificing image quality. This 
camera implementation supports antialiasing, depth of field focal blur, and circular 
stereoscopic projections, all effects that are difficult to produce with high quality 
using conventional rasterization and image warping.

4.1	 �INTRODUCTION

Planetarium dome master images encode a 180° hemispherical field of view within 
a black square, with an inscribed circular image containing the entire field of view 
for projection onto a planetarium dome. Dome master images are produced using 
a so-called azimuthal equidistant projection and closely match the output of a 
real-world 180° equidistant fisheye lens, but without a real lens’ imperfections 
and optical aberrations. There are many ways of creating dome master projections 
using rasterization and image warping techniques, but direct ray tracing has 
particular advantages over other alternatives: uniform sample density in the 
final dome master image (no samples are wasted in oversampled areas as when 
warping cubic projections or many planar perspective projections [3]), support for 
stereoscopic rendering, and support for depth of field on an intrinsically curved 
focal surface. By integrating interactive progressive ray tracing of dome master 
images within scientific visualization software, a much broader range of scientific 
visualization material can be made available in public fulldome projection venues 
[1, 5, 7].



50

4.2	 �METHODS

Dome master images are formed using an azimuthal equidistant projection, as 
illustrated in Figure 4-1. The dome master image is normally computed within a 
square viewport, rendered with a 180° field of view filling a circle inscribed in the 
square viewport. The inscribed circle just touches the edges of the viewport,  
with a black background everywhere else. The dome master projection may appear 
roughly similar to an orthographic projection of the dome hemisphere as seen 
from above or below, but with the critical difference that the spacing between 
rings of latitude in the dome master image are uniform. This uniform spacing 
conveniently allows a ray tracer camera to employ uniform sampling in the image 
plane. Figure 4-2 shows the relationship between locations in the image plane 
and their resulting ray directions on the dome hemisphere. Figure 4-3 shows an 
example sequence of ray traced dome master images produced using the camera 
model described here.

Figure 4-1.  Dome master images use an azimuthal equidistant projection and appear similar to 
a photograph from a 180° fisheye lens. Left: the dome master image has visibly uniform spacing 
of latitude (circles) and longitude (lines) drawn at 10 intervals for the projected 180° field of view. A 
pixel’s distance to the viewport center is proportional to the true angle in the center of the projection. 
Right: the vector p in the dome master image plane, the azimuth direction components px and py, 

the ray direction d̂ , the angle θ between the ray direction d̂  and the dome zenith, and the camera 
orthogonal basis vectors ,x̂  ŷ , and ẑ .

RAY TRACING GEMS



51

Figure 4-2.  A visual depiction relating the image plane (gray square with inscribed latitude/longitude 
lines), dome hemisphere (blue), example p vectors (red) in the image plane, and corresponding ray 
directions on the dome surface (green).

Figure 4-3.  A sequence of dome master images interactively rendered in Visual Molecular Dynamics 
(VMD) [4, 7] with OptiX. The sequence shows the camera flying into a photosynthetic vesicle found in a 
purple bacterium. Since the structure is predominantly spherical, when the camera reaches the vesicle 
center, the dome projection appears flat in the rightmost image.

4.2.1	 �COMPUTING RAY DIRECTIONS FROM VIEWPORT COORDINATES

The dome master camera computes the primary ray directions in a few key steps. 
The maximum field of view angle from the center θmax is computed as half of the 

overall field of view, e.g., for the typical 180° field of view, θmax is 90° or 2
p

 radians. 

For the azimuthal equidistant projection, the distance from each pixel to the center 
of the viewport is proportional to the true angle from the center of the projection 
in radians. Dome master images are normally square, so for a 4096 × 4096 dome 

image with a 180° field of view, we would have a radian/pixel scaling factor of 4096
p

 

in both dimensions. For each pixel in the image plane, a distance is computed 

 A Planetarium Dome Master Camera



52

between the pixel I and the midpoint M of the viewport and then multiplied by a  
field of view radian/pixel scaling factor, yielding a two-dimensional vector in units  
of radians, p = (px, py). The length ‖p‖ is then computed from px and py, the two  
distance components from the viewport center, yielding θ, the true angle from the 
dome zenith, in radians. The key steps for calculating θ are then

	
( )I M

4096
p

= -p
�

(1)

and

	 .q = p‖‖ � (2)

For a dome master with a 180° field of view, the angle θ is complementary to the 
elevation angle of the ray computed from p.

It is important to note that θ is used both as a distance (from the center of the 
viewport, scaled by radian/pixel) and as an angle (from the dome zenith). To 
calculate the azimuthal direction components of the ray, we compute p̂  from p by 
dividing by θ, used here as a length. For θ = 0, the primary ray points at the zenith 
of the dome, and the azimuth angle is undefined, so we protect against division 
by zero in that case. If θ is greater than θmax, then the pixel is outside of the field 
of view of the dome and is colored black. For θ values between zero and θmax, the 
normalized ray direction in dome coordinates is

	 yx
pp

, , 
sinsin

cosˆ .
qq

q
q q

æ ö
= ç ÷ç ÷
è ø

n � (3)

If orthogonal up ( û ) and right ( r̂ ) directions are required for each ray, e.g., for 
depth of field, they can be determined inexpensively using existing intermediate 
values. The up direction can be computed by negating the ray direction’s derivative 
as a function of θ, yielding a unit vector aligned with the vertical lines of longitude 
pointing toward the dome zenith,

	 yx
pp

, , 
coscos

sin .ˆ
qq

q
q q

æ - ö-
= ç ÷ç ÷
è ø

u � (4)

The right direction can be determined purely from the azimuth direction 
components px and py, yielding a unit vector aligned with the horizontal latitude lines,

	 y x
p p

, , .ˆ 0
q q

æ - ö
= ç ÷ç ÷
è ø

r � (5)

RAY TRACING GEMS



53

See Listing 4-1 for a minimalistic example computing the ray, up, and right 
directions in the dome coordinate system. Finally, to convert the ray direction 
from dome coordinates to world coordinates, we project its components onto the 
camera’s orthogonal orientation basis vectors ˆ,x  ˆ,y  and ẑ  by

	 ( )x y zn n nˆ ˆ ˆ ˆ .= + +d x y z � (6)

The same coordinate system conversion operations must also be performed on the 
up and right vectors if they are required.

Listing 4-1.  This short example function illustrates the key arithmetic required to compute a ray 
direction from the floor of the dome hemisphere from a point in the image plane, given a user-specified 
angular field of view (normally 180°) and viewport size. The dome angle from the center of the projection is 
proportional to the distance from the center of the viewport to the specified point in the image plane. This 
function is written for a dome hemisphere with the zenith in the positive z-direction. The ray direction 
returned by this function must be projected onto camera basis vectors by the code calling this function

 1 static _ _device_ _ _ _inline_ _

 2 int dome_ray(float fov,            // FoV in radians

 3              float2 vp_sz,         // viewport size

 4              float2 i,             // pixel/point in image plane

 5              float3 &raydir,       // returned ray direction

 6              float3 &updir,        // up, aligned w/ longitude line

 7              float3 & rightdir) {  // �right, aligned w/ latitude line

 8   float thetamax = 0.5f * fov;     // half-FoV in radians

 9   float2 radperpix = fov / vp_sz;  // calc radians/pixel in X/Y

10   float2 m = vp_sz * 0.5f;         // �calc viewport center/midpoint

11   float2 p = (i - m) * radperpix;  // �calc azimuth, theta components

12   float theta = hypotf(p.x, p.y);  // �hypotf() ensures best accuracy

13   if (theta < thetamax) {

14     if (theta == 0) {

15       // At the dome center, azimuth is undefined and we must avoid

16       // division by zero, so we set the ray direction to the zenith

17       raydir = make_float3(0, 0, 1);

18       updir = make_float3(0, 1, 0);

19       rightdir = make_float3(1, 0, 0);

20     } else {

21       // Normal case: calc+combine azimuth and elevation components

22       float sintheta, costheta;

23       sincosf(theta, &sintheta, &costheta);

24       raydir     = make_float3(sintheta * p.x / theta,

25                                sintheta * p.y / theta,

26                                costheta);

27       updir      = make_float3(-costheta * p.x / theta,

28                                -costheta * p.y / theta,

29                                sintheta);

30       rightdir   = make_float3(p.y / theta, -p.x / theta, 0);

31     }

32

 A Planetarium Dome Master Camera



54

33     return 1; // Point in image plane is within FoV

34   }

35

36   raydir = make_float3(0, 0, 0); // outside of FoV

37   updir = rightdir = raydir;

38   return 0; // Point in image plane is outside FoV

39 }

4.2.2	 �CIRCULAR STEREOSCOPIC PROJECTION

The nonplanar panoramic nature of the dome projection focal surface presents 
a special challenge for stereoscopic rendering. While non-stereoscopic dome 
master images can be synthesized through multistage rendering, warping, and 
filtering of many conventional perspective projections, high-quality stereoscopic 
output essentially requires a separate stereoscopic camera calculation for every 
sample in the image (and thus per ray, when ray tracing). This incurs significant 
performance overheads and image quality trade-offs using existing rasterization 
APIs, but it is ideally suited for interactive ray tracing. The mathematics naturally 
extend the ray computations outlined in the previous section and introduce 
insignificant performance cost relative to rendering a pair of monoscopic images.

To use stereoscopic circular projection [2, 6, 8] with a dome master camera, each 
ray’s origin is shifted left or right by half of the interocular distance. The shift 
occurs along the stereoscopic interocular axis, which lies perpendicular to both the 
ray direction ( d̂ ) and the audience’s local zenith or “up” direction ( q̂ ). This accounts 
for various tilted dome configurations, including those shown in Figure 4-4. The 

shifted ray origin is computed by ( )O O e ˆ ˆ= + ´d q , where e() is an eye-shift function 

that applies the shift direction and scaling factors to correctly move the world-
space eye location, as shown in Figure 4-5. By computing the stereoscopic eye shift 
independently for each ray, we obtain a circular stereoscopic projection.

Figure 4-4.  Relation between the dome zenith and audience “up” direction q̂  in both a traditional flat 
planetarium dome (left) and a more modern dome theater with 30 tilt and stadium style seating (right).

RAY TRACING GEMS



55

While circular stereoscopic projections are not entirely distortion-free, they are 
“always correct where you are looking” [6]. Circular stereoscopic projections are 
most correct when viewers look toward the horizon of the stereoscopic projection, but 
not when looking near the audience zenith ( q̂ ). Viewers could see backward-stereo 
images when the region behind the stereoscopic polar axis is visible. To help mitigate 
this problem, the stereoscopic eye separation can be modulated as a function of the 
angle of elevation of d̂  relative to the audience’s stereoscopic equator or horizon line. 
By modulating the eye separation distance to zero at the audience’s zenith (thereby 
degrading to a monoscopic projection), the propensity for backward-stereo viewing 
can be largely eliminated. See Listing 4-2 for a simple but representative example 
implementation.

Listing 4-2.  A minimal eyeshift function implementation that handles both stereoscopic and 
monoscopic projections.

 1 static _ _host_ _ _ _device_ _ _ _inline_ _

 2 float3 eyeshift(float3 ray_origin,   // �original non-stereo eye origin

 3                   float eyesep,      // �interocular dist, world coords

 4                   int whicheye,      // left/right eye flag

 5                   float3 DcrossQ) {  // ray dir x audience "up" dir

Figure 4-5.  Illustration of the circular stereoscopic projection technique and the effect of applying 
an eye offset of half of the interocular distance to each ray’s origin, according to the ray direction. The 
drawing shows the eye-shift offsets (dotted lines) for the left eye projection.

 A Planetarium Dome Master Camera



56

 6   float shift = 0.0;

 7   switch (whicheye) {

 8     case LEFTEYE :

 9       shift = -0.5f * eyesep; // shift ray origin left

10       break;

11

12     case RIGHTEYE:

13       shift = 0.5f * eyesep; // shift ray origin right

14       break;

15

16     case NOSTEREO:

17           default:

18       shift = 0.0; // monoscopic projection

19       break;

20   }

21

22   return ray_origin + shift * DcrossQ;

23 }

Stereoscopic dome master images are computed in a single pass, by rendering 
both stereoscopic sub-images into the same output buffer in an over/under 
layout with the left eye sub-image in the top half of a double-height framebuffer 
and the right eye sub-image in the lower half. Figure 4-6 shows the over/under 
vertically stacked stereoscopic framebuffer layout. This approach aggregates 
the maximal amount of data-parallel ray tracing work in each frame, thereby 
reducing API overheads and increasing hardware scheduling efficiency. Existing 
hardware-accelerated ray tracing frameworks lack efficient mechanisms to 
perform progressive ray tracing on lists of cameras and output buffers, so the 
packed stereo camera implementation makes it possible to much more easily 
employ progressive rendering for interactive stereoscopic dome visualizations. 
This is particularly beneficial when using video streaming techniques to view live 
results from remotely located, cloud-hosted rendering engines. A key benefit 
of the vertically stacked stereoscopic sub-image layout is that any image post-
processing or display software can trivially access the two stereoscopic sub-
images independently of each other with simple pointer offset arithmetic because 
they are contiguous in memory. Dome master images and movies produced with 
circular stereoscopic projections can often be imported directly into conventional 
image and video editing software. Most basic editing and post-processing can be 
performed using the same tools that one would use for conventional perspective 
projections.

RAY TRACING GEMS



57

4.2.3	 �DEPTH OF FIELD

Depth of field focal blur can be implemented for the dome master projection 
by computing basis vectors for a depth of field circle of confusion disk, and 
subsequently using the basis vectors to compute jittered ray origin offsets and, 
finally, updated ray directions. The circle of confusion basis vectors û  and r̂  are 
best computed along with the ray direction d̂  as they all depend on the same 
intermediate values. Equations 4 and 5 describe the calculation of û  and ,̂r  

Figure 4-6.  A vertically stacked stereoscopic pair of dome master images rendered in a single pass, 
with depth of field applied on the spherical focal plane.

 A Planetarium Dome Master Camera



58

respectively. Once the jittered depth of field ray origin is computed using û  and 
,̂r  the ray direction must be updated. The updated ray direction is calculated by 

subtracting the new ray origin from the point where the ray intersects the focal 
surface (a sphere in this case) and normalizing the result. See Listing 4-3 for a 
simple example implementation.

Listing 4-3.  This short example function illustrates the key arithmetic required to compute the new 
ray origin and direction when depth of field is used.

 1 // CUDA device function for computing a new ray origin and

 2 // ray direction, given the radius of the circle of confusion disk,

 3 // orthogonal "up" and "right" basis vectors for each ray,

 4 // focal plane/sphere distance, and a RNG/QRNG seed/state vector.

 5 static _ _device_ _ _ _inline_ _

 6 void dof_ray(const float3 &ray_org_orig, float3 &ray_org,

 7              const float3 &ray_dir_orig, float3 &ray_dir,

 8              const float3 &up, const float3 &right,

 9              unsigned int &randseed) {

10   float3 focuspoint = ray_org_orig +

11                       (ray_dir_orig * cam_dof_focal_dist);

12   float2 dofjxy;

13   jitter_disc2f(randseed, dofjxy, cam_dof_aperture_rad);

14   ray_org = ray_org_orig + dofjxy.x*right + dofjxy.y*up;

15   ray_dir = normalize(focuspoint - ray_org);

16 }

4.2.4	 �ANTIALIASING

Antialiasing of the dome master image is easily accomplished without any unusual 
considerations, by jittering the viewport coordinates for successive samples. For 
interactive ray tracing, a simple box-filtered average over samples is inexpensive 
and easy to implement. Since samples outside of the field of view are colored black, 
antialiasing samples also serve to provide a smooth edge on the circular image 
produced in the dome master image.

4.3	 �PLANETARIUM DOME MASTER PROJECTION SAMPLE CODE

The example source code provided for this chapter is written for the NVIDIA OptiX  
API, which uses the CUDA GPU programming language. Although the sample 
source code is left abridged for simplicity, the key global-scope camera and scene 
parameters are shown using small helper functions, e.g., for computing depth 
of field, generating uniform random samples on a disk, and similar tasks. These 
are provided so that the reader can more easily interpret and adapt the sample 
implementation for their own needs.

RAY TRACING GEMS



59

The dome master camera is implemented as a templated camera function, to be 
instantiated in several primary ray generation “programs” for the OptiX ray tracing 
framework. The function accepts STEREO_ON and DOF_ON template parameters 
that either enable or disable generation of a stereoscopic dome master image and  
depth of field focal blur, respectively. By creating separate instantiations of the 
camera function, arithmetic operations associated with disabled features are 
eliminated, which is particularly beneficial for high-resolution interactive ray 
tracing of complex scenes.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health, under grant 
P41-GM104601; the NCSA Advanced Visualization Laboratory; and the CADENS 
project supported in part by NSF award ACI-1445176.

REFERENCES

	 [1]	� Borkiewicz, K., Christensen, A. J., and Stone, J. E. Communicating Science Through Visualization 
in an Age of Alternative Facts. In ACM SIGGRAPH Courses (2017), pp. 8:1–8:204.

	 [2]	� Bourke, P. Synthetic Stereoscopic Panoramic Images. In Interactive Technologies and 
Sociotechnical Systems, H. Zha, Z. Pan, H. Thwaites, A. Addison, and M. Forte, Eds., vol. 4270 of 
Lecture Notes in Computer Science. Springer, 2006, pp. 147–155.

	 [3]	� Greene, N., and Heckbert, P. S. Creating Raster Omnimax Images from Multiple Perspective 
Views Using the Elliptical Weighted Average Filter. IEEE Computer Graphics and Applications 6,  
6 (June 1986), 21–27.

	 [4]	� Humphrey, W., Dalke, A., and Schulten, K. VMD—Visual Molecular Dynamics. Journal of Molecular 
Graphics 14, 1 (1996), 33–38.

	 [5]	� Sener, M., Stone, J. E., Barragan, A., Singharoy, A., Teo, I., Vandivort, K. L., Isralewitz, B., Liu, 
B., Goh, B. C., Phillips, J. C., Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Visualization of 
Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail. In International 
Conference on High Performance Computing, Networking, Storage and Analysis (2014).

	 [6]	� Simon, A., Smith, R. C., and Pawlicki, R. R. Omnistereo for Panoramic Virtual Environment 
Display Systems. In IEEE Virtual Reality (March 2004), pp. 67–73.

	 [7]	� Stone, J. E., Sener, M., Vandivort, K. L., Barragan, A., Singharoy, A., Teo, I., Ribeiro, J. V., 
Isralewitz, B., Liu, B., Goh, B. C., Phillips, J. C., MacGregor-Chatwin, C., Johnson, M. P., 
Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Atomic Detail Visualization of Photosynthetic 
Membranes with GPU-Accelerated Ray Tracing. Parallel Computing 55 (2016), 17–27.

	 [8]	� Stone, J. E., Sherman, W. R., and Schulten, K. Immersive Molecular Visualization with 
Omnidirectional Stereoscopic Ray Tracing and Remote Rendering. In IEEE International Parallel 
and Distributed Processing Symposium Workshop (2016), pp. 1048–1057.

 A Planetarium Dome Master Camera



60

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


61© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_5

CHAPTER 5

Computing Minima and Maxima 
of Subarrays
Ingo Wald  
NVIDIA

ABSTRACT

This chapter explores the following problem: given an array A of N numbers Ai, how 
can we efficiently query the minimal or maximal numbers in any sub-range of the 
array? For example, “what is the minimum of the 8th to the 23rd elements?”

5.1	 �MOTIVATION

Unlike the topics of other chapters, this particular problem does not directly 
relate to ray tracing in that it does not cover how to generate, trace, intersect, or 
shade a ray. However, it is a problem occasionally encountered when ray tracing, 
in particular when rendering volumetric data sets. Volumetric rendering of data 
sets, whether structured or unstructured volumes, usually defines a scalar field, 
z = f(x), that typically is rendered with some form of ray marching. As with surface-
based data sets, the key to fast rendering is quickly determining which regions of 
the volume are empty or less important, and speeding up computation by skipping 
these regions, taking fewer samples, or using other approximations. This typically 
involves building a spatial data structure that stores, per leaf, the minimal and 
maximal values of the underlying scalar field.

In practice, this chapter’s problem arises because a scalar field is rarely rendered 
directly—instead, the user interactively modifies some sort of transfer function t(z) 
that specifies which color and opacity values map to different scalar field values 
(e.g., to make muscle and skin transparent, and ligaments and bone opaque). In that 
case, the extremal values of a region’s scalar field are not important for rendering. 
Instead, we need the extremal values of the output of our transfer function applied to 
our scalar field. In other words, assuming we represent our transfer function as an 
array A[i], and the minimum and maximum of the scalar field map to array indices ilo 
and ihi, respectively, what we want is the minimum and maximum of A[i] for i ∈ [ilo, ihi].

At first glance, our problem looks similar to computing the sum for a subarray, 
which can be done using summed-area tables (SATs) [3, 9]. However, min() and 
max() are not invertible, so SATs will not work. The remainder of this chapter 
discusses four different solutions to this problem, each having different trade-offs 
regarding the memory required for precomputation and query time.



62

5.2	 �NAIVE FULL TABLE LOOKUP

The naive solution precomputes an N × N sized table, Mj,k = min {Ai, i ∈ [j, k]}, and 
simply looks up the desired value.

This solution is trivial and fast, providing a good “quick” solution (see, e.g., 
getMinMaxOpacityInRange() used in OSPRay [7]). It does, however, have one big 
disadvantage: storage cost is quadratic (O(N2)) in array size N, so for nontrivial arrays 
(e.g., 1k or 4k entries), this table can grow large. In addition to size, this table has to 
be recomputed every time the transfer function changes, at a cost of at least O(N2).

Given this complexity, the full table method is good for small table sizes, but larger 
arrays probably require a different solution.

5.3	 �THE SPARSE TABLE METHOD

A less known, but worthwhile, improvement upon the full table method is the 
sparse table approach outlined in the online forum GeeksForGeeks [6]. We were 
unaware of this method until performing our literature search (and we did not find 
it discussed elsewhere); as such, we briefly describe it here.

The core idea of the sparse table method is that any n-element range [i. . j] can be 
seen as the union of two (potentially overlapping) power-of-two sized ranges (the 
first beginning at i, the other ending at j). In that case, we do not actually have to 
precompute the full table of all possible query ranges, but only those for power-of-
two sized queries; then we can look up the precomputed results for the two power-
of-two ranges and finally combine their results.

In a bit more detail, assume that we first precompute a lookup table L(1) of all 

possible queries that are 21 = 2 elements wide; i.e., we compute ( ) ( )L A , A1
0 0 1min= ,  

( ) ( )L A , A1
1 1 2min= , and so on. Similarly, we then compute table L(2) for all 22 = 4 wide 

queries, L(3) for all 23 = 8 wide queries, etc.1

Once we have these logN tables L(i), for any query range [lo, hi] we can simply take 
the following steps: First, compute the width of the query as n = (hi − lo + 1). Then, 
compute the largest integer p for which 2p is still smaller than n. Then, the range 
[lo, hi] can be seen as the union of the two ranges [lo, lo + 2p − 1] and [hi − 2p + 1, hi]. 
Since the queries for those have been precomputed in table L(p), we can simply look 
up the values ( )p

loL  and ( )
p

p

hi
L

2 1- +
, compute their minimum, and return the result. A 

detailed illustration of this method is given in Figure 5-1.

1�At least logically, we can also assume a table L(0) of 1 wide queries, but this is obviously identical to the input 
array A and thus would not get stored.

RAY TRACING GEMS



63

Figure 5-1.  Example of the sparse table method: from our 13-element input array A[], we precompute 
tables L(1), L(2), and L(3) containing all 2, 4, and 8 wide queries. Assuming that we query for the minimum 
of the 7-element range [A2. . A8], we can decompose this query into the union of two overlapping 4-wide 
queries ([A2. . A5] and [A5. . A8]). These decomposed queries were precomputed in table L(2). Thus, the 

result is ( ) ( )( ) ( )2 2
2 5min L , L min 3, 4 3= = .

 Computing Minima and Maxima of Subarrays



64

For a non–power-of-two input range the two sub-ranges will overlap, meaning 
that some array elements will be accounted for twice. This makes the method 
unsuitable for other sorts of reductions such as summation and multiplication; 
for minimum and maximum, however, this double-counting does not change the 
results. In terms of compute cost, the method is still O(1) because all queries can 
be completed with exactly two lookups. In terms of memory cost, there are N − 1 
entries in L(1), N − 3 in L(2), etc., for a total storage cost of O(N logN)—which is a 
great savings over the full table method’s O(N2).

5.4	 �THE (RECURSIVE) RANGE TREE METHOD

For ray tracing—where binary trees are, after all, a common occurrence—an 
obvious solution to our problem is using some type of range tree, as introduced by 
Bentley and Friedman [1, 2, 8]. An excellent discussion of applying range trees to 
our problem can be found online [4, 5].2

A range tree is a binary tree that recursively splits the range of inputs and, for 
each node, stores the corresponding subtree’s result. Each leaf corresponds to 
exactly one array element; inner nodes have two children (one each for the lower 
and upper halves of its input range) and store the minimum, maximum, sum, 
product, etc. of the two children. An example of such a tree—for both minimum and 
maximum queries—is given in Figure 5-2.

2�Note that those articles use the term segment tree but describe the same data structure and algorithm. This 
chapter adopts the range tree term used by both Bentley and Wikipedia.

RAY TRACING GEMS



65

Given such a range tree, querying over any range [lo, hi] requires finding the set of 
nodes that exactly spans the input range. The following simple recursive algorithm 
performs this query:

 1 RangeTree::query(node,[lo,hi]) {

 2     if (node.indexRange does not overlap [lo,hi])

 3         /* Case 1: node completely outside query range -> ignore. */

 4         return { empty range }

Figure 5-2.  Illustration of the recursive range tree method. Given input array A (top), we compute 
a binary tree (middle) where each node stores the minimum and maximum of its corresponding leaf 
nodes. Our recursive traversal for a query range (bottom) uses all three cases from the pseudocode: 
gray nodes recurse into both children (case 3), green nodes with dark outlines get counted and 
terminate (case 2), and blue nodes with dashed outlines lie outside the range (case 1).

 Computing Minima and Maxima of Subarrays



66

 5     if (node.indexRange is inside [lo,hi])

 6         /* Case 2: node completely inside query range -> use it. */

 7         return node, valueRange

 8     /* Case 3: partial overlap -> recurse into children, & merge. */

 9     return merge(query(node.leftChild,[lo,hi]),

10                  query(node.rightChild,[lo,hi])

11 }

Range trees require only linear storage and preprocessing time, which can be 
integer factors less than the sparse table method. On the downside, queries no 
longer occur in constant time, but instead have O(logN) complexity. Even worse, 
recursive queries can incur relatively high “implementation constants” (especially 
on SIMD or SPMD architectures), even with careful data layouts and when avoiding 
pointer chasing.

5.5	 �ITERATIVE RANGE TREE QUERIES

In practice, the main cost of range tree queries lies not in their O(logN) complexity, 
but rather in the high implementation constants for recursion. As such, an iterative 
method would be highly preferable.

To derive such a method, we now look at a logical range tree from the bottom up, 
as a successive merging of respectively next-finer levels. On the finest level L(0), we 
have the N0 = N original array values, ( )

i iL A0 = . On the next level, we compute the 
min or max of each (complete) pair of values from the previous level, meaning there 
are N1 = ⌊N0/2⌋ values of ( ) ( ) ( )( )i i iL f L ,L1 0 0

2 2 1+= , where f could be min or max; level 2 has 
N2 = ⌊N1/2⌋ such merged pairs from L(1), and so on. For non–power-of-two arrays, 
some of the Ni can be odd, meaning some nodes will not have a parent; this is 
somewhat counterintuitive, but for our traversal algorithm it will turn out just fine.

See Figure 5-3 for an illustration of the resulting data structure, which forms a 
series of binary trees (one tree if N is a power of two, and more otherwise). A node 
n on any level L is the root of a binary tree representing all array values within this 
(sub)tree.

RAY TRACING GEMS



67

Given a query range [lo, hi], let us look at all subtrees n0, n1, n2, … whose children 
fall completely within the query but are not part of a larger tree in the range 
(circled in bold in Figure 5-3). Clearly, those are the nodes we want to consider—so 
we need to find an efficient method of traversing those nodes.

To do this, consider the node ranges that our query range spans on each level L; let 
us call these [loL. . hiL]. Now, let us first look at loL. By construction, we know that loL 
can be the root of a subtree only if its index is odd (otherwise, it is another subtree’s 
left child). Whether odd or even, the leftmost index in the next coarser level can be 

Figure 5-3.  Illustration of our iterative range tree: given an array of 13 inputs, we iteratively merge 
pairs to successively smaller levels, forming a total of (in this example) three binary trees. For a sample 
query [lo = 2, hi = 8], we must find the three nodes ( )0

8L , ( )1
1L , and ( )2

1L  marked with dark solid outlines. 

Our algorithm starts with lo = 2 and hi = 8 on L(0); it determines that hi is even and should be counted 
(solid circle), and that lo is odd and thus should not (dashed circle). The next step updates lo and hi to 
lo = 1 and hi = 3 (now in L(1)) and correctly counts ( )1

loL  (solid outline) because lo is odd, while skipping 
over ( )1

hiL  because hi is not even (dashed outline). It then does the same for lo = 1 and hi = 1 on L(2), after 
which it steps to lo = 1, hi = 0 on L(3) and then terminates.

 Computing Minima and Maxima of Subarrays



68

computed as loL + 1 = (loL + 1)/2.3 Similar arguments can be made for the right-side 
index hiL, except that “odd” and “even” get exchanged and that the next index gets 
computed as hiL + 1 = (hi + 1)/2 − 1 (or, in signed integer arithmetic, as (hi − 1) ≫ 1). 
This iterative coarsening continues until loL becomes larger than hiL, at which point 
we have reached the first level that no longer contains any subtrees.4 With these 
considerations, we end up with a simple algorithm for iterating through subtrees:

 1 Iterate(lo,hi) {

 2     Range result = { empty range }

 3     L = finest level

 4     while (lo <= hi) {

 5         if (lo is odd) result = merge(result,L[lo])

 6         if (hi is even) result = merge(result,L[hi])

 7         L = next finer Level;

 8         lo = (lo+1)>>1

 9         hi = (hi-1)>>1 /* Needs signed arithmetic, else (hi+1)/2-1 */

10         return result

11     }

12 }

As noted in the pseudocode, care must be taken to properly handle computation 
of the high index when hi = 0, but following the pseudocode takes care of this. As 
in classical range trees, this iterative method accounts for each value in the input 
range exactly once and could thus be used for queries other than minimum and 
maximum.

With regard to memory layout, we have logically explained our algorithm using a 
sequence of arrays (one per level). In practice, we can easily store all levels in a 
single array that first contains all N1 values for L1, then all values for L2, and so on. 
Since we always traverse from the finest to successively coarser levels, we can 
even compute level offsets implicitly, yielding a simple—and equally tight—inner 
loop. See our reference implementation online, at http://gitlab.com/ingowald/
rtgem-minmax.

3�Here is a brief proof. If loL was a root node in L then it was odd, so this moves it to the next subtree on the right 
side; if not, it moves up to loL’s parent, which is still the leftmost subtree. Either way the index can be computed 
as loL + 1 = (loL + 1)/2.

4�The case where loL and hiL meet at exactly the same node is fine: the value is either odd (and counted on the low 
side) or even (and counted on the high side), and the next step will terminate.

RAY TRACING GEMS

http://gitlab.com/ingowald/rtgem-minmax
http://gitlab.com/ingowald/rtgem-minmax


69

5.6	 �RESULTS

Theoretically, our iterative method has the same storage complexity, O(N), and 
computational complexity, O(logN), as the classical range tree method. However, 
its memory layout is much simpler, and the time constant for querying is 
significantly lower than in any recursive implementation. In fact, with our sample 
code this iterative version is almost as fast as the O(1) sparse table method, 
except for tables with at least hundreds of thousands of elements—while using 
significantly less memory.

For example, using an array with 4k elements and randomly chosen query 
endpoints lo and hi, the iterative method is only about 5% slower than the sparse 
table method, at 10× lower memory usage. For a larger 100k-element table, the 
speed difference increases to roughly 30%, but at 15×; lower memory usage. While 
already a interesting trade-off, it is worth noting that randomly chosen query 
endpoints are close to the iterative method’s worst case: since iteration count is 
logarithmic in ∣hi-lo∣, “narrower” queries actually run faster than very wide ones 
performed by uniformly chosen lo and hi values. For example, if we limit the query 
values to ∣hi-lo∣ ≤ N , the iterative method on the 100k-element array changes 
from 30% slower to 15% faster than the sparse table method (at 15× less memory)

5.7	 �SUMMARY

In this chapter, we have summarized four methods for computing the minima and 
maxima for any sub-range of an array of numbers. The naive full table method is 
the easiest to implement and is fast in query—but suffers from O(N2) storage and 
recomputation cost, which limit its usefulness. The sparse table method is slightly 
more complex but significantly reduces the memory overhead, while retaining 
the O(1) query complexity. The recursive range tree method reduces this memory 
overhead even more (to O(N)), but at the cost of a significantly higher query 
complexity—not only theoretically (at O(logN)) but also in actual implementation 
constants. Finally, our iterative range tree retains the low memory overhead of 
range trees, uses a simpler memory layout, and converts the recursive query into 
a tight iterative loop. Though asymptotically still O(logN), in practice its queries 
perform similar to the O(1) sparse table method, at lower memory consumption. 
Overall, this makes the iterative method our favorite, in particular since both 
precomputation code and query code are surprisingly simple.

Sample code for the sparse table and the iterative range tree methods are 
available online, at https://gitlab.com/ingowald/rtgem-minmax.

 Computing Minima and Maxima of Subarrays

https://gitlab.com/ingowald/rtgem-minmax


70

REFERENCES

	 [1]	� Bentley, J. L., and Friedman, J. H. A Survey of Algorithms and Data Structures for Range 
Searching. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-2189.pdf, 
1978.

	 [2]	� Bentley, J. L., and Friedman, J. H. Algorithms and Data Structures for Range Searching. ACM 
Computing Surveys 11, 4 (1979), 397–409.

	 [3]	� Crow, F. Summed-Area Tables for Texture Mapping. Computer Graphics (SIGGRAPH) 18, 3 (1984), 
207—212.

	 [4]	� GeeksForGeeks. Min-Max Range Queries in Array. https://www.geeksforgeeks.org/
min-max-range-queries-array/. Last accessed December 7, 2018.

	 [5]	� GeeksForGeeks. Segment Tree: Set 2 (Range Minimum Query). https://www.
geeksforgeeks.org/segment-tree-set-1-range-minimum-query/. Last accessed 
December 7, 2018.

	 [6]	� GeeksForGeeks. Sparse Table. https://www.geeksforgeeks.org/sparse-table/. Last 
accessed December 7, 2018.

	 [7]	� Wald, I., Johnson, G. P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J. L., Guenther, J., 
and Navratil, P. OSPRay—A CPU Ray Tracing Framework for Scientific Visualization. IEEE 
Transactions on Visualization 23, 1 (2017), 931–940.

	 [8]	� Wikipedia. Range Tree. https://en.wikipedia.org/wiki/Range_tree. Last accessed 
December 7, 2018.

	 [9]	� Wikipedia. Summed-Area Table. https://en.wikipedia.org/wiki/Summed-area_table. 
Last accessed December 7, 2018.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-2189.pdf
https://www.geeksforgeeks.org/min-max-range-queries-array/
https://www.geeksforgeeks.org/min-max-range-queries-array/
https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/
https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/
https://www.geeksforgeeks.org/sparse-table/
https://en.wikipedia.org/wiki/Range_tree
https://en.wikipedia.org/wiki/Summed-area_table
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART II

INTERSECTIONS  
AND EFFICIENCY



75

PART II

Intersections and Efficiency

Ray tracing has many useful properties, but eventually, the two by which people 
seem most captivated are its elegance and simplicity. New rendering algorithms 
and effects can be added by just tracing some rays. New surface primitives can 
be added by simply specifying their bounding box and intersection programs. 
Parallelism is often “embarrassingly” simple to achieve. 

As with everything else, all of this is profoundly true—until it is not. Any one of the 
above properties is true in principle, but only until one hits “the good, the bad, and 
the ugly” cases—namely, those where the default find-the-intersection interface is 
no longer sufficient; where limited floating precision messes up nice mathematical 
solutions; where “edge cases” such as multiple coplanar surfaces, “unreasonably” 
small or faraway geometry, or grossly uneven costs per pixel rear their ugly heads. 
Such challenges are tempting to gloss over as pathological cases, but in practice, 
they can only be ignored at one’s peril.

Chapter 6, “A Fast and Robust Method for Avoiding Self-Intersection,” discusses 
how rays originating at a surface intersect the surface itself. It presents a solution 
that is easy to implement, yet battle-proven in a production ray tracer. 

Chapter 7, “Precision Improvements for Ray/Sphere Intersection,” looks at how 
quickly limited floating-point precision can interfere with the root finding done in 
ray/sphere intersection and how this can be fixed in a numerically stable way that 
can also carry beyond spheres.

Chapter 8, “Cool Patches: A Geometric Approach to Ray/Bilinear Patch 
Intersections,” describes a new geometric primitive that allows for easy handling of 
arbitrary (i.e., nonplanar) quadrilateral patches without the need to split them into 
two triangles, while remaining both numerically robust and fast.

Chapter 9, “Multi-Hit Ray Tracing in DXR,” looks at the case where applications 
need to efficiently and robustly find not just “the”—but rather multiple—successive 
intersections along a ray, as well as looks into how to add that functionality on top 
of the existing DXR API.



76

Finally, Chapter 10, “A Simple Load-Balancing Scheme with High Scaling 
Efficiency,” proposes a straightforward yet effective method of achieving nicely 
work-balanced image-space parallelization. It works even in the presence of wildly 
differing costs per pixel, for which naive approaches tend to break down. 

Having had to deal with literally every one of these chapters’ topics in the past, I am 
particularly excited to present this part’s selection of chapters. I do hope that they 
will provide insight—and ideally, reference solutions—for those ray tracers that are 
yet to be written.

Ingo Wald



77© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_6

CHAPTER 6

A Fast and Robust Method for Avoiding 
Self-Intersection
Carsten Wächter and Nikolaus Binder 
NVIDIA

ABSTRACT

We present a solution to avoid self-intersections in ray tracing that is more robust 
than current common practices while introducing minimal overhead and requiring 
no parameter tweaking.

6.1	 �INTRODUCTION

Ray and path tracing simulations construct light paths by starting at the camera or 
the light sources and intersecting rays with the scene geometry. As objects are hit, 
new rays are generated on these surfaces to continue the paths. In theory, these 
new rays will not yield an intersection with the same surface again, as intersections 
at a distance of zero are excluded by the intersection algorithm. In practice, 
however, the finite floating-point precision used in the actual implementation often 
leads to false positive results, known as self-intersections, creating artifacts such 
as shadow acne, where the surface sometimes improperly shadows itself.

The most widespread solutions to work around the issue are not robust enough 
to handle a variety of common production content and may even require manual 
parameter tweaking on a per-scene basis. Alternatively, a thorough numerical 
analysis of the source of the numerical imprecision allows for robust handling. 
However, this comes with a considerable performance overhead and requires 
source access to the underlying implementation of the ray/surface intersection 
routine, which is not possible in some software APIs and especially not with 
hardware-accelerated technology, e.g., NVIDIA RTX.

In this chapter we present a method that is reasonably robust, does not require any 
parameter tweaking, and at the same time introduces minimal overhead, making it 
suitable for real-time applications as well as offline rendering.



78

6.2	 �METHOD

Computing a new ray origin in a more robust way consists of two steps. First, we 
compute the intersection point from the ray tracing result so that it is as close to 
the surface as possible, given the underlying floating-point mathematics. Second, 
as we generate the next ray to continue the path, we must take steps to avoid 
having it intersect the same surface again. Section 6.2.2 explains common pitfalls 
with existing methods, as well as presents our solution to the problem.

6.2.1	 �CALCULATING THE INTERSECTION POINT ON THE SURFACE

Calculating the origin of the next ray along the path usually suffers from finite 
precision. While the different ways of calculating the intersection point are 
mathematically identical, in practice, the choice of the most appropriate method 
is crucial, as it directly affects the magnitude of the resulting numerical error. 
Furthermore, each method comes with its own set of trade-offs.

Computing such a point is commonly done by inserting the hit distance into the 
ray equation. See Figure 6-1. We strongly advise against this procedure, as the 
resulting new origin may be far off the plane of the surface. This is, in particular, 
true for intersections that are far away from the ray origin: due to the exponential 
scale of floating-point numbers, the gaps between representable values grow 
exponentially with intersection distance.

t

O

d

0

X̃

X

Figure 6-1.  Calculating the ray/surface intersection point X by inserting the intersection distance t 
into the ray equation. In this case, any error introduced through insufficient precision for t will mostly 
shift the computed intersection point X�  along the ray direction d—and, typically, away from the plane 
of the triangle.

RAY TRACING GEMS



79

By instead calculating the previous ray’s intersection point based on surface 
parameterization (e.g., using the barycentric coordinates computed during ray/
primitive intersection), the next ray’s origin can be placed as close as possible 
to the surface. See Figure 6-2. While again finite precision computations result 
in some amount of error, when using the surface parameterization this error is 
less problematic: when using the hit distance, any error introduced through finite 
precision shifts the computed intersection point mostly along the line of the original 
ray, which is often away from the surface (and consequently bad for avoiding self-
intersections, as some points will end up in front of and some behind the surface). 
In contrast, when using the surface parameterization, any computational error 
shifts the computed intersection point mostly along the surface—meaning that the 
next ray’s origin may start slightly off the line of the preceding ray, but it is always 
as close as possible to the original surface. Using the surface parameterization 
also guarantees consistency between the new origin and surface properties, such 
as interpolated shading normals and texture coordinates, which usually depend on 
the surface parameterization.

Figure 6-2.  Calculating the intersection X with barycentric coordinates (α, β). In this case, the finite 
precision of (α, β) means that the computed intersection point X�  may no longer lie exactly on the ray—
but it will always be very close to the surface.

6.2.2	 �AVOIDING SELF-INTERSECTION

Placing the origin of the new ray “exactly” on the surface usually still results in 
self-intersection [4], as the computed distance to the surface is not necessarily 
equal to zero. Therefore, excluding intersections at zero distance is not sufficient, 
and self-intersection must be explicitly avoided. The following subsections present 
an overview of commonly used workarounds and demonstrate the failure cases for 
each scheme. Our suggested method is described in Section 6.2.2.4.

 A Fast and Robust Method for Avoiding Self-Intersection



80

6.2.2.1	 �EXCLUSION USING THE PRIMITIVE IDENTIFIER

Self-intersection can often be avoided by explicitly excluding the same primitive 
from intersection using its identifier. While this method is parameter free, is 
scale invariant, and does not skip over nearby geometry, it suffers from two major 
problems. First, intersections on shared edges or coplanar geometry, as well as 
new rays at grazing angles, still cause self-intersection (Figures 6-3 and 6-4). 
Even if adjacency data is available, it would be necessary to distinguish between 
neighboring surfaces that form concave or convex shapes. Second, duplicate or 
overlapping geometry cannot be handled. Still, some production renderers use the 
identifier test as one part of their solution to handle self-intersections [2].

Figure 6-3.  Rejecting the surface whose primitive identifier matches the ID of the primitive on which 
the previous intersection X�  was found can fail for the next intersection X ¢�  if the previous intersection 
X�  was on, or very close to, a shared edge. In this example X�  was found on the primitive with ID 0. 
Due to finite precision a false next intersection X ¢�  will be detected on the primitive with ID 1 and is 
considered valid since the IDs mismatch.

Figure 6-4.  Rejection with primitive IDs also fails on flat or slightly convex geometry for intersections 
anywhere on the primitive if the next ray exists at a grazing angle. Again, the distance δ of the false 
intersection X ¢�  to the surface of the other primitive gets arbitrarily close to zero, the primitive IDs 
mismatch, and hence this false intersection is considered valid.

Furthermore, note that exclusion using the primitive identifier is applicable to only 
planar surfaces, as nonplanar surfaces can exhibit valid self-intersection.

RAY TRACING GEMS



81

6.2.2.2	 �LIMITING THE RAY INTERVAL

Instead of only excluding intersections at zero distance, one can set the lower 
bound for the allowed interval of distances to a small value ε: tmin = ε > 0. While 
there is no resulting performance overhead, the method is extremely fragile as 
the value of ε itself is scene-dependent and will fail for grazing angles, resulting in 
self-intersection (Figure 6-5) or skipping of nearby surfaces (Figure 6-6).

Figure 6-5.  Setting tmin to a small value ε > 0 does not robustly avoid self-intersection, especially for 
rays exiting at grazing angles. In the example the distance t along the ray is greater than tmin, but the 

distance δ of the (false) next intersection X ¢�  to the surface is zero due to finite precision.

X̃

X̃ ' tmin

X̃

X̃X''

Figure 6-6.  Skipping over a valid intersection X̂ ¢  due to setting tmin = ε > 0 is especially visible in 

corners due to paths being pushed into or out of closed objects.

 A Fast and Robust Method for Avoiding Self-Intersection



82

6.2.2.3	 �OFFSETTING ALONG THE SHADING NORMAL OR THE OLD RAY DIRECTION

Offsetting the ray origin along the shading normal is similar to setting the lower 
bound of a ray tmin = ε > 0 and features the same failure cases, as this vector is 
not necessarily perpendicular to the surface (due to interpolation or variation 
computed from bump or normal maps).

Shifting the new ray origin along the old ray direction will again suffer from similar 
issues.

6.2.2.4	 �ADAPTIVE OFFSETTING ALONG THE GEOMETRIC NORMAL

As could be seen in the previous subsections, only the geometric normal, being 
orthogonal to the surface by design, can feature the smallest offset, dependent 
on the distance to the intersection point, to escape self-intersection while not 
introducing any of the mentioned shortcomings. The next step will focus on how to 
compute the offset to place the ray origin along it.

Using any offset of fixed length ε is not scale invariant, and thus not parameter 
free, and will also not work for intersections at varying magnitudes of distance. 
Therefore, analyzing the error of the floating-point calculations to compute the 
intersection point using barycentric coordinates reveals that the distance of the 
intersection to the plane of the surface is proportional to the distance from the 
origin (0,0,0). At the same time the size of the surface also influences the error and 
even becomes dominant for triangles very close to the origin (0,0,0). Using only 
normalized ray directions removes the additional impact of the length of the ray on 
the numerical error. The experimental results in Figure 6-7 for random triangles 
illustrate this behavior: We calculate the average and maximum distance of the 
computed intersection point to 10 million triangles with edge lengths between 2−16 
and 222. As the resulting point can be located on either side of the actual plane, a 
robust offset needs to be at least as large as the maximum distance.

RAY TRACING GEMS



83

Figure 6-7.  The experimental analysis of the average and maximum distance of a point placed on a 
triangle using barycentric coordinates to its plane for 10 million random triangles at different distances 
to the origin provides the scale for the constants used in Listing 6-1.

To handle the varying distance of the intersection point implicitly, we use integer 
mathematics on the floating-point number integer representation when offsetting 
the ray origin along the direction of the geometric normal. This results in the offset 
becoming scale-invariant and thus prevents self-intersections at distances of 
different magnitudes.

To handle surfaces/components of the intersection point that are nearly at the 
origin/zero, we must approach each one separately. The floating-point exponent 
of the ray direction components will differ greatly from the exponents of the 
components of the intersection point; therefore, offsetting using the fixed integer ε 
is not a viable option for dealing with the numerical error that can arise during the 
ray/plane intersection calculations. Thus, a tiny constant floating-point value ε is 
used to handle this special case to avoid introducing an additional costly fallback. 
The resulting source code is shown in Listing 6-1. The provided constants were 
chosen according to Figure 6-7 and include a small margin of safety to handle more 
extreme cases that were not included in the experiment.

 A Fast and Robust Method for Avoiding Self-Intersection



84

6.3	 �CONCLUSION

The suggested two-step procedure for calculating a robust origin for the next ray 
along a path first sets an initial position as close as possible to the plane of the 
surface using the surface parameterization. It then shifts the intersection away from 
the surface by applying a scale-invariant offset to the position, along the geometric 
normal. Our extensive evaluation shows that this method is sufficiently robust in 
practice and is simple to include in any existing renderer. It has been part of the Iray 
rendering system for more than a decade [1] to avoid self-intersection for triangles. 

Figure 6-8.  Very fine geometric detail such as a deep, thin crevice cannot be robustly handled by any 
of the listed methods. In this example the initial intersection X�  is slightly below the actual surface. 
Left: limiting the ray interval can help to avoid self-intersection for some rays (upper ray), but may also 
fail for others (lower ray). Right: offsetting along the surface normal may move the origin of the next 
ray X ¢�  into the same or neighboring object.

Listing 6-1.  Implementation of our method as described in Section 6.2.2.4.

 1 constexpr float origin()      { return 1.0f / 32.0f; }

 2 constexpr float float_scale() { return 1.0f / 65536.0f; }

 3 constexpr float int_scale()   { return 256.0f; }

 4

 5 // Normal points outward for rays exiting the surface, else is flipped.

 6 float3 offset_ray(const float3 p, const float3 n)

 7 {

 8   int3 of_i(int_scale() * n.x, int_scale() * n.y, int_scale() * n.z);

 9

10   float3 p_i(

11       int_as_float(float_as_int(p.x)+((p.x < 0) ? -of_i.x : of_i.x)),

12       int_as_float(float_as_int(p.y)+((p.y < 0) ? -of_i.y : of_i.y)),

13       int_as_float(float_as_int(p.z)+((p.z < 0) ? -of_i.z : of_i.z)));

14

15   return float3(fabsf(p.x) < origin() ? p.x+ float_scale()*n.x : p_i.x,

16                 fabsf(p.y) < origin() ? p.y+ float_scale()*n.y : p_i.y,

17                 fabsf(p.z) < origin() ? p.z+ float_scale()*n.z : p_i.z);

18 }

Even with our method, there still exist situations in which shifting along the 
geometric normal skips over a surface. An example of such a situation is the 
crevice shown in Figure 6-8. Similar failure cases can certainly be constructed 
and do sometimes happen in practice. However, they are significantly less likely to 
occur than the failure cases for the simpler approaches discussed previously.

RAY TRACING GEMS



85

The remaining failure cases are rare special cases, but note that huge translation or 
scaling values in instancing transformations will result in larger offset values as well 
(for an analysis, see Physically Based Rendering (third edition) [3]). This phenomenon 
leads to a general quality issue because all lighting, direct and indirect, will be 
noticeably “offset” as well, which becomes apparent especially in nearby reflections, 
even leading to artifacts. To tackle this problem, we recommend storing all meshes 
in world units centered around the origin (0,0,0). Further, one should extract 
translation and scaling from the camera transformation and instead include them 
in the object instancing matrices. Doing so effectively moves all calculations closer 
to the origin (0,0,0). This procedure allows our method to work with the presented 
implementation and, in addition, avoids rendering artifacts due to large offsets.

As excluding flat primitives using the primitive identifier from the previously found 
intersection does not result in false negatives, this can in addition be included as a fast 
and trivial test, often preventing an unnecessary surface intersection in the first place.

REFERENCES

	 [1]	� Keller, A., Wächter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndörfer, J., and Kettner, L.  
The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

	 [2]	� Pharr, M. Special Issue On Production Rendering and Regular Papers. ACM Transactions on 
Graphics 37, 3 (2018).

	 [3]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [4]	� Woo, A., Pearce, A., and Ouellette, M. It’s Really Not a Rendering Bug, You See... IEEE Computer 
Graphics & Applications 16, 5 (Sept. 1996), 21–25.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 A Fast and Robust Method for Avoiding Self-Intersection

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


87© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_7

CHAPTER 7

Precision Improvements for  
Ray/Sphere Intersection
Eric Haines,1 Johannes Günther,2 and Tomas Akenine-Möller1  
1NVIDIA  
2Intel

ABSTRACT

The traditional quadratic formula is often presented as the way to compute the 
intersection of a ray with a sphere. While mathematically correct, this factorization 
can be numerically unstable when using floating-point arithmetic. We give two 
little-known reformulations and show how each can improve precision.

7.1	 �BASIC RAY/SPHERE INTERSECTION

One of the simplest objects to ray trace is the sphere—no wonder that many early 
ray traced images featured spheres. See Figure 7-1.

Figure 7-1.  A fractal sphereflake test scene. The ground plane is actually a large sphere. The scene 
contains 48 million spheres, most of subpixel size [9].



88

A sphere can be defined by a center G and a radius r. For all points P at the surface 
of the sphere, the following equation holds:

			   ( ) ( )P G P G r 2.- × - =
	 (1)

To find the intersection between the sphere and the ray we can replace P by 
R(t) = O + td (see Chapter 2). After simplification and using f = O − G, we arrive at

		
( )� ( )2 2 22 0.

ca b

t t r at bt c× + × + × - = + + =d d f d f f��������
	

(2)

The solutions to this second-degree polynomial are

			 

2

0,1

4
.

2
b b ac

t
a

- ± -
=

	
(3)

If the discriminant Δ = b2 − 4ac < 0, the ray misses the sphere, and if Δ = 0, then the 
ray just touches the sphere, i.e., both intersections are the same. Otherwise, there 
will be two t-values that correspond to different intersection points; see Figure 7-2.

Figure 7-2.  Ray/sphere intersection test. The three different types of intersections are, from top to 
bottom, no hit, two intersection points, and a single hit (when the two intersections are the same).

RAY TRACING GEMS



89

These t-values can be plugged into the ray equation, which will generate two 
intersection points, P0, 1 = R(t0, 1) = O + t0, 1d. After you have computed an intersection 
point, say, P0, the normalized normal at the point is

				  

-
=

P G
r

0ˆ .n
	

(4)

7.2	 �FLOATING-POINT PRECISION CONSIDERATIONS

Floating-point arithmetic can break down surprisingly quickly, in particular when 
using 32-bit single-precision numbers to implement Equation 3. We will provide 
remedies for two common cases: if the sphere is small in relation to the distance to 
the ray origin (Figure 7-3), and if the ray is close to a huge sphere (Figure 7-4).

Figure 7-3.  Four unit spheres (r = 1) placed at distances of (from left to right) 100, 2000, 4100, and 
8000 from an orthographic camera. Directly implementing Equation 3 can result in severe floating-
point precision artifacts, up to missing intersections altogether, as for the 4100 case.

Figure 7-4.  Quadratic equation precision: the zoomed result when using the original, schoolbook test 
for a huge sphere forming the ground “plane” (left), and the effect of the more stable solver from Press 
et al. [6] (right).

 Precision Improvements for Ray/Sphere Intersection 



90

To understand why these artifacts are visible, we need a brief introduction to the 
properties of floating-point numbers. Ignoring the sign bit, floats are internally 
represented as s × 2e, with a fixed number of digits for the significand s and the 
exponent e. For floating-point addition and subtraction, the exponent of both 
numbers involved needs to match. As such, the bits of the significand of the smaller 
number are shifted right. The rightmost bits are lost, and thus the accuracy of 
this number is reduced. Single-precision floats have effectively 24 bits for the 
significand, which means that adding a number that is more than 224 ≈ 107 times 
smaller in magnitude does not change the result.

This problem of diminished significance is greatly pronounced when calculating the 
coefficient c = f ⋅ f − r2 (Equation 2), because terms are squared before subtraction, 
which effectively halves the available precision. Note that f ⋅ f = ‖O − G‖2 is the 
squared distance of the sphere to the ray origin. If a sphere is more than 212r = 4096r 
away from O, then the radius r has no influence on the intersection solution. Artifacts 
will show at shorter distances, because only a few significant bits of r remain. See 
Figure 7-3.

A numerically more robust variant for small spheres has been provided by Hearn 
and Baker [3], used for example by Sony Pictures Imageworks [4]. The idea is to 
rewrite b2 − 4ac, where we use the convenient notation that v ⋅ v = ‖v‖2 = v2:

		

( ) ( )

( )
l

bb ac a c
a

r

r

r

2

2
2

2

2 2 2
2

2 2 2

2 2

4 4
4

4

4

4

ˆ

ˆ ˆ .

æ ö
- = -ç ÷

è ø
æ ö×ç ÷= - -
ç ÷
è ø

= ×

- - ×

- -

f d
d f

d

d f f d

d f f d d

�����

2

2

( (

( ( )

)

( )

)

)

=
	

(5)

The last step deserves an explanation, which is easier to understand if we interpret 
the terms geometrically. The perpendicular distance l of the center G to the ray can be  

calculated either by the Pythagorean theorem, ( )2
2 2 ˆl= + ×f f d , or as the length of f 

minus the vector from the ray origin to the foot of the perpendicular, ( )= + ×S O ˆ ˆf d d . 
See Figure 7-5. This second variant is much more precise, because the vector 
components are subtracted before they are squared in the dot product. The 
discriminant now becomes Δ = r2 − l2. The radius r does not lose significant bits in 
this subtraction, because r ≥ l if there is an intersection. See Figure 7-6.

RAY TRACING GEMS



91

Figure 7-5.  Geometric setting for options to compute l2. The ray origin O, the sphere center G, and its 
projection, S, onto the ray form a right-angled triangle.

Figure 7-6.  Small sphere precision. The camera is moved 100× farther than the original view in 
Figure 7-1 and the field of view is narrowed: the result using the traditional quadratic formula (left), 
and the effect of the more stable solver from Hearn and Baker [3] (right).

Another way we can lose precision is from subtracting numbers that are close to 
each other. By doing so, many of the significant bits eliminate each other, and only a 
few meaningful bits remain. Such a situation, often called catastrophic cancellation, 

can occur in the quadratic equation solution (Equation 3) if b b ac2 4» - , e.g., if the 
intersection with a nearby huge sphere is close to the ray’s origin. Press et al. [6] 

 Precision Improvements for Ray/Sphere Intersection 



92

give a more stable version, used in the pbrt renderer [5] and other systems. The key 
observation is that catastrophic cancellation happens only for one of the two 
quadratic solutions, depending on the sign of b. We can compute that solution with 

higher precision using the identity ct t
a0 1 = :

		

( )( )
ct
q q b b b ac
qt
a

0
2

1

,
1where sign 4 .
2

,

ì
=ïï = - + -í

ï =ïî 	

(6)

Here, sign is the sign function, which returns 1 if the argument is greater than zero 
and −1 otherwise. See Figure 7-4 for the effect.

These two methods can be used together, as they are independent of each other. 
The first computes the discriminant in a more stable way, and the second then 
decides how best to use this discriminant to find the distances. The quadratic 
equation can also be solved without need for values such as “4” by reformulating 
the b value. The unified solution, along with other simplifications, is

				    = ×a ,d d 	 (7)

				    ¢ = - ×b ,f d 	 (8)

				    æ ö
D = - +ç

¢
÷

è ø

br
a

2
2 ,f d 	 (9)

where Δ is the discriminant. If Δ is not negative, the ray hits the sphere, so then b′ 
and Δ are used to find the two distances. We then compute c = f2 − r2 as before to get

		

( )
ct
q q b b a
qt
a

0

1

,
where sign .

,

¢

ì
=ïï = + Dí

ï =

¢

ïî 	

(10)

If we can assume that the ray direction is normalized, then a = 1 and the solutions 
get slightly simpler.

RAY TRACING GEMS



93

Earlier exits and shortcuts are also possible if the situation warrants. For example, 
c is positive when the ray starts outside the sphere and negative when inside, which 
can tell us whether to return t0 or t1, respectively. If b′ is a negative value, then the 
center of the sphere is behind the ray, so if it is also the case that c is positive, the 
ray must miss the sphere [2].

There is, then, no single best way to intersect a sphere with a ray. For example, if 
you know your application is unlikely to have the camera close to large spheres, you 
might not want to use the method by Press et al., as it adds a bit of complication.

7.3	 �RELATED RESOURCES

Code implementing these variant formulations is available on Github [8]. Ray 
intersectors such as those implemented in shaders in Shadertoy [7] are another 
way to experiment with various formulations.

ACKNOWLEDGMENTS

Thanks to Stefan Jeschke who pointed out the Hearn and Baker small spheres 
test, Chris Wyman and the Falcor team [1] for creating the framework on which 
the sphereflake demo was built, and John Stone for independent confirmation of 
results.

REFERENCES

	 [1]	� Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor 
Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor, July 2017.

	 [2]	� Haines, E. Essential Ray Tracing Algorithms. In An Introduction to Ray Tracing, A. S. Glassner, Ed. 
Academic Press Ltd., 1989, pp. 33–77.

	 [3]	 Hearn, D. D., and Baker, M. P. Computer Graphics with OpenGL, third ed. Pearson, 2004.

	 [4]	� Kulla, C., Conty, A., Stein, C., and Gritz, L. Sony Pictures Imageworks Arnold. ACM Transactions 
on Graphics 37, 3 (2018), 29:1–29:18.

	 [5]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [6]	� Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes: The Art of 
Scientific Computing, third ed. Cambridge University Press, 2007.

 Precision Improvements for Ray/Sphere Intersection 

https://github.com/NVIDIAGameWorks/Falcor


94

	 [7]	� Quílez, I. Intersectors. http://www.iquilezles.org/www/articles/intersectors/
intersectors.htm, 2018.

	 [8]	� Wyman, C. A Gentle Introduction to DirectX Raytracing, August 2018. Original code linked from 
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html; newer code available via 
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing. Last 
accessed November 12, 2018.

	 [9]	� Wyman, C., and Haines, E. Getting Started with RTX Ray Tracing. https://github.com/
NVIDIAGameWorks/GettingStartedWithRTXRayTracing, October 2018.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://www.iquilezles.org/www/articles/intersectors/intersectors.htm
http://www.iquilezles.org/www/articles/intersectors/intersectors.htm
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


95© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_8

CHAPTER 8

Cool Patches: A Geometric Approach 
to Ray/Bilinear Patch Intersections
Alexander Reshetov  
NVIDIA

ABSTRACT

We find intersections between a ray and a nonplanar bilinear patch using 
simple geometrical constructs. The new algorithm improves the state of the art 
performance by over 6× and is faster than approximating a patch with two triangles.

8.1	 �INTRODUCTION AND PRIOR ART

Computer graphics strives to visualize the real world in all its abundant shapes 
and colors. Usually, curved surfaces are tessellated to take advantage of the 
processing power of modern GPUs. The two main rendering techniques—
rasterization and ray tracing—now both support hardware-optimized triangle 
primitives [5, 19]. However, tessellation has its drawbacks, requiring, for example, 
a significant memory footprint to accurately represent the complex shapes.

Content creation tools instead tend to use higher-order surfaces due to their 
simplicity and expressive power. Such surfaces can be directly tessellated and 
rasterized in the DirectX 11 hardware pipeline [7, 17]. As of today, modern GPUs do 
not natively support ray tracing of nonplanar primitives.

We revisit ray tracing of higher-order primitives, trying to find a balance between 
the simplicity of triangles and the richness of such smooth shapes as subdivision 
surfaces [3, 16], NURBS [1], and Bézier patches [2].

Commonly, third (or higher) degree representations are used to generate a 
smooth surface with continuous normals. Peters [21] proposed a smooth surface 
jointly modeled by quadratic and cubic patches. For a height field, a C1 quadratic 
interpolation of an arbitrary triangular mesh can be achieved by subdividing 
each triangle into 24 triangles [28]. The additional control points are needed to 
interpolate the given vertex positions and derivatives. For a surface consisting 
only of quadratic or piecewise-linear patches, the appearance of smoothness can 
be achieved with Phong shading [22] by interpolating vertex normals, which is 



96

illustrated in Figure 8-1. For such a model, the intersector we are going to propose 
in the following sections runs about 7% faster than the optimized ray/triangle 
intersector in the OptiX system [20] (when measuring wall-clock time).

Figure 8-1.  Flat and Phong shading in the Gargoyle model [9]. The model has 21,418 patches, 33 of 
those are completely flat.

Vlachos et al. [26] introduced curved point-normal (PN) triangles that only use 
three vertices and three vertex normals to create a cubic Bézier patch. In such 
a surface, shading normals are quadratically interpolated to model smooth 
illumination. A local interpolation can be used to convert PN triangles to a G1 
continuous surface [18].

Boubekeur and Alexa [6] were motivated by the same goal of using a purely local 
representation and propose a method called Phong tessellation. The basic idea 
of their paper is to inflate the geometry just enough to avoid the appearance of a 
faceted surface.

All these techniques are well suited for rasterization, using sampling in a 
parametric domain. If ray tracing is a method of choice, intersecting rays with 
such surfaces requires solving nonlinear equations, which is typically carried out 
through iterations [2, 13].

A triangle is defined by its three vertices. Perhaps the simplest curved patch that 
interpolates four given points Qij and allows a single-step ray intersection is a 
bilinear patch given by

	 Q u,v u v Q u vQ u v Q uvQ00 01 10 11( ) (1 )(1 ) (1 ) (1 ) .= - - + - + - + 	 (1)

Such a bivariate surface goes through four corner points Qij for {u, v} = {i, j}. It is a 
doubly ruled surface formed by lines u = const and v = const, which are shown as 
blue and red lines in Figures 8-4 and 8-5. When all four corners lie in a plane, a 
single intersection can be found by splitting a quadrilateral into two triangles.  
A more efficient algorithm was proposed by Lagae and Dutré [15].

RAY TRACING GEMS



97

For nonplanar cases, there could be two intersections with a ray ( ) = +R t o t d̂  
defined by its origin O and a unit direction d̂ . The state of the art in ray tracing such 
patches was established by Ramsey et al. [24], who algebraically solved a system of 
three quadratic equations R(t) ≡ Q(u, v).

In iterative methods, the error can be reduced by increasing the number of 
iterations. There is no such safety in the direct methods and even quadratic 
equations may lead to an unbounded error. Ironically, the chance to have a 
significant error increases for flatter patches, especially viewed from a distance. 
For this reason, Ramsey et al. used double precision. We confirmed this 
observation by converting their implementation to single precision, which results in 
significant errors at some viewing directions, as can be seen in Figure 8-2.

Figure 8-2.  Left two images: a cube and a rhombic dodecahedron with the curved quadrilateral faces 
rendered with the technique by Ramsey et al. [24] (single precision). Right two images: our intersector, 
which is more robust since it does not miss any intersections.

Finding a ray/triangle intersection is a much simpler problem [14] that can 
be facilitated by considering elementary geometric constructs (a ray/plane 
intersection, a distance between lines, an area of a triangle, a tetrahedron volume, 
etc.). We exploit such ideas for a ray/patch intersection using the ruled property 
of the surface (Equation 1). Note that a similar methodology was proposed by 
Hanrahan [11], though it was only implemented for the planar case.

8.1.1	 �PERFORMANCE MEASUREMENTS

For ease of presentation, we named our technique GARP (acronym for Geometric 
Approach to Ray/bilinear Patch intersections). It improves the performance of the 
single precision Ramsey et al. [24] intersector by about 2×, as measured by wall-clock 
time. Since ray tracing speed is substantially affected by the acceleration structure 
traversal and shading, the real GARP performance is even higher than that.

To better understand these issues, we created a single-patch model and performed 
multiple intersection tests to negate the effects of the traversal and shading on 
performance. Such experiments demonstrate that the GARP intersector by itself is 
6.5× faster than the Ramsey single precision intersector.

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections



98

In fact, GARP is faster than the intersector in which each quadrilateral is 
approximated by two triangles during rendering (it results in a somewhat different 
image). We also measured the performance when quadrilaterals are split into 
triangles during preprocessing and then submitted to a BVH builder. Interestingly, 
such an approach is slower than the two other versions: GARP and run-time 
triangle approximation. We speculate that the quadrilateral representation 
of a geometry (compared with a fully tessellated one) serves as an efficient 
agglomerative clustering, in spirit of Walter et al. [27].

One advantage of a parametric surface representation is that the surface is 
defined by a bijection from a two-dimensional parametric space {u, v} ∈ [0, 1] × [0, 1] 
into a three-dimensional shape. Applications that use rasterization can directly 
sample in a two-dimensional parametric domain. In ray tracing methods, once the 
intersection is found, it can be verified that the found u and v are in the [0, 1] interval 
to keep only the valid intersections.

If an implicit surface f(x, y, z) = 0 is used as a rendering primitive, different patches 
have to be trimmed and connected together to form a composite surface. For 
bilinear patches, whose edges are line segments, such trimming is rather 
straightforward. This is the approach that was adopted by Stoll et al. [25], who 
proposed a way to convert a bilinear patch to a quadratic implicit surface. We did 
not compare their method with GARP directly but noticed that the approach by 
Stoll et al. requires clipping the found intersection by the front facing triangles of a 
tetrahedron {Q00, Q01, Q10, Q11}. GARP performance is faster than using just two ray/
triangle intersection tests. We achieve this by considering the specific properties of 
a bilinear patch (which is a ruled surface). On the other hand, implicit quadrics are 
more general in nature and include cylinders and spheres.

8.1.2	 �MESH QUADRANGULATION

An important—though somewhat tangential to our presentation—question is how 
to convert a triangular mesh into a quadrilateral representation. We have tested 
three such systems:

1.	 the Blender rendering package [4].

2.	 the Instant field-aligned meshes method by Jakob et al. [12].

3.	 the Quadrangulation through Morse-parameterization hybridization system as 
proposed by Fang et al. [9].

RAY TRACING GEMS



99

Only the last system creates a fully quadrangulated mesh. There are two possible 
strategies for dealing with a triangle/quadrilateral mix: treat each triangle as a 
degenerative quadrilateral, or use a bona fide ray/triangle intersector for triangles. 
We have chosen the former approach since it is slightly faster (it avoids an additional 
branch). Setting Q11 = Q10 in Equation 1 allows us to express barycentric coordinates 
in a triangle {Q00, Q10, Q01} using patch parameters {u, v} as {(1 − u)(1 − v), u, (1 − u)v}. 
As an alternative, the interpolation formula (Equation 1) can be used directly.

Figure 8-3 shows the different versions of the Stanford bunny model ray traced 
in OptiX [20]. We cast one primary ray for each pixel at a screen resolution of 
1000 × 1000 pixels, and use 9 ambient occlusion rays for each hit point. This is 
designed to emulate a distribution of primary and secondary rays in a typical ray 
tracing workload. The performance is measured by counting the total number of 
rays processed per second, mitigating the effects of the primary ray misses on 
overall performance. We set the ambient occlusion distance to ∞ and let such rays 
terminate at “any hit” for all the models in the paper.

Figure 8-3.  Different versions of the Stanford bunny ray traced on a Titan Xp using ambient occlusion.

Blender reuses the original model vertices, while the instant mesh system tries to 
optimize their positions and allows to specify an approximate target value for the 
number of new vertices; Figures 8-3d and 8-3e show the resulting mesh. Phong 
shading is used in the models shown in Figures 8-3a and 8-3c.

For comparison, the single precision version of the intersector by Ramsey et al. 
[24] achieves 409 Mrays per second for the model in Figure 8-3b and 406 Mrays/s 
for the model in Figure 8-3c. For the double precision version of the code, the 
performance drops to 196 and 198 Mrays/s, respectively.

Neither of the used quadrangulation systems know that we will be rendering 
nonplanar primitives. Consequently, the flatness of the resulting mesh is used  
in these systems as a quality metric (about 1% of the output quadrilaterals are 

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections



100

totally flat). We consider it as a limitation of our current quadrilateral mesh 
procurement process and, conversely, as an opportunity to exploit the nonplanar 
nature of the bilinearly interpolated patches in the future.

8.2	 �GARP DETAILS

Ray/patch intersections are defined by t (for the intersection point along the ray) and 
{u, v} for the point on the patch. Knowing only t is not sufficient because a surface 
normal is computed using the u and v values. Even though eventually we will 
need all three parameters, we start with finding only the value of u, using simple 
geometric considerations (i.e., not trying to solve algebraic equations outright).

Edges of a bilinear patch (Equation 1) are straight lines. We first define two points 
on the opposite edges Pa(u) = (1 − u)Q00 + uQ10 and Pb(u) = (1 − u)Q01 + uQ11; then, 
using these points, we consider a parametric family of lines passing through Pa 
and Pb as shown in Figure 8-4. For any u ∈ [0, 1], the line segment (Pa(u), Pb(u)) 
belongs to the patch.

Figure 8-4.  Finding ray/patch intersections.

First Step  We first derive the equation for computing the signed distance between 
the ray and the line (Pa(u), Pb(u)) and set it to 0. This distance is (Pa − O) ⋅ n/‖n‖, 
where ( )= - ´b aP P ˆn d . We need only the numerator, and setting it to 0 gives a 
quadratic equation for u.

The numerator is a scalar triple product ( ) ( ) ˆ
a b aP O P P- × - ´d  and it is the (signed) 

volume of the parallelepiped defined by the three given vectors. It is a quadratic 

RAY TRACING GEMS



101

polynomial of u. After some trivial simplifications, its coefficients are reduced to 
the expressions a, b, and c computed in lines 14-17 in Section 8.4. We set apart the 
expression for qn = (Q10 − Q00) × (Q01 − Q11), which can be precomputed. If the length 
of this vector is 0, the quadrilateral is reduced to a (planar) trapezoid, in which case 
the coefficient c for u2 is zero, and there is only one solution. We handle this case 
with an explicit branch in our code (at line 23 in Section 8.4).

For a general planar quadrilateral that is not a trapezoid, the vector qn is 
orthogonal to the quadrilateral’s plane. Explicitly computing and using its value 
helps with the accuracy of computations, since in most models patches are almost 
planar. It is important to understand that, even for planar patches, the equation 
a + bu + cu2 = 0 has two solutions. One such situation is shown in the left part of 
Figure 8-5. Both roots are in the [0, 1] interval and we have to compute v in order to 
reject one of the solutions. This figure shows a self-overlapping patch. For a non-
overlapping planar quadrilateral, there could be only one root u in the [0, 1] interval 
for which v ∈ [0, 1]. Even so, there is no reason to explicitly express this logic in the 
program, as this needlessly increases code divergence.

Figure 8-5.  Left: ray intersects planar patch at {u, v} = {0.3,0.5} and {0.74,2.66}. Right: there is no 
intersection between the ray and the (extended) bilinear surface in which the patch lies.

Using the classic formula - ± -( )b b ac c2 4 / 2  for solving a quadratic equation 

has its perils. Depending on the sign of the coefficient b, one of the roots requires 
computing the difference of the two (relatively) big numbers. For this reason, we 
compute the stable root first [23] and then use Vieta’s formula u1u2 = a/c for the 
product of the roots to find the second one (code starts at line 26).

Second Step  Next, we find v and t for each root u that is inside the [0, 1] interval. 
The simplest approach would be to pick any two equations (out of three) from 

+ - = +( )a b aP v P P O t d̂ . However, this will potentially result in numerical errors 

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections



102

since the coordinates of Pa(u) and Pb(u) are not computed exactly and choosing the 
best two equations is not obvious.

We tested multiple different approaches. The best one, paradoxically, is to ignore the 
fact that the lines +O t d̂  and Pa + v(Pb − Pa) intersect. Instead, we find the values of  
v and t that minimize the distance between these two lines (which will be very close 
to 0). It is facilitated by computing the vector ( )= - ´b aP P ˆn d  that is orthogonal to 
both these lines as shown in Figure 8-4. The corresponding code starts at lines 31 
and 43 in Section 8.4 which leverages some vector algebra optimizations.

Generally speaking, there will always be an intersection of a ray with a plane 
(unless the ray is parallel to the plane). This is not true for a nonplanar bilinear 
surface, as shown in the right part of Figure 8-5. For this reason, we abort the 
intersection test for negative determinant values.

Putting everything together results in simple and clean code. It could be simplified 
even further by first transforming the patch into a ray-centric coordinate system 
in which O = 0 and { }=ˆ 0,0,1d . One such branch-free transformation was recently 
proposed by Duff et al. [8]. However, we have found that such an approach is only 
marginally faster, since the main GARP implementation is already optimized to a 
high degree.

8.3	 �DISCUSSION OF RESULTS

The intersection point could be computed as either Xr = R(t) or as Xq = Q(u, v) using 
the found parameters t, u, and v. The distance ║Xr - Xq║ between these two points 
provides a genuine estimate for the computational error (in an ideal case, these two 
points coincide). To get a dimensionless quantity, we divide it by the patch’s perimeter. 
Figure 8-6 shows such errors for some models, which are linearly interpolated from 
blue (for no error) to brown (for error ≥ 10–5). The two-step GARP process dynamically 
reduces a possible error in each step: first, we find the best estimation for u and 
then—using the found u—aim at further minimizing the total error.

Figure 8-6.  Color-coded errors in models from Fang et al. [9] collection. We linearly interpolate from 
blue (for error = 0) to brown (for error ≥10−5).

RAY TRACING GEMS



103

Figure 8-7.  The original version of Happy Buddha rendered with OptiX ray/triangle intersector (7a) 
and three quadrangulated models (7b-7d). The performance data (in Mrays/s on Titan Xp) is given for 
the following intersectors:

↗	 GARP in world coordinates,

↑	 GARP in ray-centric coordinates,

⊲⊳	 treating each quadrilateral as two triangles,

[24]	 and the Ramsey et al. intersector.

Mesh quadrangulation, to some degree, improves its quality. During such 
a process, vertices become more aligned, allowing for a better ray tracing 
acceleration structure. Depending on the complexity of the original model, there 
is an ideal vertex reduction ratio, at which all model features are still preserved, 
while the ray tracing performance is significantly improved. We illustrate this in 
Figures 8-7 to 8-9, showing the original triangular mesh on the left (rendered with 
OptiX intersector) and three simplified patch meshes, reducing the total number of 
vertices roughly by 50% for each subsequent model.

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections



104

Figure 8-8.  Stanford Thai Statue.

Figure 8-9.  Stanford Lucy model.

RAY TRACING GEMS



105

For the quadrangulation, we used the instant field-aligned mesh system described 
by Jakob et al. [12]. This does not always create pure quadrilateral meshes: in our 
experiments, roughly 1% to 5% triangles remained in the output. We treated each 
such a triangle as a degenerative quadrilateral (i.e., by simply replicating the third 
vertex). For models from the Stanford 3D scanning repository, which are curved 
shapes, about 1% of the generated patches are totally flat.

For each model in Figures 8-7 through 8-9, we report performance for the GARP 
algorithm, for GARP in the ray-centric coordinate system, for the version in which 
each quadrilateral is treated as two triangles, and for the reference intersector 
by Ramsey et al. [24]. Performance is measured by counting the total number of 
rays cast, including one primary ray per pixel and 3 × 3 ambient occlusion rays for 
each hit. The GARP wall-clock performance improvement, with respect to a single 
precision Ramsey code, is inversely proportional to the model complexity, since 
more complex models require more traversal steps.

Though our method cannot compete with the speed of the hardware ray/triangle 
intersector [19], GARP shows the potential for future hardware development. We 
presented a fast algorithm for a nonplanar primitive, which might be helpful for 
certain problems. Such possible future research directions include rendering 
of height fields, subdivision surfaces [3], collision detection [10], displacement 
mapping [16], and other effects. There are also multiple CPU-based ray tracing 
systems that would benefit from GARP, though we did not yet implement the 
algorithm in such systems.

8.4	 �CODE
 1 RT_PROGRAM void intersectPatch(int prim_idx) {

 2   // ray is rtDeclareVariable(Ray, ray, rtCurrentRay,) in OptiX

 3   // patchdata is optix::rtBuffer

 4   const PatchData& patch = patchdata[prim_idx];

 5   const float3* q = patch.coefficients();

 6   // 4 corners + "normal" qn

 7   float3 q00 = q[0], q10 = q[1], q11 = q[2], q01 = q[3];

 8   float3 e10 = q10 - q00; // q01 ----------- q11

 9   float3 e11 = q11 - q10; // |                 |

10   float3 e00 = q01 - q00; // | e00         e11 |  we precompute

11   float3 qn = q[4];       // |       e10       |  �qn = cross(q10-q00,

12   �q00 -= ray.origin;      // q00 ----------- q10             q01-q11)

13   q10 -= ray.origin;

14   �float a = dot(cross(q00, ray.direction), e00); �// the equation is

15   �float c = dot(qn, ray.direction);              �// a + b u + c u^2

16   float b = dot(cross(q10, ray.direction), e11); �// first compute

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections



106

17   b -= a + c;                                    �// a+b+c and then b

18   float det = b*b - 4*a*c;

19   if (det < 0) return;     // see the right part of Figure 5

20   det = sqrt(det);         // �we -use_fast_math in CUDA_NVRTC_OPTIONS

21   float u1, u2;            // two roots(u parameter)

22   float t = ray.tmax, u, v;  // need solution for the smallest t > 0

23   if (c == 0) {                         // if c == 0, it is a trapezoid

24     u1 = -a/b; u2 = -1;                 // and there is only one root

25   } else {                              // (c != 0 in Stanford models)

26     u1 = (-b - copysignf(det, b))/2;    // numerically "stable" root

27     u2 = a/u1;                          // Viete's formula for u1*u2

28     u1 /= c;

29   }

30   if (0 <= u1 && u1 <= 1) {                // is it inside the patch?

31     float3 pa = lerp(q00, q10, u1);        // �point on edge e10 (Fig. 4)

32     float3 pb = lerp(e00, e11, u1);        // it is, actually, pb - pa

33     float3 n = cross(ray.direction, pb);

34     det = dot(n, n);

35     n = cross(n, pa);

36     float t1 = dot(n, pb);

37     float v1 = dot(n, ray.direction);      // no need to check t1 < t

38     if (t1 > 0 && 0 <= v1 && v1 <= det) {  // if t1 > ray.tmax,

39         t = t1/det; u = u1; v = v1/det;    // it will be rejected

40     }                                      �// in rtPotentialIntersection

41   }

42   if (0 <= u2 && u2 <= 1) {                // it is slightly different,

43     float3 pa = lerp(q00, q10, u2);        // since u1 might be good

44     float3 pb = lerp(e00, e11, u2);        // and we need 0 < t2 < t1

45     float3 n = cross(ray.direction, pb);

46     det = dot(n, n);

47     n = cross(n, pa);

48     float t2 = dot(n, pb)/det;

49     float v2 = dot(n, ray.direction);

50     if (0 <= v2 && v2 <= det && t > t2 && t2 > 0) {

51         t = t2; u = u2; v = v2/det;

52     }

53   }

54   if (rtPotentialIntersection(t)) {

55     // Fill the intersection structure irec.

56     // Normal(s) for the closest hit will be normalized in a shader.

57     float3 du = lerp(e10, q11 - q01, v);

58     float3 dv = lerp(e00, e11, u);

59     irec.geometric_normal = cross(du, dv);

60     #if defined(SHADING_NORMALS)

61     const float3* vn = patch.vertex_normals;

62     irec.shading_normal = lerp(lerp(vn[0],vn[1],u),

63                                lerp(vn[3],vn[2],u),v);

RAY TRACING GEMS



107

64     #else

65     irec.shading_normal = irec.geometric_normal;

66     #endif

67     irec.texcoord = make_float3(u, v, 0);

68     irec.id = prim_idx;

69     rtReportIntersection(0u);

70   }

71 }

ACKNOWLEDGMENTS

We used the Blender rendering package [4] and instant field-aligned meshes 
system [12] for mesh quadrangulation. We deeply appreciate the possibility to do 
research with the Stanford 3D scanning repository models and with ones provided 
by Fang at al. [9]. These systems and models are used under a creative commons 
attribution license.

The authors would also like to thank the anonymous referees and the book editors 
for their valuable comments and helpful suggestions.

REFERENCES

	 [1]	� Abert, O., Geimer, M., and Muller, S. Direct and Fast Ray Tracing of NURBS Surfaces. In IEEE 
Symposium on Interactive Ray Tracing (2006), 161–168.

	 [2]	� Benthin, C., Wald, I., and Slusallek, P. Techniques for Interactive Ray Tracing of Bézier Surfaces. 
Journal of Graphics Tools 11, 2 (2006), 1–16.

	 [3]	� Benthin, C., Woop, S., Nießner, M., Selgrad, K., and Wald, I. Efficient Ray Tracing of Subdivision 
Surfaces Using Tessellation Caching. In Proceedings of High-Performance Graphics (2015), 
pp. 5–12.

	 [4]	� Blender Online Community. Blender—a 3D Modelling and Rendering Package. Blender Foundation, 
Blender Institute, Amsterdam, 2018.

	 [5]	� Blinn, J. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Morgan Kaufmann Publishers Inc., 
1996.

	 [6]	� Boubekeur, T., and Alexa, M. Phong Tessellation. ACM Transactions on Graphics 27, 5 (2008),  
141:1–141:5.

	 [7]	� Brainerd, W., Foley, T., Kraemer, M., Moreton, H., and Nießner, M. Efficient GPU Rendering of 
Subdivision Surfaces Using Adaptive Quadtrees. ACM Transactions on Graphics 35, 4 (2016), 
113:1–113:12.

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections



108

	 [8]	� Duff, T., Burgess, J., Christensen, P., Hery, C., Kensler, A., Liani, M., and Villemin, R. Building an 
Orthonormal Basis, Revisited. Journal of Computer Graphics Techniques 6, 1 (March 2017), 1–8.

	 [9]	� Fang, X., Bao, H., Tong, Y., Desbrun, M., and Huang, J. Quadrangulation Through Morse-
Parameterization Hybridization. ACM Transactions on Graphics 37, 4 (2018), 92:1–92:15.

	 [10]	� Fournier, A., and Buchanan, J. Chebyshev Polynomials for Boxing and Intersections of 
Parametric Curves and Surfaces. Computer Graphics Forum 13, 3 (1994), 127–142.

	 [11]	� Hanrahan, P. Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates, 
http://graphics.stanford.edu/courses/cs348b-04/rayhomo.pdf, 1989.

	 [12]	� Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. Instant Field-Aligned Meshes. ACM 
Transactions on Graphics 34, 6 (Nov. 2015), 189:1–189:15.

	 [13]	 Kajiya, J. T. Ray Tracing Parametric Patches. Computer Graphics (SIGGRAPH) 16, 3 (July 1982), 245–254.

	 [14]	� Kensler, A., and Shirley, P. Optimizing Ray-Triangle Intersection via Automated Search. IEEE 
Symposium on Interactive Ray Tracing (2006), 33–38.

	 [15]	� Lagae, A., and Dutré, P. An Efficient Ray-Quadrilateral Intersection Test. Journal of Graphics Tools 
10, 4 (2005), 23–32.

	 [16]	� Lier, A., Martinek, M., Stamminger, M., and Selgrad, K. A High-Resolution Compression Scheme 
for Ray Tracing Subdivision Surfaces with Displacement. Proceedings of the ACM on Computer 
Graphics and Interactive Techniques 1, 2 (2018), 33:1–33:17.

	 [17]	� Loop, C., Schaefer, S., Ni, T., and Castaño, I. Approximating Subdivision Surfaces with Gregory 
Patches for Hardware Tessellation. ACM Transactions on Graphics 28, 5 (2009), 151:1–151:9.

	 [18]	� Mao, Z., Ma, L., and Zhao, M. G1 Continuity Triangular Patches Interpolation Based on PN 
Triangles. In International Conference on Computational Science (2005), pp. 846–849.

	 [19]	 NVIDIA. NVIDIA RTX™ platform, https://developer.nvidia.com/rtx, 2018.

	 [20]	� Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., 
McGuire, M., Morley, K., Robison, A., and Stich, M. OptiX: A General Purpose Ray Tracing Engine. 
ACM Transactions on Graphics 29, 4 (2010), 66:1–66:13.

	 [21]	� Peters, J. Smooth Free-Form Surfaces over Irregular Meshes Generalizing Quadratic Splines. In 
International Symposium on Free-form Curves and Free-form Surfaces (1993), pp. 347–361.

	 [22]	 Phong, B. T. Illumination for Computer-Generated Images. PhD thesis, The University of Utah, 1973.

	 [23]	� Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes 3rd Edition: 
The Art of Scientific Computing, 3 ed. Cambridge University Press, 2007.

	 [24]	� Ramsey, S. D., Potter, K., and Hansen, C. D. Ray Bilinear Patch Intersections. Journal of Graphics, 
GPU, & Game Tools 9, 3 (2004), 41–47.

RAY TRACING GEMS

http://graphics.stanford.edu/courses/cs348b-04/rayhomo.pdf
https://developer.nvidia.com/rtx


109

	 [25]	� Stoll, C., Gumhold, S., and Seidel, H.-P. Incremental Raycasting of Piecewise Quadratic Surfaces 
on the GPU. In IEEE Symposium on Interactive Ray Tracing (2006), pp. 141–150.

	 [26]	� Vlachos, A., Peters, J., Boyd, C., and Mitchell, J. L. Curved PN Triangles. In Symposium on 
Interactive 3D Graphics (2001), pp. 159–166.

	 [27]	� Walter, B., Bala, K., Kulkarni, M. N., and Pingali, K. Fast Agglomerative Clustering for Rendering. 
IEEE Symposium on Interactive Ray Tracing (2008), 81–86.

	 [28]	� Wong, S., and Cendes, Z. C1 Quadratic Interpolation over Arbitrary Point Sets. IEEE Computer 
Graphics and Applications 7, 11 (1987), 8–16.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


111© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_9

CHAPTER 9

Multi-Hit Ray Tracing in DXR
Christiaan Gribble  
SURVICE Engineering

ABSTRACT

Multi-hit ray traversal is a class of ray traversal algorithm that finds one or more, 
and possibly all, primitives intersected by a ray, ordered by point of intersection. 
Multi-hit traversal generalizes traditional first-hit ray traversal and is useful in 
computer graphics and physics-based simulation. We present several possible 
multi-hit implementations using Microsoft DirectX Raytracing and explore the 
performance of these implementations in an example GPU ray tracer.

9.1	 �INTRODUCTION

Ray casting has been used to solve the visibility problem in computer graphics 
since its introduction to the field over 50 years ago. First-hit traversal returns 
information regarding the nearest primitive intersected by a ray, as shown on the 
left in Figure 9-1. When applied recursively, first-hit traversal can also be used 
to incorporate visual effects such as reflection, refraction, and other forms of 
indirect illumination. As a result, most ray tracing APIs are heavily optimized for 
first-hit performance.

Figure 9-1.  Three categories of ray traversal. First-hit traversal and any-hit traversal are well-known 
and often-used ray traversal algorithms in computer graphics applications for effects like visibility 
(left) and ambient occlusion (center). We explore multi-hit ray traversal, the third major category of 
ray traversal that returns the N closest primitives ordered by point of intersection (for N ≥ 1). Multi-hit 
ray traversal is useful in a number of computer graphics and physics-based simulation applications, 
including optical transparency (right).



112

A second class of ray traversal, any-hit traversal, also finds application in computer 
graphics. With any-hit traversal, the intersection query is not constrained to return 
the nearest primitive but simply whether or not a ray intersects any primitive within 
a specified interval. Any-hit traversal is particularly useful for effects such as 
shadows and ambient occlusion, as shown in the center in Figure 9-1.

In the third class of traversal, multi-hit ray traversal [5], an intersection query 
returns information concerning the N closest primitives intersected by a ray. Multi-
hit traversal generalizes both first-hit traversal (where N = 1) and all-hit traversal, 
a scheme in which ray queries return information concerning every intersected 
primitive (where N = ∞), while accommodating arbitrary values of N between these 
extremes.

Multi-hit traversal is useful in a number of computer graphics applications, for 
example, fast and accurate rendering of transparent objects. Raster-based 
solutions impose expensive fragment sorting on the GPU and must be extended 
to render coplanar objects correctly.1 In contrast, multi-hit traversal offers a 
straightforward means to implement high-performance transparent rendering 
while handling overlapping coplanar objects correctly.

Importantly, multi-hit traversal can also be used in a wide variety of physics-based 
simulations, or so-called non-optical rendering, as shown on the right in Figure 9-1. 
In domains such as ballistic penetration, radio frequency propagation, and thermal 
radiative transport, among others, the relevant phenomena are governed by 
equations similar to the Beer-Lambert Law and so require ray/primitive intervals, 
not just intersection points. These simulations are similar to rendering scenes in 
which all objects behave as participating media.

A correct multi-hit ray traversal algorithm is a necessary, but insufficient, 
condition for modern applications; performance is also critical for both 
interactivity and fidelity in many scenarios. Modern ray tracing engines address 
performance concerns by hiding complicated, highly optimized ray tracing kernels 
behind clean, well-designed APIs. To accelerate ray queries, these engines 
use numerous bounding volume hierarchy (BVH) variants based on application 
characteristics provided to the engine by the user. These engines provide fast 
first-hit and any-hit ray traversal operations for use in applications across optical 
and non-optical domains, but they do not typically support multi-hit ray traversal 
as a fundamental operation.

1�The problem of coplanar objects, both in transparent rendering and in physics-based simulation, is discussed 
more thoroughly by, for example, Gribble et al. [5]; interested readers are referred to the literature for additional 
details.

RAY TRACING GEMS



113

Early work on multi-hit ray traversal [5] assumes an acceleration structure based 
on spatial subdivision, in which leaf nodes of the structure do not overlap. With 
such structures, ordered traversal—and therefore generating ordered hit points—
is straightforward: sorting is required only within, not across, leaf nodes. However, 
ordered traversal in a structure based on object partitioning, such as a BVH, is not 
achieved so easily. While an implementation based on a traversal priority queue 
(rather than a traversal stack) enables front-to-back traversal of a BVH [7], most 
publicly available, widely used production ray tracing APIs do not provide ordered 
BVH traversal variants.

However, these APIs, including Microsoft DirectX Raytracing (DXR), expose 
features enabling implementation of multi-hit ray tracing entirely with user-level 
code, thereby leveraging their existing—and heavily optimized—BVH construction 
and traversal routines. In the remainder of this chapter, we present several 
possible multi-hit implementations using DXR and explore their performance in 
an example GPU ray tracing application. Source and binary distributions of this 
application are available [4], permitting readers to explore, modify, or enhance 
these DXR multi-hit implementations.

9.2	 �IMPLEMENTATION

As noted in Section 9.1 and discussed in detail by Amstutz et al. [1], the problem 
of multi-hit ray tracing with unordered BVH traversal variants is compounded by 
overlapping nodes. Correctness requires either naive multi-hit traversal [5], which 
is potentially slow, or modification of BVH construction or traversal routines, which 
not only imposes potentially significant development and maintenance burdens in 
production environments, but is simply not possible with implementation-neutral 
ray tracing APIs.

To address these issues, we present two DXR implementations each of two  
multi-hit traversal algorithms: naive multi-hit traversal and node-culling  
multi-hit BVH traversal [3]. Our first implementation of each algorithm leverages 
DXR any-hit shaders to satisfy multi-hit intersection queries along each ray. DXR 
any-hit shaders execute whenever a ray intersects a geometry instance within the 
current ray interval, [tmin, tmax], regardless of its position along the ray relative to 
other intersections. These shaders do not follow any defined order of execution 
for intersections along a ray. If an any-hit shader accepts a potential intersection, 
its hit distance becomes the new maximum value for the ray interval, tmax.

Our second implementation of each algorithm satisfies multi-hit queries using 
DXR intersection shaders, which offer an alternative representation for geometry 
in a bottom-level acceleration structure. In this case, the procedural primitive is 

 Multi-Hit Ray Tracing in DXR



114

defined by its axis-aligned bounding box, and a user-defined intersection shader 
evaluates primitive intersections when a ray intersects that box. The intersection 
shader defines attributes describing intersections, including the current hit 
distance, that are then passed to subsequent shaders. Generally speaking, DXR 
intersection shaders are less efficient than the built-in ray/triangle intersection 
routines, but they offer far more flexibility. We exploit these shaders to implement 
both naive and node-culling multi-hit ray traversal for triangle primitives as an 
alternative to the DXR any-hit shader implementations.

In these implementations, each shader assumes buffers for storing multi-hit 
results: a two-dimensional (width × height) buffer for per-ray hit counts and 
a three-dimensional (width × height × (Nquery + 1)) buffer for hit records, each 
comprising a hit-point intersection distance (t-value), the diffuse surface color, 
and the value Ng ⋅ V to support simple surface shading operations. The any-hit 
shader implementations use a user-defined ray payload structure to track the 
current number of hits and require setting the D3D12_RAYTRACING_GEOMETRY_
FLAG_NO_DUPLICATE_ANYHIT_INVOCATION geometry flag to disallow multiple 
any-hit shader invocations. The corresponding ray generation shaders set the 
RAY_FLAG_FORCE_NON_OPAQUE ray flag to treat all ray/primitive intersections as 
non-opaque. In contrast, the intersection shader implementations require buffers 
storing triangle vertices, faces, and material data, properties typically managed by 
DXR when using the built-in triangle primitives.

All shaders rely on utility functions for shader-side buffer management, color 
mapping for visualization, and so forth. Likewise, each shader assumes values 
controlling the final rendered results, including Nquery, background color, and 
various color-mapping parameters affecting the visualization modes supported by 
our example application. Other DXR shader states and parameters—for example, 
the two-dimensional output buffer storing rendered results—are ultimately 
managed by Falcor [2], the real-time rendering framework underlying our 
application. For clarity and focus of presentation, these elements are omitted from 
the implementation highlights that follow.

Our example ray tracing application leverages Chris Wyman’s dxrTutors.Code 
project [8], which itself builds on Falcor, to manage DXR states. The project 
dxrTutors.Code provides a highly abstracted CPU-side C++ DXR API, designed 
both to aid programmers in getting DXR applications running quickly and to enable 
easy experimentation. While these dependencies are required to build our multi-
hit ray tracing application from source, the multi-hit DXR shaders themselves 
can be adapted to other frameworks that provide similar DXR abstractions in a 
straightforward manner. We highlight these implementations in the remainder of 
this section, and we explore the resulting performance in Section 9.3.

RAY TRACING GEMS



115

9.2.1	 �NAIVE MULTI-HIT TRAVERSAL

Any multi-hit traversal implementation returns information concerning the 
N ≤ Nquery closest ray/primitive intersections, in ray order, for values of Nquery in 
[1, ∞). A first approach to satisfying such queries, naive multi-hit ray traversal, 
simply collects all valid intersections along the ray and returns at most Nquery of 
these to the user. A DXR any-hit shader implementation of this algorithm is shown 
in the following listing.

 1 [shader ("anyhit")]

 2 void mhAnyHitNaive(inout mhRayPayload rayPayload,

 3                    BuiltinIntersectionAttribs attribs)

 4 {

 5   // Process candidate intersection.

 6   uint2 pixelIdx  = DispatchRaysIndex();

 7   uint2 pixelDims = DispatchRaysDimensions();

 8   uint  hitStride = pixelDims.x*pixelDims.y;

 9   float tval      = RayTCurrent();

10

11   // Find index at which to store candidate intersection.

12   uint hi = getHitBufferIndex(min(rayPayload.nhits, gNquery),

13                               pixelIdx, pixelDims);

14   uint lo = hi - hitStride;

15   while (hi > 0 && tval < gHitT[lo])

16   {

17     // Move data to the right ...

18     gHitT       [hi] = gHitT       [lo];

19     gHitDiffuse [hi] = gHitDiffuse [lo];

20     gHitNdotV   [hi] = gHitNdotV   [lo];

21

22     //... and try next position.

23     hi -= hitStride;

24     lo -= hitStride;

25   }

26

27   // Get diffuse color and face normal at current hit point.

28   uint primIdx   = PrimitiveIndex();

29   float4 diffuse = getDiffuseSurfaceColor(primIdx);

30   float3 Ng      = getGeometricFaceNormal(primIdx);

31

32   // Store hit data, possibly beyond index of the N <= Nquery closest

33   // intersections (i.e., at hitPos == Nquery).

34   gHitT       [hi] = tval;

35   gHitDiffuse [hi] = diffuse;

36   gHitNdotV   [hi] =

37       abs(dot(normalize(Ng), normalize(WorldRayDirection())));

38

39   ++rayPayload.nhits;

40

 Multi-Hit Ray Tracing in DXR



116

41   // Reject the intersection and continue traversal with the incoming

42   // ray interval.

43   IgnoreHit();

44 }

For each candidate intersection, the shader determines the index at which to 
store the corresponding data, actually stores that data, and updates the number 
of intersections collected so far. Here, intersection data is collected into buffers 
with exactly Nquery + 1 entries per ray. This approach allows us to always write 
(even potentially ignored) intersection data following the insertion sort loop—no 
conditional branching is required. Finally, the candidate intersection is rejected 
by invoking the DXR IgnoreHit intrinsic in order to continue traversal with the 
incoming ray interval, [tmin, tmax].

The intersection shader implementation, outlined in the listing that follows, 
behaves similarly. After actually intersecting the primitive (in our case, a triangle), 
the shader again determines the index at which to store the corresponding data, 
actually stores that data, and updates the number of intersections collected so 
far. Here, intersectTriangle returns the number of hits encountered so far to 
indicate a valid ray/triangle intersection, or zero when the ray misses the triangle.

 1 [shader("intersection")]

 2 void mhIntersectNaive()

 3 {

 4   HitAttribs hitAttrib;

 5   uint nhits = intersectTriangle(PrimitiveIndex(), hitAttrib);

 6   if (nhits > 0)

 7   {

 8     // Process candidate intersection.

 9     uint2 pixelIdx  = DispatchRaysIndex();

10     uint2 pixelDims = DispatchRaysDimensions();

11     uint hitStride  = pixelDims.x*pixelDims.y;

12     float tval      = hitAttrib.tval;

13

14     // Find index at which to store candidate intersection.

15     uint hi = getHitBufferIndex(min(nhits, gNquery),

16                                 pixelIdx, pixelDims);

17     // OMITTED: Equivalent to lines 13-35 of previous listing.

18

19     uint hcIdx = getHitBufferIndex(0, pixelIdx, pixelDims);

20     ++gHitCount[hcIdx];

21   }

22 }

Aside from the need to compute ray/triangle intersections, some important 
differences between the any-hit shader and the intersection shader 
implementations exist. For example, per-ray payloads are not accessible 
from within DXR intersection shaders, so we must instead manipulate 

RAY TRACING GEMS



117

the corresponding entry in the global two-dimensional hit counter buffer, 
gHitCount. In addition, the multi-hit intersection shader omits any calls to the 
DXR ReportHit intrinsic, which effectively rejects every candidate intersection 
and continues traversal with the incoming ray interval, [tmin, tmax], as is required.

Naive multi-hit traversal is simple and effective. It imposes few implementation 
constraints and allows users to process as many intersections as desired. However, 
this algorithm is potentially slow. It effectively implements the all-hit traversal 
scheme, as the ray traverses the entire BVH structure to find (even if not store) all 
intersections and ensure that the N ≤ Nquery closest of these are returned to the user.

9.2.2	 �NODE-CULLING MULTI-HIT BVH TRAVERSAL

Node-culling multi-hit BVH traversal adapts an optimization common for first-hit 
BVH traversal to the multi-hit context. In particular, first-hit BVH traversal variants 
typically consider the current ray interval, [tmin, tmax], to cull nodes based on tmax, 
the distance to the nearest valid intersection found so far. If during traversal a ray 
enters a node at tenter > tmax, the node is skipped, since traversing the node cannot 
possibly produce a valid intersection closer to the ray origin than the one already 
identified.

The node-culling multi-hit BVH traversal algorithm incorporates this optimization 
by culling nodes encountered along a ray at a distance beyond the farthest valid 
intersection among the N ≥ Nquery collected so far. In this way, subtrees or ray/
primitive intersection tests that cannot produce valid intersections are skipped 
once it is appropriate to do so.

Our node-culling DXR any-hit shader implementation is highlighted in the listing 
that follows. The corresponding naive multi-hit implementation differs from this 
implementation only in the way that valid intersections are handled by the shader. 
In the former, intersections are always rejected to leave the incoming ray interval 
[tmin, tmax] unchanged and, ultimately, traverse the entire BVH. In the latter, however, 
we induce node culling once the appropriate conditions are satisfied, i.e., only after 
N ≥ Nquery intersections have been collected.

 1 [shader("anyhit")]

 2 void mhAnyHitNodeC(inout mhRayPayload rayPayload,

 3      BuiltinIntersectionAttribs attribs)

 4 {

 5   // Process candidate intersection.

 6   // OMITTED: Equivalent to lines 5-37 of first listing.

 7

 8   // If we store the candidate intersection at any index other than

 9   // the last valid hit position, reject the intersection.

10   uint hitPos = hi / hitStride;

 Multi-Hit Ray Tracing in DXR



118

11   if (hitPos != gNquery - 1)

12     IgnoreHit();

13

14   // Otherwise, induce node culling by (implicitly) returning and

15   // accepting RayTCurrent() as the new ray interval endpoint.

16 }

We also note that the DXR any-hit shader implementation imposes an additional 
constraint on ray interval updates: With any-hit shaders, we cannot accept using 
any intersection distance other than the one returned by the DXR RayTCurrent 
intrinsic. As a result, the implicit return-and-accept behavior of the shader is valid 
only when the candidate intersection is the last valid intersection among those 
collected so far (i.e., when it is written to index gNquery-1). Writes to all other 
entries, including those within the collection of valid hits, must necessarily invoke 
the IgnoreHit intrinsic. This DXR-imposed constraint stands in contrast to node-
culling multi-hit traversal implementations in at least some other ray tracing 
APIs (see, for example, the implementation presented by Gribble et al. [6]), and it 
represents a lost opportunity to cull nodes as a result of stale tmax values.

However, the node-culling DXR intersection shader implementation, shown in the 
following listing, does not fall prey to this potential loss of culling opportunities. 
In this implementation, we control the intersection distance reported by the 
intersection shader and can thus return the value of the last valid hit among the 
N ≥ Nquery collected so far. This is done simply by invoking the DXR ReportHit 
intrinsic with that value any time the actual intersection point is within the Nquery 
closest hits.

 1 [shader("intersection")]

 2 void mhIntersectNodeC()

 3 {

 4   HitAttribs hitAttrib;

 5   uint nhits = intersectTriangle(PrimitiveIndex(), hitAttrib);

 6   if (nhits > 0)

 7   {

 8     // Process candidate intersection.

 9     // OMITTED: Equivalent to lines 9-20 of second listing.

10

11     // Potentially update ray interval endpoint to gHitT[lastIdx] if we

12     // wrote new hit data within the range of valid hits [0, Nquery-1].

13     uint hitPos = hi / hitStride;

14     if (hitPos < gNquery)

15     {

16       uint lastIdx =

17           getHitBufferIndex(gNquery - 1, pixelIdx, pixelDims);

18       ReportHit(gHitT[lastIdx], 0, hitAttrib);

19     }

20   }

21 }

RAY TRACING GEMS



119

Node-culling multi-hit BVH traversal exploits opportunities for early-exit despite 
unordered BVH traversal. Early-exit is a key feature of first-hit BVH traversal 
and of buffered multi-hit traversal in acceleration structures based on spatial 
subdivision, so we thus hope for improved multi-hit performance with the node-
culling variants when users request fewer-than-all hits.

9.3	 �RESULTS

Section 9.2 presents several implementation alternatives for multi-hit ray tracing 
in DXR. Here, we explore their performance in an example GPU ray tracing 
application. Source and binary distributions of this application are available [4], 
permitting readers to explore, modify, or enhance these multi-hit implementations.

9.3.1	 �PERFORMANCE MEASUREMENTS

We report performance of our DXR multi-hit ray tracing implementations using eight 
scenes of varying geometric and depth complexity rendered from the viewpoints 
depicted in Figure 9-2. For each test, we render a series of 50 warmup frames 
followed by 500 benchmark frames at 1280 × 960 pixel resolution using visibility rays 
from a pinhole camera and a single sample per pixel. Reported results are averaged 
over the 500 benchmark frames. Measurements are obtained on a Windows 10 RS4 
desktop PC equipped with a single NVIDIA GeForce RTX 2080 Ti GPU (driver version 
416.81). Our application compiles with Microsoft Visual Studio 2017 Version 15.8.9 
and links against Windows 10 SDK 10.0.16299.0 and DirectX Raytracing Binaries 
Release V1.3.

Figure 9-2.  Scenes used for performance evaluation. Eight scenes of varying geometric and depth 
complexity are used to evaluate the performance of our multi-hit implementations in DXR. First-hit 
visible surfaces hide significant internal complexity in many of these scenes, making them particularly 
useful in tests of multi-hit traversal performance.

 Multi-Hit Ray Tracing in DXR



120

In the figures referenced throughout the remainder of this section, we use the 
following abbreviations to denote particular traversal implementation variants:

>> fhit: A straightforward implementation of standard first-hit ray traversal.

>> ahit-n: The any-hit shader implementation of naive multi-hit ray traversal.

>> ahit-c: The any-hit shader implementation of node-culling multi-hit ray traversal.

>> isec-n: The intersection shader implementation of naive multi-hit ray traversal.

>> isec-c: The intersection shader implementation of node-culling multi-hit ray 
traversal.

Please refer to these definitions when interpreting results.

9.3.1.1	 �FIND FIRST INTERSECTION

First, we measure performance when specializing multi-hit ray traversal to first-
hit traversal. Figure 9-3 compares performance in millions of hits per second 
(Mhps) when finding the nearest intersection using standard first-hit traversal 
against finding the nearest intersection using multi-hit traversal (i.e., Nquery = 1). The 
advantage of node culling is clearly evident in this case. Performance with any-hit 
shader node-culling multi-hit BVH traversal approaches that of standard first-hit 
traversal (to within about 94% on average). However, the intersection shader node-
culling variant performs worst overall (by more than a factor of 4×, on average), 
and performance with the naive multi-hit traversal variants is more than a factor of 
2× to 4× worse (on average) than that with first-hit traversal for our test scenes.

Figure 9-3.  Performance of standard first-hit and multi-hit variants for finding first intersection. The 
graph compares performance in millions of hits per second (Mhps) among standard first-hit traversal 
and our multi-hit implementations when Nquery = 1.

RAY TRACING GEMS



121

9.3.1.2	 �FIND ALL INTERSECTIONS

Next, we measure performance when specializing multi-hit ray traversal to all-
hit traversal (Nquery = ∞). Figure 9-4 compares performance in Mhps when using 
each multi-hit variant to gather all hit points along a ray. Not surprisingly, naive 
and node-culling variants across the respective shader implementations perform 
similarly, and differences are generally within the expected variability among trials.

Figure 9-4.  Performance of multi-hit variants for finding all intersections. The graph compares 
performance in Mhps among our naive and node-culling variants when Nquery = ∞.

9.3.1.3	 �FIND SOME INTERSECTIONS

Finally, we measure multi-hit performance using the values of Nquery considered 
by Gribble [3], which, aside from the extremes Nquery = 1 and Nquery = ∞, comprise 
10%, 30%, and 70% of the maximum number of intersections encountered along 
any one ray for each scene. The find-some-intersections case is perhaps the most 
interesting, given that multi-hit traversal cannot be specialized to either first-hit 
or all-hit algorithms in this case. For brevity, we examine only results for the truck 
scene; however, the general trends present in these results are observed in those 
obtained with the other scenes as well.

Figure 9-5 shows performance in the truck scene as Nquery → ∞. Generally 
speaking, the impact of node culling is somewhat less pronounced than in other 
multi-hit implementations. See, for example, the results reported by Gribble [3] 
and Gribble et al. [6]. With the any-hit shader implementations, the positive impact 
of node culling on performance relative to naive multi-hit decreases from more 
than a factor of 2× when Nquery = 1 to effectively zero when Nquery = ∞. Nevertheless, 

 Multi-Hit Ray Tracing in DXR



122

the any-hit shader node-culling implementation performs best overall, often 
performing significantly better (or at least not worse) than the corresponding naive 
implementation. In contrast, the intersection shader implementations perform 
similarly across all values of Nquery, and both variants perform significantly worse 
overall compared to the any-hit variants.

Figure 9-5.  Multi-hit performance in the truck scene. The graph compares multi-hit performance in 
Mhps among our multi-hit implementations for various values of Nquery.

9.3.2	 �DISCUSSION

To better understand the results above, we report the total number of candidate 
intersections processed by each multi-hit variant in Figure 9-6. We see that 
the naive multi-hit implementations process the same number of candidate 
intersections, regardless of Nquery, as expected. Likewise, we see that node culling 
does, in fact, reduce the total number of candidate intersections processed, at 
least when Nquery is less than 30%. After that point, however, both node-culling 
implementations process the same number of candidate intersections as the 
naive multi-hit implementations. Above this 30% threshold, node culling offers 
no particular advantage over naive multi-hit traversal for our scenes on the test 
platform.

RAY TRACING GEMS



123

The data in Figure 9-6 also indicates that the lost opportunity to cull some nodes 
with the any-hit shader variant (as discussed in Section 9.2) does not affect overall 
traversal behavior in practice. In fact, when observing performance across all 
three experiments, we see that the any-hit shader node-culling implementation 
outperforms the intersection shader implementation by more than a factor of 2× 
(on average) for all values of Nquery considered here.

Although inefficiencies arising when implementing (the otherwise built-in) ray/
triangle intersection using DXR’s mechanisms for user-defined geometry may 
account for the large gap in performance between the node-culling multi-hit variants, 
the visualizations in Figure 9-7 offer some additional insight. The top row depicts the 
number of candidate intersections processed by each multi-hit variant for Nquery = 9, 
or 10% of the maximum number of hits along any one ray, while the bottom row 
depicts the number of interval update operations invoked by each implementation. As 
expected, the naive multi-hit implementations are equivalent. They process the same 
total number of candidate intersections and impose no interval updates whatsoever. 
Similarly, both node-culling variants reduce the number of candidate intersections 
processed, with the DXR intersection shader implementation processing fewer 
than the any-hit shader variant (7.6M versus 8.5M). However, this implementation 
imposes significantly more interval updates than the any-hit shader implementation 
(1.7M versus 437k). These update operations are the only major source of user-level 
execution path differences between the two implementations. In DXR, then, the 
opportunity to cull more frequently in the intersection shader implementation actually 
imposes more work than the culling itself saves and likely contributes to the overall 
performance differences observed here.

Figure 9-6.  Number of candidate intersections processed in the truck scene. The graph compares the 
number of candidate intersections (in millions) processed by each multi-hit implementation.

 Multi-Hit Ray Tracing in DXR



124

9.4	 �CONCLUSIONS

We present several possible implementations of multi-hit ray tracing using 
Microsoft DirectX Raytracing and report their performance in an example GPU ray 
tracing application. Results show that, of the implementations explored here, node-
culling multi-hit ray traversal implemented using DXR any-hit shaders performs 
best overall for our scenes on the test platform. This alternative is also relatively 
straightforward to implement, requiring only a few more lines of code than the 
corresponding naive multi-hit traversal implementation. At the same time, the any-
hit shader node-culling variant does not require reimplementation of the otherwise 
built-in ray/triangle intersection operations, further reducing development and 
maintenance burdens in a production environment relative to other alternatives. 
Nevertheless, we make available both source and binary distributions of all four 
DXR multi-hit variants in our example GPU ray tracing application [4], permitting 
readers to further explore multi-hit ray tracing in DXR.

REFERENCES

	 [1]	� Amstutz, J., Gribble, C., Günther, J., and Wald, I. An Evaluation of Multi-Hit Ray Traversal in 
a BVH Using Existing First-Hit/Any-Hit Kernels. Journal of Computer Graphics Techniques 4, 4 
(2015), 72–90.

	 [2]	� Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor 
Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor, July 2017.

	 [3]	� Gribble, C. Node Culling Multi-Hit BVH Traversal. In Eurographics Symposium on Rendering (June 
2016), pp. 22–24.

Figure 9-7.  Efficiency visualization. Heatmap visualizations using a rainbow color scale reveal that far 
less work must be done per ray when using node culling compared to using naive multi-hit traversal 
for Nquery = 9 (top row). However, when comparing the node-culling variants, the potential savings due 
to fewer traversal steps and ray/primitive intersection tests with the intersection shader evaporate due 
to significantly more ray interval updates (bottom row). The costs outweigh the savings in this case.

RAY TRACING GEMS

https://github.com/NVIDIAGameWorks/Falcor


125

	 [4]	� Gribble, C. DXR Multi-Hit Ray Tracing, October 2018. http://www.rtvtk.org/~cgribble/
research/DXR-MultiHitRayTracing. Last accessed October 15, 2018.

	 [5]	� Gribble, C., Naveros, A., and Kerzner, E. Multi-Hit Ray Traversal. Journal of Computer Graphics 
Techniques 3, 1 (2014), 1–17.

	 [6]	� Gribble, C., Wald, I., and Amstutz, J. Implementing Node Culling Multi-Hit BVH Traversal in 
Embree. Journal of Computer Graphics Techniques 5, 4 (2016), 1–7.

	 [7]	� Wald, I., Amstutz, J., and Benthin, C. Robust Iterative Find-Next Ray Traversal. In Eurographics 
Symposium on Parallel Graphics and Visualization (2018), pp. 25–32.

	 [8]	� Wyman, C. A Gentle Introduction to DirectX Raytracing, August 2018. Original code linked from 
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html; newer code available via 
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing. Last 
accessed November 12, 2018.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Multi-Hit Ray Tracing in DXR

http://www.rtvtk.org/~cgribble/research/DXR-MultiHitRayTracing
http://www.rtvtk.org/~cgribble/research/DXR-MultiHitRayTracing
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


127© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_10

CHAPTER 10

A Simple Load-Balancing Scheme 
with High Scaling Efficiency
Dietger van Antwerpen, Daniel Seibert, and Alexander Keller
NVIDIA

ABSTRACT

This chapter describes an image partitioning scheme that can be used to distribute 
the work of computing pixel values across multiple processing units. The resulting 
workload distribution scheme is simple to implement, yet effective.

10.1	 �INTRODUCTION

A key question in attempts to distribute the rendering of a single image frame 
over a number of processing units is how to assign pixels to processing units. 
In the context of this chapter, we will use an abstract notion of a processing unit 
or processor. For example, a processor could be a GPU, a CPU core, or a host in 
a cluster of networked machines. A number of processors of various types will 
generally be combined into some form of rendering system or cluster.

This chapter is motivated by the workloads commonly found in path tracing 
renderers, which simulate the interaction of light with the materials in a scene. 
Light is often reflected and refracted multiple times before a light transport path is 
completed. The number of bounces, as well as the cost of evaluating each material, 
varies dramatically among different areas of a scene.

Consider, for example, a car in an infinite environment dome. Rays that miss all 
geometry and immediately hit the environment are extremely cheap to compute. In 
contrast, rays that hit a headlight of the car will incur higher ray tracing costs and 
will bounce around the reflectors of the headlight dozens of times before reaching 
the emitters of the headlight or exiting to the environment. Pixels that cover the 
headlight may thus be orders of magnitude more costly to compute than pixels 
that show only the environment. Crucially, this cost is not known a priori and thus 
cannot be taken into account to compute the optimal distribution of work.



128

10.2	 �REQUIREMENTS

An effective load balancing scheme yields good scaling over many processors. 
Computation and communication overhead should be low so as not to negate 
speedups from a small number of processors. In the interest of simplicity, it is 
often desirable to assign a fixed subset of the workload to each processor. While 
the size of the subset may be adapted over time, e.g., based on performance 
measurements, this re-balancing generally happens between frames. Doing so 
yields a scheme that is static for each frame, which makes it easier to reduce the 
amount of communication between the load balancer and the processors. A proper 
distribution of work is crucial to achieving efficient scaling with a static scheme. 
Each processor should be assigned a fraction of the work that is proportional to 
the processor’s relative performance. This is a nontrivial task when generating 
images using ray tracing, especially for physically based path tracing and similar 
techniques. The situation is further complicated in heterogeneous computing 
setups, where the processing power of the various processors varies dramatically. 
This is a common occurrence in consumer machines that combine GPUs from 
different generations with a CPU and in network clusters.

10.3	 �LOAD BALANCING

We will now consider a series of partitioning schemes and investigate their 
suitability for efficient workload distribution in the context we have described. For 
illustration, we will distribute the work among four processors, e.g., four GPUs 
on a single machine. Note, however, that the approaches described below apply to 
any number and type of processors, including combinations of different processor 
types.

10.3.1	 �NAIVE TILING

It is not uncommon for multi-GPU rasterization approaches to simply divide the 
image into large tiles, assigning one tile to each processor as illustrated on the left 
in Figure 10-1. In our setting, this naive approach has the severe drawback that the 
cost of pixels is generally not distributed uniformly across the image. On the left in 
Figure 10-1, the cost of computing the tile on the bottom left will likely dominate the 
overall render time of the frame due to the expensive simulation of the headlight. 
All other processors will be idle for a significant portion of the frame time while the 
processor responsible for the blue tile finishes its work.

RAY TRACING GEMS



129

Additionally, all tiles are of the same size, which makes this approach even less 
efficient in heterogeneous setups.

10.3.2	 �TASK SIZE

Both issues related to naive tiling can be ameliorated by partitioning the image 
into smaller regions and distributing a number of regions to each processor. In the 
extreme case, the size of a region would be a single pixel. Common approaches 
tend to use scanlines or small tiles. The choice of region size is usually the result of 
a trade-off between finer distribution granularity and better cache efficiency.

If regions are assigned to processors in a round-robin fashion, as illustrated on 
the right in Figure 10-1, rather than in contiguous blocks, workload distribution is 
much improved.

10.3.3	 �TASK DISTRIBUTION

Since the cost of individual pixels is unknown at the time of work distribution, we 
are forced to assume that all pixels incur the same cost. While this is generally far 
from true, as described earlier, the assumption becomes reasonable if each set of 
pixels assigned to a processor is well-distributed across the image [2].

To achieve this distribution, an image of n pixels is partitioned into m regions, 
where m is significantly larger than the number of available processors, p. Regions 
are selected to be contiguous strips of s pixels such that the image is divided into 
m = 2b regions. The integer b is chosen to maximize m while keeping the number of 
pixels s per region above a certain lower limit, e.g., 128 pixels. A region size of at 
least s n m= é ùê ú is needed to cover the entire image. Note that it may be necessary 
to slightly pad the image size with up to m extra pixels.

Figure 10-1.  Left: uniform tiling with four processors. Right: detail view of scanline-based work 
distribution.

 A Simple Load-Balancing Scheme with High Scaling Efficiency



130

The set of region indices {0,  … , m − 1} is partitioned into p contiguous ranges 
proportional to each processor’s relative rendering performance. To ensure a 
uniform distribution of regions across the image, region indices are then permuted 
in a specific, deterministic fashion. Each index i is mapped to an image region j by 
reversing the lowest b bits of i to yield j. For example, index i = 39 = 001001112 is 
mapped to j = 111001002 = 228 for b = 8. This effectively applies the radical inverse 
in base 2 to the index. The chosen permutation distributes the regions of a range 
more uniformly across the image than a (pseudo-)random permutation would. An 
example of this is illustrated in Figure 10-2 and in the pseudocode in Listing 10-1, 
where ⌊x⌉ means rounding to nearest integer.

Figure 10-2.  Adaptive tiling for four processing units with relative weights of 10% (red), 15% (yellow), 
25% (blue), and 50% (green). Note how the headlight pixels are distributed among processing units.

Listing 10-1.  Pseudocode outlining the distribution scheme.

 1 const unsigned n = image.width() * image.height();

 2 const unsigned m = 1u << b;

 3 const unsigned s = (n + m - 1) / m;

 4 const unsigned bits = (sizeof(unsigned) * CHAR_BIT) - b;

 5

 6 // Assuming a relative speed of wk, processor k handles

 7 // ⌊wkm⌉ regions starting at index base = k
l

1
0
-
=S ⌊slm⌉.

 8

 9 // On processor k, each pixel index i in the contiguous block

10 // of s⌊wkm⌉ pixels is distributed across
11 // the image by this permutation:

12 const unsigned f = i / s;

13 const unsigned p = i % s;

14 const unsigned j = (reverse (f) >> bits) + p;

15

16 // Padding pixels are ignored.

17 if (j < n)

18     image[j] = render(j);

RAY TRACING GEMS



131

The bit reversal function used in the permutation is cheap to compute and does not 
require any permutation tables to be communicated to the processors. In addition 
to the straightforward way, bit reversal can be implemented using masks [1], as 
shown in Listing 10-2. Furthermore, CUDA makes this functionality available in the 
form of the __brev intrinsic.

Listing 10-2.  Bit reversal implementation using masks.

1 unsigned reverse(unsigned x) // Assuming 32 bit integers

2 {

3     x = ((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1);

4     x = ((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2);

5     x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);

6     x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);

7     return (x >> 16)  | (x << 16);

8 }

For production scenes, the regions are unlikely to correlate strongly with image 
features due to differing shapes. As a result, the pixels assigned to each processor 
are expected to cover a representative portion of the image. This ensures that the 
cost of a task becomes roughly proportional to the number of pixels in the task, 
resulting in uniform load balancing.

10.3.4	 �IMAGE ASSEMBLY

In some specialized contexts, such as network rendering, it is undesirable to 
allocate and transfer the entire framebuffer from each host to a master host.  
The approach described in Section 10.3.3 is easily adapted to cater to this by 
allocating only the necessary number of pixels on each host, i.e., s ⌊wkm⌉. Line 18 of 
Listing 10-1 is simply changed to write to image[i-base] instead of image[j].

A display image is assembled from these permuted local framebuffers. First, the 
contiguous pixel ranges from all processors are concatenated into a single master 
framebuffer on the master processor. Then, the permutation is reversed, yielding 
the final image. Note that the bit reversal function is involutory, i.e., its own inverse. 
This property allows for efficient in-place reconstruction of the framebuffer from 
the permuted framebuffer, which is shown in Listing 10-3.1

1�Note the use of the same reverse function in both the distribution (Listing 10-1) and the reassembly of the image 
(Listing 10-3).

 A Simple Load-Balancing Scheme with High Scaling Efficiency



132

Listing 10-3.  Image assembly.

 1 // Map the pixel index i to the permuted pixel index j.

 2 const unsigned f = i / s;

 3 const unsigned p = i % s;

 4 const unsigned j = (reverse(f) >> bits) + p;

 5

 6 // The permutation is involutory:

 7 // pixel j permutates back to pixel i.

 8 // The in-place reverse permutation swaps permutation pairs.

 9 if (j > i)

10     swap(image[i],image[j]);

10.4	 �RESULTS

Figure 10-3 illustrates the differences in per-pixel rendering cost of the scene 
shown in Figure 10-1. The graphs in Figure 10-4 compare the scaling efficiency of 
contiguous tiles, scanlines, and two types of strip distributions for the same scene. 
Both strip distributions use the same region size and differ only in their assignment 
to processors. Uniformly shuffled strips use the distribution approach described in 
Section 10.3.3.

Figure 10-3.  Heat map of the approximate per-pixel cost of the scene shown in Figure 10-1. The 
palette of the heat map is (from low to high cost) turquoise, green, yellow, orange, red, and white.

RAY TRACING GEMS



133

The predominant increase in efficiency shown on the left in Figure 10-4, especially 
with larger processor counts, is due to finer scheduling granularity. This reduces 
processor idling due to lack of work. The superior load balancing of the uniformly 
shuffled strips becomes even more obvious in the common case of heterogeneous 
computing environments, as illustrated on the right in Figure 10-4.

REFERENCES

	 [1]	 Dietz, H. G. The Aggregate Magic Algorithms. Tech. rep., University of Kentucky, 2018.

	 [2]	� Keller, A., Wächter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndörfer, J., and Kettner, L.  
The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

Figure 10-4.  Scaling efficiency of different workload distribution schemes for the scene shown in 
Figure 10-1. Left: the processors are identical. Right: the processors have different speeds.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 A Simple Load-Balancing Scheme with High Scaling Efficiency

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART III

REFLECTIONS, 
REFRACTIONS,  
AND SHADOWS



137

PART III

Reflections, Refractions, and 
Shadows

Any ray traced rendering leads to several design decisions about what effects are 
supported and how they are supported. Ray tracing’s main historical appeal is that 
it handles shadows, reflections, and refractions well. However, when you sit down 
and actually implement a system that supports these effects, you run into several 
non-obvious design decisions. This part of the book describes several specific 
approaches to some of these.

Though ray tracing a clear glass ball is straightforward, more complex models 
throw a wrench in the works. For example, a simple glass of water presents three 
distinct types of material interface behaviors: water/air, glass/air, and glass/water. 
To get the refraction right, a ray/surface interaction needs to know not only which 
interface is hit but also what material is on what side of the ray. It is problematic to 
expect an artist to build a model out of these interfaces; imagine filling a glass with 
water. A clever and battle-tested approach to dealing with the issue is described in 
Chapter 11, “Automatic Handling of Materials in Nested Volumes.”

An issue that has plagued almost all ray tracing programs is what to do when a 
bump map produces physically impossible surface normal vectors. The obvious 
“hard if” code solution to ignore these can cause jarring color discontinuities. 
Every ray tracer has its own home-grown hack to deal with this. In Chapter 12, “A 
Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem,” a 
simple statistical approach with a clean implementation is presented.

Ray tracing’s screen-space approach has made it particularly strong at generating 
screen-accurate shadows without all the aliasing problems associated with 
shadow maps. However, can ray tracing be made fast enough to be interactive? 
Chapter 13, “Ray Traced Shadows: Maintaining Real-Time Frame Rates,” provides a 
detailed explanation of how this can be done.

Most simple ray tracers send rays from the eye. Typically these programs cannot 
practically generate caustics, the focused light patterns that we associate with 
glasses of liquid, swimming pools, and lakes. The “practically” is because the 
results are too noisy. However, sending rays from the light into the environment 



138

is a workable approach to generate caustics. In fact, this can even be done in real 
time, as described in Chapter 14, “Ray-Guided Volumetric Water Caustics in Single 
Scattering Media with DXR.”

In summary, a basic ray tracer is fairly straightforward. Deploying a production 
ray tracer requires some careful handling of basic effects, and this part provides 
several useful approaches for doing just that.

Peter Shirley



139© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_11

CHAPTER 11

Automatic Handling of Materials 
in Nested Volumes
Carsten Wächter and Matthias Raab 
NVIDIA

ABSTRACT

We present a novel and simple algorithm to automatically handle nested volumes 
and transitions between volumes, enabling push-button rendering functionality. 
The only requirements are the use of closed, watertight volumes (along with a ray 
tracing implementation such as NVIDIA RTX that guarantees watertight traversal and 
intersection) and that neighboring volumes are not intended to intersect each other, 
except for a small overlap that actually will model the boundary between the volumes.

11.1	 �MODELING VOLUMES

Brute-force path tracing has become a core technique to simulate light transport 
and is used to render realistic images in many of the large production rendering 
systems [1, 2]. For any renderer based on ray tracing, it is necessary to handle the 
relationship of materials and geometric objects in a scene:

>> To correctly simulate reflection and refraction, the indices of refraction on the 
front- and backface of a surface need to be known. Note that this is not only 
needed for materials featuring refraction, but also in cases where the intensity 
of a reflection is driven by Fresnel equations.

>> The volume coefficients (scattering and absorption) may need to be determined, 
e.g., to apply volume attenuation when a ray leaves an absorbing volume.

Thus, handling volumetric data, including nested media, is an essential 
requirement to render production scenes and must be tightly integrated into the 
rendering core. Ray tracing, i.e., its underlying hierarchy traversal and geometry 
intersection, is always affected by the limits of the floating-point precision 
implementation. Even the geometrical data representation, e.g., instancing of 
meshes using floating-point transformations, introduces further precision issues. 
Therefore, handling volume transitions robustly at least requires careful modeling 
of the volumes and their surrounding hull geometry. In the following we will 
distinguish three cases to model neighboring volumes. See Figure 11-1.



140

11.1.1	 �UNIQUE BORDERS

The seemingly straightforward way shares unique surfaces between neighboring 
volumes to clearly describe the interface between two (or more) media. That is, 
anywhere two transparent objects meet, such as glass and water, a single surface 
mesh replaces the original two meshes and is given a special type. Artists will 
typically not be able to model volumes this way, as it requires manual splitting 
of single objects into many subregions, depending on which subregion touches 
which neighboring volume. Given the common example of a glass filled with 
soda, including gas bubbles inside and touching the borders, it is not feasible 
to subdivide the meshes manually, especially if the scene is animated. Another 
major complication of the scheme is that each surface needs to provide separate 
materials for front- and backface, where sidedness needs to be clearly defined.

Note that the unique surfaces can also be duplicated, to provide a separate 
closed hull for each volume. As a result, all tedious subdivision work is avoided. 
In practice, however, it is rather difficult to force the surfaces to exactly match up. 
Artists, or implicitly the modeling/animation/simulation software itself, may pick 
different subdivision levels, or the instancing transforms for the neighboring hulls 
may differ slightly due to floating-point precision mathematics. Therefore, the ray 
tracing implementation in combination with the rendering core would need to be 
carefully designed to be able to handle such “matching” surfaces. The ray tracing 
core, which includes the acceleration hierarchy builder, must guarantee that it 
always reports all “closest” intersections. The rendering core must then also be 
able to sort the list of intersections into the correct order.

11.1.2	 �ADDITIONAL AIR GAP

The second approach allows for a slight air gap between neighboring volumes to 
relax most of the mentioned modeling issues. Unfortunately, this leads to new 
floating-point mathematics issues caused by common ray tracing implementations: 
An ϵ offset is needed for each ray origin when generating new segments of the 
path, in order to avoid self-intersection [4]. Thus, when intersecting neighboring 

Figure 11-1.  Left: explicit boundary crossing of volumes marked with dashed lines. Center: air gap to 
avoid numerical problems. Right: overlapping volumes.

RAY TRACING GEMS



141

volume hulls, one (or more) volume transitions may be completely skipped, so it 
is important that the air gap is modeled larger than this ϵ offset. Another major 
downside of inserting small air gaps is even more dramatic though, as air gaps 
will drastically change the appearance of the rendering because there are more 
volume transitions/refractions happening than intended. See Figure 11-2.

Figure 11-2.  Modeling the aquarium with a slight air gap.

Figure 11-3.  Slightly overlapping the water volume with the glass bowl.

11.1.3	 �OVERLAPPING HULLS

To avoid the downsides of the previous two schemes, we can force the neighboring 
volumes to overlap slightly. See Figure 11-3. Unfortunately, this third approach 
introduces a new problem: the ordering and the number of the path/volume 
intersections will not be correct anymore. Schmidt et al. [3] impose a valid 
configuration by assigning priorities to each volume. This requires explicit 
artist interaction that can be tedious for complex setups, especially when doing 
animations.

Note that, in addition to the three schemes mentioned, there is yet another, 
noteworthy special case: fully nested/enclosed volumes that are contained 
completely within another volume. See the colored objects in Figure 11-1. 
These are usually expected to cut out the surrounding volume. Some rendering 
implementations may also allow mixtures of overlapping or nested volumes. 

 Automatic Handling of Materials in Nested Volumes



142

Obviously this does not help to reduce the complexity of the implementation at all, 
as previously mentioned issues still exist when entering or leaving neighboring 
volumes. These transitions are even trickier to detect and to handle correctly as a 
path is allowed to travel through “multiple” volumes at once. Thus, our contribution 
is targeted at renderers that only handle a single volume at a time.

In the following, we describe a new algorithm to restore the correct ordering of 
the path/volume intersections when using the overlapping hull approach, without 
manual priority assignments. It has been successfully used in production for more 
than a decade as part of the Iray rendering system [1].

11.2	 �ALGORITHM

Our algorithm manages a stack of all currently active (nested) materials. Each time 
a ray hits a surface, we push the surface’s material onto the stack and determine 
the materials on the incident and the backface of the boundary. The basic idea is 
that a volume is entered if the material is referenced on the stack an odd number 
of times, and exited if it is referenced an even number of times. Since we assume 
overlap, the stack handling further needs to make sure that only one of the two 
surfaces along a path is actually reported as a volume boundary. We achieve this by 
filtering out the second boundary by checking if we have entered another material 
after entering the current one. For efficiency, we store two flags per stack element: 
one indicating whether the stack element is the topmost entry of the referenced 
material, and the other if it is an odd or even reference. Once shading is complete 
and the path is continued, we need to distinguish three cases:

	1.	 For reflection, we pop the topmost element off the stack and update the 
topmost flag of the last previous instance of the same material.

	2.	 For transmission (e.g., refraction) that has been determined to leave the newly 
pushed material, we not only need to pop the topmost element but also need 
to remove the previous reference to that material.

	3.	 For same material boundaries (that are to be skipped) and for transmission 
that has been determined to enter the new material, we leave the stack 
unchanged.

Note that in the case where the path trajectory is being split, such as tracing multiple 
glossy reflection rays, there needs to be an individual stack per spawned ray.

In the case of the camera itself being inside of a volume, an initial stack needs to 
be built that reflects the nesting status of that volume. To fill the stack, a ray can be 
traced from outside the scene’s bounding box toward the camera position recursively.

RAY TRACING GEMS



143

11.2.1	 �IMPLEMENTATION

In the following we present code snippets that provide an implementation of our 
volume stack algorithm. One important implementation detail is that the stack may 
never be empty and should initially contain an artificial “vacuum” material (flagged 
as odd and topmost) or an initial stack copied from a preprocessing phase, if the 
camera is contained in a volume.

As shown in Listing 11-1, the data structure for the volume stack needs to hold the 
material index and flags that store the parity and topmost attribute of the stack 
element. Further, we need to be able to access materials in the scene and assume 
that they can be compared. Depending on the implementation, a comparison of 
material indices may actually be sufficient.

Listing 11-1.  The material index, flags, and scene materials.

1 struct volume_stack_element

2 {

3   bool topmost : 1, odd_parity : 1;

4   int material_idx : 30;

5 };

6

7 scene_material *material;

When a ray hits the surface of an object, we push the material index onto the stack 
and determine the actual incident and outgoing materials indices. In the case 
that the indices are the same, the ray tracing code should skip the boundary. The 
variable leaving_material indicates that crossing the boundary will leave the 
material, which needs need to be respected in Pop(). See Listing 11-2.

Listing 11-2.  The push and load operations.

 1 void Push_and_Load(

 2   // Results

 3   int &incident_material_idx, int &outgoing_material_idx,

 4   bool &leaving_material,

 5   // Material assigned to intersected geometry

 6   const int material_idx,

 7   // Stack state

 8   volume_stack_element stack[STACK_SIZE], int &stack_pos)

 9 {

10   bool odd_parity = true;

11   int prev_same;

12   // Go down the stack and search a previous instance of the new

13   // material (to check for parity and unset its topmost flag).

 Automatic Handling of Materials in Nested Volumes



144

14   for (prev_same = stack_pos; prev_same >= 0; --prev_same)

15     if (material[material_idx] == material[prev_same]) {

16       // Note: must have been topmost before.

17       stack[prev_same].topmost = false;

18       odd_parity = !stack[prev_same].odd_parity;

19       break;

20     }

21

22   // Find the topmost previously entered material (occurs an odd number

23   // of times, is marked topmost, and is not the new material).

24   int idx;

25   // idx will always be >= 0 due to camera volume.

26   for (idx = stack_pos; idx >= 0; --idx)

27     if ((material[stack[idx].material_idx] != material[material_idx])&&

28           (stack[idx].odd_parity && stack[idx].topmost))

29       break;

30

31   // Now push the new material idx onto the stack.

32   // If too many nested volumes, do not crash.

33   if (stack_pos < STACK_SIZE - 1)

34     ++stack_pos;

35   stack[stack_pos].material_idx = material_idx;

36   stack[stack_pos].odd_parity = odd_parity;

37   stack[stack_pos].topmost = true;

38

39   if (odd_parity) { // Assume that we are entering the pushed material.

40     incident_material_idx = stack[idx].material_idx;

41     outgoing_material_idx = material_idx;

42   } else { // Assume that we are exiting the pushed material.

43     outgoing_material_idx = stack[idx].material_idx;

44     if (idx < prev_same)

45       // Not leaving an overlap,

46       // since we have not entered another material yet.

47       incident_material_idx = material_idx;

48     else

49       // Leaving the overlap,

50       // indicate that this boundary should be skipped.

51       incident_material_idx = outgoing_material_idx;

52   }

53

54   leaving_material = !odd_parity;

55 }

When the rendering code continues ray tracing, we need to pop the material from 
the stack, as shown in Listing 11-3. For transmission events, this will only be called 
if leaving_material is set, and in that case two elements are removed from the 
stack.

RAY TRACING GEMS



145

Listing 11-3.  The pop operation.

 1 void Pop(

 2   // The "leaving material" as determined by Push_and_Load()

 3   const bool leaving_material,

 4   // Stack state

 5   volume_stack_element stack[STACK_SIZE], int &stack_pos)

 6 {

 7   // Pop last entry.

 8   const scene_material &top = material[stack[stack_pos].material_idx];

 9   --stack_pos;

10

11   // Do we need to pop two entries from the stack?

12   if (leaving_material) {

13     // Search for the last entry with the same material.

14     int idx;

15     for (idx = stack_pos; idx >= 0; --idx)

16       if (material[stack[idx].material_idx] == top)

17         break;

18

19     // Protect against a broken stack

20     // (from stack overflow handling in Push_and_Load()).

Figure 11-4.  Modeling the whiskey glass with a slight air gap.

Figure 11-5.  Slightly overlapping the whiskey volume with the glass.

 Automatic Handling of Materials in Nested Volumes



146

21     if (idx >= 0)

22       // Delete the entry from the list by filling the gap.

23       for (int i = idx+1; i <= stack_pos; ++i)

24         stack[i-1] = stack[i];

25     --stack_pos;

26   }

27

28   �// Update the topmost flag of the previous instance of this material.

29   for (int i = stack_pos; i >= 0; --i)

30     if (material[stack[i].material_idx] == top) {

31       // Note: must not have been topmost before.

32       stack[i].topmost = true;

33       break;

34     }

35 }

11.3	 �LIMITATIONS

Our algorithm will always discard the second boundary of an overlap that it 
encounters. Thus, the actual geometry intersected depends on the ray trajectory 
and will vary depending on origin. In particular, it is not possible to trace the same 
path from light to camera as from camera to light, which makes the method slightly 
inconsistent for bidirectional light transport algorithms such as bidirectional path 
tracing. In general, the lack of an explicit order for which boundary to remove may 
lead to removing the “wrong” part of the overlap. For example, the water will carve 
out the overlap region from the glass bowl in Figure 11-3 for rays that enter the 
glass first. If the overlap is sufficiently small, as intended, this is not a problem that 
causes visible artifacts. If, however, a scene features large overlap, as, e.g., the 
partially submerged ice cubes floating in Figures 11-4 and 11-5, the resulting error 
can be large (although one can argue about the visible impact in that scene). Thus, 
intended intersecting volumes should be avoided, but will not break the algorithm 
or harm correctness of later volume interactions along the path.

Imposing an explicit order on the volume by assigning priorities [3] will resolve this 
ambiguity at the price of losing push-button rendering functionality. This solution 
has its limits, as ease of use is essential to many users, such as those that rely on a 
ready-to-use library of assets, light setups, and materials, without knowing any of 
the technical details.

Managing a stack per path increases state size, so highly parallel rendering 
systems may carefully need to limit volume stack size. While the provided 
implementation catches overflows, it does nothing beyond avoiding crashes.

RAY TRACING GEMS



147

ACKNOWLEDGMENTS

An early version of this algorithm was conceived in collaboration with Leonhard 
Grünschloß. One part of the aquarium scene was provided by Turbosquid and the 
other by Autodesk.

REFERENCES

	 [1]	� Keller, A., Wächter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndörfer, J., and Kettner, 
L. The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

	 [2]	� Pharr, M. Special Issue On Production Rendering and Regular Papers. ACM Transactions on 
Graphics 37, 3 (2018).

	 [3]	� Schmidt, C. M., and Budge, B. Simple Nested Dielectrics in Ray Traced Images. Journal of 
Graphics Tools 7, 2 (2002), 1–8.

	 [4]	� Woo, A., Pearce, A., and Ouellette, M. It’s Really Not a Rendering Bug, You See... IEEE Computer 
Graphics and Applications 16, 5 (Sept 1996), 21–25.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Automatic Handling of Materials in Nested Volumes

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


149© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_12

CHAPTER 12

A Microfacet-Based Shadowing 
Function to Solve the Bump Terminator 
Problem
Alejandro Conty Estevez, Pascal Lecocq, and Clifford Stein 
Sony Pictures Imageworks

ABSTRACT

We present a technique to hide the abrupt shadow terminator line when strong 
bump or normal maps are used to emulate micro-geometry. Our approach, based 
on microfacet shadowing functions, is simple and inexpensive. Instead of rendering 
detailed and expensive height-field shadows, we apply a statistical solution built 
on the assumption that normals follow a nearly normal random distribution. We 
also contribute a useful approximate variance measure for GGX, which is otherwise 
undefined analytically.

12.1	 �INTRODUCTION

Bump mapping is widely used both in real-time rendering for games and in 
batch rendering for cinema. It adds high-frequency detail on surfaces that would 
otherwise be too expensive to render with actual geometry or displacement 
mapping. Also, it is responsible for those last fine-grained detailed imperfections 
added to surfaces.

Bump mapping works as a perturbation in the normal’s orientation that does not 
derive from the underlying geometry but instead from a texture map or some 
procedural pattern. Like any other shortcut, however, it can yield unwanted 
artifacts—specifically the well-known hard terminator shown in Figure 12-1. This 
occurs because the expected smooth intensity falloff due to the changing normal 
is interrupted when the surface suddenly shadows the incident light rays. This 
problem does not appear when the normal has no perturbation since the irradiance 
has already dropped to zero by the time this happens. But, bump mapping has 
the effect of extending the light’s influence too far by tilting normals toward the 
incoming light direction, making the lit area cross the shadow terminator.



150

We solve this problem by applying a shadowing function inspired by microfacet 
theory. Bump mapping can be thought of as a large-scale normal distribution, 
and by making assumptions on its properties, we can use the same shadowing 
implemented in the widely used GGX microfacet distribution. Even though these 
assumptions will be wrong in many cases, the shadow term still works in practice, 
even when the bump or normal map exhibits nonrandom structure.

12.2	 �PREVIOUS WORK

To our knowledge, no specific solution to this terminator problem has been 
published. There is related work from Max [5] to compute the bump-to-bump 
detailed shadows in closeups, which is based on finding the horizon elevation 
on a per-point basis. This technique was extended for curved surfaces by Onoue 
et al. [7]. But these methods, though accurate for point-to-point shadows, require 
auxiliary tables and more lookups. They are not ideal for high-frequency bump 
mapping where the terminator line, and not detailed shadows, is the only concern.

Nevertheless, the terminator problem is an issue in almost every render engine, 
and the offered solution is often to just moderate the height of the bump or resort 
to displacement. Our solution is fast and simple and does not require any additional 
data or precomputation.

On the other hand, microfacet theory and its shadowing term has been studied 
extensively by Heitz [4], Walter et al. [8], and others ever since it was introduced by 
Cook and Torrance [2]. We draw inspiration from their work to derive a plausible 
solution to the artifacts discussed in this document.

Figure 12-1.  A comparison of a cloth model with strong bump mapping. The raw result (left) shows 
a sudden light drop at the terminator, while our shadowing technique (right) replaces it with a more 
natural and visually pleasing smooth gradient.

RAY TRACING GEMS



151

12.3	 �METHOD

The cause of the problem is that distorting the normal alters the natural cosine 
falloff of the light irradiance, making the lit area advance too far into the shadowed 
area. Since the surface that the map simulates is only imaginary, the renderer is 
unaware of any height-field shadowing and therefore the light vanishes suddenly, 
as shown in Figure 12-2. These defects, although expected, can be distracting and 
give an unwanted cartoon appearance. Artists expect this transition from light to 
shadow to be smooth.

Figure 12-2.  The insets show the type of terminator artifacts seen with strong bump mapping.

In Figure 12-3 we show how the bumped normals simulating a surface that does 
not exist bring bright areas too close to the terminator. This occurs because the 
shadowing factor (illustrated in the drawing) is completely ignored. In microfacet 
theory this factor is called the shadowing/masking term, which is a value in the 
[0, 1] interval that is computed from both the light and viewing directions for 
maintaining reciprocity of the BSDF.

 A Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem



152

We also use the Smith shadowing approach for bump mapping. It scales down 
scattered energy arriving from grazing angles only, which on the terminator will 
gracefully darken and blend the lit and dark areas without altering the rest of the 
look. Its derivation requires knowing the normal distribution, which is unknown 
for an arbitrary bump or normal map but we will make the assumption that it is 
random and normally distributed. This is almost never true, but for shadowing 
purposes we will show that it works well.

12.3.1	 �THE NORMAL DISTRIBUTION

We chose the GGX distribution for its simplicity and efficient implementation. Like 
most distributions, it has one roughness parameter α that modulates the spread 
of the microfacet slopes. A subtle bump effect will correspond to low roughness α 
and a strong bump to high α. The main unknown is how to find this α parameter.

We ruled out computing this property from the texture maps. Sometimes they 
are procedural and unpredictable, and we wanted to avoid any precomputation 
passes. The idea is to guess α from the bumped normal that we receive at lighting 
time without extra information. That is, our guess is computed locally without 
information from neighboring points.

Figure 12-3.  In the upper half of the sphere, smooth normals following the actual surface pose no 
problem for the terminator. But, the lower half introduces a distortion that might tilt normals toward 
the light source, creating bright areas too close to where the light is completely occluded. These come 
from ignoring the shadowing that such an imaginary surface would receive.

RAY TRACING GEMS



153

We look at the tangent of the divergence angle that the bumped normal forms with 
the real surface normal. For computing a shadowing term that covers this normal 
with a reasonable probability, as shown in Figure 12-4, we equate this tangent to 
two standard deviations of a normal distribution. Then, we can replace this with 
GGX and apply the well-known shadowing term

			   i

G1 2 2

2 ,
1 1 tana q

=
+ +

	

(1)

where θi is the incoming light direction angle with the real surface normal.

Figure 12-4.  Based on the bumped normal divergence, we imagine a normal distribution where the 
tangent is located in the extreme, at two standard deviations. This places 94% of the other bumped 
normals closer to the actual surface orientation.

But, this raises the question of how to compute GGX’s α from the distribution 
variance. GGX is based on the Cauchy distribution, which has an undefined mean 
and variance. It was found numerically by Conty et al. [1] that if the long tails are 
ignored to preserve most of the distribution mass, σ2 = 2α2 is a good approximation 
of GGX’s variance. See Figure 12-5. Therefore, we use

			 
d

2

ggx

tan
,

8
q

a =
	

(2)

 A Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem



154

but we clamp the result to [0, 1]. This measure reflects the fact that GGX shows an 
apparent roughness higher than Beckmann, whose tangent variance is α2. By this 
relationship the equivalence is roughly beck ggx2a a� .

We validated our GGX’s variance approximation by running a comprehensive 
visual study on a GGX surface perturbed with a broad range of bump normal 
distributions. We used a filtered antialiased normal technique from Olano et al. 
and Dupy et al. [3, 6] that encodes the first and second moment of the bump slope 
distribution in a mipmapped texture. For each pixel, we estimate the variance of 
the normal distribution by fetching the selected filtered mipmap level for that pixel 
and expanding the GGX roughness accordingly. We compared our GGX variance 
relationship with a naive Beckmann variance mapping and with a reference by ray 
tracing non-filtered bump normals at a high sampling rate. In all scenarios, our 
mapping shows better preservation of the perceived GGX roughness induced by the 
bump normal distribution, as shown in Figure 12-6.

Figure 12-5.  If we truncate the GGX distribution to exist in only the [−4α, 4α] interval, we preserve 
94% of its mass and the numerical result for the slope variance converges to 2α2 consistently. We found 
this statistical measure to be a good representation of the visual impact of a distribution that would 
otherwise have undefined momenta.

RAY TRACING GEMS



155

Figure 12-6.  Roughness expansion of a GGX material according to a filtered antialiased normal 
distribution using a common Beckmann variance mapping (top) and using our GGX’s variance 
approximation (bottom), both compared to a non-filtered reference (middle). In this test case, the GGX 
base surface roughness is varying from 0.01 (left) to 0.8 (right) and shows that our approximation 
better preserves the overall perceived roughness induced by the underlying normal distributions.

12.3.2	 �THE SHADOWING FUNCTION

In a typical microfacet BSDF, the shadowing/masking term is computed for both 
light and viewing directions to preserve reciprocity. In our implementation, we 
apply our bump shadowing only to the light direction to preserve the original 
look as much as possible, therefore breaking this property slightly. Unlike 
unshadowed microfacet BSDFs, bump mapping does not yield energy spikes at 
grazing viewing angles, so applying Equation 1 to the viewing direction would 
darken edges too much, as shown in Figure 12-7. If this effect poses a problem, 
the full reciprocal shadowing/masking could be used instead for all non-primary 
rays. Nevertheless, in our experience we have not found any issues, even with 
bidirectional integrators.

 A Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem



156

We apply a scalar multiplication to the incoming light based on the incident angle.  
If the shading model contains multiple BSDFs with different bump normals, each of 
them will get a different scaling and should be computed separately. Listing 12-1  
displays all the necessary code to perform the adjustment, demonstrating the 
simplicity of our method.

Listing 12-1.  These two functions suffice to implement the terminator fix. The second one can be used 
as a multiplier for either the incoming light or the BSDF evaluation.

 1 // Return alpha^2 parameter from normal divergence

 2 float bump_alpha2(float3 N, float3 Nbump)

 3 {

 4     float cos_d = min(fabsf(dot(N, Nbump)), 1.0f);

 5     float tan2_d = (1 - cos_d * cos_d) / (cos_d * cos_d);

 6     return clamp(0.125f * tan2_d, 0.0f, 1.0f);

 7 }

 8

 9 // Shadowing factor

10 float bump_shadowing_function(float3 N, float3 Ld, float alpha2)

11 {

12     float cos_i = max(fabsf(dot(N, Ld)), 1e-6f);

13     float tan2_i = (1 - cos_i * cos_i) / (cos_i * cos_i);

14     return 2.0f / (1 + sqrtf(1 + alpha2 * tan2_i));

15 }

The proposal might seem counterintuitive since every shading point is due to get a 
different α value. This means that bump normals aligned with the surface orientation 
will receive almost no shadowing while divergent ones will receive significant shadowing. 
But, as it turns out, this is exactly the desired behavior needed to address the problem.

Figure 12-7.  Left: when a mesh presents irregular tessellation, the artifacts can become especially 
distracting, even revealing the underlying triangles. Center: applying the shadowing function as 
smooths out the terminator and hides these artifacts. Right: but if we try to make shading reciprocal, 
we unnecessarily darken the edges, especially near the top right of the head. We chose the  
non-reciprocal version in the middle for production.

RAY TRACING GEMS



157

12.4	 �RESULTS

Our method manages to smooth out the abrupt terminator with little impact on 
the rest of the look. We would like to highlight some of the features that allow for 
seamless integration into a production renderer:

>> In the absence of bumps, the look remains the same. Note that in Equation 2, 
for no distortion, the computed roughness is 0 and therefore there will be no 
shadowing. The whole function could be bypassed.

>> Subtle bumps will cause imperceptible changes because of the low estimated 
α. This case does not suffer from artifacts and does not need to be fixed.

>> Only grazing light directions are affected by the shadowing function. As is 
typical with microfacet models, incident light at angles that more directly face 
the surface will be unaffected.

Though our derivations are based on a normal distribution disconnected from reality, 
we show that the distribution produces plausible results for structured patterns, as 
illustrated in Figure 12-8. With low bump amplitudes in the left column, our shadowing 
term only minimally changes an image that requires no correction. As the terminator 
becomes more prominent, our technique behaves more strongly and smooths out the 
transition region. This method is especially helpful for strong bumps.

Figure 12-8.  From left to right, a structured fabric bump pattern with increasing bump amplitude. The 
top row shows the uncorrected bump render result, and the bottom row demonstrates our shadowed 
version with the smooth terminator.

 A Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem



158

ACKNOWLEDGMENTS

This work was developed within the core development of the Arnold renderer at 
Sony Pictures Imageworks with Christopher Kulla and Larry Gritz.

REFERENCES

	 [1]	� Conty Estevez, A., and Lecocq, P. Fast Product Importance Sampling of Environment Maps. In 
ACM SIGGRAPH 2018 Talks (2018), pp. 69:1–69:2.

	 [2]	� Cook, R. L., and Torrance, K. E. A Reflectance Model for Computer Graphics. ACM Transactions on 
Graphics 1, 1 (Jan. 1982), 7–24.

	 [3]	� Dupuy, J., Heitz, E., Iehl, J.-C., Pierre, P., Neyret, F., and Ostromoukhov, V. Linear Efficient 
Antialiased Displacement and Reflectance Mapping. ACM Transactions on Graphics 32, 6 (Sept. 
2013), 211:1–211:11.

	 [4]	� Heitz, E. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of 
Computer Graphics Techniques 3, 2 (June 2014), 48–107.

	 [5]	� Max, N. L. Horizon Mapping: Shadows for Bump-Mapped Surfaces. The Visual Computer 4, 2 (Mar 
1988), 109–117.

	 [6]	� Olano, M., and Baker, D. Lean Mapping. In Symposium on Interactive 3D Graphics and Games 
(2010), pp. 181–188.

	 [7]	� Onoue, K., Max, N., and Nishita, T. Real-Time Rendering of Bumpmap Shadows Taking Account 
of Surface Curvature. In International Conference on Cyberworlds (Nov 2004), pp. 312–318.

	 [8]	� Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refraction Through 
Rough Surfaces. In Eurographics Symposium on Rendering (2007), pp. 195–206.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


159© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_13

CHAPTER 13

Ray Traced Shadows: Maintaining  
Real-Time Frame Rates
Jakub Boksansky,1 Michael Wimmer,2 and Jiri Bittner1

1Czech Technical University in Prague 
2Technische Universität Wien

ABSTRACT

Efficient and accurate shadow computation is a long-standing problem in 
computer graphics. In real-time applications, shadows have traditionally been 
computed using the rasterization-based pipeline. With recent advances of graphics 
hardware, it is now possible to use ray tracing in real-time applications, making 
ray traced shadows a viable alternative to rasterization. While ray traced shadows 
avoid many problems inherent in rasterized shadows, tracing every shadow ray 
independently can become a bottleneck if the number of required rays rises, e.g., 
for high-resolution rendering, for scenes with multiple lights, or for area lights. 
Therefore, the computation should focus on image regions where shadows actually 
appear, in particular on the shadow boundaries.

We present a practical method for ray traced shadows in real-time applications. 
Our method uses the standard rasterization pipeline for resolving primary-ray 
visibility and ray tracing for resolving visibility of light sources. We propose an 
adaptive sampling algorithm for shadow rays combined with an adaptive shadow-
filtering method. These two techniques allow computing high-quality shadows 
with a limited number of shadow rays per pixel. We evaluated our method using a 
recent real-time ray tracing API (DirectX Raytracing) and compare the results with 
shadow mapping using cascaded shadow maps.

13.1	 �INTRODUCTION

Shadows contribute significantly to realistic scene perception. Due to the importance 
of shadows, many techniques have been designed for shadow computation in the 
past. While offline rendering applications use ray tracing for shadow evaluation [20], 
real-time applications typically use shadow maps [21]. Shadow mapping is highly 
flexible in terms of scene geometry, but it has several important issues:

>> Perspective aliasing, which shows as jaggy shadows, due to insufficient  
shadow-map resolution or poor use of its area.



160

>> Self-shadowing artifacts (shadow acne) and disconnected shadows  
(Peter Panning).

>> Lack of penumbras (soft shadows).

>> Lack of support for semitransparent occluders.

A number of techniques have been developed to address these issues [7, 6]. Usually, 
a combination of several of them and manual fine-tuning by the scene designer are 
required to achieve good results. This makes an efficient implementation of shadow 
mapping complicated, and different solutions are usually required for different 
scenes.

Ray tracing [20] is a flexible rendering paradigm that can compute accurate 
shadows with a simple algorithm and is able to handle complex lighting (area 
lights, semitransparent occluders) in an intuitive and scalable way. However, 
it has been difficult to achieve ray tracing performance that is sufficient for 
real-time applications. This was due to limited hardware resources as well as 
implementation complexity of the underlying algorithms required for real-time 
ray tracing, such as fast construction and maintenance of spatial data structures. 
There was also no explicit ray tracing support in popular graphics APIs used for 
real-time applications.

With the introduction of NVIDIA RTX and DirectX Raytracing (DXR), it is now 
straightforward to exploit ray tracing using DirectX and Vulkan APIs. The recent 
NVIDIA Turing graphics architecture provides hardware support for DXR using 
the dedicated RT Cores, which greatly improve ray tracing performance. These 
new features combine well with emerging hybrid rendering methods [11] that use 
rasterization to resolve primary-ray visibility and ray tracing to compute shadows, 
reflections, and other illuminations effects.

However, even with the new powerful hardware support, we have to use our 
resources wisely when rendering high-quality shadows using ray tracing. A naive 
algorithm might easily cast too many rays to sample shadows from multiple light 
sources and/or area light sources, leading to low frame rates. See Figure 13-1 for 
an example.

RAY TRACING GEMS



161

In this chapter, we introduce a method that follows the hybrid rendering paradigm. 
Our method optimizes the evaluation of ray traced shadows by using adaptive shadow 
sampling and adaptive shadow filtering based on a spatiotemporal analysis of light-
source visibility. We evaluate our method using the Falcor [3] framework and compare 
it with cascaded shadow maps [8] and naive ray traced shadows [20].

13.2	 �RELATED WORK

Shadows have been a focus of computer graphics research since the very beginning. 
They are a native element of Whitted-style ray tracing [20], where for each hit point a 
shadow ray is cast to each light source to determine mutual visibility. Soft shadows 
were introduced through distributed ray tracing [4], where the shadow term is 
calculated as an average of multiple shadow rays cast to an area light source. This 
principle is still the basis for many soft shadow algorithms today.

Interactive shadows were made possible through the shadow mapping [21] and 
shadow volume [5] algorithms. Due to its simplicity and speed, most interactive 
applications nowadays use shadow mapping, despite a number of disadvantages and 
artifacts caused by its discrete nature. Several algorithms for soft shadows are based 
on shadow mapping, most notably percentage closer soft shadows [9]. However, 
despite the many approaches and improvements to the original algorithms (for a 
comprehensive overview, see the book and course by Eisemann et al. [6, 7]), robust 
and fast soft shadows are still an elusive goal.

Figure 13-1.  Left: soft shadows rendered using naive ray traced shadows with 4 samples per pixel 
running at 3.6 ms per frame. Center: soft shadows rendered using our adaptive method with 0 to 5 
samples per pixel running at 2.7 ms per frame. Right: naive ray traced shadows using 256 samples per 
pixel running at 200 ms per frame. Times measured using a GeForce RTX 2080 Ti GPU. Top: visibility 
buffers. Bottom: final images.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



162

Inspired by advances in interactive ray tracing [18], researchers recently went 
back to investigating the use of ray tracing for hard and soft shadows. However, 
instead of performing a full ray tracing pass, a key idea was to use rasterization 
for the primary rays and to use ray tracing for only shadow rays [1, 19], leading to 
a hybrid rendering pipeline. To make this viable for soft shadows, the industry is 
experimenting with temporal accumulation in various ways [2].

The NVIDIA Turing architecture finally introduced fully hardware-accelerated 
ray tracing to the consumer market, and easy integration with the rasterization 
pipeline exists in the DirectX (DXR) and Vulkan APIs. Still, soft shadows for multiple 
light sources pose a challenge and require intelligent adaptive sampling and 
temporal reprojection approaches, as we will describe in this chapter.

The advent of real-time ray tracing also opens the door for other hybrid rendering 
techniques, for example adaptive temporal antialiasing, where pixels that cannot 
be rendered through reprojection are ray traced [14]. Temporal coherence has 
been used specifically for soft shadows before [17], but here we introduce a much 
simpler temporal coherence scheme based on a novel variation measure to 
estimate the required sample count.

13.3	 �RAY TRACED SHADOWS

Shadows appear when a scene object—a shadow caster—blocks light that would 
otherwise contribute to illumination at another scene object—the shadow receiver. 
Shadows can appear due to direct or indirect illumination. Direct illumination 
shadows are induced when the visibility of primary light sources is blocked, 
indirect illumination shadows are induced when strong reflections or refractions 
of light at scene surfaces are blocked. In this chapter, we focus on the case of 
direct illumination—indirect illumination can be evaluated independently using 
some standard global-illumination technique such as path tracing or many-light 
methods.

The outgoing radiance L(p, ωo) at a point P in direction ωo is defined by the rendering 
equation [12]:

	     ( ) ( ) ( ) ( )( )o e o i o i i i P iL P, L f P, , L P, d ,ˆw w w w w w wò
W

= + ×n 	 (1)

where Le(ωo) is the self-emitted radiance, f(P, ωi, ωo) is the BRDF, Li(P, ωi) is the 
incoming radiance from direction ωi, and n̂P is the normalized surface normal at 
point P.

RAY TRACING GEMS



163

For the case of direct illumination with a set of point light sources, the direct 
illumination component of L can be written as a sum of contributions from individual 
light sources:

	     ( ) ( ) ( ) ( ) l P
d o l o l l l l

l l

L P, f P, , L P , v P,P
P P

2

ˆ
,

w
w w w w

×
=

-
å

n
	 (2)

where Pl is the position of light l, the light direction is ωl = (Pl − P)/‖Pl − P‖, Ll(Pl, ωl) is 
the radiance emitted from light source l in direction ωl, and v(P, Pl) is the visibility term, 
which equals 1 if the point Pl is visible from P and 0 if it is not.

The evaluation of v(p, pl) can easily be performed by shooting a ray from P toward Pl 
and checking if the corresponding line segment is unoccluded. Care must be taken 
near the endpoints of the line segment not to include the self-intersection of the 
geometry of the shaded point or the light source. This is usually resolved by shrinking 
the parametric range for valid intersection by a small ε-threshold.

The Ld due to an area light source a is given by

	 ( ) ( ) ( ) ( ) ( )( )X P X X
d o X o a X

X A

L P, f P, , L X , v P, X dA
P X

2
,

ˆ ˆw w
w w w wò

Î

× - ×
=

-

n n
	 (3)

where A is the surface of light a, n̂X is the normal of the light source surface at point 
X, ωX = (X − P)/‖X − P‖ is the direction from point P toward point X on the light source, 
La(X, ωX) is the radiance emitted from point X in direction ωX, and v(P, X) is the visibility 
term that equals 1 if the point X is visible from P and 0 if it is not.

This integral is commonly evaluated by Monte Carlo integration using a set of well-
distributed samples S on the light source:

	 ( ) ( ) ( ) ( ) ( )( )X P X X
d o X o a X

X S

L P, f P, , L X , v P, X
S P X

2

ˆ ˆ1 ,
w w

w w w w
Î

× - ×
»

-
å

n n

∣∣ 	 (4)

where ∣ S∣ is the number of light samples. In our work we separate the shading and 
visibility terms, and for shading we approximate the area light source with a centroid 
C of the light source:

	 ( ) ( ) ( ) ( )( ) ( )C P C C
d o C o a C

X S

L P, f P, , L C, v P, X
SP C

2

ˆ ˆ 1 .
w w

w w w w
Î

× - ×
»

-
å

n n

∣∣ 	 (5)

This allows us to accumulate the results of visibility tests for each light within a given 
frame and store them in a dedicated visibility buffer for each light. The visibility buffer 
is a screen-sized texture that holds visibility terms for each pixel. A more elaborate 

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



164

method of shading and visibility separation was recently proposed by Heitz et al. [11],  
which might be used for light sources with large areas or more complicated 
BRDFs. Separating visibility allows us to decouple visibility computation from 
shading as well as analyzing and using the temporal coherence of visibility. An 
illustration of visibility evaluation for a point light source and an area light source 
is shown in Figure 13-2. The difference between the resulting shadows is shown in 
Figure 13-3.

Figure 13-2.  Left: for point light sources, a single shadow ray is cast toward each light source from 
the shaded point P. The ray toward light source L2 is blocked by an occluder, resulting in v(P, L2) = 0. The 
ray toward L1 is unoccluded, thus v(P, L1) = 1. Right: the visibility of a disk light source is evaluated by 
sampling using several shadow rays.

Figure 13-3.  An example of hard shadows (left) and soft shadows (right) computed by ray tracing, 
showing both visibility buffer and shaded image.

13.4	 �ADAPTIVE SAMPLING

A naive implementation of shadow computation using ray tracing requires a high 
number of rays to achieve a desired shadow quality, especially for larger area 
lights, as shown in Figure 13-1. This would decrease performance considerably 
with an increase in the number and/or size of lights. Because a high number of rays 
is required only in penumbra areas of an image, we base our method on identifying 

RAY TRACING GEMS



165

these areas and then using more rays to sample them effectively. The fully lit and fully 
occluded areas are sampled sparsely, and the saved computational resources can be 
used for other ray tracing tasks such as reflections.

13.4.1	 �TEMPORAL REPROJECTION

To effectively increase the sample count used per pixel, we use temporal reprojection, 
which allows us to accumulate visibility values for visible scene surfaces over 
time. Temporal reprojection is becoming a standard tool in many recent real-time 
rendering methods [15], and in many cases it is already implemented within the 
application rasterization pipeline. We use the accumulated values for two purposes: 
first, estimating visibility variation to derive the required sample count, and second, 
determining the kernel size for filtering the sampled visibility.

We store the results of visibility calculations from previous frames in a cache 
containing four frames. To ensure correct results for dynamic scenes, we use reverse 
reprojection [15], which handles the camera movement. When starting an evaluation 
of a new frame, we perform reverse reprojection of three previous frames, stored in 
the cache, to the current frame. Thus, we always have a four-tuple of values from four 
consequent frames aligned with the image corresponding to the current frame.

Given a point Pt in clip space in frame t, the reprojection finds the corresponding clip-
space coordinates 

tP 1-
 in frame t − 1 as

			   t t t t t tP P1 1
1 1 1 ,- -

- - -= C V V C 	 (6)

where Ct and Ct − 1 are the camera projection matrices and Vt and Vt − 1 are the camera 
viewing matrices. After reprojection we check for depth discontinuities and discard 
invalid correspondences (mostly disocclusions). Depth discontinuities are detected 
using a relative depth difference condition, i.e., the point is successfully reprojected if 
the following condition holds:

			 
z

t
zz

t

P
c c n

P
1

1 2
1

1 , ˆ ,e e-

-

- < = + 	 (7)

where ε is an adaptive depth similarity threshold, zn̂  is a z-coordinate of the view-
space normal of the corresponding pixel, and c1 and c2 are user-specified constants of 
linear interpolation (we used c1 = 0.003 and c2 = 0.017). The adaptive threshold ε allows 
for greater depth differences of valid samples on sloped surfaces.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



166

For successfully reprojected points, we store image-space coordinates in the range 
0 to 1. If the reprojection fails, we store negative values to indicate the reprojection 
failure for subsequent computations. Note that, as all previous frames have already 
been aligned during the previous reprojection steps, only one cache entry for 
storing the depth values z

tP 1-  is sufficient.

13.4.2	 �IDENTIFYING PENUMBRA REGIONS

The number of samples (rays) required for a given combination of shaded point 
and light source generally depends on the light size, its distance to the shaded 
point, and the complexity of occluding geometry. Because this complexity 
would be difficult to analyze, we base our method on using the temporal visibility 
variation measure Δv(x):

	     ( ) ( ) ( )( ) ( ) ( )( )t t t t tv x v x v x v x v x1 4 1 4max min ,- - - -D = ¼ - ¼ 	 (8)

where vt − 1(x) … vt − 4(x) are the cached visibility values for a pixel x in the four 
previous frames. Note that these visibility values are cached in a single four-
component texture per light.

The described measure corresponds to the range variation measure, which is 
highly sensitive to extreme values of the visibility function. Therefore, this measure 
is more likely to detect penumbra regions than other, smoother variation measures 
such as the variance.

The variation is zero for either fully lit or fully occluded areas and is usually greater 
than zero in penumbra areas. Our sample sets are generated with regard to the 
fact that we use four frames for variation computation, so they repeat only after 
these four frames. See Section 13.5.1.

To make results more temporally stable, we apply a spatial filter on the variation 
measure followed by a temporal filter. The spatial filter is expressed as

			     � ( )t tv M v T5 5 13 13,´ ´D = D * 	 (9)

where M5 × 5 is a nonlinear maximum filter using a 5 × 5 neighborhood followed by 
a convolution with a low-pass tent filter T13 × 13 with a 13 × 13 neighborhood. The 
maximum filter makes sure that a high variation detected in a single pixel will 
cause a higher number of samples to be used in surrounding pixels too. This is 
important for dynamic scenes to make the method more temporally stable and 
for cases where the penumbra is completely missed in nearby pixels. The tent 

RAY TRACING GEMS



167

filter prevents abrupt changes in variation values to avoid flickering. Both filters are 
separable, therefore we execute them in two passes to reduce the computational 
effort.

Finally, we combine the spatially filtered variation measure � tvD  with temporally 
filtered values Δvt from the four previous frames. For the temporal filtering, we use a 
simple box filter, and we intentionally use the raw Δvt values that are cached prior to 
spatial filtering:

		
� ( )t t t t t tv v v v v v1 2 3 4

1 1 .
2 4 - - - -

æ ö
D = D + D + D + D + Dç ÷

è ø
	 (10)

Such a combination of filters proved efficient in our tests as it is able to propagate 
the variation over larger regions (using maximum and tent filters). At the same time, 
it does not miss small regions with large variation by combining the spatially filtered 
variation with the temporally filtered variation values from the previous frames.

13.4.3	 �COMPUTING THE NUMBER OF SAMPLES

The decision on the number of samples to be used for a given point is based on the 
number of samples used in the previous frame and the current filtered variation tvD .  
We use a threshold δ on the variation measure to decide whether to increase or 
decrease sampling density at the corresponding pixel. In particular, we maintain the 
sample counts s(x) for each pixel and use the following algorithm to update s(x) in the 
given frame:

	1.	 If ( )tv x dD >  and st − 1(x) < smax, increase the number of samples by one 
(st(x) = st − 1(x) + 1).

	2.	 If ( )tv x dD <  and the number of samples has been stable in the four 
previous frames, decrease the number of samples (st(x) = st − 1(x) − 1).

The maximum number of samples per light smax ensures a limited ray budget for each 
light per frame (we use smax = 5 for standard settings and smax = 8 for high-quality 
settings). The constraint of stability in the four previous frames used in step (2) induces 
a hysteresis into the algorithm and aims to prevent oscillations in the number of 
samples caused by a feedback loop between the number of samples and the variation. 
The described technique works with sufficient temporal stability and provides better 
results than directly computing s(x) from ( )tv xD .

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



168

For pixels where reverse reprojection fails, we use smax samples and replace all 
cached visibility values with the current result. When a reverse reprojection fails 
for all pixels on the screen, e.g., when the camera pose changes dramatically, a 
sudden performance drop occurs due to the high number of samples used in each 
pixel. To prevent the performance drop, we can detect large changes of camera 
pose on the CPU, and we can reduce the maximum number of samples (smax) for 
several subsequent frames. This will momentarily cause noisier results, but it will 
prevent frame-rate stuttering, which is usually more disturbing.

13.4.4	 �SAMPLING MASK

Pixels for which our algorithm computes sample counts equal to zero indicate 
a region with no temporal and spatial variation. This is mostly the case for fully 
lit and fully shadowed regions in an image. For these pixels we might skip the 
calculation of visibility completely and use value from the previous frame. However, 
this may lead to an accumulation of errors over time in these regions, for example 
when a light is moving fast or the camera is zooming slowly (in both these cases 
the reprojection succeeds, but visibility can change). Therefore, we use a mask 
that enforces regular sampling for at least one fourth of the pixels. We enforce 
sampling of individual blocks of pixels on the screen as performance tests have 
shown that shooting a single ray for one pixel out of four in a close neighborhood 
yields similar performance as shooting rays for each of these pixels (probably due 
to warp dependencies). Therefore, we enforce sampling of a block of nb × nb pixels 
on the screen (we get the best performance increase for nb = 8).

To ensure that every pixel is sampled at least once in four frames, we use a 
matrix that checks if the sampling should be enforced in the current frame. We 
find an entry in a mask of size 4 × 4 repeated over the screen that corresponds 
to the location of the block. If the entry is equal to the current frame’s sequence 
number modulo four, all pixels in blocks with zero sample counts are sampled 
with one shadow ray per pixel per light. The mask is set up so that in each quad of 
neighboring blocks, only one block will be evaluated. Furthermore, every pixel will 
be evaluated once in four consecutive frames to make sure that new shadows are 
detected. This is illustrated in Figure 13-4. An example of the sample distribution 
using the adaptive sampling is shown in Figure 13-5.

RAY TRACING GEMS



169

13.4.5	 �COMPUTING VISIBILITY VALUES

As a final step in our algorithm, we employ two filtering techniques on the visibility 
values themselves (as opposed to the visibility variation measure): temporal filtering, 
which makes use of results from previous frames, and spatial filtering, which applies 
a low-pass filter over visibility values and removes the remaining noise.

Recent denoising methods for global illumination, such as spatiotemporal variance-
guided filtering (SVGF) by Schied et al. [16] and AI-based denoisers, can produce 
noise-free results from sequences of stochastically sampled images with as little 
as one sample per pixel. These methods take care to preserve edge sharpness after 

Figure 13-4.  An example of the sampling mask matrix. In each sequence of four consecutive frames, the 
shadow rays are enforced even for pixels with low visibility variation.

Figure 13-5.  Left: image showing the pixels with nonzero sample counts. Note the sampling of the 
penumbra regions and the pattern enforced by the sampling matrix. Center: visibility buffer. Right: final 
image.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



170

denoising (especially on textured materials), typically by using information from 
noise-free albedo and normal buffers. We use a simpler solution that is specifically 
tailored toward shadow computation and combines well with our adaptive sampling 
strategy for shadow rays.

13.4.5.1  �TEMPORAL FILTERING

To apply temporal accumulation of visibility values, we calculate an average 
visibility value, effectively applying a temporal box filter on the cached reprojected 
visibility values:

			   ( )t t t t tv vv v v1 2 3

1 .
4 - - -= + + +� 	 (11)

Using a temporal box filter leads to the best visual results, since our sample sets 
are generated to be interleaved over the last four frames. Note that our approach 
does not explicitly account for the movement of lights. Our results indicate that 
for interactive frame rates (>30 FPS) and caching only four previous frames, the 
artifacts introduced by this simplification are quite minor.

13.4.5.2  �SPATIAL FILTERING

The spatial filter operates on the visibility buffer that was already processed by the 
temporal filtering step. We use a traditional cross bilateral filter with a variable-
sized Gaussian kernel to filter the visibility. The size of the filter kernel is chosen 
between 1 × 1 and 9 × 9 pixels and is given by the variation measure � tvD —more 
variation in a given area results in more aggressive denoising. The filter size is 
scaled linearly in dependence on � tvD , while the maximum kernel size is achieved 
for a predefined variation of η (we used η = 0.4). To prevent popping when switching 
from one kernel size to the other, we store precalculated Gaussian kernels for 
each size and linearly interpolate the corresponding entries between the two 
closest kernels. This is especially important for blending with the smallest kernel 
size to preserve hard edges where needed.

We make use of depth and normal information to prevent shadows leaking over 
geometry discontinuities. This makes the filter nonseparable, but we apply it as 
if it was with reasonably good results, as can be seen in Figure 13-6. Samples 
whose depths do not satisfy Equation 7 are not taken into account. Additionally, we 
discard all samples for which the corresponding normals do not satisfy the normal 
similarity test:

				    p qˆ ˆ ,z× >n n 	 (12)

RAY TRACING GEMS



171

where pn̂  is a normal at a pixel p, qn̂  is a normal of the pixel q from the neighborhood 
of p, and ζ is a normal similarity threshold (we used ζ = 0.9).

Figure 13-6.  Difference between raw visibility values and filtered result. Left: using naive shadow-ray 
tests with 8 samples per pixel (4.25 ms per frame). Right: our method using 1 to 8 samples per pixel and 
the sampling mask (2.94 ms per frame).

The temporal filtering step packs the filtered visibility buffers for four lights into 
single four-component texture. Then, each spatial filtering pass operates on two of 
these textures at the same time, effectively denoising eight visibility buffers at once.

13.5	 �IMPLEMENTATION

This section describes details regarding the implementation of our algorithm.

13.5.1	 �SAMPLE-SET GENERATION

Our adaptive sampling method assumes that we work with samples that are 
interleaved over four frames. As the method uses different sample counts for 
each pixel, we generate an optimized set of samples for each size used in our 
implementation (1 to 8). In our implementation, we used two different quality settings: 
the standard-quality setting with smax = 5, and the high-quality setting with smax = 8.

Considering that we aim to interleave the samples over four frames and that the 
smallest effective spatial filter size is 3 × 3 (for spatial filtering), our sets contain 
smax × 4 × 3 × 3 samples. This yields sample counts effectively used for a single pixel of 36 
for 1 sample per pixel, 72 for 2 samples per pixel, and up to 288 for 8 samples per pixel.

In each of four consecutive frames, a different subset consisting of a quarter of these 
samples is used. Furthermore, in each pixel we use a different ninth of this subset. 
The choice of which ninth to use is given by pixel position within a block of 3 × 3 pixels 
repeated over the screen.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



172

We optimize the direct output of a Poisson distribution generator to decrease the 
discrepancy of the whole sample set also for the four subsets used in consecutive 
frames and nine of their subsets used for different pixels. This procedure optimizes 
sample sets with respect to their usage in temporal and spatial filtering and 
reduces visual artifacts. An example sample set is shown in Figure 13-7.

13.5.2	 �DISTANCE-BASED LIGHT CULLING

Even before casting the shadow rays, we can cull distant and low-intensity lights 
to increase performance. To do this, we calculate the range of each light—this is 
the distance where the intensity of a light becomes negligible due to its attenuation 
function. Before evaluating visibility, we compare the distance of the light to 
its range and simply store zero for non-contributing lights. Typical attenuation 
functions (inverse of squared distance) never reach zero, and thus it is practical 
to modify this function so that it reaches zero eventually, e.g., by implementing a 
linear drop-off below a certain threshold. This will decrease light ranges, making 
the culling more efficient while preventing popping when a light starts contributing 
again after being culled.

13.5.3	 �LIMITING THE TOTAL SAMPLE COUNT

Because our adaptive algorithm puts more samples in penumbras, a significant 
performance decrease can occur when the penumbra covers a large portion of the 
screen. For dynamic scenes, this could display as disturbingly high variations of 
frame rate.

Figure 13-7.  Left: samples colored by position on the screen—similar colors will be evaluated in pixels 
close to each other. Right: samples colored by the frame number—samples with the same color will be 
used in the same frame. Samples are well distributed in both temporal and spatial domains. The figure 
shows a sample set for three samples per pixel.

RAY TRACING GEMS



173

We provide a method to limit the sample count globally based on computing the sum 
of the variation measures vD  over the whole image (we compute the sum using 
hierarchical reduction with mipmaps). If the sum rises above a certain threshold, 
we progressively limit the number of samples that can be used in each pixel. This 
threshold and the value at which a single sample per pixel should be used must be 
fine-tuned to the desired performance-to-visual-quality ratio. This will result in a 
momentary decrease in visual quality, but it can be preferable to stuttering caused by 
longer shadow calculation.

13.5.4	 �FORWARD RENDERING PIPELINE INTEGRATION

We implemented our algorithm within a forward rendering pipeline. Compared to 
deferred rendering, this pipeline provides advantages such as simpler transparency 
handling, support for more complex materials, hardware antialiasing (MSAA), and 
lower memory requirements.

Our implementation builds on top of the Forward+ pipeline introduced by Harada et al. [10], 
which makes use of a depth prepass and adds a light-culling stage to solve problems with 
overdraw and many lights. DXR makes integration of ray tracing into existing renderers 
straightforward, and considerable investment made into materials, special effects, etc. is 
therefore preserved when adding ray traced features such as shadows.

An overview of our method is shown in Figure 13-8. First, we perform the depth prepass 
to fill a depth buffer with no color buffer attached. After the depth prepass, we generate 
motion vectors based on camera movement and the normal buffer, which will be used 
later during denoising. The normal buffer is generated from depth values. Because it is 
not used for shading but denoising, this approximation works reasonably well.

Figure 13-8.  Overview of our ray tracing shadow algorithm.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



174

The layout of the buffers used in our method is shown in Figure 13-9. The visibility 
cache, the variance measures, and the sample counts are cached over the last 
four frames for each light. The filtered visibility buffers and the filtered variation 
measure buffers are stored for only the last frame for each light. Note that the 
sample counts and the variation measures are packed into the same buffer.

Then, we generate visibility buffers for all lights using ray tracing. We use the 
depth-buffer values to reconstruct the world-space positions of visible pixels using 
inverse projection. World-space pixel positions can also be read directly from a 
G-buffer (if available) or evaluated by casting primary rays for greater precision. 
From these positions, we shoot shadow rays toward light sources to evaluate their 
visibility using our adaptive sampling algorithm. Results are denoised and stored 
in visibility buffers, which are passed to the final lighting stage. Visualizations of 
variation measures, sample counts, and filtering kernel sizes used by our shadow 
calculation are shown in Figure 13-10 for a single frame.

Figure 13-9.  Buffer layout used by our algorithm.

RAY TRACING GEMS



175

The lighting stage uses a single rasterization pass during which all scene lights are 
evaluated. A rasterized point is lit by all scene lights in a loop and the results are 
accumulated. Note that the visibility buffer of each light is queried before shading, 
which in turn is done only for visible lights—this provides implicit light culling to 
increase performance.

13.6	 �RESULTS

We evaluated our method for computing both hard and soft shadows and compared 
it with a reference shadow-mapping implementation. We used three test scenes of 
20-second animation sequences with a moving camera. The Pub and Resort scenes 
have similar geometric complexity, but the Pub scene contains much larger area 
lights. The Breakfast scene has a significantly larger triangle count. The Pub and 
Breakfast scenes represent interiors, and thus they use point lights, and the exterior 
Resort scene uses directional lights. For computing soft shadows, these lights are 
treated as disk lights. We used the shadow-mapping implementation of the Falcor 
framework, which uses cascaded shadow map (CSM) and exponential variance 
shadow map (EVSM) [13] filtering. We used four CSM cascades for directional lights 
and one cascade for point lights, with the largest level using a shadow map of size 
2048 × 2048. The screen resolution for all tests was 1920 × 1080.

Figure 13-10.  Top left: filtered variation measure � tvD . Top center: areas with sample counts evaluated 
to zero shown in black. Top right: sample counts mapped to yellow-to-pink spectrum. Bottom left: spatial 
filtering kernel size levels mapped to different colors. Bottom center: filtered visibility buffer. Bottom right: 
final result.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



176

We evaluated four shadow-computation methods: hard shadows computed using 
shadow mapping (SM hard), hard shadows computed using our method (RT hard), 
soft shadows computed using ray tracing with smax = 5 (RT soft SQ), and soft 
shadows computed using ray tracing with smax = 8 (RT soft HQ). The measurements 
are summarized in Table 13-1.

Table 13-1.  Overview of the measured results. The table shows the shadow-computation GPU times 
(in ms) for the tested methods when using one and four light sources. The measurements were 
performed on a GeForce RTX 2080 Ti GPU.

13.6.1	 �COMPARISON WITH SHADOW MAPPING

The measurements in Table 13-1 show that for the Breakfast and Resort scenes 
with four lights, ray traced hard shadows (RT hard) outperform shadow mapping 
(SM hard) by about 40% and 60%, respectively. For the Breakfast scene, we 
attribute this to its large number of triangles. Increasing the number of triangles 
seems to slow down the rasterization pipeline used by shadow mapping more 
quickly than the RT Cores. The exterior Resort scene requires all four CSM 
cascades to be generated and filtered, causing significantly longer execution times 
for shadow mapping.

For the Pub scene (Figure 13-11) and the Breakfast scene (Figure 13-12) with one 
light, shadow mapping is about twice as fast as hard ray traced shadows. This is 
because only one CSM cascade is used for point lights, but it comes at the cost 
of visual artifacts. For the Pub scene, perspective aliasing occurs close to the 
camera (in the screen borders) and on the wall in the back. Also, shadows cast by 
chairs are disconnected from the ground. Trying to remedy these artifacts leads to 
shadow acne in other parts of the image. Ray traced shadows, on the other hand, 
do not suffer from these artifacts.

RAY TRACING GEMS



177

Figure 13-11.  Hard shadows comparison. Visibility buffers (left) and rendered image (right) for the Pub 
scene with four lights, showing hard shadows rendered using our method (top) and shadow mapping 
(bottom).

Figure 13-12.  Soft shadows comparison. Visibility buffers (left) and rendered image (right) for the 
Breakfast scene with four lights, showing soft shadows rendered using our method (top) and shadow 
mapping (bottom).

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



178

For the Breakfast scene, EVSM filtering produces very soft and unfocused shadows 
under the table. This is likely due to the insufficient shadow-map resolution in this 
area, which is compensated for by stronger filtering. Using less aggressive filtering 
resulted in aliasing artifacts, which were more disturbing. For the Resort scene, 
the visual results of ray tracing and shadow mapping are quite similar; however, 
the ray traced shadows outperform shadow mapping in most tests.

13.6.2	 �SOFT SHADOWS VERSUS HARD SHADOWS

Comparing soft and hard ray traced shadows, in our tests it takes about 2–3 times 
longer to calculate soft shadows. This is, however, highly dependent on the size of 
the lights. For the Pub scene, which had lights set up to produce larger penumbras, 
calculation is up to 40% slower for four lights compared to the similarly complex 
Resort scene. This is because we are bound to use a high number of samples in 
larger areas. A visual comparison of the RT soft SQ and RT soft HQ methods is 
shown in Figure 13-13. Note that for the large Breakfast scene, the execution time 
did not increase linearly with the number of lights for the RT hard method. This 
indicates that the RT Cores were not yet fully occupied for the single light case.

Compared to the unoptimized calculation using 8 samples per pixel, our adaptive 
sampling method provides a combined speedup of about 40–50% for the tested 
scenes. Our method, however, achieves better visual quality thanks to the temporal 
accumulation.

13.6.3	 �LIMITATIONS

Our implementation of the proposed method currently has several limitations that 
might show as artifacts in fully dynamic scenes. In the current implementation, 
we do not consider motion vectors of moving objects, which reduces the success 
of reprojection for moving shadow receivers and can at the same time introduce 
false-positive reprojection successes for a particular combination of camera and 
shadow receiver movement (although this case should be quite rare).

Figure 13-13.  Difference between standard and high-quality adaptive sampling. Left: normal quality 
(up to 5 samples per pixel). Center: high quality (up to 8 samples per pixel). Right: final render using 
the high-quality setting.

RAY TRACING GEMS



179

More significantly, moving shadow casters are not handled by the method, which 
might introduce temporal shadow artifacts. On the positive side, our method uses 
a limited-size temporal buffer (only the last four frames are considered), and in 
combination with the aggressive variability measure, it will usually enforce dense 
sampling of the dynamic penumbras. Another problematic case is moving light 
sources, which we do not address explicitly at the moment. The situation is similar 
to moving shadow casters: a quickly moving light source causes severe changes 
in shadows that reduce the potential of adaptive sampling and can cause ghosting 
artifacts.

The current algorithm for maintaining a per-frame ray budget is relatively simple, 
and it would be desirable to use a technique that would directly relate the variation 
measure to the number of samples while aiming to minimize the perceived error 
(including shading). In that case it would be easier to guarantee frame rates while 
obtaining shadows of highest possible quality.

13.7	 �CONCLUSION AND FUTURE WORK

In this chapter, we have presented a method for calculating ray traced shadows using 
the modern DXR API within a rasterization forward-rendering pipeline. We proposed 
an adaptive shadow-sampling method that is based on estimating the variation of 
the visibility function over surfaces seen by the camera. Our method produces hard 
shadows as well as soft shadows using lights of various sizes. We have evaluated 
various configurations of light-sampling and shadow-filtering techniques and 
provided recommendations for best results.

We compared our method to a state-of-the-art shadow-mapping implementation 
in terms of visual quality and performance. In general, we conclude that the higher 
visual quality, simpler implementation, and high performance of ray traced shadows 
makes them preferable over shadow mapping on DXR-capable hardware. This 
will also move the burden of calculating shadows from rasterization to ray tracing 
hardware units, making more performance available for rasterization tasks. Using  
AI-based denoisers running on dedicated GPU cores can help even more in this 
respect.

With shadow mapping, scene designers are often challenged with minimizing the 
technique’s artifacts by setting up technical parameters such as near/far planes, 
shadow-map resolutions, and bias and penumbra sizes not related to physical 
lighting. With ray traced shadows, there is still a burden on designers to make shadow 
calculation efficient and noise-free by using reasonable light sizes, ranges, and 
placement. We believe, however, that these parameters are more intuitive and closer 
to physically based lighting.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 



180

13.7.1	 �FUTURE WORK

Our method does not explicitly handle movement of lights, which can lead to 
ghosting artifacts from rapid light movement. A correct approach would be to 
discard cached visibility from previous frames when it is no longer valid after light 
movement between the frames.

Shadow mapping is not view-dependent, and a common optimization is to calculate 
shadow maps only when either a light or the scene changes. This optimization is not 
applicable for ray tracing, as ray traced visibility buffers need to be recalculated 
after every camera movement. Because of this, shadow mapping can still be 
preferable for scenarios where the shadow map is rarely updated. Therefore, a 
combination of high-quality ray traced shadows for significant light sources and 
shadow mapping for mostly static parts of the scene and/or less contributing lights 
can be desirable.

As mentioned in Section 13.3, an improved approach to combining shadows 
evaluated using our method with the analytic direct illumination, such as the 
one introduced by Heitz et al. [11], can be used to improve the correctness of the 
rendered images.

ACKNOWLEDGEMENTS

We thank Tomas Akenine-Möller for his feedback and help with the performance 
measurements, Nir Benty for assistance with the Falcor framework, and David 
Sedlacek for providing the environment maps. This research was supported by the 
Czech Science Foundation under project number GA18-20374S and by the MŠMT 
under the identification code 7AMB17AT021 within the activity MOBILITY (MSMT-
539/2017-1).

REFERENCES

	 [1]	� Anagnostou, K. Hybrid Ray Traced Shadows and Reflections. Interplay of Light Blog, https://
interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-

reflections/, July 2018.

	 [2]	� Barré-Brisebois, Colin. Halén, H. PICA PICA & NVIDIA Turing. Real-Time Ray Tracing Sponsored 
Session, SIGGRAPH, 2018.

	 [3]	� Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor 
Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor, July 2017.

	 [4]	� Cook, R. L., Porter, T., and Carpenter, L. Distributed Ray Tracing. Computer Graphics (SIGGRAPH) 
18, 3 (July 1984), 137–145.

RAY TRACING GEMS

https://interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-reflections/
https://interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-reflections/
https://interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-reflections/
https://github.com/NVIDIAGameWorks/Falcor


181

	 [5]	� Crow, F. C. Shadow Algorithms for Computer Graphics. Computer Graphics (SIGGRAPH) 11, 2 (August 
1977), 242–248.

	 [6]	� Eisemann, E., Assarsson, U., Schwarz, M., Valient, M., and Wimmer, M. Efficient Real-Time 
Shadows. In ACM SIGGRAPH Courses (2013), pp. 18:1–18:54.

	 [7]	� Eisemann, E., Schwarz, M., Assarsson, U., and Wimmer, M. Real-Time Shadows, first ed. A K Peters 
Ltd., 2011.

	 [8]	� Engel, W. Cascaded Shadow Maps. In ShaderX5: Advanced Rendering Techniques, W. Engel, Ed. 
Charles River Media, 2006, pp. 197–206.

	 [9]	� Fernando, R. Percentage-Closer Soft Shadows. In ACM SIGGRAPH Sketches and Applications  
(July 2005), p. 35.

	 [10]	� Harada, T., McKee, J., and Yang, J. C. Forward+: Bringing Deferred Lighting to the Next Level.  
In Eurographics Short Papers (2012), pp. 5–8.

	 [11]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic Shadows. 
In Symposium on Interactive 3D Graphics and Games (2018), pp. 2:1–2:11.

	 [12]	 Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH) 20, 4 (August 1986), 143–150.

	 [13]	� Lauritzen, A. T. Rendering Antialiased Shadows using Warped Variance Shadow Maps. Master’s 
thesis, University of Waterloo, 2008.

	 [14]	� Marrs, A., Spjut, J., Gruen, H., Sathe, R., and McGuire, M. Adaptive Temporal Antialiasing. In 
Proceedings of High-Performance Graphics (2018), pp. 1:1–1:4.

	 [15]	� Scherzer, D., Yang, L., Mattausch, O., Nehab, D., Sander, P. V., Wimmer, M., and Eisemann, E. A 
Survey on Temporal Coherence Methods in Real-Time Rendering. In Eurographics State of the Art 
Reports (2011), pp. 101–126.

	 [16]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 2:1–2:12.

	 [17]	� Schwärzler, M., Luksch, C., Scherzer, D., and Wimmer, M. Fast Percentage Closer Soft Shadows 
Using Temporal Coherence. In Symposium on Interactive 3D Graphics and Games (March 2013), 
pp. 79–86.

	 [18]	� Shirley, P., and Slusallek, P. State of the Art in Interactive Ray Tracing. ACM SIGGRAPH Courses, 
2006.

	 [19]	� Story, J. Hybrid Ray Traced Shadows, https://developer.nvidia.com/content/hybrid-
ray-traced-shadows. NVIDIA Gameworks Blog, June 2015.

	 [20]	� Whitted, T. An Improved Illumination Model for Shaded Display. Communications of the ACM 23, 6 
(June 1980), 343–349.

	 [21]	� Williams, L. Casting Curved Shadows on Curved Surfaces. Computer Graphics SIGGRAPH() 12, 3 
(August 1978), 270–274.

 Ray Traced Shadows: Maintaining Real-Time Frame Rates 

https://developer.nvidia.com/content/hybrid-ray-traced-shadows
https://developer.nvidia.com/content/hybrid-ray-traced-shadows


182

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


183© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_14

CHAPTER 14

Ray-Guided Volumetric Water Caustics 
in Single Scattering Media with DXR
Holger Gruen 
NVIDIA

ABSTRACT

This chapter presents a hybrid algorithm that uses ray tracing and rasterization 
to render surface and volumetric caustics in single scattering participating 
media. The algorithm makes use of ray tracing based on DirectX Raytracing 
(DXR) to generate data that drives hardware tessellation to adaptively refine 
triangular beam volumes that are rendered to slice volumetric caustics. Further 
on in the rendering pipeline, ray tracing is also used to generate secondary 
caustics maps that store the positions of ray/scene intersections for light rays 
that get reflected or refracted by a water surface.

14.1	 �INTRODUCTION

This chapter investigates how to make use of the DirectX 12 real-time ray tracing 
API, DXR, to simplify current methods for rendering real-time volumetric water 
caustics in single scattering media. Volumetric caustics have been investigated 
extensively in the past [2, 5, 6, 10]. The algorithm described here uses ideas 
discussed in the literature and combines them with the use of DXR ray tracing and 
adaptive hardware tessellation.

Specifically, for rendering volumetric caustics, ray tracing is used twice in the 
rendering pipeline. In an initial step, ray tracing is used to compute information 
that then guides hardware tessellation levels for triangular beam volumes that are 
used to adaptively slice caustics volumes. The rendering pipeline for accumulating 
volumetric light that is scattered toward the eye uses all GPU shader stages, e.g., a 
vertex shader, a hull shader, a domain shader, a geometry shader, and a pixel shader.

The primary caustics map [7] contains the positions and surface normals of the 
water surface rendered from the point of view of the light. Rays are sent from these 
positions on the water along the refracted and reflected light directions, resulting 
in intersections with the scene. The positions of these intersections are stored in 
secondary caustics maps such as the refracted caustics map and the reflected 



184

caustics map described in this chapter. The positions in the (primary) caustics map 
and the refracted caustics map are then used to define the triangular volumetric 
beams used during volumetric slicing.

This chapter focuses on underwater caustics from refracted light rays. Note that 
the algorithm described here can also be used to render caustics from light that 
gets reflected by the water surface and hits geometry above the water line. Also, it 
is possible to replace the water surface with any other transparent interface.

In underwater game scenes, volumetric lighting is often generated from visibility 
information encoded in a shadow map [4]. This shadow map contains, in this 
context, the underwater geometry rendered from the light position. As such, it 
delivers the intersections of the original light rays with the underwater scene 
through rasterization. See Figure 14-1.

Figure 14-1.  Undisturbed light rays hitting the underwater scene.

Figure 14-2.  Refracted rays (purple) hitting the underwater scene.

When a ray of light hits the water surface, some if its energy changes direction 
as it gets refracted by the water surface. It is therefore necessary to find the 
intersections of the refracted light rays with the scene. See Figure 14-2.

RAY TRACING GEMS



185

A comparison of Figures 14-1 and 14-2 shows that the resulting intersection 
points can be very different. This difference is more pronounced if a light ray hits 
the water surface at a shallow angle. Refraction causes light rays to generate 
the typical pattern of surface caustics on the underwater geometry. In a similar 
manner, volumetric lighting is affected by refracted light. Several publications  
[5, 6, 8, 9, 10] describe how to move beyond the limits of using just a shadow map 
(as shown in Figure 14-1) in the context of caustics rendering.

Typically, one of the two following classes of algorithms are used:

1.	 Two-dimensional image-space ray marching:

(a)	 March the primary depth buffer or the shadow map depth 
buffer in the pixel shader to find intersections. The problem 
with this approach is that refracted light rays may seem to 
be occluded in both the primary view and the view from the 
light, as shown in Figure 14-3.

Figure 14-3.  The intersection point for the refracted light ray seems to be blocked in marching both 
the light and eye depth maps.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



186

(b)	 Render and march a set of images using:

i.	 Multiple depth layers of the primary depth buffer and the 
shadow map.

ii.	� Multiple viewpoints of the primary depth buffer and the 
shadow map.

iii.	 Distance impostors [8].

Note, however, that these methods increase the runtime cost and the 
memory consumption. The implementation complexity can be significantly 
higher than the DXR-based approach described later.

2.	 Three-dimensional voxel grid marching: This class of algorithms 
voxelizes the underwater scene and marches the resulting 
grid. Dependent on grid resolution, these methods can yield 
impressive results. Voxelization is not a cheap operation and can 
be interpreted as the rasterization-side equivalent of keeping a 
bounding volume hierarchy up to date. Memory requirements 
become prohibitive quickly if high grid resolutions are required. 
Ray marching a sufficiently detailed 3D grid is not fast and 
can become prohibitively slow. Overall, the implementation 
complexity of voxelization methods is higher than the DXR-based 
approach.

The technique presented in this chapter doesn’t use any of the approximate 
methods just described to compute the intersections of refracted light rays. 
Instead, it uses DXR to accurately compute where refracted light rays hit the 
dynamic underwater scene.

14.2	 �VOLUMETRIC LIGHTING AND REFRACTED LIGHT

For a general introduction to volumetric lighting computations in participating 
media, consult the work by Hoobler [4]. Here, we simply present the double integral 
that describes how much radiance L is scattered toward the eye E from a point S of 
the underwater scene:

	
( )( ) ( ) ( ) ( ) ( )E l P E

s
S

l e P p E P l P v P d dP| |
in, , ,t w s w w w wò ò - + -

W

= - 	 (1)

RAY TRACING GEMS



187

See Figure 14-4. For all points P on the half-ray from the point in the scene to the 
eye and for all directions of incoming refracted light Ω, the following terms are 
computed:

1.	 The extinction along the length l(ω) that the light has traveled 
underwater before reaching P plus the length of the path from 
P to the eye E. Here, τ is the extinction coefficient of the water 
volume—which is assumed to be constant in the remainder of 
this chapter.

2.	 The scattering coefficient σs(P) at the point P.

3.	 The phase function p(E − P, ω) that determines how much of the 
light that comes in from a refracted light direction is scattered 
toward the eye from P.

4.	 The incoming radiance Lin at the point P along a refracted light 
direction.

5.	 The visibility v along a refracted light direction, e.g., does the 
refracted light ray reach the point P?

Figure 14-4.  The eye E on the left looks to the right through the water. Light from above reaches 
various different locations along this ray, depending on the water’s surface, and scatters light toward 
the eye.

There are two possible approximate solutions to computing the integral over all 
in-scattering events:

1.	 Use a 3D grid to accumulate discretized in-scattering events at 
the center of each grid cell.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



188

Figure 14-5.  Left: the refracted triangle forms a convex volume with the water triangle. Right: the 
volume formed is twisted and no longer convex.

A grid with a high enough resolution needs to be used to prevent leaking of 
volumetric light through thin scene features.

(a)	 Trace enough refracted rays from their origin on the water 
surface to the intersection point with the underwater scene.

i.	 At each grid cell that a refracted ray enters, compute the 
point P on the ray that is closest to the center of the grid cell.

ii.	 Compute the phase function and the transmitted 
radiance that reaches the eye from this point P.

iii.	 Accumulate the transmitted radiance in the grid cell.

(b)	 For each pixel on the screen, trace a ray from the pixel to the 
eye. Traverse the grid on this ray and accumulate the light 
that the reaches the eyes.

2.	 Create a sufficiently dense set of triangular beam volumes [2] to 
approximate the in-scattering integral using the graphics pipeline 
and additive blending.

As shown in Figure 14-5, refracted light directions can cause a triangular beam 
to form a non-convex volume. The algorithm proposed in Section 14.3 tries to 
prevent this case by using high tessellation levels in regions where the directions 
of refracted rays change quickly and can thus create non-convex volumes.

RAY TRACING GEMS



189

For each triangular beam, the graphics pipeline is used to render eight 
triangles that form the exact convex bounding volume of the beam. These 
triangles are generated so that their surface normals always point out of 
 the volume.

Along a ray from the eye, the direction of refracted light changes from where 
the ray hits the backfacing triangles of the point to where it hits the frontfacing 
triangles of the volume. As a result, it is not possible to use additive blending, 
a positive in-scattering term at the backfacing triangles, and a negative  
in-scattering term at the frontfacing triangles as proposed by Golias and 
Jensen [3].

It is possible though, using enough small volumes, to approximate the  
in-scattering integral by just accumulating the in-scattering terms at the 
frontfacing triangles of each volume.

The demo that accompanies this chapter uses additive blending, tessellation, and 
a geometry shader to implement a volume slicing method that is inspired by the 
second approach. This is reflected in the following algorithm overview.

14.3	 �ALGORITHM

The following seven steps are used in the demo to render volumetric water 
caustics. Figure 14-6 shows an overview of these steps.

Figure 14-6.  Algorithm overview.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



190

Please note that the refracted water mesh does not need to be fine enough to 
follow every detail of the underwater geometry. It only needs to be detailed 
enough to facilitate the computation of a high-enough-quality compression 
ratio, as described below. This step can introduce an error when the water 
surface is not detailed enough. It is therefore necessary to refine the water 
surface if errors are detected.

As Figure 14-8 shows, the refraction of the light rays can either focus the light 
within a triangular beam or do the opposite. As a result, triangles in the refracted 
water mesh can have either a larger or a smaller area than their respective water 
triangles.

Please note that, instead of tracing rays along the directions of refracted light rays, 
it is also possible to trace rays along the direction of the light rays that get reflected 
by the water surface and thus render reflected volumetric and surface caustics. 
The demo that accompanies this chapter also implements reflected surface 
caustics in addition to refracted volumetric and surface caustics.

14.3.1	 �COMPUTE BEAM COMPRESSION RATIOS

For each vertex of the water mesh that represents the geometry of the simulated 
water surface, a refracted ray R is constructed. This ray starts at the current 
position of the water vertex and points along the refracted direction of incident light.

The refracted water mesh has the same number of vertices and the same 
triangle count as the water surface. The positions of its vertices are computed by 
intersecting each ray R with the underwater geometry. Figure 14-7 depicts this 
process. Every blue water surface triangle generates a purple dashed triangle in 
the refracted water mesh.

Figure 14-7.  Computing a refracted water mesh.

RAY TRACING GEMS



191

For each triangle the beam compression ratio r is computed and stored in a buffer:

				  
( )
( )

w

r

a T
r

a T
,= 	 (2)

where a() computes the area of a triangle, Tw is the water surface triangle, and Tr is 
the refracted triangle.

The original water triangles and the refracted water triangles form coarse 
triangular beams as shown in Figure 14-5. The compression ratio can also be 
thought of as a value that describes the likelihood of a triangular beam forming 
a non-convex volume. Consequently, the compression ratio can be used to drive 
the tessellation density for subdividing each coarse triangular beam into smaller 
beams. The idea to use the compression ratio from Equation 2 is not new and has 
been described in the past [3].

14.3.2	 �RENDER CAUSTICS MAP

In this step, two render targets are initially cleared to indicate invalid surface 
positions and surface normals.

Next, all water triangles are rendered with a pixel shader that writes the following 
values to two render targets:

1.	 The 3D position of the water surface.

2.	 The surface normal at this point of the water surface.

This is shown in Figure 14-9.

Figure 14-8.  How light can focus in a refracted water mesh.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



192

14.3.3	 �RAY TRACE REFRACTED CAUSTICS MAP AND ACCUMULATE SURFACE CAUSTICS

This step uses DXR to trace rays for valid pixels of the caustics map rendered in 
step 2. The intersections with the scene are stored in a refracted caustics map. 
Also, the intersection positions are transformed to screen space and are used for 
accumulation of scattered surface caustics:

1.	 Trace a ray for each pixel (x, y) in the caustics map that represents 
a valid point on the water surface.

2.	 Compute the intersection of the ray with the underwater scene 
geometry. It is possible to cull this ray if, for example, a shadow 
map test reveals that the point on the water surface is shadowed 
by geometry above the water line.

3.	 Write the position of the intersection into pixel (x, y) in the 
refracted caustics map. See Figure 14-10.

Figure 14-9.  The water mesh is rendered to a caustics map as seen from the point of view of the 
light—the pixels of the resulting surface carry the position of the water surface and the normal of the 
water surface in this pixel.

RAY TRACING GEMS



193

Figure 14-10.  Ray tracing a refracted caustics map: send rays from the water surface positions 
stored in the caustics map along the refracted light directions, and store the resulting ray/scene 
intersections in a refracted caustics map.

4.	 Optionally, trace secondary rays along the reflected direction 
(along the scene normal) of the refracted caustics rays, and write 
the resulting intersection into a one-bounce caustics map at  
pixel (x, y). See Figure 14-11.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



194

5.	 Accumulate surface caustics in an offscreen buffer.

(a)	 Project the intersection points (including the points from 
the optional step 4) to screen space—if the position is on the 
screen, use InterlockedAdd() to accumulate radiance in 
that screen location in a buffer.

To find out if the intersection corresponds to the frontmost 
pixel on the screen, the simplest solution is to do a depth 
test with a certain tolerance. Other possibilities are to also 
consider the G-buffer normal of the onscreen pixel and/or 
scale the brightness value by a function of the difference in 
depth. It is also possible to render a unique triangle ID into 
the G-buffer and to compare this ID with the primitive and 
instance IDs that are available in the DXR hit shaders.

(b)	 The radiance value that gets accumulated can be scaled by 
several factors, including the compression ratio from step 2  
and/or the amount of light that has been absorbed by the 
distance that the ray travels through the water [1].

Figure 14-11.  Tracing rays along the reflected direction of the caustics ray for another bounce of light, 
creating a one-bounce caustics map.

RAY TRACING GEMS



195

14.3.4	 �ADAPTIVELY TESSELLATE THE TRIANGLES OF THE WATER SURFACE

See Figure 14-12 for a depiction of an adaptive tessellation of a triangular beam 
volume.

Figure 14-12.  Adaptively tessellated water triangles result in tessellated triangular beams—see 
step 5.

The beam compression ratio (see Equation 2) is used to compute a tessellation 
factor for the water triangle that sits at the top of the triangular beam. This 
tessellation factor is scaled to:

1.	 Provide enough slices to approximate the in-scattering integral 
well enough.

2.	 Prevent the triangular beam from turning non-convex. See 
Figure 14-5.

3.	 Make sure that no volumetric light leaks through small scene 
features.

14.3.5	 �BUILD TRIANGULAR BEAM VOLUMES

Run a geometry shader to pick up the tessellated water triangles and build the 
triangulated hull of the corresponding triangular beam.

1.	 Project the 3D vertices of the incoming triangle to the (refracted) 
caustics map space.

2.	 Read the 3D positions of the triangle that forms the top cap of the 
volume from the caustics map.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



196

3.	 Read the 3D positions of the triangle that forms the bottom cap 
of the volume from the refracted caustics map.

4.	 Build the eight triangles that form the bounding volume. See 
Figure 14-13. Optionally, do the same for volumes created by the 
refracted caustics map and the one-bounce caustics map.

5.	 Compute an estimated thickness of the triangular beam at each 
output vertex—this way, interpolated thickness is passed to the 
vertex shader.

6.	 Compute a ray direction at every output vertex—this way, the 
interpolated direction is passed to the pixel shader.

14.3.6	 �RENDER VOLUMETRIC CAUSTICS USING ADDITIVE BLENDING

Additively blend the in-scattered light on the pixels of the frontfacing sides of each 
volume to a render target in the pixel shader.

1.	 Compute the phase function at the current 3D position given the 
interpolated ray direction.

2.	 Multiply the resulting in-scattered term by the interpolated thickness.

3.	 Output the result.

Figure 14-13.  Triangles forming a triangular beam.

RAY TRACING GEMS



197

14.3.7	 �COMBINE SURFACE CAUSTICS AND VOLUMETRIC CAUSTICS

This step combines the image of the scene that has been lit by the surface caustics 
and a blurred version of the volumetric caustics that has been rendered using 
additive blending.

1.	 Blur/denoise the surface caustics from step 3.

2.	 Use the denoised surface caustics buffer to shed light on the 
scene, e.g., multiply it by the albedo texture of the G-buffer pixel 
and add it to the unlit result to produce a lit G-buffer.

3.	 Blur the result from step 6 slightly and add it to the lit G-buffer.

14.4	 �IMPLEMENTATION DETAILS

As described in Section 14.1, the DirectX 12 DXR API is used to implement all ray 
tracing workloads. For step 1, DispatchRays() is called so that each thread 
traces exactly one refracted ray into the scene. The resulting refracted water mesh 
is written to a buffer that is read by later steps and uses the same index buffer as 
the original water mesh.

Step 2 is implemented as a normal rasterization pass. For step 3, DispatchRays() 
is called to cast a ray for every valid pixel of the caustics map from step 2. 
Optionally, the shader casts additional rays along the reflected direction for surface 
caustics that are generated by light rays that get reflected by the water surface or 
the one-bounce caustics map. Accumulation of refracted/reflected light happens in 
a half-resolution buffer to facilitate fast denoising.

If an additional bounce of caustics is selected, yet another ray is cast in step 2 to 
simulate the reflection of caustics rays by the scene. The resulting intersections of 
these reflected rays are used to simulate indirect lighting through surface caustics 
and are written to another caustics map, the reflected caustics map—the buffer is 
sized to facilitate drawing volumetric beams for this additional bounce.

Volumetric caustics are accumulated in step 6 in a half-resolution buffer to speed 
up the drawing of the triangular beams. The geometry shader in step 5 creates 
triangular beams for the primary refracted caustics as well as for the optional 
additional bounce recorded in the one-bounce caustics map.

Denoising of the surface caustics buffer in step 7 is done through a set of iterated 
cross-bilateral blurring steps that account for differences in view-space depth, 
normals, and positions. Finally, surface caustics and volumetric caustics are 
upsampled bilaterally and get combined with the rendered scene.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



198

14.5	 �RESULTS

Table 14-1 shows caustics workload timings taken in a scene for four different 
camera positions and light setups on an NVIDIA RTX 2080 Ti board running 
caustics workloads at a resolution of 1920 × 1080 using the official DXR API that is 
part of DirectX 12.

Screenshots from these four scenes are shown in Figure 14-14. All scenes 
run at interactive frame rates in excess of 60 FPS while casting rays from the 
pixels of a 2048 × 2048 caustics map. The timings from Table 14-1 indicate 
that volumetric caustics operate, in most cases, within a time span that is 
acceptable for integration in a modern computer game. In comparison, the work 
from Liktor and Dachsbacher [6] was not able to reach a performance level that 
made integration into games feasible.

>> The top left screenshot in Figure 14-14 shows a view from above the 
water line. In this screenshot refracted volumetric underwater caustics 
and reflected caustics that are visible above the water line are generated 
by the algorithm described in this chapter. The caustics workloads for 
this image amount to a total time of 2.9 ms.

>> The top right screenshot in Figure 14-14 shows a view from below the 
water line. For this scene refracted volumetric underwater caustics and a 
secondary volumetric bounce of light are rendered. For this scenario the 
volumetric bounce and high maximum tessellation factor preset cause the 
timing for the volumetric part of the caustics rendering to climb to 4.6 ms. 
These settings are currently too expensive to be used inside a game.

>> The bottom left screenshot in Figure 14-14 shows again a view from below 
the water line. For this scene again refracted volumetric underwater 
caustics and a secondary volumetric bounce of light are rendered. For 
this scenario, the second volumetric bounce along with a moderately high 
maximum tessellation factor preset cause the timing for the volumetric 
part of the caustics rendering to climb to a more moderate 2.1 ms. These 
settings are probably acceptable within a game that focuses on high-
quality volumetric caustics.

>> The bottom right screenshot in Figure 14-14 shows another view from 
below the water line. For this scenario the second volumetric bounce 
along with a moderately high maximum tessellation factor preset cause 
the timing for the volumetric part of the caustics rendering to take only 
1.4 ms. Please note how the second bounce of light casts light onto the 
downward-facing part of the character.

RAY TRACING GEMS



199

Figure 14-14.  Screenshots.

Table 14-1.  Timings. All DispatchRays() include accumulative scattering.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR



200

14.6	 �FUTURE WORK

In the current demo implementation, the caustics map and the refracted caustics 
map need to have a resolution that is high enough to capture the underwater 
geometry in enough detail. It would be interesting to investigate how ideas from 
Wyman and Nichols [10] or Liktor and Dachsbacher [6] could be used to adaptively 
cast rays.

Further on, instead of using the rasterization pipeline to slice the parts of the water 
volume that concentrate light, it could be faster to accumulate in-scattered light in 
a volumetric texture. For a position on a ray to the eye, the information stored in the 
caustics map and the refracted caustics map could be used to prevent volumetric 
light leaking through thin features of a scene.

14.7	 �DEMO

A demo that can be run on NVIDIA GPUs showcasing the proposed technique is 
provided in the code repository.

REFERENCES

	 [1]	� Baboud, L., and Décoret, X. Realistic Water Volumes in Real-Time. In Eurographics Conference on 
Natural Phenomena (2006), pp. 25–32.

	 [2]	� Ernst, M., Akenine-Möller, T., and Jensen, H. W. Interactive Rendering of Caustics Using 
Interpolated Warped Volumes. In Graphics Interface (2005), pp. 87–96.

	 [3]	� Golias, R., and Jensen, L. S. Deep Water Animation and Rendering. https://www.
gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.

php, 2001.

	 [4]	� Hoobler, N. Fast, Flexible, Physically-Based Volumetric Light Scattering. https://
developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/

papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.

pdf, 2016.

	 [5]	� Hu, W., Dong, Z., Ihrke, I., Grosch, T., Yuan, G., and Seidel, H.-P. Interactive Volume Caustics in 
Single-Scattering Media. In Symposium on Interactive 3D Graphics and Games (2010), pp. 109–117.

	 [6]	� Liktor, G., and Dachsbacher, C. Real-Time Volume Caustics with Adaptive Beam Tracing. In 
Symposium on Interactive 3D Graphics and Games (2011), pp. 47–54.

RAY TRACING GEMS

https://www.gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.php
https://www.gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.php
https://www.gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.php
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf


201

	 [7]	� Shah, M. A., Konttinen, J., and Pattanaik, S. Caustics Mapping: An Image-Space Technique for 
Real-Time Caustics. IEEE Transactions on Visualization and Computer Graphics 13, 2 (March 2007), 
272–280.

	 [8]	� Szirmay-Kalos, L., Aszódi, B., Lazányi, I., and Premecz, M. Approximate Ray-Tracing on the GPU 
with Distance Impostors. Computer Graphics Forum 24, 3 (2005), 695–704.

	 [9]	� Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. An Efficient GPU-based Approach for 
Interactive Global Illumination. ACM Transactions on Graphics 28, 3 (July 2009), 91:1–91:8.

	 [10]	� Wyman, C., and Nichols, G. Adaptive Caustic Maps Using Deferred Shading. Computer Graphics 
Forum 28, 2 (Apr. 2009), 309–318.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART IV

SAMPLING



205

PART IV

Sampling

Ray tracing is all about sampling, and sampling is the basic operation of computing 
averages. Similarly to conducting a survey, it is important whom you ask, as this 
determines how reliable your statistics will be.

Chapter 15, “On the Importance of Sampling,” takes you on a tour through some 
useful integrals in graphics that are computed by averaging. You will learn why 
sampling matters, how variance decreases and may be decreased, and why a 
denoiser is becoming inevitable.

The journey then takes you to Chapter 16, the “Sampling Transformations Zoo.” We 
will walk you through a collection of useful code snippets that let you transform 
uniformly distributed samples according to a desired density or onto a piece of 
geometry. It is the perfect complement for all the sampling tasks that you need to 
complete when crafting your own rendering algorithm based on ray tracing.

Not everything turns out nice with sampling. And in fact, Chapter 17, “Ignoring the 
Inconvenient When Tracing Rays,” will help you very much understand what can 
go wrong with sampling. There is a simple way for you to fix things, and a second 
alternative that at least does not destroy all rendering mathematics. All in all, this 
chapter provides crucial and battle-proven insight. 

As an example of how to put things together, Chapter 18, “Importance Sampling of 
Many Lights on the GPU,”, provides a fast implementation of a modern algorithm 
to deal with illumination by many lights. This has been a classic challenge in 
rendering movies that now enters the domain of real-time image synthesis. This 
chapter is an excellent starting point for your own development.

There is so much more to learn about sampling. Do not forget to check out the 
references to Monte Carlo and quasi-Monte Carlo integration in these sampling 
chapters!

Alexander Keller



207© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_15

CHAPTER 15

On the Importance of Sampling
Matt Pharr 
NVIDIA

ABSTRACT

With the recent arrival of ray tracing to the real-time graphics pipeline, developers 
are faced with a new challenge: figuring out how to make the most of the rays that 
they’re able to trace. One important question to decide is for which lighting effects 
to trace rays—choices include shadows, reflections, ambient occlusion, and full 
global illumination.

Another important question is how to choose which rays to trace for the chosen 
effect; an introduction to that question is the topic of this chapter. In the following, 
we will see how most lighting calculations in rendering can be interpreted as 
estimating the values of integrals and how tracing rays is a natural fit to an 
effective numerical integration technique: Monte Carlo. Given some background 
in Monte Carlo integration, we then see how well-chosen rays can dramatically 
improve the speed of convergence, which in turn can either improve overall system 
performance—by getting the same quality result for fewer rays—or improve image 
quality—by getting lower error from the same number of rays.

15.1	 �INTRODUCTION

With the introduction of DirectX Raytracing (DXR) at the 2018 Game Developers 
Conference and then the launch of NVIDIA’s RTX GPUs in the summer of 2018, 
ray tracing has unequivocally arrived for real-time rendering. This is one of the 
greatest changes the real-time graphics pipeline has seen: after always offering 
rasterization as the only visibility algorithm, now a second visibility algorithm has 
been added—ray tracing.

Ray tracing and rasterization complement each other well. Rasterization remains 
a high-performance way to perform coherent visibility computations: it assumes 
a single viewpoint (possibly a single homogeneous viewpoint, for an orthographic 
view), and it regularly samples visibility over a pixel grid. Together, these properties 
allow high-performance hardware implementations that amortize per-triangle 
work over multiple pixels and incrementally compute depth and coverage from 
pixel to pixel.



208

In contrast, ray tracing allows fully incoherent visibility computations. Each 
ray traced can have an arbitrary origin and direction; the hardware places no 
restrictions on them.

With ray tracing in hand, the task for developers is to figure out how best to use 
it. GPU ray tracing hardware provides a few visibility primitives: “What is the first 
thing visible from this point in this direction?” “Is there anything blocking the 
straight line segment between these two points?” However, it does not dictate how 
it should be used for image synthesis—it is up to developers to decide how to do 
that. In a sense, the situation is similar to programmable shading on GPUs: the 
hardware provides the basic computational capabilities, and it is up to developers 
to decide the best way to use those for their applications.

To help motivate some of the trade-offs involved in choosing which rays to trace, we 
start by looking at a basic ambient occlusion computation through the lens of Monte 
Carlo integration. We will see how different sampling techniques (and thus different 
rays traced) lead to different amounts of error in the results before moving on to see 
the application of some of these ideas to direct illumination from area light sources.

Sampling well for rendering is a complex topic—whole books have been written 
on the topic and it remains an active area of research. Thus, this chapter can only 
scratch the surface of the topic, but it includes pointers to resources that provide 
more information along the way.

15.2	 �EXAMPLE: AMBIENT OCCLUSION

Most computations related to light and reflection and graphics can be understood 
as integration problems: for example, we integrate the product of incident light 
arriving at all directions over the hemisphere at a point with the bidirectional 
scattering distribution function (BSDF) that describes reflection at the point in 
order to compute reflected light from a surface.

Monte Carlo integration has been shown to be an effective method for these 
integration tasks in rendering. It is a statistical technique based on taking a 
weighted average of random samples of the integrand. Monte Carlo is a good 
choice for rendering because it works well with high-dimensional integrals (as 
we end up encountering with global illumination), places few restrictions on the 
functions to which it can be applied, and only requires point-wise evaluation of 
them. See the book by Sobol [5] for an approachable introduction to the topic.

Sampling is a perfect fit for ray tracing—it corresponds directly to queries like  
“is the light source visible in this direction?”or “what is the first visible surface in 
this direction?”

RAY TRACING GEMS



209

Here is the definition of the basic Monte Carlo estimator with k samples, which gives 
a method for computing an approximation to an n-dimensional integral of some 
function f:

			   ( ) ( )n

k

i ,
i

E f X f x x
k [0 1]

1

1 d .ò
=

é ù
=ê ú

ë û
å 	 (1)

On the left-hand side of the equality, we have E, which denotes the expected value; 
the idea is that it indicates that, statistically, the quantity in square brackets is 
expected to take on the value of the expression on the right-hand side. Sometimes 
it may be larger and sometimes it may be smaller, but we can imagine that in the 
limit of more and more values, we expect its average to converge.

The expression inside the square brackets is an average of values of f using a set 
of independent random variables Xi that take on all values in [0, 1]n with uniform 
probability. In an implementation, each Xi might just be an n-dimensional random 
number, but here, writing the Monte Carlo estimator in terms of random variables 
is what allows rigorous discussion of the expected value.

We have now an easy-to-implement way to estimate the value of any integral. Let 
us apply it to ambient occlusion, a useful shading technique that gives a reasonable 
approximation to some global lighting effects. We define the ambient occlusion 
function a at a point P as

			   ( ) ( )da P v1 cos d ,w q w
p
ò
W

= 	 (2)

where vd is a visibility function that is zero if a ray from P in the direction ω is 
occluded at a distance less than d and one otherwise, where Ω denotes the 
hemisphere of directions around the surface normal at P, and where the angle θ is 
measured with respect to the surface normal. The 1

p
 term ensures that the value 

of a(P) is between zero and one.

Consider now the application of the basic Monte Carlo estimator to ambient 
occlusion. Here, we integrate over the hemisphere rather than a [0, 1)n domain, 
but it is not too hard to use a few changes of variables to show that the estimator 
applies to other integration domains as well. Our estimator is

			   ( ) ( )
k

d i i
i

a P E v
k 1

1 1 cos ,w q
=

é ù
= ê úpë û

å 	 (3)

where ωi are random directions over the hemisphere, each one chosen with 
uniform probability.

 On the Importance of Sampling



210

There is a straightforward recipe for choosing directions with this distribution over 
the hemisphere. Given random numbers ξ1 and ξ2 in [0, 1), the following then gives 
us a direction over the hemisphere centered around the direction (0, 0, 1) (thus, the 
direction would then need to be transformed to a coordinate frame with the z-axis 
aligned with the surface normal):

		  ( ) ( ) ( )( )x, y , z , ,2 2
1 2 1 2 11 cos 2 1 sin 2 .x x x x x= - p - p 	 (4)

Figure 15-1 shows a crown model shaded using ambient occlusion, using four 
samples for the estimator. With just four samples and no denoising, the result is 
naturally noisy, but we can see that it looks like it is heading in the right direction.

Figure 15-1.  Crown model rendered with ambient occlusion. Left: we traced four random rays per 
pixel, uniformly distributed over the hemisphere at the visible point. Right: a reference image of the 
converged solution was rendered with 2048 rays per pixel.

Another Monte Carlo estimator allows random samples to be taken from 
nonuniform probability distributions. Here is its definition:

			   ( )
( ) ( )n

k
i

,
i i

f X
E f x x

k p X [0 1]
1

1 d .ò
=

é ù
=ê ú

ê úë û
å 	 (5)

RAY TRACING GEMS



211

The idea is that now the independent random variables Xi are distributed according 
to some possibly nonuniform distribution p(x). Due to the division by p(Xi), everything 
works out: when we are more likely to take samples in some part of the domain, 
p(Xi) is relatively large and the contribution of those samples is reduced. Conversely, 
choosing a sample with a low probability will happen less frequently than it would 
with uniform sampling, but those samples contribute more since their p(Xi) value is 
relatively small. Note that in our example no samples will have p(Xi) = 0.

Why might we want to sample nonuniformly like this? We can see why by 
considering ambient occlusion again. There is a sampling recipe that takes cosine-
distributed samples on the hemisphere (again, centered around (0, 0, 1)):

		  ( ) ( ) ( )( )x, y , z , ,1 2 1 2 1cos 2 sin 2 1 .x x x x x= p p - 	 (6)

Again, it takes two independent uniform random samples ξ1 and ξ2, each in 
[0, 1), and transforms them. It turns out that p(ω) =  cos θ/π, where the π term is 
necessary for normalization.

Pulling it all together, we have the following estimator for the ambient occlusion 
integral if we use cosine-distributed samples ωi:

		  ( ) ( ) ( )
k k

i i
i

i ii

v
a P E E v

k k1 1

cos1 1 1 .
cos /

w q
w

q= =

é ù é ù
= =ê ú ê úp pê ú ë ûë û

å å 	 (7)

Because we could generate rays with probability exactly proportional to cosθ, 
the cosine terms cancel out. In turn, every ray that we sample has the same 
contribution to the estimate—either zero or one.1

The implementation is straightforward:

 1 float ao(float3 p, float3 n, int nSamples) {

 2    float a = 0;

 3    for (int i = 0; i < nSamples; ++i) {

 4      float xi[2] = { rng(), rng() };

 5      float3 dir(sqrt(xi[0]) * cos(2 * Pi * xi[1]),

 6                 sqrt(xi[0]) * sin(2 * Pi * xi[1]),

 7                 sqrt(1 - xi[0]));

 8      dir = transformToFrame(n, dir);

 9      if (visible(p, dir)) a += 1;

10    }

11    return a / nSamples;

12 }

1�If you have implemented screen-space ambient occlusion, it is likely that you are already using this approach, 
though perhaps now it is easier to understand why it is worth doing so.

 On the Importance of Sampling



212

Figure 15-2 shows the crown model again, now comparing uniform sampling to 
cosine-distributed sampling. Cosine-distributed sampling has visibly lower error. 
Why might this be?

With uniformly distributed sampling, some of the rays turn out to have an 
insignificant contribution. Consider a ray close to the horizon: its value of cosθ will 
be close to zero, and effectively, we learn little by tracing the ray. Its contribution 
to the sum in the estimator will either be zero or minimal. Put another way, we do 
just as much work to trace those rays as all the other rays, but we do not get much 
out of them. The difference in the amount of computation required to sample rays 
between the two techniques is negligible, so there is no reason not to use the more 
effective sampling technique.

This general technique, sampling from a distribution that is similar to the 
integrand, is called importance sampling and is an important technique for efficient 
Monte Carlo integration in rendering. The closer a match p(x) is to f(x), the better 
the results. However, if p(x) does not match f(x) well, error will increase as the 
encountered ratios f(x)/p(x) oscillate between minuscule and huge values. As long 
as p(x) > 0 whenever f(x) ≠ 0, the result will still be correct in the limit, though the 
error may be high enough for that to be a small consolation.

Figure 15-2.  Crown model rendered with ambient occlusion: uniform sampling (left) and cosine-
weighted sampling (right). Both used four rays per pixel. Cosine-weighted sampling has nearly 30% lower 
average pixel error than uniform sampling, which is reflected in its image having noticeably less noise.

RAY TRACING GEMS



213

15.3	 �UNDERSTANDING VARIANCE

A concept called variance is useful for characterizing the expected error in Monte 
Carlo integration. The variance of a random variable X is defined in terms of 
another expectation:

		  ( )é ù é ùé ù º - é ù = - é ùë û ë û ë ûë ûê úë û
V X E X E X E X E X

2 22 . 	 (8)

Variance is thus a measure of the squared difference between a random variable 
and its expected value (i.e., its average). In other words, if a random variable has low 
variance, then most of the time its value is close to its average (and the converse if 
variance is high).

If we can accurately compute the expectation of a random variable (e.g., using 
Monte Carlo integration with a large number of samples), we can compute an 
estimate of the variance directly using Equation 8.

We can also estimate the variance: given a number of independent values of a 
random variable, we can compute the sample variance from them using Equation 8 
with a small adjustment. The following code illustrates the computation:

1 float estimate_sample_variance(float samples[], int n) {

2    float sum = 0, sum_sq = 0;

3    for (int i = 0; i < n; ++i) {

4      sum += samples[i];

5      sum_sq += samples[i] * samples[i];

6    }

7    return sum_sq / (n * (n - 1))) -

8           sum * sum / ((n - 1) * n * n);

9 }

Note that it is not necessary to store all the samples: sample variance can also 
be computed incrementally by keeping track of the sum and squared sum of the 
values of the random variable and the total number of samples.

One challenge with the sample variance is that it has variance itself: if we happened 
to have a number of similar sample values even though the underlying estimator had 
high variance, we would compute a much-too-low estimate of the sample variance.

Variance is a particularly useful concept in Monte Carlo integration, as there is a 
fundamental relationship between variance and the number of samples taken:  
for random samples, variance decreases linearly with the number of samples taken.2 

2�Variance can decrease even faster with certain carefully constructed sampling patterns, especially if the 
integrand is smooth, though we ignore that for the discussion here.

 On the Importance of Sampling



214

Thus, the good news is that if we would like to cut the variance in half, we can 
expect that taking twice as many samples (i.e., tracing twice as many rays) will do 
just that. Unfortunately, since variance is effectively squared error, that means that 
cutting error in half requires four times as many samples.

This relationship between variance and the number of samples taken helps explain 
a few things about interactive ray tracing. On one hand, it helps us understand why 
images improve so much going from one sample per pixel to two, and then to three 
and more. It is easy to double the number of samples when you have only taken 
one, and we know that doing so will cut variance in half.

On the other hand, this property also explains why more rays are not always the 
solution: if we have traced 128 rays in a pixel and still have 2× more variance than 
we would like, we need 128 more of them to take care of that. It gets even worse if 
one has an image with thousands of samples per pixel that is still noisy! It is easy to 
see the value of denoising algorithms in this light; they are a much more effective 
way to take care of lingering noise than more rays once a reasonable number of 
rays have been traced.

We computed the average sample variance of all the pixels in the crown 
renderings. The image of ambient occlusion with uniformly sampled directions 
(Figure 15-2, left) has an average variance of 0.0972, and the image with  
cosine-weighted directions (Figure 15-2, right) has average variance 0.0508.  
The ratio between these variances is approximately 1.91. Thus, we can expect 
that if we trace 1.91× more rays with uniform sampling than with cosine-weighted 
sampling, we will get results of roughly equal quality.

We traced four rays per intersection before. Figure 15-3 shows that having 
1.91 × 4 ≈ 8 uniformly distributed directions at each intersection gives similar 
results to using four cosine-weighted directions. The images appear to have  
similar quality, and the image with eight uniformly sampled directions per pixel  
has average pixel variance of 0.0484, which is just slightly better than with four 
cosine-weighted rays.

RAY TRACING GEMS



215

Estimates of variance can also be used to adjust filter kernel widths when 
denoising: where the variance is low, then not much filtering is needed, but where 
it is high, a wide filter is likely a good idea. The earlier caveats about the variance 
in estimates of sample variance apply here: in practice, it is usually a good idea to 
filter the variance estimates across a group of nearby pixels or temporally over 
multiple frames in order to reduce the error in the variance estimate.

Estimates of variance can also be a good guide for adaptive sampling algorithms, in 
which we are trying to decide where more rays should be traced. Indeed, if we can 
choose the pixels with the highest ratio of variance to number of samples already 
taken, then we know that we are getting the most out of our additional rays: given 
the linear decrease in variance with more rays, those rays will have the greatest 
impact on variance reduction across the whole image.3

3�It turns out that driving adaptive sampling based on sampled values like this causes the Monte Carlo estimator to 
become biased [3], which means that it does not converge in quite the way that we have described so far. The root 
issue is essentially that error in the estimated sample variance is not the true error.

Figure 15-3.  Because variance decreases linearly with sample count, we can accurately estimate how 
many more samples will be necessary to reduce measured variance a certain amount. We compare the 
crown with eight uniformly distributed samples (left) and four cosine-distributed samples (right). The 
variance in both images is nearly the same, even though the one on the right required tracing half as  
many rays.

 On the Importance of Sampling



216

15.4	 �DIRECT ILLUMINATION

Another important integral in rendering comes from the surface scattering equation, 
which gives the scattered radiance at a point P in a direction ωo due to the incident 
radiance function Li(P, ω) and the BSDF f(ω → ωo):

		  ( ) ( ) ( )o o i oL P, L P, f cos d .w w w w q wò
W

= ® 	 (9)

In this section, we consider the effect of a few different sampling choices when 
estimating the value of this integral and measure their effect on variance.

Ideally, we would like to be able to sample directions ω proportionally to the value 
of the product of Li, f, and cosθ. In general, this is difficult to do, especially because 
the incident radiance function generally is not available in closed form—we need to 
trace rays to evaluate it.

Here, we make a few simplifications. First, we only consider the incident light from 
emitters in the scene and ignore indirect illumination. Second, we only look at 
the effect of various choices in sampling proportional to Li. Note that the second 
simplification absolutely should not be used in practice: it is imperative to also 
sample from the BSDF and to use a powerful variance reduction technique called 
multiple importance sampling to weight the samples [6].

With those simplifications, we are left with the task of computing the value of the 
following Monte Carlo estimator:

		  ( ) ( ) ( )
( )

k
i i i o i

o o
i i

L P, f
L P, E

k p1

cos1 ,
w w w q

w
w=

é ù®
= ê ú

ê úë û
å 	 (10)

where the ωi have been sampled from some distribution p(ω). Note that if we only 
consider direct illumination, there is no reason to sample a direction that definitely 
does not intersect a light source. Thus, a reasonable strategy is to sample according 
to a distribution over the surface of the light, to choose a point on the light source, 
and then to set the direction ωi as the direction from P to the sampled point.

RAY TRACING GEMS



217

For a spherical emitter, a straightforward approach is to sample points over the 
entire surface of the sphere. The following recipe takes a pair of uniform samples 
ξ1 and ξ2 and uniformly samples points on the unit sphere at the origin:

			   ( )
( )

x z

y z

z 1

2
2

2
2

1 2

1 co

,

s 2 ,

1 sin 2 .

x

x

x

-

- p

= - p

=

= 	 (11)

Figure 15-4 shows how this approach works in a two-dimensional setting. A 
problem is evident: more than half of the circle is not visible to a point outside 
of it, and thus all the samples taken on the backside of the circle with respect to 
the point lead to wasted rays, because other parts of the circle will occlude the 
sampled points from the point P. The analogous case is true in three dimensions.

A better sampling strategy is to bound the sphere with a cone from the point P and 
uniformly sample within the cone to choose points on the sphere. Doing so ensures 
that all the samples are potentially visible to the point (though they still may be 
occluded by other objects in the scene.) The recipe for sampling uniformly in a cone 
with angle θ is given in Chapter 16, “Sampling Transformations Zoo,” but we repeat 
it here:

			 
( )1 1

2

cos 1 cos ,

2 ,

q x x q

f x

= +

= p

¢ -
	 (12)

Figure 15-4.  When sampling points on a spherical light source (yellow circle), at least half of the 
sphere as seen from a point P outside the sphere is occluded. Sampling points uniformly over the 
surface of the sphere, as shown here, is inefficient because all the samples on the back side of the 
sphere are occluded by other parts of the sphere and thus are not useful.

 On the Importance of Sampling



218

where θ ′ is an angle measured with respect to the cone axis with range [0, θ) 
and ϕ is an angle between 0 and 2π that defines a rotation around the cone axis. 
Figure 15-5 illustrates this technique.

The improved sampling strategy makes a big difference; images are shown in 
Figure 15-6. With four rays per pixel, the average pixel variance when sampling 
the spherical emitters uniformly is 0.0787. Variance is 0.0248, or 3.1× lower, when 
sampling the cone. As we saw with ambient occlusion, equivalently we can say that 
3.1× more rays would need to be traced to generate a result with the same quality if 
uniform sampling was used rather than sampling within the cone.

Figure 15-5.  If we compute the angle θ of a cone that bounds a spherical emitter as seen from a point 
P, then if we sample directions within the cone with uniform probability, we can sample points on the 
emitter (black dots) that are not on the back side of it with respect to P.

RAY TRACING GEMS



219

As a last example, we show that choosing which light to sample makes a big 
difference with variance as well.

Given a scene with two light sources, such as White Room, the natural thing to do is to 
trace half of the rays to one light and half to the other. However, consider a point close 
to one of the two light sources (e.g., on the wall above the floor lamp on the right). It is 
visually evident that the light source on the ceiling does not contribute as much light to 
the wall as the light source right next to it. In turn, that means that rays traced to the 
ceiling light will have a much lower contribution than rays traced to the closer light—
exactly the same situation as with ambient occlusion and rays close to the horizon.

Figure 15-6.  White Room scene at nighttime, with two spherical light sources, rendered with four 
samples per pixel. Top: uniform sampling of the spherical light sources. Bottom: sampling within the 
cone subtended from each point being illuminated. Variance is 3.1× lower in the bottom image for the 
same number of rays traced, thanks to a better sampling method being used. (Scene courtesy of Jay 
Hardy, under a CC-BY license.)

 On the Importance of Sampling



220

If we instead choose which light to sample according to a probability that accounts 
for its distance to the receiving point and the emitted power, variance is further 
reduced.4 Figure 15-7 shows the results. Adapting the probability of sampling lights 
to their estimated contribution makes another significant improvement: average 
pixel variance is 0.00921, which is a 2.7× reduction from sampling lights with 
uniform probability (which had average pixel variance of 0.0248). Together, these 
two sampling improvements reduced variance by an overall factor of 8.5×.

4�See Conty Estevez and Kulla’s paper [1], which describes the algorithm we implemented here, as well as 
Chapter 18, “Importance Sampling of Many Lights on the GPU,” where this topic is explored in detail.

Figure 15-7.  White Room scene at nighttime, comparing different approaches of choosing which light 
to sample for illumination. Top: lights are sampled with uniform probability. Bottom: lights are sampled 
with probability proportional to an estimate of the illumination that they cast at the point where 
reflection is being computed. Variance is reduced by 2.7× by the latter technique. (Scene courtesy of 
Jay Hardy, under a CC-BY license.)

RAY TRACING GEMS



221

15.5	 �CONCLUSION

We hope that this chapter has left the reader with a basic understanding of the 
importance of the details of sampling and, more importantly, an understanding 
of why it is worth sampling well. It is easy to sample inefficiently, but it is not that 
much harder to sample well. We showed instances of reductions in variance by 
factors ranging from nearly 2× to 8.5×, purely thanks to more careful sampling and 
tracing more useful rays.

Given the connection between variance and sample count, another way to look at 
these results is that if you do not sample well, it is more or less the same as having a 

GPU that is running at 1
2

 to 1
8

 of the actual performance it offers!

This chapter only scratched the surface of how to sample well in ray tracing; for 
example, we did not discussed how to sample according to the distributions defined 
by BSDFs or how to apply multiple importance sampling, an important variance 
reduction technique. See Chapter 28, “Ray Tracing Inhomogeneous Volumes”; 
Chapter 18, “Importance Sampling of Many Lights on the GPU”; and Chapter 16, 
“Sampling Transformations Zoo,” in this volume for more information on these 
topics. Furthermore, we did not discuss the substantial error reduction that can be 
achieved from using more uniformly distributed samples; see Keller’s survey [2] for 
more information about one such approach. Another useful resource for all these 
topics is the book Physically Based Rendering [4], which is now freely available in an 
online edition.

REFERENCES

	 [1]	� Conty Estevez, A., and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting. 
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1–25:17.

	 [2]	� Keller, A. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo and Quasi-Monte Carlo 
Methods 2012. Springer, 2013, pp. 213–249.

	 [3]	� Kirk, D., and Arvo, J. Unbiased Sampling Techniques for Image Synthesis. Computer Graphics 
(SIGGRAPH) 25, 4 (1991), 153–156.

	 [4]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [5]	 Sobol, I. M. A Primer for the Monte Carlo Method. CRC Press, 1994.

	 [6]	� Veach, E., and Guibas, L. J. Optimally Combining Sampling Techniques for Monte Carlo 
Rendering. In Proceedings of SIGGRAPH (1995), pp. 419–428.

 On the Importance of Sampling



222

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


223© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_16

CHAPTER 16

Sampling Transformations Zoo
Peter Shirley, Samuli Laine, David Hart, Matt Pharr, Petrik Clarberg,  
Eric Haines, Matthias Raab, and David Cline
NVIDIA

 

ABSTRACT

We present several formulas and methods for generating samples distributed 
according to a desired probability density function on a specific domain. 
Sampling is a fundamental operation in modern rendering, both at runtime and 
in preprocessing. It is becoming ever more prevalent with the introduction of ray 
tracing in standard APIs, as many ray tracing algorithms are based on sampling by 
nature. This chapter provides a concise list of some useful tricks and methods.

16.1	 �THE MECHANICS OF SAMPLING

A common task in ray tracing programs is to choose a set of samples on some 
domain with an underlying probability density function (PDF): for example, a set 
of points on the unit hemisphere whose probability density is proportional to the 
cosine of the polar angle. This is often accomplished by taking a set of samples that 
are uniform on the unit hypercube and transforming them to the desired domain. 
For readers unfamiliar with this general sample-generation pipeline, please refer 
to Chapter 13 of Pharr et al. [8].

This chapter catalogs a variety of methods to generate specific distributions 
that the authors have found useful in ray tracing programs. These are all either 
previously published or are part of the “conventional wisdom.”



224

16.2	 �INTRODUCTION TO DISTRIBUTIONS

In one dimension, there is a fairly standard way to create a transform that will 
generate samples with the desired PDF p. The key observation behind this method 
uses a construct called the cumulative distribution function (CDF), usually denoted 
with a capital P(x):

    ( ) ( )
x

P x u x p y dyprobability distributed sathat aunifo mple .rmly ò
-¥

= < =     (1)

To see how this function can become useful, suppose that we want to determine 
where a particular uniformly distributed value u = 0.5 will go when passed through 
our desired warping function g : x = g(0.5). If we assume that g is nondecreasing 
(so its derivative is never negative), then half of the points will map to values of x 
less than g(0.5) and the other half to values of x greater than g(0.5). Because of the 
intrinsic property of CDFs, when P(x) = 0.5 we also know that half of the area under 
the PDF is to the left of that x, so we can deduce that

				    ( )( )P g 0.5 0.5.= 	 (2)

This basic observation actually works for any x in addition to x = 0.5. Thus, we have

				    ( ) ( )g x P x1 ,-= 	 (3)

where P−1 is the inverse function of P. The notation of inverse functions can be 
confusing. In practice what it means algebraically is that given a PDF p we integrate 
it using the integral in Equation 1, and then we solve for x in the resulting equation 
(which is inverting P):

( )u P x .=

Given a sequence of uniformly distributed samples u, we compute the inverse of P 
to find a p-distributed sequence of samples x.

For two-dimensional domains, two uniformly distributed samples are needed, 
u[0] and u[1]. These together give a point on the two-dimensional unit square: 
(u[0], u[1]) ∈ [0, 1)2. They can also be transformed to a desired domain.

RAY TRACING GEMS



225

For example, to pick a uniformly distributed sample on a unit disk, we would 
write down an integral in polar coordinates with a measure dA = rdrdφ, where r 
represents a distance (radius) from the origin along the angle φ from the positive 
x-axis. When possible in 2D domains, the two dimensions are separated into two 
independent 1D PDFs, and terms such as the r in the measure need to be handled 

carefully. Although a uniform ( )j
p

=p r, 1  for uniform density on the unit disk, 

when separated into two 1D independent densities, the r is attached to the density 
of the radius. The resulting two 1D PDFs are

			        ( ) ( )p p r r1 2

1 , 2 .
2

j
p

= = 	 (4)

The constant terms 1
2p

 and 2 make each of the PDFs integrate to 1 (a required 

property of PDFs as discussed earlier). If we find the CDFs for those two PDFs,  
we get

			       ( ) ( )P P r r 2
1 2, .

2
jj
p

= = 	 (5)

If we want to transform uniform samples u[0] and u[1] to respect those CDFs, we 
can apply Equation 2 to each 1D CDF:

			       ( )u u r 2[0], [1] , ,
2
j
p

æ ö
= ç ÷
è ø

	 (6)

and then solve each for φ and r, yielding

			       ( ) ( )j p=,r u , u2 [0] [1] . 	 (7)

This basic “playbook” is used for most of the transforms found in the literature.

An important note is that, while our treatment assumes that (u[0], u[1]) are uniform 
on a unit square, in a higher-dimension d the points are uniformly distributed in 
the unit hypercube [0, 1)d. Such samples can be generated by (pseudo-)random or 
quasi-random methods [6].

The rest of this chapter gives several transforms, usually without derivation and 
most of them in two dimensions, that we have found to be useful in ray tracing 
programs.

 Sampling Transformations Zoo



226

16.3	 �ONE-DIMENSIONAL DISTRIBUTIONS

16.3.1	 �LINEAR

 

Given the linear function over [0, 1] with f(0) = a and f(1) = b and given a uniformly 
distributed sample u, the following generates a value x ∈ [0, 1] distributed 
according to f:

1 float SampleLinear( float a, float b ) {

2     if (a == b) return u;

3     return clamp((a - sqrt(lerp(u, a * a, b * b))) / (a - b), 0, 1);

4 }

The value of the PDF of a sample x can be found by the following:

1 if (x < 0 || x > 1) return 0;

2 return lerp(x, a, b) / ((a + b) / 2);

16.3.2	 �TENT

 

A non-normalized tent function is specified by a width r and is defined by a pair 
of linear functions: it goes linearly from 0 at −r to a value of 1 at the origin, and 
then back down to 0 at r. The SampleLinear() function in the following code 
implements the technique described in Section 16.3.1:

1 if (u < 0.5) {

2     u /= 0.5;

3     return -r * SampleLinear(u, 1, 0);

4 } else {

5     u = (u - .5) / .5;

6     return r * SampleLinear(u, 1, 0);

7 }

RAY TRACING GEMS



227

Note that we use the uniformly distributed sample u to choose one half of the tent 
function and then remap the sample back to [0, 1) to sample the appropriate linear 
function.

The PDF for a value sampled at x can be computed as follows:

1 if (abs(x) >= r) return 0;

2 return 1 / r - abs(x) / (r * r);

16.3.3	 �NORMAL DISTRIBUTION

 

The normal distribution is defined as

			   ( ) ( )x
f x

2

2
exp .

2

m

s

æ ö-ç ÷= -
ç ÷
è ø

	 (8)

It has infinite support but falls off quickly once ‖ x − μ‖ is a few multiples of σ. It is 
not possible to analytically generate a single sample from this distribution, since 
doing so requires inverting the error function,

			   ( )
p
ò -=

x xx e dx
2

0

2erf , 	 (9)

which is not feasible in closed form. One option is to use a polynomial 
approximation of the inverse, which we take to be implemented by ErfInv(). Given 
that, a sample can be generated as

1 return mu + sqrt(2) * sigma * ErfInv(2 * u - 1);

The PDF for a sample x is then given by

1 return 1 / sqrt(2 * M_PI * sigma * sigma) *

2          exp(-(x - mu) * (x - mu) / (2 * sigma * sigma));

If more than one sample is needed, the Box-Müller transform generates two 
samples from the normal distribution, given two uniformly distributed samples:

1 return { mu + sigma * sqrt(-2 * log(1-u[0])) * cos(2*M_PI*u[1]),

2          mu + sigma * sqrt(-2 * log(1-u[0])) * sin(2*M_PI*u[1])) };

 Sampling Transformations Zoo



228

16.3.4	 �SAMPLING FROM A ONE-DIMENSIONAL DISCRETE DISTRIBUTION

Given an array of floating-point values, there are a few ways to choose one of them 
with a probability proportional to its relative magnitude. We present two methods 
here: one is better if only a single sample is needed, and the other is better if 
multiple samples are needed.

16.3.4.1  �JUST ONCE

If only a single sample is needed, then the function in the following code can 
be used. It computes the sum of the values (expecting that all are nonnegative) 
and then scales the provided uniformly distributed sample u, remapping it from 
the [0, 1) domain to [0; sum). It then walks through the array, subtracting each 
array element’s value from the remapped sample. Once it gets to the point that 
subtracting the next value would make the scaled value negative, it has found the 
right place to stop.

This function also returns the PDF for choosing an element as well as a remapped 
sample value in [0, 1) based on the original sample value. Intuitively, there is still a 
uniform distribution left in the sample, because we used it to make only a discrete 
sampling decision. However, the number of uniformly distributed bits left may be 
too small for the sample to be reused, especially if the selected event has a tiny 
probability.

 1 int SampleDiscrete(std::vector<float> weights, float u,

 2             float *pdf, float *uRemapped) {

 3     �float sum = std::accumulate(weights.begin(), weights.end(), 0.f);

 4     float uScaled = u * sum;

 5     int offset = 0;

 6     while (uScaled > weights[offset] && offset < weights.size()) {

 7         uScaled -= weights[offset];

 8         ++offset;

 9     }

10     if (offset == weights.size()) offset = weights.size() - 1;

11

12     *pdf = weights[offset] / sum;

13     *uRemapped = uScaled / weights[offset];

14     return offset;

15 }

RAY TRACING GEMS



229

16.3.4.2  �MULTIPLE TIMES

 

If an array needs to be sampled more than once, it is much more efficient to 
precompute the array’s CDF and perform a binary search for each sample. Care 
must be taken to distinguish between piecewise constant and piecewise linear 
data, as the CDF computation and sampling are different for each. For example, to 
sample from a piecewise constant distribution, we would use the following:

 1 vector<float> makePiecewiseConstantCDF(vector<float> pdf) {

 2     float total = 0.0;

 3     // CDF is one greater than PDF.

 4     vector<float> cdf { 0.0 };

 5     // Compute the cumulative sum.

 6     for (auto value : pdf) cdf.push_back(total += value);

 7     // Normalize.

 8     for (auto& value : cdf) value /= total;

 9     return cdf;

10 }

11

12 int samplePiecewiseConstantArray(float u, vector<float> cdf,

13             float *uRemapped)

14 {

15     // Use our (sorted) CDF to find the data point to the

16     // left of our sample u.

17     int offset = upper_bound(cdf.begin(), cdf.end(), u) -

18     cdf.begin() - 1;

19     *uRemapped = (u - cdf[offset]) / (cdf[offset+1] - cdf[offset]);

20     return offset;

21 }

 

For sampling a piecewise linear distribution, the CDF can be constructed by 
computing the area of the trapezoid between each pair of samples. Sampling the 
distribution involves sampling from the linear segment using the SampleLinear() 

 Sampling Transformations Zoo



230

function from Section 16.3.1, after the binary search. If using C++, the Standard 
Template Library’s random module introduced piecewise_constant_
distribution and piecewise_linear_distribution in C++11.

16.4	 �TWO-DIMENSIONAL DISTRIBUTIONS

16.4.1	 �BILINEAR

 

It can be useful to sample from the bilinear interpolation function, which we define as 
taking four values v[4] that define a function over [0, 1]2 by

	   ( ) ( )( )( ) ( ) ( )f x, y x y v x y v x yv xyv1 1 [0] 1 [1] 1 [2] [3].= - - + - + - + 	 (10)

Then, given two uniformly distributed samples u[0] and u[1], a sample can be 
taken from the distribution f(x, y) by first sampling one dimension and then 
sampling the second. Here, we use the one-dimensional linear sampling function, 
SampleLinear(), defined in Section 16.3.1:

 1 // First, sample in the v dimension. Compute the endpoints of

 2 // the line that is the average of the two lines at the edges

 3 // at u = 0 and u = 1.

 4 float v0 = v[0] + v[1], v1 = v[2] + v[3];

 5 // Sample along that line.

 6 p[1] = SampleLinear(u[1], v0, v1);

 7 // Now, sample in the u direction from the two line endpoints

 8 // at the sampled v position.

 9 p[0] = SampleLinear(u[0],

10                      lerp(p[1], v[0], v[2]),

11                      lerp(p[1], v[1], v[3]));

12 return p;

The PDF of a sampled value p is the following:

1 return (4 / (v[0] + v[1] + v[2] + v[3])) * Bilerp(p, v);

RAY TRACING GEMS



231

16.4.2	 �A DISTRIBUTION GIVEN A TWO-DIMENSIONAL TEXTURE

16.4.2.1  �REJECTION SAMPLING

 

To choose a texel in a texture with probability proportional to the texel’s brightness, 
one simple technique is to use rejection sampling, where texels are uniformly 
chosen and a sample is accepted only if the texel’s brightness is greater than 
another uniformly distributed value:

1 do {

2     X = u();

3     Y = u();

4 } while (u() > brightness(texture(X,Y))); // Brightness is [0,1].

Note that the efficiency of rejection sampling a texture is proportional to the 
texture’s average brightness, so if performance is a concern, avoid this method for 
sparse (mostly dark) textures.

16.4.2.2  �MULTI-DIMENSIONAL INVERSION METHOD

To sample a texture in two dimensions, we can build on Section 16.3.4.2 (sampling 
from a one-dimensional array) by sampling from two distributions, vertical and 
horizontal:

>> Build CDF tables (cumulative distribution) of brightness, one for each row of 
pixels, and normalize.

>> Build a CDF for the last column (the sum of brightness across each row) and 
normalize.

 

 Sampling Transformations Zoo



232

>> To sample from the texture’s distribution, take a uniform two-dimensional 
sample (u[0], u[1]). Use u[1] to binary-search the column CDF. This 
determines which row to use. Now, use u[0] to binary-search the row to 
find the sample’s column. The resulting coordinates (column, row) are 
distributed according to the texture.

The drawback of this inversion method is that it does not preserve stratification 
properties of the sample points (e.g., blue noise or low-discrepancy points) well. 
If this is an issue, it is preferable to sample hierarchically in two dimensions, as 
described next.

16.4.2.3  �HIERARCHICAL TRANSFORMATION

 

Hierarchical warping is a way to improve on the shortcomings of the inverse 
transform sampling described in the previous section, namely that the row- and 
column-based inverse transform mapping may cause samples to be clustered. We 
note in advance that hierarchical warping does not completely solve the problems 
of continuity and stratification, especially when using correlated samples, e.g., blue 
noise or low-discrepancy sequences, but it is a practical way to have some spatial 
coherence while sampling a texture. Example applications of hierarchical warping 
include importance sampling methods for complex light sources [3, 7].

The principle is to build a tree of conditional probabilities, where at each node 
we store the relative importance of the node’s children. Sampling is performed 
by starting from the root and at each node probabilistically deciding which child 
node to select based on a uniformly distributed sample. Rather than drawing a 
new uniform sample at each level, the algorithm both gets more efficient and 
generates better distributions if the uniform sample is remapped at each step. See 
illustrations of generated sampling probabilities in the article by Clarberg et al. [2].

RAY TRACING GEMS



233

This method is not limited to sampling discrete distributions in two dimensions. 
For example, the tree can be a binary tree, quad tree, or octree, depending on the 
domain. The following pseudocode illustrates the method for a binary tree:

 1 node = root;

 2 while (!node.isLeaf) {

 3     if (u < node.probLeft) {

 4         u /= node.probLeft;

 5         node = node.left;

 6     } else {

 7         u /= (1.0 - node.probLeft);

 8         node = node.right;

 9 }

10 // Ok. We have found a leaf with the correct probability!

For two-dimensional textures, the implementation becomes particularly simple, 
as we can sample based on the texture’s mipmap hierarchy directly. Starting at the 
2 × 2 texel mipmap, the conditional probabilities are computed based on the texel 
values, first horizontally and then vertically. The best final distribution is achieved 
with a two-dimensional uniformly distributed sample:

 1 int2 SampleMipMap(Texture& T, float u[2], float *pdf)

 2 {

 3     // Iterate over mipmaps of size 2x2 ... NxN.

 4     // load(x,y,mip) loads a texel (mip 0 is the largest power of two)

 5     int x = 0, y = 0;

 6     for (int mip = T.maxMip()-1; mip >= 0; --mip) {

 7         x <<= 1; y <<= 1;

 8         float left = T.load(x, y, mip) + T.load(x, y+1, mip);

 9         float right = T.load(x+1, y, mip) + T.load(x+1, y+1, mip);

10         float probLeft = left / (left + right);

11         if (u[0] < probLeft) {

12             u[0] /= probLeft;

13             float probLower = T.load(x, y, mip) / left;

14             if (u[1] < probLower) {

15                 u[1] /= probLower;

16             }

17             else {

18                 y++;

19                 u[1] = (u[1] - probLower) / (1.0f - probLower);

20             }

21         }

22         else {

23             x++;

24             u[0] = (u[0] - probLeft) / (1.0f - probLeft);

25             float probLower = T.load(x, y, mip) / right;

 Sampling Transformations Zoo



234

26             if (u[1] < probLower) {

27                 u[1] /= probLower;

28             }

29             else {

30                 y++;

31                 u[1] = (u[1] - probLower) / (1.0f - probLower);

32             }

33         }

34     }

35     // We have found a texel (x,y) with probability proportional to

36     // its normalized value. Compute the PDF and return the

37     // coordinates.

38     *pdf = T.load(x, y, 0) / T.load(0, 0, T.maxMip());

39     return int2(x, y);

40 }

It should be noted that some numerical precision can be lost for all these methods 
that remap one or more uniformly distributed sample along the way. The input 
values are generally in 32-bit floating-point format, which means that once we 
get a leaf to sample, there may be only a few bits of precision left. This is not 
usually a problem in practice for common texture sizes, but it is important to know 
about. For higher precision, we always have the option of drawing new uniformly 
distributed samples at each step, but then stratification properties may be lost.

Another useful tip is that it is not necessary for the probabilities at each level in the 
tree to be the sums of the underlying nodes. If this is not the case, we can simply 
compute the sampling probability density function along the way by multiplicatively 
accumulating the selecting probabilities at each step. This leads to algorithms that 
allow sampling of functions where the full probability density function is not known 
beforehand but is created on the fly.

16.5	 �UNIFORMLY SAMPLING SURFACES

When sampling a two-dimensional surface uniformly, i.e., every point on the 
surface is equally likely to be sampled, the PDF of all points equals one over the 

area of the surface. For example, for a unit sphere p 1
4p

= .

16.5.1	 �DISK

A disk is centered at the origin (x, y) = (0, 0) and has radius r.

RAY TRACING GEMS



235

16.5.1.1  �POLAR MAPPING

 

A polar mapping transforms the uniform u[0] to favor larger radii, which in turn 
ensures a uniform distribution of samples. The area of the disk increases as the 
radius increases, with only a fourth of the total being within the half-radius.

1 r = R * sqrt(u[0]);

2 phi = 2*M_PI*u[1];

3 x = r*cos(phi);

4 y = r*sin(phi);

This polar mapping is usually not used because of the “seam” (discontinuity in the 
inverse transform) and the concentric mapping discussed next is preferred unless 
branching is being avoided.

16.5.1.2  �CONCENTRIC MAPPING

 

A concentric mapping maps concentric squares with [0, 1)2 to concentric circles so 
that there is no seam and adjacency is preserved [11].

 1 a = 2*u[0] - 1;

 2 b = 2*u[1] - 1;

 3 if (a*a > b*b) {

 4     r = R*a;

 5     phi = (M_PI/4)*(b/a);

 6 } else {

 7     r = R*b;

 8     phi = (M_PI/2) - (M_PI/4)*(a/b);

 9 }

 Sampling Transformations Zoo



236

10 X = r*cos(phi);

11 Y = r*sin(phi);

16.5.2	 �TRIANGLE

To uniformly sample a triangle with vertices P0, P1, and P2, barycentric coordinates 
are used to transform the coordinates to be in range, or to flip the seed point if it is 
not in the lower half of the square.

16.5.2.1  �WARPING

 

We can sample directly in the valid barycentric range to warp a quadrilateral into a 
triangle:

1 beta = 1-sqrt(u[0]);

2 gamma = (1-beta)*u[1];

3 alpha = 1-beta-gamma;

4 P = alpha*P0 + beta*P1 + gamma*P2;

16.5.2.2  �FLIPPING

 

To avoid the square root, you can also sample from a quadrilateral and flip the 
sample if you are on wrong side of the diagonal. However, flipping over the diagonal 
can reduce the effectiveness of blue noise or low-discrepancy sampling within 
the triangle, as there is usually no guarantee that well-distributed points in two 
dimensions remain well distributed when folded.

RAY TRACING GEMS



237

1 alpha = u[0];

2 beta = u[1];

3 if (alpha + beta > 1) {

4     alpha = 1-alpha;

5     beta = 1-beta;

6 }

7 gamma = 1-beta-alpha;

8 P = alpha*P0 + beta*P1 + gamma*P2;

16.5.3	 �TRIANGLE MESH

 

To sample points on a triangle mesh, Turk [13] suggests using binary search on the 
one-dimensional discrete distribution of triangle areas.

We can improve mesh sampling and create a mapping from samples in the unit 
square to points on the mesh by combining texture sampling from Section 16.4.2.2, 
triangle sampling from Section 16.5.2, and the remapped uniformly distributed 
samples from our array sampling function in Section 16.3.4.2. The steps are:

>> Store the area of each triangle in a square-ish two-dimensional table. Order 
does not matter. Use 0 as the area for cells not associated with any triangles.

>> Build a CDF of area for each row in the table and normalize.

>> Build a CDF for the last column (the sum of area across each row) and 
normalize.

To sample the mesh:

>> Take a uniformly distributed two-dimensional sample (u[0], u[1]).

>> Use u[1] to binary-search the column CDF. This determines which row r to use.

>> Use u[0] to binary search the row to find the sample’s column c.

>> Save the remapped samples from (u[0], u[1]) as (v[0], v[1]).

 Sampling Transformations Zoo



238

>> Using our remapped two-dimensional variable (v[0], v[1]), sample the triangle 
corresponding to row r and column c, using the triangle sampling method from 
Section 16.5.2.

>> The resulting three-dimensional coordinates are uniformly distributed on the 
triangle mesh.

Note that this method is discontinuous, which may affect the quality of the samples 
after transformation.

16.5.4	 �SPHERE

 

The sphere is centered at the origin and has radius r.

16.5.4.1  �LATITUDE-LONGITUDE MAPPING

The following code shows how points can be generated using a uniform latitude-
longitude mapping. Note the z value is uniformly distributed on (−1, 1].

1 a = 1 - 2*u[0];

2 b = sqrt(1 - a*a);

3 phi = 2*M_PI*u[1];

4 x = R*b*cos(phi);

5 y = R*b*sin(phi);

6 z = R*a;

16.5.4.2  �OCTAHEDRAL CONCENTRIC (UNIFORM) MAP

 

RAY TRACING GEMS



239

The previous method (the latitude-longitude map) is intuitive, but a drawback is 
that it “stretches” the sampling domain quite significantly at the top and bottom. 
Building on the concentric map in Section 16.5.1.2 and combining it with an 
octahedral map (cf., Figure 2 in Praun and Hoppe [9]), it is possible to define an 
octahedral concentric mapping of the sphere with good properties; its stretch is 
at worst a factor of 2 : 1 [1]. With a uniform two-dimensional point as input, the 
optimized transform to the unit sphere is as follows:

 1 // Compute radius r (branchless).

 2 u = 2*u - 1;

 3 d = 1 - (abs(u[0]) + abs(u[1]));

 4 r = 1 - abs(d);

 5

 6 // Compute phi in the first quadrant (branchless, except for the

 7 // division-by-zero test), using sign(u) to map the result to the

 8 // correct quadrant below.

 9 phi = (r == 0) ? 0 : (M_PI/4) * ((abs(u[1]) - abs(u[0])) / r + 1);

10 f = r * sqrt(2 - r*r);

11 x = f * sign(u[0]) * cos(phi);

12 y = f * sign(u[1]) * sin(phi);

13 z = sign(d) * (1 - r*r);

14 pdf = 1 / (4*M_PI);

Note that in many applications these transforms from the unit square to the unit 
sphere are useful not only for generating samples, but also for representing 
spherical functions in a convenient square two-dimensional domain. The inverse 
operation, to map points on the unit sphere (e.g., ray directions) back to two 
dimensions, is equally useful.

16.6	 �SAMPLING DIRECTIONS

Sampling PDFs defined over directions on the sphere or hemisphere is a central 
part of many ray tracers. Often this sampling is for integrating incoming light to 
compute an outgoing intensity at a point. These PDFs are commonly defined in 
spherical coordinates where the polar angle (sometimes called the zenith angle) 
is usually denoted θ and the azimuthal angle is denoted φ. Unfortunately, different 
fields vary in whether they use this or the opposite notation convention. So, this 
notation may be the reverse of what the reader is used to, depending on their 
background, but it is relatively standard in computer graphics.

When choosing a direction, a common convention is to choose a point on the unit 
sphere (or hemisphere) and define the direction as the unit vector from the sphere 
center to that point.

 Sampling Transformations Zoo



240

16.6.1	 �COSINE-WEIGHTED HEMISPHERE ORIENTED TO THE Z-AXIS

 

A common way to generate diffuse rays in rendering methods for matte surfaces is 
to sample uniformly from a disk (as in Section 16.5.1) and then project the sample 
point up to the hemisphere. Doing so produces samples with a cosine-weighted 
distribution, where the density is high at the apex of the hemisphere and falls off 
toward the base. Generated samples will need to be transformed into the local 
tangent space of the surface being rendered.

1 x = sqrt(u[0])*cos(2*M_PI*u[1]);

2 y = sqrt(u[0])*sin(2*M_PI*u[1]);

3 z = sqrt(1-u[0]);

4 pdf = z / M_PI;

16.6.2	 �COSINE-WEIGHTED HEMISPHERE ORIENTED TO A VECTOR

As an alternative to transforming the z-axis to n (e.g., the normal of the tangent 
space), we can use a uniformly distributed sample on a tangent sphere. This 
method avoids constructing tangent vectors, but it comes at the expense of 
numerical precision for the grazing case. We can pick a uniformly distributed 
direction through a sphere by connecting two uniformly distributed samples on the 
surface of a sphere [10]. Doing so implies that the directions to the second point 
have a cosine density relative to the first point. If the vector n = (nx, ny, nz) is a unit-
length vector, this implies the following:

1 a = 1 - 2*u[0];

2 b = sqrt(1 - a*a);

3 phi = 2*M_PI*u[1];

4 x = n_x + b*cos(phi);

5 y = n_y + b*sin(phi);

6 z = n_z + a;

7 pdf = a / M_PI;

RAY TRACING GEMS



241

Note that (x, y, z) is not a unit vector. The precision problem arises when the 
uniformly distributed sample on the tangent sphere is nearly opposite to n, 
resulting in an output vector that is close to zero. Such points correspond to grazing 
rays (perpendicular to the normal). To avoid these cases, we can shrink the tangent 
sphere a bit by multiplying both a and b by a number slightly less than one.

16.6.3	 �DIRECTIONS IN A CONE

 

Given a cone with axis along the +z-axis and a spread angle θmax, uniform directions 
in the cone can be sampled as follows:

1 float cosTheta = (1 - u[0]) + u[0] * cosThetaMax;

2 float sinTheta = sqrt(1 - cosTheta * cosTheta);

3 float phi = u[1] * 2 * M_PI;

4 x = cos(phi) * sinTheta

5 y = sin(phi) * sinTheta

6 z = cosTheta

The PDF of all samples is 1/(2π(1 −  cos θmax)).

16.6.4	 �PHONG DISTRIBUTION

 

Given a Phong-like PDF with exponent s,

			   ( ) ssp , 1cos ,
2

q j q
p
+

= 	 (11)

 Sampling Transformations Zoo



242

we can sample a direction relative to the z-axis as follows:

1 cosTheta = pow(1-u[0],1/(1+s));

2 sinTheta = sqrt(1-cosTheta*cosTheta);

3 phi = 2*M_PI*u[1];

4 x = cos(phi)*sinTheta;

5 y = sin(phi)*sinTheta;

6 z = cosTheta;

Note that the generated direction may be below the surface indicated in the 
diagram. Most programs use a test to set the contribution of such directions to 
zero.

16.6.5	 �GGX DISTRIBUTION

The Trowbridge-Reitz GGX normal distribution function [12, 15]:

		        ( )
( )( )

h

h

D
2

2
2 2

,
1 1 cos

aq
p a q

=
+ -

	 (12)

is commonly used for the specular lobe in microfacet reflectance models. Its width 
or roughness parameter α defines the appearance of the surface, with lower values 
indicating shinier surfaces.

The GGX distribution can be sampled by transforming two-dimensional uniformly 
distributed samples into spherical coordinates for the half-vector as follows:

			   
h

u
u
[0]arctan ,

1 [0]

aq
æ ö
ç ÷=
ç ÷-è ø

	 (13)

			       
h u2 [1],j p= 	 (14)

where α is the GGX roughness parameter. It is often convenient to rewrite the 
expression using trigonometric identities to directly compute cosθh as

			   ( )h
u
u2

1 [0]cos
1 [0] 1

q
a

-
=

- + 	 (15)

and to use the Pythagorean identity to compute h h
2sin 1 cosq q= -  as before. The 

PDF of the sampled half-vector is p(θh, φh) = D(θh) cos θh.

RAY TRACING GEMS



243

For rendering, we are usually interested in sampling incident directions based on 
a given outgoing direction and local tangent frame. To do so, the outgoing direction 
v̂  is reflected around the sampled half-vector ĥ  to find the incident direction as 

( )ˆ ˆ ˆ2 ˆ ˆ= × -l v h h v . This operation changes the PDF above, which must be multiplied by 

the Jacobian of the transform that is ( )( )1/ 4 ˆˆ ×v h  in this case [14].

As with the Phong sampling in Section 16.6.4, the generated direction can be 
below the surface. Typically these are areas where the integrand is zero, but 
programmers should make sure to handle these cases carefully.

16.7	 �VOLUME SCATTERING

For volumes, also often called participating media, rays will “collide” with the 
volume in a probabilistic fashion. Some programs do this with incremental 
ray integration, but an alternative is to compute discrete collisions. For more 
information on volumes for graphics, see Chapter 11 of Pharr et al. [8].

Also see Chapter 28 for more information on this topic.

16.7.1	 �DISTANCES IN A VOLUME

Tracing photons through scattering and absorbing media requires importance 
sampling of distances proportional to the volume transmittance

			     ( ) ( )kòæ ö= -ç ÷
è ø

s
T s t dt

0
exp 	 (16)

for the volume extinction coefficient κ(t). The PDF for this distribution is

			   ( ) ( ) ( )k kòæ ö= -ç ÷
è ø

s
p s s t dt

0
exp . 	 (17)

16.7.1.1  �HOMOGENEOUS MEDIA

In the case that κ is a constant, we have p(s) = κ exp (−sκ) and the inversion method 
can be used to obtain the following:

1 s = -log(1 - u) / kappa;

Note that 1 − u is important: remember that we assumed u ∈ [0, 1), so 1 − u ∈ (0, 1], 
which avoids invoking the logarithm for zero!

 Sampling Transformations Zoo



244

16.7.1.2  �INHOMOGENEOUS MEDIA

For spatially varying κ(t), a procedure often referred to as Woodcock tracking gives 
the desired distribution [16]. Given the maximum extinction coefficient κmax along 
the ray and a generator u for samples uniform in [0, 1), the procedure is as follows:

1 s = 0;

2 do {

3     s -= log(1 - u()) / kappa_max;

4 } while (kappa(s) < u() * kappa_max);

16.7.2	 �HENYEY-GREENSTEIN PHASE FUNCTION

The Henyey-Greenstein phase function is a useful tool to model the directional 
scattering characteristics inside a volume. It is a PDF on the sphere of all directions 
that depends only on the angle θ between the incoming and outgoing directions and 
that is controlled with a single parameter g (the average cosine):

		        ( )
( )

gp
g g

2

3/22

1 .
4 1 2 cos

q
p q

-
=

+ - 	 (18)

For g = 0 the scattering is isotropic, for g approaching −1 the scattering becomes 
highly focused forward scattering, and for g approaching 1 the scattering turns into 
highly focused backward scattering.

1 phi = 2.0 * M_PI * u[0];

2 if (g != 0) {

3     tmp = (1 - g * g) / (1 + g * (1 - 2 * u[1]));

4     cos_theta = (1 + g * g - tmp * tmp) / (2 * g);

5 } else {

6     cos_theta = 1 - 2 * u[1];

7 }

16.8	 �ADDING TO THE ZOO COLLECTION

We have presented a variety of transforms we have found useful for ray tracing 
programs. We have not delved deeply into the theory needed to add to this 
collection. Readers that want to learn more about that theory so they can add 
their own “animals” can find thorough treatments in the books by Pharr et al. [8], 
Glassner [5], and Dutré et al. [4].

RAY TRACING GEMS



245

REFERENCES

	 [1]	� Clarberg, P. Fast Equal-Area Mapping of the (Hemi)Sphere Using SIMD. Journal of Graphics Tools 
13, 3 (2008), 53–68.

	 [2]	� Clarberg, P., Jarosz, W., Akenine-Möller, T., and Jensen, H. W. Wavelet Importance Sampling: 
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005), 
1166–1175.

	 [3]	� Conty Estévez, A., and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting. 
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1–25:17.

	 [4]	 Dutré, P., Bekaert, P., and Bala, K. Advanced Global Illumination. A K Peters, 2006.

	 [5]	 Glassner, A. S. Principles of Digital Image Synthesis. Elsevier, 1995.

	 [6]	� Keller, A. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo and Quasi-Monte Carlo 
Methods 2012. Springer, 2013, pp. 213–249.

	 [7]	� Keller, A., Wächter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndörfer, J., and Kettner, 
L. The Iray Light Transport Simulation and Rendering System. arXiv, http://arxiv.org/
abs/1705.01263, 2017.

	 [8]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [9]	� Praun, E., and Hoppe, H. Spherical Parametrization and Remeshing. ACM Transactions on 
Graphics 22, 3 (2003), 340–349.

	 [10]	� Sbert, M. An Integral Geometry Based Method for Fast Form-Factor Computation. Computer 
Graphics Forum 12, 3 (1993), 409–420.

	 [11]	� Shirley, P., and Chiu, K. A Low Distortion Map Between Disk and Square. Journal of Graphics Tools 
2, 3 (1997), 45–52.

	 [12]	� Trowbridge, T. S., and Reitz, K. P. Average Irregularity Representation of a Rough Surface for Ray 
Reflection. Journal of the Optical Society of America 65, 5 (1975), 531–536.

	 [13]	� Turk, G. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion. Computer Graphics 
(SIGGRAPH) 25, 4 (July 1991), 289–298.

	 [14]	� Walter, B. Notes on the Ward BRDF. Tech. Rep. PCG-05-06, Cornell Program of Computer 
Graphics, April 2005.

	 [15]	� Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refraction Through 
Rough Surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques 
(2007), pp. 195–206.

	 [16]	� Woodcock, E. R., Murphy, T., Hemmings, P. J., and Longworth, T. C. Techniques Used in the 
GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex 
Geometry. In Applications of Computing Methods to Reactor Problems (1965), p. 557.

 Sampling Transformations Zoo

http://arxiv.org/abs/1705.01263
http://arxiv.org/abs/1705.01263


246

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


247© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_17

CHAPTER 17

Ignoring the Inconvenient When  
Tracing Rays
Matt Pharr 
NVIDIA

ABSTRACT

Ray tracing’s greatest strength—that it can simulate all types of light transport—
can also be its greatest weakness: when there are a few paths that unexpectedly 
carry much more light than others, the produced images contain a smattering of 
pixels that have bright spiky noise. Not only can it require a prohibitive number of 
additional rays to average out those spikes, but those pixels present a challenge 
for denoising algorithms. This chapter presents two techniques to address this 
problem, preventing it from occurring in the first place.

17.1	 �INTRODUCTION

Ray tracing is a marvelous algorithm, allowing unparalleled fidelity in the accurate 
simulation of light transport for image synthesis. No longer are rasterizer hacks 
required to generate high-quality images; real-time graphics programmers can 
now happily move forward to a new world, tracing rays to make beautiful images, 
and be free of the shackles of that history.

Now, let us move on to the new hacks.

17.2	 �MOTIVATION

Figure 17-1 presents two images of a pair of spheres in a box, both rendered 
with path tracing, using a few thousand paths per pixel to compute a high-quality 
reference image. The scene is illuminated by an area light source (not directly 
visible). The only difference between the two images is the material on the right-
hand sphere: diffuse on the left and a perfectly specular mirror on the right.



248

Something interesting happens if we render these scenes with a more realistic 
number of samples per pixel—here we used 16.1 Figure 17-2 shows the result: the 
scene with only diffuse spheres looks pretty good. However, the scene with the 
mirrored sphere has bright spiky noise, sometimes called “fireflies,” scattered all 
around the scene.

From what one might have thought is an innocuous change in material, we see a 
massive degradation in image quality. What is going on here?

To understand what has happened, imagine for a moment that we instead wanted 
to compute the average pixel value of an image by averaging pixel values at just 
a handful of randomly chosen pixels. Consider performing that task with the two 
converged images in Figure 17-1. In the scene with two diffuse spheres, most pixels 
have values that are roughly the same magnitude. Thus, no matter which pixels you 
choose, the average you compute will be in the correct ballpark.

In the scene with the specular sphere, note that we can see a small reflection of 
the light source in the mirrored sphere. In the rare cases where we happened to 
choose for our computation one of the pixels where the light source is visible, we 
would be adding in the amount of that light’s emission; most of the time, however, 
we would miss it entirely.

1�While 16 samples per pixel may be impractical today for interactive graphics for complex scenes at high 
resolutions, we assume that both temporal accumulation of samples and a denoising algorithm will be used in 
practice. In this chapter, we will not use either in order to make it easy to understand the image artifacts.

Figure 17-1.  A simple scene, illuminated by a single area light source, rendered with path tracing and 
enough paths to give high-quality reference images. The only difference between the two renderings is 
that one of the diffuse spheres has been changed to be mirrored in the right image.

RAY TRACING GEMS



249

Given the small size of the light and its distance from the scene, the light source 
needs a fairly large amount of emission to give enough illumination to light the 
scene. Here, in order to have final shaded pixel values roughly in the range [0, 1], 
the light’s emission has to be (500,500,500) in RGB. Thus, if we happen to include 
a pixel where the light’s reflection is visible but sample only a small number of 
pixels, we will grossly overestimate the true average. Most of the time, when we do 
not include one of those pixels, we will underestimate the average, since we are not 
including any of the pixels with high values.

Now back to the rendered images in Figure 17-2. When path tracing, at each point on 
a surface where we trace a new ray, we face more or less the same problem as in 
the image averaging exercise: we are trying to estimate a cosine and BSDF-weighted 
average of the light arriving at the point using just a few rays. When the world is 
mostly similar in all directions, choosing just one direction works well. When it is 
quite different in a small set of directions, we run into trouble, randomly getting 
much too high estimates of the average for a small fraction of the pixels. In turn, that 
manifests itself as the kind of spiky noise we see on the right in Figure 17-2.

Figure 17-2.  Example scenes, rendered with 16 samples per pixel. Left: the scene with diffuse 
spheres is well-behaved and could easily be denoised to a high-quality image (of a boring scene). Right: 
we have a multitude of spiky noisy pixels and some way to go before we have a good-looking image.

Understanding the cause of the spiky noise, we can see something interesting in 
the distribution of the speckles: they are much more common on surfaces that 
can “see” the mirrored sphere, as a path has to hit the mirrored sphere in order 
to unexpectedly find its way back to the light source. Note that there is a kind of 
shadow of no speckles in the lower left of the image; the green sphere occludes 
points there from seeing the mirrored sphere directly.

IGNORING THE INCONVENIENT WHEN TRACING RAYS



250

The challenging thing about this kind of noise is how slowly it goes away as you 
take more samples. Consider the case of computing the average image color again: 
once we include one of those (500,500,500) colors in our sum, it takes quite a few 
additional samples in the range [0, 1] to get back to the true average. As it turns out, 
taking more samples can make the image look worse, even though it is (on average) 
getting better: as more rays are traced, more and more pixels will have paths that 
randomly hit the light.

17.3	 �CLAMPING

The simplest solution to this problem is clamping. Specifically, we clamp any 
sample values c that are higher than a user-provided threshold t. Here is the 
algorithm in its entirety:

			         ( )c c,tmin .¢ = 	 (1)

Figure 17-3 shows the mirrored sphere scene rendered with path contributions 
clamped at 3. Needless to say, it is much less noisy. The image on the left was 
rendered with 16 samples per pixel (like the images in Figure 17-2) and one on the 
right was rendered to convergence.

Figure 17-3.  Specular sphere scene rendered with clamping using 16 (left) and 1024 (right) samples 
per pixel. Note that the spiky noise from Figure 17-2 has disappeared, though we have also lost the 
light reflected by the sphere onto the floor and wall next to it (visible in Figure 17-1).

RAY TRACING GEMS



251

With 16 samples, the spiky noisy pixels are gone, and we are much closer to a 
good-looking image. However, note the difference between the 1024-sample 
image here and the final image in Figure 17-1: we have lost the focused light from 
the light source below the mirrored sphere on the floor and to the right on the 
wall (a so-called caustic). What is happening is that the illumination comes from a 
small number of high-contribution paths and, thus, clamping prevents them from 
contributing much to the final image.

17.4	 �PATH REGULARIZATION

Path regularization offers a less blunt hammer than clamping. It requires slightly 
more work to implement, but it does not suffer from the loss of energy that we saw 
with clamping.

Consider again the thought exercise of computing the average value of the image 
from just a few pixels: if you have an image with a few very bright pixels, like we 
have with the reflection of the light source in the mirrored sphere, then you could 
imagine that you would get a better result if you were able to apply a wide blur to 
the image before picking pixels to average. In that way, the bright pixels are both 
spread out and made dimmer, and thus the blurred image has less variation and 
which pixels you choose matters less.

Path regularization is based on this idea. The concept is straightforward: blur 
the BSDFs in the scene when they are encountered by indirect rays. When 
regularization is performed at such points, the sphere becomes glossy specular 
rather than perfectly specular.

The left image in Figure 17-4 shows how this works with our scene at 16 samples 
per pixel, and the right one shows its appearance as the image converges at around 
128 samples. Regularization has eliminated the spiky noise while still preserving a 
representation of the caustic reflection of the light source.

IGNORING THE INCONVENIENT WHEN TRACING RAYS



252

17.5	 �CONCLUSION

Sometimes in ray tracing we encounter spiky noise in our images due to localized 
bright objects or reflections that are not being well-sampled by the employed 
sampling techniques. Ideally, we would improve our sampling techniques in that 
case, but this is not always possible or there is not always time to get it right.

In those cases, both clamping and path regularization can be effective techniques 
to get good images out the door; both are easy to implement and both work well. 
Clamping is a one-line addition to a renderer, and path regularization just requires 
recording whether a non-specular surface has been encountered in a ray path and 
then, when so, making subsequent BSDFs less specular.

The path regularization approach can be placed on a much more principled 
theoretical ground than we have used in describing it here. See Kaplanyan and 
Dachsbacher’s paper [1] for details.

A more principled approach to clamping is outlier rejection, where samples that are 
unusually bright with respect to other samples are discarded. Outlier rejection is 
more robust than a fixed clamping threshold and loses less energy. See the paper 
by Zirr et al. [2] for a recent outlier rejection technique that is amenable to GPU 
implementation.

Figure 17-4.  Left: the scene is rendered with path regularization at 16 samples per pixel. Note that 
the random spiky noise is gone, while the caustic from the light source is still present. Right: once we 
accumulate 128 samples per pixel, we have a fairly clean image that still includes the caustic.

RAY TRACING GEMS



253

REFERENCES

	 [1]	� Kaplanyan, A. S., and Dachsbacher, C. Path Space Regularization for Holistic and Robust Light 
Transport. Computer Graphics Forum 32, 2 (2013), 63–72.

	 [2]	� Zirr, T., Hanika, J., and Dachsbacher, C. Reweighting Firefly Samples for Improved Finite-Sample 
Monte Carlo Estimates. Computer Graphics Forum 37, 6 (2018), 410–421.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

IGNORING THE INCONVENIENT WHEN TRACING RAYS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


255© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_18

CHAPTER 18

Importance Sampling of Many Lights 
on the GPU
Pierre Moreau1,2 and Petrik Clarberg1  
1NVIDIA 
2Lund University

ABSTRACT

The introduction of standardized APIs for ray tracing, together with hardware 
acceleration, opens up possibilities for physically based lighting in real-time 
rendering. Light importance sampling is one of the fundamental operations in 
light transport simulations, applicable to both direct and indirect illumination. 
This chapter describes a bounding volume hierarchy data structure and 
associated sampling methods to accelerate importance sampling of local light 
sources. The work is based on recently published methods for light sampling 
in production rendering, but it is evaluated in a real-time implementation using 
Microsoft DirectX Raytracing.

18.1	 �INTRODUCTION

A realistic scene may contain hundreds of thousands of light sources. The accurate 
simulation of the light and shadows that they cast is one of the most important 
factors for realism in computer graphics. Traditional real-time applications with 
rasterized shadow maps have been practically limited to use a handful of carefully 
selected dynamic lights. Ray tracing allows more flexibility, as we can trace 
shadow rays to different sampled lights at each pixel.

Mathematically speaking, the best way to select those samples is to pick lights with 
a probability in proportion to each light’s contribution. However, the contribution 
varies spatially and depends on the local surface properties and visibility. Hence, it 
is challenging to find a single global probability density function (PDF) that works 
well everywhere.

The solution that we explore in this chapter is to use a hierarchical acceleration 
structure built over the light sources to guide the sampling [11, 22]. Each node 
in the data structure represents a cluster of lights. The idea is to traverse 
the tree from top to bottom, at each level estimating how much each cluster 



256

contributes, and to choose which path through the tree to take based on random 
decisions at each level. Figure 18-1 illustrates these concepts. This means that 
lights are chosen approximately proportional to their contributions, but without 
having to explicitly compute and store the PDF at each shading point. The 
performance of the technique ultimately depends on how accurately we manage 
to estimate the contributions. In practice, the pertinence of a light or a cluster 
of lights, depends on its:

>> Flux: The more powerful a light is, the more it will contribute.

>> Distance to the shading point: The further away a light lies, the 
smaller the solid angle it subtends, resulting in less energy 
reaching the shading point.

>> Orientation: A light source may not emit in all directions, nor do 
so uniformly.

>> Visibility: Fully occluded light sources do not contribute.

>> BRDF at the shading point: Lights located in the direction of the 
BRDF’s main peaks will have a larger fraction of their energy 
reflected.

A key advantage of light importance sampling is that it is independent of the 
number and type of lights, and hence scenes can have many more lights than we 
can afford to trace shadow rays to and large textured area lights can be seamlessly 
supported. Since the probability distributions are computed at runtime, scenes 
can be fully dynamic and have complex lighting setups. With recent advances 
in denoising, this holds promise to reduce rendering time, while allowing more 
artistic freedom and more realistic results.

Figure 18-1.  All the light sources in the scene are organized in a hierarchy. Given a shading point X, 
we start at the root and proceed down the hierarchy. At each level, the importance of each immediate 
child with respect to X is estimated by a probability. Then, a uniform random number ξ decides the path 
through the tree, and at the leaf we find which light to sample. In the end, more important lights have a 
higher probability of being sampled.

RAY TRACING GEMS



257

In the following, we discuss light importance sampling in more detail and present 
a real-time implementation that uses a bounding volume hierarchy (BVH) over the 
lights. The method is implemented using the Microsoft DirectX Raytracing (DXR) 
API, and source code is available.

18.2	 �REVIEW OF PREVIOUS ALGORITHMS

With the transition to path tracing in production rendering [21, 31], the visibility 
sampling is solved by tracing shadow rays toward sampled points on the light 
sources. When a shadow ray does not hit anything on its way from a shading point 
to the light, the point is deemed to be lit. By averaging over many such samples 
over the surfaces of the lights, a good approximation of the lighting is achieved. The 
approximation converges to ground truth as more samples are taken. However, 
with more than a handful of light sources, exhaustive sampling is not a viable 
strategy, not even in production rendering.

To handle the complexity of dynamic lighting with many lights, most techniques 
generally rely on building some form of spatial acceleration structure over the 
lights, which is then used to accelerate rendering by either culling, approximating, 
or importance-sampling the lights.

18.2.1	 �REAL-TIME LIGHT CULLING

Game engines have transitioned to use mostly physically based materials and light 
sources specified in physical units [19, 23]. However, for performance reasons 
and due to the limitations of the rasterization pipeline, only a few point-like light 
sources can be rendered in real time with shadow maps. The cost per light is high 
and the performance scales linearly with the number of lights. For area lights, the 
unshadowed contribution can be computed using linearly transformed cosines [17], 
but the problem of evaluating visibility remains.

To reduce the number of lights that need to be considered, it is common to 
artificially limit the influence region of individual lights, for example, by using 
an approximate quadratic falloff that goes to zero at some distance. By careful 
placement and tweaking of the light parameters, the number of lights that affect 
any given point can be limited.

Tiled shading [2, 28] works by binning such lights into screen-space tiles, where 
the depth bounds of the tiles effectively reduce the number of lights that need to 
be processed when shading each tile. Modern variants improve culling rates by 
splitting frusta in depth (2.5D culling) [15], by clustering shading points or  
lights [29, 30], or by using per-tile light trees [27].

 Importance Sampling of Many Lights on the GPU



258

A drawback of these culling methods is that the acceleration structure is in screen 
space. Another drawback is that the required clamped light ranges can introduce 
noticeable darkening. This is particularly noticeable in cases where many dim 
lights add up to a significant contribution, such as Christmas tree lights or indoor 
office illumination. To address this, Tokuyoshi and Harada [40] propose using 
stochastic light ranges to randomly reject unimportant lights rather than assigning 
fixed ranges. They also show a proof-of-concept of the technique applied to path 
tracing using a bounding sphere hierarchy over the light sources.

18.2.2	 �MANY-LIGHT ALGORITHMS

Virtual point lights (VPLs) [20] have long been used to approximate global 
illumination. The idea is to trace photons from the light sources and deposit VPLs 
at path vertices, which are then used to approximate the indirect illumination. 
VPL methods are conceptually similar to importance sampling methods for many 
lights. The lights are clustered into nodes in a tree, and during traversal estimated 
contributions are computed. The main difference is that, for importance sampling, 
the estimations are used to compute light selection probabilities rather than 
directly to approximate the lighting.

For example, lightcuts [44, 45] accelerate the rendering with millions of VPLs by 
traversing the tree per shading point and computing error bounds on the estimated 
contributions. The algorithm chooses to use a cluster of VPLs directly as a light 
source, avoiding subdivision to finer clusters or individual VPLs, when the error 
is sufficiently small. We refer to the survey by Dachsbacher et al. [12] for a good 
overview of these and other many-light techniques. See also the overview of global 
illumination algorithms by Christensen and Jarosz [8].

18.2.3	 �LIGHT IMPORTANCE SAMPLING

In early work on accelerating ray tracing with many lights, the lights are sorted 
according to contribution and only the ones above a threshold are shadow  
tested [46]. The contribution of the remaining lights is then added based on a 
statistical estimate of their visibility.

Shirley et al. [37] describe importance sampling for various types of light sources. 
They classify lights as bright or dim by comparing their estimated contributions to 
a user-defined threshold. To sample from multiple lights, they use an octree that 
is hierarchically subdivided until the number of bright lights is sufficiently small. 
The contribution of an octree cell is estimated by evaluating the contribution at a 
large number of points on the cell’s boundary. Zimmerman and Shirley [47] use a 
uniform spatial subdivision instead and include an estimated visibility in the cells.

RAY TRACING GEMS



259

For real-time ray tracing with many lights, Schmittler et al. [36] restrict the 
influence region of lights and use a k-d tree to quickly locate the lights that affect 
each point. Bikker takes a similar approach in the Arauna ray tracer [5, 6], but it 
uses a BVH with spherical nodes to more tightly bound the light volumes. Shading 
is done Whitted-style by evaluating all contributing lights. These methods suffer 
from bias as the light contributions are cut off, but that may potentially be alleviated 
with stochastic light ranges as mentioned earlier [40].

In the Brigade real-time path tracer, Bikker [6] uses resampled importance 
sampling [39]. A first set of lights is selected based on a location-invariant 
probability density function, and then this set is resampled by more accurately 
estimating the contributions using the BRDF and distances to pick one 
important light. In this approach, there is no hierarchical data structure.

The Iray rendering system [22] uses a hierarchical light importance sampling 
scheme. Iray works with triangles exclusively and assigns a single flux (power) 
value per triangle. A BVH is built over the triangular lights and traversed 
probabilistically, at each node computing the estimated contribution of each 
subtree. The system encodes directional information at each node by dividing 
the unit sphere into a small number of regions and storing one representative 
flux value per region. Estimated flux from BVH nodes is computed based on the 
distance to the center of the node.

Conty Estevez and Kulla [11] take a similar approach for cinematic rendering. 
They use a 4-wide BVH that also includes analytic light shapes, and the lights 
are clustered in world space including orientation by using bounding cones. In 
the traversal, they probabilistically select which branch to traverse based on 
a single uniform random number. The number is rescaled to the unit range at 
each step, which preserves stratification properties (the same technique is used 
in hierarchical sample warping [9]). To reduce the problem of poor estimations 
for large nodes, they use a metric for adaptively splitting such nodes during 
traversal. Our real-time implementation is based on their technique, with some 
simplifications.

18.3	 �FOUNDATIONS

In this section, we will first review the foundations of physically based lighting 
and importance sampling, before diving into the technical details of our real-time 
implementation.

 Importance Sampling of Many Lights on the GPU



260

18.3.1	 �LIGHTING INTEGRALS

The radiance Lo leaving a point X on a surface in viewing direction v is the sum 
of emitted radiance Le and reflected radiance Lr, under the geometric optics 
approximation described by [18]:

			   ( ) ( ) ( )o e rL X , L X , L X , ,= +v v v 	 (1)

	       ( ) ( ) ( )( )r iL X , f X , , L X , dwhere wòW= ×v v l l n l 	 (2)

and where f is the BRDF and Li is the incident radiance arriving from a direction l. In 
the following, we will drop the X from the notation when we speak about a specific 
point. Also, let the notation L(X ← Y) denote the radiance emitted from a point Y in 
the direction toward a point X.

In this chapter, we are primarily interested in the case where Li comes from a 
potentially large set of local light sources placed within the scene. The algorithm 
can, however, be combined with other sampling strategies for handling distant light 
sources, such as the sun and sky.

The integral over the hemisphere can be rewritten as an integral over all the 
surfaces of the light sources. The relationship between solid angle and surface 
area is illustrated in Figure 18-2. In fact, a small patch dA at a point Y on a light 
source covers a solid angle

			     
yd dA

X y
2

,w
×-

=
-

n l∣ ∣
	 (3)

Figure 18-2.  The differential solid angle dω of a surface patch dA at a point Y on a light source is a 
function of its distance ‖X − Y‖ and the angle cosθ = ∣ nY ⋅ −l∣ at which it is viewed.

RAY TRACING GEMS



261

i.e., there is an inverse square falloff by distance and a dot product between the 
light’s normal nY and the emitted light direction −l. Note that in our implementation, 
light sources may be single-sided or double-sided emitters. For single-sided lights, 
we set the emitted radiance L(X ← Y) = 0 if (nY ⋅ −l) ≤ 0.

We also need to know the visibility between our shading point X and the point Y on 
the light source, formally expressed as

		  ( ) 1 if and are mutually visible,
0 otherwise.

X y
v X y

ì
« = í

î
	 (4)

In practice, we evaluate v by tracing shadow rays from X in direction l, with the 
ray’s maximum distance tmax = ‖ X − Y‖. Note that to avoid self-intersections due to 
numerical issues, the ray origin needs to be offset and the ray shortened slightly 
using epsilons. See Chapter 6 for details.

Now, assuming that there are m light sources in the scene, the reflected radiance 
in Equation 2 can be written as

		      ( ) ( )
m

r r i
i

L X , L X ,,
1

, where
=

= åv v 	 (5)

      ( ) ( ) ( ) ( ) ( ) y
r i i iL X , f X , , L X y v X y , dA

X y
, 2

max 0 .òW
×-

= ¬ « ×
-

n l
v v l n l

∣ ∣
	 (6)

That is, Lr is the sum of the reflected light from each individual light i = {1,  … , m}. 
Note that we clamp n ⋅ l because light from points backfacing to the shading point 
cannot contribute. The complexity is linear in the number of lights m, which may 
become expensive when m is large. This leads us to the next topic.

18.3.2	 �IMPORTANCE SAMPLING

As discussed in Section 18.2, there are two fundamentally different ways to reduce 
the cost of Equation 5. One method is to limit the influence regions of lights, and 
thereby reduce m. The other method is to sample a small subset of lights n ≪ m. 
This can be done in such a way that the result is consistent, i.e., it converges to the 
ground truth as n grows.

 Importance Sampling of Many Lights on the GPU



262

18.3.2.1	�MONTE CARLO METHOD

Let Z be a discrete random variable with values z ∈ {1,  … , m}. The probability that 
Z is equal to some value z is described by the discrete PDF p(z) = P(Z = z), where 

∑p(z) = 1. For example, if all values are equally probable, then ( )p z
m
1

= . If we 

have a function g(Z) of a random variable, its expected value is

			   ( ) ( ) ( )
z Z

g Z g z p z ,
Î

é ù =ë û å 	 (7)

i.e., each possible outcome is weighted by how probable it is. Now, if we take n 

random samples {z1,  … , zn} from Z, we get the n-sample Monte Carlo estimate ( )ng z�  

of ( )g Zé ùë û  as follows:

			   ( ) ( )
n

n j
j

g z g z
n 1

1 .
=

= å� 	 (8)

In other words, the expectation can be estimated by taking the mean of random 
samples of the function. We can also speak of the corresponding Monte Carlo 

estimator ( )ng Z� , which is the mean of the function of the n independent and 

identically distributed random variables {Z1,  … , Zn}. It is easy to show that 

( ) ( )ng Z g Zé ù é ù=ë û ë û�  , i.e., the estimator gives us the correct value.

Since we are taking random samples, the estimator ( )n Zg�  will have some 
variance. As discussed in Chapter 15, the variance decreases linearly with n:

			   ( ) ( )n Z g Z
n

g 1Var Var .é ù é ù=ë û ë û� 	 (9)

These properties show that the Monte Carlo estimator is consistent. In the limit, 
when we have infinitely many samples, the variance is zero and it has converged to 
the correct expected value.

To make this useful, note that almost any problem can be recast as an expectation. 
We thus have a consistent way of estimating the solution based on random samples 
of the function.

RAY TRACING GEMS



263

18.3.2.2	�LIGHT SELECTION IMPORTANCE SAMPLING

In our case, we are interested in evaluating the sum of light reflected from all  
the light sources (Equation 5). This sum can be expressed as an expectation  
(cf., Equation 7) as follows:

	 ( ) ( ) ( )
( ) ( ) ( )

( )= =

é ù
= = = = ê ú

= ê úë û
å å
m m

r i r Z
r r i

i i

L X , L X ,
L X , L X , P Z i

P Z i p Z
, ,

,
1 1

.
v v

v v  	 (10)

Following Equation 8, the Monte Carlo estimate rL�  of the reflected light from all 
light sources is therefore

		        ( )
( )
( )

j
n

r z

r
j j

L X ,
X ,

n p z
L

,

1

1 ,
=

= å
v

v� 	 (11)

that is, we sum the contribution from a randomly selected set of lights {z1,  … , zn}, 
divided by the probability of selecting each light. This estimator is always 
consistent, independent of how few samples n we take. However, the more samples 
we take, the smaller the variance of the estimator will be.

Note that nothing discussed so far makes any assumptions on the distribution of 
the random variable Z. The only requirement is that p(z) > 0 for all lights where 
Lr, z > 0, otherwise we would risk ignoring the contribution from some lights. It 
can be shown that the variance is minimized when p(z) ∝ Lr, z(X, v) [32, 38]. We will 
not go into the details here, but when the probability density function is exactly 
proportional to the function that we are sampling, the summation in the Monte 
Carlo estimator reduces to a sum of constant terms. In that case the estimator has 
zero variance.

In practice, this is not achievable because Lr, z is unknown for a given shading point, 
but we should aim for selecting lights with a probability as close as possible to their 
relative contribution to the shading point. In Section 18.4, we will look at how p(z) is 
computed.

18.3.2.3	�LIGHT SOURCE SAMPLING

To estimate the reflected radiance using Equation 11, we also need to evaluate 

the integral ( )
jr zL X ,, v  for the randomly selected set of lights. The expression in 

Equation 6 is an integral over the surface of the light that involves both BRDF and 
visibility terms. In graphics, this is not practical to evaluate analytically. Therefore, 
we again resort to Monte Carlo integration.

 Importance Sampling of Many Lights on the GPU



264

The surface of the light source is sampled uniformly with s samples {Y1,  … , Ys}. 
For triangle mesh lights, each light is a triangle, which means that we pick points 
uniformly on the triangle using standard techniques [32] (see Chapter 16). The 

probability density function for the samples on a triangle i is ( )
i

p y
A
1

= , where Ai  

is the area of the triangle. The integral over the light is then evaluated using the 
Monte Carlo estimate

    ( ) ( ) ( ) ( ) ( ) k
s

y ki
r i k i k k k

k k

A
X , f X , , L X y v X y ,

s X
L

y
, 2

1

max 0 .
=

× -
= ¬ « ×

-
å

n l
v v l n l�     (12)

In the current implementation, s = 1 as we trace a single shadow ray for each of 
the n sampled light sources, and 

ky i=n n  since we use the geometric normal of the 
light source when evaluating its emitted radiance. Smooth normals and normal 
mapping are disabled by default for performance reasons, because they often have 
negligible impact on the light distribution.

18.3.3	 �RAY TRACING OF LIGHTS

In real-time applications, a common rendering optimization is to separate the 
geometric representation from the actual light-emitting shape. For example, a light 
bulb can be represented by a point light or small analytic sphere light, while the 
visible light bulb is drawn as a more complex triangle mesh.

In this case, it is important that the emissive property of the light geometry 
matches the intensity of the actual emitter. Otherwise, there will be a perceptual 
difference between how bright a light appears in direct view and how much light 
it casts into the scene. Note that a light source is often specified in photometric 
units in terms of its luminous flux (lumen), while the emissive intensity of an area 
light is given in luminance (cd/m2). Accurate conversion from flux to luminance 
therefore needs to take the surface area of the light’s geometry into account. 
Before rendering, these photometric units are finally converted to the radiometric 
quantities that we use (flux and radiance).

Another consideration is that when tracing shadow rays toward an emitter, we do 
not want to inadvertently hit the mesh representing the light source and count the 
emitter as occluded. The geometric representation must therefore be invisible 
to shadow rays, but visible for other rays. The Microsoft DirectX Raytracing API 
allows control of this behavior via the InstanceMask attribute on the acceleration 
structure and by the InstanceInclusionMask parameter to TraceRay.

RAY TRACING GEMS



265

For multiple importance sampling (MIS) [41], which is an important variance 
reduction technique, we must be able to evaluate light sampling probabilities 
given samples generated by other sampling strategies. For example, if we draw 
a sample over the hemisphere using BRDF importance sampling that hits a light 
source after traversal, we compute its probability had the sample been generated 
with light importance sampling. Based on this probability together with the BRDF 
sampling probability, a new weight for the sample can be computed using, for 
example, the power heuristic [41] to reduce the overall variance.

A practical consideration for MIS is that if the emitters are represented by analytic 
shapes, we cannot use hardware-accelerated triangle tests to search for the light 
source in a given direction. An alternative is to use custom intersection shaders to 
compute the intersections between rays and emitter shapes. This has not yet been 
implemented in our sample code. Instead, we always use the mesh itself as the 
light emitter, i.e., each emissive triangle is treated as a light source.

18.4	 �ALGORITHM

In the following, we describe the main steps of our implementation of light 
importance sampling. The description is organized by the frequency at which 
operations occur. We start with the preprocessing step that can happen at asset-
creation time, which is followed by the construction and updating of the light data 
structure that runs once per frame. Then, the sampling is described, which is 
executed once per light sample.

18.4.1	 �LIGHT PREPROCESSING

For mesh lights, we precompute a single flux value Φi per triangle i as a 
preprocess, similar to Iray [22]. The flux is the total radiant power emitted by the 
triangle. For diffuse emitters, the flux is

			   ( )( )w wòòWF = ×i i i iL X d dA ,n 	 (13)

where Li(X) is the emitted radiance at position X on the light’s surface. For non-
textured emitters, the flux is thus simply Φi = πAiLi, where Li is the constant 
radiance of the material and Ai is the triangle’s area. The factor π comes from the 
integral of the cosine term over the hemisphere. To handle textured emitters, 
which in our experience are far more common than untextured ones, we evaluate 
Equation 13 as a preprocess at load time.

To integrate the radiance, we rasterize all emissive triangles in texture space. The 
triangles are scaled and rotated so that each pixel represents exactly one texel at 

 Importance Sampling of Many Lights on the GPU



266

the largest mip level. The integral is then computed by loading the radiance for the 
corresponding texel in the pixel shader and by accumulating its value atomically. 
We also count the number of texels and divide by that number at the end.

The only side effect of the pixel shader is atomic additions to a buffer of per-triangle 
values. Due to the current lack of floating-point atomics in DirectX 12, we use an 
NVIDIA extension via NVAPI [26] to do floating-point atomic addition.

Since the pixel shader has no render target bound (i.e., it is a void pixel shader), 
we can make the viewport arbitrarily large within the API limits, without worrying 
about memory consumption. The vertex shader loads the UV texture coordinates 
from memory and places the triangle at an appropriate coordinate in texture space 
so that it is always within the viewport. For example, if texture wrapping is enabled, 
the triangle is rasterized at pixel coordinates

			   ( ) ( ) ( )x, y u u ,v v w,h ,= - ê ú - ê ú ×ë û ë û 	 (14)

where w, h are the dimensions of the largest mip level of the emissive texture. With 
this transform, the triangle is always in view, independent of the magnitude of its 
(pre-wrapped) UV coordinates.

We currently rasterize the triangle using one sample per pixel, and hence only 
accumulate texels whose centers are covered. Tiny triangles that do not cover any 
texels are assigned a default nonzero flux to ensure convergence. Multisampling, 
or conservative rasterization with analytic coverage computations in the pixel 
shader, can be used to improve accuracy of the computed flux values.

All triangles with Φi = 0 are excluded from further processing. Culling of zero flux 
triangles is an important practical optimization. In several example scenes, the 
majority of the emissive triangles lie in black regions of the emissive textures. This is 
not surprising, as often the emissiveness is painted into larger textures, rather than 
splitting the mesh into emissive and non-emissive meshes with separate materials.

18.4.2	 �ACCELERATION STRUCTURE

We are using a similar acceleration structure as Conty Estevez and Kulla [11], that 
is, a bounding volume hierarchy [10, 33] built from top to bottom using binning [43]. 
Our implementation uses a binary BVH, meaning that each node has two children. 
In some cases, a wider branching factor may be beneficial.

We will briefly introduce how binning works, before presenting different existing 
heuristics used during the building process, as well as minor variants thereof.

RAY TRACING GEMS



267

18.4.2.1	�BUILDING THE BVH

When building a binary BVH from top to bottom, the quality and speed at which 
the tree is built depends on how the triangles are split between the left and right 
children at each node. Analyzing all the potential split locations will yield the best 
results, but this will also be slow and is not suitable for real-time applications.

The approach taken by Wald [43] consists of uniformly partitioning the space at 
each node into bins and then running the split analysis on those bins only. This 
implies that the more bins one has, the higher the quality of the generated tree will 
be, but the tree will also be more costly to build.

18.4.2.2	�LIGHT ORIENTATION CONE

To help take into account the orientation of the different light sources, Conty 
Estevez and Kulla [11] store a light orientation cone in each node. This cone is made 
of an axis and two angles, θo and θe: the former bounds the normals of all emitters 
found within the node, whereas the latter bounds the set of directions in which light 
gets emitted (around each normal).

For example, a single-sided emissive triangle would have θo = 0 (there is only 

one normal) and q p
=e 2

 (it emits light over the whole hemisphere). Alternatively, 

an emissive sphere would have θo = π (it has normals pointing in all directions) 

and q p
=e 2

, as around each normal, light is still only emitted over the whole 

hemisphere; θe will often be p
2

, except for lights with a directional emission profile 

or for spotlights, where it will be equal to the spotlight’s cone angle.

When computing the cone for a parent node, its θo will be computed such that it 
encompasses all the normals found in its children, whereas θe is simply computed 
as the maximum of each child’s θe.

18.4.2.3	�DEFINING THE SPLIT PLANE

As mentioned earlier, an axis-aligned split plane has to be computed to split the set of 
lights into two subsets, one for each child. This is usually achieved by computing a cost 
metric for each possible split and picking the one with the lowest cost. In the context 
of a binned BVH, we tested the surface area heuristic (SAH) (introduced by Goldsmith 
and Salmon [14] and formalized by MacDonald and Booth [24]) and the surface area 
orientation heuristic (SAOH) [11], as well as different variants of those two methods.

 Importance Sampling of Many Lights on the GPU



268

For all the variants presented below, the binning performed while building the 
BVH can be done either on the largest axis only (of a node’s axis-aligned bounding 
box (AABB)) or on all three axes and the split with the lowest cost is selected. 
Only considering the largest axis will result in lower build time but also lower tree 
quality, especially for the variants taking the light orientations into account. More 
details on those trade-offs can be found in Section 18.5.

SAH  The SAH focuses on the surface area of the AABB of the resulting children 
as well as on the number of lights that they contain. If we define the left child as 

i
j jL 0bin== È  and the right child as k

j i jR 1bin= += È , where k is the number of bins and 

i ∈ [0, k − 1], the cost for the split creating L and R as children is

		    ( ) ( ) ( ) ( ) ( )
( ) ( )

n L a L n R a R
cost L,R

n L R a L R
,

+
=

È È
	 (15)

where n(C) and a(C) return the number of lights and the surface area of a potential 
child node C, respectively.

SAOH  The SAOH is based on the SAH and includes two additional weights: one 
based on the bounding cone around the directions in which the lights emit light, 
and another based on the flux emitted by the resulting clusters. The cost metric is

	   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )r

L a L M L R a R M R
L,R, s k s

a L R M L R
cost ,W W

W

F +F
=

È È
	 (16)

where s is the axis on which the split is occurring, kr(s) = lengthmax/lengths is used 
to prevent thin boxes, and MΩ is an orientation measure [11].

VH  The volume heuristic (VH) is based on the SAH and replaces the surface area 
measure a(C) in Equation 15 by the volume v(C) of a node C’s AABB.

VOH  The volume orientation heuristic (VOH) similarly replaces the surface area 
measure in the SAOH (Equation 16) by the volume measure.

18.4.3	 �LIGHT IMPORTANCE SAMPLING

We now look at how the lights are actually sampled based on the acceleration 
structure described in the previous section. First, the light BVH is probabilistically 
traversed in order to select a single light source, and then a light sample is 
generated on the surface of that light (if it is an area light). See Figure 18-1.

RAY TRACING GEMS



269

18.4.3.1	�PROBABILISTIC BVH TRAVERSAL

When traversing the acceleration data structure, we want to select the node that 
will lead us to the lights that contribute the most to the current shading point, with 
a probability for each light that is proportional to its contribution. As mentioned in 
Section 18.4.2, the contribution depends on many parameters. We will use either 
approximations or the exact value for each parameter, and we will try different 
combinations to optimize quality versus performance.

Distance  This parameter is computed as the distance between the shading point and 
the center of the AABB of the node being considered. This favors nodes that are close 
to the shading point (and by extension lights that are close), if the node has a small 
AABB. However, in the first levels of the BVH, the nodes have large AABBs that contain 
most of the scene, giving a poor approximation of the actual distance between the 
shading point and some of the lights contained within that node.

Light Flux  The flux of a node is computed as the sum of the flux emitted by 
all light sources contained within that node. This is actually precomputed when 
building the BVH for performance reasons; if some light sources have changing 
flux values over time, the precomputation will not be an issue because the BVH will 
have to be rebuilt anyway since the flux is also used for guiding the building step.

Light Orientation  The selection so far does not take into consideration the 
orientation of the light source, which could give as much weight to a light source 
that is shining directly upon the shading point as to another light source that is 
backfacing. To that end, Conty Estevez and Kulla [11] introduced an additional term 
to a node’s importance function that conservatively estimates the angle between 
the light normal and direction from the node’s AABB center to the shading point.

Light Visibility  To avoid considering lights that are located below the horizon of 
a shading point, we use the clamped n ⋅ l term in the importance function of each 
node. Note that Conty Estevez and Kulla [11] use this clamped term, multiplied by 
the surface’s albedo, as an approximation to the diffuse BRDF, which will achieve 
the same effect of discarding lights that are beneath the horizon of the shading 
point.

Node Importance  Using the different parameters just defined, the importance 
function given a shading point X and a child node C is defined as

	 ( ) ( ) q q q qF ì <
= ´

¢ ¢ ¢
í
î-

i e
C

X ,C
X C

2

cos cos if ,
importance

0 otherwise,

∣ ∣
	 (17)

 Importance Sampling of Many Lights on the GPU



270

where ‖X − C‖ is the distance between shading point X and the center of the 

AABB of C, ( )max 0i i u,q q q= -¢ , and θʹ = max (0, θ − θo − θu). The angles θe and 

θo come from the light orientation cone of node C. The angle θ is measured 
between the light orientation cone’s axis and the vector from the center  
of C to X. Finally, θi is the incident angle and θu the uncertainty angle; these  
can all be found in Figure 18-3.

Figure 18-3.  Description of the geometry used for computing the importance of a child node 
C as seen from a shading point X. In Figure 18-1, the importance is computed twice at each 
step in the traversal, once for each child. The angle θu and the axis from X to the center of the 
AABB represent the smallest bounding cone containing the whole node and are used to compute 
conservative lower bounds on θi and θ.

18.4.3.2	�RANDOM NUMBER USAGE

A single uniform random number is used to decide whether to take the left or 
the right branch. The number is then rescaled and used for the next level. This 
technique preserves stratification (cf., hierarchical sample warping [9]) while 
also avoiding the cost of generating new random numbers at every level of the 
hierarchy. The rescaling of a random number ξ to find a new random number ξʹ is 
done as follows:

			   ( ) ( )

( )
( )

p L
p L

p L
p R

if ,

otherwise,

x

x
x

xì
<ï

ï= í¢
-ï

ï
î

	 (18)

RAY TRACING GEMS



271

where p(C) is the probability of selecting node C, computed as the importance of 
that node divided by the total importance:

		  ( ) ( )
( ) ( )

L
p L

L R
importance

.
importance importance

=
+ 	 (19)

Care must be taken to ensure enough random bits are available due to the limits 
of floating-point precision. For scenarios with huge numbers of lights, two or more 
random numbers may be alternated or higher precision used.

18.4.3.3	�SAMPLING THE LEAF NODE

At the end of the traversal, a leaf node containing a certain number of light sources 
has been selected. To decide which triangle to sample, we can either uniformly pick 
one of the triangles stored in the leaf node or use an importance method similar to the 
one used for computing the node’s importance during the traversal. For importance 
sampling, we consider the closest distance to the triangle and the largest n ⋅ l bound of 
the triangle; including the triangle’s flux and its orientation to the shading point could 
further improve the results. Currently, up to 10 triangles are stored per leaf node.

18.4.3.4	�SAMPLING THE LIGHT SOURCE

After a light source has been selected through the tree traversal, a light sample 
needs to be generated on that light source. We use the sampling techniques 
presented by Shirley et al. [37] for generating the light samples uniformly over the 
surfaces of different types of lights.

18.5	 �RESULTS

We demonstrate the algorithm for multiple scenes with various numbers of lights, 
where we measure the rate at which the error decreases, the time taken for 
building the BVH, and the rendering time.

The rendering is accomplished by first rasterizing the scene in a G-buffer using 
DirectX 12, followed by light sampling in a full-screen ray tracing pass using a 
single shadow ray per pixel, and finally temporally accumulating the frames if 
no movements occurred. All numbers are measured on an NVIDIA GeForce RTX 
2080 Ti and an Intel Xeon E5-1650 at 3.60 GHz, with the scenes being rendered at 
a resolution of 1920 × 1080 pixels. For all the results shown in this chapter, the 
indirect lighting is never evaluated and we instead use the algorithm to improve the 
computation of direct lighting.

 Importance Sampling of Many Lights on the GPU



272

We use the following scenes, as depicted in Figure 18-4, in our testing:

>> Sun Temple: This scene features 606,376 triangles, out of which 67,374 are 
textured emissive; however, after the texture pre-integration described in 
Section 18.4.1, only 1,095 emissive triangles are left. The whole scene is lit by 
textured fire pits; the part of the scene shown in Figure 18-4 is only lit by two 
fire pits located far on the right, as well as two other small ones located behind 
the camera. The scene is entirely diffuse.

Figure 18-4.  Views of all the different scenes that were used for testing.

RAY TRACING GEMS



273

>> Bistro: The Bistro scene has been modified to make the meshes 
of many of the different light sources actually emissive. In total, 
there are 20,638 textured emissive triangles, out of 2,829,226 
total triangles. Overall, the light sources mainly consist of small 
light bulbs, with the addition of a few dozen small spotlights and 
a few emissive shop signs. The scene is mostly diffuse, with the 
exception of the bistro’s windows and the Vespa.

>> Paragon Battlegrounds: This scene is made of three different 
parts, of which we only use two: Dawn (PBG-D) and Ruins 
(PBG-R). Both consist of a mix of large emissive area lights 
located in the ground, as well as small ones such as runes 
engraved in rocks or small lights on the turrets; most of the 
materials are specular, with the exception of the trees. PBG-D 
features 90,535 textured emissive triangles, of which 53,210 
are left after the texture integration; the whole scene is made 
of 2,467,759 triangles (emissive ones included). In comparison, 
PBG-R features 389,708 textured emissive triangles, of which 
199,830 are left after the texture integration; the whole scene is 
made of 5,672,788 triangles (emissive ones included).

Note that although all these scenes are currently static, dynamic scenes are 
supported in our method by rebuilding the light acceleration structure per frame. 
Similar to how DXR allows refitting of the acceleration structure, without changing 
its topology, we could choose to update only the nodes in a pre-built tree if lights 
have not moved significantly between frames.

We use different abbreviations for some of the methods used in this section. 
Methods starting with “BVH_” will traverse the BVH hierarchy in order to select a 
triangle. The suffix after “BVH_” refers to which information is being used during 
the traversal: “D” for the distance between the viewpoint and a node’s center, 
“F” for the flux contained in a node, “B” for the n ⋅ l bound, and finally “O” for the 
node orientation cone. The method Uniform uses MIS [41] to combine samples 
obtained by sampling the BRDF with samples obtained by randomly selecting 
an emissive triangle among all emissive triangles present in the scene with a 
uniform probability.

When MIS [41] is employed, we use the power heuristic with an exponent of 2. The 
sample budget is shared equally between sampling the BRDF and sampling the 
light source.

 Importance Sampling of Many Lights on the GPU



274

18.5.1	 �PERFORMANCE

18.5.1.1	 �ACCELERATION STRUCTURE CONSTRUCTION

Building the BVH using the SAH, with 16 bins on only the largest axis, takes about 
2.3 ms on Sun Temple, 26 ms on Bistro, and 280 ms on Paragon Battlegrounds. 
Note that the current implementation of the BVH builder is CPU-based, is single-
threaded, and does not make use of vector operations.

Binning along all three axes at each step is roughly 2× slower due to having three 
times more split candidates, but the resulting tree may not perform better at 
runtime. The timings presented here use the default setting of 16 bins per axis. 
Decreasing that number makes the build faster, e.g., 4 bins is roughly 2× faster, but 
again quality suffers. For the remaining measurements, we have used the highest-
quality settings, as we expect that the tree build will not be an issue once the code 
is ported to the GPU and used for game-like scenes with tens of thousands of 
lights.

The build time with SAOH is about 3× longer than with SAH. The difference is 
mainly due to the extra lighting cone computations. We iterate once over all lights 
to compute the cone direction and a second time to compute the angular bounds. 
Using an approximate method or computing bounds bottom-up could speed this up.

Using the volume instead of the surface area did not result in any performance 
change for building.

18.5.1.2	 �RENDER TIME PER FRAME

We measured the rendering times with trees built using different heuristics and 
with all the sampling options turned on. See Table 18-1. Similarly to the build 
performance, using the volume-based metrics instead of surface area did not 
significantly impact the rendering time (usually within 0.2 ms of the surface area–
based metric). Binning along all three axes or only the largest axis also has no 
significant impact on the rendering time (within 0.5 ms of each other).

RAY TRACING GEMS



275

Table 18-1.  Rendering times in milliseconds per frame with four shadow rays per pixel, measured 
over 1,000 frames and using the SAH and SAOH heuristics with different build parameters. The 
BVH_DFBO method was used with MIS, 16 bins were used for the binning, and at most one triangle was 
stored per leaf node.

When testing different maximum amounts of triangles per leaf node (1, 2, 4, 8,  
and 10), the rendering times were found to be within 5 % of each other with 1 and 
10 being the fastest. Results for two of the scenes can be found in Figure 18-5, with 
similar behavior observed in the other scenes. The computation of the importance 
of each triangle adds a noticeable overhead. Conversely, storing more triangles per 
leaf node will result in shallower trees and therefore quicker traversal. It should be 
noted that the physical size of the leaf nodes was not changed (i.e., it was always set 
to accept up to 10 triangle IDs), only the amount that the BVH builder was allowed to 
put in a leaf node. Also for these tests, leaf nodes were created as soon as possible 
rather than relying on a leaf node creation cost.

1 2 4 8 10
0

Av
er

ag
e 

Ti
m

e 
(m

s)

Maximum triangle count per leaf node

10

20

30

40

50
Uniform
Importance

1 2 4 8 10
0

Av
er

ag
e 

Ti
m

e 
(m

s)

Maximum triangle count per leaf node

10

20

30

40

50
Uniform
Importance

Figure 18-5.  Rendering times in milliseconds per frame for various maximum numbers of triangles 
per leaf node for Bistro (view 1) (left) and PBG-R (right), with and without importance sampling for 
triangle selection within the leaves. In all cases the BVH was built with 16 bins along all three axes 
using SAOH, and BVH_DFBO was used for the traversal.

 Importance Sampling of Many Lights on the GPU



276

The use of SAOH over SAH results in similar rendering times overall, but the use 
of a BVH over the lights as well as which terms are considered for each node’s 
importance do have an important impact, with BVH_DFBO being between 2× and 3× 
slower than Uniform. This is shown in Figure 18-6. This boils down to the additional 
bandwidth required for fetching the nodes from the BVH as well as the additional 
instructions for computing the n ⋅ l bound and the weight based on the orientation 
cone. This extra cost could be reduced by compressing the BVH nodes (using 16-bit 
floats instead of 32-bit floats, for example); the current nodes are 64 bytes for the 
internal nodes and 96 bytes for the external ones.

BRDF
samp.

UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO
0

Av
er

ag
e 

Ti
m

e 
(m

s)

10

20

30 SAH
SAOH

BRDF
samp.

UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO
0

Av
er

ag
e 

Ti
m

e 
(m

s)
10

20

40

30

SAH
SAOH

Figure 18-6.  Comparisons in Bistro (view 1) (left) and PBG-R (right) of rendering times in milliseconds 
per frame using the different traversal methods, compared to sampling the BRDF to get the light 
sample direction. All methods use 4 samples per pixel, and BVH-based methods use 16 bins along all 
three axes.

18.5.2	 �IMAGE QUALITY

18.5.2.1	�BUILD OPTIONS

Overall, the volume variants perform worse than their surface-area equivalents, 
and methods using 16 bins perform better than their counterparts only using 
4 bins. As for how many axes should be considered for defining the best split, 
considering all three axes leads to lower mean squared error results in most cases 
compared to only using the largest axis, but not always. Finally, SAOH variants are 
usually better than or at least on par with their SAH equivalents. This can be highly 
dependent on how they formed their nodes at the top of the BVH: as those nodes 
contain most of the lights in the scene, they represent a poor spatial and directional 
approximation of the emissive surfaces that they contain.

This can be seen in Figure 18-7 in the area around the pharmacy shop sign (pointed 
at by the red arrow), for example at point A (pointed at by the white arrow). When 
using SAH, point A is closer to the green node than the magenta one, resulting in 
a higher chance of choosing the green node and therefore missing the green light 
emitted by the cross sign even though that green light is important, as can be seen 
in Figure 18-4 for Bistro (view 3). Conversely, with SAOH the point A has a high 

RAY TRACING GEMS



277

chance of selecting the node containing the green light, improving the convergence 
in that region. However, it is possible to find regions where SAH will give better 
results than SAOH for similar reasons.

18.5.2.2	�TRIANGLE AMOUNT PER LEAF NODE

As more triangles are stored in leaf nodes, the quality will degrade when using 
a uniform selection of the triangles because it will do a poorer job than the tree 
traversal. Using importance selection reduces the quality degradation compared to 
uniform selection, but it still performs worse than using only the tree. The results 
for Bistro (view 3) can be seen on the right in Figure 18-8.

Figure 18-7.  Visualization of the second level of the BVH when built using SAH (left) and SAOH (right); 
the AABB of the left child is colored in green whereas the one of the right child is in magenta. In both 
cases, 16 bins were used and all three axes were considered.

BRDF
samp.

UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO

Av
er

ag
e 

M
SE

0

5

10

15

20
SAH
SAOH

1 2 4 8 10

Av
er

ag
e 

M
SE

Maximum triangle count

0.0

0/5

1.0

1.5

2.5

2.0

Uniform
Importance

Figure 18-8.  Comparisons in Bistro (view 3) of mean squared error (MSE) results for the different 
traversal methods, compared to sampling the BRDF to get the light sample direction (left) and various 
maximum amounts of triangles for BVH_DFBO (right). All methods use 4 samples per pixel, and BVH-
based methods use 16 bins along all three axes.

18.5.2.3	�SAMPLING METHODS

In Figure 18-9 we can see the resulting images when using and combining different 
sampling strategies for the Bistro (view 2) scene.

 Importance Sampling of Many Lights on the GPU



278

Figure 18-9.  Visual results at 4 samples per pixel (SPP) (left) and 16 SPP (right), using the different 
sampling strategies defined in Section 18.4.3. All BVH-based methods use a BVH built with SAOH 
evaluated for 16 bins along all axes. The BVH techniques use MIS: half their samples sample the BRDF 
and half traverse the light acceleration structure.

RAY TRACING GEMS



279

As expected, using light sampling greatly outperforms the BRDF sampling 
approach, by being able to find some valid light paths at each pixel. Using the BVH 
with the distance as an importance value allows picking up of the contributions 
from nearby light sources, as can be seen for the two white light sources placed 
on each side of the door of the bistro, the different lights placed on its facade, or its 
windows.

When also considering the flux of the light sources during the traversal, we can 
observe a shift from a mostly blueish color (from the hanging small blue light 
sources closest to the ground) to a more yellowish tone coming from the different 
street lights, which might be located farther away but are more powerful.

Using the n ⋅ l bounds does not make much of a difference in this scene, except for 
the reflections on the Vespa (mostly visible on the 16 SPP images), but the effects 
can be way more pronounced in other scenes. Figure 18-10 shows an example from 
Sun Temple. There, using the bounds on n ⋅ l results in the back of the column on 
the right receiving more light and being distinguishable from the shadow it casts on 
the nearby wall, as well as the architectural details of the ceiling of the enclave in 
which the statue is located becoming visible.

Figure 18-10.  Visual results when not using the n ⋅ l bounds (left) compared to using it (right). Both 
images use 8 SPP (4 BRDF samples and 4 light samples) and a BVH binned along all three axes with  
16 bins using SAH, and both take into account the distance and flux of the light.

Even without SAOH, the orientation cone still has a small impact on the final 
image; for example, the facades in Figure 18-9 (at the end of the street and in 
the right-hand corner of the image) are less noisy compared to not using the 
orientation cones.

The use of an acceleration structure significantly improves the quality of the 
rendering, as seen in Figure 18-8, with between 4× and 6× improved average MSE 
score over the Uniform method even when only considering the distance to a node 
for that node’s importance function. Incorporating the flux, the n ⋅ l bound and the 
orientation cone give a further 2× improvement.

 Importance Sampling of Many Lights on the GPU



280

18.6	 �CONCLUSION

We have presented a hierarchical data structure and sampling methods to 
accelerate light importance sampling in real-time ray tracing, similar to what 
is used in offline rendering [11, 22]. We have explored sampling performance 
on the GPU, taking advantage of hardware-accelerated ray tracing. We have 
also presented results using different build heuristics. We hope this work will 
inspire future work in game engines and research to incorporate better sampling 
strategies.

While the focus of this chapter has been on the sampling problem, it should be 
noted that any sample-based method usually needs to be paired with some form 
of denoising filter to remove the residual noise, and we refer the reader to recent 
real-time methods based on advanced bilateral kernels [25, 34, 35] as a suitable 
place to start. Deep learning–based methods [3, 7, 42] also show great promise. 
For an overview of traditional techniques, refer to the survey by Zwicker et al. [48].

For the sampling, there are a number of worthwhile avenues for improvement. In 
the current implementation, we bound n ⋅ l to cull lights under the horizon. It would 
be helpful to also incorporate BRDF and visibility information to refine the sampling 
probabilities during tree traversal. On the practical side, we want to move the BVH 
building code to the GPU for performance reasons. That will also be important for 
supporting lights on dynamic or skinned geometry.

ACKNOWLEDGEMENTS

Thanks to Nicholas Hull and Kate Anderson for creating the test scenes. The 
Sun Temple [13] and Paragon Battlegrounds scenes are based on assets kindly 
donated by Epic Games. The Bistro scene is based on assets kindly donated by 
Amazon Lumberyard [1]. Thanks to Benty et al. [4] for creating the Falcor rendering 
research framework, and to He et al. [16] and Jonathan Small for the Slang shader 
compiler that Falcor uses. We would also like to thank Pierre Moreau’s advisor 
Michael Doggett at Lund University. Lastly, thanks to Aaron Lefohn and NVIDIA 
Research for supporting this work.

REFERENCES

	 [1]	� Amazon Lumberyard. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA). 
http://developer.nvidia.com/orca/amazon-lumberyard-bistro, July 2017.

	 [2]	� Andersson, J. Parallel Graphics in Frostbite—Current & Future. Beyond Programmable Shading, 
SIGGRAPH Courses, 2009.

RAY TRACING GEMS

http://developer.nvidia.com/orca/amazon-lumberyard-bistro


281

	 [3]	� Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novák, J., Harvill, A., Sen, P., DeRose, T., and 
Rousselle, F. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. 
ACM Transactions on Graphics 36, 4 (2017), 97:1–97:14.

	 [4]	� Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor 
Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor, July 2017.

	 [5]	� Bikker, J. Real-Time Ray Tracing Through the Eyes of a Game Developer. In IEEE Symposium on 
Interactive Ray Tracing (2007), pp. 1–10.

	 [6]	� Bikker, J. Ray Tracing in Real-Time Games. PhD thesis, Delft University, 2012.

	 [7]	� Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., and 
Aila, T. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising 
Autoencoder. ACM Transactions on Graphics 36, 4 (2017), 98:1–98:12.

	 [8]	� Christensen, P. H., and Jarosz, W. The Path to Path-Traced Movies. Foundations and Trends in 
Computer Graphics and Vision 10, 2 (2016), 103–175.

	 [9]	� Clarberg, P., Jarosz, W., Akenine-Möller, T., and Jensen, H. W. Wavelet Importance Sampling: 
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005), 
1166–1175.

	 [10]	� Clark, J. H. Hierarchical Geometric Models for Visibility Surface Algorithms. Communications of 
the ACM 19, 10 (1976), 547–554.

	 [11]	� Conty Estevez, A., and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting. 
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1–25:17.

	 [12]	� Dachsbacher, C., Křivánek, J., Hašan, M., Arbree, A., Walter, B., and Novák, J. Scalable Realistic 
Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (2014), 88–104.

	 [13]	� Epic Games. Unreal Engine Sun Temple, Open Research Content Archive (ORCA). http://
developer.nvidia.com/orca/epic-games-sun-temple, October 2017.

	 [14]	� Goldsmith, J., and Salmon, J. Automatic Creation of Object Hierarchies for Ray Tracing. IEEE 
Computer Graphics and Applications 7, 5 (1987), 14–20.

	 [15]	� Harada, T. A 2.5D Culling for Forward+. In SIGGRAPH Asia 2012 Technical Briefs (2012),  
pp. 18:1–18:4.

	 [16]	� He, Y., Fatahalian, K., and Foley, T. Slang: Language Mechanisms for Extensible Real-Time 
Shading Systems. ACM Transactions on Graphics 37, 4 (2018), 141:1–141:13.

	 [17]	� Heitz, E., Dupuy, J., Hill, S., and Neubelt, D. Real-Time Polygonal-Light Shading with Linearly 
Transformed Cosines. ACM Transactions on Graphics 35, 4 (2016), 41:1–41:8.

	 [18]	 Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH) (1986), 143–150.

	 [19]	� Karis, B. Real Shading in Unreal Engine 4. Physically Based Shading in Theory and Practice, 
SIGGRAPH Courses, August 2013.

	 [20]	 Keller, A. Instant Radiosity. In Proceedings of SIGGRAPH (1997), pp. 49–56.

	 [21]	� Keller, A., Fascione, L., Fajardo, M., Georgiev, I., Christensen, P., Hanika, J., Eisenacher, C., and 
Nichols, G. The Path Tracing Revolution in the Movie Industry. In ACM SIGGRAPH Courses (2015), 
pp. 24:1–24:7.

 Importance Sampling of Many Lights on the GPU

https://github.com/NVIDIAGameWorks/Falcor
http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/epic-games-sun-temple


282

	 [22]	� Keller, A., Wächter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndörfer, J., and Kettner, 
L. The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

	 [23]	� Lagarde, S., and de Rousiers, C. Moving Frostbite to Physically Based Rendering 3.0. Physically 
Based Shading in Theory and Practice, SIGGRAPH Courses, 2014.

	 [24]	� MacDonald, J. D., and Booth, K. S. Heuristics for Ray Tracing Using Space Subdivision. The Visual 
Computer 6, 3 (1990), 153–166.

	 [25]	� Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. An Efficient Denoising Algorithm for Global 
Illumination. In Proceedings of High-Performance Graphics (2017), pp. 3:1–3:7.

	 [26]	 NVIDIA. NVAPI, 2018. https://developer.nvidia.com/nvapi.

	 [27]	� O’Donnell, Y., and Chajdas, M. G. Tiled Light Trees. In Symposium on Interactive 3D Graphics and 
Games (2017), pp. 1:1–1:7.

	 [28]	� Olsson, O., and Assarsson, U. Tiled Shading. Journal of Graphics, GPU, and Game Tools 15, 4 
(2011), 235–251.

	 [29]	� Olsson, O., Billeter, M., and Assarsson, U. Clustered Deferred and Forward Shading. In 
Proceedings of High-Performance Graphics (2012), pp. 87–96.

	 [30]	� Persson, E., and Olsson, O. Practical Clustered Deferred and Forward Shading. Advances in 
Real-Time Rendering in Games, SIGGRAPH Courses, 2013.

	 [31]	� Pharr, M. Guest Editor’s Introduction: Special Issue on Production Rendering. ACM Transactions 
on Graphics 37, 3 (2018), 28:1–28:4.

	 [32]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [33]	� Rubin, S. M., and Whitted, T. A 3-Dimensional Representation for Fast Rendering of Complex 
Scenes. Computer Graphics (SIGGRAPH) 14, 3 (1980), 110–116.

	 [34]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 2:1–2:12.

	 [35]	� Schied, C., Peters, C., and Dachsbacher, C. Gradient Estimation for Real-Time Adaptive Temporal 
Filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 
24:1–24:16.

	 [36]	� Schmittler, J., Pohl, D., Dahmen, T., Vogelgesang, C., and Slusallek, P. Realtime Ray Tracing for 
Current and Future Games. In ACM SIGGRAPH Courses (2005), pp. 23:1–23:5.

	 [37]	� Shirley, P., Wang, C., and Zimmerman, K. Monte Carlo Techniques for Direct Lighting 
Calculations. ACM Transactions on Graphics 15, 1 (1996), 1–36.

	 [38]	 Sobol, I. M. A Primer for the Monte Carlo Method. CRC Press, 1994.

	 [39]	� Talbot, J. F., Cline, D., and Egbert, P. Importance Resampling for Global Illumination. In 
Rendering Techniques (2005), pp. 139–146.

RAY TRACING GEMS

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
https://developer.nvidia.com/nvapi


283

	 [40]	� Tokuyoshi, Y., and Harada, T. Stochastic Light Culling. Journal of Computer Graphics Techniques 5, 
1 (2016), 35–60.

	 [41]	� Veach, E., and Guibas, L. J. Optimally Combining Sampling Techniques for Monte Carlo 
Rendering. In Proceedings of SIGGRAPH (1995), pp. 419–428.

	 [42]	� Vogels, T., Rousselle, F., McWilliams, B., Röthlin, G., Harvill, A., Adler, D., Meyer, M., and Novák, 
J. Denoising with Kernel Prediction and Asymmetric Loss Functions. ACM Transactions on 
Graphics 37, 4 (2018), 124:1–124:15.

	 [43]	� Wald, I. On Fast Construction of SAH-Based Bounding Volume Hierarchies. In IEEE Symposium on 
Interactive Ray Tracing (2007), pp. 33–40.

	 [44]	� Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. Multidimensional Lightcuts. ACM 
Transactions on Graphics 25, 3 (2006), 1081–1088.

	 [45]	� Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. Lightcuts: A 
Scalable Approach to Illumination. ACM Transactions on Graphics 24, 3 (2005), 1098–1107.

	 [46]	� Ward, G. J. Adaptive Shadow Testing for Ray Tracing. In Eurographics Workshop on Rendering 
(1991), pp. 11–20.

	 [47]	� Zimmerman, K., and Shirley, P. A Two-Pass Solution to the Rendering Equation with a Source 
Visibility Preprocess. In Rendering Techniques (1995), pp. 284–295.

	 [48]	� Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, 
C., and Yoon, S.-E. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo 
Rendering. Computer Graphics Forum 34, 2 (2015), 667–681.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Importance Sampling of Many Lights on the GPU

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART V

DENOISING  
AND FILTERING



287

PART V

Denoising and Filtering

Denoising and filtering are integral parts of a ray tracing pipeline. In a real-time 
setting, one can afford only a handful of rays per pixel, often randomly distributed. 
Consequently, the result is inherently noisy. By combining these sparse (but 
correct) per-pixel evaluations with spatiotemporal filters, variance is drastically 
reduced at the cost of increased bias, which is often a reasonable trade-off in 
real-time rendering. Furthermore, each ray is a point sample, which can introduce 
aliasing. By prefiltering terms where possible, e.g., texture lookups, aliasing can be 
reduced. This part introduces several practical examples of denoising and filtering 
for real-time ray tracing.

Chapter 19, “Cinematic Rendering in UE4 with Real-Time Ray Tracing and 
Denoising,” presents a detailed overview of integrating ray tracing in a modern 
game engine. By combining rasterization with GPU-accelerated DirectX Raytracing 
and custom denoising filters, the authors reach previously unseen image fidelity at 
interactive rates. In two comprehensive demos they showcase soft shadows, glossy 
reflections, and diffuse indirect illumination.

In rasterization-based rendering, one commonly applies texture filtering based 
on derivatives with respect to screen-space coordinates to reduce aliasing. This 
requires that primary visibility and shading are computed over quads of pixels. In 
ray tracing, explicit ray differentials are commonly used. In Chapter 20, “Texture 
Level of Detail Strategies for Real-Time Ray Tracing,” the authors evaluate 
techniques for texture filtering in a ray tracing setting and present several 
practical algorithms with different performance-versus-quality characteristics. 
In Chapter 21, “Simple Environment Map Filtering Using Ray Cones and Ray 
Differentials,” an inexpensive texture filtering technique for environment map 
lookups is presented.

Temporal antialiasing (TAA) reduces aliasing by reprojecting older samples using 
motion vectors and integrating samples over time. However, these techniques 
sometimes fail, e.g., in disocclusion regions. In Chapter 22, “Improving Temporal 
Antialiasing with Adaptive Ray Tracing,” the authors take advantage of adaptive ray 
tracing of primary visibility to reduce aliasing artifacts. Additional primary rays 
are traced in regions with high aliasing and in regions where TAA may fail. The 
approach is implemented with DirectX Raytracing in a modern game engine and 
approaches quality levels close to 16× supersampling.



288

Denoising and filtering are important building blocks for high-fidelity real-time 
rendering, and the chapters include many practical insights and readily applicable 
source code. In summary, this part shows that the combination of GPU-accelerated 
ray tracing and clever denoising techniques can produce convincing imagery at 
interactive rates.

Jacob Munkberg



289© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_19

CHAPTER 19

Cinematic Rendering in UE4 with  
Real-Time Ray Tracing and Denoising
Edward Liu,1 Ignacio Llamas,1 Juan Cañada,2 and Patrick Kelly2

1NVIDIA 
2Epic Games

ABSTRACT

We present cinematic quality real-time rendering by integrating ray tracing in 
Unreal Engine 4. We improve the state-of-the-art performance in GPU ray tracing 
by an order of magnitude through a combination of engineering work, new ray 
tracing hardware, hybrid rendering techniques, and novel denoising algorithms.

19.1	 �INTRODUCTION

Image generation with ray tracing can produce higher-quality images than 
rasterization. One manifestation of this is that, in recent years, most special effects 
in films are done with path tracing. However, it is challenging to use ray tracing in 
real-time applications, e.g., games. Many steps of the ray tracing algorithm are 
costly, including bounding volume hierarchy (BVH) construction, BVH traversal, 
and ray/primitive intersection tests. Furthermore, stochastic sampling, which is 
commonly applied in ray tracing techniques, often requires hundreds to thousands 
of samples per pixel to produce a converged image. This is far outside the compute 
budget of modern real-time rendering techniques by several orders of magnitude. 
Also, until recently, real-time graphics APIs did not have ray tracing support, which 
made ray tracing integration in current games challenging. This changed in 2018 
with the announcement of ray tracing support in DirectX 12 and Vulkan.

In this chapter we address many of these problems and demonstrate ray tracing 
integrated in a modern game engine: Unreal Engine 4 (UE4). Specifically:

>> We adopted DirectX Raytracing (DXR) and integrated it into UE4, 
which allowed us to mostly reuse existing material shader code.

>> We leveraged the RT Cores in the NVIDIA Turing architecture for 
hardware-accelerated BVH traversal and ray/triangle intersection 
tests.



290

>> We invented novel reconstruction filters for high-quality stochastic 
rendering effects, including soft shadows, glossy reflections, diffuse 
global illumination, ambient occlusion, and translucency, with as few 
as one input sample per pixel.

A combination of hardware acceleration and software innovations enabled us to 
create two real-time cinematic-quality ray tracing–based demos: “Reflections” 
(Lucasfilm) and “Speed of Light” (Porsche).

19.2	 �INTEGRATING RAY TRACING IN UNREAL ENGINE 4

Integrating a ray tracing framework in a large application such as Unreal Engine is 
a challenging task, effectively one of the largest architectural changes since UE4 
was released. Our goals while integrating ray tracing into UE4 were the following:

>> Performance: This is a key aspect of UE4, so the ray tracing 
functionality should be aligned with what users expect. One of our 
decisions that helped performance is that the G-buffer is computed 
using existing rasterization-based techniques. On top of that, rays 
are traced to calculate specific passes, such as reflections or area 
light shadows.

>> Compatibility: The output of the ray traced passes must be compatible 
with the existing UE4’s shading and post-processing pipeline.

>> Shading consistency: Shading models used by UE4 must be accurately 
implemented with ray tracing to produce consistent shading results 
with existing shadings in UE4. Specifically, we strictly follow the 
same mathematics in existing shader code to do BRDF evaluation, 
importance sampling, and BRDF probability distribution function 
evaluation for various shading models provided by UE4.

>> Minimizing disruption: Existing UE4 users should find the integration 
easy to understand and extend. As such, it must follow the UE design 
paradigms.

>> Multiplatform support: While initially real-time ray tracing in UE4 is 
entirely based on DXR, the multiplatform nature of UE4 required 
us to design the new system in a way that makes it possible 
to eventually port it to other future solutions without a major 
refactoring.

The integration was split in two phases. The first was a prototyping phase, 
where we created the “Reflections” (a Lucasfilm Star Wars short movie made in 
collaboration with ILMxLabs) and “Speed of Light” (Porsche) demos with the goal 
of learning the ideal way of integrating the ray tracing technology within UE in a 
way that could scale properly in the future. That helped us extract conclusions on 

RAY TRACING GEMS



291

the most challenging aspects of the integration: performance, API, integration in 
the deferred shading pipeline, changes required in the render hardware interface 
(RHI), a thin layer that abstracts the user from the specifics of each hardware 
platform, changes in the shader API, scalability, etc.

After finding answers to most of the questions that arose during phase one, 
we moved to phase two. This consisted of a major rewrite of the UE4 high-level 
rendering system, which in addition to providing a better integration of real-
time ray tracing, also brought other advantages, including a significant overall 
performance boost.

19.2.1	 �PHASE 1: EXPERIMENTAL INTEGRATION

At a high level, integrating ray tracing into a rasterization-based real-time 
rendering engine consists of a few steps:

>> Registering the geometry that will be ray traced, such that 
acceleration structures can be built or updated when changing.

>> Creating hit shaders such that any time a ray hits a piece of 
geometry, we can compute its material parameters, just like we 
would have done in rasterization-based rendering.

>> Creating ray generation shaders that trace rays for various use 
cases, such as shadows or reflections.

19.2.1.1	 �DIRECTX RAYTRACING BACKGROUND ON ACCELERATION STRUCTURES

To comprehend the first step, it is first useful to understand the two-level 
acceleration structure (AS) exposed by the DirectX Raytracing API. In DXR there 
are two types of acceleration structures, forming a two-level hierarchy: top-level 
acceleration structure (TLAS) and bottom-level acceleration structure (BLAS). 
These are illustrated in Figure 19-1. The TLAS is built over a set of instances, each 
one with its own transform matrix and a pointer to a BLAS. Each BLAS is built over 
a set of geometric primitives, either triangles or AABBs, where AABBs are used 
to enclose custom geometry that will be intersected using a custom Intersection 
shader executed during acceleration structure traversal as AABBs are found along 
a ray. The TLAS is usually rebuilt each frame for dynamic scenes. Each BLAS is 
built at least once for each unique piece of geometry. If the geometry is static, no 
additional BLAS build operations are needed after the initial build. For dynamic 
geometry, a BLAS will need to be either updated or fully rebuilt. A full BLAS rebuild 
is needed when the number of input primitives changes (i.e., when triangles or 
AABBs need to be added or removed, for example, due to dynamic tessellation or 

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



292

19.2.1.2	 �EXPERIMENTAL EXTENSIONS TO THE UE4 RHI

In the experimental UE4 implementation, we extended the rendering hardware 
interface (RHI) with an abstraction inspired by the NVIDIA OptiX API, but slightly 
simplified. This abstraction consisted of three object types: rtScene, rtObject, 
and rtGeometry. The rtScene is composed of rtObjects, which are effectively 
instances, each pointing to an rtGeometry. An rtScene encapsulates a TLAS, 
while an rtGeometry encapsulates a BLAS. Both rtGeometry and any rtObject 
pointing to a given rtGeometry can be made up of multiple sections, all of which 
belong to the same UE4 primitive object (Static Mesh or Skeletal Mesh) and 
therefore share the same index and vertex buffer but may use different (material) 
hit shaders. An rtGeometry itself has no hit shaders associated with it. We set hit 
shaders and their parameters at the rtObject sections.

The engine material shader system and the RHI were also extended to support 
the new ray tracing shader types in DXR: Ray Generation, Closest Hit, any-hit, 
Intersection, and Miss. The ray tracing pipeline with these shader stages is shown 

other procedural geometry generation methods, such as particle systems).  
In the case of a BVH (which is what the NVIDIA RTX implementation uses), the 
BLAS update entails a refit operation, where all the AABBs in the tree are updated 
from the leaves to the root, but the tree structure is left unchanged.

Shader Binding Table

Top-Level AS

Bottom-Level AS Bottom-Level ASBottom-Level AS

Figure 19-1.  The two-level hierarchy of the acceleration structure.

RAY TRACING GEMS



293

Figure 19-2.  The ray tracing pipeline.

in Figure 19-2. In addition to Closest Hit and any-hit shaders, we also extended the 
engine to support the use of the existing vertex shader (VS) and pixel shader (PS) in 
their place. We leveraged a utility that extends the open-source Microsoft DirectX 
Compiler, providing a mechanism to generate Closest Hit and any-hit shaders 
from the precompiled DXIL representation of VS and PS. This utility takes as input 
the VS code, the Input Layout for the Input Assembly stage (including vertex and 
index buffer formats and strides), and the PS code. Given this input, it can generate 
optimal code that performs index buffer fetch, vertex attribute fetch, format 
conversion, and VS evaluation (for each of the three vertices in a triangle), followed 
by interpolation of the VS outputs using the barycentric coordinates at a hit, the 
result of which is provided as input to the PS. The utility is also able to generate a 
minimal any-hit shader to perform alpha testing. This allowed the rendering code 
in the engine to continue using the vertex and pixel shaders as if they were going to 
be used to rasterize the G-buffer, setting their shader parameters as usual.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



294

The implementation under this experimental RHI abstraction had two additional 
responsibilities: compiling ray tracing shaders (to a GPU-specific representation) 
and managing the Shader Binding Table, which points to the shader code and 
shader parameters that need to be used for each piece of geometry.

Compiling Ray Tracing Shaders Efficiently  Prior to the introduction of RTX 
and DirectX Raytracing, the existing pipeline abstractions in graphics APIs (for 
rasterization and compute) required only a small number of shaders (1 to 5) to be 
provided to create a so-called pipeline state object (PSO), which encapsulates the 
compiled machine-specific code for the input shaders. These graphics APIs allow 
the creation of many of these pipeline state objects in parallel if needed, each for a 
different material or rendering pass. The ray tracing pipeline, however, changes this 
in a significant way. A ray tracing pipeline state object (RTPSO) must be created with 
all the shaders that may need to be executed in a given scene, such that when a ray 
hits any object, the system can execute the shader code associated with it, whatever 
that might be. In complex content in today’s games, this can easily mean thousands 
of shaders. Compiling thousands of ray tracing shaders into the machine code for 
one RTPSO could be very time consuming if done sequentially. Fortunately, both 
DirectX Raytracing and all other NVIDIA ray tracing APIs enabled by RTX expose 
the ability to compile in parallel multiple ray tracing shaders to machine code. This 
parallel compilation can take advantage of the multiple cores of today’s CPUs. In the 
experimental UE4 implementation, we used this functionality by simply scheduling 
separate tasks, each of which compiled a single ray tracing shader or hit group into 
what DXR calls a collection. Every frame, if no other shader compilation tasks were 
already executing, we checked if any new shaders were needed and not available. 
If any such shaders were found, we started a new batch of shader compilation 
tasks. Every frame we also checked if any prior set of shader compilation tasks 
had completed. If so, we created a new RTPSO, replacing the previous one. At any 
time, a single RTPSO is used for all DispatchRays() invocations in a frame. Any 
old RTPSOs replaced by a new RTPSO are scheduled for deferred deletion when no 
longer used by any in-flight frames. Objects for which a required shader was not yet 
available in the current RTPSO were removed (skipped) when building the TLAS.

The Shader Binding Table  This table is a memory buffer made up of multiple 
records, each containing an opaque shader identifier and some shader parameters 
that are equivalent to what DirectX 12 calls a root table (for a Graphics Pipeline 
Draw or Compute Pipeline Dispatch). Since this first experimental implementation 
was designed to update shader parameters for every object in the scene at every 
frame, the Shader Binding Table management was simple, mimicking that of a 
command buffer. The Shader Binding Table was allocated as an N-buffered linear 
memory buffer, with size dictated by the number of objects in the scene. At every 

RAY TRACING GEMS



295

frame we simply started writing the entire Shader Binding Table from scratch in 
a GPU-visible CPU-writable buffer (in an upload heap). We then enqueued GPU 
copies from this buffer to a GPU-local counterpart. Fence-based synchronization 
was used to prevent overwriting either CPU or GPU copies of the Shader Binding 
Table used N frames earlier.

19.2.1.3	 �REGISTERING GEOMETRY FOR A VARIETY OF ENGINE PRIMITIVES

To register geometry for acceleration structure construction, we had to make sure 
that the various primitives in UE4 had their RHI-level rtGeometry and rtObjects 
created for them. Typically, this requires identifying the right scope where 
rtGeometry and rtObjects should be created. For most primitives one can 
create an rtGeometry at the same scope as the vertex and index buffer geometry. 
This is simple to do for static triangle meshes, but for other primitives it can get 
more involved. For example, Particle Systems, Landscape (terrain) primitives, and 
Skeletal Meshes (i.e., skinned geometry, potentially using morph targets or cloth 
simulation) require special treatment. In UE4 we took advantage of the existing 
GPUSkinCache, a compute shader–based system that performs skinning at 
every frame into temporary GPU buffers that can be used as input to rasterization 
passes, acceleration structure updates, and hit shaders. It’s also important to note 
that each Skeletal Mesh instance needs its own separate BLAS; therefore, in this 
case a separate rtGeometry is needed for each instance of a Skeletal Mesh, and 
no instancing or sharing of these is possible, as is the case for Static Meshes.

We also experimented with support for other kinds of dynamic geometry, such as 
Cascade Particle Systems and the Landscape (terrain) system. Particle systems 
can use either particle meshes, where each particle becomes an instanced pointing 
to a Static Mesh’s rtGeometry, or procedurally generated triangle geometry, such 
as sprites or ribbons. Due to limited time, this experimental support was restricted 
to CPU-simulated particle systems. For the Landscape system we had some 
experimental support for the terrain patches, the foliage geometry, and the Spline 
meshes (which are meshes generated by interpolating a triangle mesh along a 
B-spline curve). For some of these, we relied on existing CPU code that generates 
the vertex geometry.

19.2.1.4	 �UPDATING THE RAY TRACING REPRESENTATION OF THE SCENE

At every frame, the UE4 renderer executes its Render loop body, where it performs 
multiple passes, such as rasterizing the G-buffer, applying direct lighting, or post-
processing. We modified this loop to update the representation of the scene used 

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



296

for ray tracing purposes, which at the lowest level consists of the Shader Binding 
Table, associated memory buffers and resource descriptors, and the acceleration 
structures.

From the high-level renderer point of view, the first step involves ensuring that 
the shader parameters for all the objects in the scene are up to date. To do so 
we leveraged the existing Base Pass rendering logic, typically used to rasterize 
a G-buffer in the deferred shading renderer. The main difference is that for ray 
tracing we had to perform this loop over all the objects in the scene, not only those 
both inside the camera frustum and potentially visible, based on occlusion culling 
results. The second difference is that, instead of using the VS and PS from deferred 
shading G-buffer rendering, the first implementation used the VS and PS from the 
forward shading renderer, as that seemed like a natural fit when shading hits for 
reflections. A third difference is that we actually had to update shader parameters 
for multiple ray types, in some cases using slightly different shaders.

19.2.1.5	 �ITERATING OVER ALL OBJECTS

In a large scene there may be a significant amount of CPU time spent updating 
shader parameters for all objects. We recognized this as a potential problem 
and concluded that to avoid it we should aim for what people traditionally call 
retained mode rendering. Unlike immediate mode rendering, where at every frame 
the CPU resubmits many of the same commands to draw the same objects, one 
by one, in retained mode rendering the work performed every frame is only that 
needed to update anything that has changed since the last frame in a persistent 
representation of the scene. Retained mode rendering is a better fit for ray tracing 
because, unlike rasterization, in ray tracing we need global information about the 
entire scene. For this reason retained mode rendering is enabled by all the GPU 
ray tracing APIs supported by NVIDIA RTX (OptiX, DirectX Raytracing, and Vulkan 
Raytracing). Most real-time rendering engines today, however, are still designed 
around the limitations of rasterization APIs used for the last two decades, since 
OpenGL. As such, renderers are written to re-execute at every frame all the shader 
parameter setting and drawing code, ideally for as few objects as needed to render 
what is visible from the camera. While this same approach worked well for the 
small scenes we used to demonstrate real-time ray tracing, we know it will fail 
to scale to huge worlds. For this reason the UE4 rendering team embarked on a 
project to revamp the high-level renderer to aim for a more efficient retained mode 
rendering approach.

RAY TRACING GEMS



297

19.2.1.6	 �CUSTOMIZING SHADERS FOR RAY TRACED RENDERING

The second difference between ray tracing and rasterization rendering was that 
we had to build hit shaders from VS and PS code that were slightly customized 
for ray tracing purposes. The initial approach was based on the code used for 
forward shading in UE4, except that any logic that depends on information tied to 
screen-space buffers was skipped. (Side note: this implied that materials making 
use of nodes that access screen-space buffers do not work as expected with ray 
tracing. Such materials should be avoided when combining rasterization and 
ray tracing.) While our initial implementation used hit shaders based on UE4’s 
forward-rendering shaders, over time we refactored the shader code such that the 
hit shaders looked closer to the shaders used for G-buffer rendering in deferred 
shading. In this new mode all the dynamic lighting was performed in the ray 
generation shader instead of the hit shader. This reduced the size and complexity of 
hit shaders, avoiding the execution of nested TraceRay() calls in hit shaders, and 
allowed us to modify the lighting code for ray traced shading with much-reduced 
iteration times, thanks to not having to wait for the rebuilding of thousands of 
material pixel shaders. In addition to this change, we also optimized the VS code by 
ensuring we used the position computed from the ray information at a hit (origin 
+ t * direction), thus avoiding memory loads and computation associated 
with position in the VS. Furthermore, where possible, we moved computation from 
the VS to the PS, such as when computing the transformed normal and tangent. 
Overall, this reduced the VS code to mostly data fetching and format conversion.

19.2.1.7	 �BATCH COMMIT OF SHADER PARAMETERS OF MULTIPLE RAY TYPES

The third difference, updating parameters for multiple ray types, meant that in 
some cases we had to loop over all the objects in the scene multiple times, if 
one of the ray types required a totally separate set of VS and PS. In some cases, 
though, we were able to significantly reduce the overhead of additional ray types. 
For example, we were able to handle the update of the two most common ray 
types, Material Evaluation and Any Hit Shadow, by allowing the RHI abstraction to 
commit shader parameters for multiple ray types at the same time, when these 
can use hit shaders that have compatible shader parameters. This requirement 
was guaranteed by the DirectX Compiler utility that transforms VS and PS pairs to 
hit shaders, as it ensured that the VS and PS parameter layout is the same for both 
the Closest Hit shader and the any-hit shader (since both were generated from the 
same VS and PS pair). Given this and the fact that the Any Hit Shadow ray type is 
simply using the same any-hit shader as the Material Evaluation ray type combined 
with a null Closest Hit shader, it was trivial to use the same Shader Binding Table 
record data for both ray types, but with different Shader Identifiers.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



298

19.2.1.8	 �UPDATING INSTANCE TRANSFORMATION

During the process of filling the Shader Binding Table records, we also took care 
of recording their offset in the associated rtObject. This information needs to 
be provided to the TLAS build operation, as it is used by the DXR implementation 
to decide what hit shaders to execute and with what parameters. In addition to 
updating all the shader parameters, we must also update the instance transform 
and flags associated with every rtObject. This is done in a separate loop, prior 
to updating the shader parameters. The instance-level flags allow, among other 
things, control of masking and backface culling logic. Masking bits are used in UE4 
to implement support for lighting channels, which allow artists to restrict specific 
sets of lights to interacting with only specific sets of objects. Backface culling bits 
are used to ensure that rasterizing and ray tracing results match visually (culling is 
not as likely to be a performance optimization for ray tracing as it is for rasterizing).

19.2.1.9	 �BUILDING ACCELERATION STRUCTURES

After updating all the ray tracing shader parameters, the rtObject transforms, 
and the culling and masking bits, the Shader Binding Table containing hit shaders 
is ready, and all the rtObjects know their corresponding Shader Binding Table 
records. At this point we move to the next step, which is scheduling the build or 
update of any bottom-level acceleration structures, as well as the rebuild of the 
TLAS. In the experimental implementation this step also takes care of deferred 
allocation of memory associated with acceleration structures. One important 
optimization in this phase is to ensure that any resource transition barriers that 
are needed after BLAS updates are deferred to be executed right before the 
TLAS build, instead of executing these right after each BLAS update. Deferral is 
important because each of these transition barriers is a synchronization step on 
the GPU. Having the transitions coalesced into a single point in the command buffer 
avoids redundant synchronization that would otherwise cause the GPU to frequently 
become idle. By coalescing the transitions, we perform this synchronization once, 
after all the BLAS updates, and allow multiple BLAS updates, potentially for many 
small triangle meshes, to overlap while running on the GPU.

19.2.1.10	 �MISS SHADERS

Our use of Miss shaders is limited. Despite exposing Miss shaders at the RHI level, 
we never used them from the engine side of the RHI, and we relied on the RHI 
implementation preinitializing a set of identical default Miss shaders (one per ray 
type) that simply initialized a HitT value in the payload to a specific negative value, 
as a way to indicate that a ray had not hit anything.

RAY TRACING GEMS



299

19.2.2	 �PHASE 2

After accumulating experience during the creation of two high-end ray tracing 
demos, we were in the position to work on a big refactoring that could make it 
possible to transition from code being project-specific to something that scales 
well for the needs of all UE4 users. One of the ultimate goals of this phase was 
to move the UE4 rendering system from immediate to retained mode. This led 
to higher efficiency, as only objects that changed at a given frame are effectively 
updated. Because of limitations of rasterization pipelines, UE4 was initially written 
following an immediate mode style. However, this would represent a serious 
limitation for ray tracing large scenes, since it always updates all the objects for 
each frame even though most of the time only a small portion changed. So, moving 
to a retained mode style was one of the key accomplishments of this phase.

With the ultimate goal of making it possible to integrate ray tracing in any platform 
in the future, we divided the requirements in different tiers, to understand what 
was needed for supporting each feature and how we could face limitations of any 
particular device without sacrificing functionality when more advance hardware 
was present.

19.2.2.1	 �TIER 1

Tier 1 describes the lowest level of functionality required to integrate basic ray 
tracing capabilities and is like existing ray tracing APIs such as Radeon Rays or 
Metal Performance Shaders. The input is a buffer that contains ray information 
(origin, direction), and the shader output is a buffer that contains intersection 
results. There is no built-in TraceRay intrinsic function nor are there any hit 
shaders available in this tier. Tier 1 is a good fit for implementing simple ray tracing 
effects such as opaque shadows or ambient occlusion, but going beyond these is 
challenging and requires complex changes in the code that introduce restrictions 
and make it difficult to achieve good execution efficiency.

19.2.2.2	�TIER 2

Tier 2 supports ray generation shaders, which can call a TraceRay intrinsic 
function whose output is available immediately after the trace call. This level of 
functionality also supports dynamic shader dispatch, which is abstracted using 
RTPSOs and Shader Binding Tables. Tier 2 does not support recursive ray tracing, 
so new rays cannot be spawned from hit shaders. During phase 1 we found that this 
was not a big limitation in practice, and it had the positive side effect of reducing 
the size and complexity of hit shaders.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



300

Tier 2 makes it possible to implement most of the goals defined in the ray tracing 
integration in UE4. Therefore, the design of the UE4 ray tracing pipeline has been 
done assuming Tier 2 capabilities.

19.2.2.3	�TIER 3

Tier 3 closely follows the DXR specification. It supports all Tier 2 features and 
recursive calls with a predefined maximum depth. It also supports tracing rays 
from other shader types beyond ray generation shaders, as well as advanced 
features, such as customizable acceleration structure traversal. Tier 3 is the 
most powerful set of capabilities to date, and it enables integration of advanced 
ray tracing features from offline rendering, e.g., photon mapping and irradiance 
caching, in a modular way. The ray tracing integration in UE4 has been designed to 
make use of Tier 3 capabilities when the hardware supports it.

19.3	 �REAL-TIME RAY TRACING AND DENOISING

In addition to lessons learned from the ray tracing integration in UE4, the initial 
experimental phase was essential to explore the possibilities of real-time ray tracing. 
We started with mirror reflections and hard shadows, continued by adding denoising 
to approximate glossy reflections and area light shadows from a limited ray budget, 
and then added ambient occlusion, diffuse global illumination, and translucency.

We note that rasterization-based renderers (both offline and real-time) often split 
the rendering equation into multiple segments of light paths and deal with each 
segment separately. For example, a separate pass is performed for screen-space 
reflection, and another pass for direct lighting. This is less commonly used in 
ray tracing renderers, in particular offline path tracers, which instead render by 
accumulating tens, hundreds, or thousands of light paths.

Some ray tracing renderers use techniques to improve convergence or interactivity, 
e.g., virtual point lights (instant radiosity [6]), path space filtering [1], and a 
plethora of denoising algorithms. For an overview of recent denoising techniques 
for Monte Carlo rendering, please refer to Zwicker et al’s [14] excellent state-of-
the-art report.

Zimmer et al. [13] split the entire ray tree into separate buffers and applied 
denoising filters to each buffer before compositing the final frame. In our scenario, 
we follow a similar approach, splitting the light paths that emerge when we try to 
solve the rendering equation. We apply custom filters for results from different ray 
types, e.g., shadow, reflection, and diffuse rays. We use a small number of rays per 
pixel for each effect and denoise them aggressively to make up for the insufficient 

RAY TRACING GEMS



301

number of samples. We exploit local properties to improve denoising quality (such 
as the size of a light or the shape of a glossy BRDF lobe) and combine the results to 
generate images that approach those generated by offline renderers. We call this 
technique Partitioned Light Path Filtering.

19.3.1	 �RAY TRACED SHADOWS

One significant advantage of ray traced shadows over shadow maps is that ray 
tracing can easily simulate physically accurate penumbras even for light sources 
with large areas, improving the perceived realism of the rendered image. 
Producing high-quality soft shadows with large penumbra is one of our goals.

In the “Reflections” (Lucasfilm) demo, area lights and soft shadows are two of the 
most important visual components. See Figure 19-3 for one example.

Figure 19-3.  (a) Original rendering from the “Reflections” (Lucasfilm) demo with ray traced 
soft shadows. Notice the soft shadows under the helmet of the two stormtroopers. (b) Without 
soft shadows, the lighting loses the fidelity in the area light illumination, and the image is less 
photorealistic.

A similar effect is shown in the “Speed of Light” (Porsche) demo, with shadows cast 
by the giant area light above the Porsche 911 Speedster car. Large diffuse lights are 
commonly used for car exhibitions, and they produce diffuse-looking shadows with 
large penumbras. Accurate shadow penumbras from big area light sources are 
challenging with traditional rasterization-based techniques such as shadow maps. 
With ray tracing we can simulate this phenomenon accurately, as shown in  
Figure 19-4.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



302

19.3.1.1	 �LIGHTING EVALUATION

The lighting evaluation for area light in our demo is computed using the linearly 
transformed cosine (LTC) approach [2], which provides a variance-free estimation 
of the lighting term without including visibility. To render shadows for area lights, 
we use ray tracing to collect a noisy estimation of the visibility term before applying 
advanced image reconstruction algorithms to the results. Finally we composite the 
denoised visibility term on top of the lighting results.

Mathematically this can be written as the following split sum approximation of the 
rendering Equation [4]:

		  ( ) ( ) ( ) ( )

( ) ( ) ( )

o d i i o i i
S

i i d i o i i i
S S

L L V f

V d L f d
2

2 2

,

.

cos

, cos

w w w w w q

w w w w w q w

ò

ò ò

=

»

∣ ∣

∣ ∣

	

(1)

Here, L(ωo) is the radiance leaving the surface in direction ωo; V(ωi) is the binary 
visibility term in direction ωi; the surface property f is the BRDF (bidirectional 
reflectance distribution function); Li(ωi) is the incoming light along direction ωi; and 
the angle between the surface normal and the incoming light direction is θi, with 
∣ cos θi∣ accounting for geometric dropoff due to this angle. For diffuse surfaces, 
this approximation has negligible bias and is commonly used in shadow mapping 
techniques. For area light shading with occlusion on glossy surfaces, one can use 
the ratio estimator from Heitz et al. [3] to get a more accurate result. In contrast, 
we directly use ray traced reflections plus denoising to handle specular area light 
shading with occlusion information in the “Speed of Light” (Porsche) demo. Please 
see Section 19.3.2.3 for more details.

Figure 19-4.  (a) Ray traced area light shadows with penumbras using one sample per pixel per light, 
reconstructed with our shadow denoiser. (b) Shadows rendered with shadow mapping.

RAY TRACING GEMS



303

19.3.1.2	 �SHADOW DENOISING

To get high-quality ray traced area light shadows with large penumbra, typically 
hundreds of visibility samples are required per pixel to get a estimate without 
noticeable noise. The required number of rays depends on the size of the light 
sources and the positions and sizes of the occluders in the scene.

For real-time rendering we have a much tighter ray budget, and hundreds of rays 
are way outside our performance budget. For the “Reflections” (Lucasfilm) and 
“Speed of Light” (Porsche) demos, we used as few as one sample per pixel per light 
source. With this number of samples, the results contained a substantial amount 
of noise. We applied an advanced denoising filter to reconstruct a noiseless image 
that’s close to ground truth.

We have designed a dedicated denoising algorithm for area light shadows with 
penumbra. The shadow denoiser has both a spatial and a temporal component. 
The spatial component is inspired by recent work in efficient filters based on 
a frequency analysis of local occlusion, e.g., the axis-aligned filtering for soft 
shadows [8] and the sheared filter by Yan et al. [12]. The denoiser is aware of the 
information about the light source, such as its size, shape, and direction and how 
far away it is from the receiver, as well as the hit distances for shadow rays. The 
denoiser uses this information to try to derive an optimal spatial filter footprint for 
each pixel. The footprint is anisotropic with varying directions per pixel. Figure 19-5 
shows an approximated visualization of our anisotropic spatial kernel. The kernel 
shape stretches along the direction of the penumbra, resulting in a high-quality 
image after denoising. The temporal component to our denoiser increases the 
effective sample count per pixel to be around 8–16. The caveat is slight temporal 
lag if the temporal filter is enabled, but we perform temporal clamping as 
proposed by Salvi [10] to reduce the lag.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



304

Given that the denoiser uses information per light source, we have to denoise 
the shadow cast by each light source separately. Our denoising cost is linear with 
respect to the number of light sources in the scene. However, the quality of the 
denoised results is higher than that of our attempts to use a common filter for 
multiple lights, and we therefore opted for a filter per light for these demos.

The input image in Figure 19-6 is rendered with one shadow ray per pixel to 
simulate the soft illumination cast by the giant rectangular-shaped light source on 
top of the car. At such a sampling rate, the resulting image is extremely noisy. Our 
spatial denoiser removes most of the noise, but some artifacts remain. Combining 
a temporal and a spatial denoising component, the result is close to a ground-truth 
image rendered with 2048 rays per pixel.

Figure 19-5.  Visualization (in green) of a filter kernel used in our shadow denoiser. Notice how it is 
anisotropic and stretches along each penumbra’s direction. (From Liu [7].)

RAY TRACING GEMS



305

Figure 19-6.  (a) Our denoiser works on noisy input rendered with a single shadow ray per pixel. 
(b) With only the spatial component of our denoiser, some low-frequency artifacts remain. (c) Our 
spatiotemporal denoiser improves the result further, and (d) it closely matches the ground truth.

For moderately sized light sources, our spatial denoiser produces high-quality 
results. In the “Reflections” (Lucasfilm) demo, spatial denoising alone was 
sufficient to produce shadow quality results that make our artists happy. For 
the type of giant light sources we used in the “Speed of Light” (Porsche) demo, 
pure spatially denoised results did not meet our quality bar. Therefore, we also 
employed a temporal component to our denoiser for the “Speed of Light” (Porsche) 
demo, which improved reconstruction quality at the cost of slight temporal lag.

19.3.2	 �RAY TRACED REFLECTIONS

True reflection is another key promise of ray tracing–based rendering. Current 
rasterization-based techniques such as screen-space reflections (SSR) [11] often 
suffer from artifacts in offscreen content. Other techniques, such as pre-integrated 
light probes [5], do not scale well to dynamic scenes and cannot accurately simulate 
all the features that exist in glossy reflections, such as stretching along the surface 
normal directions and contact hardening. Furthermore, ray tracing is arguably 
the most efficient way to handle multiple-bounce reflections on arbitrarily shaped 
surfaces.

Figure 19-7 demonstrates the type of effect that we were able to produce with 
ray traced reflections in the “Reflections” (Lucasfilm) demo. Notice the multiple-
bounce interreflections among portions of Phasma’s armor.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



306

19.3.2.1	 �SIMPLIFIED REFLECTION SHADING

While ray tracing makes it much easier to support dynamic reflections on 
arbitrary surfaces, even for offscreen content, it is expensive to compute the 
shading and lighting at the hit points of reflection bounces. To reduce the cost 
of material evaluation at reflection hit points, we provide the option to use 
different, artist-simplified materials for ray traced reflection shading. This 
material simplification has little impact on the final perceived quality, as reflected 
objects are often minimized on convex reflectors, and removing micro-details in 
the materials often is not visually noticeable yet is beneficial for performance. 
Figure 19-8 compares the regular complex material with rich micro-details from 
multiple texture maps in the primary view (left) and the simplified version used in 
reflection hit shading (right).

Figure 19-7.  Reflections on Phasma rendered with ray tracing. Notice the accurate interreflections 
among portions of her armor, as well as the slightly glossy reflections reconstructed with our denoiser.

RAY TRACING GEMS



307

19.3.2.2	�DENOISING FOR GLOSSY REFLECTIONS

Getting perfectly smooth specular reflections with ray tracing is nice, but in the 
real world most specular surfaces are not mirror-like. They usually have varying 
degrees of roughness and bumpiness across their surfaces. With ray tracing one 
would typically stochastically sample the local BRDF of the material with hundreds 
to thousands of samples, depending on the roughness and incoming radiance. 
Doing so is impractical for real-time rendering.

We implemented an adaptive multi-bounce mechanism to drive the reflected 
rays generation. The emission of reflection bounce rays was controlled by the 
roughness of the hit surface, so rays that hit geometries with higher roughness 
were killed earlier. On average we dedicated only two reflection rays to each 
pixel, for two reflection bounces, so for each visible shading point we had only one 
BRDF sample. The result was extremely noisy, and we again applied sophisticated 
denoising filters to reconstruct glossy reflections that are close to ground truth.

We have designed a denoising algorithm that works on only the reflected incoming 
radiance term. Glossy reflection is an integral of the product of the incoming 
radiance term L and the BRDF f over the hemisphere around the shading point. We 
separate the integral of the product into an approximate product of two integrals,

  ( ) ( ) ( ) ( ) ( )o i o i i i i i o i i i
S S S

L L f d L d f d
2 2 2

, cos , cos ,w w w w q w w w w w q wò ò ò= »∣ ∣ ∣ ∣   (2)

Figure 19-8.  Left: original Phasma materials with full micro-details. Right: simplified materials used 
for shading the reflection ray hit points.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



308

which simplifies the denoising task. We apply denoising to only the incoming 
radiance term ∫ L(ωi)dωi. The BRDF integral can be separated out and pre-
integrated. This is a common approximation for pre-integrated light probes [5]. In 
addition, the specular albedo is also included in the BRDF, so by filtering only the 
radiance term, we don’t need to worry about overblurring the texture details.

The filter stack has both temporal and spatial components. For the spatial part, 
we derive an anisotropic-shaped kernel in screen space that respects the BRDF 
distribution at the local shading point. The kernel is estimated by projecting the 
BRDF lobe back to screen space, based on hit distance, surface roughness, and 
normals. The resulting kernel has varying kernel sizes and directions per pixel. 
This is shown in Figure 19-9.

Figure 19-9.  Visualization of the BRDF-based reflection filter kernel. (From Liu [7].)

Another noteworthy property of our BRDF-based filter kernel is that it can 
produce moderately rough-looking glossy surfaces by filtering from just mirror-
like surfaces, as shown in Figures 19-10, 19-11, and 19-12. Our filter produces 
convincing results from 1 spp input, closely matching ground-truth rendering with 
16384 spp. Please refer to Figures 19-11 and 12 for examples.

RAY TRACING GEMS



309

Figure 19-10.  The input to our reflection spatial filter, in the case where it is just a perfect mirror 
reflection image.

Figure 19-11.  The output of our reflection spatial filter applied on the mirror reflection image in 
Figure 19-10, simulating a GGX squared-roughness of 0.15. It produces all the expected features of 
glossy reflections, such as contact hardening and elongation along normal directions.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



310

Figure 19-12.  A GGX squared-roughness of 0.15 rendered with unbiased stochastic BRDF sampling 
with thousands of rays per pixel.

This spatial filter can faithfully reconstruct glossy surfaces with moderate 
roughness (GGX squared-roughness less than around 0.25). For higher roughness 
values, we apply biased stochastic BRDF sampling like Stachowiak et al. [11] and 
combine the temporal component with the spatial component to achieve better 
denoised quality.

Temporal reprojection on reflected surfaces requires motion vectors for reflected 
objects, which can be challenging to obtain. Previously, Stachowiak et al. [11] used 
the reflected virtual depth to reconstruct the motion vector caused by camera 
movement for reflected objects inside planar reflectors. However, that approach 
does not work so well for curved reflectors. In Chapter 32, Hirvonen et al. introduce 
a novel approach of modeling each local pixel neighborhood as a thin lens and then 
using thin lens equations to derive the motion vectors of reflected objects. It works 
well for curved reflectors, and we use this approach to calculate motion vectors in 
our temporal filter.

19.3.2.3	�SPECULAR SHADING WITH RAY TRACED REFLECTIONS

Linearly transformed cosines (LTC) [2] is a technique that produces realistic area 
light shading for arbitrary roughness analytically, with the caveat that it doesn’t 
handle occlusion. Since our reflection solution produces plausible glossy reflections 
with one sample per pixel, we can use it to directly evaluate the specular component 
of material shading of area light sources. Instead of using LTC, we simply treat area 

RAY TRACING GEMS



311

light sources as emissive objects, shade them at the reflection hit point, and then 
apply our denoising filter to reconstruct the specular shading including occlusion 
information. Figure 19-13 shows a comparison of the two approaches.

19.3.3	 �RAY TRACED DIFFUSE GLOBAL ILLUMINATION

In the pursuit of photorealism, in both the “Reflections” (Lucasfilm) and the “Speed 
of Light” (Porsche) demos, we used ray tracing to compute indirect illumination 
to increase the realism of the rendered image. The techniques that we used for 
the two demos are slightly different. For “Reflections” (Lucasfilm) we used ray 
tracing to fetch irradiance information from precomputed volumetric light maps 
to compute indirect lighting on the dynamic characters. For the “Speed of Light” 
(Porsche) demo, we used a more brute-force method of directly doing path tracing 
with two bounces of indirect diffuse rays from the G-buffer. We used next event 
estimation to accelerate convergence.

19.3.3.1	 �AMBIENT OCCLUSION

Ambient occlusion provides an approximation for global illumination that is 
physically inspired and artist controllable. Decoupling lighting from occlusion 
breaks physical correctness but gives measurable efficiency. Our technique for 
applying ambient occlusion is a straightforward application of the same, well-
documented algorithm that has been used in film for decades. We fire several rays, 
in a cosine-hemispherical distribution, centered around a candidate point’s shading 
normal. As a result, we produce a screen-space occlusion mask that globally 
attenuates the lighting contribution.

Figure 19-13.  In the scene, the floor is a pure specular surface with a GGX squared-roughness of 
0.17. (a) The lighting from the two area lights is computed with LTC. While LTC produces correct-
looking highlights, the car reflections that should have occluded part of the highlight are missing, 
making the car feel not grounded. (b) With ray traced reflections, notice how ray tracing handles the 
correct occlusion from the car while also producing plausible glossy highlights from the two area lights.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



312

While Unreal Engine supports screen-space ambient occlusion (SSAO), we avoided 
its use in our demonstrations. SSAO suffers from noticeable shortcomings. Its 
dependence on the view frustum causes vignetting at the borders and does not 
accurately capture thin occluders that are primarily parallel to the viewing direction. 
Furthermore, occluders outside the view frustum do not contribute to SSAO’s 
measure. For cinematics such as our demo, an artist would typically avoid such a 
scenario entirely or dampen effects from larger ray distances. With DXR, however, 
we can capture directional occlusion that is independent of the view frustum.

19.3.3.2	�INDIRECT DIFFUSE FROM LIGHT MAPS

For “Reflections” (Lucasfilm), we desired an ambient occlusion technique 
that could provide effective color bleeding. While we valued the efficiency of 
ambient occlusion, its global darkening effect was undesirable to our artists. 
We implemented an indirect diffuse pass as a reference comparison. For this 
algorithm, in a similar fashion to traditional ambient occlusion, we cast a cosine-
hemispherical distribution of rays from a candidate G-buffer sample. Rather than 
recording a hit-miss ratio, we recorded the BRDF-weighted result if our visibility 
ray hit an emitter. As expected, the number of rays needed for a meaningful result 
was intractable, but they provided a baseline for more approximate techniques.

Rather than resort to brute-force evaluation, we employed Unreal Engine’s light 
mapping solution to provide an approximate indirect contribution. Specifically, we 
found that substituting the evaluation from our volumetric light map as emission 
for our ambient occlusion rays provided an indirect result that was reasonable. 
We also found the resulting irradiance pass to be significantly easier to denoise 
than the weighted visibility pass from the traditional ambient occlusion algorithm. 
Comparison images are presented in Figure 19-14.

RAY TRACING GEMS



313

Figure 19-14.  Comparison of global lighting techniques. Top: screen-space ambient occlusion. 
Middle: indirect diffuse from light maps. Bottom: reference one-bounce path tracing.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



314

19.3.3.3	�REAL-TIME GLOBAL ILLUMINATION

Apart from using precomputed light maps to render indirect diffuse lighting, we 
also developed a path tracing solution that improved our global illumination efforts 
further. We used path tracing with next event estimation to render one-bounce 
indirect diffuse lighting, before applying the reconstruction filters detailed in 
Section 19.3.3.4 on the noisy irradiance, which provided much more accurate color 
bleeding than before.

19.3.3.4	�DENOISING FOR AMBIENT OCCLUSION AND DIFFUSE GLOBAL ILLUMINATION

For both demos we used a similar denoiser, which is based on the axis-aligned 
filter for diffuse indirect lighting by Mehta et al. [9]. For the “Speed of Light” 
(Porsche) demo the denoising was more challenging. Since we were using brute-
force path tracing without any precomputation, we combined the spatial filter 
based on Mehta et al. with a temporal filter to achieve the desired quality. For 
the “Reflections” (Lucasfilm) demo, since we were fetching from light map texels 
nearby, using temporal antialiasing combined with the spatial filter provided good 
enough quality.

We apply our denoiser only on the indirect diffuse component of the lighting, to 
avoid overblurring texture details, shadows, or specular highlights, as those are 
filtered separately in other dedicated denoisers. For the spatial filter, we apply a 
world-space spatial kernel with footprint derived from hit distance as proposed by 
Mehta et al. Adapting the filter size with hit distance avoids over blurring details in 
the indirect lighting and keeps features such as indirect shadows sharper. When 
combined with a temporal filter, it also reduces the spatial kernel footprint based 
on how many reprojected samples a pixel has accumulated. For pixels with more 
temporally accumulated samples, we apply a smaller spatial filter footprint, hence 
making the results closer to ground truth.

Figures 19-15 shows comparison shots for filtering using a constant radius versus 
adapting the filter radius based on ray hit distance and temporal sample count. 
Clearly, using the adapted filter footprint provides much better fine details at the 
contact region.

RAY TRACING GEMS



315

Figure 19-15.  Indirect lighting filtered with (a) a uniform world-space radius and (b) an adaptive 
kernel. The adaptive kernel size is based on average ray hit distance and accumulated temporal 
sample count.

The same idea also helps with ray traced ambient occlusion denoising. In 
Figure 19-16 we compare (a) denoised ray traced ambient occlusion with a 
constant world-space radius, with (b) denoised ambient occlusion using adaptive 
kernel radius guided with hit distance and temporal sample-count.

It is clear again that using adaptive filter sizes leads to better-preserved contact 
details in the denoised ambient occlusion.

19.3.4	 �RAY TRACED TRANSLUCENCY

The “Speed of Light” (Porsche) demo presented a number of new challenges. The 
most obvious initial challenge to the team was that of rendering glass. Traditional 
methods for rendering real-time translucency conflict with deferred rendering 
algorithms. Often, developers are required to render translucent geometry in a 
separate forward pass and composite the result over the main deferred rendering. 
Techniques that can be applied to deferred rendering are often unsuitable 
for translucent geometry, creating incompatibilities that make integration of 
translucent and opaque geometry difficult.

Figure 19-16.  Ambient occlusion filtered with (a) a uniform world-space radius and (b) an adaptive 
kernel. The adaptive kernel size is based on average ray hit distance and accumulated temporal 
sample count.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



316

Fortunately, ray tracing provides a natural framework for representing 
translucency. With ray tracing, translucent geometry can easily be combined with 
deferred rendering in a way that unifies geometry submission. It provides arbitrary 
translucent depth complexity as well as the capability to correctly model refraction 
and absorption.

19.3.4.1	 �RAY GENERATION

Our implementation of ray traced translucency in Unreal Engine uses a separate ray 
tracing pass similar to the one used for ray traced reflections. In fact, most of the 
shader code is shared between these two passes. There are, however, a few small 
nuanced differences between how the two behave. The first one is the use of early-ray 
termination to prevent unnecessary traversal through the scene once the throughput 
of the ray is close to zero; i.e., if traversed farther, its contribution is negligible. 
Another difference is that translucent rays are traced with a maximum ray length that 
prevents hitting the opaque geometry that has already being fully shaded and stored 
at the corresponding pixel. However, if refraction is performed, a translucent hit may 
result in a new ray in an arbitrary direction, and this new ray or its descendants may 
hit opaque geometry, which will need to be shaded. Before we perform any lighting 
on such opaque hits, we perform a reprojection of the opaque hit point to the screen 
buffer, and if valid data are found after this reprojection step, they are used instead. 
This simple trick allowed us to take advantage of the higher visual quality achieved 
when performing all the ray traced lighting and denoising on opaque geometry in the 
G-buffer. This can work for some limited amount of refraction, although the results 
can be incorrect due to specular lighting being computed with the wrong incoming 
direction in such cases.

Another key difference with the reflection pass is the ability for translucent rays 
to recursively generate reflection rays after hitting subsequent interfaces. This 
was not completely straightforward to implement using HLSL due to the lack of 
support for recursion in the language. By recursion we do not mean the ability 
to trace rays from a hit shader, but the ability for a simple HLSL function to call 
itself. This is simply not allowed in HLSL, but it is desirable when implementing 
a Whitted-style ray tracing algorithm, as we did in this case. To work around this 
limitation of HLSL, we instantiated the same code into two functions with different 
names. We effectively moved the relevant function code into a separate file and 
included this file twice, surrounded by preprocessor macros that set the function 
name each time, resulting in two different instantiations of the same function code 
with different names. We then made one of the two function instantiations call the 
other one, thus allowing us to effectively have recursion with a hard-coded limit of 
one level. The resulting implementation permits translucent paths, with optional 

RAY TRACING GEMS



317

refraction, where each hit along the path could trace “recursive” reflection rays in 
addition to shadow rays. Reflections traced off translucent surfaces along this path 
could potentially bounce up to a selected number of times. However, if at any of 
these bounces a translucent surface was hit, we did not allow additional recursive 
reflection rays to be traced.

Homogeneous volumetric absorption following the Beer-Lambert law was added 
to our translucency pass to model thick glass and to approximate the substrate. 
To correctly model homogeneous bounded volumes, additional constraints were 
placed on the geometry. Ray traversal was modified to explicitly trace against both 
frontfacing and backfacing polygons to overcome issues with intersecting, non-
manifold geometry. The improved visual realism was considered not worth the 
slight added cost for the “Speed of Light” (Porsche) demo and was not included in 
its final version.

19.4	 �CONCLUSIONS

The recent introduction of dedicated hardware for ray tracing acceleration and the 
addition of ray tracing support in graphics APIs encouraged us to be innovative 
and experiment with a new way of hybrid rendering, combining rasterization and 
ray tracing. We went through the engineering practice of integrating ray tracing 
in Unreal Engine 4, a commercial-grade game engine. We invented innovative 
reconstruction filters for rendering stochastic effects such as glossy reflections, soft 
shadows, ambient occlusion, and diffuse indirect illumination with as few as a single 
path per pixel, making these expensive effects more practical for use in real time. 
We have successfully used hybrid rendering to create two cinematic-quality demos.

ACKNOWLEDGMENTS

As a historical note, Epic Games, in collaboration with NVIDIA and ILMxLAB, gave 
the first public demonstration of real-time ray tracing in Unreal Engine during 
Epic’s “State of Unreal” opening session at Game Developers Conference in  
March 2018. The demo showed Star Wars characters from The Force Awakens and 
The Last Jedi built with Unreal Engine 4. It was originally run on NVIDIA’s RTX 
technology for Volta GPUs via Microsoft’s DirectX Raytracing API.

Mohen Leo (ILMxLAB) joined Marcus Wassmer and Jerome Platteaux from Epic 
Games in the development and presentation of the techniques used in that demo. 
ILMxLAB is Lucasfilm’s immersive entertainment division, known best for their 
work on CARNE y ARENA, Star Wars: Secrets of the Empire, and the upcoming  
Vader Immortal: A Star Wars VR Series. Many others who have worked or consulted 

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING



318

on the ray tracing content and implementation for UE4 include Guillaume Abadie, 
Francois Antoine, Louis Bavoil, Alexander Bogomjakov, Rob Bredow, Uriel 
Doyon, Maksim Eisenstein, Judah Graham, Evan Hart, Jon Hasselgren, Matthias 
Hollander, John Jack, Matthew Johnson, Brian Karis, Kim Libreri, Simone 
Lombardo, Adam Marrs, Gavin Moran, Jacob Munkberg, Yuriy O’Donnell, Min Oh, 
Jacopo Pantaleoni, Arne Schober, Jon Story, Peter Sumanaseni, Minjie Wu, Chris 
Wyman, and Michael Zhang.

Star Wars images are used courtesy of Lucasfilm.

REFERENCES

	 [1]	� Binder, N., Fricke, S., and Keller, A. Fast Path Space Filtering by Jittered Spatial Hashing. In ACM 
SIGGRAPH Talks (2018), pp. 71:1–71:2.

	 [2]	� Eric Heitz, Jonathan Dupuy, S. H., and Neubelt, D. Real-Time Polygonal-Light Shading with 
Linearly Transformed Cosines. ACM Transactions on Graphics 35, 4 (2017), 41:1–41:8.

	 [3]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic 
Shadows. In Symposium on Interactive 3D Graphics and Games (2018), pp. 2:1–2:11.

	 [4]	 Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH) (1986), 143–150.

	 [5]	� Karis, B. Real Shading in Unreal Engine 4. Physically Based Shading in Theory and Practice, 
SIGGRAPH Courses, August 2013.

	 [6]	 Keller, A. Instant Radiosity. In Proceedings of SIGGRAPH (1997), pp. 49–56.

	 [7]	� Liu, E. Low Sample Count Ray Tracing with NVIDIA’s Ray Tracing Denoisers. Real-Time Ray 
Tracing, SIGGRAPH Courses, August 2018.

	 [8]	� Mehta, S., Wang, B., and Ramamoorthi, R. Axis-Aligned Filtering for Interactive Sampled Soft 
Shadows. ACM Transactions on Graphics 31, 6 (Nov 2012), 163:1–163:10.

	 [9]	� Mehta, S. U., Wang, B., Ramamoorthi, R., and Durand, F. Axis-aligned Filtering for Interactive 
Physically-based Diffuse Indirect Lighting. ACM Transactions on Graphics 32, 4 (July 2013),  
96:1–96:12.

	 [10]	� Salvi, M. An Excursion in Temporal Supersampling. From the Lab Bench: Real-Time Rendering 
Advances from NVIDIA Research, Game Developers Conference, 2016.

	 [11]	� Stachowiak, T. Stochastic Screen Space Reflections. Advances in Real-Time Rendering, 
SIGGRAPH Courses, 2018.

	 [12]	� Yan, L.-Q., Mehta, S. U., Ramamoorthi, R., and Durand, F. Fast 4D Sheared Filtering for 
Interactive Rendering of Distribution Effects. ACM Transactions on Graphics 35, 1 (2015), 7:1–7:13.

RAY TRACING GEMS



319

	 [13]	� Zimmer, H., Rousselle, F., Jakob, W., Wang, O., Adler, D., Jarosz, W., Sorkine-Hornung, O., and 
Sorkine-Hornung, A. Path-Space Motion Estimation and Decomposition for Robust Animation 
Filtering. Computer Graphics Forum 34, 4 (2015), 131–142.

	 [14]	� Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, 
C., and Yoon, S.-E. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo 
Rendering. Computer Graphics Forum (Proceedings of Eurographics—State of the Art Reports) 34, 2 
(May 2015), 667681.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


321© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_20

CHAPTER 20

Texture Level of Detail Strategies 
for Real-Time Ray Tracing
Tomas Akenine-Möller,1 Jim Nilsson,1 Magnus Andersson,1  
Colin Barré-Brisebois,2 Robert Toth,1 and Tero Karras1

1NVIDIA 
2SEED / Electronic Arts

ABSTRACT

Unlike rasterization, where one can rely on pixel quad partial derivatives, an 
alternative approach must be taken for filtered texturing during ray tracing. We 
describe two methods for computing texture level of detail for ray tracing. The first 
approach uses ray differentials, which is a general solution that gives high-quality 
results. It is rather expensive in terms of computations and ray storage, however. 
The second method builds on ray cone tracing and uses a single trilinear lookup, 
a small amount of ray storage, and fewer computations than ray differentials. We 
explain how ray differentials can be implemented within DirectX Raytracing (DXR) 
and how to combine them with a G-buffer pass for primary visibility. We present a 
new method to compute barycentric differentials. In addition, we give previously 
unpublished details about ray cones and provide a thorough comparison with 
bilinearly filtered mip level 0, which we consider as a base method.

20.1	 �INTRODUCTION

Mipmapping [17] is the standard method to avoid texture aliasing, and all GPUs 
support this technique for rasterization. OpenGL [7, 15], for example, specifies the 
level of detail (LOD) parameter λ as

			   ( ) ( )x, y x, y2log ,l ré ùê ú= 	 (1)

where (x, y) are pixel coordinates and the function ρ may be computed as

		  ( ) s t s tx, y ,
x x y y

2 22 2

max ,r
ì üæ ö æ öæ ¶ ö æ ¶ ö ¶ ¶ï ï= + +í ýç ÷ ç ÷ç ÷ ç ÷¶ ¶ ¶ ¶è ø è ø è ø è øï ïî þ

	 (2)



322

for two-dimensional texture lookups, where (s, t) are texel coordinates, i.e., texture 
coordinates (∈ [0, 1]2) multiplied by texture resolution. See Figure 20-1. These 
functions help ensure that sampling the mipmap hierarchy occurs such that a 
screen-space pixel maps to approximately one texel. In general, GPU hardware 
computes these differentials by always evaluating pixel shaders over 2 × 2 pixel 
quads and by using per-pixel differences. Note, however, that Equation 2 is not 
conservative for a single trilinear lookup, as it does not compute a minimum  
box around the footprint. The maximum side of such a conservative box can  
be computed as ρ(x, y) = max(| ∂s/∂x|  + | ∂s/∂y| , | ∂t/∂x|  + | ∂t/∂y|). OpenGL allows 
use of more conservative estimates than Equation 2, but we are unaware of any 
such approach or implementation. As a consequence, it is easily shown via GPU 
texturing that most methods can produce both overblur and aliasing.

For ray tracing, a method to compute texture LOD is desired and it should 
be capable of handling recursive ray paths as well. Since pixel quads are not 
generally available for ray tracing (except possibly for eye rays), other approaches 
are needed. This chapter describes two texturing methods for real-time ray 
tracing. The first, ray differentials [9], uses the chain rule to derive expressions 
that can accurately compute texture footprints even for specular reflections and 
refractions. Ray differentials are computationally expensive and use a substantial 
amount of per-ray data, but provide high-quality texture filtering. The second, 
called ray cones, is less expensive and uses a cone to represent ray footprints as 
they grow or shrink depending on distance and surface interactions. We describe 
implementations of these two methods in DXR. See also Chapter 21 for information 
about how to filter environment map lookups in a ray tracing engine.

Figure 20-1.  The footprint of a pixel approximated as a parallelogram in texture space. This notation 
is used in Equation 2.

RAY TRACING GEMS



323

20.2	 �BACKGROUND

For filtered texture mapping, it is common to use a hierarchical image pyramid, 
called a mipmap, for acceleration [17]. Each pixel footprint gets mapped to texture 
space and a λ-value is computed. This λ, together with the current fragment’s 
texture coordinates, is used to gather and trilinearly filter eight samples from 
the mipmap. Heckbert [7, 8] surveyed various texture filtering techniques, and 
McCormack et al. [10] presented a method for anisotropic sampling along with 
a survey of previous methods. Greene and Heckbert [6] presented the elliptical 
weighted average (EWA) filter, often considered the method with best quality and 
reasonable performance. EWA computes an elliptical footprint in texture space and 
samples the mipmap using several lookups with Gaussian weights. EWA can be 
used both for rasterization and for ray tracing.

Ewins et al. [5] presented various approximations for texture LOD, and we refer 
readers to their survey of current methods. For example, they describe a crude 
approximation using a single LOD for an entire triangle. This is computed as

			   a a

a a

t t
p p2 2log 0.5log ,

æ ö æ ö
ç ÷D = = ç ÷ç ÷ è øè ø

	 (3)

where the variables ta and pa are twice the texel-space area and twice the triangle 
area in screen space, respectively. These are computed as

		
( )( ) ( )( )

( )( ) ( )( )
a x x y y x x y y

a x x y y x x y y

t wh t t t t t t t t

p p p p p p p p p

1 0 2 0 2 0 1 0

1 0 2 0 2 0 1 0

,

,

- - - - -

-= - - -

=

-
	 (4)

where w × h is the texture resolution, Ti = (tix, tiy) are two-dimensional texture 
coordinates for each vertex, and Pi = (pix, piy), i ∈ {0,1,2}, are the three screen-space 
triangle vertices. Twice the triangle area can also be computed in world space as

			   ( ) ( )ap P P P P1 0 2 0 ,= - ´ -‖ ‖	 (5)

where Pi now are in world space. We exploit that setup as part of our solution for 
ray cones filtering, since Equation 3 gives a one-to-one mapping between pixels 
and texels if the triangle lies on the z = 1 plane. In this case, Δ can be considered as 
a base texture level of detail of the triangle.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



324

Igehy [9] presented the first method to filter textures for ray tracing. He used 
ray differentials, tracked these through the scene, and applied the chain rule to 
model reflections and refractions. The computed LOD works with either regular 
mipmapping or anisotropically sampled mipmapping. Another texturing method for 
ray tracing is based on using cones [1]. Recently, Christensen et al. [3] revealed that 
they also use a ray cone representation for filtering textures in movie rendering, 
i.e., similar to what is presented in Section 20.3.4.

20.3	 �TEXTURE LEVEL OF DETAIL ALGORITHMS

This section describes the texture LOD algorithms that we consider for real-time 
ray tracing. We improve the ray cones method (Section 20.3.4) so that it handles 
curvature at the first hit, which improves quality substantially. We also extend ray 
differentials for use with a G-buffer, which improves performance. In addition, we 
present a new method for how to compute barycentric differentials.

20.3.1	 �MIP LEVEL 0 WITH BILINEAR FILTERING

One easy way to access textures is to sample mip level 0. This generates great 
images using many rays per pixel, but performance can suffer since repeated mip 
level 0 accesses often lead to poor texture caching. When tracing with only a few 
rays per pixel, quality will suffer, especially when minification occurs. Enabling 
bilinear filtering provides a small improvement. However, with a competent 
denoiser as a post-process, bilinear filtering may suffice, as the denoised result is 
blurred.

20.3.2	 �RAY DIFFERENTIALS

Assume that a ray is represented (see Chapter 2) as

				    ( ) ,ˆR t O t= + d 	 (6)

where O is the ray origin and d̂  is the normalized ray direction, i.e., ˆ /=d d d‖‖. The 
corresponding ray differential [9] consists of four vectors:

				  
ˆ ˆ

,O O, , ,
x y x y

ì ü¶ ¶ ¶ ¶ï ï
í ý
¶ ¶ ¶ ¶ï ïî þ

d d 	 (7)

where (x, y) are the screen coordinates, with one unit between adjacent pixels. 
The core idea is to track a ray differential along each path as it bounces around in 
the scene. No matter the media that the rays traverse, all interactions along the 

RAY TRACING GEMS



325

path are differentiated and applied to the incoming ray differential, producing an 
outgoing ray differential. When indexing into a texture, the current ray differential 
determines the texture footprint. Most equations from the ray differential paper 
[9] can be used as presented, but the differential for the eye ray direction needs 
modification. We also optimize the differential barycentric coordinate computation.

20.3.2.1	�EYE RAY SETUP

The non-normalized eye ray direction d for a pixel at coordinate (x, y) for a w × h 
screen resolution is usually generated in DXR as

	   
( )

( )

x y

x y

x y, p , p
w h

x yx, y c c
w h

0.5 0.5 , 2 1 2 1 , and

2 1 2 11 1 ,

æ + + ö
= = - -ç ÷
è ø

æ + ö æ + ö
= + + = - + - +ç ÷ ç ÷

è ø è ø

p c

d r u v r u v
	 (8)

or using some minor modification of this setup. Here, p ∈ [0, 1]2, where the 0.5 
values are added to get to the center of each pixel, i.e., the same as in DirectX and 
OpenGL, and thus c ∈ [−1, 1]. The right-hand, orthonormal camera basis is {r′, u′, v′}, 
i.e., r′ is the right vector, u′ is the up vector, and v′ is the view vector pointing toward 
the camera position. Note that we use {r, u, v} in Equation 8, and these are just 
scaled versions of the camera basis, i.e.,

			   { } { }, , af , f , ,¢ ¢ ¢= - -r u v r u v 	 (9)

where a is the aspect ratio and f =  tan (ω/2), where ω is the vertical field of view.

For eye rays, Igehy [9] computes the ray differentials for the direction as

	   
( ) ( )

( )
( ) ( )

( )x y3 3
2 2

and ,
× - × × - ×¶ ¶

= =
¶ ¶

× ×

d d r d r d d d u d u dd d

d d d d
	 (10)

where r  is the right vector from one pixel to the next and u  is the up vector, which 
in our case are

  ( ) ( ) ( ) ( )af fx , y x, y x, y x, y
w h

2 21 and 1 ,= + - = = + - = -¢ ¢r d d r u d d u 	 (11)

derived using Equation 8. This is all that is needed to set up the ray differential for 
eye rays.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



326

20.3.2.2	�OPTIMIZED DIFFERENTIAL BARYCENTRIC COORDINATE COMPUTATION

Any point on the triangle can be described using barycentric coordinates (u, v) as 
P0 + ue1 + ve2, where e1 = P1 − P0 and e2 = P2 − P0. Once we have found an intersection, 
we need to compute the differentials of these, i.e., ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y. Now 
let P be an arbitrary point in space and let g be a projection vector, which is not 
parallel to the triangle plane. The point P = (px, py, pz) can be described as

			 
P P u v s= + + +e e g0 1 2

point on triangle plane

,������� 	 (12)

where s is the projection distance. This is illustrated in Figure 20-2.

Figure 20-2.  The setup for the derivation of differential barycentric coordinate computation.

This setup is similar to the one used in some ray/triangle intersection tests [11] and 
can be expressed as a system of linear equations and hence solved using Cramer’s 
rule, which results in

		
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

u P P P P
k k

v P P P P
k k

2 0 2 2 0

1 0 1 1 0

1 1 ,

1 1 ,

= ´ × - = ´ × - ´ ×

= ´ × - = ´ × - ´ ×

e g e g e g

g e g e g e

	 (13)

RAY TRACING GEMS



327

where k = (e1 × e2) ⋅ g. From these expressions, we can see that

		    ( ) ( )u v
P k P k2 1

1 1and .¶ ¶
= ´ = ´

¶ ¶
e g g e 	 (14)

These expressions will be useful later on in the derivation. Next, assume that a 
point of intersection is computed as P = O + td (note that the ray direction vector d 
needs not be normalized), which means that we can express ∂P/∂x as

		  ( )
,

O tP O t tt
x x x x x x

¶ +¶ ¶ ¶ ¶ ¶
= = + + = +

¶ ¶ ¶ ¶ ¶ ¶

d d d q d 	 (15)

where q = ∂O/∂x + t(∂ d/∂x). The same is done for ∂P/∂y, where we instead use 
r = ∂O/∂y + t(∂ d/∂y). We use the results from Equations 14 and 15 together with the 
chain rule to obtain

	 ( )2

dot product

1 .yx z

x y z

pp pu u u u u P t
x p x p x p x P x k x

¶¶ ¶¶ ¶ ¶ ¶ ¶ ¶ æ ¶ ö
= + + = × = ´ × +ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

e g q d
�����

	 (16)

Next, we choose g = d and simplify the previous expression to

		  ( ) ( )u t
x k x k2 2

1 1 ,¶ æ ¶ ö
= ´ × + = ´ ×ç ÷¶ ¶è ø

e d q d e d q 	 (17)

since (e2 × d) ⋅ d = 0. Now, the expressions for which we sought can be  
summarized as

		      
u u

v v

u u
x k y k
v v
x k y k

1 1and ,

1 1and ,

¶ ¶
= × = ×

¶ ¶
¶ ¶

= × = ×
¶ ¶

c q c r

c q c r

	 (18)

where

		
( )

u v
O Ot t
x x y y

k

2 1

1 2

, , , ,

and .

¶ ¶ ¶ ¶
= ´ = ´ = + = +

¶ ¶ ¶ ¶

= ´ ×

d dc e d c d e q r

e e d
	 (19)

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



328

Note that q and r are evaluated using the ray differential representation in  
Equation 7 along with t, which is the distance to the intersection point. In addition, 
since w = 1 − u − v, we have

				    w u v
x x x

,¶ ¶ ¶
= - -

¶ ¶ ¶
	 (20)

and similarly for ∂w/∂y.

Once the differentials of (u, v) have been computed, they can be used to compute the  
corresponding texture-space differentials, which can be used in Equation 2, as

		
x x y y

x x y y

s u v t u vw g g h g g
x x x x x x
s u v t u vw g g h g g
y y y y y y

1 2 1 2

1 2 1 2

, ,

, ,

¶ æ ¶ ¶ ö ¶ æ ¶ ¶ ö
= + = +ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶è ø è ø

æ ö æ ö¶ ¶ ¶ ¶ ¶ ¶
= + = +ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶è ø è ø

	 (21)

where w × h is the texture resolution and g1 = (g1x, g1y) = T1 − T0 and 
g2 = (g2x, g2y) = T2 − T0 are the differences of texture coordinates between 
neighboring vertices. Similarly, differentials for the ray origin O′ of a subsequent 
reflection/refraction ray can be computed as

			 
( ) ( ) ( )

O u v
x,y x,y x, y1 2.¶ ¶ ¶¢

= +
¶ ¶ ¶

e e 	 (22)

We have seen slightly better performance using this method compared to the 
traditional implementation following Igehy’s work [9].

20.3.3	 �RAY DIFFERENTIALS WITH THE G-BUFFER

For real-time ray tracing, it is not uncommon to render the eye rays using 
rasterization into a G-buffer. When combining ray differentials [9] with a G-buffer, 
the ray differential for the eye rays can be created as usual, but the interaction at 
the first hit must use the content from the G-buffer, since the original geometry is 
not available at that time. Here, we present one method using the G-buffer, which 
we assume has been created with normals n̂  and with distances t from the camera 
to the first hit point (or alternatively the world-space position). We describe how the 
ray differential is set up when shooting the first reflection ray from the position in 
the G-buffer.

RAY TRACING GEMS



329

The idea of this method is simply to access the G-buffer to the right and above the 
current pixel and create a ray differential from these values. The normals and the 
distances t, for the current pixel (x, y) and for the neighbors (x + 1, y) and (x, y + 1), 
are read out from the G-buffer. Let us denote these by 0:0n̂  for the current pixel, 

1:0ˆ+n  for the pixel to the right, and 0: 1ˆ +n  for the pixel above, and similarly for other 

variables. The eye ray directions ê  for these neighbors are computed next. At this 
point, we can compute the ray differential of the ray origin at the first hit as

			 
O t t
x 1:0 1:0 0:0 0:0ˆ ,ˆ+ +

¶
= -

¶
e e 	 (23)

and similarly for ∂O/∂y. The ray differential direction is computed as

			   ( ) ( ), ,
x 1:0 1:0 0:0 0:0

ˆ
ˆ ˆ ˆ ˆ ,+ +

¶
= -

¶
d r e n r e n 	 (24)

where r is the shader function reflect(). Similar computations are 

done for /ˆ y¶ ¶d . We now have all components of the ray differential, 

{ }O x, O y , x, yˆ ˆ/ / / /¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶d d , which means that ray tracing with ray 

differentials can commence from the first hit.

The method above is fast, but sometimes you hit different surfaces when 
comparing to the pixel to the right and above. A simple improvement is to test  
if │t+1:0 − t0:0│ > ε, where ε is a small number, and, if so, access the G-buffer at −1:0 
instead and use the one with the smallest difference in t. The same approach is 
used for the y-direction. This method is a bit slower but gives substantially better 
results along depth discontinuities.

20.3.4	 �RAY CONES

One method for computing texture level of detail is based on tracing cones. This 
is quite similar to the method proposed by Amanatides [1], except that we use the 
method only for texture LOD and we derive the details on how to implement this, 
which are absent in previous work. The core idea is illustrated in Figure 20-3. When 
the texture LOD λ has been computed for a pixel, the texture sampler in the GPU is 
used to perform trilinear mipmapping [17].

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



330

In this section, we derive our approximation for texture LOD for ray tracing using 
ray cones. We start by deriving an approximation to screen-space mipmapping 
using cones and then extend that to handle recursive ray tracing with reflections. 
Ideally, we would like to handle all sorts of surface interactions, but we will 
concentrate on the cases shown in Figure 20-4. This excludes saddle points, which 
exist in hyperbolic paraboloids, for example.

Figure 20-3.  Illustration of how a cone is created through a pixel and how it is transported through 
the scene, growing and shrinking. Assuming that the rectangle is textured and the other objects 
are perfectly reflective, we will perform a texture lookup at the hit point on the rectangle using the 
width of the cone and the normal there, and a textured reflection would appear in the leftmost object. 
Computation of the cone widths wi is explained in the text.

Figure 20-4.  Illustrations of cones reflected in a planar (left), a convex (center), and a concave (right) 
surface. Note how the convex surface increases the angle of the cone, while the concave surface 
reduces it, until it becomes zero and starts growing again.

RAY TRACING GEMS



331

20.3.4.1	�SCREEN SPACE

The geometrical setup for a cone through a pixel is shown in Figure 20-5. The footprint 
angle, also called spread angle, of a pixel is called α, d0 is the vector from the camera to 
the hit point, and n0 is the normal at the hitpoint. This cone is tracked through a pixel 
and the cone parameters are updated at each surface the center ray hits.

The footprint width will grow with distance. At the first hit point, the cone width will 
be w0 = 2‖d0‖tan(α/2) ≈ α‖d0‖, where the index 0 will be used to indicate the first hit. 
This index will be used extensively in the next subsection. We have used the small 
angle approximation, i.e., tan α ≈ α, in this expression. The footprint projected onto 
the plane at the hit point will also change in size due to the angle between −d0 and 
n0, denoted [−d0, n0]. Intuitively, the larger the angle, the more the ray can “see” of 
the triangle surface, and consequently, the LOD should increase, i.e., texel access 
should be done higher in the mipmap pyramid. Together these factors form the 
approximated projected footprint as

				    0
0 0

1 ,
ˆˆ

a
×

d
n d

‖ ‖
∣ ∣ 	 (25)

where 0 0
ˆˆ ×n d∣ ∣ models the square root of the projected area. The absolute value 

is there to handle frontfacing and backfacing triangles in the same way. When 
[−d0, n0] = 0, we have only the distance dependency, and as [−d0, n0] grows, the 
projected footprint will get larger and larger toward infinity, when [−d0, n0] → π/2.

If the value of the expression in Equation 25 doubles/halves, then we need to access 
one level higher/lower in the mipmap pyramid. Therefore, we use log2 on this term. 
Hence, a heuristic for texture LOD for the first hit, i.e., similar to what screen-space 
mipmapping produced by the GPU would yield, is

			 
w

l a
æ ö
ç ÷= D +
ç ÷×
è ø

d
n d

0

0 2 0
0 0

1
ˆˆ

log ,���‖ ‖
∣ ∣

	 (26)

Figure 20-5.  The geometrical setup of a cone through a pixel.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



332

where Δ0 is described by Equations 3 and 5, i.e., using world-space vertices. Here, 
Δ0 is the base texture LOD at the triangle seen through a pixel, i.e., without any 
reflections at this point. This term needs to be added to provide a reasonable 
base LOD when the triangle is located at z = 1. This term takes changes in triangle 
vertices and texture coordinates into account. For example, if a triangle becomes 
twice as large, then the base LOD will decrease by one. The other factors in 
Equation 26 are there to push the LOD up in the mipmap pyramid, if the distance or 
the incident angle increases.

20.3.4.2	�REFLECTION

Our next step is to generalize the method in Section 20.3.4.1 to also handle 
reflections. The setup that we use for our derivation is shown in Figure 20-6, where 
we want to compute the width, w1, of the footprint at the reflected hit point. Note 
that the angle β is a curvature measure (further described in Section 20.3.4.4) at 
the surface hit point, and it will influence how much the spread angle will grow or 
shrink due to different surface interactions. See Figure 20-4. We first note that

		

w
w

t
t

0

02tan
2 2

2tan
2 2

a b
a b

æ ö
+ = Û =ç ÷ æ öè ø +

¢
ç
è

¢

÷
ø

	 (27)

and

	   ( )
w

w t t
t t

1

1 1
1

2tan 2 tan .
2 2 2 2
a b a b¢æ ö æ ö
+ = Û = + +ç ÷ ç¢ ÷+è ø è ø

	 (28)

RAY TRACING GEMS



333

Next, we use the expression from Equation 27 for t′, substitute it into Equation 28, 
and arrive at

		

( )

w
w t

w t w t

0
1 1

0 1 0 1

2 tan
2 2

2tan
2 2

2 tan ,
2 2

a b
a b

a b a b

æ ö
ç ÷ æ öç ÷= + +ç ÷ç ÷æ ö è ø+ç ÷ç ÷

è øè ø
æ ö

= + + » + +ç ÷
è ø

	 (29)

where we have used the small angle approximation tanα ≈ α in the last step. 
Intuitively, this expression makes sense because w0 ≈ α‖ d0‖ makes the footprint 
grow with the distance from the eye to the first hit times the size α of a pixel, and 
the second term models the growth from the first hit to the second hit, which 
depends on the distance t1 (from first to second hit) and the angle α + β.

Figure 20-6.  Top left: the geometrical setup for our computations for texture LOD for reflections, 
where the camera has been reflected in the plane of the first hit, which makes the green and blue rays 
collinear. The reflected hit point is the black circle on the green line. Bottom right: exaggerated view 
along the green and blue rays. We want to compute the footprint width w1. Note that the surface spread 
angle β models how the cone footprint grows/shrinks due to the curvature of the surface, which in this 
case is convex and so grows the footprint (β > 0).

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



334

20.3.4.3	�PIXEL SPREAD ANGLE

In this subsection, we present a simple method to compute the spread angle α of 
a pixel, i.e., for primary rays. The angle from the camera to a pixel varies over the 
screen, but we have chosen to use a single value as an approximation for all pixels, 
i.e., we trade a bit of accuracy for faster computation. This angle α is computed as

			 
H

2tan
2

arctan ,

y

a

æ öæ ö
ç ÷ç ÷

è øç ÷=
ç ÷
ç ÷
è ø

	 (30)

where ψ is the vertical field of view and H is the height of the image in pixels. Note 
that α is the angle to the center pixel.

While there are more accurate ways to compute the pixel spread angle, we use 
the technique above because it generates good results and we have not seen any 
discrepancies in the periphery. In extreme situations, e.g., for virtual reality, one 
may want to use a more complex approach, and for foveated renderers with eye 
tracking [12], one may wish to use a larger α in the periphery.

20.3.4.4	�SURFACE SPREAD ANGLE FOR REFLECTIONS

Figure 20-4 illustrates reflection interactions at different types of geometry: 
planar, convex, and concave. In addition, Figure 20-6 illustrates the surface spread 
angle β, which will be zero for planar reflections, greater than zero for convex 
reflections, and less than zero for concave reflections. Intuitively, β models the 
extra spread induced by the curvature at the hit point. In general, the two principal 
curvatures [4] at the hit point or the radius of the mean curvature normal would 
be better to model this spread. Instead, we have opted for a simpler and faster 
method, one that uses only a single number β to indicate curvature.

If primary visibility is rasterized, then the G-buffer can be used to compute the 
surface spread angle. This is the approach that we take here, though there are 
likely other methods that could work. The normal n and the position P of the 
fragment are both stored in world space, and we use ddx and ddy (in HLSL syntax) 
to obtain their differentials. A differential of P in x is denoted ∂P/∂X.

The left part of Figure 20-7 shows the geometry involved in the first computations 
for β. From the figure we can see that

		
x y x y

12arctan .
2

f
æ ö¶ ¶ ¶ ¶

= + » +ç ÷¶ ¶ ¶ ¶è ø

n n n n 	 (31)

RAY TRACING GEMS



335

An angular change in the normal, in our case ϕ/2, results in change in the reflected 
vector, which is twice as large [16]; this is illustrated to the right in Figure 20-7. This 
means that β = 2ϕ. We also add two additional user constants k1 and k2 for β and a 
sign factor s (all of which will be described below), resulting in β = 2k1sϕ + k2, with 
default values k1 = 1 and k2 = 0. In summary, we have

		  k s k k s k
x x y y1 2 1 22 2 .b f ¶ ¶ ¶ ¶

= + » × + × +
¶ ¶ ¶ ¶

n n n n 	 (32)

A positive β indicates a convex surface, while a negative value would indicate a 
concave surface region. Note that ϕ is always positive. So, depending on the type of 
surface, the s factor can switch the sign of β. We compute s as

			 
P Ps
x x y y

sign ,
æ ö¶ ¶ ¶ ¶

= × + ×ç ÷¶ ¶ ¶ ¶è ø

n n
	 (33)

where sign returns 1 if the argument is greater than zero and −1 otherwise. The 
rationale behind this operation is that ∂P/∂x and ∂n/∂x (and similarly for y) will have 
approximately the same direction when the local geometry is convex (positive 
dot product) and approximately opposite directions when it is concave (negative 
dot product). Note that some surfaces, such as a hyperbolic paraboloid, are both 
concave and convex in all points on the surface. In these cases, we have found that 
it is better to just use s = 1. If a glossy appearance is desired, the values of k1 and 
k2 can be increased. For planar surfaces, ϕ will be 0, which means that k1 does not 
have any effect. Instead, the term k2 can be used.

Figure 20-7.  Left: the geometry involved in computing ϕ. Right: the view vector v is reflected around 
the normal n, which generates r. If n is perturbed by ϕ/2 into n′, we get another reflection vector r ′. 
Since [−v, n′] = θ + ϕ/2, we have [r ′, n′] = θ + ϕ/2, which means that the angle [r, r ′] = ϕ, i.e., is twice as 
large as [n, n′] = ϕ/2.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



336

20.3.4.5	�GENERALIZATION

Let i denote the enumerated hit point along a ray path, starting at 0. That is, the 
first hit is enumerated by 0, the second by 1, and so on. All our terms for texture 
LOD for the ith hit point are then put together as

	   �i i i i i i i
i i

w w2 2 2

Eqn.3 distance normal

1log log log ˆˆ
ˆˆ

,l
æ ö
ç ÷= D + × = D + - ×
ç ÷×è ø

n d
n d ����� �����

	 (34)

and as can be seen, this is similar to Equation 26, with both a distance and a normal 
dependency. Refer to Figure 20-6 for the variables and recall that ni is the normal 
at the surface at the ith hit point and di is the vector to the ith hit point from the 
previous hit point. The base triangle LOD, Δi, now has a subscript i to indicate that 
it is the base LOD of the triangle at the ith hit point that should be used. Similar 
to before, id̂  means a normalized direction of di. Note that we have added two 
absolute value functions in Equation 34. The absolute value for the distance term 
is there because β can be negative, e.g., for concave surface points (see the right 
part of Figure 20-4). The absolute value for the normal term is there to handle 
backfacing triangles in a consistent manner.

Note that w0 = αt0 = γ0t0 and w1 = αt0 + (α + β0)t1 = w0 + γ1t1, where we have introduced 
γ0 = α and γ1 = α + β0, and β0 is the surface spread angle at the first hit point. Hence, 
Equation 34 handles recursion, which we describe with pseudocode in Section 20.6, 
and in general it holds that

				    i i i iw w t1 ,g-= + 	 (35)

where γi = γi − 1 + βi − 1. This is illustrated in Figure 20-3.

20.4	 �IMPLEMENTATION

We have implemented the ray cones and ray differentials techniques on top of 
Falcor [2] with DirectX 12 and DXR. For the texture lookups in ray cones, we 
compute λi according to Equation 34 and 35 and feed it into the SampleLevel() 
function of the texture.

Since rasterization is highly optimized for rendering primary visibility, where 
all rays share a single origin, we always use a G-buffer pass for ray cones and 
for the ray differentials method in Section 20.3.3. When a G-buffer is used, ray 
tracing commences from the first hit described by the G-buffer. As a consequence, 
texturing is done using the GPU’s texturing units for the first hits and so, using the 
methods in this chapter, λ is computed only after that. For ray cones, βi is computed 

RAY TRACING GEMS



337

using the G-buffer differentials from rasterization, which implies that there is a 
curvature estimate β0 at only the first hit point. In our current implementation, we 
use βi = 0 for i > 0. This means that beyond the first hit point, all interactions are 
assumed to be planar. This is not correct but gives reasonable results, and the first 
hit is likely the most important. However, when recursive textured reflections are 
apparent, this approximation can generate errors, as shown in Figure 20-8.

Next, we discuss the precision of the ray cones method. The data that needs to be 
sent with each ray is one float for wi and one for γi. We have experimented with both 
fp32 and fp16 precision for β (in the G-buffer), wi, and γi, and we conclude that 16-
bit precision gives good quality in our use cases. In a hyperbolic paraboloid scene, 
we could not visually detect any differences, and the maximum error was a pixel 
component difference of five (out of 255). Depending on the application, textures, 
and scene geometry, it could be worthwhile to use fp16, especially when G-buffer 
storage and ray payload need to be reduced. Similarly, errors induced by using the 
small angle approximation (tan(α) ≈ α) for β resulted in nothing that was detectable 
by visual inspection. With per-pixel image differences, we could see another set 
of errors sparsely spread over the surface, with a maximum pixel component 
difference of five. This is another trade-off to be made.

The per-triangle Δ (Equation 3) can be computed in advance for static models and 
stored in a buffer that is accessed in the shader. However, we found that it equally 
fast to recompute Δ each time a closest hit on a triangle is found. Hence, the 
ray cones method handles animated models and there are no major extra costs 
for handling several texture coordinate layers per triangle. Note that i i

ˆˆ ×n d∣ ∣ in 
Equation 34 will approach +0.0 when the angle between these vectors approaches 
π/2 radians. This does not turn out to be a problem, as using IEEE standard 754 for 

Figure 20-8.  Zooming in on the base of a vase reflected in a table top shows that the ray cones 
method is weaker than the method based on ray differentials in areas of recursive reflections. In the 
lower part of the ray cones image, there is a substantial amount of aliasing, which is caused by the fact 
that, in our implementation, the method assumes that all surfaces beyond the first hit are planar.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



338

floating-point mathematics, we have log2 (+0.0) = –inf, which makes λ = inf. This in 
turn will force the trilinear lookup to access the top level of the mipmap hierarchy, 
which is expected when the angle is π/2 radians.

Our ray differentials implementation follows the description of Igehy [9] fairly 
well. However, we use the λ computation in Equations 1 and 2, unless otherwise 
mentioned, and the methods in Sections 20.3.2.1 and 20.3.2.2. For ray differentials, 
each ray needs 12 floats of storage, which is rather substantial.

20.5	 �COMPARISON AND RESULTS

The methods that we use in this section are:

>> Groundtruth: a ground-truth rendering (ray traced with 1,024 samples per 
pixel).

>> Mip0: bilinearly filtered mip level 0.

>> RayCones: ray cones method (Section 20.3.4).

>> RayDiffs GB: ray differentials with the G-buffer (Section 20.3.3).

>> RayDiffs RT: our implementation of ray differentials with ray tracing [9].

>> RayDiffs PBRT: ray differentials implementation in the pbrt renderer [14].

Note that Mip0, RayCones, and RayDiffs GB always use a G-buffer for primary 
visibility, while RayDiffs RT and RayDiffs PBRT use ray tracing. For all our 
performance results, an NVIDIA RTX 2080 Ti (Turing) was used with driver 416.16.

To verify that our implementation of ray differentials [9] is correct, we compared 
it to the implementation in the pbrt renderer [14]. To visualize the resulting mip 
level of a filtered textured lookup, we use a specialized rainbow texture, shown 
in Figure 20-9. Each mip level is set to a single color. We rendered a reflective 
hyperbolic paraboloid in a diffuse room in Figure 20-10. This means that the room 
only shows the mip level as seen from the eye, while the hyperbolic paraboloid 
shows the mip level of the reflection, which has some consequences discussed 
in the caption of Figure 20-10. It is noteworthy that one can see the triangular 
structure of the hyperbolic paraboloid surface in these images. The reason for this 
is that the differentials of barycentric coordinates are not continuous across shared 
triangle edges. This is also true for rasterization, which shows similar structures. 
As a consequence, this discontinuity generates noise in the recursive reflections, 
but it does not show up visually in the rendered images in our video.

RAY TRACING GEMS



339

Some further results are shown in Figure 20-11. We have chosen the hyperbolic 
paraboloid (top) and the bilinear patch (bottom) because they are saddle surfaces 
and are difficult for RayCones, since it is based on cones that handle only isotropic 
footprints. The semicylinders were also chosen because they are hard for 
RayCones to handle as the curvature is zero along the length of the cylinder and 
bends like a circle in the other direction. As a consequence, RayCones sometimes 
shows up as more blur compared to ray differentials. It is also clear that the 
Groundtruth images are substantially more sharp than the other methods, so there 
is much to improve on for filtered texturing. A consequence of this overblurring 
is that both the peak signal-to-noise ratio (PSNR) and structural similarity index 
(SSIM) values are relatively poor. For the hyperbolic paraboloid, i.e., the top row 
in Figure 20-11, the PSNR against Groundtruth is 25.0, 26.7, and 31.0 dB for Mip0, 
RayCones, and RayDiffs RT, respectively. PSNR for Mip0 is lower as expected, but 
the numbers are low even for the other methods. This is because they produce 
more blur compared to Groundtruth. On the other hand, they alias substantially 
less than Mip0. The corresponding SSIM numbers are 0.95, 0.95, and 0.97, which 
convey a similar story.

Figure 20-9.  The mip level colors in the rainbow texture are selected according to this image, i.e., the 
bottom mip level (level 0) is red, level 1 is yellow, and so on. Mip levels 6 and above are white.

Figure 20-10.  Visualization of mipmap level, where red is level 0, yellow is level 1, and so on, as 
defined in Figure 20-9. Both RayCones and RayDiffs GB use a G-buffer pass for the eye rays, and so 
we used the texture derivatives generated in that pass to compute the mipmap level using the same 
formula as used by pbrt in order to get a reasonable match on the floor. Since the hyperbolic paraboloid 
is both concave and convex in all points, we used s = 1 in Equation 32. Note that the shading overlayed 
on top of the “rainbow” colors does not match perfectly, but the focus should be on the actual colors. 
The three images to the right match quite well, while RayCones is a bit different, in particular in the 
recursive reflections. This difference is to be expected, since reflections are assumed to be planar after 
the first bounce for this method.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



340

While still images can reveal the amount of overblurring in an image fairly well, 
it is substantially harder to truthfully show still images that expose the amount 
of aliasing they contain. As a consequence, most of our results are shown in our 
accompanying video (available on this book’s website), and we refer to this video in 
the following paragraph. We will write mm:ss to reference a particular time in the 
video, where mm is minutes and ss is seconds.

Figure 20-11.  Comparison of textured reflections for different types of surfaces using different 
techniques. The Groundtruth images were rendered using 1,024 samples per pixel and by accessing 
mipmap level 0 for all texturing. For RayCones, we used the sign function in Equation 33.

RAY TRACING GEMS



341

At 00:05 and 00:15 in our video, it is clear that RayCones produces images with 
substantially less aliasing, as expected, compared to Mip0, since the reflective 
object always uses mip level 0 for Mip0. At some distance, there is also a slight 
amount of temporal aliasing for RayCones, but even GPU rasterization can alias 
with mipmapping. The comparison between RayCones and Mip0 continues with 
a crop from a larger scene at 00:25, where the striped wallpaper of the room 
generates a fair amount of aliasing for Mip0, while RayCones and RayDiffs RT fare 
much better.

We have measured the performance of the methods for two scenes: Pink Room 
and Large Interior. All renderings are done at a resolution of 3840 × 2160 pixels. To 
disregard warmup effects and other variability, we rendered the scenes through 
a camera path of 1,000 frames once, without measuring frame duration, and 
then through the same camera path again, while measuring. We repeated this 
procedure 100 times for each scene and collected the frame durations. For Mip0, 
the average frame time was 3.4 ms for Pink Room and 13.4 ms for Large Interior. 
In Figure 20-12, the average total frame times are shown for the two scenes, for 
Mip0, RayCones, RayDiffs GB, and RayDiffs RT. Pink Room is a fairly small scene, 
where the added complexity of texture level of detail computation shows up as a 
minor part of the total frame time, while for Large Interior —a significantly larger 
scene—this effect is more pronounced. For both scenes, however, the trend is quite 
clear: RayDiffs GB adds about 2× the cost and RayDiffs RT adds about 3× the cost of 
texture level of detail calculations compared to RayCones.

Our goal in this chapter is to provide some help in selecting a suitable texture 
filtering method for your real-time application by implementing and evaluating 
different methods and to adapt them to using a G-buffer, since that usually improves 
performance. When a sophisticated reflection filter is used to blur out the results 
or when many frames or samples are accumulated, the recommendation is to use 
the Mip0 method because it is faster and may give sufficient quality for that purpose. 

MIP-O RAYCONES RAYDIFFS GB RAYDIFFS RT

Pink Room

0.0
0.5
1.0
1.5
2.0

m
ill

is
ec

on
ds 2.5

3.0
3.5
4.0

RAYDIFFS GB RAYDIFFS RTMIP-O RAYCONES

Large Interior

0.0
2.5
5.0
7.5

10.0

m
ill

is
ec

on
ds 12.5

15.0
17.5
20.0

Figure 20-12.  Performance impact of texture level of detail selection methods: Pink Room (left) and 
Large Interior (right). The smaller scene (Pink Room) is less susceptible to an extra filtering cost, the 
larger scene (Large Interior) more so.For both scenes, however, the performance impact of RayDiffs 
GB is about 2×, and RayDiffs RT about 3×, the impact of RayCones.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



342

When nicely filtered reflections are required and ray storage and instruction count need 
to be minimized, we recommend RayCones. However, curvature is not taken into account 
after the first hit, which might result in aliasing in deeper reflections. In these cases, we 
recommend one of the RayDiffs methods. For larger scenes, any type of texture filtering 
will likely help performance due to better texture cache hit ratios, as pointed out by Pharr 
[13]. When using ray tracing for eye rays, we have seen slight performance improvements 
when using texture filtering instead of accessing mip level 0. Experimenting further with 
this for larger scenes will be a productive avenue for future work.

20.6	 �CODE

In this section, we show pseudocode that closely follows our current 
implementation of RayCones. First, we need a couple of structures:

 1 struct RayCone

 2 {

 3     float width;                // Called wi in the text

 4     float spreadAngle;          // Called γi in the text

 5 };

 6

 7 struct Ray

 8 {

 9     float3 origin;

10     float3 direction;

11 };

12

13 struct SurfaceHit

14 {

15     float3 position;

16     float3 normal;

17     float  surfaceSpreadAngle;   // Initialized according to Eq. 32

18     float  distance;             // Distance to first hit

19 };

In the next pseudocode, we follow the general flow of DXR programs for ray 
tracing. We present a ray generation program and a closest hit program, but omit 
several other programs that do not add useful information in this context. The 
TraceRay function traverses a spatial data structure and finds the closest hit. The 
pseudocode handles recursive reflections.

 1 void rayGenerationShader(SurfaceHit gbuffer)

 2 {

 3     RayCone firstCone = computeRayConeFromGBuffer(gbuffer);

 4     Ray viewRay = getViewRay(pixel);

 5     Ray reflectedRay = computeReflectedRay(viewRay, gbuffer);

 6     TraceRay(closestHitProgram, reflectedRay, firstCone);

 7 }

 8

RAY TRACING GEMS



343

 9 �RayCone propagate(RayCone cone, float surfaceSpreadAngle, float hitT)

10 {

11     RayCone newCone;

12     newCone.width = cone.spreadAngle * hitT + cone.width;

13     newCone.spreadAngle = cone.spreadAngle + surfaceSpreadAngle;

14     return newCone;

15 }

16

17 RayCone computeRayConeFromGBuffer(SurfaceHit gbuffer)

18 {

19     RayCone rc;

20     rc.width = 0;                    �// No width when ray cone starts

21     rc.spreadAngle = pixelSpreadAngle(pixel); // Eq. 30

22     // gbuffer.surfaceSpreadAngle holds a value generated by Eq. 32

23     �return propagate(rc, gbuffer.surfaceSpreadAngle, gbuffer.distance);

24 }

25

26 void closestHitShader(Ray ray, SurfaceHit surf, RayCone cone)

27 {

28     // Propagate cone to second hit

29     cone = propagate(cone, 0, hitT);      �// Using 0 since no curvature

30                                          // measure at second hit

31     float lambda = computeTextureLOD(ray, surf, cone);

32     float3 filteredColor = textureLookup(lambda);

33     // use filteredColor for shading here

34     if (isReflective)

35     {

36         Ray reflectedRay = computeReflectedRay(ray, surf);

37         �TraceRay(closestHitProgram, reflectedRay, cone); // Recursion

38     }

39 }

40

41 float computeTextureLOD(Ray ray, SurfaceHit surf, RayCone cone)

42 {

43     // Eq. 34

44     float lambda = getTriangleLODConstant();

45     lambda += log2(abs(cone.width));

46     lambda += 0.5 * log2(texture.width * texture.height);

47     lambda -= log2(abs(dot(ray.direction, surf.normal)));

48     return lambda;

49 }

50

51 float getTriangleLODConstant()

52 {

53     float P_a = computeTriangleArea();                     // Eq. 5

54     float T_a = computeTextureCoordsArea();                // Eq. 4

55     return 0.5 * log2(T_a/P_a);                            // Eq. 3

56 }

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING



344

ACKNOWLEDGMENTS

Thanks to Jacob Munkberg and Jon Hasselgren for brainstorming help and 
comments.

REFERENCES

	 [1]	 Amanatides, J. Ray Tracing with Cones. Computer Graphics (SIGGRAPH) 18, 3 (1984), 129–135.

	 [2]	� Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor 
Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor, July 2017.

	 [3]	� Christensen, P., Fong, J., Shade, J., Wooten, W., Schubert, B., Kensler, A., Friedman, S., 
Kilpatrick, C., Ramshaw, C., Bannister, M., Rayner, B., Brouillat, J., and Liani, M. RenderMan: 
An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37, 3 
(2018), 30:1–30:21.

	 [4]	 do Carmo, M. P. Differential Geometry of Curves and Surfaces. Prentice Hall Inc., 1976.

	 [5]	� Ewins, J. P., Waller, M. D., White, M., and Lister, P. F. MIP-Map Level Selection for Texture 
Mapping. IEEE Transactions on Visualization and Computer Graphics 4, 4 (1998), 317–329.

	 [6]	� Green, N., and Heckbert, P. S. Creating Raster Omnimax Images from Multiple Perspective Views 
Using the Elliptical Weighted Average Filter. IEEE Computer Graphics and Applications 6, 6 (1986), 
21–27.

	 [7]	� Heckbert, P. S. Survey of Texture Mapping. IEEE Computer Graphics and Applications 6, 11 (1986), 
56–67.

	 [8]	� Heckbert, P. S. Fundamentals of Texture Mapping and Image Warping. Master’s thesis, University of 
California, Berkeley, 1989.

	 [9]	 Igehy, H. Tracing Ray Differentials. In Proceedings of SIGGRAPH (1999), pp. 179–186.

	 [10]	� McCormack, J., Perry, R., Farkas, K. I., and Jouppi, N. P. Feline: Fast Elliptical Lines for 
Anisotropic Texture Mapping. In Proceedings of SIGGRAPH (1999), pp. 243–250.

	 [11]	� Möller, T., and Trumbore, B. Fast, Minimum Storage Ray-Triangle Intersection. Journal of 
Graphics Tools 2, 1 (1997), 21–28.

	 [12]	� Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Luebke, D., and Lefohn, 
A. Towards Foveated Rendering for Gaze-Tracked Virtual Reality. ACM Transactions on Graphics 
35, 6 (2016), 179:1–179:12.

	 [13]	� Pharr, M. Swallowing the Elephant (Part 5). Matt Pharr’s blog, https://pharr.org/matt/
blog/2018/07/16/moana-island-pbrt-5.html, July 16 2018.

RAY TRACING GEMS

https://github.com/NVIDIAGameWorks/Falcor
https://pharr.org/matt/blog/2018/07/16/moana-island-pbrt-5.html
https://pharr.org/matt/blog/2018/07/16/moana-island-pbrt-5.html


345

	 [14]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [15]	� Segal, M., and Akeley, K. The OpenGL Graphics System: A Specification (Version 4.5). Khronos 
Group documentation, 2016.

	 [16]	� Voorhies, D., and Foran, J. Reflection Vector Shading Hardware. In Proceedings of SIGGRAPH 
(1994), pp. 163–166.

	 [17]	 Williams, L. Pyramidal Parametrics. Computer Graphics (SIGGRAPH) 17, 3 (1983), 1–11.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


347© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_21

CHAPTER 21

Simple Environment Map Filtering 
Using Ray Cones and Ray Differentials
Tomas Akenine-Möller and Jim Nilsson
NVIDIA

ABSTRACT

We describe simple methods for how to filter environment maps using ray cones 
and ray differentials in a ray tracing engine.

21.1	 �INTRODUCTION

Environment maps (EMs) are commonly used in rendering as an inexpensive way 
of visually representing a scene far away. Another common usage is to let an EM 
represent the incoming illumination from a surrounding environment and use it 
to shade geometry [4]. Two common environment-mapping layouts are latitude-
longitude maps [2] and cube maps [5].

Rasterization occurs in quads, i.e., 2 × 2 pixels at a time, which means that 
differentials can be estimated as horizontal and vertical pixel differences. 
These differentials can be used to compute a level of detail in order to perform 
a texture lookup using mipmapping. The concept of quads is not available 
in ray tracing, however. Instead, texture filtering is usually handled using 
ray differentials [6] or ray cones [1, 3]. These two methods are presented in 
Chapter 20. For ray differentials, Pharr et al. [7] used a forward differencing 
approximation to compute ray differentials in texture space for EMs. The major 
parts of the computations involved are three vector normalizations and six 
inverse trigonometric function calls.

Since the environment map is assumed to be positioned infinitely far away, 
environment mapping using rasterization depends on only the reflection vector, 
i.e., the directional component, and not on the position where the reflection vector 
was computed. For ray cones and ray differentials, there are also positional 
components of the ray representations. Similar to rasterization, however, these 
need not be used, as argued in Figure 21-1. In this chapter, we provide the formulas 
to compute EM filtering for both ray cones and ray differentials.



348

21.2	 �RAY CONES

In this section, we describe how ray cones [1] can be used to access the mip level 
hierarchy in an environment map. A ray cone can be described by a width, w, and a 
spread angle γ (see Chapter 20).

For a latitude-longitude environment map, with resolution 2h × h, i.e., twice as wide 
as high, we compute the level of detail, λ, as

	 h2log ,
/
gl æ ö

= ç ÷pè ø 	
(1)

where h is the height of the texture and the denominator is set to π/h, which is 
approximately equal to the number of radians per texel in the map because the 
texture covers π radians in the vertical direction. The log2 function is used to map 
this to the mip hierarchy. The rationale behind this is that if γ = π/h then we have a 
perfect match, which results in log2(1) = 0, i.e., mip level 0 will be accessed. If, for 
example, γ is eight times as large as π/h, we get log2(8) = 3, ie., mip level 3 will be 
accessed.

For a cube map with square sides and resolution h × h on each face, we use

	
2log ,

0.5 / h
gl æ ö

= ç ÷pè ø 	
(2)

with similar reasoning as above, except that each face now covers 0.5π radians.

Figure 21-1.  A ray differential or a ray cone consists of a positional (red) and a directional component 
(dashed lines). The environment map is assumed to be infinitely far away, as usual, and so the 
coverage from a single point (black dot) with a directional component (solid black lines) is the same, 
independent of the size of the circle. However, for the dashed lines, a smaller and smaller fraction 
of the circle is covered as the circle radius grows. At infinity, this fraction will be the same as the 
purple region. As a consequence, we can use only the directional components when accessing the 
environment map, even for ray cones and ray differentials.

RAY TRACING GEMS



349

21.3	 �RAY DIFFERENTIALS

A ray differential [6] is defined as

	

ˆ ˆ
,O O, , ,

x y x y
ì ü¶ ¶ ¶ ¶ï ï
í ý
¶ ¶ ¶ ¶ï ïî þ

d d

	

(3)

for a ray ( ) ˆR t O t= + d, where O is the ray origin and d̂  is the normalized ray 
direction (see Chapter 2). We compute the spread angle, shown in Figure 21-2, for a 
ray differential as

	

12arct
ˆ

an .
2

ˆ

x y
g

æ ö¶ ¶
= +ç ÷ç ÷¶ ¶è ø

d d

	

(4)

This γ can then be used in Equations 1 and 2 to compute the level of detail for use 
with ray differentials.

Note that our simple methods do not provide any anisotropy nor do they take the 
possible distortion of the mapping into account.

21.4	 �RESULTS

As a result of our work on textured reflections, we got used to having filtered 
textures in reflections. However, our first implementation did not handle 
environment maps, and as a consequence of that, reflections of the environment 
map always aliased in our tests. This chapter provides one solution. Results are 
shown in Figure 21-3.

Figure 21-2.  When disregarding the differentials of the ray origin, the spread angle γ can be computed 
using the normalized ray direction d̂  and its differentials.

 Simple Environment Map Filtering Using Ray Cones and Ray Differentials



350

REFERENCES

	 [1]	 Amanatides, J. Ray Tracing with Cones. Computer Graphics (SIGGRAPH) 18, 3 (1984), 129–135.

	 [2]	� Blinn, J. F., and Newell, M. E. Texture and Reflection in Computer Generated Images. 
Communications of the ACM 19, 10 (1976), 542–547.

	 [3]	� Christensen, P., Fong, J., Shade, J., Wooten, W., Schubert, B., Kensler, A., Friedman, S., 
Kilpatrick, C., Ramshaw, C., Bannister, M., Rayner, B., Brouillat, J., and Liani, M. RenderMan: 
An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37, 
3 (2018), 30:1–30:21.

	 [4]	� Debevec, P. Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-
Based Graphics with Global Illumination and High Dynamic Range Photography. In Proceedings of 
SIGGRAPH (1998), pp. 189–198.

	 [5]	� Greene, N. Environment Mapping and Other Applications of World Projections. IEEE Computer 
Graphics and Applications 6, 11 (1986), 21–29.

	 [6]	 Igehy, H. Tracing Ray Differentials. In Proceedings of SIGGRAPH (1999), pp. 179–186.

	 [7]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

Figure 21-3.  A vase with exaggerated reflections from an environment map (mostly brown area) 
using different methods. The closeups show, from top to bottom, use of mip level 0, ray cones, and 
ray differentials. Note that the two latter images are similar, which is expected since they filter the 
environment map. During animation, severe aliasing occurs in the image on the top right, while the 
other two are temporally stable.

RAY TRACING GEMS



351

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Simple Environment Map Filtering Using Ray Cones and Ray Differentials

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


353© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_22

CHAPTER 22

Improving Temporal Antialiasing 
with Adaptive Ray Tracing
Adam Marrs, Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire
NVIDIA

ABSTRACT

In this chapter, we discuss a pragmatic approach to real-time supersampling that 
extends commonly used temporal antialiasing techniques with adaptive ray tracing. 
The algorithm conforms to the constraints of a commercial game engine, removes 
blurring and ghosting artifacts associated with standard temporal antialiasing, 
and achieves quality approaching 16× supersampling of geometry, shading, and 
materials within the 16 ms frame budget required of most games.

22.1	 �INTRODUCTION

Aliasing of primary visible surfaces is one of the most fundamental and challenging 
limitations of computer graphics. Almost all rendering methods sample surfaces 
at points within pixels and thus produce errors when the points sampled are 
not representative of the pixel as a whole, that is, when primary surfaces are 
undersampled. This is true regardless of whether the points are tested by casting 
a ray or by the amortized ray casts of rasterization, and regardless of what shading 
algorithm is employed. Even “point-based” renderers [15] actually ray trace or splat 
points to the screen via rasterization. Analytic renderers such as perfect beam 
tracing in space and time could avoid the ray (under)sampling problem, but despite 
some analytic solutions for limited cases [1], point samples from ray or raster 
intersections remain the only fully developed approach for efficient rendering of 
complex geometry, materials, and shading.

Aliasing due to undersampling manifests as jagged edges, spatial noise, and 
flickering (temporal noise). Attempts to conceal these errors by wider and more 
sophisticated reconstruction filters in space (e.g., morphological antialiasing 
(MLAA) [22], fast approximate antialiasing (FXAA) [17]) and time (e.g., subpixel 
morphological antialiasing (SMAA) [12], temporal antialiasing (TAA) [13, 27]) 
convert those artifacts into blurring (in space) or ghosting (blurring in time). 
Under a fixed sample count per pixel across an image, the only true solution 
to aliasing is to increase the sample density and band-limit the signal being 



354

sampled. Increasing density helps but does not solve the problem at rates 
affordable for real time: supersampling antialiasing (SSAA) incurs a cost linearly 
proportional to the number of samples while only increasing quality with the 
square root; multisampling (MSAA)—including coverage sampling (CSAA), surface 
based (SBAA) [24], and subpixel reconstruction (SRAA) [4]—samples geometry, 
materials, and shading at varying rates to heuristically reduce the cost but also 
lowers quality; and aggregation (decoupled coverage (DCAA) [25], aggregate 
G-buffer (AGAA) [7]) reduces cost even more aggressively but still limits quality at 
practical rates. For band-limiting the scene, material prefiltering by mipmapping 
and its variants [19], level of detail for geometry, and shader level of detail reduce 
the undersampling artifacts but introduce other nontrivial problems such as 
overblurring or popping (temporal and spatial discontinuities) while complicating 
rendering systems and failing to completely address the problem.

The standard in real-time rendering is to employ many of these strategies 
simultaneously, with a focus on leveraging temporal antialiasing. Despite 
succeeding in many cases, these game-specific solutions require significant 
engineering complexity and careful hand-tuning of scenes by artists [20, 21]. Since 
all these solutions depend on a fixed sampling count per pixel, an adversary can 
always place material, geometric, or shading features between samples to create 
unbounded error. More recently, Holländer et al. [10] aggressively identified pixels 
in need of antialiasing from coarse shading and high-resolution geometry passes 
and achieved nearly identical results to SSAA. Unfortunately, this rasterization-
based approach requires processing all geometry at high resolutions even if only 
a few pixels are identified for antialiasing. Despite cutting the number of shading 
samples in half, the reduction in frame time is limited to 10%. Thus, we consider 
the aliasing challenge open for real-time rendering.

In this chapter, we describe a new pragmatic algorithm, Adaptive Temporal 
Antialiasing (ATAA), that attacks the aliasing problem by extending temporal 
antialiasing of rasterized images with adaptive ray traced supersampling. Offline 
ray tracing renderers have long employed highly adaptive sample counts to solve 
aliasing (e.g., Whitted’s original paper [26]), but until now hybrid ray and raster 
algorithms [2] have been impractical for real-time rendering due to the duplication 
of data structures between ray and raster APIs and architectures. The recent 
introduction of the DirectX Raytracing API (DXR) and the NVIDIA RTX platform 
enable full interoperability between data structures and shaders for both types 
of rendering on the GPU across the full game engine. Crucially, RTX substantially 
improves ray tracing performance by delivering hardware acceleration of the 
bounding volume hierarchy (BVH) traversal and triangle intersection tasks on 
the NVIDIA Turing GPU architecture. Thus, we build on the common idea of 

RAY TRACING GEMS



355

adaptive sampling by showing how to efficiently combine state-of-the-art temporal 
antialiasing solutions with a hybrid rendering approach unlocked by the recent 
evolution in the GPU ray tracing ecosystem. Shown in Figure 22-1, our method 
conforms to the constraints of a commercial game engine, eliminates the blurring 
and ghosting artifacts associated with standard temporal antialiasing, and 
achieves image quality approaching 16× supersampling of geometry, shading, 
and materials within a 16 ms frame budget on modern graphics hardware. We 
provide details from our hands-on experience integrating ATAA into a prototype 
version Unreal Engine 4 (UE4) extended with DirectX Raytracing support, tuning 
the adaptive distribution of ray traced samples, experimenting with ray workload 
compaction optimizations, and understanding ray tracing performance on NVIDIA 
Turing GPUs.

22.2	 �PREVIOUS TEMPORAL ANTIALIASING

Temporal antialiasing [13, 27] is fast and quite good in the cases that it can 
handle, which is why it is the de facto standard for games today. TAA applies a 
subpixel shift to the image plane at each frame and accumulates an exponentially 
weighted moving average over previous frames, each of which was rendered with 
only one sample per pixel. On static scenes, TAA approaches the quality of full-
screen supersampling. For dynamic scenes, TAA reprojects samples from the 
accumulated history buffer by offsetting texture fetches along per-pixel motion 
vectors generated by the rasterizer.

TAA fails in several cases. When new screen areas are disoccluded (revealed) 
by object motion, they are not represented in the history buffer or are 
misrepresented by the motion vectors. Camera rotation and backward 
translation also create thick disocclusions at the edges of the screen. Subpixel 

Figure 22-1.  The Modern House scene in Unreal Engine 4 with deferred shading, ray traced shadows, 
our Adaptive Temporal Antialiasing technique, and a moving camera all rendered in 9.8 ms on an 
NVIDIA GeForce 2080 Ti. The zoomed-in inlays compare boat rope details rendered with one-sample-
per-pixel (1 SPP) rasterization, FXAA, UE4’s stock TAA, a visualization of our segmentation mask, ATAA 
2×, 4×, and 8×, and an SSAA 16× reference.

 Improving Temporal Antialiasing with Adaptive Ray Tracing



356

features, such as wires and fine material details, can slip between consecutive 
offset raster samples and thus can be unrepresented by motion vectors in the 
next frame. Transparent surfaces create pixels at which the motion vectors 
from opaque objects do not match the total movement of represented objects. 
Finally, shadows and reflections do not move in the direction of the motion 
vectors of the surfaces that are shaded by them.

When TAA fails, it either produces ghosting (blurring due to integrating incorrect 
values) or reveals the original aliasing as jaggies, flicker, and noise. Standard 
TAA attempts to detect these cases by comparing the history sample to the local 
neighborhood of the corresponding pixel in the new frame. When they appear too 
different, TAA employs a variety of heuristics to clip, clamp, or interpolate in color 
space. As summarized by Salvi [23], the best practices for these heuristics change 
frequently, and no general-purpose solution has previously been found.

22.3	 �A NEW ALGORITHM

We designed Adaptive Temporal Antialiasing to be compatible with conventional 
game engines and to harness the strengths of TAA while addressing its failures 
unequivocally and simply. The core idea is to run the base case of TAA on most 
pixels and then, rather than attempting to combat its failures with heuristics, 
output a conservative segmentation mask identifying where TAA fails and why. 
We then replace the complex heuristics of TAA at failure pixels with robust 
alternatives, such as sparse ray tracing, that adapt to the image content.  
Figure 22-2 shows our algorithm in the context of the Unreal Engine 4 rendering 
pipeline. In the diagram, rectangular icons represent visualizations of data 
(buffers) and rounded rectangles represent operations (shader passes). Not all 
intermediate buffers are shown. For example, where the previous frame’s output 
feeds back as input to TAA, we do not show the associated ping-pong buffers. The 
new sparse ray tracing step executes in DXR Ray Generation shaders, accepts the 
new Segmentation buffer, and outputs a new Sparse Color buffer that is composited 
with the dense color output from TAA before tone mapping and other screen-space 
post-processing.

Since the base case of TAA is acceptable for most screen pixels, the cost of ray 
tracing is highly amortized and requires a ray budget far less than one sample per 
pixel. For example, we can adaptively employ 8× ray traced supersampling for 6% 
of the total image resolution at a cost of fewer than 0.5 rays per pixel. Image quality 
is then comparable to at least 8× supersampling everywhere; were it not, the 
boundaries between segmented regions would flicker in the final result due to the 
different algorithms being employed.

RAY TRACING GEMS



357

22.3.1	 �SEGMENTATION STRATEGY

The key to efficiently implementing any form of adaptive sampling is to first 
identify the areas of an image that will benefit most from improved sampling 
(i.e., detect undersampling) and to then perform additional sampling only in 
those regions. In ATAA, we guide the adaptivity of ray traced supersampling by 
computing a screen-space segmentation mask that detects undersampling and 
TAA failures. The buffer labeled “Segmentation” in Figure 22-2 is a visualization 
of our segmentation mask generated for the Modern House scene. Figure 22-3  
presents a larger, annotated version of this mask. Our mask visualizations 
map the antialiasing strategy to pixel colors, where red pixels use FXAA, blue 
pixels use TAA, and yellow pixels use ray traced supersampling. Achieving the 
ideal segmentation of arbitrary images for ray traced supersampling, while 
also balancing performance and image quality, is a challenging problem. The 
budget of rays available for antialiasing may vary based on scene content, 
viewpoint, field of view, per-pixel lighting and visual effects, GPU hardware, and 
the target frame rate. As a result, we don’t advocate a single “one size fits all” 
segmentation strategy, but instead we categorize and discuss several options 
so that the optimal combination of criteria can be implemented in a variety of 
scenarios.

Figure 22-2.  The data flow of ATAA integrated into the UE4 rendering pipeline. Gray boxes represent 
operations that are either unchanged or slightly modified. Green boxes represent operations that are 
modified or new. The Segmentation and Sparse Color buffers are new.

 Improving Temporal Antialiasing with Adaptive Ray Tracing



358

22.3.1.1	 �  AUTOMATIC SEGMENTATION

Images can be effectively and efficiently segmented by inspecting the scene data 
available in screen space after rasterization. Since segmentation is generated 
algorithmically, without manual intervention from artists or developers, we refer to 
this process as automatic segmentation.

Modern rendering engines maintain per-pixel motion vectors, which we use during 
segmentation to determine if the current pixel was previously outside of the view 
(i.e., offscreen) or occluded by another surface. In the case of offscreen disocclusion, 
temporal raster data does not exist for use in antialiasing. Shown in Figure 22-3, we 
process these areas with FXAA (red), since it has a low cost, requires no historical 
data, and runs on the low dynamic range output, i.e., after tone mapping, to 
conserve memory bandwidth. By running FXAA only at offscreen disocclusion pixels, 
we further reduce its cost compared to full-screen applications, typically to less than 
15% even for rapid camera movement. In the case of disocclusions from animated 
objects and skinned characters, temporal raster data exists but the shaded 
color is not representative of the currently visible surface. We eliminate common 
TAA ghosting artifacts and avoid aliasing caused by TAA clamping, as shown in 
Figure 22-4, by ignoring the temporal raster data and marking these pixels for ray 
traced supersampling (yellow). The result of inspecting motion vectors overrides all 
other criteria and may trigger an early exit in the segmentation process if either type 
of disocclusion is present. Now that TAA failures from disocclusions are handled, the 
segmentation process can turn to identifying areas of undersampling.

Figure 22-3.  An annotated visualization of an ATAA segmentation mask. Blue pixels use standard TAA, 
red pixels use FXAA, and yellow pixels use ray traced supersampling.

RAY TRACING GEMS



359

Undersampling artifacts occur primarily at geometric edges and within high-
frequency materials. Similar to common edge detection algorithms, we perform 
a set of 3 × 3 pixel convolutions to determine the screen-space derivatives of 
surface normals, depth, mesh identifiers, and luminance. Figure 22-5 visualizes 
segmentation results for each of these data types.

Not shown in Figure 22-5, we also compare the luminance of the current pixel with 
that of the reprojected pixel location in the TAA history buffer to determine the 
luminance change in time as well as space. Since our antialiasing method produces 
new samples accurately by ray tracing, no error is introduced by the reprojection or 
potential disocclusions.

As you may have noticed, each of the screen-space data types alone does not 
provide the complete segmentation we desire. Surface normal derivatives 
identify interior and exterior object edges effectively, but miss layered objects 
with similar normals and undersampled materials. Depth derivatives detect 
layered objects and depth discontinuities well, but create large areas of false 
positives where sharp changes in depth are common (e.g., planes that are near 
edge-on to the view, such as walls). Mesh identifier derivatives are excellent at 
detecting exterior object edges, but miss undersampled edges and materials 
on the interior of objects. Finally, luminance derivatives detect undersampled 
materials (in space and time), but miss edges where luminance values are 
similar. As a result, a combination of these derivatives must be used to arrive 
at an acceptable segmentation result.

Figure 22-4.  A skinned character in the middle of a run animation (left). Motion vectors are used to 
determine disocclusions that cause TAA to fail. TAA ghosting artifacts are eliminated and disocclusions 
are antialiased by marking these areas for ray traced supersampling (right).

 Improving Temporal Antialiasing with Adaptive Ray Tracing



360

Figure 22-5.  Segmentation results of 3 × 3 pixel convolutions for various types of screen-space data 
from two viewpoints in the Modern House scene: from top to bottom, final shaded scene, surface 
normals, depth, mesh identifiers, and luminance.

RAY TRACING GEMS



361

22.3.1.2	�  UE4 AUTOMATIC SEGMENTATION IMPLEMENTATION

In our UE4 implementation, the segmentation mask is generated by extending 
the existing full-screen TAA post-process pass. After inspecting motion vectors 
for TAA failures, we use a weighted combination of mesh identifiers, depth, 
and temporal luminance to arrive at the final segmentation result. The mask is 
stored as two half-precision unsigned integer values packed into a single 32-bit 
memory resource. The first integer identifies a pixel’s antialiasing method  
(0 = FXAA, 1 = TAA, 2 = ray tracing), and the second integer serves as 
a segmentation history that stores whether a pixel received ray traced 
supersampling in previous frames. The segmentation classification history is 
important to temporally stabilize the segmentation mask results, as a subpixel 
jitter is applied to the view every frame for TAA. If a pixel is marked for ray 
traced supersampling, it will continue to be classified for ray tracing over the 
next few frames until significant changes in the pixel’s motion vectors reset the 
segmentation history. An alternative to storing segmentation history is to filter 
the segmentation mask before ray traced supersampling.

22.3.1.3	�  MANUAL SEGMENTATION

Rendering images in real time presents unique challenges due to the large 
variation in art, content, and performance goals across projects. Consequently, an 
automatic segmentation approach may not always produce results that fit within 
the performance budget of every project. Artists and game developers know 
their content and constraints best; therefore, a manual approach to segmentation 
may also be useful. For example, artists and developers may tag specific types 
of meshes, objects, or materials to write to the segmentation mask during 
rasterization. Practical examples include hair, telephone wires, ropes, fences, 
high-frequency materials, and consistently distant geometry. Similar to adaptive 
tessellation strategies, manual segmentation could also use geometry metadata 
to guide the adaptivity of ray traced supersampling based on distance to viewpoint, 
material, or even the type of antialiasing desired (e.g., interior edge, exterior edge, 
or material).

22.3.2	 �SPARSE RAY TRACED SUPERSAMPLING

Once the segmentation mask is prepared, antialiasing is performed in a 
new sparse ray tracing pass implemented with DXR Ray Generation shaders 
dispatched at the resolution of the segmentation mask. Each ray generation 
thread reads a pixel of the mask, determines if the pixel is marked for ray 
tracing, and—if so—casts rays in either the 8×, 4×, or 2× MSAA n-rooks subpixel 

 Improving Temporal Antialiasing with Adaptive Ray Tracing



362

sampling pattern. At ray hits, we execute the full UE4 node-based material 
graph and shading pipeline, using identical HLSL code to the raster pipeline. 
Since forward-difference derivatives are not available in DXR Ray Generation 
and Hit shaders, we treat them as infinite to force the highest resolution of 
textures. Thus, we rely on supersampling alone to address material aliasing, 
which is how most film renderers operate, for the highest quality. An alternative 
would be to use distance and orientation to analytically select a mipmap level or 
to employ ray differentials [6, 11]. Figure 22-6 shows a cross section of an image 
rendered using our method and displays the results of the sparse ray tracing 
step (top) and the final composited ATAA result (bottom).

Figure 22-6.  A cross section of an image rendered using our method, illustrating the result of the 
sparse ray tracing step (top) and the final composited ATAA result (bottom).

22.3.2.1	�  SUBPIXEL SAMPLE DISTRIBUTION AND REUSE

Raster-based sampling, including that for antialiasing, is restricted to sample 
patterns available to graphics APIs and implemented efficiently in hardware. 
While it is possible to add fully programmable sample offset functionality to 
rasterizer pipelines, such functionality is not readily available today. In contrast, 
DXR and other ray tracing APIs enable rays to be cast with arbitrary origins and 
directions, allowing much more flexibility when sampling. If, for example, all 
useful samples existed on the right half of a pixel, it is possible to adjust the rays 
to densely sample the right half and leave the left half sparsely sampled (or not 
sampled at all!). Although completely arbitrary sample patterns are possible, and 
a variety of potential sample patterns may be worthwhile for particular uses, we 
suggest a more pragmatic approach.

RAY TRACING GEMS



363

To maintain parity of sample distribution with surrounding pixels in our hybrid 
algorithm, it is a natural choice to use the same jittered sample pattern that 
the rasterizer uses for TAA. With ATAA, we can produce samples from the set of 
sample positions at each time step, resulting in higher-quality new samples and 
reducing the reliance on reprojected history values. For instance, if TAA has an 
8-frame jittered sampling pattern, and we are performing 8× adaptive ray traced 
supersampling, all eight of the jittered sample locations can be evaluated with 
rays at each frame. Ray traced supersampling then produces the same result to 
which TAA converges prior to incorporating texture filtering of the history values. 
Similarly, a 4× adaptive ray tracing sample pattern converges to the 8× TAA 
result in just two frames.

Even though matching sample patterns between ray tracing and rasterization 
appears to be the best approach at first, different sample patterns may enable 
adaptive ray tracing with 8× sampling to converge to 32× quality over just 4 frames. 
We look to production renderers [3, 5, 8, 9, 16] for inspiration in determining higher-
count sample patterns. Correlated multi-jittered sampling [14] is commonly used 
today. While improved sample patterns should generate higher-quality results, 
when placed next to the TAA results in screen-space, discontinuities between the 
different sampling approaches may be noticeable and require further evaluation.

22.4	 �EARLY RESULTS

To demonstrate the utility of ATAA, we implemented the algorithm in a prototype 
branch of Unreal Engine 4 extended with DirectX Raytracing functionality. We 
gathered results using Windows 10 v1803 (RS4), Microsoft DXR, NVIDIA RTX, the 
NVIDIA 416.25 driver, and the GeForce RTX 2080 and 2070 GPUs.

22.4.1	 �IMAGE QUALITY

Figures 22-1 and 22-7 show output comparisons of the Modern House scene, 
shown in full in Figure 22-6, zoomed to challenging areas of the scene that feature 
thin rope geometry. In Figure 22-7, the “No AA” image demonstrates the baseline 
aliasing that is expected from a single raster sample per pixel. The FXAA and 
TAA images represent the standard implementations available in UE4. The SSAA 
16× image results from 16× supersampling. We show the ATAA segmentation 
mask used and three variations of ATAA with 2, 4, and 8 rays per pixel. Since the 
drawbacks of standard TAA are difficult to capture in still images, and all TAA 
images come from a stable converged frame, typical TAA motion artifacts are 
not visible. Figure 22-8 shows output comparisons from the same scene, zoomed 
to a challenging area featuring a plant with complex branches. In both result 

 Improving Temporal Antialiasing with Adaptive Ray Tracing



364

Figure 22-8.  Zoomed images from the Modern House scene highlighting a challenging area featuring 
complex detail from a plant, comparing plant details rendered with 1 SPP rasterization, FXAA, UE4’s 
stock TAA, a visualization of our segmentation mask, ATAA 2×, 4×, and 8×, and an SSAA 16× reference.

comparisons, notice how standard TAA misses or blurs out thin geometry that falls 
into the subpixel area between samples, while ATAA’s segmentation step identifies 
much of the region surrounding these tough areas and avoids ghosting, blurring, 
and undersampling by using ray traced supersampling.

Figure 22-7.  Zoomed images from the Modern House scene highlighting a challenging area featuring 
thin rope geometry, comparing boat rope details rendered with 1 SPP rasterization, FXAA, UE4’s stock 
TAA, a visualization of our segmentation mask, ATAA 2×, 4×, and 8×, and an SSAA 16× reference.

22.4.2	 �PERFORMANCE

Table 22-1 shows GPU times, reported in milliseconds (ms), of ATAA compared 
to equivalent configurations of SSAA. ATAA renders images at 1080p resolution, 
and the number of rays cast for antialiasing varies per frame according to the 
segmentation mask. The Modern House view shown in Figure 22-6 is used for 
performance testing, and the segmentation mask identifies 103,838 pixels for ray 

RAY TRACING GEMS



365

traced supersampling. These pixels represent just 5% of the total image resolution, 
but combined with non-failure TAA results (blue pixels in the segmentation mask), 
ATAA adaptively produces results similar to SSAA at a much lower cost. Primary 
rays cast by ATAA also shoot a shadow ray to the scene’s directional light source 
(the sun) to determine occlusion. In addition, the FXAA pass adds as much as 0.75 
ms when the whole frame is new, but in practice scales linearly down to 0 ms as 
fewer pixels are identified for FXAA in the mask. Under typical camera motion, 
fewer than 5% of pixels are chosen for FXAA.

Table 22-1.  A comparison of GPU times, in milliseconds, for several SSAA and ATAA configurations on 
GeForce RTX 2080 and 2070 GPUs. ATAA runs at 1080p resolution and selects 103,838 pixels for ray 
traced supersampling. ATAA produces similar results compared to SSAA for challenging areas in need 
of antialiasing while running approximately 2× to 4× faster.

In the Modern House scene, the adaptive nature of ATAA produces a significant 
2× to 4× speedup compared to SSAA, even with our relatively unoptimized 
implementation. These early results are captured on new hardware, new drivers, 
and the experimental DXR API in a prototype branch of UE4 that was not natively 
designed for ray tracing. Consequently, significant opportunities still remain to 
optimize the performance of both the ATAA algorithm implementation and the 
game engine’s implementation of DXR ray tracing functionality.

One such algorithmic optimization of ATAA is to create a compact one-dimensional 
buffer that contains the location of pixels identified for ray traced supersampling, 
instead of a screen-space buffer that aligns with the segmentation mask, and only 
dispatch DXR Ray Generation shader threads for elements of the compacted buffer. 
We refer to this process as ray workload compaction. Table 22-2 compares the GPU 
times of ATAA with and without the compaction optimization. Compaction yields a 
13% to 29% performance improvement over the original ATAA implementation and 
performs approximately 2.5× to 5× faster than the equivalent SSAA configuration. 
This is an exciting finding, but keep in mind that the segmentation mask (and 
resulting ray workload) changes dynamically every frame; therefore, compaction 
may not always be beneficial. Experimentation with various rendering workloads 
across a project are key to discovering which optimization approaches will achieve 
the best possible performance.

 Improving Temporal Antialiasing with Adaptive Ray Tracing



366

Table 22-2.  A comparison of GPU times, in milliseconds, for ATAA and ATAA with ray workload 
compaction (ATAA-C) on GeForce RTX 2080 and 2070 (top). Compaction improves performance of the 
Modern House workload by 13% to 29% and performs approximately 2.5× to 5× faster than the 
equivalent SSAA configuration (bottom). Since performance varies with geometry and materials, 
compaction may not always improve performance.

22.5	 �LIMITATIONS

ATAA as presented here does not comprehensively address every issue that you 
may encounter when implementing hybrid ray-raster antialiasing. For example, 
the segmentation mask is limited to discovering geometry with a single temporally 
jittered sample per pixel. As a result, subpixel geometry may be missed. This 
creates a spatial alternation between geometry appearing and not appearing in 
the segmentation mask, which therefore causes shifts between high-quality ray 
traced supersampling and entirely missed geometry. While rendering approaches 
to solve this problem almost exclusively include increasing the base sample rate, 
artists may be able to mitigate these issues by modifying geometry appropriately, 
or by producing alternate level of detail representations when the geometry is 
placed beyond a certain distance from the camera. Furthermore, filtering the 
segmentation mask prior to ray tracing may also increase temporal stability of the 
mask, although at the cost of tracing more rays.

There are minor differences in ATAA’s antialiased result compared to SSAA, caused 
by the material evaluation in DXR not correctly computing and evaluating the 
texture mipmap level. Texture sampling is particularly challenging when shading 
ray traced samples in existing production game engines. While it is possible to 
compute ray differentials, the implementation of existing material models heavily 
depends on the forward-difference derivatives provided by the raster pipelines.  
As a result, a single set of ray differentials cannot be used to adjust texture 

RAY TRACING GEMS



367

mipmap level when sampling, making the ray differential computation especially 
costly. In our implementation, all ray samples select the highest-frequency texture. 
This limitation results in texture aliasing in many cases, but at higher sample 
counts we are able to reconstruct the appropriate filtered result. Additionally, 
TAA history and new raster samples have filtered texture sampling, which can be 
blended with our ray traced samples to mitigate texture aliasing.

Another practical difficulty for ray traced antialiasing of primary visibility is 
supporting screen-space effects. Since rays are distributed sparsely across screen 
space, there is no guarantee the necessary data that post-process effects such as 
depth of field, motion blur, and lens flare use will exist in nearby pixels. A simple 
solution is to move the antialiasing step before these passes, at the cost of these 
effects not benefiting from additional antialiasing. In the long term, as the budget of 
ray samples increases, it may be sensible to move the raster-based screen-space 
effects to ray traced equivalents.

22.6	 �THE FUTURE OF REAL-TIME RAY TRACED ANTIALIASING

The recent arrival of graphics processors with dedicated acceleration for ray 
tracing creates an opportunity to reassess the state of the art, and in turn 
reinvent real-time antialiasing. This chapter presents implementation details 
beyond the initial publication of ATAA [18] and may serve as a foundation 
upon which production renderers of the future build. A primary remaining 
concern for production deployment is ensuring that the runtime of the sparse 
ray tracing pass fits within the available frame time budget. Once the pixels 
for ray traced supersampling are selected, we suggest pursuing additional 
heuristics to adjust performance, including naively dropping rays after the 
target number is hit, deprioritizing rays in screen-space regions where aliasing 
is less common or perceptually less important, and selecting ray counts based 
on a priority metric embedded in the segmentation mask. We expect adjusting 
ray counts per pixel will improve ray tracing performance in a given region 
of interest. Due to the SIMD architecture of current GPUs, these adjustments 
are optimally made on warp boundaries, thus pixels requiring similar sample 
counts may benefit from being placed together when spawning work, a task that 
can also be completed during a workload compaction pass.

 Improving Temporal Antialiasing with Adaptive Ray Tracing



368

22.7	 �CONCLUSION

Primary surface aliasing is a cornerstone problem in computer graphics. The 
best-known solution for offline rendering is adaptive supersampling. This was 
previously impractical for rasterization renderers in the context of complex 
materials and scenes because there was no way to efficiently rasterize sparse 
pixels. Even the most efficient GPU ray tracers required duplicated shaders and 
scene data. While DXR solves the technical challenge of combining rasterization 
and ray tracing, applying ray tracing to solve aliasing by supersampling is 
nontrivial: knowing which pixels to supersample when given only 1 SPP input and 
reducing the cost to something that scales are not solved by naively ray tracing.

We have demonstrated a practical solution to this problem—so practical that 
it runs within a commercial game engine, operates in real time even on first-
generation real-time ray tracing commodity hardware and software, and connects 
to the full shader pipeline. Where film renderers choose pixels to adaptively 
supersample by first casting many rays per pixel, we instead amortize that cost 
over many frames by leveraging TAA’s history buffer to detect aliasing. We further 
identify large, transient regions of aliasing due to disocclusions and employ post-
process FXAA there rather than expending rays. This hybrid strategy leverages 
advantages of the most sophisticated real-time antialiasing strategies while 
eliminating many of their limitations. By feeding our supersampled results back 
into the TAA buffer, we also increase the probability that those pixels will not 
trigger supersampling on subsequent frames, further reducing cost.

REFERENCES

	 [1]	� Auzinger, T., Musialski, P., Preiner, R., and Wimmer, M. Non-Sampled Anti-Aliasing. In Vision, 
Modeling and Visualization (2013), pp. 169–176.

	 [2]	� Barringer, R., and Akenine-Möller, T. A4: Asynchronous Adaptive Anti-Aliasing Using Shared 
Memory. ACM Transactions on Graphics 32, 4 (July 2013), 100:1–100:10.

	 [3]	� Burley, B., Adler, D., Chiang, M. J.-Y., Driskill, H., Habel, R., Kelly, P., Kutz, P., Li, Y. K., and Teece, 
D. The Design and Evolution of Disneys Hyperion Renderer. ACM Transactions on Graphics 37, 3 
(2018), 33:1–33:22.

	 [4]	� Chajdas, M. G., McGuire, M., and Luebke, D. Subpixel Reconstruction Antialiasing for Deferred 
Shading. In Symposium on Interactive 3D Graphics and Games (2011), pp. 15–22.

	 [5]	� Christensen, P., Fong, J., Shade, J., Wooten, W., Schubert, B., Kensler, A., Friedman, S., 
Kilpatrick, C., Ramshaw, C., Bannister, M., Rayner, B., Brouillat, J., and Liani, M. RenderMan: 
An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37, 3 
(2018), 30:1–30:21.

RAY TRACING GEMS



369

	 [6]	� Christensen, P. H., Laur, D. M., Fong, J., Wooten, W. L., and Batali, D. Ray Differentials and 
Multiresolution Geometry Caching for Distribution Ray Tracing in Complex Scenes. Computer 
Graphics Forum 22, 3 (2003), 543–552.

	 [7]	� Crassin, C., McGuire, M., Fatahalian, K., and Lefohn, A. Aggregate G-Buffer Anti-Aliasing. IEEE 
Transactions on Visualization and Computer Graphics 22, 10 (2016), 2215–2228.

	 [8]	� Fascione, L., Hanika, J., Leone, M., Droske, M., Schwarzhaupt, J., Davidovic� , T., Weidlich, A., and 
Meng, J. Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production. 
ACM Transactions on Graphics 37, 3 (2018), 31:1–31:18.

	 [9]	� Georgiev, I., Ize, T., Farnsworth, M., Montoya-Vozmediano, R., King, A., Lommel, B. V., Jimenez, 
A., Anson, O., Ogaki, S., Johnston, E., Herubel, A., Russell, D., Servant, F., and Fajardo, M. Arnold: 
A Brute-Force Production Path Tracer. ACM Transactions on Graphics 37, 3 (2018), 32:1–32:12.

	[10]	� Holländer, M., Boubekeur, T., and Eisemann, E. Adaptive Supersampling for Deferred Anti-
Aliasing. Journal of Computer Graphics Techniques 2, 1 (March 2013), 1–14.

	[11]	 Igehy, H. Tracing Ray Differentials. In Proceedings of SIGGRAPH (1999), pp. 179–186.

	[12]	� Jimenez, J., Echevarria, J. I., Sousa, T., and Gutierrez, D. SMAA: Enhanced Morphological 
Antialiasing. Computer Graphics Forum 31, 2 (2012), 355–364.

	[13]	� Karis, B. High Quality Temporal Anti-Aliasing. Advances in Real-Time Rendering for Games, 
SIGGRAPH Courses, 2014.

	[14]	 Kensler, A. Correlated Multi-Jittered Sampling. Pixar Technical Memo 13-01, 2013.

	 [15]	� Kobbelt, L., and Botsch, M. A Survey of Point-Based Techniques in Computer Graphics. 
Computers and Graphics 28, 6 (Dec. 2004), 801–814.

	 [16]	� Kulla, C., Conty, A., Stein, C., and Gritz, L. Sony Pictures Imageworks Arnold. ACM Transactions on 
Graphics 37, 3 (2018), 29:1–29:18.

	 [17]	 Lottes, T. FXAA. NVIDIA White Paper, 2009.

	 [18]	� Marrs, A., Spjut, J., Gruen, H., Sathe, R., and McGuire, M. Adaptive Temporal Antialiasing. In 
Proceedings of High-Performance Graphics (2018), pp. 1:1–1:4.

	 [19]	� Olano, M., and Baker, D. LEAN Mapping. In Symposium on Interactive 3D Graphics and Games 
(2010), pp. 181–188.

	 [20]	� Pedersen, L. J. F. Temporal Reprojection Anti-Aliasing in INSIDE. Game Developers Conference, 
2016.

	 [21]	� Pettineo, M. Rendering the Alternate History of The Order: 1886. Advances in Real-Time 
Rendering in Games, SIGGRAPH Courses, 2015.

	 [22]	� Reshetov, A. Morphological Antialiasing. In Proceedings of High-Performance Graphics (2009), 
pp. 109–116.

	 [23]	� Salvi, M. Anti-Aliasing: Are We There Yet? Open Problems in Real-Time Rendering, SIGGRAPH 
Courses, 2015.

	 [24]	� Salvi, M., and Vidimc�e, K. Surface Based Anti-Aliasing. In Symposium on Interactive 3D Graphics 
and Games (2012), pp. 159–164.

 Improving Temporal Antialiasing with Adaptive Ray Tracing



370

	 [25]	� Wang, Y., Wyman, C., He, Y., and Sen, P. Decoupled Coverage Anti-Aliasing. In Proceedings of 
High-Performance Graphics (2015), pp. 33–42.

	 [26]	� Whitted, T. An Improved Illumination Model for Shaded Display. Communications of the ACM 23, 6 
(June 1980), 343–349.

	 [27]	� Yang, L., Nehab, D., Sander, P. V., Sitthi-amorn, P., Lawrence, J., and Hoppe, H. Amortized 
Supersampling. ACM Transactions on Graphics 28, 5 (Dec. 2009), 135:1–135:12.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART VI

HYBRID  
APPROACHES  
AND SYSTEMS



375

PART VI

Hybrid Approaches and Systems

Sometimes a “gem” is more than just a good algorithm or implementation—it is a 
design for a system. The chapters in this part of the book present five systems for 
hybrid rendering using GPU ray tracing and rasterization together. They cover a 
range of application targets and scales to provide good ideas for every real-time 
rendering program. 

Chapter 23, “Interactive Light Map and Irradiance Volume Preview in Frostbite,” 
presents a comprehensive tool for using ray tracing to speed entertainment 
production. For two decades, film and game artists’ lighting workflow frequently 
has been limited by the long process of “baking” global illumination. In this chapter 
the Frostbite game engine team describes in detail their hybrid rendering system 
for rapid previewing of full global illumination.

Chapter 24, “Real-Time Global Illumination with Photon Mapping,” describes 
a method for simulating global illumination by tracing light forward from the 
emitters and then applying it to surfaces rasterized or ray traced backward from 
the camera. This system can handle cases such as bright caustics caused by 
specular reflection and refraction for which path tracing is slow to converge. More 
importantly, it provides a stable way of caching and amortizing light paths across 
many pixels.

Chapter 25, “Hybrid Rendering for Real-Time Ray Tracing,” gives the 
implementation details and lessons learned from the PICA PICA demo produced by 
the SEED game developer research group at Electronic Arts. It is a comprehensive 
system for global illumination within game-like resource constraints. The chapter 
presents targeted methods for ray tracing transparency, ambient occlusion, 
primary shadows, glossy reflection, and diffuse interreflection, and then describes 
how to combine them with rasterization into a complete hybrid rendering system.

Chapter 26, “Deferred Hybrid Path Tracing,” presents a path tracer using 
aggressive new spatial data structure radiance caching techniques. It produces 
high-quality interactive flythrough renderings of static scenes using only seconds 
of precomputation suitable for the authors’ architectural visualization application.



376

Chapter 27, “Interactive Ray Tracing Techniques for High-Fidelity Scientific 
Visualization,” describes multiple ray tracing techniques appropriate for scientific 
visualization, where the combination of high quality and interactivity can enable 
new insights for domain experts without computer graphics expertise. 

These chapters show how ray tracing has become a powerful tool in the toolchest, 
both for interactive rendering and fast previewing of baked effects. Improving 
the speed and ease of use of operations such as BVH traversal and ray/triangle 
intersection opens up new opportunities. Expect to see much more research and 
development of hybrid approaches in the years ahead.

Morgan McGuire



377© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_23

CHAPTER 23

Interactive Light Map and Irradiance 
Volume Preview in Frostbite
Diede Apers, Petter Edblom, Charles de Rousiers, and Sébastien Hillaire
Electronic Arts

ABSTRACT

This chapter presents the real-time global illumination (GI) preview system 
available in the Frostbite engine. Our approach is based on Monte Carlo path 
tracing running on the GPU, built using the DirectX Raytracing (DXR) API. We 
present an approach to updating light maps and irradiance volumes in real time 
according to elements constituting a scene. Methods to accelerate these updates, 
such as view prioritization and irradiance caching, are also described. A light 
map denoiser is used to always present a pleasing image on screen. This solution 
allows artists to visualize the result of their edits, progressively refined on screen, 
rather than waiting minutes to hours for the final result using the previous CPU-
based GI solver. Even if the GI solution being refined in real time on screen has not 
converged after a few seconds, it is enough for artists to get an idea of the final 
look and assess the scene quality. It enables them to iterate faster and so achieve a 
higher-quality scene lighting setup.

23.1	 �INTRODUCTION

Precomputed lighting using light maps has been used in games since Quake in 
1996. From there, light map representations have evolved to reach higher visual 
fidelity [1, 8]. However, their use in production is still constrained by long baking 
times, making the lighting workflow inefficient for artists and difficult for engineers 
to debug. Our goal is to provide a real-time preview of diffuse GI within the Frostbite 
editor.

Electronic Arts produces various types of games relying on a wide range of lighting 
complexities: static lighting such as in Star Wars Battlefront 2, dynamic sunlight for 
time of day simulation such as in Need for Speed, and even destruction requiring 
dynamic updates of the GI solution from dynamic lights such as in the Battlefield 
series. This chapter focuses on the static GI case, i.e., unchanging GI during 
gameplay, for which Frostbite’s own GI solver can be used [9]. See Figure 23-1. 
Static GI relying on baked light maps and probes will always be a good value: it 



378

enables high-quality GI baking, resulting in high-fidelity visuals on screen without 
needing much processing power. In contrast, dynamic GI, e.g., from animated 
lights, requires extensive offline data baking, has coarse approximations, and has 
costly runtime updates.

Figure 23-1.  Three final shots from different environments, rendered by Frostbite using our GI 
preview system. Left: Granary. (Courtesy of Evermotion.) Center: SciFi test scene. (Courtesy of 
Frostbite, © 2018 Electronic Arts Inc.) Right: Zen Peak level from Plants vs. Zombies Garden Warfare 2. 
(Courtesy of Popcap Games, © 2018 Electronic Arts Inc.)

Light map generation is a conveniently parallel problem where each texel can be 
evaluated separately [3, 9]. This can be achieved using path tracing and integrated 
using Monte Carlo integration [5], where each path contribution can also be 
evaluated independently. The recent real-time ray tracing additions to DXR [11] 
and Vulkan Ray Tracing [15] make it convenient to leverage the GPU’s massively 
parallel architecture to handle all the necessary computations such as ray/triangle 
intersection, surface evaluation, recursive tracing, and shading. The Frostbite GI 
solver is built on the DXR API.

This chapter describes the Frostbite path tracing solution built to achieve real-
time GI preview [3]. Section 23.2 gives details about the path tracing solution 
used to generate light maps and irradiance volumes. Section 23.3 presents the 
acceleration techniques used to reduce the GI preview cost, e.g., using view/texel 
prioritization or direct irradiance caching. Section 23.4 describes when GI data 
are generated and invalidated based on artist interactions with the scene input, 
e.g., lights, materials, and meshes. Finally, Section 23.5 discusses the impact on 
accuracy and presents performance of the different acceleration components.

23.2	 �GI SOLVER PIPELINE

This Section discusses our GI solver for previewing light maps and irradiance 
volumes. First, Section 23.2.1 describes the input (scene geometry, materials, and 
lights) and output (light map data) of the GI solver and how they are stored on the 
GPU. Then, Section 23.2.2 gives an overview of all parts of the pipeline. Finally, 
Section 23.2.3 describes how the lighting computation is handled.

RAY TRACING GEMS



379

23.2.1	 �INPUT AND OUTPUT

23.2.1.1	 �INPUT

>> Geometry: The scene geometry is represented with triangular meshes.  
A unique UV parameterization is attached to each mesh for mapping them 
to light map textures. These meshes are usually simplified geometry, called 
proxy meshes, as compared to the in-game meshes, as shown in Figure 23-2. 
Using proxy meshes alleviates self-intersection issues caused by coarse light 
map resolution, a common situation due to memory footprint constraints. The 
UV parameterization can be done automatically through some proprietary 
algorithms or done manually by artists. In both case, the parameterization 
tries to mitigate texel stretching and texel crossing geometry, which can 
result in light leaks. Non-manifold meshes are divided into several charts, 
which are padded to avoid light bleeding across charts when the light map is 
bilinearly sampled at runtime. Multiple instances of a mesh share the same 
UV parameterization but cover different areas of the light map texture. If 
instances are scaled, by default their light map coverage will increase. Doing 
so helps to keep texel size relatively constant over a scene. Optionally, artists 
can disable this scaling per instance to conserve light map space.

Figure 23-2.  Light map applied to a scene in Star Wars Battlefront II. Left: light map applied to proxy 
meshes, against which GI is traced. Right: light map applied to final in-game meshes by projecting 
proxy UV coordinates and using normal mapping. (Courtesy of DICE, © 2018 Electronic Arts Inc.)

>> Materials: Each scene geometry instance has certain material properties: 
diffuse albedo, emissive color, and backface behavior. Albedo is used for 
simulating correct interreflections, while face orientation is used to determine 
how a ray should behave when intersecting the backface of a triangle. Since 
we are interested in only diffuse interreflections, the usage of a simple diffuse 
material model such as Lambert [10] is enough. Surfaces with a metallic 
material are handled as if they were covered with a dielectric material.  
In such a case, the albedo can be estimated based on its reflectance and its 
roughness [7]. As a result, no caustics will be generated by our GI solver.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



380

>> Light sources: A scene can contain various types of light sources: local point 
lights, area lights, directional lights, and a sky dome [7]. Each light should 
behave as its real-time counterpart in order to have consistent behavior 
between its baked and runtime versions. The sky dome is stored in a  
low-resolution cube map.

>> Irradiance volumes: In addition to light maps, the GI solver allows us to  
pre-visualize lighting for dynamic objects. They are lit by irradiance volumes 
placed into levels. See Figure 23-3(a). Each irradiance volume stores a  
three-dimensional grid of spherical harmonics coefficients.

The input geometry is preprocessed to produce sample locations for each light map 
texel. These world-space locations are generated over the entire scene’s geometric 
surface. Each is used as the first vertex of a path when path tracing. Valid sample 
locations are produced by generating points within each texel’s boundary in the 
light map. These points are then tested for intersection with the unwrapped 
geometry and transformed into world space using the instance transformation 
corresponding to the intersected primitive, as illustrated in Figure 23-4. Points 
without any intersections are discarded, and all valid sample locations are 
uploaded to the GPU for later use by the path tracing kernel. The algorithm 
proceeds in a greedy fashion, generating samples until (say) eight valid sample 
locations in a texel are found. The UV space is sampled using a low-discrepancy 
Halton sequence, whose sample enumeration covers the entire domain. In the case 
that the sequence does not contain any points that produce valid sample locations, 
e.g., a small triangle residing between points, we generate a sample by clipping 
the triangle to the pixel’s boundary and by using its centroid to generate a new valid 
sample location. Additionally, using this algorithm, it is also possible that one point 

Figure 23-3.  Debug visualizations inside the editor. (a) An irradiance volume placed into a futuristic 
corridor scene. This irradiance volume is used for lighting dynamic objects. (b) Visualization of shadow 
rays and intersections with transparent primitives. Yellow lines represent shadow rays, and red 
crosses represent any-hit shader invocations to account for transmittance.

RAY TRACING GEMS



381

in UV space produces multiple sample locations. This can happen when the light-
mapped geometry is overlapping in UV space, which is undesirable. The algorithm 
is resilient and allows for this.

The geometry in the scene is stored in a two-level bounding volume hierarchy 
(BVH) (DXR’s acceleration structure [11]). The bottom level contains a BVH for 
each unique mesh. The top level contains all instances, each of which has a unique 
spatial transform and references a bottom-level BVH node. While this structure 
is less efficient during traversal than a single-level BVH, it simplifies scene 
update, which is a frequent operation during level editing. For instance, moving a 
mesh requires updating only the top-level instance transform matrix, instead of 
transforming the entire triangle soup stored in the bottom level.

23.2.1.2	�OUTPUT

The GI solver produces several outputs, structured either into light maps or 
irradiance volumes. For light map data, instances are packed into one or several 
light map atlases, which are coarsely packed on the fly1:

>> Irradiance: This is the main output of the GI solver. It describes the directional 
irradiance2 for light maps or irradiance volumes. Usually, the runtime 
geometry is finer than the geometry used for baking and often contains 
detailed normals, e.g., with normal mapping, which are not taken into account 
at baking time. See Figure 23-2. At runtime, the directional irradiance allows 
us to compute the actual incoming irradiance for detailed normals. Several 
representations are supported, such as the average value, principal direction, 
and spherical harmonics [9].

1�When atlasing the different instances’ charts, some padding is added between charts to avoid interpolating 
between texels that are not adjacent in world space.

2�Directional irradiance stores incident lighting in a way that the irradiance can be evaluated for a variety of 
directions.

Figure 23-4.  Left: geometry in three-dimensional space. Center: the same geometry unwrapped in 
UV space. Sample positions are generated in UV space using a low-discrepancy sample set covering 
the entire texel. Right: only valid samples intersecting the geometry are kept.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



382

>> Sky visibility: This describes the portion of the sky visible from a given light map 
texel or irradiance volume point [7]. This value is used at runtime for various 
purposes, such as reflection blending or material effects.

>> Ambient occlusion: This describes the surrounding occlusion for a given light 
map texel or irradiance volume point [7]. It is used at runtime for reflection 
occlusion.

23.2.2	 �GI SOLVER PIPELINE OVERVIEW

The proposed pipeline aims to preview the final outputs as quickly as possible. 
Since computing fully converged outputs would likely take several seconds or 
minutes for a production-size level, the proposed pipeline refines the outputs 
iteratively, as seen in Figure 23-5. At each solving iteration, the following 
operations are done:

>> Update scene: All scene modifications since the last iteration are applied, e.g., 
moving a mesh or changing a light’s color. These inputs are translated and 
uploaded to the GPU. See Section 23.4.

>> Update caches: If invalidated or incomplete, the irradiance caches are refined 
by tracing additional rays for estimating the incident direct irradiance. These 
caches are used for accelerating the tracing step. See Section 23.3.3.

>> Schedule texels: Based on the camera’s view frustum, the most relevant visible 
light map texels and visible irradiance volumes are identified and scheduled 
for the tracing step. See Section 23.3.1.

>> Trace texels: Each scheduled texel and irradiance point is refined by tracing 
a set of paths. These paths allow one to compute the incoming irradiance, as 
well as sky visibility and ambient occlusion. See Section 23.2.3.

>> Merge texels: The newly computed irradiance samples are accumulated into 
persistent output resources. See Section 23.2.6.

>> Post-process outputs: Dilation and denoising post-process passes are applied 
to the outputs, giving users a noise-free estimate of the converged output. See 
Section 23.2.8.

RAY TRACING GEMS



383

Figure 23-5.  Overview of the GI solver pipeline. Light maps and irradiance volumes are updated 
iteratively. The camera viewpoint is used to prioritize texels that need to be scheduled for the tracing 
steps. Using an irradiance cache, the tracing step refines the GI data. The traced results are merged 
with those of previous frames, before being post-processed (dilated and denoised) and sent back to the 
runtime.

23.2.3	 �LIGHTING INTEGRATION AND PATH CONSTRUCTION

To compute the irradiance E reaching each texel, we need to integrate the radiance 
L incident to the upper hemisphere Ω weighted by its projected solid angle ω⊥:

				    p

E Ld .wò ^

W

=

	

(1)

Computing the incoming radiance L requires us to solve the light transport 
equation, which computes the outgoing radiance L based on an incoming radiance 
Li and interacts with the surface material properties. In our case, we are interested 

 Interactive Light Map and Irradiance Volume Preview in Frostbite



384

in only the diffuse interreflection. For diffuse materials, with albedo ρ and emission 
Le, this equation is

			 
( ) ( )e iL L L d .rw w wò ^

W

= +
p 	

(2)

Due to its high dimensionality, Equation 1 can be difficult to solve. Relying on 
stochastic methods, such as Monte Carlo, has proven to be a good fit for several 
reasons. First, the result is unbiased, meaning it will converge to the correct value 
( )E  with enough samples. Second, the end result can be computed in an iterative 

fashion, which perfectly suits our needs to display incremental refinement to 
artists. Finally, refinements for a given light map texel are independent and thus 
can run in parallel. Solving Equation 1 with a Monte Carlo estimator,

			 
( )

n

L

L
E

n p0

1 ,
z

z

z =

» å
	

(3)

simply means that averaging n random evaluations Lζ of this integral, weighted by 
its probability distribution function (PDF) pL

z
, will converge to the correct result. 

This is an extremely convenient property.

A simple way for evaluating Equation 1 is to construct paths composed of vertices 
connecting a target texel to a light source. Each vertex lies on a geometric surface, 
whose material properties, e.g., albedo, reduce the path’s throughput. This 
throughput determines the quantity of light carried. We construct these paths 
iteratively from the texel to the light sources, as described by the kernel code in 
Listing 23-1.

Listing 23-1.  Kernel code describing a simple light integration.

 1 Ray r = initRay(texelOrigin, randomDirection);

 2

 3 float3 outRadiance = 0;

 4 float3 pathThroughput = 1;

 5 while (pathVertexCount++ < maxDepth) {

 6     PrimaryRayData rayData;

 7     TraceRay(r, rayData);

 8

 9     if (!rayData.hasHitAnything) {

10         outRadiance += pathThroughput * getSkyDome(r.Direction);

11         break;

12     }

13

RAY TRACING GEMS



385

14     outRadiance += pathThroughput * rayData.emissive;

15

16     r.Origin = r.Origin + r.Direction * rayData.hitT;

17     r.Direction = sampleHemisphere(rayData.Normal);

18     �pathThroughput *= rayData.albedo * dot(r.Direction,rayData.Normal);

19 }

20

21 return outRadiance;

The algorithm in Listing 23-1 outlines a way of integrating the irradiance for each 
texel. This simple solution is rather slow and does not scale well. In the following, 
we describe a few traditional techniques that can be used to improve performance:

>> Importance sampling: It is more effective to importance-sample the upper 
hemisphere according to the projected solid angle instead of a uniform 
distribution, as grazing directions have little contribution compared to more 
vertical ones [10].

>> Path construction with random numbers: The initial two vertices of each path 
are carefully built to reduce the variance of the estimated irradiance. First, 
spatial sample locations, which map texel sub-samples onto meshes, are 
pre-generated using a low-discrepancy Halton sequence as described in 
Section 23.2.1. This ensures that the full domain is uniformly sampled. Second, 
the directional samples are also sampled using a low-discrepancy Halton 
sequence. However, to avoid correlation issues between directional samples 
of adjacent spatial samples, a random jitter is added to offset directions. This 
construction ensures the full four-dimensional domain, spatial and angular. 
Using an actual four-dimensional sequence, rather than two independent 
two-dimensional sequences, will sample this space more efficiently, but was 
omitted from our first implementation for simplicity. Subsequent path vertices 
are built using uniform random values for constructing directional samples. 
Sample positions are determined by the ray intersection.

>> Next event estimation: Building a path until it reaches a light source is 
inefficient. The likelihood of reaching a light source becomes smaller as the 
number of lights (or their sizes) decreases. In the limit, when a scene has only 
local point lights, it is impossible to sample them with a random direction. One 
simple approach to solve this issue is to explicitly connect each vertex of a path 
to light sources and evaluate their contribution. This is known as next event 
estimation. By doing so, we artificially build multiple paths using existing sub-
paths. This simple, yet efficient, scheme improves convergence drastically. To 
avoid double contribution, light sources are not part of the same structure as 
regular scene geometry.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



386

All the above techniques can be summarized in the simplified kernel code in 
Listing 23-2.

Listing 23-2.  Kernel code describing the lighting integration.

 1 Ray r = initRay(texelOrigin, randomDirection);

 2

 3 float3 outRadiance = 0;

 4 float3 pathThroughput = 1;

 5 while (pathVertexCount++ < maxDepth) {

 6     PrimaryRayData rayData;

 7     TraceRay(r, rayData);

 8

 9     if (!rayData.hasHitAnything) {

10         outRadiance += pathThroughput * getSkyDome(r.Direction);

11         break;

12     }

13

14     float3 Pos = r.Origin + r.Direction * rayData.hitT;

15     float3 L = sampleLocalLighting(Pos, rayData.Normal);

16

17     pathThroughput *= rayData.albedo;

18     outRadiance += pathThroughput * (L + rayData.emissive);

19

20     r.Origin = Pos;

21     r.Direction = sampleCosineHemisphere(rayData.Normal);

22 }

23

24 return outRadiance;

23.2.4	 �LIGHT SOURCES

A scene can contain a set of point and area light sources. When a path is 
constructed, surrounding local lights, directional lights (e.g., sun), and any sky 
dome are evaluated at each vertex of the path (next event estimation):

>> Local point lights: The irradiance evaluation is trivial. Its intensity is computed 
based on its distance to the shading point and its angular falloff [7]. While point 
light intensity decays inversely to the square distance, artists can reduce their 
influence by tuning the light bounding volume. The received intensity increases 
as a light gets closer to a shaded surface and can approach infinity. To avoid 
this problem, we use a minimal distance, set to one centimeter, between the 
shading point and the light.

>> Area lights: The irradiance evaluation implies integrating the visible surface 
for each light. To do so, samples are generated onto the visible part of the 
light sources [10] and connected to the current path vertex. Sampling an area 
light source can require many samples for resolving not only its irradiance 

RAY TRACING GEMS



387

contribution but also its visibility, which creates soft shadows. To amortize 
the path construction, multiple samples are cast for each area light source, 
proportionally to their subtended solid angle. These samples are stratified 
over the integration domain to build a good estimate of their contribution. See 
Figure 23-6. Sample positions on light sources are generated with a low-
discrepancy Hammersley sequence because the number of samples, based 
on the solid angle, is known up front. This sequence is randomly offset at 
each path’s vertex to avoid spatial correlation, which could result in shadow 
replicates.

>> Directional lights: Irradiance is sampled at each vertex. Even if at runtime the 
directional light is evaluated as a small disk area light, the coarse light map 
resolution makes the small disk evaluation unnecessary.

>> Sky dome: Irradiance is sampled when the generated direction does not hit 
any geometry. For efficient evaluation one could importance-sample for sky 
lighting at each vertex of a path, for instance, with the alias method [18].

23.2.5	 �SPECIAL MATERIALS

In addition to regular diffuse albedo, materials can emit light or let the light pass 
through them:

>> Emissive surfaces: Geometry instances with emissive surfaces can emit 
light, making any regular geometry a potential light source. During path 
construction the surface emission is evaluated at each vertex. While this 
method produces the correct result on average, it requires many samples, 
especially for small emissive surfaces. To address this issue, emissive 
triangles can be added to our light acceleration structure; see Section 23.3.2. 
These emissive surfaces would then be part of the regular direct lighting 
evaluation.

Figure 23-6.  Irradiance evaluation of a texel. For this purpose, a path is constructed in green. At each 
vertex of this path, the direct lighting is evaluated by casting rays toward the area light (a.k.a. next 
event estimation). The number of samples for each light is proportional to its subtended solid angle. If 
no geometry is intersected, the sky dome radiance is evaluated.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



388

>> Translucency: Instance material properties can describe translucent surfaces 
by specifying their backface behavior. For such surfaces, light will be diffusely 
transmitted from the other side of the geometry, as shown in Figure 23-7. The 
quantity of light transmitted is driven by the surface albedo and a translucency 
factor. Based on this quantity, we stochastically select if the path should be 
transmitted or reflected when it hits such a surface. Direct light evaluation 
is done on the selected side. Due to this process, during the direct lighting 
evaluation, if a translucent surface lies between a light and a path’s vertex, no 
light will be transmitted. This path’s vertex will be shaded only if the path can 
be extended to connect it with the translucent surface.

>> Transparency: During next event estimation (see Section 23.2.3), a ray is 
traced toward the light source. Intersecting geometry with transparent 
materials will attenuate the visibility. Using DXR, this effect is realized by 
multiplying visibility by transmittance in an any-hit shader. Geometry that 
does not contain any transparent materials can be flagged as D3D12_
RAYTRACING_GEOMETRY_FLAG_OPAQUE. When a ray encounters this 
type of geometry, the ray is terminated. For geometry that does contain 
transparent materials, D3D12_RAYTRACING_GEOMETRY_FLAG_NO_
DUPLICATE_ANYHIT_INVOCATION must be used to avoid any double 
contributions. Figure 23-3(b) shows how these any-hit shader invocations 
are triggered for only transparent geometry.

Figure 23-7.  Scene containing a plane whose material is translucent. Left: translucency is disabled. 
No light is diffused through the surface. Right: translucency is enabled, allowing the light to be diffused 
into the scene. The transmitted light gets a red tint in this case.

RAY TRACING GEMS



389

23.2.6	 �SCHEDULING TEXELS

This section details the first and third part of our pipeline, as depicted in 
Figure 23-5. Texels are scheduled in a separate pass, prior to being traced. 
This scheduling pass runs multiple heuristics to determine if a certain texel 
should be processed. Examples of such heuristics are view prioritization (see 
Section 23.3.1) and convergence culling (see Listing 23-4). Convergence culling 
analyzes the texel’s convergence and avoids scheduling texels that are already 
converged enough. Once a texel is determined to be scheduled, we select a 
sample on its surface and append it to a buffer.

Once all sample locations are appended to that buffer, they are consumed by the 
second part of the pipeline. Each sample location can be evaluated multiple times, 
depending on our performance budgeting system (see Section 23.2.7). Figure 23-8 
illustrates our dispatching strategy. To ensure a large enough number of threads 
to fully saturate the available hardware resources, we schedule each sample 
location multiple times, ns = number of samples. Their contributions are deposited 
in one large buffer organized in buckets belonging to each texel, nt = number of 
texels. Additionally, we have an inner loop in our kernel that allows us to trace 
multiple primary rays from each dispatched thread, ni = number of iterations. The 
total number of samples is then nt × ns × ni. The value of nt depends on the result 
of view prioritization and is currently bound by 1 sample per 16 pixels in screen 
space. Both ns and ni are scaled by the sampleRatio in Listing 23-3.

Figure 23-8.  Left: dispatching strategy for the tracing kernel. Right: samples stored in one large 
buffer being accumulated and merged into a single light map texel.

Merging of multiple samples into one texel happens in a compute shader. Note that 
we do not have to worry about the same texel being scheduled multiple times, as 
view prioritization ensures that each visible texel is scheduled only once. Finally, 
the output is combined with that from previous frames.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



390

23.2.7	 �PERFORMANCE BUDGETING

Path tracing performance can be unpredictable and cause hitches in frame rate. To 
provide artists with a smooth workflow, we implemented a performance budgeting 
system that tracks the time spent path tracing on the GPU. Based on a target frame 
budget (in milliseconds), the system will adaptively scale the number of samples 
being traced to align with the performance budget. See Listing 23-3.

Listing 23-3.  Host code for computing the sample ratio used by the performance budgeting system.

 1 const float tracingBudgetInMs = 16.0f;

 2 const float dampingFactor = 0.9f;                  // 90% (empirical)

 3 const float stableArea = tracingBudgetInMs*0.15f;  // 15% of the budget

 4

 5 float sampleRatio = getLastFrameRatio();

 6 float timeSpentTracing = getGPUTracingTime();

 7 float boostFactor =

 8         clamp(0.25f, 1.0f, tracingBudgetInMs / timeSpentTracing);

 9

10 if (abs(timeSpentTracing - tracingBudgetInMs) > stableArea)

11     if (traceTime > tracingBudgetInMs)

12         sampleRatio *= dampingFactor * boostFactor;

13     else

14         sampleRatio /= dampingFactor;

15

16 sampleRatio = clamp(0.001f, 1.0f, sampleRatio);

23.2.8	 �POST-PROCESS

The output of the GI solver is built progressively. Therefore, the final result is likely 
not completed before several seconds have passed. However, to give a sense of 
instant control to the artist, the presented output needs to be representative of its 
final version as soon as possible. Three types of issues need to be addressed:

>> Black texels: These happen when either a given texel has not received any 
irradiance sample yet or samples hit backface surfaces marked as invalid, as 
shown in Figure 23-9. To alleviate both cases, a dilation filter is applied to the 
data presented to the user, but not to the progressively built version so as to 
not alter the final output. This dilation filter ensures that all texels are valid for 
bilinear lookup at runtime. A partially covered texel, i.e, one in which certain 
sample locations have not received any lighting, do not need any dilation, 
because their final irradiance value is computed by averaging only valid 
sample locations. Doing so avoids a darkening effect at geometry junctions.

RAY TRACING GEMS



391

Figure  23-9.  Dilation filter applied to a light-mapped Cornell box. Left: texels covered by geometries 
have invalid irradiance, due to paths hitting inner geometry, which is flagged as invalid. Middle: a 
dilation filter is applied for removing invalid texels. Right: top view of the scene showing the valid texels 
(green) and the invalid texels (red) for one of the objects.

>> Noisy texels: These are a manifestation of undersampling when integrating 
values with a stochastic method. The amount of noise reduces over time, 
because with additional samples the average value converges to the expected 
mean. To present meaningful values to the user, we use a denoiser algorithm 
whose goal is to predict an estimate of the converged mean value. See 
Figure 23-10. To do so, we use a variance-guided filter [12]. The main idea is 
to track texels’ variance and use this information for adapting the strength 
of neighborhood filtering. This filter is applied in light map space and uses 
instances’ chart IDs to act like an edge-stopping function. Doing so avoids 
filtering across nonadjacent geometry in world space. See Figure 23-11. 
This hierarchical filter looks sparsely at surrounding texels with increasing 
distance in multiple passes. Doing so allows it to extract the mean value, even 
in the presence of several frequencies of noise. Since this filter runs in light 
map space, it is preferable to have a relatively consistent texel density over the 
scene, and more filtering passes will be needed if the texel density increases. 
As the variance reduces, the luminance filter will shrink, as well as the spacing 
between samples, converging smoothly to the actual average value.

Figure 23-10.  Left: light map data visualized after the merge and dilation operations. Right: light map 
data visualized after the denoiser step. In both pictures bilinear filtering is disabled to emphasize the 
noise reduction.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



392

The variance of the mean3 of each texel is computed using Welford’s online variance 
algorithm [19]. The variance is not updated at each iteration, but after tracing 
a certain bucket of samples per texel. The size of this bucket increases at each 
update due to the quadratic convergence of Monte Carlo integration. Our bucket 

3�The variance of the mean is not the same as the variance of accumulated samples within a texel. The latter is 
related to the subpixel information, while the former is related to the convergence of the estimated value.

Figure 23-11.  Three passes of the Á-Trous (i.e., with holes) denoiser [12] working in light map space. 
At each pass, a 5 × 5 kernel is evaluated (green, light blue, and blue bands). The gathered samples 
are spread farther and farther apart to filter the noise across multiple frequencies. The luminance 
value and chart ID are used as edge-stopping functions to avoid overblurring and light bleeding across 
geometries. In the texel histogram on the bottom right, texel 2 (green dot) is currently being filtered. 
Only texel 4 (blue dot) contributes to the filtered value, as other texels either have a different chart ID 
than texel 2 or are out of the valid luminance range.

RAY TRACING GEMS



393

size is initially set to 12 samples and is doubled for each successive iteration. 
Using this variance information, the standard error [20] indicates when the mean 
has reached a certain confidence interval. We use a confidence interval of 95%, at 
which point a texel is considered as fully converged. For example code, see 
 Listing 23-4.

>> Chart seams: Seams can arise between light map charts, as the lighting can 
be different on two texels adjacent in world space but distant in light map 
space. This is a known issue with light maps. Our current GPU GI solver tool 
does not address this issue yet, and we instead rely on our existing CPU-based 
stitcher [4].

Listing 23-4.  Kernel code describing variance tracking.

1 float quantile = 1.959964f; // 95% confidence interval

2 float stdError = sqrt(float(varianceOfMean / sampleCount));

3 bool hasConverged =

4         (stdError * quantile) <= (convergenceErrorThres * mean);

23.3	 �ACCELERATION TECHNIQUES

The GI solver relies on several acceleration techniques to reduce the cost of each 
refinement step. The goal when using these techniques is to converge faster to the 
final GI solution with a minimum of approximations, while presenting a coherent 
result on screen to the user (see Section 23.5.2).

23.3.1	 �VIEW PRIORITIZATION

Rendering every texel in the light map is unnecessary when the scene is being 
observed from only one point of view. By prioritizing texels that are directly in view, 
we can achieve a higher convergence rate where it matters most for artists. This is 
referred to as view prioritization and is evaluated during our texel scheduling pass, 
as described in Section 23.2.6.

To schedule each texel in view at least once, we compute the visibility over multiple 
frames, as depicted later in Figure 23-19. Each frame we trace nv rays from the 
camera into the scene as described in the following pseudocode. When multiple 
visibility queries schedule the same texel, care needs to be taken when merging 
this texel. We use atomic operations to ensure that a texel is only scheduled once 
each frame.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



394

 

Since the variance of each texel is tracked during the lighting integration (see 
Section 23.2.8), this information is used for scheduling only unconverged texels, 
i.e., texels whose variance is higher than a certain threshold.

23.3.2	 �LIGHT ACCELERATION STRUCTURE

A level can contain a large number of lights. Casting shadow rays toward each of 
them for the purpose of next event estimation is costly (see Section 23.2.3). This 
needs to be done for each vertex of each path. To counter this issue, an acceleration 
structure is used to evaluate only lights that potentially interact with a given world-
space position.

The acceleration structure is a spatial hash function [16]. The world space is divided 
in an infinite uniform grid of axis-aligned bounding volumes of size S3D. Each of 
these boxes maps to a single entry of the one-dimensional hash function of entry 
count ne. When a level is loaded, the table is built once, accounting for all the lights, 
and uploaded to GPU memory. Each bounding volume’s hash entry contains a list 
of indices, one for each light intersecting with it. Thankfully, each volume does not 
contain all lights. This is made possible by the fact that, for the sake of performance, 
lights in Frostbite are bounded in space according to their intensity [7].

The bounding volume of size S3D is computed based on the average size of the 
lights’ bounding volumes, divided by a constant factor. This constant factor, 8 by 
default, can be used to reduce the cells’s size. The hash function is created with 
ne set to a large prime number, e.g., 524,287. In the case of a hash collision, it is 
possible for multiple volumes, far from each other in the world, to map to a single 
entry of the table. This case can create false-positive lights; however, this has not 
been observed as a problem so far. Results using this light acceleration structure 
are visible in Figure 23-12. Please refer to the original paper [16] for more details 
about this topic.

RAY TRACING GEMS



395

23.3.3	 �IRRADIANCE CACHING

Section 23.2 presents how path tracing is used to estimate light maps and volumes 
storing irradiance [9]. For each vertex of a traced path, the surrounding local light 
sources are sampled, resulting in an estimate of direct lighting. For each of these 
events, a ray is traced to assess the visibility of each light. However, a scene can 
have many lights, making this process, which is run for each vertex of a path, 
expensive. Furthermore, paths are built independently, so there is a high chance 
that paths will diverge quickly. Divergence can result in a higher overall cost of the 
process due to incoherent spatial structure queries and rays causing scattered 
memory access with higher latency. To accelerate this step, we use irradiance 
caching.

23.3.3.1	�  DIRECT IRRADIANCE CACHE LIGHT MAPS

The idea behind irradiance caching is to store the incoming light on a surface  
patch (irradiance) into a structure that is fast to query. A complete description  
of irradiance caching is available from Křivánek et al. [6]. Frostbite’s GI solver 
stores direct irradiance in light map space according to a one-to-one mapping 
with the GI light map parameterization of the scene. See Figure 23-13. A cache 
is built for each type of light source: local lights, the sun, and the sky dome. This 
separation is important, as it avoids rebuilding the local lights cache when only 
the sky has changed (see Section 23.4.2). Once computed, these direct irradiance 
cache textures can then be fetched at each vertex of a path to accumulate the direct 
irradiance instead of explicitly sampling lights (see Section 23.2.3).

Figure 23-12.  Number of local light queries per texel: blue is none, orange is most dense. Left: 
many local lights in a corridor. Right: sparse distribution of local lights with some hash collisions in an 
outdoor environment.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



396

Figure 23-13.  Visualization of the irradiance caches on the Granary scene, lit by local lights, a 
direction light, and a sky dome. Top left: indirect lighting stored into a light map. Top right: the 
directional light irradiance cache. Bottom left: the local light irradiance cache. Bottom right: red dots 
showing where the irradiance cache is computed.

As illustrated in Figure 23-14, the direct irradiance evaluation from lights, 
previously achieved using many rays (Figure 23-6), is now replaced by a few simple 
texture fetches, leveraging hardware-accelerated bilinear filtering. Thus, it has 
less impact on performance than incoherent tracing toward many lights interacting 
with each vertex of a path. These cache textures can easily have their resolution 
scaled up to increase accuracy. Otherwise, large texels will miss finer details 
resulting from complex occlusions and the final GI will look blurry. Increasing 
resolution is also a way to reduce the light map blurring resulting from the texture 
bilinear filtering used when sampling the cache.

Figure 23-14.  When using path tracing for next event estimation, to accumulate direct irradiance, a 
visibility test ray (dashed yellow lines) must be cast toward each light source for each vertex of a path 
(green dots). When using direct irradiance caching, a single texture fetch for each vertex can give the 
direct irradiance result for every light in the scene. Caching removes all the traced yellow rays toward 
each light source and thus accelerates the path tracing kernel. Direct irradiance cache texels are 
represented as small rectangles on the surfaces, in yellow for irradiance E > 0 or black if E = 0.

RAY TRACING GEMS



397

Using direct irradiance caches results in large performance wins, which are 
presented in Section 23.5.1. Timings are shown in Table 23-3. Convergence is 
greatly improved, as depicted in Figure 23-17, depending on the scene, light setup, 
and viewpoint.

23.3.3.2	�  CACHE UPDATE PROCESS

Every cache is invalidated when a scene is opened in the editor. When the sun 
is modified, only the direct sunlight irradiance cache is invalidated, with similar 
limitations for the sky dome and local light caches. When a cache is invalidated, 
its update process starts. Taking the local light cache as an example, the following 
process is followed for each update round:

	1.	 A number nic of samples are chosen for each texel of the light map cache.

	2.	 For each sample, the direct irradiance is evaluated using ray tracing toward 
every light source.

	3.	 For area lights, uniform samples are chosen over the light surface. The 
number of samples is adapted for each area light as a function of its 
subtended solid angle [10]: the larger it is, the more samples it gets to 
properly resolve its complex visibility.

	4.	 The samples are accumulated in the direct irradiance light map.

The same process is applied for the sun and sky dome lights. Both are also 
uniformly sampled by distributing samples on the sun’s disk and the sky dome 
hemisphere. Since the number of samples that are going to be taken for each 
source is known, low-discrepancy Hammersley sampling is used. In the case of 
the sun, only nsun

ic 8=  total samples are used, assuming sharp shadows. In the 
case of local lights, up to nL

ic 128=  samples are used; more samples are needed 
to integrate area light irradiance and soft shadows. In the case of the sky dome, 
nsky

ic 128=  samples are taken. A high number is needed, since a physically based 
sky simulation can result in high-frequency variations, especially when the sun is 
at the horizon [2]. During these steps, we ignore translucent surfaces (see  
Section 23.2), because for this interaction to happen, a path has to traverse a 
surface. However, the direct irradiance cache stores only non-occluded, i.e., 
directly visible, contributions to irradiance. Since each update round uses nic = 8 
samples per cache, each irradiance cache update is considered done after 1, 16, 
and 16 iterations, respectively, for the sun, local lights, and sky dome caches. 
These values are settings available for users to tweak according to their preference 
and the game on which they are working. For instance, some games or levels could 
rely mostly on sun and sky dome lighting instead of local lights, thus more samples 
would need to be allocated for sun and sky sampling.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



398

23.3.3.3	�  FUTURE IMPROVEMENTS

Indirect irradiance cache  In addition to direct light caching, accumulated indirect 
irradiance can be used to shorten path sampling. As described in Section 23.2.8, 
each texel convergence is tracked. When a texel is fully converged, its value can 
be used as an estimate of incident indirect lighting. By doing so, the path can end 
there, reducing the amount of computation.

Emissive surfaces  As of today, emissive surfaces are not taken into account 
in any of the direct irradiance caches. In Section 23.2.4, we mention that such 
surfaces could be converted to triangle area lights. Such area lights could be 
sampled to populate a direct irradiance cache light map dedicated to emissive 
surfaces. This cache would then only be updated when a mesh is moved or a 
material property affecting emitted surface radiance is modified by an artist.

23.4	 �LIVE UPDATE

23.4.1	 �LIGHTING ARTIST WORKFLOW IN PRODUCTION

Frostbite-based game teams have dedicated artists responsible for designing 
the lighting and thereby setting the mood of a scene. There are several editing 
operations that lighting artists use to accomplish this. The most common include 
placing lights sources, adjusting them, moving objects, and changing their 
materials. Other operations include modifying light map resolution for individual 
objects and switching objects from being lit by a light map or by irradiance 
volumes. These two operations mainly aim to adjust memory usage to fit within a 
certain light map budget.

As stated in Section 23.1, the offline Frostbite GI solver uses CPU-based ray 
tracing. Historically, getting feedback on the work performed in the game editor 
with regard to global illumination takes minutes to hours when using a CPU-based 
solver. The transition to GPU-based ray tracing allows the time range for this 
process to become seconds to minutes. The raw performance when taking a scene 
from nothing to one with reasonable global illumination is important in this context. 
The general acceleration techniques used are described in Section 23.3. The 
next section focuses on optimizations made possible when dealing with a specific 
modification done to the scene by the artist.

23.4.2	 �SCENE MANIPULATION AND DATA INVALIDATION

For a scene, light maps, irradiance volumes, and irradiance caches are considered 
states, which are updated after each iteration of the GI preview. When a light, 
mesh, or material is updated, the current GI states become invalid. However, it is 

RAY TRACING GEMS



399

vital to not present misleading results to the artist. A straightforward solution is to 
clear all the states and restart the lighting solution integration. At the same time, 
the user experience relies on not doing excessive invalidation that would cause 
unnecessary computations while restarting the lighting solution, which results 
in noisy visuals. The goal is to invalidate the smallest possible data set while still 
presenting valid results.

Table 23-1 presents what state is reset after an input has been updated. It shows 
that the light map (or irradiance volumes) are invalidated in all cases, except when 
scaling the resolution of a mesh light map. Scaling resolution without invalidation 
is possible because, during GI preview, each mesh has a dedicated light map 
texture. We use per-mesh instance textures together with bindless techniques 
to sample all these textures when rendering a scene. Material changes will also 
affect indirect light, but at least here irradiance caches are still valid since they 
include only direct light, before it is affected by a surface material. One can also 
notice that irradiance caches need to be invalidated only when the associated light 
source type is modified.

Table 23-1.  When an input is changed (left column), GI states may need to be reset (upper row). Those 
states are marked with a cross.

The real bottleneck come from meshes. Each time a mesh is added, updated, 
transformed, or removed, light maps and irradiance caches all need to be reset. 
It is wasteful to invalidate the light maps across the whole scene just for the 
movement of one mesh. A task for future work would be to experiment with the 
possibility of selectively invalidating mesh light maps based on their relative 
distance and lighting intensity. Furthermore, only texels within an area around 
the considered mesh could be invalidated by setting their sample count to 0. This 
might be sufficient to improve the lighting artists’ workflow in this case, without 
misleading them or presenting wrong information on screen.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



400

23.5	 �PERFORMANCE AND HARDWARE

23.5.1	 �METHOD

In recent ray tracing–related work, the performance metrics used are often 
technically oriented, such as giga-rays per second or a simple frames per second. 
In this project, the focus instead has been on the lighting artist’s experience, and 
therefore our methods to assess performance reflect this. Performance manifests 
itself to the artist as refresh rate and convergence rate, i.e., how often and to what 
quality lighting conditions are presented to the user.

The quality of the GI solver’s progressive output is assessed using a perceptual image 
difference measure, and the error is tracked over time. The L1 metric was simple and 
sufficient for our use case [13]. The L1 metric is applied to the results of the GI solver, 
i.e., light maps or irradiance volumes. Only texels in view that affect the viewed result 
are part of the calculation. A texel is considered significant if it is scheduled in at least 
1% of all the update iterations. To limit the number of independent variables, the 
refresh rate has been fixed to 33 milliseconds in these tests.

To be able to calculate a perceptual image difference, an image representing 
ground truth is needed. It is computed using the base version of our GI solver 
pipeline, without optimizations or simplifications and without using time 
restrictions. Convergence is computed continuously. When each texel has reached 
a certain threshold of convergence (for details see Section 23.2), the resulting light 
maps and irradiance volumes are stored as a reference.

A specific acceleration technique can be assessed by adding it to the GI solver. The 
test starts by invalidating the state, depending on what user operation we want 
to simulate (as described in Section 23.4). As the process continues, after each 
iteration the results are compared with the reference and the metric gets applied.

The metric results in an error, or distance, from the ground truth. The error is 
logged and used to graph how it changes over time, and it is compared to a GI 
solver that does not include the acceleration technique.

23.5.2	 �RESULTS

Two different scenes with one viewpoint for each of them are used to measure 
performance. They are meant to represent typical use cases for our lighting 
artists. The first is an indoor scene mainly lit by local lights (Granary by Night) 
and the second is a large-scale outdoor scene from a production game (Zen Peak 
level from Plants vs. Zombies Garden Warfare 2). To give a sense of the complexity 
of each scene’s view, both are presented visually in Figure 23-15 and their 
statistics are presented in Table 23-2. Apart from what is shown in the table,  

RAY TRACING GEMS



401

a relevant difference is the amount of overlapping local light. Zen Peak has lights 
distributed over the entire scene, while Granary by Night has clusters of 10 or 
more lights affecting the same area. The latter makes the light evaluation cost 
high, as shown by the time spent on the irradiance cache in Table 23-3.

Figure 23-15.  Test scenes from the selected viewpoint. (a) Granary by Night. (Courtesy of Evermotion.)  
(b) Zen Peak is a level from Plants vs. Zombies Garden Warfare 2. (Courtesy of Popcap Games,  
© 2018 Electronic Arts Inc.)

Table 23-2.  Test scene complexity. Local point lights include point, spot, and frustum lights.

Table 23-3.  Average time spent each iteration. As explained in Section 23.3.3.2, the irradiance cache 
cost will completely disappear once the cache has converged, i.e., after all the required samples have 
been resolved.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



402

All the graphs in Figures 16–18 show the normalized error over time, with a 
logarithmic y-axis scale. Notice that the outdoor scene converges faster, requiring 
a different interval on the same axis.

Intuitively, prioritizing texels that are visible in the scene is a substantial 
acceleration technique. As can be seen in Table 23-2, the different test scenes  
have a similar number of texels in view. The potential speedup should be relative 
to the fraction of texels in view. The results using view prioritization (described in 
Section 23.3.1) are shown in Figure 23-16. They are based on a full reset, and the 
error is plotted for the GI solver with and without view prioritization enabled. As 
seen in these graphs, the first test scene exhibits the significant speedup expected, 
but the second test case suffers from our measurement method, where every texel 
in the light map is equally important. The view prioritization algorithm will not hit 
tiny texels that cover less than a pixel in that view, thus the improved convergence 
rate is lower than expected.

The irradiance cache is the second major acceleration technique described in this 
chapter. Initially, it will use computing power to fill the cache with data, which is not 
directly used. It performs work on all texels in the scene, not only the ones hit by a 
ray during path traversal. This affects initial convergence, but, as shown in the first 
test case in Figure 23-17, after only a second the irradiance cache outperforms the 
base version of the GI solver. While the irradiance cache also converges quickly in 
the second test, it introduces an error bias of about 4.5%. This error is caused by a 
lack of resolution in areas where there are many tiny details or high frequencies in 
the lighting. See Section 23.3.3 for issues related to direct irradiance caching. Note 
that the irradiance cache is valuable long after being populated and needs to be 
reset only after certain user operations; see Section 23.4.

Figure 23-16.  Convergence plots for demonstrating performance gain by using view prioritization on 
two scenes: Granary by Night (left) and Zen Peak (right). These plots show the error (L1) compared to a 
reference light map. View prioritization (dashed curve) allows for faster convergence, especially during 
the first few seconds, compared to scheduling all light map texels at once (red curve).

RAY TRACING GEMS

https://doi.org/10.1007/978-1-4842-4427-2_16#Fig18


403

Denoising is primarily used to make the result look more pleasant to the user. The 
performance tests in Figure 23-18 show that it also improves the convergence 
rate. This is important, as denoising does not contribute to the total convergence. 
Instead, it only temporary affects what the user sees. Figure 23-19 summarizes 
visually the impact of all the described techniques.

Figure 23-17.  Convergence plots for demonstrating performance gain by using irradiance cache on 
two scenes: Granary by Night (left) and Zen Peak (right). These plots show the relative error (L1)  
compared to a reference light map. Using an irradiance cache (dashed curve) achieves a faster 
convergence compared to next event estimation at every path’s vertex (red curve). This difference is 
especially visible on the Granary scene, which contains many local lights and so requires additional 
occlusion rays for estimating their visibility.

Figure 23-18.  Plots illustrating the converge gain obtained by denoising the light map output on two 
scenes: Granary by Night (left) and Zen Peak (right). These plots show the relative error (L1) compared 
to a reference light map. This denoising step removes most of the high- and medium- frequency noise 
and allows us to quickly present a result similar to the converged output.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



404

Figure 23-19.  Visual comparison of convergence rate between different acceleration techniques. First 
row: all texels are scheduled equally, and next event estimation is done at every vertex of all paths. 
Second row: view prioritization (View) is used for scheduling only visible texels. Third row: irradiance 
cache (IC) is used for avoiding next event estimation. Fourth row: combination of view prioritization and 
irradiance caching. Fifth row: combination of view prioritization, irradiance caching, and denoiser.

23.5.3	 �HARDWARE SETUP

When a single GPU is available, the Frostbite editor together with the GI solver will 
be scheduled concurrently on the same GPU. In this case, the operating system 
will try to schedule the workload evenly. However, by default, this setup will fail 
to provide a smooth experience, since there is no way for it to divide the work 
uniformly to target an even frame rate. Either a large ray tracing task is run and the 
Frostbite editor slows down considerably, or the ray tracing work is scheduled less 
often and the time to convergence is longer and updates are less frequent. A dual-
GPU setup is recommended to avoid our GI path solver and Frostbite competing for 
the same GPU resources.

RAY TRACING GEMS



405

As shown in Figure 23-20, when two GPUs are used, the first can be used to 
render the editor and the game, while the second handles the GI solver doing ray 
tracing. Once an update cycle is done, the light map and light probe volumes are 
copied over to the GPU running the editor view for visualization. To this aim, the 
DirectX 12 multi-adapter mode is used, where each GPU is controlled explicitly and 
independently [14]. The most-capable GPU is selected to run the path tracing work, 
while the Frostbite editor requires at least a DirectX 11 compatible GPU.

In the future, the GI solver could be extended to handle n + 1 GPUs, n doing 
path tracing and one presenting the game editor to artists. The current dual-
GPU approach is already a good fit for artists, providing a smooth, stutter-free 
experience for Frostbite games currently in production.

23.6	 �CONCLUSION

This chapter describes the real-time global illumination preview system used in 
production going forward by Electronic Arts titles running on Frostbite. It allows 
lighting artists to preview what the final global illumination baking process will 
produce while editing a level, in a matter of seconds rather than waiting minutes to 
hours for the final result. We strongly believe that it will make artists more efficient 
while allowing them to focus on what is important: art and their creative process. 
As a result they will have more time to iterate and polish each scene, and thus they 
will be more likely to produce higher-quality content.

The acceleration techniques put in place, such as dynamic light map texel 
scheduling and irradiance caching, enable reaching a higher convergence rate 
with minimal impact on quality. A light map denoising technique is also put in place 
to make sure the result is pleasing to the eye, even for a low sample count, for 
instance when the light map evaluation is restarted.

Figure 23-20.  The Frostbite editor renders the game while the GI solver runs asynchronously on a 
side GPU. This enables a stutter-free experience, with both processes each leveraging the full power of 
a GPU.

 Interactive Light Map and Irradiance Volume Preview in Frostbite



406

Going forward, more advanced caching representations could be investigated, such 
as path guiding for long paths and bidirectional path tracing [17]. For a smooth user 
experience, a dual-GPU local machine setup is recommended, allowing lockless 
asynchronous GI updates. Going further, a farm of DXR-enabled GPUs could be 
installed around the world, providing global illumination previewing and high-
quality baking as a service for everyone in each of Electronic Arts’ studios.

REFERENCES

	 [1]	 Hao, C., and Xinguo, L. Lighting and Material of Halo 3. Game Developers Conference, 2008.

	 [2]	� Hillaire, S. Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite. Physically Based 
Shading in Theory and Practice, SIGGRAPH Courses, 2016.

	 [3]	� Hillaire, S., de Rousiers, C., and Apers, D. Real-Time Raytracing for Interactive Global 
Illumination Workflows in Frostbite. Game Developers Conference, 2018.

	 [4]	 Iwanicki, M. Lighting Technology of ‘The Last of Us’. In ACM SIGGRAPH Talks (2013), p. 20:1.

	 [5]	 Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH) (1986), 143–150.

	 [6]	� Křivánek, J., Gautron, P., Ward, G., Jensen, H. W., Christensen, P. H., and Tabellion, E. Practical 
Global Illumination with Irradiance Caching. In ACM SIGGRAPH Courses (2007), p. 1:7.

	 [7]	� Lagarde, S., and de Rousiers, C. Moving Frostbite to Physically Based Rendering. Advanced Real-
Time Rendering in 3D Graphics and Games, SIGGRAPH Courses, 2014.

	 [8]	� Mitchell, J., McTaggart, G., and Green, C. Shading in Valves Source Engine. Advanced Real-Time 
Rendering in 3D Graphics and Games, SIGGRAPH Courses, 2006.

	 [9]	 O’Donnell, Y. Precomputed Global Illumination in Frostbite. Game Developers Conference, 2018.

	 [10]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [11]	� Sandy, M., Andersson, J., and Barré-Brisebois, C. DirectX: Evolving Microsoft’s Graphics 
Platform. Game Developers Conference, 2018.

	 [12]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 1–12.

	 [13]	� Sinha, P., and Russell, R. A Perceptually Based Comparison of Image Similarity Metrics. 
Perception 40, 11 (January 2011), 1269–1281.

	 [14]	� Sjöholm, J. Explicit Multi-GPU with DirectX 12—Control, Freedom, New Possibilities. https://
developer.nvidia.com/explicit-multi-gpu-programming-directx-12, February 
2017.

	 [15]	� Subtil, N. Introduction to Real-Time Ray Tracing with Vulkan. NVIDIA Developer Blog, https://
devblogs.nvidia.com/vulkan-raytracing/, Oct. 2018.

RAY TRACING GEMS

https://developer.nvidia.com/explicit-multi-gpu-programming-directx-12
https://developer.nvidia.com/explicit-multi-gpu-programming-directx-12
https://devblogs.nvidia.com/vulkan-raytracing
https://devblogs.nvidia.com/vulkan-raytracing


407

	 [16]	� Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., and Markus, G. Optimized Spatial 
Hashing for Collision Detection of Deformable Objects. In Proceedings of Vision, Modeling, 
Visualization Conference (2003), pp. 47–54.

	 [17]	� Vorba, J., Karlik, O., Šik, M., Ritschel, T., and Křivánek, J. On-line Learning of Parametric Mixture 
Models for Light Transport Simulation. ACM Transactions on Graphics 33, 4 (July 2014), 1–11.

	 [18]	� Walker, A.J. New Fast Method for Generating Discrete Random Numbers with Arbitrary 
Frequency Distributions. Electronics Letters 10, 8 (February 1974), 127–128.

	 [19]	 Wikipedia. Online Variance Calculation Algorithm (Knuth/Welford). Accessed 2018-12-10.

	 [20]	 Wikipedia. Standard Error. Accessed 2018-12-10.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Interactive Light Map and Irradiance Volume Preview in Frostbite

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


409© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_24

CHAPTER 24

Real-Time Global Illumination 
with Photon Mapping
Niklas Smal and Maksim Aizenshtein 
UL Benchmarks

ABSTRACT

Indirect lighting, also known as global illumination, is a crucial effect in 
photorealistic images. While there are a number of effective global illumination 
techniques based on precomputation that work well with static scenes, including 
global illumination for scenes with dynamic lighting and dynamic geometry 
remains a challenging problem. In this chapter, we describe a real-time global 
illumination algorithm based on photon mapping that evaluates several bounces of 
indirect lighting without any precomputed data in scenes with both dynamic lighting 
and fully dynamic geometry. We explain both the pre- and post-processing steps 
required to achieve dynamic high-quality illumination within the limits of a real-
time frame budget.

24.1	 �INTRODUCTION

As the scope of what is possible with real-time graphics has grown with the 
advancing capabilities of graphics hardware, scenes have become increasingly 
complex and dynamic. However, most of the current real-time global illumination 
algorithms (e.g., light maps and light probes) do not work well with moving lights 
and geometry due to these methods’ dependence on precomputed data.

In this chapter, we describe an approach based on an implementation of photon 
mapping [7], a Monte Carlo method that approximates lighting by first tracing paths 
of light-carrying photons in the scene to create a data structure that represents 
the indirect illumination and then using that structure to estimate indirect light 
at points being shaded. See Figure 24-1. Photon mapping has a number of useful 
properties, including that it is compatible with precomputed global illumination, 
provides a result with similar quality to current static techniques, can easily trade 
off quality and computation time, and requires no significant artist work. Our 
implementation of photon mapping is based on DirectX Raytracing (DXR) and gives 
high-quality global illumination with dynamic scenes. The overall structure of our 
approach is shown in Figure 24-2.



410

Figure 24-1.  Final result using our system.

Figure 24-2.  The structure of the algorithm at the pass level. The first set of photons leaving the lights 
are taken care of using rasterization, producing a reflective shadow map. Points in these maps are sampled 
according to the power that their respective photons carry, and then ray tracing is used for subsequent photon 
bounces. To add indirect illumination to the final image, we splat photon contributions into the framebuffer 
using additive blending. Finally, temporal and spatial filtering are applied to improve image quality.

RAY TRACING GEMS



411

Adapting photon mapping to real-time rendering on the GPU requires addressing 
a number of challenges. One is how to find nearby photons at points shaded in the 
scene so the photons can contribute indirect illumination to these locations. We 
found that an approach based on splatting, where each photon is rasterized into 
the image based on its contribution’s extent, works well and is straightforward to 
implement.

Another challenge is that traditional photon mapping algorithms may not be able 
to reach the desired illumination quality within the computational constraints of 
real-time rendering. Therefore, we optimized the generation of photons using 
reflective shadow maps (RSMs) [2] to avoid tracing the first bounce of a ray from a 
light, replacing that step with rasterization. We are then able to apply importance 
sampling to the RSMs, choosing locations with high contributions more often to 
generate subsequent photon paths.

Finally, as is always the case when applying Monte Carlo techniques to real-time 
rendering, effective filtering is crucial to remove image artifacts due to low sample 
counts. To mitigate noise, we use temporal accumulation with an exponentially 
moving average and apply an edge-aware spatial filter.

24.2	 �PHOTON TRACING

While general ray tracing is necessary for following the paths of photons that 
have reflected from surfaces, it is possible to take advantage of the fact that 
all the photons leaving a single point light source have a common origin. In our 
implementation, the first segment of each photon path is handled via rasterization. 
For each emitter, we generate a reflective shadow map [2, 3], which is effectively a 
G-buffer of uniform samples of visible surfaces as seen from a light, where each 
pixel also stores the incident illumination. This basic approach was first introduced 
by McGuire and Luebke [10] nearly a decade ago, though they traced rays on the 
CPU at much lower performance and thus also had to transfer a significant amount 
of data between the CPU and the GPU—all of this fortunately no longer necessary 
with DXR.

After the initial intersection points are found with rasterization, photon paths 
continue by sampling the surface’s BRDF and tracing rays. Photons are stored at 
all subsequent intersection points, to be used for reconstructing the illumination, 
as will be described in Section 24.3.

 Real-Time Global Illumination with Photon Mapping



412

24.2.1	 �RSM-BASED FIRST BOUNCE

We start by selecting a total number of photons to emit from all light sources 
and then allocate these to lights proportional to each light’s intensity. Hence, all 
photons initially carry roughly the same power. The RSM must contain all surface 
properties needed to generate rays for the initial bounce of the photons.

We choose to implement RSM generation as a separate pass that is executed after 
generating a traditional shadow map. Doing so allows us to make the resolution 
of the RSM map independent from the shadow map and keep its size constant, 
avoiding the need to allocate RSMs during runtime. As an optimization, it is possible 
to use the regular shadow map for depth culling. Without matching resolutions, 
this will give incorrect results for some pixels, but in our testing, we have not found 
it to cause visible artifacts.

After the RSMs are generated, we generate an importance map for sampling 
starting points for the first bounce where each RSM pixel is first given a weight 
based on the luminance of the product of the emitted power carried by the photon, 
including artist-controlled parameters such as directional falloff and the surface 
albedo. This weight value is directly related to the amount of power carried by 
photons that leave the surface.

This importance map is not normalized, which would be required for most 
sampling techniques. Rather than normalizing the map and generating sampling 
distributions, we instead apply a hierarchical sampling algorithm based on wavelet 
importance sampling, introduced by Clarberg et al. [1].

Wavelet importance sampling is a two-step algorithm. First, we apply the discrete 
Haar wavelet transform to the probability map, effectively generating a pyramid 
representation of the image. Second, we reconstruct the signal for each sample 
location in a low-discrepancy sequence and warp the sampling positions based 
on the scaling coefficient of each iteration in a wavelet transformation. This 
warping scheme is illustrated in Figure 24-3. See also Chapter 16, “Sampling 
Transformations Zoo,” for more information about it.

RAY TRACING GEMS



413

The wavelet transformation must be applied across the entire image pyramid, 
at halved resolutions at each step, ending at 2 × 2 resolution. Because launching 
individual compute shader passes for such small dimensions is inefficient, we 
implement a separate compute shader pass for the final levels that uses memory 
similarly to a standard reduction implementation.

Importance sampling transforms the low-discrepancy samples into sample 
positions in the RSM with associated probabilities. In turn, a direction for an 
outgoing ray is found using importance sampling. Sampled rays are represented 
using the format presented in Table 24-1. Because each sample is independent 
from the other samples, there is no need for synchronization between sample 
points, except for an atomic counter to allocate a location in the output buffer. 
However, we must generate the seeds for the random number generator at this 
stage using the sampling index instead of later in photon tracing using the sample 
buffer location; doing so keeps photon paths deterministic between frames.

Figure 24-3.  Warping a set of sampling positions by an iteration of the wavelet transformation. (a) The 
initial sampling positions are (c–d) first warped horizontally and (e–f) then vertically using (b) the ratios 
of the scaling coefficients in the active quad. (Illustration after Clarberg et al. [1].)

 Real-Time Global Illumination with Photon Mapping



414

By using importance sampling to select the pixels in the RSM from which photons 
are traced, we are able to select the pixels whose photons carry more power more 
frequently. This in turn leads to less variation in photon power. Another advantage 
of RSMs is that they make it easy to trace multiple photon paths from an RSM point, 
selecting a different direction for each one. Doing so is useful when the desired 
photon count becomes high compared to the resolution of the RSM.

24.2.2	 �FOLLOWING PHOTON PATHS

Starting with the sampled RSM points and then at each subsequent photon/surface 
intersection, we generate an outgoing direction ω using importance sampling with 
a sampling distribution p(ω) that is similar to the surface’s BRDF. For example, we 
use a cosine-weighted distribution for diffuse surfaces, and we sample the visible 
microfacet distribution for microfacet BRDFs [5].

Before tracing the reflected photon, however, we apply Russian roulette, randomly 
terminating the photon based on the ratio between the BRDF times (ω⋅ωg) and the 
sampled direction probability. Photons that survive this test have their contribution 
adjusted accordingly so that the end result is correct. In this way, when a ray 
encounters a surface that reflects little light, fewer photons continue than if the 
surface reflects most of the incident light. Just like allocating photons to lights 
based on their emitted power, this also improves results by ensuring that all live 
photons have roughly the same contribution.

Since the power of a photon has multiple channels (in the RGB color model), the 
Russian roulette test can be modified so that it is done once, instead of per channel. 
We choose to handle this with the solution described by Jensen [7], setting the 
termination probability as

		
( )( )
( )( )

r i r g i g b i b

i r i g i b

, ,
q

, ,

, , ,

, , ,

max max
,

max max

r r rF F F
=

F F F
	 (1)

Table 24-1.  Format for sampled points.

RAY TRACING GEMS



415

where q is the scalar termination probability, Φi is the incoming power of the 
photon, and ρ is the ratio between the BRDF times (ω⋅ωg) and the scattering 
direction probability density function (PDF). The outgoing photon power is then 

i q
r

F  with component-wise multiplication.

Instead of using the same random samples for every frame, we are careful to use 
a new random seed each time. This causes the paths for the photons traced to vary 
for each frame, thus providing a different sample set and leading to accumulation 
of the larger sample set over multiple frames.

Photons are stored in an array where entries are allocated by atomically 
incrementing a global counter. Since our purpose is to calculate only indirect 
lighting, we do not store a photon for the initial photon/surface intersection in 
the RSM, as it represents direct illumination, which is better handled using other 
techniques (e.g., shadow maps or tracing shadow rays). We also do not store 
photons at surfaces with normals facing away from the camera or photons that are 
located outside of the camera frustum—both types do not contribute to the final 
image and are best culled before splatting. Note that our frustum culling considers 
photons only as points and ignores their splat radius. Thus, some photons at the 
edge of the frustum that actually would contribute to the radiance estimate are 
incorrectly culled. This issue could possibly be addressed by expanding the camera 
frustum used for the culling. However, this error does not seem to cause any 
significant visual artifacts when the kernel size in screen space is sufficiently small.

The representation of each photon is 32 bytes and is presented in Table 24-2.

Table 24-2.  Representation of a photon.

 Real-Time Global Illumination with Photon Mapping



416

24.2.3	 �DXR IMPLEMENTATION

Implementing photon tracing using DXR is fairly simple: a ray generation shader 
is invoked for all the RSM points that have been sampled, using each as a starting 
point for subsequent photon rays. It is then responsible for tracing subsequent 
rays until either a maximum number of bounces is reached or the path is 
terminated by Russian roulette.

Two optimizations are important for performance. The first is minimizing the size 
of the ray payload. We used a 32-byte ray payload, encoding the ray direction using 
16-bit float16 values and the RGB photon power as a 32-bit rgb9e5 value. Other 
fields in the payload store the state of the pseudo-random number generator, the 
length of the ray, and the number of bounces.

The second key optimization is to move the logic for sampling new ray directions 
and applying Russian roulette to the closest-hit shader. Doing so significantly 
improves performance by reducing register pressure. Together, we have the 
following for the ray generation shader:

 1 struct Payload

 2 {

 3     // Next ray direction, last element is padding

 4     half4 direction;

 5     // RNG state

 6     uint2 random;

 7     // Packed photon power

 8     uint power;

 9     // Ray length

10     float t;

11     // Bounce count

12     uint bounce;

13 };

14

15 [shader("raygeneration")]

16 void rayGen()

17 {

18     Payload p;

19     RayDesc ray;

20

21     // First, we read the initial sample from the RSM.

22     ReadRSMSamplePosition(p);

23

24     // We check if bounces continue by the bounce count

25     // and ray length (zero for terminated trace or miss).

26     while (p.bounce < MAX_BOUNCE_COUNT && p.t != 0)

27     {

28         // We get the ray origin and direction for the state.

29         ray.Origin = get_hit_position_in_world(p, ray);

30         ray.Direction = p.direction.xyz;

31

RAY TRACING GEMS



417

32         �TraceRay(gRtScene, RAY_FLAG_FORCE_OPAQUE, 0xFF, 0,1,0, ray, p);

33         p.bounce++;

34     }

35 }

The closest-hit shader unpacks the required values from the ray payload and 
then determines which ray to trace next. The validate_and_add_photon() 
function, to be defined shortly, stores the photon in the array of saved photons, if it 
is potentially visible to the camera.

 1 [shader("closesthit")]

 2 void closestHitShader(inout Payload p : SV_RayPayload,

 3     in IntersectionAttributes attribs : SV_IntersectionAttributes)

 4 {

 5     // Load surface attributes for the hit.

 6     surface_attributes surface = LoadSurface(attribs);

 7

 8     float3 ray_direction = WorldRayDirection();

 9     float3 hit_pos = WorldRayOrigin() + ray_direction * t;

10     float3 incoming_power = from_rbge5999(p.power);

11     float3 outgoing_power = .0f;

12

13     RandomStruct r;

14     r.seed = p.random.x;

15     r.key = p.random.y;

16

17     // Russian roulette check

18     float3 outgoing_direction = .0f;

19     float3 store_power = .0f;

20     �bool keep_going = russian_roulette(incoming_power, ray_direction,

21         �surface, r, outgoing_power, out_going_direction, store_power);

22

23     repack_the_state_to_payload(r.key, outgoing_power,

24     outgoing_direction, keep_going);

25

26     validate_and_add_photon(surface, hit_pos, store_power,

27             ray_direction, t);

28 }

Finally, as described earlier in Section 24.2, the photons that are stored are added 
to a linear buffer, using atomic operations to allocate entries.

 1 void validate_and_add_photon(Surface_attributes surface,

 2     float3 position_in_world, float3 power,

 3     float3 incoming_direction, float t)

 4 {

 5     if (is_in_camera_frustum(position) &&

 6         is_normal_direction_to_camera(surface.normal))

 Real-Time Global Illumination with Photon Mapping



418

 7     {

 8         uint tile_index =

 9             get_tile_index_in_flattened_buffer(position_in_world);

10         uint photon_index;

11         // Offset in the photon buffer and the indirect argument

12         DrawArgumentBuffer.InterlockedAdd(4, 1, photon_index);

13         // Photon is packed and stored with correct offset.

14         �add_photon_to_buffer(position_in_world, power, surface.normal,

15             power, incoming_direction, photon_index, t);

16         // Tile-based photon density estimation

17         DensityEstimationBuffer.InterlockedAdd(tile_i * 4, 1);

18     }

19 }

24.3	 �SCREEN-SPACE IRRADIANCE ESTIMATION

Given the array of photons, the next task is to use them to reconstruct indirect 
illumination in the image. Each photon has a kernel associated with it that 
represents the extent of the scene (and thus, the image) to which it possibly 
contributes. The task is to accumulate each photon’s contribution at each pixel.

Two general approaches have been applied to this problem: gathering and 
scattering. Gathering is essentially a loop over pixels, where at each pixel nearby 
photons are found using a spatial data structure. Scattering is essentially a loop 
over photons, where each photon contributes to the pixels that it overlaps. See 
Mara et al. [9] for a comprehensive overview of both real-time gathering and 
scattering techniques. Given highly efficient ray tracing on modern GPUs to 
generate photon maps, it is also important that reconstruction be efficient. Our 
implementation is based on scattering and we take advantage of rasterization 
hardware to efficiently draw the splatting kernels. Results are accumulated using 
blending.

We use photons to reconstruct irradiance, which is the cosine-weighted distribution 
of light arriving at a point. We then approximate the light reflected from a surface 
by the product of the photon’s irradiance and the surface’s BRDF using a mean 
incoming direction. In doing so, we discard the directional distribution of indirect 
illumination and avoid a costly evaluation of the reflection model for every photon 
that influences a point’s shading. This gives the correct result for diffuse surfaces, 
but it introduces error as surfaces become more glossy and as the distribution 
of indirect lighting becomes more irregular. In practice, we have not seen 
objectionable errors from this approximation.

RAY TRACING GEMS



419

24.3.1	 �DEFINING THE SPLATTING KERNEL

Selecting a good kernel size for each photon is important: if the kernels are too 
wide, the lighting will be excessively blurry, and if they are too narrow, it will be 
blotchy. It is particularly important to avoid too-wide kernels because a wider 
kernel makes a photon cover more pixels and thus leads to more rasterization, 
shading, and blending work for the photon. Incorrect kernel selection for photon 
mapping can cause several types of biases and errors [14]; minimization of these 
has been the focus of a substantial amount of research.

In our approach, we start with a spherical kernel and then apply a number of 
modifications to it in order to minimize various types of error. These modifications 
can be categorized into two main types: uniform scaling and modification of the 
kernel’s shape.

24.3.1.1  �UNIFORM SCALING OF THE KERNEL

Uniform scaling of the kernel is a product of two terms, the first one based on the 
ray length and the second on an estimation of the photon density distribution.

Ray Length  We scale the kernel according to the ray length using linear 
interpolation to a constant maximum length. This method is an approximation of 
the ray differential and can be interpreted as treating the photon as traveling along 
a cone instead of a ray and factoring in the growth of the cone base as its height 
increases. Also, we can assume lower photon densities as the ray length increases, 
since it is probable that photons scatter to a larger world-space volume. Thus, we 
want a relatively wide kernel in that case. The scaling factor is

			 
l

ls
lmax

min ,1 ,
æ ö

= ç ÷
è ø

	 (2)

where l is the ray length and lmax is a constant defining the maximum ray length. 
However, lmax is not required to be the maximum length of the rays cast during 
photon tracing but instead the length that we consider to be the maximum height of 
the cone. This constant should be related to the overall scale of the scene and can 
be derived from its bounding box.

Photon Density  We would like to further scale each photon’s kernel based on 
the local photon density around it: the more photons that are nearby, the smaller 
the kernel can (and should) be. The challenge is efficiently determining how many 
photons are near each one. We apply the simple approximation of maintaining a 
counter for each screen-space tile. When a photon is deposited in a tile, the counter 

 Real-Time Global Illumination with Photon Mapping



420

is atomically incremented. This is obviously a crude approximation of the density 
function, but it seems to produce fairly good results.

We then implement density-based scaling as a function of the area of the tile in 
view space:

		  ( ) ( )x y x y

x y

t t
a z

r r
2

view view

tan / 2 tan / 2
,

a a
= 	 (3)

where αx and αy are the apertures of the camera frustum, zview is the distance from 
the camera, tx and ty are the tile dimensions in pixels, and rx and ry represent the 
image’s resolution. In most cases a tile does not have a uniform depth, so we use 
the depth of the photon position. Most of this arithmetic can be precalculated and 
replaced with a camera constant:

			   a z c2
view view tile.= 	 (4)

Thus, scaling the circular kernel to have the same area in the view space as the tile 
can be calculated as

			   p
p

z c
a r n r

n

2
2 view tile

view , ,= p =
p

	 (5)

where np is the number of photons in the tile. This value is clamped to remove 
any extreme cases and then multiplied by the constant ntile, which is equal to the 
number of photons that we expect to contribute to each pixel:

			   ( )min max tileclamp .ds r , r , r n= 	 (6)

The HLSL implementation of these equations is straightforward:

 1 float uniform_scaling(float3 pp_in_view, float ray_length)

 2 {

 3     // Tile-based culling as photon density estimation

 4     int n_p = load_number_of_photons_in_tile(pp_in_view);

 5     float r = .1f;

 6

 7     if (layers > .0f)

 8     {

 9         // Equation 5

10         �float a_view = pp_in_view.z * pp_in_view.z * TileAreaConstant;

11         r = sqrt(a_view / (PI * n_p));

12     }

RAY TRACING GEMS



421

13     // Equation 6

14     float s_d = clamp(r, DYNAMIC_KERNEL_SCALE_MIN,

15         DYNAMIC_KERNEL_SCALE_MAX) * n_tile;

16

17     // Equation 2

18     float s_l = clamp(ray_length / MAX_RAY_LENGTH, .1f, 1.0f);

19     return s_d * s_l;

20 }

24.3.1.2  �ADJUSTING THE KERNEL’S SHAPE

We can further improve the reconstructed result by adjusting the kernel’s shape. 
We consider two factors. First, we decrease the radius of the kernel in the direction 
of the normal of the surface that the photon intersected. Second, we scale the 
kernel in the direction of the light in order to model the projected area that it covers 
on the surface. This results in the kernel being a tri-axial ellipsoid, which has one 
axis, n, that has the direction ωg of the normal. The other two axes are placed on a 
tangent plane defined by the photon normal, called the kernel plane. The first of the 
two, u, has the direction of ωi projected onto the kernel plane, while the second, t, is 
orthogonal to it and in the same plane. This vector basis is illustrated in Figure 24-4.

The magnitude of n is snslsd, where sn is a constant that compresses the kernel 
along the normal so that it is closer to the surface. This is a common approach: 
it was done by Jensen [7] for gathering with a varying gathering radius and by 

Figure 24-4.  Left: the base vectors for the kernel space: ωg is aligned to the photon normal n̂ , which 
also defines the kernel plane π. Two other basis vectors lie in π such that û  is the projection of light 
direction ωi on to the kernel plane and t̂  is orthogonal to û . Right: the kernel’s shape is modified by 
scaling along those vectors.

 Real-Time Global Illumination with Photon Mapping



422

McGuire and Luebke [10] for their splatting kernel. Compared to a spherical 
kernel, this provides a better approximation of the surface. However, if the kernel 
is compressed too much, the distribution on objects with complex shapes or 
significant surface curvatures becomes inaccurate, as the kernel disregards 
samples farther away from its plane. This can be compensated for by making the 
magnitude be a function of the surface curvature, but in our implementation this 
factor is constant.

The magnitude of u is suslsd, where su is defined as a function of the cosine of the 
angle between the hit normal and the light direction:

			 
u

g i

s , smax

1min ,
w w

æ ö
= ç ÷ç ÷×è ø

	 (7)

where smax is a constant defining the maximum scaling factor. Otherwise, the 
magnitude would approach infinity as the angle between ωg and ωi decreases 
to zero. Intuition for this equation originates in ray differentials and the cone 
representation of the photon: as the incoming direction of the photon becomes 
orthogonal to the normal direction of the surface, the area of the base of the cone 
that is projected onto the kernel plane increases.

Finally, the magnitude of t is slsd.

The following code shows an implementation of the shape modification:

 1 �kernel_output kernel_modification_for_vertex_position(float3 vertex,

 2     float3 n, float3 light, float3 pp_in_view, float ray_length)

 3 {

 4     kernel_output o;

 5     �float scaling_uniform = uniform_scaling(pp_in_view, ray_length);

 6

 7     float3 l = normalize(light);

 8     float3 cos_alpha = dot(n, vertex);

 9     float3 projected_v_to_n = cos_alpha * n;

10     float cos_theta = saturate(dot(n, l));

11     float3 projected_l_to_n = cos_theta * n;

12

13     float3 u = normalize(l - projected_l_to_n);

14

15     // Equation 7

16     �o.light_shaping_scale = min(1.0f/cos_theta, MAX_SCALING_CONSTANT);

17

18     float3 projected_v_to_u = dot(u, vertex) * u;

19     float3 projected_v_to_t = vertex - projected_v_to_u;

20     projected_v_to_t -= dot(projected_v_to_t, n) * n;

21

RAY TRACING GEMS



423

22     // Equation 8

23     float3 scaled_u = projected_v_to_u * light_shaping_scale *

24         scaling_Uniform;

25     float3 scaled_t = projected_v_to_t * scaling_uniform;

26     o.vertex_position = scaled_u + scaled_t +

27          (KernelCompress * projected_v_to_n);

28

29     o.ellipse_area = PI * o.scaling_uniform * o.scaling_uniform *

30          o.light_shaping_scale;

31

32     return o;

33 }

24.3.2	 �PHOTON SPLATTING

We splat photons using an instanced indirect draw of an icosahedron as an 
approximation to a sphere. (The indirect arguments for the draw call are set using 
an atomic counter in the validate_and_add_photon() function.) To apply the 
kernel shape introduced in the previous section, we transform the vertices in the 
vertex shader accordingly. Since the original kernel is a sphere, we can assume 
the coordinate frame of the kernel’s object space to be the coordinate frame of the 
world space, which results in vertex positions

			   ( )kernel

ˆ
ˆ .
ˆ

æ ö
ç ÷

= ç ÷
ç ÷
è ø

T

T

T

n
v n u t u v

t

	 (8)

We keep the pixel shader for our splatting kernel as simple as possible, as it can 
easily become a performance bottleneck. Its main task is a depth check to ensure 
that the G-buffer surface for which we are calculating radiance is within the kernel. 
The depth check is done as a clipping operation for the world-space distance 
between the surface and the kernel plane against a constant value scaled by the 
kernel compression constant. After the depth check, we apply the kernel to the 
splatting result:

				  
iE

a
,F

= 	 (9)

where a is the area of the ellipse, a = π‖u‖‖t‖ = π(slsd)(slsdsu). It is worth noting 
that irradiance here is scaled by the cosine term and thus implicitly includes 
information from the geometric normals.

For accumulation of irradiance, we use a half-precision floating-point format (per 
channel) in order to avoid numerical issues with lower-bit formats. Furthermore, 
we accumulate the average light direction as a weighted sum with half-precision 
floats. The motivation for also storing the direction is discussed in Section 24.4.3.

 Real-Time Global Illumination with Photon Mapping



424

The following code implements splatting. It uses the two functions defined 
previously to adjust the kernel’s shape.

 1 void VS(

 2     float3 Position : SV_Position,

 3     uint instanceID : SV_InstanceID,

 4     out vs_to_ps Output)

 5 {

 6     unpacked_photon up = unpack_photon(PhotonBuffer[instanceID]);

 7     float3 photon_position = up.position;

 8     float3 photon_position_in_view = mul(WorldToViewMatrix,

 9     float4(photon_position, 1)).xyz;

10     �kernel_output o = kernel_modification_for_vertex_position(Position,

11     �up. normal, -up.direction, photon_position_in_view, up.ray_length);

12

13     float3 p = pp + o.vertex_position;

14

15     Output.Position = mul(WorldToViewClipMatrix, float4(p, 1));

16     Output.Power = up.power / o.ellipse_area;

17     Output.Direction = -up.direction;

18 }

19

20 [earlydepthstencil]

21 void PS(

22 vs_to_ps Input,

23 out float4 OutputColorXYZAndDirectionX : SV_Target,

24 out float2 OutputDirectionYZ : SV_Target1)

25 {

26     float depth = DepthTexture[Input.Position.xy];

27     float gbuffer_linear_depth = LinearDepth(ViewConstants, depth);

28     float kernel_linear_depth = LinearDepth(ViewConstants,

29         Input.Position.z);

30     float d = abs(gbuffer_linear_depth - kernel_linear_depth);

31

32     clip(d > (KernelCompress * MAX_DEPTH) ? -1 : 1);

33

34     float3 power = Input.Power;

35     float total_power = dot(power.xyz, float3(1.0f, 1.0f, 1.0f));

36     float3 weighted_direction = total_power * Input.Direction;

37

38     OutputColorXYZAndDirectionX = float4(power, weighted_direction.x);

39     OutputDirectionYZ = weighted_direction.yz;

40 }

As mentioned before, we use additive blending to accumulate the contributions of 
photons. Modern graphics APIs guarantee that pixel blending occurs in submission 
order, though we do not need this property here. As an alternative, we tried using 
raster order views but found that these were slower than blending. However, 

RAY TRACING GEMS



425

using floating-point atomic intrinsics, which are available on NVIDIA GPUs as an 
extension, did result in improved performance in situations when many photons 
overlap in screen space (a common scenario for caustics).

24.3.2.1  �OPTIMIZING SPLATTING USING REDUCED RESOLUTION

Splatting can be an expensive process, which is especially the case when rendering 
high-resolution images. We found that reducing image resolution to half of the 
native rendering resolution did not cause a noticeable decrease in visual quality for 
the final result and gave a significant performance benefit. Using lower resolution 
does require a change to the depth clipping in the pixel shader to eliminate 
irradiance bleeding between surfaces: the half-resolution depth stencil used for 
stencil drawing should be downscaled using the closest pixel to the camera, but 
the depth used in pixel shader clipping should be downscaled using the farthest 
pixel from the camera. Hence, we draw the splatting kernel for only those pixels 
that are entirely within the full-resolution kernel. This causes jagged edges in the 
splatting result, but they are removed by the filtering.

24.4	 �FILTERING

As typical for real-time Monte Carlo rendering methods, it is necessary to apply 
image filtering algorithms to compensate for the low sample count. Although there 
have been significant advances in denoising in recent years, the noise caused by 
photon distribution kernels is quite different from the high-frequency noise that 
path tracing exhibits and that has been the main focus of denoising efforts. Thus, a 
different solution is required.

We use both temporal and spatial accumulation of samples with geometry-based 
edge-stopping functions. Our approach is based on previous work by Dammertz 
et al. [4] and Schied et al. [13], with our implementation using an edge-avoiding 
À-Trous wavelet transform for spatial filtering. Because indirect lighting is 
generally low frequency, we considered filtering at a lower resolution to decrease 
the computation cost, but we encountered artifacts due to G-buffer discrepancies 
and so reverted to filtering at the final resolution.

Both our temporal and spatial filtering algorithms use edge-stopping functions 
based on the difference in depth between two pixels and the difference in their 
surface normals. These functions, based on those of Schied et al. [13], attempt to 
prevent filtering across geometric boundaries by generating weights based on the 

 Real-Time Global Illumination with Photon Mapping



426

surface attributes of two different pixels p and q. The depth difference weight wz is 
defined by

		  ( ) ( ) ( )
( )( )z

z

z P z Q
w P,Q

P P Q
exp ,

s e

æ ö-
ç ÷= -
ç ÷Ñ - +è øz

	 (10)

where z(P) is the screen-space depth at a pixel location P and ∇z(P) is the depth 
gradient vector. After experimentation σz = 1 was found to work well.

Next, the normal difference weight wn accounts for the difference of the surface 
normals:

			   ( ) ( ) ( )( ) n

nw P,Q , P Qmax 0 ,ˆ ˆ
s

= ×n n 	 (11)

where we found σn = 32 to work well.

24.4.1	 �TEMPORAL FILTERING

Temporal filtering improves image quality by accumulating values from previous 
frames. It is implemented by reprojecting the previous frame’s filtered irradiance 
values using velocity vectors and then at every pixel p computing an exponentially 
moving average between the previous frame’s reprojected filtered irradiance value 

( )i PE 1-
�  and the irradiance value Ei(P) computed using splatting, giving a temporally 

filtered irradiance ( )i PE� :

			   ( ) ( ) ( ) ( )11 .i i iP E P E PE a a -= - +� � 	 (12)

This is Karis’s temporal antialiasing (TAA) approach [8] applied to irradiance.

Using a constant value for α would cause severe ghosting artifacts, as the temporal 
filtering would not account for disocclusions, moving geometry, or moving lights. 
However, because the irradiance values Ei at a pixel can vary significantly between 
frames, color-space clipping methods used in TAA are not well suited for them. 
Therefore, we rely on geometry-based methods and define α using the edge-
stopping functions as

			   ( ) ( )z nw P,Q w P,Q0.95 ,a = 	 (13)

where P is a current pixel sample and Q is the projected sample from the previous 
frame. To evaluate the weight functions, it is necessary to maintain the normal and 
depth data from the G-buffer of the previous frame. If the resolution of the splatting 
target is lower than the filtering target, we upscale the splatting result at the 
beginning of the temporal filtering pass with bilinear sampling.

RAY TRACING GEMS



427

24.4.2	 �SPATIAL FILTERING

The edge-avoiding Á-Trous wavelet transform is a multi-pass filtering algorithm 
with an increasing kernel footprint Ωi at each step i. This is illustrated in one 
dimension in Figure 24-5. Note that the spacing of filter taps doubles at each 
stage and that intermediate samples between filter taps are just ignored. Thus, 
the filter can have a large spatial extent without an excessive growth in the 
amount of computation required. The algorithm is particularly well suited to GPU 
implementation, where group shared memory can be used to efficiently share 
surface attributes across different pixels evaluating the kernel.

Our implementation follows Dammertz et al. [4] and Schied et al. [13] in which we 
realize each iteration as a 5 × 5 cross bilateral filter. Contributing samples are 
weighted by a function w(P, Q), where P is the current pixel and Q is the contributing 
sample pixel within the filter. The first iteration uses the temporally filtered 
irradiance values

		    ( )
( ) ( ) ( )

( ) ( )
iQ

Q

h Q w P,Q E Q
s P

h Q w P,Q
0

0

0 ,ÎW

ÎW

=
å
å

�
	 (14)

and then each following level filters the previous one:

		    ( )
( ) ( ) ( )

( ) ( )
i

i

iQ
i

Q

h Q w P,Q s Q
s P

h Q w P,Q1 ,ÎW

+

ÎW

=
å
å

	 (15)

where ( )h Q , , , ,1 1 1 1 1
8 4 2 4 8

æ ö
= ç ÷
è ø

 is the filter kernel and w(P, Q) = wz(P, Q)wn(P, Q).

Figure 24-5.  Three iterations of the one-dimensional stationary wavelet transform that forms the 
basis of the Á-Trous approach. Arrows show the nonzero elements of the previous result contributing 
to the current element, while gray dots indicate zero elements. (Illustration after Dammertz et al. [4].)

 Real-Time Global Illumination with Photon Mapping



428

24.4.2.1  �VARIANCE CLIPPING OF DETAIL COEFFICIENTS

To avoid blurring excessively, it is important to adapt the image filtering based on 
the accuracy of the image contents. For example, Schied et al. [13] use an estimate 
of variance as a part of their weight function. That works well for high-frequency 
noise but is unsuitable for the low-frequency noise from photon mapping. 
Therefore, we have developed a new filtering algorithm based on variance clipping 
of the differences between each stage of the Á-Trous transform.

The stationary wavelet transform (SWT) was originally introduced to combat one of 
the shortcomings of the discrete wavelet transform, that the transformation is not 
shift-invariant. This problem was solved by saving detail coefficients per pixel for 
each iteration. The detail coefficients can be defined by

				    i i id s s1 .+= - 	 (16)

This makes the SWT inherently redundant. If we consider how to reconstruct the 
original signal, we have

				  
n

n i
i

s s d
1

0
0

,
-

=

= -å 	 (17)

where n is the number of iterations. As we can see, to reconstruct the original 
signal we need only the sum of the detail coefficients. Doing so allows us to reduce 
the amount of required memory to two textures, each with the resolution of the 
original image. Nevertheless, this just leaves us at the same point where we 
started—the original unfiltered image.

However, we can apply variance clipping [12] to each of the detail coefficients before 
we add them in to the sum. This approach works well here, unlike with the unfiltered 
frame irradiance values Ei, because we are starting with temporally filtered values. 
We compute color-space boundaries (denoted by bi) based on the variance of 
irradiance within the spatial kernel. In turn, these boundaries are used for clipping 
the detail coefficients, and we compute a final filtered irradiance value as

			   ( )
n

n i i i
i

E s d , b , b
1

final
0

clamp .
-

=

= - -å 	 (18)

Finally, we apply the filtered irradiance to the surfaces. As described earlier, we 
ignore the directional distribution of indirect lighting. Instead, we use the mean 
direction as the incoming light parameter to evaluate the BRDF. The irradiance is 
multiplied by the BRDF value retrieved:

			     L E ffinal final BRDF.= 	 (19)

RAY TRACING GEMS



429

Figure 24-6 illustrates the various passes of our approach.

24.4.3	 �INCORPORATING THE EFFECT OF SHADING NORMALS

Photon mapping includes the directional information as an implicit part of 
the irradiance calculation, because surfaces with their geometry normals 
pointing toward the incoming light direction have a higher probability of being 
hit by photons. However, this process does not capture the detail provided by 
material attributes, such as normal maps. This is a commonly known issue 

Figure 24-6.  Results for different passes of the algorithm using the Sponza scene with three bounces 
of indirect light, four light sources, three million initial photons, and four spatial filtering iterations. (a) 
The colors red, green, and blue correspond to the number of the bounce. Notice the accumulation of 
different sample subsets from (c) stratified sampling in temporal filtering result compared to (b) the 
splatting result. Also, (e) the effect of the variance clipping of detail coefficients is clearly visible as (f) 
the irradiance result retains much of detail that is lost when (d) only scaling coefficients are used.

 Real-Time Global Illumination with Photon Mapping



430

with precalculated global illumination methods, and there have been several 
approaches to solve it [11]. To achieve comparable illumination quality, we must 
also take this factor into consideration with photon mapping.

We developed a solution inspired by Heitz et al. [6]: we filter the light direction ωi 
as a separate term. Then, when computing the irradiance, we effectively remove 
the original cosine term from the dot product of this direction ωi with the geometric 
normal ωng and replace it with the dot product of ωi and the shading normal ωns. 
This changes Equation 19 to

	     ( ) ( )i ns
i ng

L E f , sfinal final BRDF max

1min ,w w
w w e

æ ö
ç ÷= ×
ç ÷× +è ø

	 (20)

where ωi is the weighted average of the light directions and smax is the maximum 
scaling factor used in Section 24.3.1.2.

Accounting for the surface normal in this way comes with a performance cost, as it 
requires an additional blending target for the splatting, along with additional input 
and output for each filtering step. However, it allows us to apply the information 
from the normal maps without reading the G-buffer normal when computing 
irradiance.

Filtering the BRDF instead of just the light direction would achieve more accurate 
results for specular surfaces. However, doing so would require evaluating the 
BRDF during irradiance estimation and thus reading the material attributes. This 
would come with a significant performance cost when implemented with splatting, 
as the G-buffer would have to be read for each pixel shader invocation. A compute 
shader–based gathering approach could avoid this problem by loading the material 
attributes only once, though it would still pay the computational cost of evaluating 
the BRDF.

24.5	 �RESULTS

We evaluated our implementation with three scenes: Conference Room (shown 
in Figure 24-7), Sponza (Figure 24-8), and 3DMark Port Royal (Figure 24-9). 
Conference Room has a single light source, Sponza has four, and Port Royal has 
one spotlight from a drone and another pointing toward the camera. The rendering 
of the Port Royal scene includes an artistic multiplier to the photon power in order 
to intensify the indirect lighting effect.

RAY TRACING GEMS



431

Figure 24-7.  Conference Room test scene.

 Real-Time Global Illumination with Photon Mapping



432

Figure 24-8.  Modified Sponza test scene.

RAY TRACING GEMS



433

Table 24-3 reports the computation times in milliseconds for these scenes with 
high-quality settings: 1080p resolution, three million initial photons, three bounces 
of indirect light, and four iterations of the spatial filter. The results were measured 
using an NVIDIA RTX 2080 Ti. Note that, for all scenes, the most costly phase is 
splatting. Time spent on filtering is roughly the same for all scenes, since it is 
independent of the scene’s geometric complexity but is an image-space operation.

Figure 24-9.  A section of the 3DMark Port Royal ray tracing test.

 Real-Time Global Illumination with Photon Mapping



434

In Table 24-4 we examine the effect of varying some of the parameters. As 
would be expected, the time spent on RSMs, tracing rays, and photon splatting 
increases with the number of photons traced. Due to path termination from 
Russian roulette, increasing the number of bounces reduces performance less 
than adding a corresponding number of initial photons. Increasing image resolution 
correspondingly increases both splatting and filtering time.

24.6	 �FUTURE WORK

There are a number of areas where performance or quality of the approach 
described here could be improved.

24.6.1	 �OPTIMIZING IRRADIANCE DISTRIBUTION BY SKIPPING SPLATTING

With high-density functions, the screen-space size of the splatting kernel can 
approach the size of a pixel, which makes drawing the splatting kernel wasteful. 
This could possibly be solved by writing the irradiance value directly to the 
framebuffer instead of splatting.

Table 24-3.  Performance of our photon mapping implementation for each scene on an NVIDIA RTX 
2080 Ti, with times measured in milliseconds.

Table 24-4.  Performance of the photon mapping algorithm in the Sponza scene with different 
settings, measured in milliseconds. Filtering is done with four spatial iterations. The baseline is set to 
what we would consider “low” settings for photon mapping: one million photons and a single bounce.

RAY TRACING GEMS



435

24.6.2	 �ADAPTIVE CONSTANTS FOR VARIANCE CLIPPING OF THE DETAIL 
COEFFICIENTS

Unfortunately, we cannot determine if the variance in the irradiance is caused by 
the low sample count or an actual difference in lighting conditions. This is partly 
mitigated by the larger sample set provided by stratified sampling. As these 
samples are accumulated using temporal filtering, the noise becomes visible 
in cases where temporal samples are being rejected. Therefore, it would be 
preferable to use less constricting variance clipping boundaries for these areas. 
Such a system could be implemented by scaling the variance clipping constant 
based on the weights that we use to define the accumulation of the temporal 
samples.

REFERENCES

	 [1]	� Clarberg, P., Jarosz, W., Akenine-Möller, T., and Jensen, H. W. Wavelet Importance Sampling: 
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005), 
1166–1175.

	 [2]	� Dachsbacher, C., and Stamminger, M. Reflective Shadow Maps. In Proceedings of the 2005 
Symposium on Interactive 3D Graphics and Games (2005), pp. 203–231.

	 [3]	� Dachsbacher, C., and Stamminger, M. Splatting Indirect Illumination. In Proceedings of the 2006 
Symposium on Interactive 3D Graphics and Games (2006), ACM, pp. 93–100.

	 [4]	� Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. Edge-Avoiding À-Trous Wavelet Transform 
for Fast Global Illumination Filtering. In Proceedings of High-Performance Graphics (2010), 
pp. 67–75.

	 [5]	� Heitz, E., and d’Eon, E. Importance Sampling Microfacet-Based BSDFs using the Distribution of 
Visible Normals. Computer Graphics Forum 33, 4 (2014), 103–112.

	 [6]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic 
Shadows. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games 
(2018), pp. 2:1–2:11.

	 [7]	 Jensen, H. W. Realistic Image Synthesis Using Photon Mapping. A K Peters, 2001.

	 [8]	� Karis, B. High-Quality Temporal Supersampling. Advances in Real-Time Rendering in Games, 
SIGGRAPH Courses, 2014.

	 [9]	� Mara, M., Luebke, D., and McGuire, M. Toward Practical Real-Time Photon Mapping: Efficient 
GPU Density Estimation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D 
Graphics and Games (2013), pp. 71–78.

	 [10]	� McGuire, M., and Luebke, D. Hardware-Accelerated Global Illumination by Image Space Photon 
Mapping. In Proceedings of High-Performance Graphics (2009), pp. 77–89.

	 [11]	 O’Donnell, Y. Precomputed Global Illumination in Frostbite. Game Developers Conference, 2018.

 Real-Time Global Illumination with Photon Mapping



436

	 [12]	� Salvi, M. An Excursion in Temporal Supersampling. From the Lab Bench: Real-Time Rendering 
Advances from NVIDIA Research, Game Developers Conference, 2016.

	 [13]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 2:1–2:12.

	 [14]	� Schregle, R. Bias Compensation for Photon Maps. Computer Graphics Forum 22, 4 (2003), 
729–742.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


437© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_25

CHAPTER 25

Hybrid Rendering for Real-Time  
Ray Tracing
Colin Barré-Brisebois, Henrik Halén, Graham Wihlidal, Andrew Lauritzen, Jasper Bekkers, 
Tomasz Stachowiak, and Johan Andersson

SEED / Electronic Arts

ABSTRACT

This chapter describes the rendering pipeline developed for PICA PICA, a real-time 
ray tracing experiment featuring self-learning agents in a procedurally assembled 
world. PICA PICA showcases a hybrid rendering pipeline in which rasterization, 
compute, and ray tracing shaders work together to enable real-time visuals 
approaching the quality of offline path tracing.

The design behind the various stages of such a pipeline is described, including 
implementation details essential to the realization of PICA PICA’s hybrid ray tracing 
techniques. Advice on implementing the various ray tracing stages is provided, 
supplemented by pseudocode for ray traced shadows and ambient occlusion. A 
replacement to exponential averaging in the form of a reactive multi-scale mean 
estimator is also included. Even though PICA PICA’s world is lightly textured and 
small, this chapter describes the necessary building blocks of a hybrid rendering 
pipeline that could then be specialized for any AAA game. Ultimately, this chapter 
provides the reader with an overall good design to augment existing physically 
based deferred rendering pipelines with ray tracing, in a modular fashion that is 
compatible across visual styles.

25.1	 �HYBRID RENDERING PIPELINE OVERVIEW

PICA PICA [2, 3] features a hybrid rendering pipeline that relies on the rasterization 
and compute stages of the modern graphics pipeline, as well as the recently added 
ray tracing stage [23]. See Figure 25-1. The reader can see such results via a video 
available online [10]. Visualized as blocks in Figure 25-2, several aspects of such a 
pipeline are realized by a mix-and-match of the available graphical stages, and the 
pipeline takes advantage of each stage’s unique capabilities in a hybrid fashion.



438

By relying on the interaction of multiple graphical stages, and by using each stage’s 
unique capabilities to solve the task at hand, modularization of the rendering 
process allows for achieving each visual aspect optimally. The interoperability 
of DirectX also allows for shared intermediary results between passes and, 
ultimately, the combination of those techniques into the final rendered image. 
Moreover, a compartmentalized approach as such is scalable, where techniques 
mentioned in Figure 25-2 can be adapted depending on the user’s hardware 
capabilities. For example, primary visibility and shadows can be rasterized or ray 
traced, and reflections and ambient occlusion can be ray traced or ray marched. 

Figure 25-1.  Hybrid ray tracing in PICA PICA.

Figure 25-2.  Hybrid rendering pipeline.

RAY TRACING GEMS



439

Global illumination, transparency, and translucency are the only features of PICA 
PICA’s pipeline that fully require ray tracing. The various stages described in 
Figure 25-2 are executed in the following order:

	1.	 Object-space rendering.

1.1.	     Texture-space object parameterization.

1.2.	     Transparency and translucency ray tracing.

	2.	 Global illumination (diffuse interreflections).

	3.	 G-buffer layout.

	4.	 Direct shadows.

4.1.	     Shadows from G-buffer.

4.2.	     Shadow denoising.

	5.	 Reflections.

5.1.	     Reflections from G-buffer.

5.2.	     Ray traced shadows at reflection intersections.

5.3.	     Reflection denoising.

	6.	 Direct lighting.

	7.	 Reflection and radiosity merge.

	8.	 Post-processing.

25.2	 �PIPELINE BREAKDOWN

In the following subsection we break down and discuss the rendering blocks 
that showcase the hybrid nature of PICA PICA’s pipeline. We focus on shadows, 
reflections, ambient occlusion, transparency, translucency, and global illumination. 
We will not discuss the G-buffer and the post-processing blocks, since those are 
built on well-documented [1] state-of-the-art approaches.

 Hybrid Rendering for Real-Time Ray Tracing 



440

25.2.1	 �SHADOWS

Accurate shadowing undeniably improves the quality of a rendered image. As seen 
in Figure 25-3, ray traced shadows are great because they perfectly ground objects 
in a scene, handling both small- and large-scale shadowing at once.

Implementing ray traced shadows in their simplest (hard) form is straightforward: 
launch a ray from the surface toward the light, and if the ray hits a mesh, the 
surface is in shadow. Our approach is hybrid because it relies on a depth buffer 
generated during G-buffer rasterization to reconstruct the surface’s world-space 
position. This position serves as the origin for the shadow ray.

Soft penumbra shadows with contact hardening are implemented by launching 
rays in the shape of a cone, as described in the literature [1, 21]. Soft shadows 
are superior to hard shadows at conveying scale and distance, and they are also 
more representative of real-world shadowing. Both hard and soft shadows are 
demonstrated in Figure 25-4.

Figure 25-3.  Hybrid ray traced soft shadows.

RAY TRACING GEMS



441

With DirectX Raytracing (DXR), ray traced shadows can be achieved by both a ray 
generation shader and miss shader:

 1 // HLSL pseudocode---does not compile.

 2 [shader("raygeneration")]

 3 void shadowRaygen()

 4 {

 5   uint2 launchIndex = DispatchRaysIndex();

 6   uint2 launchDim = DispatchRaysDimensions();

 7   uint2 pixelPos = launchIndex +

 8       uint2(g_pass.launchOffsetX, g_pass.launchOffsetY);

 9   const float depth = g_depth[pixelPos];

10

11   // Skip sky pixels.

12   if (depth == 0.0)

13   {

14     g_output[pixelPos] = float4(0, 0, 0, 0);

15     return;

16   }

17

18   // Compute position from depth buffer.

19   float2 uvPos = (pixelPos + 0.5) * g_raytracing.viewDimensions.zw;

20   float4 csPos = float4(uvToCs(uvPos), depth, 1);

21   float4 wsPos = mul( g_raytracing.clipToWorld, csPos);

22   float3 position = wsPos.xyz / wsPos.w;

23

Figure 25-4.  Hybrid ray traced shadows: hard (left) and soft and filtered (right).

 Hybrid Rendering for Real-Time Ray Tracing 



442

24   // Initialize the Halton sequence.

25   HaltonState hState =

26       haltonInit(hState, pixelPos, g_raytracing.frameIndex);

27

28   // Generate random numbers to rotate the Halton sequence.

29   uint frameseed =

30       randomInit(pixelPos, launchDim.x, g_raytracing.frameIndex);

31   float rnd1 = frac(haltonNext(hState) + randomNext(frameseed));

32   float rnd2 = frac(haltonNext(hState) + randomNext(frameseed));

33

34   // Generate a random direction based on the cone angle.

35   // The wider the cone, the softer (and noisier) the shadows are.

36   // uniformSampleCone() from [pbrt]

37   float3 rndDirection = uniformSampleCone(rnd1, rnd2, cosThetaMax);

38

39   // Prepare a shadow ray.

40   RayDesc ray;

41   ray.Origin = position;

42   ray.Direction = g_sunLight.L;

43   ray.TMin = max(1.0f, length(position)) * 1e-3f;

44   ray.TMax = tmax;

45   ray.Direction = mul(rndDirection, createBasis(L));

46

47   // Initialize the payload; assume that we have hit something.

48   ShadowData shadowPayload;

49   shadowPayload.miss = false;

50

51   // Launch a ray.

52   // Tell the API that we are skipping hit shaders.Free performance!

53   TraceRay(rtScene,

54       RAY_FLAG_SKIP_CLOSEST_HIT_SHADER,

55       RaytracingInstanceMaskAll, HitType_Shadow, SbtRecordStride,

56       MissType_Shadow, ray, shadowPayload);

57

58   // Read the payload. If we have missed, the shadow value is white.

59   g_output[pixelPos] = shadowPayload.miss ? 1.0f : 0.0f;

60 }

61

62 [shader("miss")]

63 void shadowMiss(inout ShadowData payload : SV_RayPayload)

64 {

65   payload.miss = true;

66 }

As shown in this pseudocode, the miss shader payload is used to carry  
ray-geometry visibility information. Additionally, we use the RAY_FLAG_SKIP_
CLOSEST_HIT_SHADER flag to inform the TraceRay() function that we do not 
require any-hit shader results. This can improve performance, since the API will 
know up front that hit shaders do not need to be invoked. The driver can use this 
information to schedule such rays accordingly, maximizing performance.

RAY TRACING GEMS



443

The code also demonstrates the use of the cone angle function, 
uniformSampleCone(), which drives the softness of the penumbra. The wider the 
angle, the softer the penumbra, but more noise will be generated. This noise can 
be mitigated by launching additional rays, but it can also be solved with filtering. 
The latter is illustrated in Figure 25-5.

Figure 25-5.  Hybrid ray traced shadows: unfiltered (left) and filtered (right).

To filter the shadows, we apply a filter derived from spatiotemporal variance-
guided filtering (SVGF) [24], with a single scalar value to represent shadowing. 
A single scalar is faster to evaluate compared to a full color. To reduce temporal 
lag and improve overall responsiveness, we couple it with a pixel value bounding 
box clamp similar to the one proposed by Karis [15]. We calculate the size of the 
bounding box using Salvi variance-based method [22], with a kernelfootprint of 
5 × 5 pixels. The whole process is visualized in Figure 25-6.

Figure 25-6.  Shadow filtering, inspired by the work of Schied et al. [24].

 Hybrid Rendering for Real-Time Ray Tracing 



444

In the context of light transport inside thick media, proper tracking [11] in real time 
is nontrivial. For performance reasons we follow a thin-film approximation, which 
assumes that the color is on the surface of the objects. Implementing distance-
based absorption could be a future improvement.

For any surface that needs shadowing, we shoot a ray toward the light. If we 
hit an opaque surface, or if we miss, we terminate the ray. However, if we hit a 
transparent surface, we accumulate absorption based on the albedo of the object. 
We keep tracing toward the light until all light is absorbed, the trace misses, or we 
hit an opaque surface. See Figure 25-8.

One should note that we implement shadows with closest-hit shaders. Shadows 
can also be implemented with any-hit shaders, and we could specify that we only 
care about the first unsorted hit. We did not have any alpha-tested geometry such 
as vegetation in PICA PICA, therefore any-hit shaders were not necessary for this 
demo.

Though our approach works for opaque shadows, it is possible to rely on a similar 
approach for transparent shadows [4]. Transparency is a hard problem in real-time 
graphics [20], especially if limited to rasterization. With ray tracing new alternatives 
are possible. We achieve transparent shadows by replacing the regular shadow 
tracing code with a recursive ray trace through transparent surfaces. Results are 
showcased in Figure 25-7.

Figure 25-7.  Hybrid ray traced transparent shadows.

RAY TRACING GEMS



445

Figure 25-8.  Hybrid ray traced transparent shadow accumulation.

Our approach ignores the complexity of caustic effects, though we do take the 
Fresnel effect into account on interface transitions. To that, Schlick’s Fresnel 
approximation [25] falls apart when the index of refraction on the incident side of 
the medium is higher than the far side. Therefore, we use a modified total internal 
reflection modification [16] of Schlick’s model.

Similar to opaque ray traced soft shadows, we filter transparent soft shadows 
with our modified SVGF filter. One should note that we only compute transparent 
shadows in the context of direct shadowing. In the event where any other pass 
requires light visibility sampling, for performance reasons we approximate such 
visibility by treating all surfaces as opaque.

25.2.2	 �REFLECTIONS

One of the main techniques that takes advantage of ray tracing is reflections. 
Reflections are an essential part of a rendered image. If done properly, reflections 
ground objects in the scene and significantly improve visual fidelity.

Lately, video games have relied on both local reflection volumes [17] and screen-
space reflections (SSR) [27] for computing reflections with real-time constraints. 
While such techniques can generally provide convincing results, they are often not 
robust. They can easily fall apart, either by lacking view-dependent information or 
simply by not being able to capture the complexity of interreflections. As shown 
in Figure 25-9, ray tracing enables fully dynamic complex reflections in a robust 
fashion.

 Hybrid Rendering for Real-Time Ray Tracing 



446

Figure 25-9.  Hybrid ray traced reflections.

Similar to our approach for shadows and ambient occlusion, reflection rays are 
launched from the G-buffer, thus eliminating the need for ray tracing of primary 
visibility. Reflections are traced at half resolution, or at a quarter of a ray per pixel. 
While this might sound limiting, a multistage reconstruction and filtering algorithm 
brings reflections up to full resolution. By relying on both spatial and temporal 
coherency, missing information can be filled and visually convincing reflections 
can be computed while keeping performance in check. Our technique works on 
arbitrary opaque surfaces, with varying normals, roughness, and material types. 
Our initial approach combined this with SSR for performance, but in the end we 
rely solely on ray traced reflections for simplicity and uniformity. Our approach 
relies on stochastic sampling and spatiotemporal filtering, instead of post-trace 
screen-space blurring. Therefore, we believe that our approach is closer to 
ground-truth path tracing, as surface appearance is driven by the construction of 
stochastic paths from the BRDF. Our approach also does not require special care 
at object boundaries, where blurring issues may occur with screen-space filtering 
approaches.

The reflection system comes with its own pipeline, as depicted in Figure 25-10. 
The process begins by generating rays via material importance sampling. Given a 
view direction, a reflected ray taking into account our layered BRDF is generated. 
Inspired by Weidlich and Wilkie’s work [29], our material model combines multiple 
layers into a single, unified, and expressive BRDF. This model works for all 
lighting and rendering modes, conserves energy, and handles the Fresnel effect 
between layers. Sampling the complete material is complex and costly, so we 

RAY TRACING GEMS



447

only importance-sample the normal distribution. A microfacet normal is selected, 
which reflects the incident view vector, and a reflected ray direction is generated. 
As such, reflection rays follow the properties of the materials.

Figure 25-10.  Reflection pipeline.

Since we have only a quarter of a ray per pixel, we must ensure a high-quality 
distribution. We use the low-discrepancy quasi-random Halton sequence because 
it is easy to calculate, and well distributed for low and high sample counts. We 
couple it with Cranley-Patterson rotation [7] for additional per-pixel jittering, in 
order to obtain a uniquely jittered sequence for every source pixel.

From every point in the sample space, a reflected direction is generated. Because 
we are sampling solely from the normal distribution, reflection rays that point 
below the horizon are possible. We detect this undesirable case, as depicted by the 
blue line in Figure 25-11, and compute an alternative reflection ray.

 Hybrid Rendering for Real-Time Ray Tracing 



448

The simplest way to sample our material model is by choosing one of the layers 
with uniform probability and then sampling that layer’s BRDF. This can be wasteful: 
a smooth clear coat layer is barely visible head on yet dominates at grazing angles. 
To improve the sampling scheme, we draw the layer from a probability mass 
function based on each layer’s approximate visibility. See Figure 25-12.

Figure 25-11.  Left: BRDF reflection sampling. Right: Cranley-Patterson rotated Halton sequence. The 
probability distribution (light gray area with dashed outline) contains valid BRDF importance-sampled 
reflection rays (green) and reflection rays below the horizon (blue).

Figure 25-12.  Eight frames of material layer sampling.

After selecting the material layer, we generate a reflection ray matching its 
properties using the microfacet normal sampling algorithm mentioned earlier. In 
addition to the reflection vector, we also need the probability with which it has been 
sampled. We will later scale lighting contributions by the inverse of this value, as 
dictated by the importance sampling algorithm. It is important to keep in mind that 
multiple layers can potentially generate the same direction. Yet, we are interested 
in the probability for the entire stack, not just an individual layer. We thus add 
up the probabilities so that the final value corresponds to having sampled the 

RAY TRACING GEMS



449

direction from the entire stack, rather than an individual layer. Doing so simplifies 
the subsequent reconstruction pass, and allows using it to reason about the entire 
material rather than its parts.

We get results as shown in Figure 25-13, resembling the reflection component of 
the path traced image but at half resolution and with a single bounce.

1 result    = 0.0

2 weightSum = 0.0

3

4 for pixel in neighborhood:

5     weight = localBrdf(pixel.hit) / pixel.hitPdf

6     result += color(pixel.hit) * weight

7     weightSum += weight

8

9 result /= weightSum

Figure 25-13.  Hybrid ray traced reflections at a quarter ray per pixel.

Once the half-resolution results have been computed, the spatial filter is applied. 
Results are shown in Figure 25-14. While the output is still noisy, it is now full 
resolution. This filter also gives variance reduction similar to actually shooting 16 
rays per pixel, similar to work by Stachowiak [27] and Heitz et al. [12]. Every full-
resolution pixel uses a set of ray hits to reconstruct its reflection, and there is a 
weighted average where the local pixel’s BRDF is used to weigh contributions. 
Contributions are also scaled by the inverse PDF of the source rays, to account for 
their distribution. This operation is biased, but it works well in practice.

 Hybrid Rendering for Real-Time Ray Tracing 



450

The final step in the reflection pipeline is a simple bilateral filter that cleans up 
some of the remaining noise. While this kind of filter can be a blunt instrument that 
can overblur the image, it is needed for high-roughness reflections. Compared 
to SSR, ray tracing cannot rely on a blurred version of the screen for prefiltered 
radiance. It produces much more noise compared to SSR, therefore more 
aggressive filters are required. Nonetheless, we can still control the filter’s effect. 
We estimate variance in the image during the spatial reconstruction pass, as 
shown in Figure 25-15, and use it to tune the bilateral kernel. Where variance is 
low, we reduce the kernel size and sample count, which prevents overblurring.

Figure 25-14.  Hybrid ray traced reflections reconstructed at full resolution.

Figure 25-15.  Reflection variance.

RAY TRACING GEMS



451

Near the end of the frame, we apply temporal antialiasing and get a pretty clean 
image. When looking at Figure 25-9, it is important to remember that it comes from 
a quarter reflection ray per pixel per frame and works with a dynamic camera and 
dynamic objects.

Since we rely on stochastic sampling to generate smooth to rough reflections, 
our approach is inherently noisy. Though stochastic sampling is prone to noise, 
it produces the correct answer given enough samples. An alternative approach 
could be to blur mirror-like reflections for high roughness. Such a post-filter could 
work but may introduce bleeding. Filtering also requires a wide pixel footprint 
to generate blurry reflections, and it may still produce noisy output from high-
frequency details. Structured aliasing is difficult to filter as well, so non-stochastic 
effects can produce more flickering than stochastic ones. In parallel, stochastic 
techniques can amplify variance in a scene, especially for small bright sources. 
Tiny bright sources could be detected and handled with more bias, shifting the 
algorithm toward a non-stochastic approach. Additional research here is required. 
Our reflection pipeline is already a step in this direction, combining stochastic 
sampling with spatial reconstruction. In practice, we bias our primary sample 
space so that rays fly a bit closer to the mirror direction, and we then cancel some 
of this bias during filtering.

For temporal accumulation a simple exponential smoothing operator, which blends 
on top of the previous frame, is not sufficient. Movement is particularly difficult for 
temporal techniques, as reprojection has to correlate results between frames. Two 
different methods first come to mind when reprojecting reflections. First, we can 
use the motion vectors of the reflector, which we can inherently reuse from other 
techniques in the hybrid pipeline. Second, reflections move with their own parallax, 
can be tracked by finding the average length of the reflection rays, and can be 
reprojected via an average hit point for each pixel. Both approaches are shown in 
Figure 25-16.

 Hybrid Rendering for Real-Time Ray Tracing 



452

Separately each method has its advantages. As shown in Figure 25-16, motion 
vectors work well for rough and curved surfaces but fail with shiny flat surfaces. 
Hit point reprojection, on the other hand, works for the floor but fails on curved 
surfaces. Alternatively, we can build simple statistics of every pixel in the newly 
generated image and use that to choose which reprojection approach to take. If 
we calculate the mean color and standard deviation of every new pixel, a distance 
metric can be defined and used to weigh the reprojected values:

1 dist = (rgb - rgb_mean) / rgb_deviation;

2 w = exp2(-10 * luma(dist));

Finally, as demonstrated by Karis [15], we can use local pixel statistics to reject or 
clamp the reprojected values, and force them to fit the new distribution. While the 
results are not perfect, it is certainly a step forward. This biases the result and can 
create some flickering, but it nicely cleans up the ghosting and is sufficient for real-
time purposes.

25.2.3	 �AMBIENT OCCLUSION

In offline and real-time graphics, ambient occlusion (AO) [18] is used to improve 
near field rendering, where the general global illumination solution fails. This 
can improve perceived quality and ground objects where little direct shadowing is 

Figure 25-16.  Top left: motion reprojection. Top right: hit point reprojection. Bottom left: motion and 
hit point reprojection blending. Bottom right: with reprojection clamping.

RAY TRACING GEMS



453

visible. In video games, AO is often either precalculated offline or computed in real 
time using screen-space information. Baking can provide accurate results, but fails 
to account for dynamic geometry. Screen-space techniques such as ground-truth 
ambient occlusion (GTAO) [14] and horizon-based ambient occlusion (HBAO) [5] can 
produce convincing results, but are limited by the information available on screen. 
The failure of screen-space techniques can be quite jarring, especially if offscreen 
geometry should be affecting occlusion. The same is true if such geometry is inside 
the view frustum but is occluded.

With real-time ray tracing, we can calculate high-quality ambient occlusion 
in a way that is free from the constraints of the raster-based techniques just 
mentioned. In PICA PICA, we stochastically sample the occlusion function by 
generating rays randomly across the hemisphere. To reduce noise, we sample with 
a cosine-weighted distribution [9]. We also expose the maximum ray distance as a 
configurable variable per scene, for performance but also visual-quality purposes. 
To further reduce noise, we filter the raw ray traced ambient occlusion with a 
technique similar to the one used for our ray traced shadows.

 1 // Partial code for AO ray generation shader, truncated for brevity.

 2 // The full shader is otherwise essentially identical to the shadow

 3 // ray generation.

 4 float result = 0;

 5

 6 for (uint i = 0; i < numRays; i++)

 7 {

 8   // Select a random direction for our AO ray.

 9   float rnd1 = frac(haltonNext(hState) + randomNext(frameSeed));

10   float rnd2 = frac(haltonNext(hState) + randomNext(frameSeed));

11   float3 rndDir = cosineSampleHemisphere(rnd1, rnd2);

12

13   // Rotate the hemisphere.

14   // Up is in the direction of the pixel surface normal.

15   float3 rndWorldDir = mul(rndDir, createBasis(gbuffer.worldNormal));

16

17   // Create a ray and payload.

18   ShadowData shadowPayload;

19   shadowPayload.miss = false;

20

21   RayDesc ray;

22   ray.Origin = position;

23   ray.Direction = rndWorldDir;

24   ray.TMin = g_aoConst.minRayLength;

25   ray.TMax = g_aoConst.maxRayLength;

26

27   // Trace our ray;

28   // use the shadow miss, since we only care if we miss or not.

29   TraceRay(g_rtScene,

 Hybrid Rendering for Real-Time Ray Tracing 



454

30             RAY_FLAG_SKIP_CLOSEST_HIT_SHADER|

31                 RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH,

32             RaytracingInstanceMaskAll,

33             HitType_Shadow,

34             SbtRecordStride,

35             MissType_Shadow,

36             ray,

37             shadowPayload);

38

39   result += shadowPayload.miss ? 1 : 0;

40 }

41

42 result /= numRays;

The shader code for ray traced ambient occlusion is similar to that of shadows, and 
as such we only list the part specific to AO here. As with shadows, we reconstruct 
the world-space position and normal for each pixel visible on screen using the 
G-buffer.

Since the miss flag in the shadow payload is initialized to false and is only set 
to true in the miss shader, we can set RAY_FLAG_SKIP_CLOSEST_HIT_SHADER 
to skip the hit shader, for performance. We also do not care about how far away 
an intersection is. We just want to know if there is an intersection, so we use 
RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH as well. Finally, the cosine-
weighted distribution of samples is generated on a unit hemisphere and rotated 
into world space using a basis produced from the G-buffer normal.

In Figure 25-17, a comparison between different versions of ambient occlusion can 
be seen, with a maximum ray length of 0.6 meters. In the top left ground truth was 
generated by sampling with 1000 samples per pixel (spp). This is too slow for real 
time. In PICA PICA, we sample with one or two rays per pixel, which produces the 
rather noisy result seen in the top right of Figure 25-17. After applying our filter, 
the results are more visually pleasing, as seen in the bottom left part of the same 
figure. Our filtered ray traced ambient occlusion matches the reference well, albeit 
a bit less sharp, with only one ray per pixel.

RAY TRACING GEMS



455

25.2.4	 �TRANSPARENCY

Unlike rasterization, where the rendering of transparent geometry is often treated 
separately from opaque geometry, ray tracing can streamline and unify the 
computation of light transport inside thick media with the rest of the scene. One 
notable example is the rendering of realistic refractions for transparent surfaces 
such as glass. See Figure 25-18.

Figure 25-17.  Top left: ray traced AO (1000 spp). Top right: hybrid ray traced AO (1 spp). Bottom left: 
filtered hybrid ray traced AO (1 spp). Bottom right: GTAO.

 Hybrid Rendering for Real-Time Ray Tracing 



456

With ray tracing, interface transitions are easier to track because each transition 
is part of a chain of intersections. As seen in Figure 25-19, as a ray travels inside 
and then outside a medium, it can be altered based on the laws of optics and 
parameters of that medium. Intermediary light transport information is modified 
and carried with the ray, as part of its payload, which enables the computation 
of visually convincing effects such as absorption and scattering. We describe the 
latter in Section 25.2.5.

Figure 25-18.  Left: object-space ray traced transparency result. Right: texture-space output.

Figure 25-19.  Object-space ray traced smooth transparency.

When tracking medium transitions, ray tracing enables order-independent 
transparency and exact sorting of transparent meshes with other scene geometry. 
While order-independent smooth refractions are straightforward, rough 
refractions are also possible but require additional care. As shown in  

RAY TRACING GEMS



457

Figure 25-20, multiple samples are necessary in order to converge rough 
refractions to a noise-free result. Such refractions are difficult to filter in an order-
independent fashion, due to the possibility of multiple layers overlapping on screen. 
Successful denoisers today assume just one layer of surfaces, making screen-
space denoising intractable for order-independent transparency. Additionally, 
depending on scene complexity, per-pixel order-independent transparency can 
also be quite memory-intensive and its performance intractable.

Figure 25-20.  Object-space ray traced rough transparency.

To palliate this, we adopt a hybrid approach that combines object-space ray 
tracing with texture-space parameterization and integration. Textures provide 
a stable integration domain, as well as a predictable memory footprint. Object-
space parameterization in texture space for ray tracing also brings a predictable 
number of rays per object per frame and can therefore be budgeted. This level of 
predictability is essential for real-time constraints. An example of this texture-
space parameterization, generated on demand prior to ray tracing, is presented 
in Figure 25-21. Our approach minimally requires positions and normals, but 
additional surface and material parameters can be stored in a similar fashion. 
This is akin to having per-object G-buffers. A non-overlapping UV unwrap is also 
required. The ray traced result is shown in Figure 25-22.

 Hybrid Rendering for Real-Time Ray Tracing 



458

Using our parameterization and camera information, we drive ray origin and ray 
direction during tracing. Clear glass refraction is achieved using Snell’s law, 
whereas rough glass refraction is achieved via a physically based scattering 
function [28]. The latter generates rays refracted off microfacets, spreading into 
wider cones for rougher interfaces.

Figure 25-21.  Object-space parameterization: normals (left) and positions (right).

Figure 25-22.  Object-space ray traced transparency: result (left) and texture-space output (right).

RAY TRACING GEMS



459

A feature of DXR that enables this technique is the ability to know if we have 
transitioned from one medium to another. This information is provided by the 
HitKind() function, which informs us if we have hit the front or back side of the 
geometry:

1 // If we are going from air to glass or glass to air,

2 // choose the correct index of refraction ratio.

3 bool isBackFace = (HitKind() == HIT_KIND_TRIANGLE_BACK_FACE);

4 float ior = isBackFace ? iorGlass / iorAir : iorAir / iorGlass;

5

6 RayDesc refractionRay;

7 refractionRay.Origin = worldPosition;

8 refractionRay.Direction = refract(worldRayDir, worldNormal, ior);

With such information we can alter the index of refraction and correctly handle 
media transitions. We can then trace a ray, sample lighting, and finish by 
modulating the results by the medium’s absorption, approximated by Beer’s law. 
Chromatic aberration can also be applied, to approximate wavelength-dependent 
refraction.

This process is repeated recursively, with a recursion limit set depending on 
performance targets.

25.2.5	 �TRANSLUCENCY

Three ray traced images with translucency are shown in Figure 25-23. Similar 
to transparency, we parameterize translucent objects in texture space. The 
scattering process is represented in Figure 25-24: Starting with (a) a light source 
and a surface, we consider valid vectors using (b) the surface normals. Focusing 
on a single normal vector for now, (c) we then push the vector inside the surface. 
Next, (d) we launch rays in a uniform sphere distribution similar to the work by 
Christensen et al. [6]. Several rays can be launched at once, but we only launch 
one per frame. Finally, (e) lighting is computed at the intersection, and (f) previous 
results are gathered and blended with the current result.

 Hybrid Rendering for Real-Time Ray Tracing 



460

We let results converge over multiple frames via temporal accumulation. See 
Figure 25-25. Spatial filtering can be used as well, although we did not encounter 
enough noise to make it worthwhile because of the diffuse nature of the effect. 
Since lighting conditions can change when objects move, the temporal filter 
needs to invalidate results and adapt to dynamism. A simple exponential moving 

Figure 25-23.  Ray traced translucency.

Figure 25-24.  Light scattering process. (See text for details.)

RAY TRACING GEMS



461

average here can be sufficient. For improved response and stability, we use an 
adaptive temporal filter based on exponential averaging [26], which is described 
further in the next section and which varies its hysteresis to quickly reconverge to 
dynamically changing conditions.

Figure 25-25.  Texture-space ray traced translucency accumulation.

25.2.6	 �GLOBAL ILLUMINATION

As part of global illumination (GI), indirect lighting applied in a diffuse manner 
to surfaces makes scene elements fit with each other, and provides results 
representative of reality.

PICA PICA features an indirect diffuse lighting solution that does not require any 
precomputation or pre-generated parameterization, such as UV coordinates. This 
reduces the mental burden on artists, and provides realistic results by default, 
without them having to worry about implementation details of the GI system.

It supports dynamic and static scenes, is reactive, and refines over time to a  
high-quality result. Since solving high-quality per-pixel GI every frame is not 
currently possible for real-time rates, spatial or temporal accumulation is 
required. For this project, 250,000 rays per frame are budgeted for diffuse 
interreflections.

 Hybrid Rendering for Real-Time Ray Tracing 



462

To achieve this performance target at quality, a world-space structure of 
dynamically distributed surfels is created. See Figure 25-26. For this scene we use 
up to 250,000 surfels, corresponding to one ray per surfel per frame. Each surfel 
is represented by a position, normal, radius, and irradiance. Persistent in world 
space, results accumulate over time without disocclusion issues. As it is a freeform 
cloud of surfels, no parameterization of the scene is necessary. In the case of 
animated objects, surfels remember the object on which they were spawned and 
are updated every frame.

Figure 25-26.  Surfel-based diffuse interreflection.

A pre-allocated array of surfels is created at startup. Surfels are then spawned 
progressively, based on the view camera. See Figure 25-27. The latter step is done 
on the GPU, using an atomic counter incremented as surfels get assigned. The 
surfel placement algorithm uses G-buffer information and is an iterative process. 
We start by calculating the coverage of each pixel by the current surfel set, in 
a 16 × 16 tile. We are interested in pixels with low coverage because we would 
like to spawn new surfels there. To find the best candidates, the worst coverage 
is chosen first. We detect it by subdividing the screen into tiles and finding the 
lowest coverage in each tile. Once found, we can spawn a surfel at the pixel’s 
location using the G-buffer normal and depth. The pixel is then added to the surfel 
structure.

RAY TRACING GEMS



463

It is important to note that surfels are spawned probabilistically. In the event where 
the camera moves close to a wall that is missing surfels, suddenly all pixels have 
low coverage and will require surfels. This would end up creating a lot of surfels in 
a small area, since screen tiles are independent of each other. To solve this issue, 
the spawn heuristic is made proportional to the pixel’s projected area in world 
space. This process runs every frame and continues spawning surfels wherever 
coverage is low. Additionally, since surfels are allocated based on screen-space 
constraints, sudden geometric or camera transitions to first-seen areas can show 
missing diffuse interreflections. This “first frame” problem is common among 
techniques that rely on temporal amortization, and it could be noticed by the user. 
The latter was not an issue for PICA PICA, but it could be depending on the target 
usage of this approach.

Once assigned, surfels are persistent in the array and scene. See Figure 25-28.  
This is necessary for the incremental aspect of the diffuse interreflection 
accumulation. Because of the simple nature of PICA PICA’s scene, we did not  
have to manage complex surfel recycling. We simply reset the atomic counter 
at scene reload. As shown in Section 25.3, performance on current ray tracing 
hardware was quite manageable, at a cost of 0.35 ms for 250,000 surfels. We believe 
surfel counts can be increased quite a bit before it becomes a performance issue.  
A more advanced allocation and deallocation scheme might be necessary in case 
one wants to use this technique for a more complex use case, such as a video 
game. Further research here is required, especially with regards to level of detail 
management for massive open-world games.

Figure 25-27.  Surfels progressively allocated to the scene.

 Hybrid Rendering for Real-Time Ray Tracing 



464

Surfels are rendered similarly to light sources when applied to the screen. 
Similar to the approach by Lehtinen et al. [19], a smoothstep distance attenuation 
function is used, along with the Mahalanobis metric to squash surfels in the 
normal direction. Angular falloff is used as well, but each surfel’s payload is just 
irradiance, without any directionality. For performance reasons, an additional 
world-space data structure enables the query of indirect diffuse illumination in 
three-dimensional space. This grid structure, in which every cell stores a list of 
surfels, also serves as a culling mechanism. Each pixel or point in space can then 
look up the containing cell and find all relevant surfels.

A downside of using surfels is, of course, the limited resolution and the lack 
of high-frequency detail. To compensate, a colored multiple-bounce variant 
of screen-space ambient occlusion [14] is applied to the calculated per-pixel 
irradiance. The use of high-frequency AO here makes our technique diverge from 
theory, but it is an aesthetic choice that compensates for the lack of high-frequency 
detail. This colored multi-frequency approach also helps retain the warmth in our 
toy-like scenes. See Figure 25-29.

Figure 25-28.  Surfel screen application.

RAY TRACING GEMS



465

Surfel irradiance is calculated by building a basic unidirectional path tracer with 
explicit light connections. More paths are allocated to newly spawned surfels, so 
that they converge quickly, and then slowly the sample rate is decreased to one 
path per frame. Full recursive path tracing is a bit expensive, and for our use case 
quite unnecessary. We can exploit temporal coherence by reusing previous outputs 
and can amortize the extra bounces over time. We limit path length to just one edge 
by shooting a single ray and immediately sampling the previous frame’s results, 
as shown in Figure 25-30. The surfels path trace one bounce with indirect shading 
coming from other surfels at that bounce (converging over time), instead of going 
for a full multiple-bounce path. Our approach is much closer to radiosity than path 
tracing, but the visual results are similar in our mostly-diffuse scenes.

Figure 25-29.  Left: colored GTAO. Center: surfel GI. Right: surfel GI with colored GTAO.

Figure 25-30.  Left: full recursive path tracing. Right: incremental previous frame path tracing.

 Hybrid Rendering for Real-Time Ray Tracing 



466

Path tracing typically uses Monte Carlo integration. If expressed as a running mean 
estimator, the integration is an average of contributions with linearly decaying 
weights. Its convergence hinges on the integrand being immutable. In the case of 
our dynamic GI, the integrand changes all the time. Interactive path tracers and 
progressive light map bakers [8, 13] typically tackle this by resetting accumulation 
on change. Their goals are different though, as they try to converge to the correct 
solution over time, and do not allow error. As such, a hard reset is actually 
desirable for them, but not for a real-time demo.

Since we cannot use proper Monte Carlo, we outright give up on ever converging. 
Instead, we use a modified exponential mean estimator,

			 
( )

0

1 1lerp , , ,

0

n n n

x
x x x k+ +

=

=
			 

(1)

whose formulation is similar to that of plain Monte Carlo. The difference is in how 
the blending factor k is defined. In exponential averaging, the weight for a new 
sample is constant and typically set low, so that variance in input is scaled by a 
small value and does not look jarring in the output.

If the input does not have high variance, the output will not either. We can then use a 
higher blending factor k. The specifics of our integrand change all the time though, 
so we need to estimate that dynamically. We run short-term mean and variance 
estimators, which we then use to inform our primary blending factor. The short-
term statistics also give us an idea of the plausible range of values into which the 
inputs samples should fall. When they start to drift, we increase the blending factor. 
This works well in practice and allows for a reactive indirect diffuse lighting solution, 
as demonstrated by this demo. // Looks good to me, and I added a comma. /Eric

 1 struct MultiscaleMeanEstimatorData

 2 {

 3   float3 mean;

 4   float3 shortMean;

 5   float vbbr;

 6   float3 variance;

 7   float inconsistency;

 8 };

 9

10 float3 MultiscaleMeanEstimator(float3 y,

11   inout MultiscaleMeanEstimatorData data,

12   float shortWindowBlend = 0.08f)

13 {

14   float3 mean = data.mean;

15   float3 shortMean = data.shortMean;

RAY TRACING GEMS



467

16   float vbbr = data.vbbr;

17   float3 variance = data.variance;

18   float inconsistency = data.inconsistency;

19

20   // Suppress fireflies.

21   {

22     float3 dev = sqrt(max(1e-5, variance));

23     float3 highThreshold = 0.1 + shortMean + dev * 8;

24     float3 overflow = max(0, y - highThreshold);

25     y -= overflow;

26   }

27

28   float3 delta = y - shortMean;

29   shortMean = lerp(shortMean, y, shortWindowBlend);

30   float3 delta2 = y - shortMean;

31

32   // This should be a longer window than shortWindowBlend to avoid bias

33   // from the variance getting smaller when the short-term mean does.

34   float varianceBlend = shortWindowBlend * 0.5;

35   variance = lerp(variance, delta * delta2, varianceBlend);

36   float3 dev = sqrt(max(1e-5, variance));

37

38   float3 shortDiff = mean - shortMean;

39

40   float relativeDiff = dot( float3(0.299, 0.587, 0.114),

41         abs(shortDiff) / max(1e-5, dev) );

42   inconsistency = lerp(inconsistency, relativeDiff, 0.08);

43

44   float varianceBasedBlendReduction =

45         clamp( dot( float3(0.299, 0.587, 0.114),

46         0.5 * shortMean / max(1e-5, dev) ), 1.0/32, 1 );

47

48   float3 catchUpBlend = clamp(smoothstep(0, 1,

49         relativeDiff * max(0.02, inconsistency - 0.2)), 1.0/256, 1);

50   catchUpBlend *= vbbr;

51

52   vbbr = lerp(vbbr, varianceBasedBlendReduction, 0.1);

53   mean = lerp(mean, y, saturate(catchUpBlend));

54

55   // Output

56   data.mean = mean;

57   data.shortMean = shortMean;

58   data.vbbr = vbbr;

59   data.variance = variance;

60   data.inconsistency = inconsistency;

61

62   return mean;

63 }

 Hybrid Rendering for Real-Time Ray Tracing 



468

25.3	 �PERFORMANCE

Here we provide various performance numbers behind the ray tracing aspect of 
our hybrid rendering pipeline. The numbers in Figure 25-31 were measured on 
pre-release NVIDIA Turing hardware and drivers, for the scene and view shown in 
Figure 25-32. When presented at SIGGRAPH 2018 [4], PICA PICA ran at 60 frames 
per second (FPS), at a resolution of 1920 × 1080. Performance numbers were also 
captured against the highest-end GPU at that time, the NVIDIA Titan V (Volta).

Figure 25-31.  Performance measurements in milliseconds (ms). SIGGRAPH 2018 timings are 
highlighted in green.

RAY TRACING GEMS



469

25.4	 �FUTURE

The techniques in PICA PICA’s hybrid rendering pipeline enable real-time visually 
pleasing results with (almost) path traced quality, while being mostly free from 
noise in spite of relatively few rays being traced per pixel and per frame. Real-time 
ray tracing makes it possible to replace finicky hacks with unified approaches, 
allowing for the phasing-out of artifact-prone algorithms such as screen-space ray 
marching, along with all the artist time required to tune them. This opens the door 
to truly effortless photorealism, where content creators do not need to be experts 
in order to get high-quality results.

The surface has been barely scratched, and with real-time ray tracing a new world 
of possibilities opens up. While developers will always keep asking for more power, 
the hardware that we have today already allows for high-quality results at real-
time performance rates. If ray budgets are devised wisely, with hybrid rendering 
we can approach the quality of offline path tracers in real time.

25.5	 �CODE
 1 struct HaltonState

 2 {

 3   uint dimension;

 4   uint sequenceIndex;

 5 };

 6

 7 void haltonInit(inout HaltonState hState,

 8                  int x, int y,

Figure 25-32.  Performance scene.

 Hybrid Rendering for Real-Time Ray Tracing 



470

 9                  int path, int numPaths,

10                  int frameId,

11                  int loop)

12 {

13   hState.dimension = 2;

14   hState.sequenceIndex = haltonIndex(x, y,

15          (frameId * numpaths + path) % (loop * numpaths));

16 }

17

18 float haltonSample(uint dimension, uint index)

19 {

20   int base = 0;

21

22   // Use a prime number.

23   switch (dimension)

24   {

25   case 0: base = 2; break;

26   case 1: base = 3; break;

27   case 2: base = 5; break;

28   [...] // Fill with ordered primes, case 0-31.

29   case 31:  base = 131; break;

30   default : base = 2;   break;

31   }

32

33   // Compute the radical inverse.

34   float a = 0;

35   float invBase = 1.0f / float(base);

36

37   for (float mult = invBase;

38        sampleIndex != 0; sampleIndex /= base, mult *= invBase)

39   {

40     a += float(sampleIndex % base) * mult;

41   }

42

43   return a;

44 }

45

46 float haltonNext(inout HaltonState state)

47 {

48   return haltonSample(state.dimension++, state.sequenceIndex);

49 }

50

51 // Modified from [pbrt]

52 uint haltonIndex(uint x, uint y, uint i)

53 {

54   return ((halton2Inverse(x % 256, 8) * 76545 +

55       halton3Inverse(y % 256, 6) * 110080) % m_increment) + i * 186624;

56 }

57

58 // Modified from [pbrt]

59 uint halton2Inverse(uint index, uint digits)

60 {

RAY TRACING GEMS



471

61   index = (index << 16) | (index >> 16);

62   index = ((index & 0x00ff00ff) << 8) | ((index & 0xff00ff00) >> 8);

63   index = ((index & 0x0f0f0f0f) << 4) | ((index & 0xf0f0f0f0) >> 4);

64   index = ((index & 0x33333333) << 2) | ((index & 0xcccccccc) >> 2);

65   index = ((index & 0x55555555) << 1) | ((index & 0xaaaaaaaa) >> 1);

66   return index >> (32 - digits);

67 }

68

69 // Modified from [pbrt]

70 uint halton3Inverse(uint index, uint digits)

71 {

72   uint result = 0;

73   for (uint d = 0; d < digits; ++d)

74   {

75     result = result * 3 + index % 3;

76     index /= 3;

77   }

78   return result;

79 }

ACKNOWLEDGMENTS

The authors would like to thank the PICA PICA team at SEED, a technical and creative 
research division of Electronic Arts. We would also like to thank our friends at 
Frostbite and DICE, with whom we have had great discussions and collaboration as 
we built this hybrid rendering pipeline. Moreover, this endeavor would not have been 
possible without support from the folks at NVIDIA and the DirectX team at Microsoft. 
The authors would also like to thank Morgan McGuire for his review of this chapter, 
as well as Tomas Akenine-Möller and Eric Haines for their insight and support.

REFERENCES

	 [1]	� Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., and Hillaire, S. Real-Time 
Rendering, fourth ed. A K Peters/CRC Press, 2018.

	 [2]	� Andersson, J., and Barré-Brisebois, C. DirectX: Evolving Microsoft’s Graphics Platform. Microsoft 
Sponsored Session, Game Developers Conference, 2018.

	 [3]	� Andersson, J., and Barré-Brisebois, C. Shiny Pixels and Beyond: Real-Time Raytracing at SEED. 
NVIDIA Sponsored Session, Game Developers Conference, 2018.

	 [4]	� Barré-Brisebois, C., and Halén, H. PICA PICA and NVIDIA Turing. NVIDIA Sponsored Session, 
SIGGRAPH, 2018.

	 [5]	� Bavoil, L., Sainz, M., and Dimitrov, R. Image-Space Horizon-Based Ambient Occlusion. In ACM 
SIGGRAPH Talks (2008), p. 22:1.

 Hybrid Rendering for Real-Time Ray Tracing 



472

	 [6]	� Christensen, P., Harker, G., Shade, J., Schubert, B., and Batali, D. Multiresolution Radiosity 
Caching for Global Illumination in Movies. In ACM SIGGRAPH Talks (2012), p. 47:1.

	 [7]	� Cranley, R., and Patterson, T. Randomization of Number Theoretic  
Methods for Multiple Integration. SIAM Journal on Numerical Analysis 13, 6 (1976), 904–914.

	 [8]	� Dean, M., and Nordwall, J. Make It Shiny: Unity’s Progressive Lightmapper and Shader Graph. 
Game Developers Conference, 2016.

	 [9]	 Dutré, P., Bekaert, P., and Bala, K. Advanced Global Illumination. A K Peters, 2006.

	 [10]	� EA SEED. Project PICA PICA—Real-Time Raytracing Experiment Using DXR (DirectX Raytracing). 
https://www.youtube.com/watch?v=LXo0WdlELJk, March 2018.

	 [11]	� Fong, J., Wrenninge, M., Kulla, C., and Habel, R. Production Volume Rendering. Production 
Volume Rendering, SIGGRAPH Courses, 2017.

	 [12]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic 
Shadows. In Symposium on Interactive 3D Graphics and Games (2018), pp. 2:1–2:11.

	 [13]	� Hillaire, S. Real-Time Raytracing for Interactive Global Illumination Workflows in Frostbite. 
NVIDIA Sponsored Session, Game Developers Conference, 2018.

	 [14]	� Jiménez, J., Wu, X., Pesce, A., and Jarabo, A. Practical Real-Time Strategies for Accurate 
Indirect Occlusion. Physically Based Shading in Theory and Practice, SIGGRAPH Courses, 2016.

	 [15]	� Karis, B. High-Quality Temporal Supersampling. Advances in Real-Time Rendering in Games, 
SIGGRAPH Courses, 2014.

	 [16]	� Lagarde, S. Memo on Fresnel Equations. Blog, April 2013.

	 [17]	� Lagarde, S., and Zanuttini, A. Local Image-Based Lighting with Parallax-Corrected Cubemap. In 
SIGGRAPH Talks (2012), p. 36:1.

	 [18]	� Landis, H. Production-Ready Global Illumination. RenderMan in Production, SIGGRAPH Courses, 
2002.

	 [19]	� Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F.,  
and Aila, T. A Meshless Hierarchical Representation for Light Transport.  
ACM Transactions in Graphics 27, 3 (2008), 37:1–37:10.

	 [20]	� McGuire, M., and Mara, M. Phenomenological Transparency. IEEE Transactions on Visualization 
and Computer Graphics 23, 5 (2017), 1465–1478.

	 [21]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

	 [22]	� Salvi, M. An Excursion in Temporal Supersampling. From the Lab Bench: Real-Time Rendering 
Advances from NVIDIA Research, Game Developers Conference, 2016.

RAY TRACING GEMS

https://www.youtube.com/watch?v=LXo0WdlELJk


473

	 [23]	� Sandy, M. Announcing Microsoft DirectX Raytracing! DirectX Developer Blog, https://blogs.
msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-

raytracing/, March 2018.

	 [24]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 2:1–2:12.

	 [25]	� Schlick, C. An Inexpensive BRDF Model for Physically-based Rendering. Computer Graphics 
Forum 13, 3 (1994), 233–246.

	 [26]	� Stachowiak, T. Stochastic All The Things: Raytracing in Hybrid Real-Time Rendering. Digital 
Dragons Presentation, 2018.

	 [27]	� Stachowiak, T., and Uludag, Y. Stochastic Screen-Space Reflections. Advances in Real-Time 
Rendering, SIGGRAPH Courses, 2015.

	 [28]	� Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refraction through 
Rough Surfaces. In Eurographics Symposium on Rendering (2007), pp. 195–206.

	 [29]	� Weidlich, A., and Wilkie, A. Arbitrary Layered Micro-Facet Surfaces. In GRAPHITE (2007),  
pp. 171–178.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Hybrid Rendering for Real-Time Ray Tracing 

https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


475© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_26

CHAPTER 26

Deferred Hybrid Path Tracing
Thomas Willberger, Clemens Musterle, and Stephan Bergmann 
Enscape GmbH

ABSTRACT

We describe a hybrid rendering approach that leverages existing rasterization-
based techniques and combines them with ray tracing in order to achieve real-
time global illumination. We reduce the number of traced rays by trying to find 
an intersection in screen space and reuse information from previous frames 
via reprojection and filtering. Artificial lighting is stored in nodes of the spatial 
acceleration structure to ensure efficient memory access. Our techniques require 
no manual preprocessing and only a few seconds of precomputation. They were 
developed as a real-time rendering solution for architectural design but can be 
applied to other purposes as well.

26.1	 �OVERVIEW

Despite recent advances in GPU-accelerated ray tracing, it remains challenging 
to seamlessly scale ray tracing–based algorithms across a large variety of scene 
complexities while maintaining acceptable performance. This is especially true for 
scenarios (unlike games) where no artist can define to what extent and detail level 
ray tracing should be applied. We aim to provide global illumination on mostly static 
scene content without perceivable precomputation and with few assumptions about 
the scene.

To do so, we first render the scene to a G-buffer and then spawn rays from G-buffer 
pixels to evaluate the lighting. For each ray, we try to find intersections in screen 
space because, if successful, this is usually faster than tracing the ray in a spatial 
data structure. Additionally, we use fully lit pixels from the previous frame to get 
accumulated multiple-bounce lighting. If tracing in screen space is not successful, 
we continue tracing in a spatial data structure, in our case a bounding volume 
hierarchy (BVH), while keeping the visual quality degradation as low as possible. 
Figure 26-1 shows an actual image resulting from our implementation.



476

26.2	 �HYBRID APPROACH

We treat specular and diffuse lighting components separately to improve efficiency 
(e.g., reuse the view-independent diffuse component from the previous frame). 
The pipeline is shown in Figure 26-2. Both lighting components have the following 
overall concepts in common:

Figure 26-1.  Image rendered using the described approach. The majority of the required rays 
were traced in screen space while the reflection rays for the glass surfaces were traced in the BVH 
because the geometry reflected in the glass is offscreen. The scene contains a variety of materials that 
integrate plausibly with the scene’s lighting, although most areas are only lit indirectly. Rays traced 
in the BVH result in one indirect bounce, while screen-space hits will benefit from recursive multiple 
bounces. (Image courtesy of Vilhelm Lauritzen Arkitekter for Novo Nordisk fonden, project “LIFE.”)

Figure 26-2.  Overview of the ray creation scheme for both diffuse and specular BRDFs.

RAY TRACING GEMS



477

	1.	 Ray heuristic: First, we decide whether or not we need a new 
ray. This is done by reprojecting the previous frame’s unfiltered 
results with respect to the camera motion where possible, then 
comparing this for each pixel with a target ray count.

	2.	 Screen-space traversal: We start the traversal in the last frame’s 
depth buffer (Figure 26-3). Since we only use one Z-buffer layer, 
we assume a certain thickness t, proportional to the field of view 
and distance from the current march position to the camera, 
defined by

				    ( )d
t

wh
fovtan / 2

,
a

= 	 (1)

where αfov is the camera’s field of view, d is the fragment’s distance to 
the camera, and w is the width and h the height of the screen in pixels. 
This thickness approximation is necessary to avoid rays penetrating 
closed surfaces at pixel edges where large depth gradients are 
present. For higher resolutions and a decreasing field of view, we need 
less thickness because the depth differentials become smaller. This 
solution does not guarantee watertightness, as it does not consider 
the geometric normal. However, for most scenarios this is sufficiently 
accurate. The relation to the screen resolution ensures watertight 
surfaces independent from the resolution or camera distance.

We have to choose a rather small thickness to avoid false hits. During 
the screen-space ray march, it is possible that a sampling point lies 
behind (farther away from the camera than) the depth buffer, yet too 

Figure 26-3.  Ray traversal in screen space. The front layer depth of the Z-buffer (purple line 
segments) is assumed to have a thickness t. This helps to prevent rays from penetrating closed 
surfaces (green ray). To minimize errors, we discard a screen-space ray when it enters areas behind 
the assumed thickness of the front layer (yellow ray) and continue tracing it in the BVH.

 Deferred Hybrid Path Tracing



478

far away to be within the accepted thickness range. We lack reliable 
information about the occluded geometry. Therefore, the ray is not 
counted as being a hit, so we immediately stop the screen-space 
traversal. We classify such a ray as no-hit because we cannot be sure 
if there is more geometry that is not present in screen space.

Reading from the last frame’s irradiance result, however, is inaccurate 
because some of the lighting information is view-dependent. To solve 
this, we store a buffer without the view-dependent components 
(specular) or alpha-blended geometry. This introduces an energy loss, 
which is currently compensated by a constant factor. The ray march 
result is written into a buffer of ray lengths. Then, we reconstruct 
the fetch position in the last frame’s buffer for a subsequent pass to 
leverage the texture cache usage during traversal.

	3.	 BVH traversal: We continue the ray traversal in our BVH, at the 
position where our screen space cast ends, and evaluate a 
radiance value. In the case of no hit, we write a skybox fetch into 
the accumulation buffer, which stores the radiance sum of all 
ray casts. This fetch can be slightly biased to reduce variance by 
reading from a filtered mip level depending on the estimated lobe 
size.

	4.	 Filtering: Before compositing the traversal result, we employ a 
spatial filter followed by a temporal filter.

26.3	 �BVH TRAVERSAL

The range of complexity of our customers’ scenes is rather large. To make sure 
that we can handle even large scenes with a reasonable impact on performance 
and memory requirements, our BVH does not contain all the scene geometry. 
This means that at any given time only a subset of the whole scene is included in 
the BVH. This subset is usually centered around the camera, which is achieved by 
continuously and asynchronously constructing the BVH, depending on the camera’s 
position, and results in geometry being removed and added while the camera 
moves in the scene. Due to the temporal caching of various radiance buffers, 
the geometric change is mostly smooth. However, on some surfaces that lack a 
stable temporal accumulation, like alpha-blended geometry, it can be noticeable. 
The challenge is to include only the visually most relevant objects within our 
performance budget in the BVH.

RAY TRACING GEMS



479

26.3.1	 �GEOMETRY SELECTION

To select the relevant geometry, the total scene geometry has to be divided into 
meaningful parts that can be independently selected for inclusion in the BVH. This 
partition can be done at the hierarchy level of objects, but it was apparent that 
objects with a high triangle count needed to be subdivided further, so we included 
an automatic subdivision. We define a score function per object that describes the 
visual importance j,

				    aj p
d 2

,= 	 (2)

where a is the projected surface area and d is the object’s distance to the camera, 
making the first term comparable to the object’s subtended solid angle as seen 
from the camera. The second term p is an object-specific importance factor that 
is greater than one for emissive surfaces because their absence will have a larger 
visual impact than non-emissive surfaces, for which p = 1.

All objects are ordered by their visual importance j. Depending on the desired quality 
level, we define a total cost budget that is allowed to ensure the desired frame 
rate. We include the objects with the highest importance score until that budget is 
reached. Beside the polygon count, the cost is also multiplied by an efficiency factor 
that tries to predict how many axis-aligned bounding box tests are necessary to 
successfully intersect a primitive or leave the model’s bounding box. For this factor, 
we use a heuristic based on the number of shared vertices in the triangle meshes. 
This heuristic is motivated by our experience that if triangles rarely share vertices 
(as in the case of vegetation), traversal performance is usually less efficient.

We end up with BVH trees with less than 10 MB that are uploaded from CPU to GPU 
in a couple of milliseconds. This delay can usually be hidden by double buffering.

26.3.2	 �VERTEX PREPROCESSING

For each vertex in the BVH, we precompute a single irradiance value during BVH 
construction. This is done to avoid having to continue tracing the BVH after the first 
hit, which would be expensive because the rays will be increasingly incoherent and 
thus incur higher computation and memory access cost. For each vertex in the 
BVH, we compute an irradiance value using all the lights whose area of influence 
include the vertex. To test the visibility, we trace a shadow ray for each vertex-
light combination. When these precomputed irradiance values are used in our 

 Deferred Hybrid Path Tracing



480

lighting computation when tracing, a path from a G-buffer pixel in the BVH has the 
following consequences/simplifications:

>> We will include paths with two bounces in our lighting calculation when tracing 
within the BVH, although it is only a rather coarse approximation.

>> We simplify the shading in the BVH traversal, to the extent that we only include 
diffuse shading components, and the irradiance at each point on the triangle’s 
surface is assumed to be a barycentric interpolation of the irradiance of the 
triangle’s vertices.

To avoid errors that are too perceptually noticeable due to the second 
simplification, we subdivide triangles where the difference between adjacent 
vertices’ irradiance values exceeds a pre-configured threshold.

26.3.3	 �SHADING

To avoid an additional access to material data or UV coordinates, we store only 
a single albedo value per triangle in the BVH. The texture’s albedo is therefore 
averaged when creating the BVH. For cutout masks, we calculate the number of 
visible pixels and approximate the ratio with a procedural cutout pattern, which can 
be cheaply evaluated in the intersection shader after the triangle/ray intersection 
test discards the hit. While these approximations work well for diffuse lighting, 
the missing material and texture information can become apparent for sharp 
specular reflections. Therefore, we sample the surface’s albedo texture for glossy 
specular reflections. This mode is optional and can be disabled to ensure higher 
performance in scenarios like virtual reality.

The total shading then consists of the per-vertex artificial lighting amount, the 
shadow mapped sunlight, and an ambient amount to compensate for missing 
multiple bounces, which is only applied at the last ray intersection. The ambient 
amount is proportional to an atmosphere skybox read (convolved with a cosine 
distribution) and an ambient occlusion factor. We approximate ambient occlusion 
by multiplying an exponential function with −d being the ray distance toward the 
surface and k being a scaling factor that is chosen empirically. This is a hemisphere 
estimation with only one sample, but it helps to reduce the ambient factor in indoor 
scenarios to avoid light leaking leading to an ambient factor

			   ( )skybox vertex sun ,dka m e r r r-= + + 	 (3)

where m is the albedo and r represents various radiance sources.

RAY TRACING GEMS



481

26.4	 �DIFFUSE LIGHT TRANSPORT

In this section we describe the way we handle diffuse and near-diffuse indirect 
light. Descriptions within the following subsections explain the key blocks in 
Figure 26-2 and what happens in them. Figure 26-4 shows an example of user-
generated content.

For every material, we divide the outgoing radiance into a diffuse and a specular 
component. The specular component is characterized by the amount of light that is 
reflected according to the Fresnel function, whereas the diffuse part may penetrate 
the surface and is independent of the view vector (at least in simpler models like 
Lambert). The diffuse lobe is generally larger, which results in a higher number of 
samples to reach convergence. Conversely, the diffuse component has less spatial 
variance, which allows for more aggressive filtering approaches that incorporate a 
larger spatial pixel neighborhood.

26.4.1	 �RAY HEURISTIC

The challenge in a sampling strategy is that we want to get a pseudo-random 
sample distribution that contains as much information as possible within the radius 
of the filter that is applied later. Current offline renderers use sampling strategies 
that maximize the spatial and temporal sample variety to increase the convergence 
rate, like correlated multi-jitter sampling [9]. We chose a simpler logic because of 
different circumstances:

>> Usually, samples for an image pixel are not dependent on past samples that 
have been accumulated on other image areas or previous frames via screen-
space intersections. In our case, samples are accumulated along multiple 
screen- and view-space positions (due to the reprojection), distributed across 
several frames.

Figure 26-4.  Images showing various light transport scenarios in architecture. Left: the sunlight can 
be adjusted dynamically, with all other lights and scene contents usually updating in a fraction of a 
second. Right: much of the visual scene content is visible in the image, which allows for an accurate 
multiple-bounce approximation using screen-space rays. (Images courtesy of Sergio Fernando.)

 Deferred Hybrid Path Tracing



482

>> The ray traversals itself are comparatively cheap, which makes complex 
sampling logic unattractive.

>> The bias, introduced by sample reuse and lighting approximations, is larger 
than the potential convergence gain of a more advanced Quasi-Monte Carlo 
approach.

We start by sampling a cosine distribution, which is given by a 642 pixel tiled blue 
noise texture with a Cranley Patterson rotation [2] of a Halton 2, 3 sequence [4] that 
alternates each frame. The desired sample-per-pixel count depends on the quality 
settings and the amount of direct light. If our history reprojection (see 26.4.2) of 
the diffuse radiance buffer contains more than that many samples, no new ray 
is cast. We account for view-dependent diffuse models by multiplying a function 
that depends on the dot product of the normal vector n and the view vector v and a 
roughness factor, similar to the precomputed specular DFG (distribution, Fresnel, 
geometry) term [6]. This decoupling from the view vector is necessary to allow 
reuse of the samples from different view angles.

Once we decide to query a new ray, the request is appended to a list (according 
to the ray queue in Figure 26-2). This request is then used by the screen-space 
traversal. If we find a valid hit in the previous frame’s depth buffer, the result 
is written into the radiance accumulation texture (radiance buffer). If not, a ray 
traversal in the global BVH is initiated.

26.4.2	 �LAST FRAME’S REPROJECTION

The purpose of reprojection is to reuse shading information from previous frames. 
However, between two frames the camera generally moves, so the color and 
shading information contained in a certain pixel is possibly no longer valid for this 
pixel but needs to be reprojected to a new pixel location. The reprojection happens 
in screen space only and is agnostic of the origin of the stored radiance (BVH or 
screen-space ray traversal). This can be done for diffuse shading only because it is 
view-independent.

For a successful reprojection, we need to determine whether the shading point 
in question (i.e., the currently processed pixel) was visible in the previous frame; 
otherwise we cannot reproject. To determine whether we have a reliable source for 
color information, we consider the motion vector and check if the previous frame’s 
depth buffer content for the processed shading point is consistent with the motion 
vector. If it is not, we probably have a disocclusion at the current position and need 
to request a new ray.

RAY TRACING GEMS



483

Another reason to request a new ray is the change of the geometric configuration: 
As the camera moves through the scene, some surfaces change their distance and 
angle to the camera. This causes a geometric distortion of the image content in 
screen space. When reprojecting the diffuse radiance buffer, geometric distortions 
have to be considered. We want to achieve a constant density of rays per screen 
pixel, and the described geometric distortions can change the local sample density. 
We store the radiance premultiplied by the number of samples that we were able to 
accumulate and use the alpha channel to store the sample count. The reprojection 
pass has to weigh the history pixels with a bilinear filter and apply a distortion 
factor b, according to Equation 4, for each of the four unfiltered fetches. Note that 
this factor can be ≥ 1, for example when moving away from a wall. The distortion 
factor is expressed as

			 
d

b
d

2
current current

2
previous previous

·
,

·
=

n v
n v 	 (4)

where d is the pixel’s distance to the camera and v is the view vector.

Figure 26-5 illustrates scene areas where reprojection caused the ray heuristic to 
request a new ray, either due to disocclusions or due to insufficient sample density.

26.4.3	 �TEMPORAL AND SPATIAL FILTERING VIA OPTIMIZED MULTI-PASS

Image filters quickly become bandwidth bound due to the large number of memory 
reads. One way to alleviate this is to apply a sparse filter, recursively, in multiple 
iterations n with s samples. The effective amount of samples contributing to the 
filter result is sn. If this sparsity is randomly distributed with a seed that varies 
within a 3 × 3 pixel window, the result can be filtered with a neighborhood clamp 
temporal filter [7]. The neighborhood clamp filter creates a rolling exponential 

Figure 26-5.  This image highlights the areas where a new diffuse ray is requested (green). Left: the 
camera is stationary. Due to the temporal antialiasing camera subpixel offset, the reprojection fails 
at geometry edges. Right: the camera is moving to the right. New rays are requested at geometric 
occlusions and areas that were not present in the previous view. Note the partially green walls due to a 
decrease in the density of accumulated samples.

 Deferred Hybrid Path Tracing



484

average of the pixel value and leverages the assumption that the old pixel is a blend 
of the new pixel’s neighborhood to reject pixel history, therefore avoiding ghosting. 
The clamp window can be spatially extended to reduce flickering [11], which in turn 
increases ghosting.

The fetch positions are chosen to minimize the amount of redundant fetches within 
this window, while staying in the desired radius. To do so, we calculate a list of 
source pixel fetch positions that are effectively included after n iterations of the 
filter. The loss function of our genetic evolution-based numerical optimization 
algorithm is the number of duplicate source pixel fetches within a final 3 × 3 pixel 
window. This ensures a maximum sample diversity within the temporal filter. The 
radius r should be chosen according to the size sseed of the diffuse ray direction 
seed texture in order to hide tiling artifacts according to r = sseed/n. This radius 
is unrelated to the 3 × 3 window for temporal accumulation, as the temporal 
accumulation happens after the filtering. Usually, we would weigh in a Gaussian 
distribution to model the relevance of nearby samples by the distance to sample. 
In a multi-pass approach, this is not necessary because iteratively sampling a 
circle-shaped kernel yields a suitable nonlinear falloff, without penalizing outer 
memory reads (see the article by Kawase [8]). None of the reads use hardware 
texture filtering to ensure discrete depth and normal weights from our aliased 
source buffers. Those G-buffer normals and view-space depths are then used to 
scale the bilateral weight, similar to a technique by Dammertz et al. [3]. Figure 26-6 
compares our multi-pass approach with that of Schied et al. [12]

Figure 26-6.  Left: spatiotemporal variance-guided filtering (SVGF) [12] (2.6 ms). Right: our multi-pass 
filter (0.5 ms). The total screen resolution is 1920 × 1080. Both filters cover the same maximum radius, 
with our filter being sparse and lacking the variance-based edge-stopping function. SVGF is more 
accurate at preserving indirect lighting details, at a higher cost. The sparse filtering allows the final 
temporal antialiasing filter to darken fireflies, whereas in SVGF that filter tends to locally illuminate the 
temporal antialiasing clamp window.

RAY TRACING GEMS



485

26.5	 �SPECULAR LIGHT TRANSPORT

Unlike diffuse filtering, specular filtering is prone to visually overblur details in 
reflections. We have to carefully pick and weigh the samples that we merge to 
create an estimate of the specular lobe. Inspired by Stachowiak [13], we trace our 
specular rays in half resolution and resolve to full resolution afterward using a 
ratio estimator. The introduced bias is acceptable, and the estimator is able to 
preserve normal map details and roughness variations. The major challenge 
remains in reducing noise in high-variance scenarios, such as rough metallic 
surfaces, while adding as little bias as possible. During sampling, we only 
importance-sample our microfacet’s distribution term. The Fresnel and geometry 
terms are approximated by a lookup table [6].

26.5.1	 �TEMPORAL ACCUMULATION

Similar to the diffuse pass, we try to find the pixel’s history by reprojecting its 
position into our previous specular buffer. This is done by using the virtual ray 
length correction techniques of Stachowiak [13] and Aizenshtein [1]. To avoid 
artifacts due to hardware bilinear filtering, we have to weigh the four bilinear 
samples individually and keep track of the total weight. In a case where the 
reprojection fails completely, like a disocclusion, we can only use the newly 
upsampled result. We use a 3 × 3 Gaussian blurred version of the upsampled buffer 
with a nonlinearity, like the perceptual quantizer electro-optical transfer function 
(used as a gamma curve in high dynamic range video signal processing), to hide 
fireflies.

The variance-based neighborhood clamp of temporal filtering allows us to discard 
incorrect reprojections. However, if the targeted radiance is occasionally not part 
of the local YCoCg bounding box, then flickering occurs. This can be countered by 
biasing the specular lobe [13], applying a variance-based post filter after temporal 
accumulation [14], enlarging the spatial size of the neighborhood, or simply 
darkening the bright pixels that introduce the bias. We observe that the flickering 
is mostly caused by a temporally unstable maximum luminance component. 
Therefore, we chose to temporally smooth the maximum luminance of the resulting 
color clamp. This only requires storing one additional value and causes few side 
effects.

 Deferred Hybrid Path Tracing



486

26.5.2	 �REUSE OF DIFFUSE LOBE

The specular pass is performed after the diffuse pass. We reuse the filtered diffuse 
result in our specular pass for two reasons:

>> Low-variance fallback for high-roughness, dielectric specular lobes: Using the 
diffuse lobe as an approximation for the specular lobe is inaccurate. However, 
it is visually plausible since the lobe energy resides in a similar range. This 
saves performance on rough surfaces with moderate visual impact. For 
metals, we cannot rely on this simplification because the specular component 
is too visible.

>> Ambient lighting amount for the geometry in the reflection: In cases where we 
do not want to trace further and gather the incoming lighting at the hit point, 
we need to assume an ambient lighting factor. The reflective surface’s diffuse 
lighting proved to be a good approximation with little cost.

26.5.3	 �PATH TRACED INDIRECT LIGHTING

Adding path traced indirect lighting is required for mirror-like surfaces. It is 
costly due to its incoherent memory reads and suffers from high variance. Liu [10] 
proposes filtering the indirect diffuse component along with the indirect diffuse 
component of the mirrored surfaces. To properly decouple the filtered lighting 
from albedo and direct light, we would need to store and fetch multiple additional 
buffers for our reflections. Instead, we chose to filter across the dimensions of 
the random seed texture (5 × 5 in our case) during the resolve pass, combined 
with a tone-mapped average to reduce fireflies. The filter is bilateral and takes 
the reflection ray length and G-buffer normal into account to preserve geometry 
silhouettes in reflections and normal map details. Both the special filtering and 
the indirect diffuse filtering is only applied for low-roughness metal surfaces, 
which makes the extra work affordable. A faster variant, without tracing additional 
rays, consists of the ambient factor combined with a screen-space ambient 
occlusion factor based on the ray lengths, which can be interpreted as virtual 
screen depth.

26.5.4	 �LOBE FOOTPRINT ESTIMATION

Similar to Liu’s work [10], we scale the number of filtering fetches according to the 
screen-space size of the projected reflection lobe footprint. This can be done by 
calculating the dimensions of a two-dimensional scale matrix.

Since most surfaces are not planar, we also need to estimate the local curvature 
and distort the footprint accordingly. This is done by computing the local derivatives 
of the G-buffer normal. The neighbors are chosen according to the eigenvectors of 

RAY TRACING GEMS



487

the two-dimensional lobe distortion matrix, which describes the lobe elongation 
and shrinking in the tangent space, projected to screen-space units. The smallest 
derivative of both neighbors is used to avoid artifacts at geometry edges. Finally, 
the number of samples is proportional to the matrix’s determinant. If the filter 
size is smaller than 2  times the tracing resolution, we switch to a fixed 3 × 3 
pixel kernel instead. This ensures that we consider all neighbors, which increases 
the reconstruction quality when dealing with curved (or normal-mapped) glossy 
surfaces at half resolution tracing. This is summarized in the following code.

 1 mat2 footPrint;

 2 // "Bounce-off" direction

 3 footPrint[0] = normalize(ssNormal.xy);

 4 // Lateral direction

 5 footPrint[1] = vec2(footPrint[0].y, -footPrint[0].x);

 6

 7 �vec2 footprintScale = vec2(roughness*rayLength / (rayLength + sceneZ));

 8

 9 // On a convex surface, the estimated footprint is smaller.

10 vec3 plane0 = cross(ssV, ssNormal);

11 vec3 plane1 = cross(plane0, ssNormal);

12 // estimateCurvature(...) calculates the depth gradient from the

13 // G-buffer's depth along the directions stored in footPrint.

14 vec2 curvature = estimateCurvature(footPrint, plane0, plane1);

15 �curvature = 1.0 / (1.0 + CURVATURE_SCALE*square(ssNormal.z)*curvature);

16 footPrint[0] *= curvature.x;

17 footPrint[1] *= curvature.y;

18

19 // Ensure constant scale across different camera lenses.

20 footPrint *= KERNEL_FILTER / tan(cameraFov * 0.5);

21

22 // Scale according to NoV proportional lobe distortions. NoV contains

23 // the saturated dot product of the view vector and surface normal

24 footPrint[0] /= (1.0 - ELONGATION) + ELONGATION * NoV;

25 footPrint[1] *= (1.0 - SHRINKING) + SHRINKING * NoV;

26

27 for (i : each sample)

28 {

29     vec2 samplingPosition = fragmentCenter + footPrint * sample[i];

30     // ...

31 }

26.6	 �TRANSPARENCY

Alpha-blended surfaces’ reflections are more complex, since we do not want to 
store the pixel’s history for each alpha layer. This is possible but would increase 
the implementation’s memory requirements. Instead, we use the main temporal 

 Deferred Hybrid Path Tracing



488

antialiasing filter to take care of stochastic noise. This is acceptable because we 
assume that most alpha-blended surfaces (like glass) have a low roughness and 
therefore do not suffer from much variance during importance sampling of the 
specular distribution. Our order-independent transparency approach sorts the 
alpha pixels into layers before shading them, which allows us to employ different 
quality settings for each layer. We trace all layers in half resolution, just as for 
our specular component on opaque geometry. In contrast to the specular pass, 
we lack a G-buffer, which is why we cannot use the identical upscale algorithm. 
Instead, we implement a spatiotemporal shuffle by using blue noise–based offsets 
per pixel in the full resolution pass. This can be seen as a blur filter with only one 
fetch. Combined with the temporal antialiasing filter, this can be used to trade 
undersampling artifacts with noise.

26.7	 �PERFORMANCE

The performance results were measured using NVIDIA Titan V hardware at a 
resolution of 1920 × 1080. The current implementation still uses custom shaders 
for traversal, instead of DirectX Raytracing, for example. The scene contains  
15 million polygons and represents an average architectural scene, as shown in 
Figure 26-7. The total frame time during these measurements was continuously 
below 9 ms.

RAY TRACING GEMS



489

Figure 26-7.  Test scene for benchmarking. The scene was created in Autodesk Revit and includes 
various interior objects, trees, water, and a variety of materials.

Table 26-1 illustrates the timings of relevant sections in a real-time walkthrough 
scenario with our default high-quality configuration. Many system parameters 
can be adjusted to increase the quality and approach ground truth much more 
closely, e.g., for still images and videos, or to gain more performance for virtual 
reality (VR) rendering where low frame times are essential for the experience. 
Besides common parameters, like the number of samples and light bounces, the 
filter kernel sizes, and the number of BVH polygons, we also found adjusting the 
maximum ray lengths and the threshold for the specular-to-diffuse fallback (see 
26.5.2) to be effective tools to strike a balance between quality and frame time for 
the desired use case.

 Deferred Hybrid Path Tracing



490

26.7.1	 �STEREO RENDERING FOR VIRTUAL REALITY

For VR, we chose one eye to be dominant and alternate our choice each frame. For 
the dominant eye, we update the diffuse lighting. For the other eye, the past frame’s 
information is reprojected in the same way as we reproject our diffuse and specular 
buffers in a regular scene rendering cycle. However, this approach creates artifacts. 
Geometric occlusion causes holes during camera movement. Due to the stochastic 
nature of our sampling, differences in the integration results become apparent 
when viewed with a stereoscopic headset. The differences can be the result of 
different sampling seeds at the same world-space location. To address both issues, 
we reuse the newly updated information of the dominant eye by reprojecting it. 
It is then merged with a constant blend factor γ onto the other eye. If the past 
information of the identical eye from the last frame could not be used, but we have a 
successful reprojection, γ = 1.

For the diffuse ray heuristic, we increase the desired sample density at the center 
of the image. On outside regions, we also tolerate sample densities below one. 
These can occur after a reprojection, but are still acceptable in most scenarios. 
We use this foveation approach to concentrate our computational resources where 
they are most effective.

26.7.2	 �DISCUSSION

Our described global illumination algorithm is able to scale across different 
performance requirements. It can output high-quality images with multiple 
bounces, and with a different parameter set, it is able to reach the low frame 
times required for VR—with almost the same code path. Some of the state-of-
the-art image G-buffer–based techniques, like post-processed depth of field or 
motion blur, work sufficiently well while being highly efficient. Others, like shadow 

Table 26-1.  Pass times of specular and diffuse light transport. Timings of diffuse passes are given for 
one indirect bounce. The number of new rays depends on the success of the last frame’s reprojection. 
Therefore, camera movement causes higher workload. The diffuse filtering only depends on the 
percentage of geometry pixels visible on the screen. The specular tracing is performed in half 
resolution. Unlike the diffuse pass, the reprojection for specular light transport happens in the 
temporal filter. The spatial filter runtime increases with rough materials due to their larger footprint.

RAY TRACING GEMS



491

mapping, can be improved by ray tracing. Replacing a high number of shadow-
mapped lights by ray tracing remains a performance challenge, yet it already 
promises high-quality results [5].

We also see room for improvement in the scalability of ray traced reflections on 
multiple alpha-blended layers. This is related to the calculation of subsurface 
scattering phenomena that are currently approximated by lighting in a volume 
texture in our case. For diffuse and specular integration, we would like to make 
specular ray tracing benefit from a ray heuristic, instead of equally sampling all 
screen regions each frame.

ACKNOWLEDGMENTS

We thank Tomasz Stachowiak and the editors for their valuable input, corrections, 
and suggestions that greatly improved this chapter.

REFERENCES

	 [1]	� Aizenshtein, M., and McMullen, M. New Techniques for Accurate Real-Time Reflections. 
Advanced Graphics Techniques Tutorial, SIGGRAPH Courses, 2018.

	 [2]	� Cranley, R., and Patterson, T. N. L. Randomization of Number Theoretic Methods for Multiple 
Integration. SIAM Journal on Numerical Analysis 13, 6 (1976), 904–914.

	 [3]	� Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. P. A. Edge-Avoiding À-Trous Wavelet 
Transform for Fast Global Illumination Filtering. In Proceedings of High-Performance Graphics 
(2010), pp. 67–75.

	 [4]	� Halton, J. H. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence. Communications of 
the ACM 7, 12 (1964), 701–702.

	 [5]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic 
Shadows. In Symposium on Interactive 3D Graphics and Games (2018), pp. 2:1–2:11.

	 [6]	� Karis, B. Real Shading in Unreal Engine 4. Physically Based Shading in Theory and Practice, 
SIGGRAPH Courses, August 2013.

	 [7]	� Karis, B. High-Quality Temporal Supersampling. Advances in Real-Time Rendering in Games, 
SIGGRAPH Courses, 2014.

	 [8]	� Kawase, M. Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L (Wreckless). Game 
Developers Conference, 2003.

	 [9]	 Kensler, A. Correlated Multi-Jittered Sampling. Pixar Technical Memo 13-01, 2013.

	 [10]	� Liu, E. Real-Time Ray Tracing: Low Sample Count Ray Tracing with NVIDIA’s Ray Tracing 
Denoisers. Real-Time Ray Tracing, SIGGRAPH NVIDIA Exhibitor Session, 2018.

 Deferred Hybrid Path Tracing



492

	 [11]	� Salvi, M. High Quality Temporal Supersampling. Real-Time Rendering Advances from NVIDIA 
Research, Game Developers Conference, 2016.

	 [12]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A. E., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-
Time Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance 
Graphics (2017), pp. 2:1–2:12.

	 [13]	� Stachowiak, T. Stochastic Screen-Space Reflections. Advances in Real-Time Rendering in 
Games, SIGGRAPH Courses, 2015.

	 [14]	� Stachowiak, T. Towards Effortless Photorealism through Real-Time Raytracing. Computer 
Entertainment Developers Conferences, 2018.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


493© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_27

CHAPTER 27

Interactive Ray Tracing Techniques 
for High-Fidelity Scientific Visualization
John E. Stone
Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign

ABSTRACT

This chapter describes rendering techniques and implementation considerations 
when using ray tracing for interactive scientific and technical visualization. Ray tracing 
offers a convenient framework for building high-fidelity rendering engines that can 
directly generate publication-quality images for scientific manuscripts while also 
providing high interactivity in a what-you-see-is-what-you-get rendering experience. 
The combination of interactivity with sophisticated rendering enables scientists who 
are typically not experts in computer graphics or rendering technologies to be able 
to immediately apply advanced rendering features in their daily work. This chapter 
summarizes techniques and practical approaches learned from applying ray tracing 
techniques to scientific visualization, and molecular visualization in particular.

27.1	 �INTRODUCTION

Scientific and technical visualizations are used to illustrate complex data, concepts, 
and physical phenomena to aid in the development of hypotheses, discover design 
problems, facilitate collaboration, and inform decision making. The scenes that 
arise in such visualizations incorporate graphical representations of the details of 
key structures and mechanisms and their relationships, or the dynamics of complex 
processes under study. High-quality ray tracing techniques have been of great 
use in the creation of visualizations that elucidate complex scenes. Interactivity is 
a powerful aid to the effectiveness of scientific visualization because it allows the 
visualization user to rapidly explore and manipulate data, models, and graphical 
representations to obtain insights and to help confirm or deny hypotheses.

Some of the challenges that arise in creating easy-to-understand visualizations 
involve compromises between what is shown in complete detail, what is shown just 
to provide important visual context, and what has to be eliminated (often sacrificed) 
for the sake of clarity of the visual communication. Advanced rendering techniques 
offer a variety of solutions to these kinds of problems. The relative ease with which 



494

ray tracing algorithms can incorporate advanced lighting and shading models, 
and support a diverse range of geometric primitives and data types, make it a 
powerful tool for interactive rendering of geometrically complex scenes that arise 
in scientific and technical visualizations [2, 7, 17, 20, 24, 25].

Although ray tracing has been used for production of such visualizations in an 
offline or batch mode basis for decades, it has only recently reached performance 
levels that have made it strongly competitive with incumbent methods based on 
rasterization, wherein interactivity is a key requirement. The development of high-
performance hardware-optimized ray tracing frameworks, and most recently ray 
tracing–specific hardware acceleration technologies available in commodity GPUs, 
has created the necessary conditions for broad use of interactive ray tracing for 
scientific visualization [13, 25, 26]. ParaView, VisIt, Visual Molecular Dynamics (VMD),  
and Visualization ToolKit (VTK)—several of the most widely used scientific 
visualization tools in high-performance computing—have each incorporated 
interactive ray tracing capabilities in the past few years. The performance gains 
provided by recent and upcoming ray tracing–specific hardware acceleration will 
hereafter create many new opportunities for interactive ray tracing to be applied in 
routine scientific and technical visualizations.

The remaining discussions and code samples provided in this chapter are intended 
to document some of the considerations, practical techniques, and elements of 
future outlook gained from the experience of developing and integrating three 
different interactive ray tracing engines within VMD, a widely used molecular 
visualization tool [5, 17, 19, 20, 21].

27.2	 �CHALLENGES ASSOCIATED WITH RAY TRACING LARGE SCENES

One of the recurring challenges that frequently arises in scientific visualization is 
the necessity to render scenes that reach the limits of available physical memory. 
Visualization approaches based on rasterization benefit from its streaming nature 
and typically low memory requirements. Conversely, ray tracing methods require 
the entire scene description to be retained in memory or made available to the ray 
tracing engine on demand. This is one of the key trade-offs of ray tracing methods 
in exchange for their flexibility, elegance, and adaptability to a wide range of 
rendering and visualization problems.

At the time of writing, tremendous gains in ray tracing performance have been 
achieved on GPUs through dedicated hardware that accelerates both bounding 
volume hierarchy (BVH) traversal and ray/triangle intersection tests. This advance 
has increased ray tracing performance to such a degree that, for scientific 

RAY TRACING GEMS



495

visualizations employing relatively low-cost shading, memory bandwidth is 
now and will likely remain one of the critical factors limiting peak ray tracing 
performance for the foreseeable future. Considering these issues together, it 
is clear that the long-term successful application of ray tracing in challenging 
scientific visualization scenarios will depend on the development and application 
of techniques that make efficient use of both memory capacity and memory 
bandwidth.

27.2.1	 �USING THE RIGHT GEOMETRIC PRIMITIVE FOR THE JOB

Some of the best opportunities for savings in memory capacity and memory 
bandwidth relate to the choice of geometric primitives used to construct 
visualizations. As an example, the memory footprint for a sphere position and 
radius is just 4 floating-point values, whereas an individual triangle with per-vertex 
normals and no shared vertices requires 18 values. When representing a triangle 
mesh, shared vertices can be listed explicitly with vertex indices (three vertex array 
indices per triangle), or better yet, when feasible, they can be implied by triangle 
strip vertex index ordering (three indices for the first triangle, and only one index 
for each subsequent triangle). The memory cost of surface normals can be reduced 
by quantizing or compressing them significantly, further reducing the memory 
cost per vertex and per triangle. Ultimately, while these and related techniques 
can significantly reduce the memory cost for triangle meshes, direct ray tracing of 
spheres, cylinders, or cones rather than small triangle meshes will likely always 
use less memory and, more importantly in the long term, consume less memory 
bandwidth. While it is clear that for some domains, such as molecular visualization, 
large memory efficiency gains can be had through the use of a handful of bespoke 
geometric primitive implementations, in other scientific domains it is less clear, 
and the alternative geometric primitives available for consideration might involve 
numerical precision or convergence challenges in ray/primitive intersection test 
implementation, or performance attributes or anomalies that make them difficult 
to use effectively in all cases.

27.2.2	 �ELIMINATION OF REDUNDANCY, COMPRESSION, AND QUANTIZATION

Once the best choice of geometric primitives has been made, the remaining low-
cost opportunities for reducing memory capacity and bandwidth requirements 
tend to be methods that eliminate high-level redundancies within large batches 
of geometric primitives. For example, particle advection streamlines used for 
visualization of fluid flow, magnetic fields, or electrostatic potential fields may 
contain millions of segments. Why store a radius per cylinder or per sphere when 
drawing tubular streamlines if all constituent segments have the same radius? 

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



496

In the same way that rasterization pipelines have supported a broad diversity of 
triangle mesh formats and per-vertex data, ray tracing engines stand to benefit 
from similar flexibility, but for a much broader range of potential geometric 
primitives. For example, a ray tracing engine used to render scenes containing 
large numbers of streamlines of various types might employ multiple specialized 
geometry batch types, with radii specified per cylinder and per sphere, and with 
constant radii for all constituent cylinders and spheres. Depending on the degree 
of programmability of the underlying ray tracing framework, it might be possible to 
cause cylinder and sphere primitives to share the same vertex data. Furthermore, 
it might be possible to implement a fully customized streamline rendering primitive 
that implements or emulates the effect of a swept sphere following a space curve 
defined by the original streamline vertices themselves or by computed control 
points fit to the original data [23]. The more programmability available in the ray 
tracing framework, the more easily an application can choose the geometric 
primitives and geometry batching approaches that are most beneficial for resolving 
the memory capacity and performance issues posed by large visualizations.

After high-level redundancies have been eliminated from the encoding and 
parameterization of large batches of geometry, the next areas to approach are 
techniques that eliminate more-localized data redundancies at the level of groups 
of neighboring or otherwise related geometric properties. Localized data size 
reductions can often be made through data compression approaches and reduced-
precision quantized representations of geometric attributes, or combinations 
of the two. When quantization or other lossy compression techniques are used, 
acceptable error tolerances may depend on the details of the visualization problem 
at hand. Two representative examples of these techniques are compression of 
volumetric data, scalar fields, and tensors, e.g., as provided by the ZFP library [8, 9], 
and quantized representations of surface normals, as in octahedron normal vector 
encoding [4, 12]. See Listing 27-4 for an example implementation of normal packing 
and unpacking using octahedron normal encoding.

Listing 27-1.  This code snippet lists the key functions required to implement normal packing and 
unpacking using octahedron normal vector encoding. The routines convert back and forth between 
normal vectors represented as three single-precision oating-point values and a single packed 32-bit 
unsigned integer encoding. Many performance optimizations and improvements are possible here, but 
these routines are easy to try out in your own ray tracing engine.

 1 �# include <optixu/optixu_math_namespace.h> // For make_xxx() functions

 2

 3 // Helper routines that implement the floating-point stages of

 4 // octahedron normal vector encoding

RAY TRACING GEMS



497

 5 static _ _host_ _ _ _device_ _ _ _inline_ _

 6 float3 OctDecode(float2 projected) {

 7   float3 n;

 8   n = make_float3(projected.x, projected.y,

 9                   �1.0f - (fabsf(projected.x) + fabsf(projected.y)));

10   if (n.z < 0.0f) {

11     float oldX = n.x;

12     n.x = copysignf(1.0f - fabsf(n.y), oldX);

13     n.y = copysignf(1.0f - fabsf(oldX), n.y);

14   }

15   return n;

16 }

17

18 static _ _host_ _ _ _device_ _ _ _inline_ _

19 float2 OctEncode(float3 n) {

20   �const float invL1Norm = 1.0f / (fabsf(n.x)+fabsf(n.y)+fabsf(n.z));

21   float2 projected;

22   if (n.z < 0.0f) {

23     float2 tmp = make_float2(fabsf(n.y), fabsf(n.x));

24     projected = 1.0f - tmp * invL1Norm;

25     projected.x = copysignf(projected.x, n.x);

26     projected.y = copysignf(projected.y, n.y);

27   } else {

28     projected = make_float2(n.x, n.y) * invL1Norm;

29   }

30   return projected;

31 }

32

33 // Helper routines to quantize to or invert the quantization

34 // to and from packed unsigned integer representations

35 static _ _host_ _ _ _device_ _ _ _inline_ _

36 uint convfloat2uint32(float2 f2) {

37   f2 = f2 * 0.5f + 0.5f;

38   uint packed;

39   packed = ((uint) (f2.x * 65535)) | ((uint) (f2.y * 65535) << 16);

40   return packed;

41 }

42

43 static _ _host_ _ _ _device_ _ _ _inline_ _

44 float2 convuint32float2(uint packed) {

45   float2 f2;

46   f2.x = (float)((packed      ) & 0x0000ffff) / 65535;

47   f2.y = (float)((packed >> 16) & 0x0000ffff) / 65535;

48   return f2 * 2.0f - 1.0f;

49 }

50

51 // The routines to be called when preparing geometry buffers prior

52 �// to ray tracing and when decoding them on-the-fly during rendering

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



498

53 static _ _host_ _ _ _device_ _ _ _inline_ _

54 uint packNormal(const float3& normal) {

55   float2 octf2 = OctEncode(normal);

56   return convfloat2uint32(octf2);

57 }

58

59 static _ _host_ _ _ _device_ _ _ _inline_ _

60 float3 unpackNormal(uint packed) {

61   float2 octf2 = convuint32float2(packed);

62   return OctDecode(octf2);

63 }

The atomic-detail molecular structure shown in Figure 27-1 demonstrates the 
use of all the techniques described in this section, using both triangle meshes 
and bespoke geometric primitive implementations, with redundancy elimination 
approaches applied to geometry encoding and batching, along with octahedron 
normal vectors. An example implementation of normal packing using octahedron 
normal encoding is included to demonstrate the value and application of the 
technique in interactive ray tracing. Vertex normals are not required for ray/triangle 
intersection tests. Normals are only referenced when the closest-hit result has been 
found and must be shaded. As such, the costs of on-the-fly inverse quantization 
or decompression during shading are low, and for interactive ray tracing of large, 
geometrically complex scenes, they tend to have negligible impact on frame rates 
while providing substantial memory savings. Similar approaches can be applied to 
per-vertex colors and other attributes, potentially with even greater practical effect.

Figure 27-1.  Closeup visualization of an atomic-detail model of the lipid membrane in a photosynthetic 
chromatophore structure. Contextual parts of the model are visualized with triangle mesh surface 
representations using octahedron normal vectors. The atomic details shown in the lipid membrane are 
composed of tens of millions of individual spheres and cylinders. The memory savings associated with 
the use of direct ray tracing of custom sphere and cylinder arrays makes interactive ray tracing of this 
large structure feasible while maintaining high performance on commodity GPUs [20].

RAY TRACING GEMS



499

27.2.3	 �CONSIDERATIONS FOR RAY TRACING ACCELERATION STRUCTURES

Beyond the direct memory cost associated with a given geometric primitive, it is 
important to consider the per-primitive memory costs associated with the BVH or 
other ray tracing acceleration structure that ultimately contains them. It can be 
surprising that, despite the use of data compression techniques in state-of-the-
art ray tracing acceleration structures, the acceleration structures themselves 
can sometimes end up being as large or larger in size than the scene geometry 
they encode. Acceleration structures and their space-versus-time trade-offs are 
therefore an area of significant concern for applications of ray tracing to scientific 
visualizations. Since acceleration structure construction, storage, and traversal 
are all performance-critical aspects of ray tracing, they are frequently proprietary, 
highly hardware-optimized, and therefore often less flexible than one might prefer.

For visualization of static structures, large and highly optimized acceleration 
structures yield the best performance since construction and update costs 
are relatively unimportant. For interactive display of time series data such as 
simulation trajectories, time spent on geometry buffer updates and acceleration 
structure (re)builds becomes an important factor in interactivity. Time series 
animation is a much more complex case that can benefit significantly from 
increased concurrency, e.g., via multithreading techniques. To completely decouple 
geometry updates and acceleration structure (re)builds from ongoing interactive 
rendering and display, it is necessary to employ double- or multi-buffering of key 
ray tracing data structures. Multi-buffering of ray tracing data structures permits 
scene updates to occur concurrently and asynchronously with ongoing rendering.

The need for flexibility in ray tracing acceleration structure optimization is of 
particular interest for both large, static scenes and for dynamic time series 
visualizations. When visualizing large scientific scenes that have extremely high 
geometric complexity, often the memory required by the acceleration structure 
exceeds available capacity. In such cases it is usually preferable to build a 
moderately coarser acceleration structure that sacrifices some performance in 
favor of increased geometric capacity. The use of a coarser acceleration structure 
may also turn out to be a desirable trade-off for time series visualizations. 
Some existing ray tracing frameworks provide simple controls over acceleration 
structure construction heuristics and tunables for these purposes. This remains 
an area of active development where one can expect future ray tracing engines to 
make significant advances.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



500

27.3	 �VISUALIZATION METHODS

In this section, several simple but extremely useful ray tracing–compatible 
shading techniques are described, along with descriptions of their practical use 
and implementation. Scientists and technicians who use visualization tools have 
tremendous domain expertise, but they often have only moderate familiarity  
with optics, lighting, shading, and computer graphics techniques in general.  
A key component of the techniques described here is that they are easily used by 
nonexpert visualization practitioners, particularly when implemented in a fully 
interactive ray tracing engine with progressive refinement and other niceties.  
A panoply of excellent shading techniques are available for scientific visualization 
applications based on rasterization. However, many of these depend on 
rasterization-specific techniques or API features, and they may not be compatible 
with the range of lighting and shading techniques commonly used in interactive ray 
tracing visualization engines. The techniques described next have low performance 
costs, can be combined with other ray tracing features, and, most importantly, have 
seen ongoing use in the creation of effective visualizations.

The ray tracing methods described here provide several useful scientific 
visualization tools for ambient occlusion lighting, non-photorealistic transparent 
surfaces, edge outlining of opaque surfaces, and clipping planes and spheres, 
each of which can contribute to improving the clarity and interpretation of resulting 
visualizations.

27.3.1	 �AMBIENT OCCLUSION LIGHTING IN SCIENTIFIC VISUALIZATION

A key value of ambient occlusion (AO) lighting for scientific and technical 
visualization is its tremendous time savings, particularly when paired with 
complex scenes and other high-fidelity ray tracing techniques. AO can be useful 
for interactive viewing of complex models, but especially for time series data 
such as simulation trajectories, when it is impractical for a user to continually 
adjust manually placed lights to achieve a desirable lighting outcome [19, 22]. 
The “ambient” aspect of AO lighting is what makes it such a convenient tool for 
nonexpert users. With interactive use of AO and progressive ray tracing, users 
need not become experts at lighting design and can instead achieve a “good” 
lighting arrangement by adjusting one or two key ambient occlusion lighting 
parameters, typically in combination with one or two manually positioned 
directional or point light sources. This is particularly true in domains such as 
molecular visualization, where the visualization lighting design is solely for 
elucidating details of molecular structure and is not an attempt to replicate a 
photorealistic scene of some sort. One way in which the application of AO can be 
made easy for beginners is to provide independent light scaling factors for both 

RAY TRACING GEMS



501

AO (“ambient”) and manually placed (“direct”) light sources. By providing separate 
easy-to-use global intensity scaling factors for ambient and direct lighting, 
beginners find it easier to balance their lighting design and avoid both over-lit 
and under-lit conditions that can otherwise easily occur in geometrically complex 
scenes that contain pockets, pores/tunnels, or cavities that each pose lighting 
challenges.

27.3.1.1  �AO WITH LIMITED OCCLUSION DISTANCE

A problem with AO that often arises when exploring scenes with densely packed 
geometry is that there are few paths for the “ambient” light to get deep within a 
complex structure, such as within a virus capsid or a cell membrane. A simple 
but effective solution to this problem is to compute AO lighting with a maximum 
occlusion distance, beyond which ambient occlusions are ignored. Using this 
technique, one can choose a maximum occlusion distance that comfortably fits 
within the confined viewing spaces of interest, maintaining the key benefits of AO 
for visualization purposes, as shown in Figure 27-2. While a camera-centered point 
light could be used to light dark interiors of largely or fully enclosed structures, it 
would result in an undesirable flat-looking surface. This too could be resolved by 
careful manual or offset placement of multiple point lights or area lights, but such 
tasks are ultimately undesirable distractions that take away from unrestricted 
interactive exploration of complex models or simulation results. The use of AO with 
a limited occlusion distance avoids these undesirable issues while maintaining 
unrestricted interactive scene navigation. A further, perhaps unanticipated, 
benefit of this type of approach is that the maximum AO occlusion distance can 
also be used to shadow only pores, pockets, and cavities of a particular maximum 
diameter range, converting AO lighting into a tool capable of highlighting particular 
geometric features with a mild degree of selectivity. This technique can be refined 
further by incorporating user-specified AO falloff attenuation coefficients, if 
desired. See Listing 27-2 for a simple example implementation.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



502

Listing 27-2.  This closest-hit shader code snippet skips shading of transparent surfaces when 
the incident ray has crossed through a user-defined maximum number of transparent surfaces, 
proceeding instead by shooting a transmission ray and continuing as though there had been no  
ray/surface intersection.

 1 struct PerRayData_radiance {

 2   float3 result;    // Final shaded surface color

 3   // ...

 4 }

 5

 6 struct PerRayData_shadow {

 7   float3 attenuation;

 8 };

 9

10 rtDeclareVariable(PerRayData_radiance, prd, rtPayload, );

11 rtDeclareVariable(PerRayData_shadow, prd_shadow, rtPayload, );

12

13 �rtDeclareVariable (float, ao_maxdist, , ); // max AO occluder distance

14

15 static _ _device_ _

16 float3 shade_ambient_occlusion(float3 hit, float3 N,

17                                float aoimportance) {

18   // Skipping boilerplate AO shadowing material here ...

19

Figure 27-2.  Visualization of the interior of the HIV-1 capsid at various settings of the AO lighting 
maximum occlusion distance. (a) Conventional AO lighting: since the virus capsid completely encloses 
the viewpoint, only a few thin shafts of light enter the interior through pores in the capsid structure, 
leaving it almost completely dark. (b) The user-specified maximum occlusion distance was set to 
slightly less than the minor interior diameter of the capsid. The remaining images show this distance 
decreased by a factor of(c) 2, (d) 8, and (e) 16.

RAY TRACING GEMS



503

20   for (int s=0; s<ao_samples; s++) {

21     Ray aoray;

22     // Skipping boilerplate AO shadowing material here ...

23     aoray = make_Ray (hit, dir, shadow_ray_type,

24                       scene_epsilon, ao_maxdist);

25

26     shadow_prd.attenuation = make_float3(1.0f);

27     rtTrace(root_shadower, ambray, shadow_prd);

28     inten += ndotambl * shadow_prd.attenuation;

29   }

30

31   return inten * lightscale;

32 }

33

34 RT_PROGRAM void closest_hit_shader( ... ) {

35   // Skipping boilerplate closest-hit shader material here ...

36

37   // Add ambient occlusion diffuse lighting, if enabled.

38   if (AO_ON && ao_samples > 0) {

39     result *= ao_direct;

40     result += ao_ambient * col * p_Kd *

41               �shade_ambient_occlusion(hit_point, N, fogf * p_opacity);

42   }

43

44   // Continue with typical closest-hit shader contents ...

45

46   �prd.result = result; // Pass the resulting color back up the tree.

47 }

27.3.1.2  �REDUCING MONTE CARLO SAMPLING NOISE

Scientists who use visualization tools frequently need to generate quick “snapshot” 
renderings for routine use in team meetings and presentations. Being perpetually 
short of time, there is a tendency for users to prefer high-fidelity rendering 
approaches, but with the condition that rendering can be halted at any point, 
providing them with an image that is free of “grain” or “speckle,” albeit without 
having fully converged lighting or depth of field focal blur.

A particularly promising class of state-of-the-art techniques for real-time 
denoising employs carefully trained deep neural networks to eliminate grain 
and speckle noise in undersampled regions of images produced by Monte 
Carlo rendering [3, 6, 10, 15, 16]. The success of so-called artificially intelligent 
(AI) denoisers often depends on the availability of auxiliary image data buffers 
containing depth, surface normals, albedo, and other types of information that 
help the denoiser do a better job of identifying noise and undersampled image 

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



504

regions. The interactive-rate performance of AI denoisers also hinges upon the 
availability of hardware-accelerated AI inferencing, which enables the denoiser 
to outrun brute-force sampling, even on hardware platforms with dedicated ray 
tracing hardware acceleration. It appears likely that AI denoising will remain one of 
best and most broadly used approaches for denoising in sophisticated path tracing, 
and in ray tracing engines more generally, because the techniques can be tuned or 
trained specifically for particular renderers and scene content.

Besides sophisticated denoising techniques, one can also make potentially 
beneficial trade-offs between high-frequency noise content and the correlation 
of stochastic samples, e.g., resulting in visible AO shadow boundary edges in 
undersampled interactive renderings. In conventional ray tracing technique, 
ambient occlusion lighting and other Monte Carlo sampling implementations 
typically use completely uncorrelated pseudo-random or quasi-random number 
sequences to generate directions for AO lighting shadow feeler rays within the 
hemisphere normal to the surface being shaded. With an uncorrelated sampling 
approach, when a sufficient number of AO lighting samples have been taken, a 
smooth grain-free image results. However, early termination of an unconverged 
sampling process results in a grainy looking image. By purposefully correlating 
AO samples in all image pixels, e.g., by seeding AO random number generators 
or quasi-random sequence generators with the same seed, all pixels in the image 
will choose the same AO shadow feeler directions, and there will be no image 
grain from AO. This approach is particularly well suited for interactive ray tracing 
of geometrically complex scenes that would otherwise require a large number of 
samples to achieve grain-free images.

27.3.2	 �EDGE-ENHANCED TRANSPARENT SURFACES

A common problem that arises in molecular visualizations is the need to clearly 
display the boundaries of molecular complexes or their constituent substructures, 
while making it easy to see the details of their internal structures. Molecular 
scientists spend significant effort selecting what should be shown and how it 
should be displayed. Raster3D [11], Tachyon [18], and VMD [5, 20] employ special 
shaders that make it easy to see the interior of a structure by making viewer-
directed surfaces entirely transparent, while leaving the boundary regions 
that are seen edge-on largely opaque. The surface shader instantly adapts to 
changes in viewing orientation, permitting the user to freely rotate the molecular 
complex while maintaining an unobscured view of interior details. This technique 
is demonstrated effectively in Figure 27-3, where it is applied to light-harvesting 
complexes and photosynthetic reaction centers, and in Figure 27-4, where it is 
applied to a solvent box and solvent/protein interface. See Listing 27-3 for the 
details of the shader implementation.

RAY TRACING GEMS



505

Listing 27-3.  This example code snippet makes viewer-facing surfaces appear completely 
transparent while leaving surfaces seen edge-on more visible and opaque. This type of rendering 
is extremely useful to facilitate views into the interior of crowded scenes, such as densely packed 
biomolecular complexes.

 1 RT_PROGRAM void closest_hit_shader( ... ) {

 2   // Skipping boilerplate closest-hit shader material here ...

 3

 4   // Exemplary simplified placeholder for typical

 5   // transmission ray launch code

Figure 27-3.  Visualization of the intracellular packing of chromatophore light-harvesting vesicles that 
use photosynthesis to produce ATP, the chemical fuel for living cells. The foreground chromatophore 
vesicle is shown with transparent molecular surfaces to reveal selected interior atomic structures 
of the rings of chlorophyll pigments within each of its individual photosynthetic complexes and 
reaction centers. Background instances of opaque chromatophores show the crowded packing of 
chromatophore vesicles within the cytoplasm of a purple bacterium.

Figure 27-4.  Visualization of the molecular dynamics of an unfolding Ankyrin protein, with solvent 
(water and ions) surfaces rendered using the edge-enhanced transparent surface shading technique [1].

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



506

 6   if (alpha < 0.999f) {

 7     �// Emulate Tachyon/Raster3D's angle-dependent surface opacity

 8     if (transmode) {

 9       alpha = 1.0f + cosf(3.1415926f * (1.0f-alpha) *

10                      dot(N, ray.direction));

11       alpha = alpha*alpha * 0.25f;

12     }

13     result *= alpha; // Scale down lighting by any new transparency

14

15     // Skipping boilerplate code to prepare a new transmission ray ...

16     rtTrace(root_object, trans_ray, new_prd);

17   }

18   result += (1.0f - alpha) * new_prd.result;

19

20   // Continue with typical closest-hit shader contents ...

21

22   �prd.result = result; // Pass the resulting color back up the tree.

23 }

27.3.3	 �PEELING AWAY EXCESS TRANSPARENT SURFACES

Many domains within scientific visualization produce scenes that incorporate 
significant amounts of partially transparent geometry, often to display surfaces 
within volumetric data of various types, e.g., electron density maps, medical 
images, tomograms from cryo-electron microscopy, or flow fields from 
computational fluid dynamics simulations. When rendering scenes containing 
complex or noisy volumetric data, transparent isosurfaces and contained geometry 
may become more difficult to interpret visually, and it is often helpful to create 
purposefully non-photorealistic renderings that “peel away” all but the first, or first 
few, layers of transparent surfaces so they do not create a distracting background 
behind features of particular interest. See Figure 27-5. Transparent surfaces can 
be peeled as described by making a small modification to a canonical closest-hit 
program: store an additional counter for transparent surface crossing as an extra 
per-ray data item. When primary rays are generated, the crossing counter is 
initially set to the maximum number of transparent surfaces to be shown. As the 
ray is traced through the scene, the per-ray transparent surface crossing counter 
is decremented on each transparent surface until it reaches zero. Once this 
happens, all subsequent intersections with transparent surfaces are ignored, i.e., 
they are not shaded and do not contribute to the final color, and transmission rays 
are generated to continue as if no intersection had occurred. See Listing 27-4 for an 
example implementation.

RAY TRACING GEMS



507

Listing 27-4.  This closest-hit shader code snippet skips the shading of transparent surfaces when 
the incident ray has crossed through a user-defined maximum number of transparent surfaces, 
proceeding instead by shooting a transmission ray and continuing as though there had been no ray/
surface intersection.

 1 struct PerRayData_radiance {

 2   float3 result;     // Final shaded surface color

 3   int transcnt;      // Transmission ray surface count/depth

 4   int depth;         // Current ray recursion depth

 5   // ...

 6 }

 7

 8 rtDeclareVariable(PerRayData_radiance, prd, rtPayload, );

 9

10 RT_PROGRAM void closest_hit_shader( ... ) {

11   // Skipping boilerplate closest-hit shader material here ...

12

13   // Do not shade transparent surface if the maximum

14   // transcnt has been reached.

15   if ((opacity < 1.0) && (transcnt < 1)) {

16     // Spawn transmission ray; shading behaves as if there

17     // had been no intersection.

18     PerRayData_radiance new_prd;

19     �new_prd.depth = prd.depth; // Do not increment recursion depth.

20     new_prd.transcnt = prd.transcnt - 1;

21     // Set/update various other properties of the new ray.

22

Figure 27-5.  Closeup visualization of an atomic-detail structure of rabbit hemorrhagic disease virus, 
obtained through X-ray crystallography and computational modeling and fit into a low-resolution 
electron density map from cryo-electron microscopy using molecular dynamics flexible fitting: the 
results of conventional ray traced transparency (left), and the transparency peeling approach that 
eliminates obscuration of details of the fitted interior atomic structures (right).

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



508

23     // Shoot the new transmission ray and return its color as if

24     // there had been no intersection with this transparent surface.

25     Ray trans_ray = make_Ray(hit_point, ray.direction,

26                              radiance_ray_type, scene_epsilon,

27                              RT_DEFAULT_MAX);

28     rtTrace(root_object, trans_ray, new_prd);

29   }

30

31   // Otherwise, continue shading this

32   // transparent surface hit point normally ...

33

34   // Continue with typical closest-hit shader contents ...

35   �prd.result = result; // Pass the resulting color back up the tree.

36 }

27.3.4	 �EDGE OUTLINES

The addition of edge outlining on opaque geometry is often helpful in making the 
depth and spatial relationships between nearby objects or surfaces of the same 
color much more obvious and easy to interpret. Edge outlining can be used both 
to further enhance the visibility of salient details of surface structure, such as 
protrusions, pores, or pockets, and can be used either with light effects for detailed 
renderings or with a much stronger effect to remain visible when blurred or faded 
by depth of field or depth cueing. Figure 27-6 shows two examples of edge outlining 
applied to both foreground and background contextual structures in combination 
with depth of field focal blur and depth cueing.

Figure 27-6.  Visualization of molecular surfaces with edge outlining applied to enhance the visibility of 
significant structural features and with depth of field and depth cueing (fog) used. Top: edge outlining has 
been applied relatively sparingly and is only easily visible on the in-focus foreground molecular surfaces. 
Bottom: the edge outline width has been significantly increased. Although the wide edge outline might 
be excessive when applied to in-focus foreground structures, it allows salient features of the molecular 
structure to be seen even in the most distant structures that have been blurred and faded.

RAY TRACING GEMS



509

While many outlining techniques exist for conventional rasterization pipelines, they 
are usually implemented in multi-pass rendering approaches that often require 
access to a depth buffer, which is not well suited to the internal workings of most 
ray tracing engines. For many years, VMD and Tachyon have implemented an easy-
to-use outline shader that is simple to implement within ray tracing engines as it 
does not require depth buffer access, deferred shading, or other extra rendering 
passes. See Listing 27-5 for an example implementation.

Listing 27-5.  This example code snippet adds a dark outline on the edges of geometry to help 
accentuate objects that are packed closely together and may not otherwise be visually distinct.

 1 struct PerRayData_radiance {

 2   float3 result;      // Final shaded surface color

 3   // ...

 4 }

 5

 6 rtDeclareVariable(PerRayData_radiance, prd, rtPayload, );

 7

 8 // Example of instantiating a shader with outlining enabled ...

 9 RT_PROGRAM void closest_hit_shader_outline( ... ) {

10   // Skipping boilerplate closest-hit shader material here ...

11

12   // Add edge shading, if applicable.

13   if (outline > 0.0f) {

14     float edgefactor = dot(N, ray.direction);

15     edgefactor *= edgefactor;

16     edgefactor = 1.0f - edgefactor;

17     �edgefactor = 1.0f - powf(edgefactor, (1.0f-outlinewidth) * 32.0f);

18     �result *= _ _saturatef((1.0f-outline) + (edgefactor * outline));

19   }

20

21   // Continue with typical closest -hit shader contents ...

22

23   �prd.result = result; // Pass the resulting color back up the tree.

24 }

27.3.5	 �CLIPPING PLANES AND SPHERES

One of the powerful rendering capabilities long enjoyed by users of advanced 
ray tracing engines is constructive solid geometry (CSG), which models complex 
geometry with unions, intersections, and differences between arbitrary numbers of 
basic geometric primitives [14]. CSG can be a powerful tool for modeling complex 
shapes, but in scientific visualization a user frequently needs easy-to-use tools 
for cutting away visual obscuration, which can be performed using just CSG 
differences. When interactively visualizing large scenes, it is often impractical to 
make significant changes to the underlying model or data in the scene within the 

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



510

available frame rate budget. However, approaches that leave the model unchanged 
and instead manipulate only the low-level rendering process are often still feasible 
under such constraints. Fully general CSG implementations require somewhat 
extensive bookkeeping, but clipping geometry is a special case that can be achieved 
far more simply. Since ray tracing engines do their work by computing and sorting 
intersections, it is usually easy to implement user-defined clipping planes, spheres, 
or other clipping geometry within the intersection management logic. This is 
particularly true if clipping geometry applies globally to everything in the scene, 
since that case incurs insignificant bookkeeping overhead. Global clipping geometry 
can typically be added to any ray tracing engine by computing the clipping geometry 
intersection distances and storing them in per-ray data for use when rendering the 
rest of the scene geometry. See Listing 27-6 for an example implementation.

Listing 27-6.  This excerpt from Tachyon shows the simplicity with which one can implement a basic 
user-defined clipping plane feature (that globally clips all objects, when enabled) by storing clipping 
plane information in per-ray data and adding a simple distance comparison for each of the clipping 
plane(s) to be tested.

 1 /* Only keeps closest intersection, no clipping, no CSG */

 2 �void add_regular_intersection(flt t, const object * obj, ray * ry) {

 3   if (t > EPSILON) {

 4     /* if we hit something before maxdist update maxdist */

 5     if (t < ry->maxdist) {

 6       ry->maxdist = t;

 7       ry->intstruct.num=1;

 8       ry->intstruct.closest.obj = obj;

 9       ry->intstruct.closest.t = t;

 10     }

 11   }

 12 }

 13

 14 /* Only keeps closest intersection, also handles clipping, no CSG */

 15 �void add_clipped_intersection(flt t, const object * obj, ray * ry) {

 16   if (t > EPSILON) {

 17     /* if we hit something before maxdist update maxdist */

 18     if (t < ry->maxdist) {

 19

 20       /* handle clipped object tests */

 21       if (obj->clip != NULL) {

 22         vector hit;

 23         int i;

 24

RAY TRACING GEMS



511

 25         �RAYPNT(hit, (*ry), t); /* find hit point for further tests */

 26         for (i =0; i<obj->clip->numplanes; i++) {

 27           if ((obj->clip->planes[i * 4    ] * hit.x +

 28                obj->clip->planes[i * 4 + 1] * hit.y +

 29                obj->clip->planes[i * 4 + 2] * hit.z) >

 30                obj->clip->planes[i * 4 + 3]) {

 31             return; /* hit point was clipped */

 32           }

 33         }

 34       }

 35

 36       ry->maxdist = t;

 37       ry->intstruct.num=1;

 38       ry->intstruct.closest.obj = obj;

 39       ry->intstruct.closest.t = t;

 40     }

 41   }

 42 }

 43

 44 /* Only meant for shadow rays, unsafe for anything else */

 45 �void add_shadow_intersection(flt t, const object * obj, ray * ry) {

 46   if (t > EPSILON) {

 47     /* if we hit something before maxdist update maxdist */

 48     if (t < ry->maxdist) {

 49       /* if this object doesn't cast a shadow, and we aren't  */

 50       /* limiting the number of transparent surfaces to less  */

 51       /* than 5, then modulate the light by its opacity value */

 52       if (!(obj->tex->flags & RT_TEXTURE_SHADOWCAST)) {

 53         if (ry->scene->shadowfilter)

 54           �ry->intstruct.shadowfilter *= (1.0 - obj->tex->opacity);

 55         return;

 56       }

 57

 58       ry->maxdist = t;

 59       ry->intstruct.num=1;

 60

 61       /* if we hit *anything* before maxdist, and we're firing a */

 62       /* shadow ray, then we are finished ray tracing the shadow */

 63       ry->flags |= RT_RAY_FINISHED;

 64     }

 65   }

 66 }

 67

 68 /* Only meant for clipped shadow rays, unsafe for anything else */

 69 void add_clipped_shadow_intersection(flt t, const object * obj,

 70                                      ray * ry) {

 71   if (t > EPSILON) {

 72     /* if we hit something before maxdist update maxdist */

 73     if (t < ry->maxdist) {

 74       /* if this object doesn't cast a shadow, and we aren't */

 75       /* limiting the number of transparent surfaces to less */

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



512

 76       /* than 5, then modulate the light by its opacity value */

 77       if (!(obj->tex->flags & RT_TEXTURE_SHADOWCAST)) {

 78         if (ry->scene->shadowfilter)

 79           �ry->intstruct.shadowfilter *= (1.0 - obj->tex->opacity);

 80         return;

 81       }

 82

 83       /* handle clipped object tests */

 84       if (obj->clip != NULL) {

 85         vector hit;

 86         int i;

 87

 88         �RAYPNT(hit, (*ry), t); /* find hit point for further tests */

 89         for (i=0; i<obj->clip->numplanes; i++) {

 90           if ((obj->clip->planes[i * 4    ] * hit.x +

 91                obj->clip->planes[i * 4 + 1] * hit.y +

 92                obj->clip->planes[i * 4 + 2] * hit.z) >

 93                obj->clip->planes[i * 4 + 3]) {

 94             return; /* hit point was clipped */

 95           }

 96         }

 97       }

 98

 99       ry->maxdist = t;

100       ry->intstruct.num=1;

101

102       /* if we hit *anything* before maxdist, and we're firing a */

103       /* shadow ray, then we are finished ray tracing the shadow */

104       ry->flags |= RT_RAY_FINISHED;

105     }

106   }

107 }

27.4	 �CLOSING THOUGHTS

This chapter has described many of the benefits and challenges associated with the 
use of interactive ray tracing techniques for scientific visualization. Since the major 
strengths of ray tracing are well known, this chapter included a few unconventional 
techniques that combine non-photorealistic approaches with the classic strengths 
of ray tracing to solve tricky visualization problems. Although most of the example 
images and motivations given are biomolecular in nature, these approaches are of 
value in many other areas as well.

An exciting area of my own and others’ research is the ongoing development 
of using techniques such as interactive path tracing for scientific visualization. 
Path tracing used to be too costly to be practical for many routine visualization 

RAY TRACING GEMS



513

tasks that a scientist might perform on a daily basis. However, when the ray 
tracing performance provided by state-of-the-art hardware is combined with 
the latest techniques for Monte Carlo image denoising, interactive path tracing 
becomes feasible for a wide spectrum of visualization workloads without having 
to compromise on either interactivity or image quality. These developments are 
of particular value for scientific and technical visualizations where improved 
photorealism is important.

The code examples provided with the chapter are intended to serve as exemplary 
starting points for further specialization. Each of the techniques can be significantly 
extended to add new capabilities far beyond what is demonstrated here, and I have 
tried to strike a balance between simplicity, reusability, and completeness.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health, under grant 
P41-GM104601. The author thanks Melih Sener and Angela Barragan for the use 
of the chromatophore models. The author wishes to thank many current and 
former colleagues in the Theoretical and Computational Biophysics Group at the 
University of Illinois for years of collaboration on the design of the VMD molecular 
visualization software and the use of advanced rendering techniques for production 
of effective visualizations.

REFERENCES

	 [1]	� Borkiewicz, K., Christensen, A. J., and Stone, J. E. Communicating Science Through Visualization 
in an Age of Alternative Facts. In ACM SIGGRAPH Courses (2017), pp. 8:1–8:204.

	 [2]	� Brownlee, C., Patchett, J., Lo, L.-T., DeMarle, D., Mitchell, C., Ahrens, J., and Hansen, C. D. 
A Study of Ray Tracing Large-Scale Scientific Data in Two Widely Used Parallel Visualization 
Applications. In Eurographics Symposium on Parallel Graphics and Visualization (2012), pp. 51–60.

	 [3]	� Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., and 
Aila, T. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising 
Autoencoder. ACM Transactions on Graphics 36, 4 (July 2017), 98:1–98:12.

	 [4]	� Cigolle, Z. H., Donow, S., Evangelakos, D., Mara, M., McGuire, M., and Meyer, Q. A Survey of 
Efficient Representations for Independent Unit Vectors. Journal of Computer Graphics Techniques 
3, 2 (April 2014), 1–30.

	 [5]	� Humphrey, W., Dalke, A., and Schulten, K. VMD—Visual Molecular Dynamics. Journal of Molecular 
Graphics 14, 1 (1996), 33–38.

	 [6]	� Kalantari, N. K., Bako, S., and Sen, P. A Machine Learning Approach for Filtering Monte Carlo 
Noise. ACM Transactions on Graphics 34, 4 (July 2015), 122:1–122:12.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



514

	 [7]	� Knoll, A., Wald, I., Navrátil, P. A., Papka, M. E., and Gaither, K. P. Ray Tracing and Volume 
Rendering Large Molecular Data on Multi-Core and Many-Core Architectures. In International 
Workshop on Ultrascale Visualization (2013), pp. 5:1–5:8.

	 [8]	� Lindstrom, P. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visualization 
and Computer Graphics 20, 12 (Dec. 2014), 2674–2683.

	 [9]	� Lindstrom, P., and Isenburg, M. Fast and Efficient Compression of Floating-Point Data. IEEE 
Transactions on Visualization and Computer Graphics 12, 5 (Sept. 2006), 1245–1250.

	 [10]	� Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. An Efficient Denoising Algorithm for Global 
Illumination. In Proceedings of High-Performance Graphics (2017), pp. 3:1–3:7.

	 [11]	� Merritt, E. A., and Murphy, M. E. P. Raster3D Version 2.0—A Program for Photorealistic Molecular 
Graphics. Acta Crystallography 50, 6 (1994), 869–873.

	 [12]	� Meyer, Q., Süßmuth, J., Sußner, G., Stamminger, M., and Greiner, G. On Floating-Point Normal 
Vectors. In Eurographics Symposium on Rendering (2010), pp. 1405–1409.

	 [13]	� Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., 
McGuire, M., Morley, K., Robison, A., and Stich, M. OptiX: A General Purpose Ray Tracing Engine. 
ACM Transactions on Graphics 29, 4 (2010), 66:1–66:13.

	 [14]	� Roth, S. D. Ray Casting for Modeling Solids. Computer Graphics and Image Processing 18, 2 (1982), 
109–144.

	 [15]	� Santos, J. D., Sen, P., and Oliveira, M. M. A Framework for Developing and Benchmarking 
Sampling and Denoising Algorithms for Monte Carlo Rendering. The Visual Computer 34, 6-8 
(June 2018), 765–778.

	 [16]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 2:1–2:12.

	 [17]	� Sener, M., Stone, J. E., Barragan, A., Singharoy, A., Teo, I., Vandivort, K. L., Isralewitz, B., Liu, 
B., Goh, B. C., Phillips, J. C., Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Visualization of 
Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail. In International 
Conference on High Performance Computing, Networking, Storage and Analysis (2014).

	 [18]	� Stone, J. E. An Efficient Library for Parallel Ray Tracing and Animation. Master’s thesis, 
Computer Science Department, University of Missouri-Rolla, April 1998.

	 [19]	� Stone, J. E., Isralewitz, B., and Schulten, K. Early Experiences Scaling VMD Molecular 
Visualization and Analysis Jobs on Blue Waters. In Extreme Scaling Workshop (Aug. 2013), 
pp. 43–50.

	 [20]	� Stone, J. E., Sener, M., Vandivort, K. L., Barragan, A., Singharoy, A., Teo, I., Ribeiro, J. V., 
Isralewitz, B., Liu, B., Goh, B. C., Phillips, J. C., MacGregor-Chatwin, C., Johnson, M. P., 
Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Atomic Detail Visualization of Photosynthetic 
Membranes with GPU-Accelerated Ray Tracing. Parallel Computing 55 (2016), 17–27.

RAY TRACING GEMS



515

	 [21]	� Stone, J. E., Sherman, W. R., and Schulten, K. Immersive Molecular Visualization with 
Omnidirectional Stereoscopic Ray Tracing and Remote Rendering. In IEEE International Parallel 
and Distributed Processing Symposium Workshop (2016), pp. 1048–1057.

	 [22]	� Stone, J. E., Vandivort, K. L., and Schulten, K. GPU-Accelerated Molecular Visualization on 
Petascale Supercomputing Platforms. In International Workshop on Ultrascale Visualization (2013), 
pp. 6:1–6:8.

	 [23]	� Van Wijk, J. J. Ray Tracing Objects Defined by Sweeping a Sphere. Computers & Graphics 9,  
3 (1985), 283–290.

	 [24]	� Wald, I., Friedrich, H., Knoll, A., and Hansen, C. Interactive Isosurface Ray Tracing of Time-
Varying Tetrahedral Volumes. IEEE Transactions on Visualization and Computer Graphics 13,  
6 (11 2007), 1727–1734.

	 [25]	� Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gunther, J., and Navratil, 
P. OSPRay—A CPU Ray Tracing Framework for Scientific Visualization. IEEE Transactions on 
Visualization and Computer Graphics 23, 1 (2017), 931–940.

	 [26]	� Wald, I., Woop, S., Benthin, C., Johnson, G. S., and Ernst, M. Embree: A Kernel Framework for 
Efficient CPU Ray Tracing. ACM Transactions on Graphics 33, 4 (July 2014), 143:1–143:8.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART VII

GLOBAL  
ILLUMINATION



519

PART VII

Global Illumination

Lighting in the real world is remarkably complex, in large part due to multiply 
scattered light—photons that leave a light source, bounce off other non-emissive 
surfaces, and indirectly illuminate objects in the scene. Modeling this lighting 
effect, known as global illumination, greatly contributes to the realism of rendered 
images, as it is something that we are used to seeing all the time in the real world.

Since the introduction of programmable GPUs almost 20 years ago, developers 
have worked to develop real-time global illumination algorithms. While there has 
been great innovation, it has been hampered by GPUs that, until recently, offered 
only rasterization as a visibility algorithm. The challenge with global illumination is 
that the visibility queries that one would like to make are highly incoherent, point-
to-point tests—not at all a good fit for a rasterizer.

With the introduction of RTX GPUs, ray tracing is now available in the real-time 
graphics pipeline. Of course, having this capability does not make everything easy: 
one still has to choose one’s rays carefully, use clever algorithms, and consider 
denoising. This part includes five chapters that describe cutting-edge work in ray 
tracing for global illumination, all of it well suited to GPU rendering.

Chapter 28, “Ray Tracing Inhomogeneous Volumes,” is about rendering volumetric 
scattering with ray tracing. It describes key techniques for rendering clouds, 
smoke, and explosions, with an approach that integrates cleanly into surface ray 
tracing. A full implementation of the algorithms described is included.

While not strictly related to global illumination, Chapter 29, “Efficient Particle 
Volume Splatting in a Ray Tracer,” concerns rendering hundreds of million particles 
efficiently, using ray tracing instead of rasterization. The technique could also be 
applied to ray tracing all sorts of other complex scattering effects from many small 
particles.

Chapter 30, “Caustics Using Screen-Space Photon Mapping,” is entirely focused 
on caustics, the often beautiful light patterns that result from light reflecting or 
refracting from curved surfaces. It explains how to render them using photon 
mapping, a technique based on tracing light particles from emitters and then using 
their local density at points being shaded to estimate caustics there.



520

With modern light transport algorithms, mathematical innovation can be just as 
important as code optimization and performance. Chapter 31, “Variance Reduction 
via Footprint Estimation in the Presence of Path Reuse,” considers the task of 
weighting light-carrying paths when using hybrid light transport algorithms 
that combine bidirectional path tracing and photon mapping, introducing a new 
approach to this problem.

This part (and this book) concludes with Chapter 32, “Accurate Real-Time Specular 
Reflections with Radiance Caching,” which describes a technique to accurately 
render glossy specular reflections that combines ray tracing from specular 
surfaces—to accurately compute points that they reflect—and cube map radiance 
probes—as an efficient approximation of their reflected light.

Enjoy these chapters, all of which are undeniably illuminating. The many interesting 
ideas that they present will almost certainly be useful in the rendering challenges 
that you face in the future.

Matt Pharr



521© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_28

CHAPTER 28

Ray Tracing Inhomogeneous Volumes
Matthias Raab
NVIDIA

ABSTRACT

Simulating the interaction of light with scattering and absorbing media requires 
importance sampling of distances proportional to the volume transmittance. 
A simple method originating from neutron transport simulation can be used to 
importance-sample collision events of a particle like a photon with arbitrary media.

28.1	 �LIGHT TRANSPORT IN VOLUMES

When light passes through a volume along a ray, some of it may be scattered or 
absorbed according to the medium’s light interaction properties. This is modeled 
by the medium’s scattering coefficient σ and absorption coefficient α. Generally, 
both are functions that vary with position. Adding the two, we obtain the extinction 
coefficient κ = σ + α, which characterizes total loss due to (out-)scattering and 
absorption.

The ratio of light that is not scattered out or absorbed for a distance s is called 
volume transmittance T and is described by the Beer-Lambert Law: if we follow a 
ray starting at position o in direction d, transmittance is

		
( ) ( )

0
exp .

S
T , s t dtkòæ ö+ = - +ç ÷

è ø
o o d o d

		
(1)

This term is prominently featured in the integral equations governing light 
transport. For example, the radiance scattered in along a ray for distance s is given 
by integrating the transmittance-weighted in-scattered radiance (according to 
scattering coefficient σs and phase function fp):

	
( ) ( ) ( )

0
( ) .

S

s pL , T , t , t f t , , d dts w wò ò
W

æ ö- = + + + -ç ÷
è ø

o d o o d o o d o d d
	

(2)



522

A Monte Carlo path tracer will typically want to importance-sample a distance 
proportional to T. The physical interpretation is that one would stochastically 
simulate the distance at which an interaction occurs for a photon. The path tracer 
can then randomly decide if the event is absorption or scattering and, in case of the 
latter, continue to trace the photon into a direction sampled according to the phase 
function. The probability density proportional to T is

	
( ) ( ) ( ) ( ) ( )

0
exp .

t
p t t T , t t t dtk k kòæ ö= + + = + - +ç ÷

è ø
¢ ¢o d o o d o d o d 	 (3)

In cases where the medium is homogeneous (i.e., κ is constant), this simplifies to 
an exponential distribution κe−κt and the inversion method can be applied to obtain 
the distance

				    ( )t ln 1 / ,x k= - -
	 (4)

with the desired distribution for a uniformly distributed ξ. For an inhomogenous 
medium, however, this will not work, since for general κ the integral in Equation 3 
cannot be solved analytically, or even if so, the inverse might not be available.

28.2	 �WOODCOCK TRACKING

In the context of tracking the trajectories of neutrons (where one deals with the 
same sort of equations as with photons), a technique to importance-sample 
distances in inhomogeneous media found widespread use in the 1960s. It is often 
called Woodcock tracking, referring to a publication by Woodcock et al. [5]

The idea is quite simple and based on the fact that homogeneous volumes can be 
handled easily. To obtain an artificial homogeneous setting, a fictitious extinction 
coefficient is added such that the sum of the actual and the fictitious extinctions 
equals the maximum κmax everywhere. The artificial volume can now be interpreted 
as a mix of actual particles, which actually scatter and absorb, and the fictitious 
ones that will not do anything. See Figure 28-1.

RAY TRACING GEMS



523

Using the constant extinction coefficient κmax, a distance can be sampled using 
Equation 4, and the particle will advance to that position. The collision could 
be a real one or a fictitious one, which can be randomly determined based on 
the ratio of actual to fictitious extinctions at that position (the probability of an 
actual collision is κ(x)/κmax). In the case of a fictitious collision, the particle has 
prematurely been stopped and needs to continue its path. Since the exponential 
distribution is memoryless, we may simply continue along the ray from the new 
position by repeating the previous steps until an actual collision occurs. The 
precise mathematics have been described by Coleman [1], including a proof that the 
technique importance-samples the probability density function in Equation 3.

It is worth noting that Woodcock’s original motivation was not to handle arbitrary 
inhomogeneous media, but to simplify and more efficiently handle piecewise 
homogeneous materials: treating the whole reactor as a single medium avoids all 
ray tracing operations with the complex reactor geometry.

Woodcock tracking is an elegant algorithm that works with any kind of medium 
where κmax is known, and it can be implemented in a few lines of code:

1 float sample_distance(Ray ray)

2 {

3     float t = 0.0f;

4     do {

5         t -= logf(1.0f - rand()) / max_extinction;

6     } while (get_extinction(ray.o + ray.d*t) < rand()*max_extinction);

7

8     return t;

9 }

Figure 28-1.  Illustration of a path through inhomogeneous media, with high density in the cloud 
area and lower density around it. Actual “particles” are depicted in gray and fictitious ones in white. 
Collisions with fictitious particles do not affect the trajectory.

 Ray Tracing Inhomogeneous Volumes



524

The only precaution that may be needed is to terminate the loop once the ray 
progresses to a surrounding vacuum. In this case no further interaction with the 
medium will occur and FLT_MAX may be returned. Since the procedure is unbiased, 
it is well suited for progressive Monte Carlo rendering.

28.3	 �EXAMPLE: A SIMPLE VOLUME PATH TRACER

To illustrate the application of Woodcock tracking, we present an implementation of 
a simple Monte Carlo volume path tracer in CUDA. It traces paths from the camera 
through the volume until they leave the medium. Then, it collects the contribution 
from the infinite environment dome, which can be configured to be an environment 
texture or a simple procedural gradient. For the medium we implicitly define the 
scattering coefficient to be proportional to the extinction coefficient by a constant 
albedo ρ, i.e., σ(x) = ρ ⋅ κ(x). All parameters defining the camera, volume procedural, 
and environment light are passed to the rendering kernel.

 1 struct Kernel_params {

 2     // Display

 3     uint2 resolution;

 4     float exposure_scale;

 5     unsigned int *display_buffer;

 6

 7     // Progressive rendering state

 8     unsigned int iteration;

 9     float3 *accum_buffer;

10     // Limit on path length

11     unsigned int max_interactions;

12     // Camera

13     float3 cam_pos;

14     float3 cam_dir;

15     float3 cam_right;

16     float3 cam_up;

17     float  cam_focal;

16

19     // Environment

20     unsigned int environment_type;

21     cudaTextureObject_t env_tex;

22

23     // Volume definition

24     unsigned int volume_type;

25     float max_extinction;

26     float albedo; // sigma / kappa

27 };

RAY TRACING GEMS



525

Since we need many random numbers per path and we require that they are safe 
for parallel computing, we use CUDA’s curand.

1 #include <curand_kernel.h>

2 typedef curandStatePhilox4_32_10_t Rand_state;

3 #define rand(state) curand_uniform(state)

The volume data is defined to be restricted to a unit cube centered at the origin. To 
determine the entry point to the medium, we need an intersection routine, and to 
determine when a ray leaves the medium, we need a test for inclusion.

 1 _ _device_ _ inline bool intersect_volume_box(

 2     float &tmin, const float3 &raypos, const float3 & raydir)

 3 {

 4     const float x0 = (-0.5f - raypos.x) / raydir.x;

 5     const float y0 = (-0.5f - raypos.y) / raydir.y;

 6     const float z0 = (-0.5f - raypos.z) / raydir.z;

 7     const float x1 = ( 0.5f - raypos.x) / raydir.x;

 8     const float y1 = ( 0.5f - raypos.y) / raydir.y;

 9     const float z1 = ( 0.5f - raypos.z) / raydir.z;

10

11     tmin = fmaxf(fmaxf(fmaxf(

12           fminf(z0,z1), fminf(y0,y1)), fminf(x0,x1)), 0.0f);

13     const float tmax = fminf(fminf(

14           fmaxf(z0,z1), fmaxf(y0,y1)), fmaxf(x0,x1));

15     return (tmin < tmax);

16 }

17

18 _ _device_ _ inline bool in_volume(

19     const float3 &pos)

20 {

21     return fmaxf(fabsf(pos.x),fmaxf(fabsf(pos.y),fabsf(pos.z))) < 0.5f;

22 }

The actual density of the volume will be driven by an artificial procedural, which 
modulates the extinction coefficient between zero and κmax. For illustration, we have  
implemented two procedurals: a piecewise constant Menger sponge and a smooth  
falloff along a spiral.

 1 _ _device_ _ inline float get_extinction(

 2     const Kernel_params &kernel_params,

 3     const float3 &p)

 4 {

 5     if (kernel_params.volume_type == 0) {

 6         float3 pos = p + make_float3(0.5f, 0.5f, 0.5f);

 7         const unsigned int steps = 3;

 8         for (unsigned int i = 0; i < steps; ++i) {

 9             pos *= 3.0f;

 Ray Tracing Inhomogeneous Volumes



526

10             const int s =

11                 ((int)pos.x & 1) + ((int)pos.y & 1) + ((int)pos.z & 1);

12             if (s >= 2)

13                 return 0.0f;

14         }

15         return kernel_params.max_extinction;

16     } else {

17         const float r = 0.5f * (0.5f - fabsf (p.y));

18         const float a = (float)(M_PI * 8.0) * p.y;

19         const float dx = (cosf(a) * r - p.x) * 2.0f;

20         const float dy = (sinf(a) * r - p.z) * 2.0f;

21         return powf (fmaxf((1.0f - dx * dx - dy * dy), 0.0f), 8.0f) *

22               kernel_params.max_extinction;

23     }

24 }

Inside the volume, we use Woodcock tracking to sample the next point of 
interaction, potentially stopping early in case we have left the medium.

 1 _ _device_ _ inline bool sample_interaction(

 2     Rand_state &rand_state,

 3     float3 &ray_pos,

 4     const float3 &ray_dir,

 5     const Kernel_params &kernel_params)

 6 {

 7     float t = 0.0f;

 8     float3 pos;

 9     do {

10         t -= logf(1.0f - rand(&rand_state)) /

11               kernel_params.max_extinction;

12

13         pos = ray_pos + ray_dir * t;

14         if (!in_volume(pos))

15             return false;

16

17     } while (get_extinction(kernel_params, pos) < rand(&rand_state) *

18           kernel_params.max_extinction);

19

20     ray_pos = pos;

21     return true;

22 }

Now with all the utilities in place, we can trace a path through the volume. For that, 
we start by intersecting the path with the volume cube and then advance into the 
medium. Once inside, we apply Woodcock tracking to determine the next interaction. 
At each interaction point, we weight by the albedo and apply Russian roulette to 
probabilistically terminate paths with a weight smaller than 0.2 (and unconditionally 

RAY TRACING GEMS



527

terminate paths that exceed the maximum length). If no termination occurs, we 
continue by sampling the (isotropic) phase function. Once we happen to leave the 
medium, we can look up the environment light contribution and end the path.

 1 _ _device_ _ inline float3 trace_volume(

 2     Rand_state &rand_state,

 3     float3 &ray_pos,

 4     float3 &ray_dir,

 5     const Kernel_params &kernel_params)

 6 {

 7     float t0;

 8     float w = 1.0f;

 9     if (intersect_volume_box(t0, ray_pos, ray_dir)) {

10

11         ray_pos += ray_dir * t0;

12

13         unsigned int num_interactions = 0;

14         while (sample_interaction(rand_state, ray_pos, ray_dir,

15               kernel_params))

16         {

17             // Is the path length exceeded?

18             if (num_interactions++ >= kernel_params.max_interactions)

19                 return make_float3(0.0f, 0.0f, 0.0f);

20

21             w *= kernel_params.albedo;

22             // Russian roulette absorption

23             if (w < 0.2f) {

24                 if (rand(&rand_state) > w * 5.0f) {

25                     return make_float3(0.0f, 0.0f, 0.0f);

26                 }

27                 w = 0.2f;

28             }

29

30             // Sample isotropic phase function

31             const float phi = (float)(2.0 * M_PI) * rand(&rand_state);

32             const float cos_theta = 1.0f - 2.0f * rand(&rand_state);

33             �const float sin_theta = sqrtf (1.0f - cos_theta * cos_theta);

34             ray_dir = make_float3(

35                 cosf(phi) * sin_theta,

36                 sinf(phi) * sin_theta,

37                 cos_theta);

38         }

39     }

40

41     // Look up the environment.

42     if (kernel_params.environment_type == 0) {

43         const float f = (0.5f + 0.5f * ray_dir.y) * w;

44         return make_float3(f, f, f);

 Ray Tracing Inhomogeneous Volumes



528

45     } else {

46         const float4 texval = tex2D<float4>(

47             kernel_params.env_tex,

48             atan2f(ray_dir.z, ray_dir.x) * (float)(0.5 / M_PI) + 0.5f,

49             acosf(fmaxf(fminf(ray_dir.y, 1.0f), -1.0f)) *

50                     (float)(1.0 / M_PI));

51          return make_float3(texval.x * w, texval.y * w, texval.z * w);

52     }

53 }

Finally, we add the logic to start paths from the camera for each pixel. The results 
are progressively accumulated and transferred to a tone-mapped buffer for display 
after each iteration.

 1 extern "C" _ _global_ _ void volume_rt_kernel(

 2     const Kernel_params kernel_params)

 3 {

 4     const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;

 5     const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

 6     if (x >= kernel_params.resolution.x ||

 7           y >= kernel_params.resolution.y)

 8         return;

 9

10     // Initialize pseudorandom number generator (PRNG);

11     // assume we need no more than 4096 random numbers.

12     const unsigned int idx = y * kernel_params.resolution.x + x;

13     Rand_state rand_state;

14     curand_init(idx, 0, kernel_params.iteration * 4096, &rand_state);

15

16     // Trace from the pinhole camera.

17     const float inv_res_x = 1.0f / (float)kernel_params.resolution.x;

18     const float inv_res_y = 1.0f / (float)kernel_params.resolution.y;

19     �const float pr = (2.0f * ((float)x + rand(&rand_state)) * inv_res_x

20           - 1.0f);

21       const float pu = (2.0f * ((float)y + rand(&rand_state)) * inv_res_y

22           - 1.0f);

23     �const float aspect = (float)kernel_params.resolution.y * inv_res_x;

24     float3 ray_pos = kernel_params.cam_pos;

25     float3 ray_dir = normalize(

26           kernel_params.cam_dir * kernel_params.cam_focal +

27           kernel_params.cam_right * pr +

28           kernel_params.cam_up * aspect * pu);

29     const float3 value = trace_volume(rand_state, ray_pos, ray_dir,

30           kernel_params);

31

RAY TRACING GEMS



529

32     // Accumulate.

33     if (kernel_params.iteration == 0)

34         kernel_params.accum_buffer[idx] = value;

35     else

36         kernel_params.accum_buffer[idx] =

37               kernel_params.accum_buffer[idx] +

38               (value - kernel_params.accum_buffer[idx]) /

39               (float)(kernel_params.iteration + 1);

40

41     // Update display buffer (simple Reinhard tone mapper + gamma).

42     float3 val = kernel_params.accum_buffer[idx] *

43           kernel_params.exposure_scale;

44     val.x *= (1.0f + val.x * 0.1f) / (1.0f + val.x);

45     val.y *= (1.0f + val.y * 0.1f) / (1.0f + val.y);

46     val.z *= (1.0f + val.z * 0.1f) / (1.0f + val.z);

47     const unsigned int r = (unsigned int)(255.0f *

48           �fminf(powf(fmaxf(val.x, 0.0f), (float)(1.0 / 2.2)), 1.0f));

49     const unsigned int g = (unsigned int) (255.0f *

50           �fminf(powf(fmaxf(val.y, 0.0f), (float)(1.0 / 2.2)), 1.0f));

51     const unsigned int b = (unsigned int) (255.0f *

52           �fminf(powf(fmaxf(val.z, 0.0f), (float)(1.0 / 2.2)), 1.0f));

53     kernel_params.display_buffer[idx] =

54           0xff000000 | (r << 16) | (g << 8) | b;

55 }

Example renderings produced by the presented path tracer can be seen in 
Figure 28-2.

 Ray Tracing Inhomogeneous Volumes



530

28.4	 �FURTHER READING

The Woodcock tracking method can also be used to probabilistically evaluate the 
transmittance, as, e.g., required when tracing shadow rays through volumes. This 
can be achieved by sampling (potentially multiple) distances and using the ratio 
of those that “survive the trip” as estimate [4]. As an optimization, the random 
variable for continuing the path may be replaced by its expected value: instead of 
continuing the path with probability 1 − κ(x)/κmax, the product of those probabilities 
(until the distance is covered) may be used [2].

If the maximum extinction coefficient in a scene is much higher than the one 
typically encountered, many iterations are necessary and the method becomes 
inefficient. The detailed state-of-the-art report by Novák et al. [3] provides a good 
summary for further optimization.

Figure 28-2.  The two procedural volume functions implemented in the sample path tracer, lit by a 
simple gradient (top) and an environment map (bottom). The albedo is set to 0.8 and the maximum 
number of volume interactions is limited to 1024. (Environment map image courtesy of Greg Zaal, 
https://hdrihaven.com.)

RAY TRACING GEMS

https://hdrihaven.com


531

REFERENCES

	 [1]	� Coleman, W. Mathematical Verification of a Certain Monte Carlo Sampling Technique and 
Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering 
32 (1968), 76–81.

	 [2]	� Novák, J., Selle, A., and Jarosz, W. Residual Ratio Tracking for Estimating Attenuation  
in Participating Media. ACM Transactions on Graphics (SIGGRAPH Asia) 33, 6 (Nov. 2014),  
179:1–179:11.

	 [3]	� Novák, J., Georgiev, I., Hanika, J., and Jarosz, W. Monte Carlo Methods for Volumetric Light 
Transport Simulation. Computer Graphics Forum 37, 2 (May 2018), 551–576.

	 [4]	� Raab, M., Seibert, D., and Keller, A. Unbiased Global Illumination with Participating Media. In 
Monte Carlo and Quasi-Monte Carlo Methods, A. Keller, S. Heinrich, and N. H., Eds. Springer, 2008, 
pp. 591–605.

	 [5]	� Woodcock, E. R., Murphy, T., Hemmings, P. J., and Longworth, T. C. Techniques Used in the 
GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex 
Geometry. In Conference on Applications of Computing Methods to Reactor Problems (1965), 
pp. 557–579.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Ray Tracing Inhomogeneous Volumes

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


533© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_29

CHAPTER 29

Efficient Particle Volume Splatting 
in a Ray Tracer
Aaron Knoll, R. Keith Morley, Ingo Wald, Nick Leaf, and Peter Messmer

NVIDIA

ABSTRACT

Rendering of particle data sets is a common problem in many domains 
including games, film, and scientific visualization. Conventionally, this has been 
accomplished using rasterization-based splatting methods, which scale linearly 
with respect to problem size. Given sufficiently low-cost ray traversal with 
logarithmic complexity, splatting within a ray tracing framework could scale better 
to larger geometry. In this chapter, we provide a method for efficiently rendering 
larger particle data, exploiting ray coherence and leveraging hardware-accelerated 
traversal on architectures such as the NVIDIA RTX 2080 Ti (Turing) GPUs with RT 
Cores technology.

29.1	 �MOTIVATION

Rasterization-based GPU splatting approaches generally break down when 
most primitives have subpixel footprints and when depth sorting is desired. This 
occurs due to the linear cost of depth-sorting fragments, as well as incoherent 
framebuffer traffic, and in practice hampers interactive performance for particle 
counts beyond 20 million depending on the GPU. There are numerous workarounds 
for faster raster performance including view-dependent spatial subdivision, level of 
detail, disabling the depth test and alpha blending, or resampling onto a proxy such 
as texture slices. However, for all of these, performance suffers when one actually 
renders a sufficiently high number of particles.

One could equally use ray tracing architectures to efficiently traverse and render 
full particle data. Traversing an acceleration structure generally has logarithmic 
time complexity; moreover, it can be done in a way that fosters many small, 
localized primitive sorts instead of a single large sort. In this manner, we wish 
performance to mirror the number of primitives actually intersected by each ray, 
not the total complexity of the whole scene. There are other reasons for rendering 
particle data within a ray tracing framework, for example allowing particle 



534

effects to be efficiently rendered within reflections. Ray casting large quantities of 
transparent geometry poses its own challenges; this chapter provides one solution 
to this problem. It is particularly geared toward visualization of large sparse 
particle data from N-body and similar simulations, such as the freely available 
DarkSky cosmology data sets [6] shown in Figure 29-1. It could also be of use 
in molecular, materials, and hydrodynamics simulations and potentially larger 
particle effects in games and film.

Figure 29-1.  One hundred million particle subset of the DarkSky N-body gravitational cosmology 
simulation, rendered in its entirety at 35 FPS (1080p) or 14 FPS (4k) without level of detail, on an NVIDIA 
RTX 2080 Ti with RT Cores technology.

29.2	 �ALGORITHM

Our aim is to create a scalable analog to rasterization-based billboard splatting 
(see, e.g., Westover’s work [7]) using ray tracing traversal. The core idea is to 
sample each particle close to its center point along the viewing ray, then integrate 
over the set of depth-sorted samples along that ray.

Our primitive is a radial basis function (RBF) with a radius r, particle center P, and 
bounds defined by a bounding box centered around the particle with width 2r. The 
sample (intersection hit) point X is given by the distance to the center of the particle 
P evaluated along the ray with origin O and direction d,

				    X O P O .= + - d 			   (1)

RAY TRACING GEMS



535

We then evaluate a Gaussian radial basis function at this sample point,

				    ( ) ( )X P rX e
2 2/ .f - -=

		  (2)

This primitive test occurs in object space, sampling the RBF within a three-
dimensional bounding box as opposed to a two-dimensional billboard in a 
rasterized splatter. This yields more continuous results when zoomed into particle 
centers and does not require refitting the acceleration structure to camera-aligned 
billboard geometry.

Then, the set of depth-sorted samples {ϕ(Xi)} along each ray is composited using 
the over operator [3],

				    ( )f b1 ,a a= - +c c c
			 

(3)

where the opacity of a sample α = ϕ(Xi) and color c = c(ϕ(Xi)) correspond to the 
current sample mapped via a transfer function, and f and b denote front and back 
values in the blending operation, respectively.

29.3	 �IMPLEMENTATION

Our challenge is now to efficiently traverse and sort as many particles as possible 
within a ray tracing framework. We chose to use the NVIDIA OptiX SDK [4], which 
is suited for scientific visualization and high-performance computing applications 
running under Linux. Though more memory-efficient approaches would be 
beneficial, for this sample we use a generic 16-byte (float4) primitive paired with 
the default acceleration structure and traversal mechanism supplied by the ray 
tracing API.

This method could be implemented naively with an OptiX [4] closest-hit program, 
casting first a primary ray and then a secondary transmission ray for each particle 
hit until termination. However, this would entail large numbers of incoherent rays, 
resulting in poor performance.

We therefore use an approach that coherently traverses and intersects subregions 
of the volume in as few traversals as possible, as shown in Figure 29-2. This bears 
similarities to the RBF volume methods [2], as well as game particle effects that 
resample onto regularly spaced two-dimensional texture slices [1]. However, it is 
simpler and more brute-force in the sense that, given a sufficiently large buffer to 
prevent overflow, it faithfully reproduces every intersected particle. We implement 
this using an any-hit program in OptiX as described in Section 29.3.2.

 Efficient Particle Volume Splatting in a Ray Tracer



536

29.3.1	 �RAY GENERATION PROGRAM

Our approach proceeds as follows: we intersect the volume bounding box and 
divide the resulting interval into slabs, spaced by slab_spacing. For each slab, 
we set the ray.tmin and ray.tmax to appropriately prune acceleration structure 
traversal. We then traverse with rtTrace(), which fills the buffer in PerRayData 
with the intersected samples within that slab. We subsequently sort and integrate 
that list of samples in the buffer. The following pseudocode omits some details 
(evaluating the radial basis function and applying a transfer function); for complete 
code refer to the accompanying source (Section 29.5).

 1 struct ParticleSample {

 2   float t;

 3   uint id;

 4 };

 5

 6 const int PARTICLE_BUFFER_SIZE = 31;   // 31 for Turing, 255 for Volta

 7

 8 struct PerRayData {

 9   int           tail;                 // End index of the array

10   int           pad;

11   ParticleSample    particles[PARTICLE_BUFFER_SIZE]; // Array

12 };

13

Figure 29-2.  Overview of our algorithm. The geometric primitive is a spherical radial basis function 
centered at a point. The hit position is the distance to the particle center evaluated along the view ray. To 
ensure coherent behavior during traversal of this geometry, we divide the volume into segments along 
rays, resulting in slabs. We then traverse and sort the set of intersected particles within each slab.

RAY TRACING GEMS



537

14 rtDeclareVariable(rtObject,       top_object, , );

15 rtDeclareVariable(float,          radius, , );

16 rtDeclareVariable(float3,         volume_bbox_min, , );

17 rtDeclareVariable(float3,         volume_bbox_max, , );

18 rtBuffer<uchar4, 2>               output_buffer;

19

20 RT_PROGRAM raygen_program()

21 {

22   optix::Ray ray;

23   PerRayData prd;

24

25   generate_ray(launch_index, camera); // Pinhole camera or similar

26   optix::Aabb aabb(volume_bbox_min, volume_bbox_max);

27

28   float tenter, texit;

29   intersect_Aabb(ray, aabb, tenter, texit);

30

31   float3 result_color = make_float3(0.f);

32   float result_alpha = 0.f;

33

34   if (tenter < texit)

35   {

36     const float slab_spacing =

37           PARTICLE_BUFFER_SIZE * particlesPerSlab * radius;

38     float tslab = 0.f;

39

40     while (tslab < texit && result_alpha < 0.97f)

41     {

42       prd.tail = 0;

43       ray.tmin = fmaxf(tenter, tslab);

44       ray.tmax = fminf(texit, tslab + slabWidth);

45

46       if (ray. tmax > tenter)

47       {

48         rtTrace(top_object, ray, prd);

49

50         sort(prd.particles, prd.tail);

51

52         // Integrate depth-sorted list of particles.

53         for (int i=0; i< prd.tail; i++) {

54           float drbf = evaluate_rbf(prd.particles[i]);

55            float4 color_sample = transfer_function(drbf); // return RGBA

56           float alpha_1msa = color_sample.w * (1.0 - result_alpha);

57           result_color += alpha_1msa * make_float3(

58                 color_sample.x, color_sample.y, color_sample.z);

59           result_alpha += alpha_1msa;

60         }

61       }

 Efficient Particle Volume Splatting in a Ray Tracer



538

62       tslab += slab_spacing;

63     }

64   }

65

66   output_buffer[launch_index] = make_color( result_color ));

67 }

29.3.2	 �INTERSECTION AND ANY-HIT PROGRAMS

The intersection program is simple even when compared to ray/sphere 
intersection: We use the distance to the particle center along the viewing ray as the 
hit point sample_pos. We then check whether the sample is within the RBF radius; 
if so, we report an intersection. Our any-hit program then appends the intersected 
particle to the buffer, which is sorted by the ray generation program when traversal 
of the slab completes.

 1 �rtDeclareVariable(ParticleSample,hit_particle,attribute hit_particle,);

 2

 3 RT_PROGRAM void particle_intersect( int primIdx )

 4 {

 5   const float3 center = make_float3(particles_buffer[primIdx]);

 6   const float t = length(center - ray.origin);

 7   const float3 sample_pos = ray.origin + ray.direction * t;

 8   const float3 offset = center - sample_pos;

 9   if ( dot(offset, offset) < radius * radius &&

10        rtPotentialIntersection(t) )

11   {

12     hit_particle.t = t;

13     hit_particle.id = primIdx;

14     rtReportIntersection( 0 );

15   }

16 }

17

18 RT_PROGRAM void any_hit()

19 {

20   if (prd.tail < PARTICLE_BUFFER_SIZE) {

21     prd.particles[prd.tail++] = hit_particle;

22     rtIgnoreIntersection();

23   }

24 }

29.3.3	 �SORTING AND OPTIMIZATIONS

The choice of PARTICLE_BUFFER_SIZE and consequently the ideal sorting 
algorithm depends on the expected performance of rtTrace(). On the NVIDIA 
Turing architecture with dedicated traversal hardware, we achieved the best 
performance with an array size of 31 and bubble sort. This is not surprising given 
the small size of the array, and that the elements are already partially sorted from 

RAY TRACING GEMS



539

bounding volume hierarchy traversal. On architectures with software traversal such 
as Volta, we experienced best results with a larger array of 255, relatively fewer slabs 
(thus traversals), and bitonic sort. Both are implemented in our reference code.

The value of particlesPerSlab should be chosen carefully based on the desired 
radius and degree of particle overlap; in our cosmology sample we default to 16. 
For larger radius values particles may overlap such that a larger  
PARTICLE_BUFFER_SIZE is required for correctness.

29.4	 �RESULTS

Performance of our technique on both NVIDIA RTX 2080 Ti (Turing) and Titan 
V (Volta) architectures is provided in Table 29-1, for a screen-filling view of the 
DarkSky data set at 1080p (2 megapixel) and 4k (8 megapixel) screen resolutions. 
The RT Cores technology in Turing enables performance at least 3× faster than on 
Volta, and up to nearly 6× in the case of smaller scenes.

Table 29-1.  Performance in milliseconds for screen-filling DarkSky reference scenes of varying 
numbers of particles.

We found that our slab-based approach was roughly 3× faster than the naive 
closest-hit approach mentioned in Section 29.2 on Turing, and 6–10× faster on 
Volta. We also experimented with a method based on insertion sort, which has the 
advantage of never over-running our fixed-size buffer; this was generally 2× and 
2.5× slower than the slabs approach on Turing and Volta, respectively. Lastly, we 
compared performance with a rasterized splatter [5], and we found that our ray 
tracing method was 7× faster for the 100M particle data set for both 4k and 1080p 
resolution on the NVIDIA RTX 2080 Ti, with similar cameras and radii.

29.5	 �SUMMARY

In this chapter, we describe a method for efficiently splatting on Turing and future 
NVIDIA RTX architectures leveraging hardware ray traversal. Despite using custom 
primitives, our method is 3× faster on Turing than on Volta, roughly 3× faster 
than a naive closest-hit approach, and nearly an order of magnitude faster than a 

 Efficient Particle Volume Splatting in a Ray Tracer



540

comparable rasterization-based splatter with depth sorting. It enables real-time 
rendering of 100 million particles with full depth sorting and blending, without 
requiring level of detail.

Our approach is geared primarily toward sparse particle data from scientific 
visualization, but it could easily be adapted to other particle data. When particles 
significantly overlap, full RBF volume rendering, or resampling onto proxy 
geometry or structured volumes, may prove more advantageous.

We have released our code as open source in the OptiX Advanced Samples Github 
repository: https://github.com/nvpro-samples/optix_advanced_samples.

REFERENCES

	 [1]	� Green, S. Volumetric Particle Shadows. NVIDIA Developer Zone, https://developer.
download.nvidia.com/assets/cuda/files/smokeParticles.pdf, 2008.

	 [2]	� Knoll, A., Wald, I., Navratil, P., Bowen, A., Reda, K., Papka, M. E., and Gaither, K. RBF Volume Ray 
Casting on Multicore and Manycore CPUs. Computer Graphics Forum 33, 3 (2014), 71–80.

	 [3]	� Levoy, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications, 3 
(1988), 29–30.

	 [4]	� Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., 
McGuire, M., Morley, K., Robison, A., et al. OptiX: A General Purpose Ray Tracing Engine. ACM 
Transactions on Graphics 29, 4 (2010), 66:1–66:13.

	 [5]	� Preston, A., Ghods, R., Xie, J., Sauer, F., Leaf, N., Ma, K.-L., Rangel, E., Kovacs, E., Heitmann, 
K., and Habib, S. An Integrated Visualization System for Interactive Analysis of Large, 
Heterogeneous Cosmology Data. In Pacific Visualization Symposium (2016), pp. 48–55.

	 [6]	� Skillman, S. W., Warren, M. S., Turk, M. J., Wechsler, R. H., Holz, D. E., and Sutter, P. M. Dark Sky 
Simulations: Early Data Release. arXiv, https://arxiv.org/abs/1407.2600, July 2014.

	 [7]	� Westover, L. Footprint Evaluation for Volume Rendering. Computer Graphics (SIGGRAPH) 24, 4 
(1990), 367–376.

RAY TRACING GEMS

https://github.com/nvpro-samples/optix_advanced_samples
https://developer.download.nvidia.com/assets/cuda/files/smokeParticles.pdf
https://developer.download.nvidia.com/assets/cuda/files/smokeParticles.pdf
https://arxiv.org/abs/1407.2600


541

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Efficient Particle Volume Splatting in a Ray Tracer

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


543© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_30

CHAPTER 30

Caustics Using Screen-Space  
Photon Mapping
Hyuk Kim
devCAT Studio, NEXON Korea

ABSTRACT

Photon mapping is a global illumination technique for rendering caustics and 
indirect lighting by simulating the transportation of photons emitted from the light. 
This chapter introduces a technique to render caustics with photon mapping in 
screen space with hardware ray tracing and a screen-space denoiser in real time.

30.1	 �INTRODUCTION

Photon mapping is a novel global illumination technique invented by Henrik  
Wann Jensen [2]. It uses a photon to simulate light transportation to obtain  
global illumination and concentrated light images such as caustics. While it is 
useful for rendering caustics, traditional photon mapping has not been practical for 
real-time games. It requires many photons to obtain smooth images. This means 
that significant ray tracing is required.

McGuire and Luebke have developed image space photon mapping (ISPM) [4] in 
real time. ISPM stores a photon as a volume in the world. Because there are far 
fewer of these photons than real-world photons, they must be spread (scattered) 
in some way. In this chapter, a photon is stored as a texel in screen space instead 
of a photon volume or a surfel in world space. Although this approach, which I call 
screen-space photon mapping (SSPM), still has a few limitations, there are some 
advantages, such as caustics.

Caustics are a result of intense light. If a photon passes through two media with 
the different indices of refraction, e.g., from air to glass or from air to water, the 
photon is refracted and its direction of propagation changes. Refracted photons can 
be either scattered or concentrated. Such concentrated photons generate caustics. 
Alternatively, reflections can make caustics, too. Reflected photons can also be 
concentrated by surrounding objects. Examples of caustics are shown in Figure 30-1; 
in the top right image, the yellow caustics are generated from reflections off the ring.



544

Note that, in this chapter, screen-space photon mapping is used purely for caustics, 
not for global illumination of the whole scene. For obtaining global illumination, 
other optimized general-purpose “large” photon-gathering techniques [1, 3] might 
provide a better solution.

30.2	 �OVERVIEW

Photon mapping is usually performed in two stages: photon map generation and 
rendering. I have divided it into three:

>> Photon emission and photon tracing (scattering).

>> Photon gathering (denoising).

>> Lighting with the photon map.

The first stage is photon emission and photon tracing, described in detail in  
Section 30.3.1. Each ray in the DirectX Raytracing (DXR) ray generation shader 
corresponds to a single photon. When a single photon is traced from a light source 
to an opaque surface, the photon gets stored in screen space. Note that the emission 
and tracing of a photon are not screen-space operations. With DXR, ray tracing 
is performed in world space instead of screen space, as done for screen-space 
reflections. After ray tracing, the photon is stored in screen space. The render target 
texture storing these photons then becomes a screen-space photon map.

Figure 30-1.  Caustics generated by screen-space photon mapping, with 2k × 2k photons for each 
scene: from top left to bottom right, Conference Room, Ring and Bunny on Conference Room (Ring & 
Bunny), Bistro, and Cornell Box. Performance measures are shown later in Table 30-2.

RAY TRACING GEMS



545

Since a photon is stored as a texel in the screen-space texture, the screen-space 
photon map has noisy caustics (such as shown in the left part of Figure 30-4). 
For that reason, the second stage, called photon gathering or photon denoising, is 
required to smoothen the photon map, which will be described in Section 30.3.2. 
After the photons are gathered, we obtain a smooth photon map. Finally, the photon 
map is used within the direct lighting process, described in Section 30.3.3.

Note that I assume a deferred rendering system. The G-buffer for deferred 
rendering, including a depth buffer or roughness buffer, is used for storing and 
gathering photons in screen space.

30.3	 �IMPLEMENTATION

30.3.1	 �PHOTON EMISSION AND PHOTON TRACING

The symbols used in this section are summarized in Table 30-1.

30.3.1.1	�PHOTON EMISSION

A photon is emitted and traced in world space. The emitted photon has color, 
intensity, and direction. A photon that finally stops in the world has only color and 
intensity. Since more than one photon can be stored in a single pixel, the incoming 
direction cannot be preserved. Photon flux (color and intensity) is stored in a pixel 
without a direction.

Table 30-1.  Summary of symbols.

 Caustics Using Screen-Space Photon Mapping 



546

For a point light, photons are emitted from the position of the light. Equation 1 
shows the emission flux Φe of a photon has the intensity of a light ray,

				  

e
e

w h

l
p p

1 ,
4p

F =
				  

(1)

where pw and ph are the sizes of photon rays and le is the radiance of the light from 
the light source:

			   light color light intensity.el = ´ 			   (2)

Equations for a directional light are similar. Unlike a point light, photons of a 
directional light spread to the whole scene without attenuation. Since each photon 
corresponds to multiple ray traces, reducing wastage of photons is important for 
both quality and performance. To reduce such wastage, Jensen [2] used projection 
maps to concentrate photons on significant areas. A projection map is a map of the 
geometry seen from the light source, and it contains information on whether the 
geometry exists for a particular direction from the light.

For simplicity and efficiency, I used a bounding box called a projection volume for a 
directional light. Its purpose is the same as the cell in Jensen’s projection maps. 
A projection volume is a bounding box in which there exist objects generating 
caustics, as shown by volume V in Figure 30-2. By projecting the box to the 
negative direction of the directional light, we can obtain a rectangular light area 
shown as area A. If we emit photons only to the projection volume, photons can be 
concentrated on objects generating caustics for the directional light. Moreover, 
we can control the number of rays to obtain either consistent quality or consistent 
performance, i.e., constant photon emission area or constant ray tracing count.

Figure 30-2.  Left: Projection volume V and corresponding light area A. Right: the projection volume is 
placed onto the table encompassing transparent objects. (a) Rays that generate caustics tracing through 
transparent objects are marked in orange. (b) Photons corresponding to direct light are marked in red. 
These photons are discarded. (c) Outside of the projection volume, no rays will be emitted.

RAY TRACING GEMS



547

For the resolution of light area A created with projection map V, pwph is the size of 
the ray generation shader passed to dispatched rays such as a point light. Each 
ray of the ray generation shader carries a photon emitted from area A. Since each 
photon corresponds to a portion of the light area, each photon has area 1/(pwph) for 
light area al. The emission flux of a directional light is

				  
D .l
e e

w h

a
l

p p
F =

				  
(3)

However, it should be noted that al is the area of light area A in world-space units.

30.3.1.2	�PHOTON TRACING

After a photon is emitted, the photon is ray traced in the world until the maximum 
number of ray tracing steps is reached or a surface hit by the photon is opaque. 
In more detail, after a ray traces and hits some object, it evaluates material 
information. If the surface hit by the ray is opaque enough, the photon will stop and 
the scene depth will be evaluated to check whether the surface would store the 
photon in screen space or not. If no object is hit, or the photon’s scene depth from 
the camera is beyond that stored in the depth buffer, the photon will be discarded. 
Another condition for stopping the photon is when photon intensity is negligibly 
small, i.e., the photon is diminished while passing through transparent objects.

The red rays in Figure 30-2 correspond to direct light and will not be stored. It 
is redundant to store a photon from direct lighting since we process direct light 
in a separate pass. Removing all direct light might create some artifacts around 
shadow edges in the denoising stages, but these are not very noticeable. 

Because tracing a ray through transparent objects is not a special part in photon 
mapping, I have skipped those details.

In short, there are four conditions under which a photon will not be stored:

	1.	 The photon’s intensity is negligibly small.

	2.	 The location to be stored is out of the screen.

	3.	 The photon travels beyond the stored depth buffer values.

	4.	 The photon is part of direct lighting.

The code for generating photons is in the function rayGenMain of PhotonEmission.
rt.hlsl.

 Caustics Using Screen-Space Photon Mapping 



548

30.3.1.3	�STORING PHOTONS

A significant part of the screen-space photon mapping process is that a photon is 
compressed into a single pixel. This might be wrong for a given pixel, but energy 
will be conserved as a whole. Instead of a photon spreading out (scattering) into 
neighboring pixels, the compressed photon is stored in a single pixel. After being 
stored, the pixel’s photon will be scattered onto its neighbors (i.e., it gathers from 
its neighbors) in the following denoise stage.

The area ap of a pixel in world-space units is

		

( ) ( )yx
p

dd
a

w h

2 tan / 22 tan / 2
,

qq æ öæ ö
ç ÷= ç ÷ç ÷ç ÷è øè ø 		

(4)

where w and h are the width and height, respectively, of the screen; θx and θy are the 
field-of-view x and y angles, respectively, of the field of view; and d is the distance 
from the eye to the pixel in world space.

Since Φe is not radiance, but flux, a photon must be turned into proper radiance. 
The radiance lp to be stored in a pixel is

		

ye x e
p

p w h

l whl
a p pd

1

2
4 4 tan tan .

2 2

qq
p

-
æ öæ ö æ öF æ ö

= = ç × ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷è ø è øè øè ø 		
(5)

Note that one of the advantages of screen-space photon mapping is that the photon 
can use the eye vector when being stored. This means that the photon can have 
specular color as well as diffuse color evaluated from the BRDFs of the surfaces.

Figure 30-3 shows comparisons on different numbers of the photons before 
denoising. The code for storing photon implementation is in the function 
storePhoton of PhotonEmission.rt.hlsl.

RAY TRACING GEMS



549

30.3.2	 �PHOTON GATHERING

Traditional photon mapping uses several techniques to get an accurate and smooth 
result. To obtain real-time performance, one of the easiest ways to gather photons 
in screen space is by using the reflection denoiser from NVIDIA GamesWorks Ray 
Tracing [5]. With a reflection denoiser, we can think of photons as reflections with 
some tricks.

The denoiser receives the camera data (matrix), depth buffer, roughness buffer, 
and normal buffer as inputs. It constructs a world from the camera matrix and 
depth, then gathers neighbor’s reflections based on normal and roughness. Keep 
in mind that the denoiser receives a buffer containing hit distances from the pixel to 
the reflection hits.

In a photon denoiser, hit distance becomes the distance from the last hit position to 
the pixel, fundamentally the same as for reflections. Unlike reflections, however, 
a photon map does not need to be sharp. As a small hit distance prevents photon 
maps from blurring, I clamped the distance to a proper value that varies based on 
the scene.

Figure 30-3.  From top left to bottom right, 500 × 500, 1000 × 1000, 2000 × 2000, and 3000 × 3000 
photons with directional light in the Bistro scene.

 Caustics Using Screen-Space Photon Mapping 



550

The normal and roughness are static values for the photon denoiser. On one hand, 
photons would not gather well if the original normal of an object is used. On the 
other hand, roughness is a crucial part of denoising reflections and so original 
values should ideally be retained. After some experimentation, I set the normal as 
the direction to the camera from the pixel and the roughness as some value around 
0.07. These values might change for different scenes or for different versions of 
the denoiser. I set roughness as a parameter for global blurriness of the scene and 
adjusted blurriness per photon by hit distance.

See the comparison of before and after denoising in Figure 30-4. Here is a 
summary of the denoiser parameters for the photon denoiser:

>> Normal: Direction from the pixel to the camera.

>> Roughness: Constant parameter; 0.07 worked well for me.

>> Hit distance: Last traced distance clamped with minimum and maximum 
values. In my scene, 300 and 2000 were the minimum and maximum values, 
respectively. I recommend that you make a distance function suitable for your 
scene.

Figure 30-4.  Left: before denoising. Right: after denoising. Top: Ring & Bunny. Bottom: Cornell Box. 
Both scenes are rendered with 2k × 2k photons from point lights.

RAY TRACING GEMS



551

The implementation is in the class PhotonGather::GameWorksDenoiser in 
PhotonGather.cpp.

Note that while using the GameWorks denoiser works quite well, it is only one 
of the good methods for denoising. Since the GameWorks ray tracing denoiser 
is bilateral filtering for ray tracing, readers may want to implement a denoiser 
specifically for photon noise to obtain fine-tuning and efficiency.

In addition to the GameWorks denoiser, a bilateral photon denoiser is also provided 
in the class PhotonGather::BilateralDenoiser in PhotonGather.cpp. The 
bilateral photon denoiser consists of two parts: downsampling a photon map 
and denoising a photon map. A downsampled photon map is used for near-depth 
surfaces (which is not discussed here; see detailed comments in the code). There 
are also good references on bilateral filtering [3, 6].

30.3.3	 �LIGHTING

Lighting with a photon map is simple. Photon map lighting is just like screen-space 
lighting on deferred rendering system. A photon presented in a photon map is 
considered as an additional light for the pixel. The center of Figure 30-5 shows this 
photon map only.

Figure 30-5.  Left: Without SSPM. Center: Photon map only. Right: Composited. Top: Bistro. Bottom: 
Cornell Box.

 Caustics Using Screen-Space Photon Mapping 



552

30.4	 �RESULTS

With the help of Microsoft’s DXR and NVIDIA’s RTX, practical caustic rendering 
in real time with some limitations can be achieved. Figure 30-1 shows results 
of caustics and their performance measures are listed in Table 30-2. All the 
performance measurements include time spent denoising. The cost of the denoiser 
is about 3–5 ms. Note that using the reflection denoiser is not an optimized solution 
for photon denoising.

Table 30-2.  Performance for the scenes in Figure 30-1 on a GeForce RTX 2080 Ti with 1920 × 1080 
pixels. All measures are in milliseconds and each number in parentheses is the difference from the 
cost without SSPM.

All the figures in this chapter were rendered with Unreal Engine 4; however, the 
accompanying code is based on NVIDIA’s Falcor engine. The timing results for no 
SSPM versus 1k × 1k SSPM show little difference for the Bistro because this scene 
has many objects.

30.4.1	 �LIMITATIONS AND FUTURE WORKS

While screen-space photon mapping is practical in real time, there are some 
limitations and artifacts produced. First, due to the lack of an atomic operation 
when writing a pixel to a buffer in the ray tracing shader, there might exist some 
values being lost when two shader threads write the same pixel simultaneously. 
Second, because pixels near the screen frustum’s near depth are too high 
resolution for photons, photons do not gather well when the camera approaches 
the caustic surfaces. This might be improved by using other blurring techniques 
with a custom denoiser for future works.

RAY TRACING GEMS



553

30.4.2	 �TRANSPARENT OBJECTS IN THE DEPTH BUFFER

In this chapter, transparent objects are drawn to the depth buffer, just like 
opaque objects. The translucency of transparent objects is performed by ray 
tracing, starting from the surfaces of these objects. While this is not the usual 
implementation of deferred rendering, it has some pros and cons for caustics. 
Caustics photons can be stored on transparent objects when they are drawn in the 
depth buffer. However, we cannot see caustics beyond transparent objects. This 
limitation can be seen in the Cornell Box scene in Figure 30-1.

30.4.3	 �PRACTICAL USAGE

As mentioned previously, some of the photons are lost when they are written in 
a buffer. Besides, the number of photons is far less than what we would need for 
real-world representations. Some of the photons are blurred out by the denoising 
process. For practical and artistic purposes, one can add additional intensity 
to caustics. This is not physically correct but would complement some loss of 
photons. Note that the figures presented here have not had additional intensity 
applied in order to show precise results.

There is one more thing to consider. As you know, caustics generated from 
reflection and refraction should be used under restricted conditions. The current 
implementation has been chosen to have transparent iterations as the main loop. 
Rays causing reflection caustics are generated in each transparent loop. This is 
shown in Section 30.5. If the scene is affected by reflection caustics more than 
refractions, a reflection loop might be more suitable.

30.5	 �CODE

The following pseudocode corresponds to photon emission and photon tracing, 
including storing a photon. Real code can be found in PhotonEmission.rt.hlsl.

 1 void PhotonTracing(float2 LaunchIndex)

 2 {

 3     // Initialize rays for a point light.

 4     Ray = UniformSampleSphere(LaunchIndex.xy);

 5

 6     // Ray tracing

 7     for (int i = 0; i < MaxIterationCount; i++)

 8     {

 9         �// Result of(reconstructed) surface data being hit by the ray.

10         Result = rtTrace(Ray);

11

 Caustics Using Screen-Space Photon Mapping 



554

12         bool bHit = Result.HitT >= 0.0;

13         if (!bHit)

14             break;

15

16         // Storing conditions are described in Section 30.3.1.2.

17         if(CheckToStorePhoton(Result))

18         {

19             // Storing a photon is described in Section 30.3.1.3.

20             StorePhoton(Result);

21         }

22

23         // Photon is reflected if the surface has low enough roughness.

24         if(Result.Roughness <= RoughnessThresholdForReflection)

25         {

26             FRayHitInfo Result = rtTrace(Ray)

27             bool bHit = Result.HitT >= 0.0;

28             if (bHit && CheckToStorePhoton(Result))

29                 StorePhoton(Result);

30         }

31         Ray = RefractPhoton(Ray, Result);

32     }

33 }

REFERENCES

	 [1]	� Jendersie, J., Kuri, D., and Grosch, T. Real-Time Global Illumination Using Precomputed 
Illuminance Composition with Chrominance Compression. Journal of Computer Graphics 
Techniques 5, 4 (2016), 8–35.

	 [2]	 Jensen, H. W. Realistic Image Synthesis Using Photon Mapping. A K Peters, 2001.

	 [3]	� Mara, M., Luebke, D., and McGuire, M. Toward Practical Real-Time Photon Mapping: Efficient 
GPU Density Estimation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D 
Graphics and Games (2013), pp. 71–78.

	 [4]	� McGuire, M., and Luebke, D. Hardware-Accelerated Global Illumination by Image Space Photon 
Mapping. In Proceedings of High-Performance Graphics (2009), pp. 77–89.

	 [5]	� NVIDIA. GameWorks Ray Tracing Overview. https://developer.nvidia.com/gameworks-
ray-tracing, 2018.

	 [6]	� Weber, M., Milch, M., Myszkowski, K., Dmitriev, K., Rokita, P., and Seidel, H.-P. Spatio-Temporal 
Photon Density Estimation Using Bilateral Filtering. In IEEE Computer Graphics International 
(2004), pp. 120–127.

RAY TRACING GEMS

https://developer.nvidia.com/gameworks-ray-tracing
https://developer.nvidia.com/gameworks-ray-tracing


555

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Caustics Using Screen-Space Photon Mapping 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


557© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_31

CHAPTER 31

Variance Reduction via Footprint 
Estimation in the Presence of  
Path Reuse
Johannes Jendersie
Clausthal University of Technology

ABSTRACT

Multiple importance sampling is a tool to weight the results of different samplers 
with the goal of a minimal variance for the sampled function. If applied to light 
transport paths, this tool enables techniques such as bidirectional path tracing 
and vertex connection and merging. The latter generalizes the path probability 
measure to merges—also known as photon mapping. Unfortunately, the resulting 
heuristic can fail, resulting in a noticeable increase of noise. This chapter provides 
an insight into why things go wrong and proposes a simple-to-implement heuristic 
that is closer to an optimal solution and more reliable over different scenes. 
The trick is to use footprint estimates of sub-paths to predict the true variance 
reduction that is introduced by reusing all the photons.

31.1	 �INTRODUCTION

In light transport simulation there is a multitude of sampling strategies, visualized 
in Figure 31-1. By tracing paths, beginning at a sensor, we can randomly find 
light sources in the scene and compute their contributions through the sampled 
paths. Additionally, next event estimation, the connection toward a known light 
source, helps to locate smaller light sources. Both sampling strategies together 
form the path tracing (PT) algorithm, introduced by Kajiya [8]. In bidirectional path 
tracing (BPT) [9, 13] all possible connections between a random view sub-path and 
a random light sub-path provide additional samplers. BPT is able to find caustic 
paths using the camera connection, something not possible in PT.



558

Veach [14] introduced several weighting strategies to combine all these different 
samplers in an almost-optimal way. The most-used strategy is known as the 
balance heuristic, which reads

				  

a a
a

b b
b S

n p
w

n p
,

Î

=
å

				  

(1)

where a and b are indices of samplers, from the set S of possible samplers, with 
probability densities p{a, b}. If a sampler is applied multiple times, this is accounted 
for by the factors n{a, b}. In PT and BPT, n is always one. The result of the balance 
heuristic is a weight w for each sampler such that all weights on a path sum up 
to one. For example, if there are different possibilities to find the same path, the 
weighted average of all options is used.

Another successful method for light transport simulation is photon mapping (PM), 
introduced by Jensen [7]. In a first pass, light sub-paths are traced and their vertices 
are stored as photons. In a second pass, view sub-paths are generated and nearby 
photons are merged with the current path. This introduces a small bias but is 
capable of finding even more light effects (reflected and refracted caustics) than 
BPT. Georgiev et al. [3] as well as Hachisuka et al. [4] derived a path probability that 
makes merges (a.k.a. photon mapping) compatible with Veach’s MIS weights. Since 
all nΦ photons can be found at each view sub-path vertex, there is a high amount 

Figure 31-1.  Visualization of paths that are found and not found by different methods. The area and 
the point lights at the ceiling cause different challenging light effects.

RAY TRACING GEMS



559

of path reuse. This decreases the variance of merges, which is modeled by setting 
n = nΦ in the balance heuristic (Equation 1) for the merge samplers. The combined 
algorithm consisting of BPT and PM is called vertex connection and merging (VCM) [3].

Unfortunately, the choice of nΦ in the balance heuristic can cause severe 
miscalculations with respect to variance, as first observed by Jendersie et al. [6]. 
Figure 31-2 demonstrates a scene with noticeable problems. While, compared 
to BPT, VCM only adds new samplers and therefore should only decrease the 
variance, it shows more noise. In most scenes this effect is not as noticeable as in 
the chosen example. However, using our new heuristic reduces the variance in any 
scene compared to the previous heuristic, leading to faster convergence. We call 
our method optimized VCM (OVCM).

Figure 31-2.  Closeups of Veach’s BPT test scene with 50 samples each. BPT outperforms VCM due to 
a nonoptimal MIS weight. OVCM improves the merge weights and achieves a lower variance.

31.2	 �WHY ASSUMING FULL REUSE CAUSES A BROKEN MIS WEIGHT

The variance of a complete transport path consists of the variances of both the view 
and light sub-paths. Mathematically, the variance of the entire path is a product of 
two random variables X (without loss of generality, the view sub-path) and Y (the 
light sub-path):

		
V XY V X E Y V Y E X V X V Y

2 2
.é ù = é ù é ù + é ù é ù + é ù é ùë û ë û ë û ë û ë û ë û ë û 	 (2)

In addition to the variances of the two sub-paths, the total variance depends on the 
expected values E[ X ] and E[Y ], which at the vertex are the incoming radiance (E[Y ]) 
and its adjoint, the incoming importance (E[ X ]).

By using nΦ photons, the variance of the light sub-paths in a merge is reduced by a 
factor of nΦ. However, if most of the total variance stems from the view sub-path, 
the true gain for the path’s variance is much smaller than nΦ. Using nΦ photons will 
reduce V[Y ], and so we divide only the second and third terms in Equation 2 by this 
factor. Therefore, if the total variance is dominated by the first term, V[ X ]E[Y ]2, then 

 Variance Reduction via Footprint Estimation in the Presence of Path Reuse 



560

the variance with respect to path reuse will not change much and using nΦ directly 
will cause a severe overestimation of the event’s likelihood.

31.3	 �THE EFFECTIVE REUSE FACTOR

To integrate the preceding observation into the balance heuristic, we want to 
change the factor n for each of the merge samplers. The optimal factor tells us how 
much the variance of the full path is reduced when merging multiple sub-paths. 
Starting at the variance property from Equation 2, the true effective use of a merge 
sampler is

		

( )
V X E Y V Y E X V X V Y

n
V X E Y V Y E X V X V Y

n

2 2

2 2
,

1

F

é ù é ù + é ù é ù + é ù é ùë û ë û ë û ë û ë û ë û=
é ù é ù + é ù é ù + é ù é ùë û ë û ë û ë û ë û ë û

	

(3)

which is the quotient of the variance with and without using the light sub-path 
sampler nΦ times. Naturally, Equation 3 falls back to n = 1 if nΦ = 1. Also, n = nΦ is 
reached only if we have zero view-path variance. This theoretical solution still lacks 
applicability because we need stable estimates of V and E based on the single sub-
path sample we have at hand.

Jendersie et al. [6] used an additional data structure to query the expected number 
of photons (an estimate of E[Y ]). Further, their method VCM∗ applied the estimate 
in a different way than shown here. However, there are several problems with an 
approach that uses a dedicated data structure: noise within the estimator itself, 
discretization artifacts, falsely counting photons from different paths into E[Y ], 
and, finally, scalability problems for large scenes. We present a new, more direct 
heuristic in the following.

31.3.1	 �AN APPROXIMATE SOLUTION

The most difficult question is, “What are the quantities V and E of a path?”  
A path consists of multiple Monte Carlo sampling events and one connection or 
merge event. In the case where the sampling densities p and the target function 
f are proportional, the ratio f/p, which is calculated in a Monte Carlo integrator, is 
constant for any sample, and thus the variance of the estimator is zero [14,  
Section 2.2]. If p and f are almost proportional, the variance of a Monte Carlo 
sampler is close to zero: V ≈ 0.

In importance sampling, we choose sampling probability density functions (PDFs) 
p proportional to the BSDF, but our target function is the BSDF multiplied by the 
incoming radiance. Mathematically, we can divide this product into two subproblems 

RAY TRACING GEMS



561

by using Equation 2. Consider the example of direct lighting: We have the incoming 
radiance as the expected value of one random variable with zero variance (E [Y  ] = Li, 
V [Y  ] = 0) from the deterministic direct light computation and the sampled view  
sub-path with E [ X ] = 1 (by the design of the pinhole camera model) and V [ X ] = ε 
(because of jittering in a pixel). The final variance is then E [Y  ]2V [ X ] = Liε, which can 
be large, even if the sampler is close to the BSDF (or camera model, in this case).

The same applies to longer paths. Each of the two sub-paths contains multiple 
Monte Carlo sampling events, whose variance can be approximated with a small ε.  
To approximate the incoming radiance and importance, we need a density 
per square meter and steradian for each sub-path. Alternatively, we can also 
compute the inverse of a density—the footprints A[ X ] and A[Y  ]. See Figure 31-3. 
Conceptually, the footprint of a path is the projection of a pixel or a photon onto 
some surface after some number of bounces.

Figure 31-3.  Analogy between footprint size (blue) and density. The higher the density p, the smaller 
the footprint A of each particle: A ∝ 1/p.

Assuming we can compute this footprint A and that the samplers have small 
variances ε, Equation 3 becomes

A Y A X
n

nA Y A X

2
2 2

2
2 2

1 1

1 1 1

e e e

e e e
F

+ +
é ù é ùë û ë û»

æ ö
ç ÷+ +
ç ÷é ù é ùë û ë ûè ø

A Y A X
n

A
nA Y A X

2 2

2 2

1 1

1
1 1 1

e

F

+
é ù é ùë û ë ûÞ »

+
é ù é ùë û ë û

�

	

A X A Y

A X A Y
n

2 2

2 2
.

1

F

é ù + é ùë û ë û=
é ù + é ùë û ë û 	

(4)

 Variance Reduction via Footprint Estimation in the Presence of Path Reuse 



562

In the second line we replaced ε2 with zero, under the assumption that this third 
term is dominated by the other two. The ε in front of the other terms cancels out 
naturally. Finally, we obtain an approximation of the optimal effective reuse factor n 
if we can provide the footprint of each sub-path.

31.3.2	 �ESTIMATING THE FOOTPRINT

For our application, the most important thing about the footprint is to capture 
events that change the density noticeably. Rough surfaces cause one such event, 
which means that it is essential to include the BSDF in the computation.

Estimates were researched previously and used for antialiasing [5] (details in 
Chapter 20) as well as adaptive reconstruction kernels [2]. To estimate the size 
of a projected pixel, Igehy introduced ray differentials [5]. These are capable of 
estimating the anisotropic footprint after multiple specular interactions, but 
they lack any handling of rough BSDFs. Suykens et al. [12] introduced a heuristic 
treatment of BSDFs to Igehy’s ray differentials, calling them path differentials. 
However, their approach requires an arbitrary scale parameter that is hard to 
determine. Schjøth et al. [11] explored what they call photon differentials, which 
are essentially ray differentials used for photons. Again, a treatment of BSDFs is 
missing and only specular bounces are handled. The most convenient solution so 
far is 5D covariance tracing from Belcour et al. [2], which contains the first proper 
handling of BSDFs but is expensive to compute and store.

Inspired by covariance matrices, we developed a simplified heuristic. Since we 
are interested in only the area of the footprint and not in its anisotropic shape, it 
suffices to store and update two scalar values: the searched area A and a solid 
angle Ω, which is used to derive the change of the area. Like in covariance tracing, 
we use convolutions to model the change of the footprint by interaction events.

A heuristic similar to ours was used by Bekaert et al. [1], in their Equation 7, to 
estimate the kernel size for a photon mapping event. The difference to our heuristic 
is that Bekeart et al. used only the previous PDF to update A. We additionally 
introduce the cumulative solid angle Ω that is based on all previous PDFs.

Beginning on any point in a source area, the next path segment will have a footprint 
of its own. The segment footprint can be computed, assuming the traced segment is 
a cone with solid angle Ω. A convolution is required to combine any source position 
with the target area. It is performed by adding the square root of the segment 
footprint and the source area and squaring their sum again. This is depicted in 
Figure 31-4 at the bottom, assuming a circular footprint (note that π cancels out in 
the final result). The same result is obtained if we convolve two squares or any other 
regular polygon. So, the next question is, how to obtain the two areas?

RAY TRACING GEMS



563

Figure 31-4.  Our footprint heuristic. Due to BSDF scattering the solid angle grows with each 
interaction (Ω1 > Ω0). The footprint size depends on the previous area as well as Ωd2 for the new 
scattering. The combination of the two areas is achieved by a convolution (bottom).

The source area is one of the following:

>> The area of the light source for the first vertex on a light path.

>> The area of the sensor in realistic camera models.

>> A projection of the incoming area toward the outgoing direction.

The third option applies to all intermediate vertices. Tests have shown that simply 
using Aout = Ain resulted in the best MIS weight. The alternative, to divide the area 
by the incoming cosine and to multiply by the outgoing cosine (i.e., using real 
projections), turned out to be slower and to have lower quality. The simple copy 
is reasonable because for our application the footprint should always be growing 
in diffuse scattering events. Using the previous area guarantees a monotonic 
function.

 Variance Reduction via Footprint Estimation in the Presence of Path Reuse 



564

Next, we need an estimate of the footprint of a single path segment. This is given 
by the directional sampler’s density p used in any of the events (light sources, 
cameras, and intermediate vertices). The sampling density of a direction has the 
unit sr−1. Inverting it gives us a solid angle Ω = 1/p of the sample. Similar to ray 
differentials, the previous angular variance must be considered. Therefore, we 
apply a convolution of the solid angles, which gives

			 
k k p

2

1

1 .-

æ ö
ç ÷W = W +
ç ÷
è ø 			 

(5)

Finally, the incoming area at the new vertex can be computed with

			 
( )k k k kA A d

2
2

1 1 1 ,- - -= + W
			 

(6)

where Ωd 2 is the area of a spherical cap with solid angle Ω at the distance d, i.e., 
the footprint from the scattering on the last path segment. This is also shown in the 
top of Figure 31-4.

So far, the footprint assumes that all paths start at the same source. If there 
are multiple light sources (or cameras), a photon (or importon) is emitted with a 
probability of p0 < 1. This leads to an increase of the area, and the final footprint of 
sub-path X becomes

				  

k X

X

A
A X

p
,

0,

.é ù =ë û
				  

(7)

The newly derived footprint heuristic in this section has to be used with care. It is 
based on geometrical observations and lacks any kind of curvature-based changes 
or anisotropy, which are worth exploring in the future. So far, this heuristic focuses 
mainly on the parts that are required by our variance estimation. Therefore, it 
complements the previous ray differentials approach, but it does not replace it. Our 
heuristic would fail if used for antialiasing or adaptive photon mapping.

Another difficulty is the generalization to volume transport. To begin, it seems 
straightforward to use Equation 5 for scattering events, too. However, it would be 
necessary to track the spread along the ray direction, depending on the density of 
the medium. That is, it is necessary to track a volume instead of the area A.

RAY TRACING GEMS



565

31.4	 �IMPLEMENTATION IMPACTS

Having an estimate for the footprint area of each sub-path in a merge, we can use 
Equation 4 to estimate the proper multiplier n for the MIS weight. To accomplish 
this, we store two float values W  and A  per vertex. The direct use of these 
square roots avoids the repeated square root in Equations 5 and 6. Further, we 
found that dividing by p  may lead to severe numerical problems by quickly 
exceeding the range of float or double precision for Ωk. Therefore, we introduced an 
ϵ = 1   ×   10−2 into the quotient. Additionally, Equation 4 can be reordered to obtain a 
more robust solution. The final computed values in the implementation are

	
k k p1

1 ,
Î

-W = W +
+ 	

(8)

	 k k k kA A d1 1 1,- - -= + W 	 (9)

	

c

k XY

X k Y

k c

k XY

X k Y

Ap
p A

n
Ap

p nA

22

,0,

0, ,

22

,0,

0, ,

1

.

1

+

+

F

æ öæ öç ÷ç ÷ +ç ÷ç ÷ç ÷è øè ø=
æ öæ öç ÷ç ÷ +ç ÷ç ÷ç ÷è øè ø 	

(10)

In Equation 10 we added an artificial constant c to the exponent. Similar to the 
exponents in the power heuristic which amplify a decision, this increases the 
differentiation between the sub-path estimates. We found that using c = 0.5 
improved the results for rough surfaces and remained almost the same for 
other events. Therefore, we use this artificial modification in all the following 
experiments.

31.4.1	 �PERFORMANCE CONSEQUENCES

Unfortunately, the sub-paths must be iterated completely for each MIS-weight 
computation to obtain the sum of all other events. In the usual weight computation 
this can be optimized by storing partial sums for the sub-paths. This optimization 
is possible only because the path probabilities are pure products that share a lot of 
terms [10, p. 1015ff]. With the sums in nk, this optimization is not possible anymore, 
leading to a loss of performance. Compared to a fast standard implementation 
with constant cost, the cost with our heuristic becomes linear in path length. In 
practical tests this resulted in a loss of 0.3%–3%, depending on the scene. The 
impact is higher if the scene is simple (low tracing and low material evaluation 

 Variance Reduction via Footprint Estimation in the Presence of Path Reuse 



566

cost) or the paths are long. For more realistic complex scenes, the impact is  
often below 1%.

Since the fast implementation stores a different set of values per vertex, VCM and 
our OVCM require the same amount of memory.

31.5	 �RESULTS

As shown in the previous section, our new heuristic is simple to implement and has 
better performance and lower memory consumption than the previous solution, 
VCM∗ [6]. Nonetheless, it is equally capable of avoiding the overestimated merge 
importance. Figures 31-5 and 31-6 show a convergence comparison of five scenes 
rendered with different methods. In Figure 31-5 the full renderings are given for 
reference. Figure 31-6 shows the square root of the sample variance over a high 
number of iterations for different algorithms. In this visualization darker is better. A 
black image would reveal a perfect estimator with zero variance. Since the variance 
often scales with the brightness of the image, the standard deviation images look 
like contrast enhanced versions of the rendering itself.

Figure 31-5.  The full renderings associated with the zoomed images in Figure 31-6.

RAY TRACING GEMS



567

In all cases VCM∗ and OVCM perform similarly. Both of them are superior to BPT 
or VCM. However, they are still not optimal, which becomes noticeable in a direct 
comparison: Different surfaces are darker in either of the two approaches. An 
optimal solution would have the lowest variance everywhere. Since these differences 
are barely visible, the average standard deviations give a better comparison. 
According to these numbers, VCM∗ and OVCM are equally good on average.

Figure 31-6.  Here we show closeups of the standard deviation σ (darker is better) of the full 
renderings in Figure 31-5 over a high number of iterations (10k–65k). The average sample standard 
deviation for the entire image is given by s .

 Variance Reduction via Footprint Estimation in the Presence of Path Reuse 



568

There is also room for improvement. Equation 3 formulates the optimal solution. 
Our proposed heuristic completely removes all variances V and approximates 
the expected values E with another heuristic, which, for example, neglects the 
curvature or texture changes in the footprint area. By improving the estimates of V 
and E, we expect that the artificial c = 0.5 from Equation 10 will become redundant 
and that the heuristic will be closer to the optimum.

ACKNOWLEDGMENTS

Most scenes shown here are taken from the repository of Physically Based 
Rendering (third edition) [10]. The colorful balls scene is courtesy of T. Hachisuka.

REFERENCES

	 [1]	� Bekaert, P., Slusallek, P., Cools, R., Havran, V., and Seidel, H.-P. A Custom Designed Density 
Estimator for Light Transport. Research Report MPI-I-2003-4-004, Max-Planck Institut für 
Informatik, 2003.

	 [2]	� Belcour, L., Soler, C., Subr, K., Holzschuch, N., and Durand, F. 5D Covariance Tracing for Efficient 
Defocus and Motion Blur. ACM Transaction on Graphics 32, 3 (July 2013), 31:1–31:18.

	 [3]	� Georgiev, I., Křivánek, J., Davidovič, T., and Slusallek, P. Light Transport Simulation with Vertex 
Connection and Merging. ACM Transactions on Graphics (SIGGRAPH Asia) 31, 6 (2012), 192:1–
192:10.

	 [4]	� Hachisuka, T., Pantaleoni, J., and Jensen, H. W. A Path Space Extension for Robust Light 
Transport Simulation. ACM Transactions on Graphics (SIGGRAPH Asia) 31, 6 (Nov. 2012), 191:1–
191:10.

	 [5]	 Igehy, H. Tracing Ray Differentials. In Proceedings of SIGGRAPH (1999), pp. 179–186.

	 [6]	� Jendersie, J., and Grosch, T. An Improved Multiple Importance Sampling Heuristic for Density 
Estimates in Light Transport Simulations. In Eurographics Symposium on Rendering EI&I Track 
(July 2018), pp. 65–72.

	 [7]	� Jensen, H. W. Global Illumination Using Photon Maps. In Eurographics Workshop on Rendering 
(1996), pp. 21–30.

	 [8]	 Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH) (1986), 143–150.

	 [9]	� Lafortune, E. P., and Willems, Y. D. Bi-Directional Path Tracing. In Conference on Computational 
Graphics and Visualization Techniques (1993), pp. 145–153.

	 [10]	� Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to 
Implementation, third ed. Morgan Kaufmann, 2016.

RAY TRACING GEMS



569

	 [11]	� Schjøth, L., Frisvad, J. R., Erleben, K., and Sporring, J. Photon Differentials. In Computer Graphics 
and Interactive Techniques (Dec. 2007), pp. 179–186.

	 [12]	� Suykens, F., and Willems, Y. D. Path Differentials and Applications. In Eurographics Workshop on 
Rendering (June 2001), pp. 257–268.

	 [13]	� Veach, E., and Guibas, L. J. Bidirectional Estimators for Light Transport. In Photorealistic 
Rendering Techniques. Springer, 1995, pp. 145–167.

	 [14]	� Veach, E., and Guibas, L. J. Optimally Combining Sampling Techniques for Monte Carlo 
Rendering. In Proceedings of SIGGRAPH (1995), pp. 419–428.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Variance Reduction via Footprint Estimation in the Presence of Path Reuse 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


571© NVIDIA 2019 
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_32

CHAPTER 32

Accurate Real-Time Specular 
Reflections with Radiance Caching
Antti Hirvonen, Atte Seppälä, Maksim Aizenshtein, and Niklas Smal

UL Benchmarks

ABSTRACT

We present an algorithm for perspective-correct, real-time specular illumination 
for surfaces of varying glossiness in dynamic environments. Our algorithm 
leverages properties from earlier techniques (e.g., radiance probes and screen-
space reflections) while reducing the amount of visual errors by adding ray tracing 
to the rendering pipeline. Our algorithm extends previous work by allowing 
accurate reflections for all surfaces regardless of the material, and it has global 
coherence (i.e., there are no visible discontinuities). With radiance caching, multiple 
samples can be efficiently computed as the radiance computation is decoupled 
from the final shading. The radiance cache is also used to approximate the 
specular term for the roughest surfaces without any ray tracing.

32.1	 �INTRODUCTION

Real-time rendering engines approximate lighting computations due to the 
computational cost of accurate simulations. Lighting can be quickly evaluated 
only for idealized or nearly idealized light sources such as point lights. However, 
illumination is a global phenomena and it can be affected significantly by light 
reflected from surfaces and light emitted from complex sources. Simulation of 
these components is usually expensive, but both have to be taken into account for 
realistic lighting. The aggregated contribution of such terms is known as global 
illumination. In real-time graphics, most terms of global illumination are usually 
precomputed.

Rendering engines commonly split the surface into two separate layers that 
contribute to the illumination: diffuse and specular. Each layer is composed of 
microscopic, flat area elements called microfacets which are described by a 
distribution rather than geometrical modeling. The mean slope (or in some cases 
the standard deviation of the slope) is described by a surface parameter called 
roughness.



572

Diffuse layers describe weak correlation between the scattering distribution 
and the incoming light direction. A diffuse microfacet scatters luminous energy 
proportionally to the cosine of the angle between the incoming light direction 
and the microfacet normal direction. A diffuse material that exhibits flat micro-
structure is called Lambertian. In the case of diffuse illumination, the response 
mostly depends on the total irradiance on the surface. Therefore, the actual 
distribution of the incoming light does not have to be known in order to compute 
the radiance scattered in some direction. This observation is the key idea behind 
precomputed irradiance caches such as light maps or irradiance probes. Due to the 
low-frequency nature of the input data, the irradiance component can be packed 
aggressively and stored efficiently to cover the entire scene. Furthermore, minor 
changes in the scene’s direct diffuse illumination do not significantly affect the 
indirect diffuse term.

The second term, specular illumination, describes strong correlation between the 
scattering distribution and the light’s incoming direction. Every specular microfacet 
reflects light according to Snell’s law, and the reflected energy of the light is 
determined by Fresnel equations. A surface that exhibits flat micro-structure with 
specular microfacets is an idealized mirror. However, materials are rarely perfect 
mirrors and they scatter light into some preferred set of directions instead of just 
one: such surfaces are classified as glossy specular. By Helmholtz reciprocity, 
the measured radiance depends on a set of incoming radiances, taking a wider 
distribution into account when materials are rougher. The specular term is also 
referred to as reflection later in this chapter.

These observations make it impractical to store many radiance samples 
regardless of the data structure. Therefore, current rendering engines usually 
just capture radiance from a few points in the scene, or use already computed 
main camera radiance for the specular environment term. These approximations 
have their own shortcomings, which are analyzed briefly in Section 32.2. The only 
practical way to compute an accurate specular term during runtime is to actually 
sample radiance from the scene for each shaded point.

In this chapter, we present an algorithm for efficient computation of the indirect 
specular term for surfaces of varying glossiness regardless of the scene. We 
use the new Microsoft DirectX Raytracing (DXR) pipeline, as introduced into 
DirectX 12, to query global surface visibility in the scene for a set of rays defined 
by the specular BRDF. Radiance for these rays can be efficiently computed 
with our cached approach. Our algorithm also enables efficient specular term 
approximation for rough surfaces for which the view-dependent variance is low. 
The end result after post-filtering provides accurate and real-time specular 
illumination estimates for each pixel on the screen. See Figure 32-1.

RAY TRACING GEMS



573

32.2	 �PREVIOUS WORK

Traditional and widely used techniques for reflections include planar reflections, 
screen-space reflections, and various image-based lighting approaches.

32.2.1	 �PLANAR REFLECTIONS

Planar reflections are simple to produce but require rendering the scene geometry 
multiple times—once for each planar reflector. Depending on the scene and the 
engine in question, this can be a costly operation on CPU, GPU, or both. Planar 
reflections only work well for planar or near-planar reflectors. Reflections of 
rough surfaces are problematic because planar reflectors cannot capture radiance 
except in the direction of the virtual camera.

32.2.2	 �SCREEN-SPACE REFLECTIONS

Screen-space reflections (SSR) is a reflection technique that only uses screen-
space data to approximate the specular term for the visible surfaces. The main 
idea is to cast one or more rays in screen space according to the specular BRDF 
of the surface and approximate radiance for those rays from the main camera 
illumination buffers. For each ray, a hit position is computed from the depth buffer 
data using ray marching. This makes SSR an incredibly cheap technique because 
no complex input data are required, which makes it viable even on lower-end 
hardware. Dynamic scenes are naturally supported without any extra cost. See the 
work of McGuire and Mara [12] and Stachowiak [16] for more information.

Figure 32-1.  A glossy car body, reflective floor, and mirror ball in the rear pick up local reflections at 
interactive rates.

 Accurate Real-Time Specular Reflections with Radiance Caching



574

Unfortunately, SSR has multiple downsides. First, as it only operates on the 
screen-space data, occlusion can be incorrectly interpreted based on the depth 
buffer. In such cases, a ray can either terminate too early or pass through objects 
that it should actually hit. Second, main camera radiance naturally has only a 
single layer, and thus objects occluded in the view of main camera or outside of the 
camera frustum are not seen in reflections.

32.2.3	 �IMAGE-BASED LIGHTING

Image-based lighting (IBL) techniques approximate illumination from some 
captured imagery, stored usually in radiance probes that encode a spherical 
radiance map (also known as radiance cubes, reflection cubes, or reflection 
probes). Each probe can be associated with a proxy geometry object, such as a 
sphere or a box, that gives an approximated hit point in the scene [11]. Probes are 
also usually prefiltered to allow fast approximation of glossy materials and can 
be either precomputed or updated in real time depending on the frame budget. 
Readers can refer to Debevec’s work [3] for more information on IBL in general.

32.2.4	 �HYBRID APPROACHES

Multiple reflection techniques are usually combined to produce the final image.  
For example, screen-space reflections can be used in conjunction with the  
offline-generated radiance probes to create an approximate real-time specular 
illumination [5]. However, mixing various techniques can lead to visible 
discontinuities in the final illumination at the places where the reflection technique 
switches.

32.2.5	 �MISCELLANEOUS

More recent approaches have higher quality, but they come with an added 
computational cost. Voxel cone tracing can produce realistic specular terms even in 
dynamic scenes as presented by Crassin et al. [1], but it operates on the voxel scale. 
The approach presented by McGuire et al. [13] allows computation of accurate 
indirect diffuse and specular illumination from a set of precomputed light probes. 
These probes are augmented with a depth buffer for computing the intersection 
with a similar ray marching routine as in screen-space reflections. However, the 
technique is not fully dynamic. Neither of these techniques are yet widely used in 
rendering engines.

RAY TRACING GEMS



575

32.3	 �ALGORITHM

Based on the previous work and general observations of modern rendering 
engines, the design of our algorithm stems from the following observations:

>> Screen-space reflections effectively approximate the local specular term 
and produce realistic results when there are no discontinuities in the final 
illumination, i.e., when the neighboring texels successfully sample from the 
screen space. However, discontinuities can immediately appear when the 
radiance is computed by other means (such as by sampling from a radiance 
cube). The rest of the reflection pipeline must match with the screen-space 
data to remove these discontinuities. Reusing the screen-space data also 
reduces the amount of costly radiance recomputations.

>> Only smooth, mirror-like surfaces need a high-resolution render.  
Lower-resolution approximations are fine for reflections of rougher surfaces 
as results are averaged over a set of directions.

>> Rays that are traced over a set of surfaces may hit approximately the same 
points in the scene. This becomes more likely as the number of radiance 
samples per pixel is increased.

>> It is common for game environments to have a small number of dynamic 
objects.

In practice, our algorithm enhances previous screen-space reflection and radiance 
probe techniques with ray tracing. Our novel contributions include the way we 
combine these techniques, the heuristics we define for sampling the probes, and 
modifications to motion vectors for temporal reflection filtering.

Figure 32-2 shows the various stages of our algorithm integrated into a traditional 
deferred rendering pipeline. The green parts show the steps of a simple traditional 
deferred rendering pipeline, and the purple parts are the additions for our 
implementation of ray traced reflections. The added parts comprise creation of the 
radiance cache for static geometry, lighting of the radiance cache, radiance sample 
generation, and reflection filtering. Our radiance cache is created as a preprocessing 
step for the static geometry. Lighting of the radiance cache can be seen as decoupled 
shading for the reflection ray tracing and sampling passes, and rays not found from 
the cache are simply shaded using material and light information as in a normal ray 
tracer. After a radiance value has been computed for all rays traced from the visible 
texels, a spatiotemporal filter is applied, and the filtered result is combined with the 
diffuse and direct specular surface illumination. Effects such as volumetric lighting 
are only applied to the final illumination after the reflections have been fully resolved. 
This is necessary to reduce illumination discontinuities as the sampled screen-space 

 Accurate Real-Time Specular Reflections with Radiance Caching



576

illumination must match with the radiance cache and fully shaded rays. The world-
space clustering pass plays an important role; as rays can hit any point in the scene, 
a world-space data structure can be used to accelerate lighting without evaluating all 
lights in a scene.

Figure 32-2.  Stages and data flows of the overall rendering pipeline and their dependencies.

Figure 32-3 shows how the screen-space illumination texture and radiance probes 
can be used to sample radiance from intersection points computed by the ray 
tracing pipeline using our technique. The intersection of ray R2 is visible on screen. 
Radiance probe 1 sees the intersections of rays R1, R2, and R3, and radiance probe 2 
sees the intersection of ray R1. For all these rays the radiance can be sampled from 
caches. In contrast, the intersection of ray R4 is unavailable in the two probes or 
screen-space data, and therefore it has to be explicitly shaded. While the radiance 
probes themselves must be shaded, multiple rays may use the same precomputed 
value, which gives a great benefit when the shading is complex and there are 
glossy surfaces that do not require a large resolution for the sampled radiance 
probes. Furthermore, the shading of the radiance probes has the benefit of locality; 
neighboring pixels are likely to compute the same lights, and the materials are 
coherently sampled from the probe’s G-buffer. These factors make the cache 
illumination efficient to compute on a modern GPU.

RAY TRACING GEMS



577

32.3.1	 �RADIANCE CACHE

Our cache entries, i.e., the radiance probes, are stored as cube maps. As cube 
maps are native entities in the common graphics APIs, they are easy to render 
and sample. We aim to study other mappings, such as octahedral projection used 
by McGuire et al. [13], as future work. Contrary to previous approaches, we do not 
prefilter the probes at all. All filtering runs in screen space.

Similarly to earlier techniques, radiance probes must be placed in the scene either 
automatically or manually in a way that they cover most of the scene surfaces. In 
our case, probes were placed manually by artists to locations where visibility is 
maximized and overlaps are minimized. Automatic placement is another avenue for 
future work.

32.3.1.1	�RENDERING

We render only static geometry into our radiance cache. This allows us to separate 
the rasterization of the geometry into a precomputed pass, thus removing all 
runtime geometry processing load from both CPU and GPU. Runtime GPU 
workload is reduced to a deferred illumination pass. Each radiance probe in our 
system is composed of a full G-buffer texture set: albedo, normal, roughness, 
metalness, and luminance. All these textures are required for lighting the cache 
samples.

R
1

R
2

R
3 R

4

Radiance Probe 1

Radiance Probe 2

Screen

Figure 32-3.  Visualization of the cache sampling strategy for multiple reflection rays from a glossy 
reflective surface.

 Accurate Real-Time Specular Reflections with Radiance Caching



578

32.3.1.2	�LIGHTING

The lighting pass evaluates all direct lights for the cache samples. We use the 
same compute pass for radiance cache illumination as for the main camera 
illumination. Each full probe in the current system is reilluminated each frame. 
This can be optimized further by illuminating only those areas in the cache that 
were hit by rays; see Section 32.7 for more information. Our world-space light 
clustering algorithm effectively culls lights for the compute pass regardless of 
probe position. We use the same light clustering scheme for the main camera 
illumination as well.

One important thing to note about cache lighting is that the view during lighting is 
fixed to that of the main camera. Albeit wrong, this makes the lighting match with 
the main camera illumination, thus removing any seams that might arise when 
combining the screen-space hits with the cache hits or fully shaded rays. The view 
mostly affects the specular term of direct lighting.

32.3.2	 �RAY TRACING

The main ray tracing pass in our algorithm is responsible for generating the 
sample directions according to our specular BRDF, tracing the rays, and storing 
the hit information for the later passes that actually compute the radiance for the 
set of rays.

32.3.2.1	�SAMPLING THE SPECULAR BRDF

The incoming light caused by specular reflection toward the view direction ωo at 
point X with geometric normal ωg is given by the rendering equation:

		

( ) ( ) ( )( ) ,
i

o o i i s i o i g iL X , L X , f , dw w w w w w wò
W

= ×

		

(1)

where Ωi is the positive hemisphere on the point X, ωi are the directions taken 
from that hemisphere, and for the BRDF fs, we use the Cook-Torrance model with 
GGX distribution of microfacet normals. This may be computed using Monte Carlo 
integration with importance sampling as

		  ( )
( ) ( )( )

( )
i o

n
i i s i o i g

o o
i i

L X f
L X

n f1

, ,1, ,
w w w w w

w
w= W W

×
» å 			   (2)

RAY TRACING GEMS



579

where 
i o

fW W∣  is the sampling probability density function. To sample fs, we utilize the 
GGX distribution of visible normals using the exact sampling routine introduced by 
Heitz [7] and precomputed Halton sequences [6] of bases 2 and 3 as input for the 
sampling routine. However, instead of directly using the approximation in Equation 2, 
we follow the same variance reduction scheme as proposed by Stachowiak [16, 17] 
by dividing and multiplying by the same factor ( )( )

i

s i o i g if , dw w w w wò
W

×  and 

discretizing the denominator:

    
( )

( ) ( )( )
( )

( )( )
( )

( )( )
1

1

.i o

i

i o

n i i s i o i g

i
i

o o s i o i g i
n s i o i g

i
i

L X , f ,

f
L X , f , d

f ,

f

w w w w w

w
w w w w w w

w w w w

w

ò
=

W W

W

=
W W

×

» ×
×

å

å

∣

∣

      (3)

The term ( )( )
i

s i o i g if , dw w w w wò
W

×  is a function of ωo ⋅ ωg, the roughness, and  

the reflectance at the incident angle (base reflectance). When Schlick’s 
approximation [15] is used instead of the full Fresnel term, the base reflectance  
can be factored out of the integral, and the BRDF integral over the hemisphere can 
be approximated by a rational function. We derived such an approximation using 
numerical error minimization in Mathematica and arrived at

( )( )
i

s i o i g if , dw w w w wò
W

×

( ) ( )

( ) ( )
( )

3

3

10.99044 1.28514
1

1.29678 0.755907

11 2.92338 59.4188
1 20.3225 27.0302 222.592

121.563 626.13 316.627

o g

o g

o g

a
w w

a a w w

w w

æ öæ - ö
ç ÷ç ÷ ç ÷×-è ø è ø»

æ ö
æ ö ç ÷
ç ÷ ç ÷- ×ç ÷ ç ÷
ç ÷ ç ÷è ø ç ÷×è ø

	 

( ) ( )

( ) ( )
( )

0

23

3

10.0365463 3.32707
1

9.0632 9.04756
,

11 3.59685 1.36772
1 9.04401 16.3174 9.22949

5.56589 19.7886 20.2123

o g

o g

o g

R

a
w w

a a w w

w w

æ öæ ö
ç ÷ç ÷ ç ÷×-è ø è ø+

æ ö
æ - ö ç ÷
ç ÷ ç ÷- ×ç ÷ ç ÷
ç ÷ ç ÷-è ø ç ÷×è ø

        (4)

 Accurate Real-Time Specular Reflections with Radiance Caching



580

where α is the square of the linear roughness in the GGX model and R0 is the 
reflectance from a direction parallel to the normal. This technique has the further 
advantage of preserving details related to some surface properties since the  
pre-integrated term is noise free and does not need to be filtered at all. Equation 4  
provides a fast way of evaluating this integral. Another way is to tabulate the 
function and perform a lookup in that table [10].

32.3.2.2	�RAY GENERATION AND HIT STORAGE

In our algorithm the actual ray tracing part is simple because the computation of 
radiance is separated from the tracing of rays. The ray tracing pipeline is only used 
to find the correct scene intersection point. Pseudocode for both ray generation 
and hit shaders are given in Listing 32-1.

A ray is generated using the importance sampled direction, and the surface 
position reconstructed from G-buffer depth is used as the origin. Rays are 
not generated for materials with a roughness value of over RT_ROUGHNESS_
THRESHOLD; for such materials the radiance is sampled from the cache with just 
a direction vector. For traced rays the ray length, barycentric coordinates, instance 
index, and primitive index of the resulting hit are written to a texture, but no further 
work is required in this pass. Geometry data is stored because the term Li(x, ωi) is 
not always found in the screen-space radiance or the radiance cache, and it has to 
be computed using the correct material. Note that our implementation supports a 
single material per instance, hence the instance index uniquely identifies the used 
material. Implementations with multiple materials per instance will need to write 
out more data.

Listing 32-1.  Ray generation and hit shaders.

 1 void rayHit(inout Result result)

 2 {

 3   result.RayLength = RayTCurrent();

 4   result.InstanceId = InstanceId();

 5   result.PrimitiveId = PrimitiveIndex();

 6   result.Barycentrics = barycentrics;

 7 }

 8

 9 void rayGen()

10 {

11   float roughness = LoadRoughness(GBufferRoughness);

12   uint sampleCount = SamplesRequired(roughness);

RAY TRACING GEMS



581

13   if (roughness < RT_ROUGHNESS_THRESHOLD) {

14     float3 ray_o = ConstructRayOrigin(GBufferDepth);

15     for (uint sampleIndex = 0;

16           sampleIndex < sampleCount; sampleIndex++) {

17       float3 ray_d = ImportanceSampleGGX(roughness);

18

19       TraceRay(ray_o, ray_d, results);

20       StoreRayIntersectionAttributes(results, index.xy, sampleIndex);

21       RayLengthTarget[uint3(index.xy, sampleIndex)] = rayLength;

22     }

23   }

24 }

32.3.3	 �RADIANCE COMPUTATION FOR RAYS

As mentioned in Section 32.3.2.1, we use a variance reduction scheme in which the 
stochastic sampling result is divided by the sum of the weights of each radiance 
sample and the result is later multiplied by the approximation of the BRDF integral 
over the hemisphere. Applying a shorthand notation to Equation 3, so that Ltotal 
is the sum of the weighted radiance samples and wtotal is the sum of the sample 
weights for a single pixel, the total radiance from specular reflection can be  
written as

		
( ) ( )( )total

0
total

.
i

o s i o i g i

L
L X , f , d

w
w w w w w wò

W

» ×
	

(5)

Similar to Stachowiak’s work [16], all of the terms are combined only after 
spatiotemporal filtering because denoising a ratio estimator directly would not 
make the approximation converge toward the correct result [9]. Therefore, the 
per-pixel sums Ltotal and wtotal are written to separate textures by the radiance 
cache sampling pass and the ray shading pass: first, the cache sampling pass 
writes the terms for all rays that were present in the cache, then the ray shading 
pass accumulates Ltotal and wtotal for rays that did not have a radiance sample in 
the cache. The implementation of the cache sampling and ray shading passes is 
discussed in the subsequent sections.

32.3.3.1	�SAMPLING THE RADIANCE CACHE AND SCREEN-SPACE ILLUMINATION

Since the radiance computed into the cache and screen-space illumination match, 
they can both be used to approximate the radiance Li(x, ωi). The importance 
sampled direction ωi can be regenerated to obtain the same direction as in the 
ray tracing pass, and the intersection point can be computed from the direction 

 Accurate Real-Time Specular Reflections with Radiance Caching



582

vector, G-buffer, and ray length written by the ray tracing pass. To sample the main 
camera illumination texture, the intersection point is projected to screen space 
and sampling continues with the obtained texel coordinates. The validity of the 
radiance sample is checked by comparing the screen-space G-buffer depth against 
the computed depth. If sampling fails, then any of the radiance probes can be 
sampled using a world-space direction vector from the cube map toward this ray 
intersection, but certain thresholds, described later in this section, are needed to 
ensure the correctness of the sample.

An outline of the sampling pass is shown in Listing 32-2. Note that for materials 
with roughness above a certain threshold (RT_ROUGHNESS_THRESHOLD), we use a 
proxy geometry intersection to generate the hit position and sample the radiance 
probes using that direction.

Listing 32-2.  Routine for sampling precomputed radiance.

 1 void SamplePrecomputedRadiance()

 2 {

 3   float roughness = LoadRoughness(GBufferRoughness);

 4   float3 rayOrigin = ConstructRayOrigin(GBufferDepth);

 5   float3 L_total = float3(0, 0, 0); // Stochastic reflection

 6   float3 w_total = float3(0, 0, 0); // Sum of weights

 7   float primaryRayLengthApprox;

 8   float minNdotH = 2.0;

 9   uint cacheMissMask = 0;

10

11   for (uint sampleId = 0;

12         sampleId < RequiredSampleCount(roughness); sampleId++) {

13     float3 sampleWeight;

14     float NdotH;

15     float3 rayDir =

16           ImportanceSampleGGX(roughness, sampleWeight, NdotH);

17     w_total += sampleWeight;

18     float rayLength = RayLengthTexture[uint3(threadId, sampleId)];

19     if (NdotH < minNdotH)

20     {

21       minNdotH = NdotH;

22       primaryRayLengthApprox = rayLength;

23     }

24     float3 radiance = 0; // For cache misses, this will remain 0.

25     if (rayLength < 0)

26       radiance = SampleSkybox(rayDir);

27     else if (roughness < RT_ROUGHNESS_THRESHOLD) {

28       float3 hitPos = rayOrigin + rayLength * rayDir;

RAY TRACING GEMS



583

29       if (!SampleScreen(hitPos, radiance)) {

30         uint c;

31         for (c = 0; c < CubeMapCount; c++)

32           if (SampleRadianceProbe(c, hitPos, radiance)) break;

33         if (c == CubeMapCount)

34           cacheMissMask |= (1 << sampleId); // Sample was not found.

35       }

36     }

37     else

38       radiance = SampleCubeMapsWithProxyIntersection(rayDir);

39     L_total += sampleWeight * radiance;

40   }

41

42   // Generate work separately for misses

43   // to avoid branching in ray shading.

44   uint missCount = bitcount(cacheMissMask);

45   AppendToRayShadeInput(missCount, threadId, cacheMissMask);

46   L_totalTexture[threadId] = L_total;

47   w_totalTexture[threadId] = w_total;

48   // Use ray length of the most likely ray to approximate the

49   // primary ray intersection for motion.

50   ReflectionMotionTexture[threadId] =

51         CalculateMotion(primaryReflectionDir, primaryRayLengthApprox);

52 }

Pseudocode for sampling a single probe is given in Listing 32-3.

Listing 32-3.  Routine for sampling a single probe.

 1 bool SampleRadianceProbe(uint probeIndex,

 2                          float3 hitPos,

 3                          out float3 radiance)

 4 {

 5   CubeMap cube = LoadCube(probeIndex);

 6   float3 fromCube = hitPos - cube.Position;

 7   float distSqr = dot(fromCube, fromCube);

 8   if (distSqr <= cube.RadiusSqr) {

 9     float3 cubeFace = MaxDir(fromCube); // (1,0,0), (0,1,0) or (0,0,1)

10     float hitZInCube = dot(cubeFace, fromCube);

11     float p = ProbabilityToSampleSameTexel(cube, hitZInCube, hitPos);

12     if (p < ResolutionThreshold) {

13       float distanceFromCube = sqrt(distSqr);

14       float3 sampleDir = fromCube / distanceFromCube;

15       float zSeenByCube =

16             ZInCube(cube.Depth.SampleLevel (Sampler, sampleDir, 0));

17       // 1/cos(view angle), used to get the distance along the view ray

18       float cosCubeViewAngleRcp = distanceFromCube / hitZInCube;

19       float dist = abs(hitZInCube - zSeenByCube) * cosCubeViewAngleRcp;

 Accurate Real-Time Specular Reflections with Radiance Caching



584

20       if (dist <

21             OcclusionThresholdFactor * hitZInCube / cube.Resolution) {

22         radiance = cube.Radiance.SampleLevel(Sampler, sampleDir, 0);

23         return true;

24       }

25     }

26   }

27   return false;

28 }

The radius check is done to accelerate the computation, and it should be adjusted 
so that samples outside this radius are unlikely to exist or have enough detail. As a 
further optimization, clustering could be used to avoid the radius check the same 
way that it is used for point lights. The occlusion check is done to ensure that the 
sampled position corresponds to the actual hit position, since there could be an 
occluding geometry in front of the radiance probe, or the intersection could be in a 
dynamic object that is not present in the radiance probes. Since we have a separate 
check for the resolution, we define the distance threshold to allow variations in 

depth likely caused by the low resolution. We use the function b
z

x
c

c

, where zc is the 

depth of the intersection in the cube, xc is the cube resolution, and β is a constant 
that should be adjusted to be large enough to allow sampling from surfaces that 
are not perpendicular to the view ray of the reflection cube. Figure 32-4 shows an 
example of a reflection ray intersection that is not found from a cube map due to 
occlusion by another geometry.

Figure 32-4.  Thresholds used for radiance probe sampling: distance between the actual intersection 
and the position found from a reflection cube.

RAY TRACING GEMS



585

For defining the threshold for radiance probe resolution, we use a heuristic on 
how much error the finite resolution of the radiance probe may cause for the 
reflection direction, taking into account the distribution from which the direction 
is importance-sampled. To quantize this error, we analyze the probability of 
sampling points that are aliased to the same texel in the radiance probe (function 
ProbabilityToSampleSameTexel in Listing 32-3). Figure 32-5 shows a situation 
in which two of three rays from the same surface are aliased to a single sample in 
a radiance probe.

Figure 32-5.  Thresholds used for radiance probe sampling: visualization of the resolution threshold 

heuristic. The value 
c

n
x

 is half a pixel in width in world space at the cube map’s near plane at distance 

n. This value is then proportional to the radius of the circle sampled at zc.

The probability may be obtained by integrating the microfacet distribution function

			 

( ) ( )( )
( )

1

m o

o m GGX m m o

g o

G , D
f

w w w w w

w wW W

×
=

×∣

		

(6)

over a region on the hemisphere that is centered at the exact microfacet normal 
and bounded by a region with a size that is derived from the spacing between pixels 
in the radiance probe. The sampled point (center of the circle in Figure 32-5) can be 
bound by a sphere that covers a single texel in the radiance probe. Assuming that 
the center of the sphere is located on the axis of the cube, then its radius is given by

				  
ref 2

,
1

c c

cc

z z
r

xx
= »

+
		

(7)

 Accurate Real-Time Specular Reflections with Radiance Caching



586

where zc is the linear depth of the sample point and xc is the resolution of the 
radiance probe’s cube map. For cubes, the distance to the near plane, n, cancels 
out, thus not affecting the calculation. It is possible to generalize the calculation 
for off-axis sample points, but we are going to neglect it because in cube maps the 
error is only up to a finite constant from the approximation.

Now we need to evaluate the probability of a reflected ray hitting that sphere.  
While accurate approximations exist for integrating BRDFs over areas such as 
the sphere [8], in our case we need only a crude approximation that is efficient to 
compute. The reflection direction density over the reflected solid angle is given by

		

( ) ( )
( )i o m o

o m GGX mm

i g o

G Dd
f f

d
1 ,

.
4

w w ww
w w wW W W W= =

×∣ ∣

	

(8)

With the assumption that the projected sphere’s solid angle is small, we can 
approximate the probability of sampling the texel in the cube map:

	                   

( ) ( ) ( )
( )

1Pr
4

i

o m GGX m
i i

S g o

G , D
S d

w w w
w w

w wò
ÍW

Î =
×

	                    

( ) ( )
( )

o m GGX m c

cg o

G , D z
lx

2
1 1 1

2

w w w

w w

æ öæ öp ç ÷» - - ç ÷ç ÷× ç ÷è øè ø 	

(9)

( ) ( )
( )

2
1 ,

4
o m GGX m c

cg o

G , D z
lx

w w w

w w

æ öp
» ç ÷

× è ø

where l is the length of the reflected ray as in Figure 32-5. The first approximation 
is obtained by doing a single-sample Monte Carlo integration (some value in the 
domain multiplied by the integration volume, which is the solid angle subtended 
by a sphere), and the second approximation is obtained by taking the Taylor 
expansion of the square root term. The threshold can then be defined to anything 
between 0 and 1. For example, a threshold of 0.1 would mean that if the probability 
of sampling the texel is 10% or higher, then the cube is rejected, because a single 
texel does not contain the high-frequency information needed to reconstruct the 
reflection. However, if the probability is low enough, then the texel is sufficient to 
reconstruct reflection information. The latter is generally the case for highly rough 
surfaces, or when the sampled direction is on the tail end of the DGGX distribution. 
Note that for perfect and near-perfect mirrors this threshold is almost never 

RAY TRACING GEMS



587

satisfied, but due to the finite resolution of the view, the samples may still be 
acceptable. Therefore, when computing the threshold, we clamp the surface’s 
roughness α to an adjustable minimum value to allow sampling from cubes that 
have a relatively high resolution. As future work the curvature of the surface and 
view resolution itself could also be taken directly into account.

32.3.3.2	�SHADING CACHE-MISSED RAYS

Covering the whole scene with radiance probes so that every point is visible in 
some probe would require an extremely high amount of probes in a practical 
scene, and each one adds overhead to the sampling and relighting passes. Further, 
we do not include dynamic geometry in the probes, and the resolution of the probes 
may be too low for some rays, especially for highly smooth surfaces. Therefore, we 
still need a robust way to reconstruct the radiance for those ray intersections that 
are not visible in any probe nor in the screen-space illumination texture.

As a fallback we compute the radiance for each of the unshaded samples using a 
separate compute pass. As the ray tracing pass writes out the geometry instance 
index, primitive index, and barycentric coordinates, these can be directly used to 
construct the accurate hit point and query all required data for the illumination 
pass. Although now it would be possible to use the accurate ray direction for 
specular highlights, we use the camera direction here to match the specular 
illumination computed for the radiance cache and screen-space illumination.

To avoid branching within warps/wavefronts based on how many samples require 
shading, we compact the indices of rays that were cache misses into a separate 
buffer in the sampling pass. Another compute pass then applies the radiance 
computation for each of the required rays read from the buffer, so that each thread 
within a warp/wavefront has the same amount of work to execute. This is essential 
because for glossy reflections the directions between pixels have high variance, 
so the cache misses are scattered randomly within large areas and some warps/
wavefronts would execute the radiance computation only because one or a few 
lanes had cache misses.

32.4	 �SPATIOTEMPORAL FILTERING

The described algorithm provides a crude approximation of the specular 
environment illumination term. However, due to the low sample counts—one 
sample per pixel in the extreme case—the resulting approximation is noisy. 
Therefore, the resulting radiance estimates must be aggressively filtered both 
spatially and temporally to get rid of the high-frequency noise that results from 

 Accurate Real-Time Specular Reflections with Radiance Caching



588

undersampling the rendering integral. The amount of observed noise depends on 
the surface attributes and the distribution of light in the scene.

In this section, we describe a filtering scheme that we used to generate the results 
seen in Section 32.5. As filtering is not the main topic of this chapter, only a short 
description with references is provided. In practice the noise from the reflection 
pass is similar to that in path tracers, and any algorithm suited for cleaning up 
path traced images will work here as well. Note that, similar to Heitz et al. [9], the 
filtering process is applied separately for both terms of the ratio estimator that we 
use, and the combination of the terms is done only after filtering, as mentioned in 
Section 32.3.3.1.

32.4.1	 �SPATIAL FILTERING

With spatial filtering, we aim to compensate for the low sample count by sharing 
samples over the pixel neighborhood. Samples are shared only if the neighboring 
pixels match in surface attributes. Our spatial filter is based on the edge-
avoiding Á-Trous wavelet transform [2] that we enhanced with specific reflection-
related weight functions. We perform multiple iterations of the Á-Trous wavelet 
transformation, where each iteration generates a set of scaling coefficients. These 
coefficients provide a low-pass representation of the kernel footprint without the 
undesired high-frequency noise. The transformation uses previous coefficients 
as an input for the following iteration step. This allows us to accumulate filtered 
samples efficiently over a large screen-space area while the weight functions 
suppress invalid samples. See Figure 32-6.

Figure 32-6.  Three iterations of one-dimensional stationary wavelet transform while the kernel 
footprint increases exponentially. Arrows show the nonzero pixels of previous result contributing to the 
current result, while the gray dots are pixels with zero value. Figure after Dammertz et al. [2].

RAY TRACING GEMS



589

Our implementation follows the previous work by Dammertz et al. [2] and Schied 
et al. [14]. Each wavelet iteration is performed as a 5 × 5 cross-bilateral filter. The 
contributing samples are weighted by a function w(P, Q), where P is the current 
pixel and Q the contributing sample pixel from the sample neighborhood. We 
calculate the scaling coefficient Si + 1 as

			 

( ) ( ) ( )
( ) ( )1 ,iQ

i

Q

h Q w P,Q S Q
S

h Q w P,Q
ÎW

+

ÎW

= å
å 			 

(10)

where ( ) 1 1 1 1 1
8 4 2 4 8

h Q , , , ,æ ö
= ç ÷
è ø

 is the filter kernel. The weight function w(P, Q) controls 

the contribution of the sample Q based on the G-buffer attributes of that sample. 
The components contributing to this weight function can be categorized into four 
groups: edge-stopping, roughness, reflection-direction, and ray-length. These four 
groups are discussed in following sections.

To simplify the weight functions, we define a function fw as a smooth interpolation 
function between limits a and b as

			   ( ) ( )1 smoothstep ,wf a, b, x a, b, x= -
		  (11)

where smoothstep is the standard cubic Hermite interpolator as provided by 
shading languages.

32.4.1.1	�EDGE-STOPPING WEIGHT

Edge-stopping weights prevent the distribution of samples over geometrical 
boundaries and take into account the differences between depth and normal values 
at P and Q. These functions are based on the previous work of Schied et al. [14] with 
the depth weight wz being

		

( ) ( )
( ) ( )

exp ,z
z

z P z Q
w

z P P Qs e

æ ö-
ç ÷= -
ç ÷Ñ × - +è ø 			 

(12)

 Accurate Real-Time Specular Reflections with Radiance Caching



590

where ∇ z(P) is the depth gradient, σz = 1 is a constant value defined by 
experimentation, and ε = 0.0001 is a small constant value to prevent division by 
zero. In addition, the weight wn is based on the difference between normals at P 
and Q and is defined as

			 
( ) ( )( )max 0 ,n

nw , P Q
s

= ×n n
		

(13)

where σn = 32 is again a constant value based on experimentation.

32.4.1.2	�ROUGHNESS WEIGHT

Roughness weights simulate the effect of roughness on the reflection lobe. First, we 
only allow samples that have similar roughness values, and thus a similar shape of 
reflection lobe, compared to the current pixel:

			 
( ) ( )( ),r w near farw f r , r , r P r Q= -

			 
(14)

where rnear = 0.01 and rfar = 0.1 are constants chosen based on experimentation. 
Second, we control the filtering radius for the contributing samples based on 
roughness with weight

			 
( )near far ,d ww f d ,d ,= d

			   (15)

where dnear = 10 r(P), dfar = 70 r(P), and d = P − Q is the vector from the current pixel 
position to the sample pixel position.

32.4.1.3	�REFLECTION-DIRECTION WEIGHT

A reflection-direction weight makes the filtering kernel anisotropic by scaling it into 
the direction of the reflection:

			   ( )ˆsatu ,ˆrate
s bs c cw s s= × +d r

			 
(16)

where r is the reflection direction in screen space, 0.5
scs =  is a scaling factor, and 

0.5
bcs =  is a scaling bias.

RAY TRACING GEMS



591

32.4.1.4	�RAY-LENGTH WEIGHT

The ray-length weight is designed to control the gathering radius as a function of the 
ray length: the closer the hit point is, the less we want the neighboring samples to 
contribute. Therefore, the weight wl becomes

				  
( )near far ,l ww f l , l ,= d

			   (17)

where lnear = 0 and lfar = 10.0 r(P).

Finally, we can combine all the weights into a single function:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ).z n r d s lw P,Q w P, Q w P,Q w P,Q w P,Q w P,Q w P,Q=
	 (18)

32.4.2	 �TEMPORAL FILTERING

Unfortunately, the spatial filter is often not sufficient to reach the desired quality. 
Therefore, in addition to accumulating samples in the pixel neighborhood, we also 
accumulate them temporally over multiple frames. This is done by interpolating 
between the current frame samples and the previous temporal results using an 
exponential moving average:

				    ( ) 11 ,i i iC S Cg g -= - +
		  (19)

where Ci is the current frame output, Ci − 1 is the previous frame output projected 
using a velocity vector, and Si is the current frame input (i.e., the reflection buffer). 
Acquiring these velocity vectors for reflections is discussed in further detail in 
Section 32.4.3. The weight γ denotes the ratio of interpolation between the history 
data and the current frame and is based on multiple heuristics.

Glossy reflection can have significant color variance between temporal samples. 
This prevents us from relying on methods based on color values, such as variance 
clipping, to remove ghosting. Instead, we use a subset of the geometry-based 
weight functions from Section 32.4.1 to define γ. This is done by first projecting 
P to generate the sampling location of the contributing sample using a velocity 
vector and next using that to sample the surface attributes of the previous frame. 
Thus, we must also save the depth and normal attributes from the G-buffer of the 
previous frame.

In addition, we include a weight 
maxrw  that is based on the roughness of the 

current sample. This is done so that extremely smooth surfaces, such as mirrors, 

 Accurate Real-Time Specular Reflections with Radiance Caching



592

disregard unnecessary temporal samples to remove any possible ghosting. This 
weight is calculated as follows:

			 
( )( )

max maxsmoothstep 0 ,rw ,r , r P=
		

(20)

where rmax = 0.1 is a constant threshold. Therefore,

		  ( ) ( ) ( )
max

0.95 z n r rw P,Q w P,Q w P,Q wg =
		

(21)

is the total weight used to weight the current and the previous frames.

Nevertheless, ghosting can still appear on planar surfaces with a constant 
roughness that is large enough not to be clamped by 

maxrw  but smooth enough for 
ghosting to be clearly visible. These artifacts are most noticeable with reflections 
of bright light sources or quickly moving brightly colored objects. Unfortunately, 
this cannot be solved by geometry weight functions because we cannot account 
for differences between the objects visible in reflection by comparing the reflector 
surfaces. Thus, we choose to implement a 5 × 5 filtering kernel for the current 
reflection result to calculate variance for both incoming light L and the filtered 
BRDF while using edge-stopping functions to prevent sampling over geometrical 
boundaries. These are then used for color-space variance clipping of the temporal 
filtering result Ci, and thus they prevent blending of the temporal results with 
completely different color values compared to the current frame. This is similar to 
variance clipping commonly done with temporal antialiasing, only with nonuniform 
sample weights to prevent sampling over geometrical boundaries.

32.4.3	 �REFLECTION MOTION VECTORS

Motion vectors need to be adjusted for objects seen through a reflection as the 
velocity is not just a projection of the object’s velocity onto the screen.

32.4.3.1	�UNDERSTANDING THE PROBLEM

To tackle this problem we will start with a fully static system: a camera, a reflector, 
and an object that is seen in the reflection. In Figure 32-7, light emanates from the 
object at Po in multiple directions; one of the photons perfectly reflects from the 
reflector at Ps, 0 and reaches the eye. The object is detected as if it were somewhere 
along the ray that hit the eye.

RAY TRACING GEMS



593

Note that if the eye moved to another location, to which the light from the object 
reaches as well, then that object would appear at the same place. Moving the eye 
around to new points, we get multiple rays that intersect somewhere beneath 
the surface. That intersection point is Pi, and it is called the image of the object. In 
this particular case, the rays intersect in their past, so the image is virtual, while 
for other configurations rays can intersect in their future and we get a real image. 
Furthermore, in real configurations, rays often do not intersect perfectly, and 
instead a circle of confusion is obtained. However, for the purposes of solving this 
problem we are going to ignore this scenario and assume that the rays always 
converge.

The general strategy should now become clear. We want to replace explicit 
treatment of the object and trying to collect its velocity by treatment of the object’s 
image and using its velocity as is. It is also more natural to treat the image rather 
than the object, because what we see on the screen is the image, so we should be 
analyzing it and not the object itself.

Figure 32-7.  Mirror reflections in a plane.

 Accurate Real-Time Specular Reflections with Radiance Caching



594

32.4.3.2	�DIRECT SOLUTION

A straightforward way of finding Pi, in the sense of least squares, is the solution to 
the intersection of lines as given by

		

( )

( )( )
s j s j i s j s j s j

j j

s j s j s j o s j

P P

P P

, , , , ,

, , , ,

,

where 2 .

æ ö
- = -ç ÷ç ÷

è ø
= - -

å åT T

T

I u u I u u

u n n I
	

	 (22)

Here, Ps, j are the points on the surface in a local footprint, and us, j are the reflection 
directions from these points, as shown in Figure 32-7.

The solution for velocity can be obtained after differentiating with respect to time. 
However, this is cumbersome and requires a significant amount of information.

32.4.3.3	�GEOMETRICAL OPTICS APPROACH

If we assume that the reflector point is umbilical, we can simplify the problem 
significantly. An umbilical point is locally sphere-like, and the problem of finding the 
image of an object reflected from a spherical surface can be solved by the thin lens 
equations, which are given by

			 

1 2

1 1 1

, ,

o i

i i i i

o o o o

f r

f z z

x z y z
x z y z

= -

Û

= +

Û

= - = -
			 

(23)

where r is the radius of curvature.

32.4.3.4	�OBTAINING OPTICAL PARAMETERS

Initial part of this section assumes that the reader is familiar with topics from 
differential geometry of surfaces. For a thorough discussion on differential 
geometry we refer the reader to do Carmo’s book [4].

RAY TRACING GEMS



595

In Figure 32-8, Ps depicts a reflector’s point in world-space coordinates, which is 
projected onto a pixel (seen on screen), and Ps, j is the surface point of a neighbor 
pixel. The reflection interaction occurs in the normal plane, the plane that is 
orthogonal to the tangent plane at the point of reflection and contains the view 
vector. In that plane, the radius of the circular reflector is the inverse of the normal 
curvature κn in the view direction projected onto the tangent plane at Ps, the point 
of reflection. However, κn is dependent on the view and changes when the camera 
is moving. Hence, instead of using the normal curvature in the view direction, we 
use the principal curvature κs that produces the closest image to the viewer. This 
value can be found by calculating both principal curvatures and choosing the one 
that produces the nearest image in front of the viewer (negative curvatures can 
produces images behind the viewer). This decision effectively forces the reflector 
point to be umbilical (since the same normal curvature is always used, regardless 
of the view). Since r is the inverse of κs, it can be infinite (for a plane), but it cannot 
be zero. The same applies for the focus. Hence, we will work with inverse quantities 
of the radius and focus.

Figure 32-8.  Reflection from a spherical mirror.

 Accurate Real-Time Specular Reflections with Radiance Caching



596

For an orthonormal basis {x, y, ns}, the reflected object coordinates are

		  ( ) ( ) ( ), , ,o o s o o s o s o sx P P y P P z P P= × - = × - = × -x y n
	 (24)

where Po and Ps are the world-space positions of the reflected object and the 
reflector, respectively. The image coordinates (xi  yi  zi)T, which are obtained from 
the thin lens equations, specify the image position in world space as

			   i s i i i sP P x y z .= + + +x y n 	 (25)

Note that when this is used as input for the temporal filtering pass of glossy 
reflections, we want to extend the sample count temporally, i.e., find a sample from 
the history that was likely sampled from a similar distribution instead of a sample 
that likely intersected the same position. Therefore, we use an estimate of the 
intersection of a most likely ray by using the length of the highest-probability ray of 
the pixel multiplied by the primary reflection direction.

Motion vectors computed with our approach provide better estimates for 
reprojecting hit positions in curved surfaces than primary hit surface motion 
vectors, or than approaches that do not take the curvature of the reflecting surface 
into account. This is shown in Figure 32-9.

RAY TRACING GEMS



597

Figure 32-9.  Comparison between view-dependent velocity vectors with the assumed planar reflector 
and the thin lens approximation. The camera is zoomed out approximately 1 meter during 10 frames 
while sampling only the previous frame’s data from the screen, using coordinates offset with the 
motion vectors. Reflections are calculated only for the first frame.

32.4.3.5	�VELOCITY TRANSFORMATION FOR DYNAMIC OBJECTS

If the basis vectors x and y were selected without dependency on the view, then they 
don’t have time dependency with respect to the camera position. They do have time 
dependency with respect to the surface normal, which changes when the reflector 
rotates. However, we will neglect this change and assume 0=x� , 0=y� , and 0=n� . 
The temporal derivatives of Equation 24 and Equation 25 are then

		
( ) ( ) ( ), , ,

where .
o o s o o s o s o s

i s i i i s

x P P y P P z P P

P P x y z

= × - = × - = × -

= + + +

x y n

x y n

� � � � � �� � �

� � � � � 		  (26)

 Accurate Real-Time Specular Reflections with Radiance Caching



598

From Equation 23, we obtain

	               

2

,i
i o

o

z
z z

z
æ ö

= ç ÷
è ø

� �
	

	               

2

,i o i
i o o

o o

z x z
x x z

z f z
æ ö

= - + ç ÷
è ø

� � �
	

(27)

	               

2

.i o i
i o o

o o

z y z
y y z

z f z
æ ö

= - + ç ÷
è ø

� � �
	

The velocity of the image point can be readily calculated from Equations 26 and 27, 
then projected to the screen to obtain the screen-space motion vectors as follows. 
Given the matrix M that transforms from world coordinates to screen coordinates 
and the screen coordinates (xss, yss) of the reflector,

		
( ),0

,3
,3 ,1

1 ,i ss
i

ssi i

P x
v P

yp P

æ öæ ö× æ ö
ç ÷= - × ×ç ÷ ç ÷ç ÷ç ÷× × è øè øè ø

m
m

m m

�
�

�
		

(28)

where m,i denotes the ith row of M. This accounts only for the velocity of the 
image; the additional velocity component caused by camera movement needs 
to be added separately. However, since velocity is relative, the camera’s velocity 
can be subtracted from both the object’s and reflector’s velocities in Equation 26. 
This makes the matrix M independent of time for this calculation. Another method 
to calculate the screen-space motion vector is by advancing the image position 
backward in time with an Euler iteration, projecting it to the screen, and taking the 
difference in screen space.

32.5	 �RESULTS

We measured the results of our algorithm in the standard Sponza scene in five 
different scenarios. We compare against a fully shaded reference, i.e., specular 
computations without the cache. The scene was fitted with 11 cache sampling 
points. We used a roughness threshold (RT_MAX_ROUGHNESS) of 0.8. All numbers 
were captured on an NVIDIA RTX 2080 GPU at a resolution of 2560 × 1440.

In addition to the final illumination and the reflection term images shown in  
Figure 32-10, we also include images of our reflection mask. The mask is a color-
coded visualization of the type of reflection path per pixel. Purple color in the mask 
denotes the cheapest path: sampling with just a direction vector. Green and orange 

RAY TRACING GEMS



599

areas are ray traced: radiance is sampled from the screen space for dark green 
pixels, from the cache for the light green pixels, and fully computed for the orange 
pixels, denoting the most expensive computation path.

Figure 32-10.  Test cases from top to bottom: Main, Spot, Wood, Tile, and Curtain.Left: the final 
illumination. Center: the environment reflection term. Right: the reflection mask (color map as 
described in Section 32.5). These images were captured from a static camera for a static scene.

 Accurate Real-Time Specular Reflections with Radiance Caching



600

32.5.1	 �PERFORMANCE

We measured the performance with sample counts of one and one to four, 
scaled with surface roughness. The results are shown in Tables 32-1 and 32-2, 
respectively. Performance is given for each pass separately. Rays are traced only 
in the ray tracing pass, which writes out all necessary data for the possible ray 
shading pass. Cache relighting time was (naturally) constant for all the test cases. 
The performance of the other parts depends mostly on the number of samples 
taken and the utilization rate of the radiance cache. If the cache cannot be used at 
all, our technique reverts to full shading of the rays. In this case the overhead from 
cache illumination and sampling (all samples rejected) is paid in full in addition 
to the cost of full ray shading. The Tile scenario covers such a case in which our 
algorithm performs similarly as full shading.

Table 32-1.  Performance of various passes on an NVIDIA RTX 2080 for different cameras in frame 
time (ms) when a single sample is taken per pixel. Our technique is denoted with “(o)” and the fully 
shaded comparison with “(f).” The numbers were captured in the Sponza scene. In all cases filtering 
took approximately 10 ms. Images matching these test cases can be seen in Figure 32-10.

RAY TRACING GEMS



601

Our algorithm has highest performance when the ray tracing part can be skipped 
completely. This can be seen in the Curtain scenario with a rough material. In 
this case the performance difference is almost 7× with one sample and 15× with 
multiple samples.

Scenarios Spot and Wood sample from either screen space or the radiance cache. 
These scenarios require ray tracing but still take the fast path during shading. In 
these cases our algorithm is approximately 2× faster than full shading. Reflections 
in these cases are glossy, which helps our cache use.

A balanced example can be seen in the Main scenario. This shot contains all types 
of surfaces from rough rocks to polished tile floors. Again, we measure 2.5× 
performance improvement compared to full shading.

32.5.2	 �QUALITY

Figure 32-11 shows a smooth surface with reflections computed using our 
technique compared to a per-ray shaded reference. The quality of our technique is 
comparable even though some of the samples are fetched from the low-resolution 

Table 32-2.  Same as in Table 32-1 but with one to four samples. Sample counts were dynamically 
selected for each pixel based on roughness (increase sample count as the surface gets rougher).

 Accurate Real-Time Specular Reflections with Radiance Caching



602

cache. In general, the quality of reflections does not greatly depend on the cache 
sizes due to our sampling heuristics. Smaller caches will result in more misses, 
but the overall quality stays close to the reference. This is shown in Figure 32-12 
where a cache resolution of 256 × 256 is compared against 32 × 32.

Figure 32-11.  Reference compared to our technique when α = 0, i.e., the material is mirror-like, 
including the reflection mask. Some parts of the surface still sample from the cache due to our 
sampling heuristics.

Figure 32-12.  Reference compared to our technique when α = 0.1 with two different cache sizes. Note 
how cache hits are greatly increased by our sampling heuristics compared to Figure 32-11. Even cache 
size 32 × 32 produces lots of cache hits for rougher surfaces but naturally less than size 256 × 256. The 
last image shows reflection sampling from the cache with heuristics disabled.

RAY TRACING GEMS



603

As the roughness of the surface increases, the noise naturally increases as well, 
notably when a single sample per pixel is used. However, the spatiotemporal 
filtering can greatly reduce this noise, and multiple samples may be taken to 
balance the cost of the filtering. With rougher surfaces, the limited-resolution 
radiance caches are more effective, as shown in Figure 32-13, which makes the 
multiple samples approach more affordable with our technique. Having multiple 
samples is also cheaper using our technique because reuse of the radiance cache 
increases and only the cache misses will have to be shaded redundantly.

Figure 32-13.  Varying the material roughness (α) of the floor, with reflections maps at the bottom. As 
the material gets rougher, more samples are fetched from the cache or fully shaded as they deviate 
from screen space: this can be seen at the bottom of the mask as the color turns from dark green to 
light green and orange. Mirror-like surfaces sample effectively from screen space when possible.

The noise reduction of the spatiotemporal filtering is shown in more detail in 
Figure 32-14. While variance clipping cannot remove all ghosting caused by moving 
silhouettes in reflections and thus leaves small artifacts, these are harder to notice 
when the camera is moving. Also, the roughness of the curtain on the right is above 
the RT_ROUGHNESS_THRESHOLD and radiance is inaccurately sampled from the 
other side, but this issue, although often difficult to notice in the final result, could 
be alleviated by more careful probe placement. Apart from the mentioned artifacts, 
the overall result is close to the reference image, which is computed with multiple 
samples until convergence.

 Accurate Real-Time Specular Reflections with Radiance Caching



604

Figure 32-14.  Effects of filtering on the raw specular illumination term. The camera is moving rightward 
approximately 5 m/s, the car is moving rightward approximately 0.8 m/s, and the frame rate is 30 Hz.

32.6	 �CONCLUSION

In this chapter, we have presented a technique for producing realistic real-time 
specular illumination for dynamic scenes. Our approach combines old and new 
techniques: we use the new DXR API for querying scene visibility, but do most of the 
shading in either screen space or cache space. In both of these cases, the efficiency 
of modern GPUs is well utilized due to coherency between neighboring threads. 
Only some rays go through the more costly, divergent full-shading path. Immense 
performance improvements can be measured especially for rougher surfaces that 
go over the roughness threshold: for these surfaces the ray cast can be completely 
skipped, thus eliminating many rays. However, even without ray tracing, these 
surfaces get a real-time specular term from our constantly updated sparse-
lighting cache.

RAY TRACING GEMS



605

32.7	 �FUTURE WORK

There are avenues for improvement in various parts of the algorithm:

>> Indirect diffuse: A similar approach can be used to compute indirect  
diffuse lighting. Rays that miss the cache can get the information from a  
low-frequency source, such as a hole-filling algorithm.

>> Improved cache illumination: Our cache is at the moment illuminated each 
frame. However, an improved system could be built that only illuminates those 
cubes, faces, or even samples that are actually used. For example, only the 
most important cubes could be lit per frame.

>> Radiance cache geometry: The implementation described here uses cube maps, 
i.e., spherical captures, for cache storage. However, this wastes space as the 
same surfaces can be seen by different cache points. Therefore, we plan to 
investigate other cache data structures for an improved cache utilization.

>> Hole filling: A reflection mask can be very noisy for some surfaces, meaning 
that some neighboring pixels either sample from cubes or shade the full ray. 
As shading the full ray is more costly, some of the small holes could be filled 
based on the neighboring pixel data, especially for rougher surfaces.

>> Filtering: The filter presented in this chapter is somewhat expensive for 
real-time use. In the future we aim to look for lighter filtering solutions that 
make different trade-offs between quality and performance.

REFERENCES

	 [1]	� Crassin, C., Neyret, F., Sainz, M., Green, S., and Eisemann, E. Interactive Indirect Illumination 
Using Voxel Cone Tracing. Computer Graphics Forum 30, 7 (2011), 1921–1930.

	 [2]	� Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. Edge-Avoiding À-Trous Wavelet Transform 
for Fast Global Illumination Filtering. In Proceedings of High-Performance Graphics (2010), 
pp. 67–75.

	 [3]	� Debevec, P. Image-Based Lighting. HDRI and Image-Based Lighting, SIGGRAPH Courses, August 
2003.

	 [4]	 do Carmo, M. P. Differential Geometry of Curves and Surfaces. Prentice Hall Inc., 1976.

	 [5]	� Elcott, S., Chang, K., Miyamoto, M., and Metaaphanon, N. Rendering Techniques of Final Fantasy 
XV. In SIGGRAPH Talks (2016), pp. 48:1–48:2.

	 [6]	� Halton, J. H. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence. Communications of 
the ACM 7, 12 (1964), 701–702.

 Accurate Real-Time Specular Reflections with Radiance Caching



606

	 [7]	� Heitz, E. A Simpler and Exact Sampling Routine for the GGX Distribution of Visible Normals. 
Research report, Unity Technologies, Apr. 2017.

	 [8]	� Heitz, E., Dupuy, J., Hill, S., and Neubelt, D. Real-Time Polygonal-Light Shading with Linearly 
Transformed Cosines. ACM Transactions on Graphics 35, 4 (July 2016), 41:1–41:8.

	 [9]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic 
Shadows. In Symposium on Interactive 3D Graphics and Games (2018), pp. 2:1–2:11.

	 [10]	� Karis, B. Real Shading in Unreal Engine 4. Physically Based Shading in Theory and Practice, 
SIGGRAPH Courses, August 2013.

	 [11]	� Lagarde, S., and Zanuttini, A. Local Image-Based Lighting with Parallax-Corrected Cubemaps. In 
SIGGRAPH Talks (2012), p. 36:1.

	 [12]	� McGuire, M., and Mara, M. Efficient GPU Screen-Space Ray Tracing. Journal of Computer Graphics 
Techniques 3, 4 (December 2014), 73–85.

	 [13]	� McGuire, M., Mara, M., Nowrouzezahrai, D., and Luebke, D. Real-Time Global Illumination Using 
Precomputed Light Field Probes. In Symposium on Interactive 3D Graphics and Games (2017), 
pp. 2:1–2:11.

	 [14]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S., 
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time 
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics 
(2017), pp. 2:1–2:12.

	 [15]	� Schlick, C. An Inexpensive BRDF Model for Physically-based Rendering. Computer Graphics 
Forum 13, 3 (1994), 233–246.

	 [16]	� Stachowiak, T. Stochastic Screen-Space Reflections. Advances in Real-Time Rendering in 
Games, SIGGRAPH Courses, August 2015.

	 [17]	� Stachowiak, T. Stochastic All the Things: Raytracing in Hybrid Real-Time Rendering. Digital 
Dragons Presentation, 2018.

RAY TRACING GEMS



607

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Accurate Real-Time Specular Reflections with Radiance Caching

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Table of Contents
	Preface
	Foreword
	Contributors
	Notation
	Part I: Ray Tracing Basics
	Chapter 1: Ray Tracing Terminology
	1.1	 Historical Notes
	1.2	 Definitions

	Chapter 2: What is a Ray?
	2.1	 Mathematical Description of a Ray
	2.2	 Ray Intervals
	2.3	 Rays in DXR
	2.4	 Conclusion

	Chapter 3: Introduction to DirectX Raytracing
	3.1	 Introduction
	3.2	 Overview
	3.3	 Getting Started
	3.4	 The DirectX Raytracing Pipeline
	3.5	 New HLSL Support for DirectX Raytracing
	3.5.1	 Launching a New Ray in HLSL
	3.5.2	 Controlling Ray Traversal in HLSL
	3.5.3	 Additional HLSL Intrinsics

	3.6	 A Simple HLSL Ray Tracing Example
	3.7	 Overview of Host Initialization for DirectX Raytracing
	3.7.1	 Insight into the Mental Model

	3.8	 Basic DXR Initialization and Setup
	3.8.1	 Geometry and Acceleration Structures
	3.8.1.1	 Bottom-Level Acceleration Structure
	3.8.1.2	 Top-Level Acceleration Structure

	3.8.2	 Root Signatures
	3.8.3	 Shader Compilation

	3.9	 Ray Tracing Pipeline State Objects
	3.10	 Shader Tables
	3.11	 Dispatching Rays
	3.12	 Digging Deeper and Additional Resources
	3.13	 Conclusion

	Chapter 4: A Planetarium Dome Master Camera
	4.1	 Introduction
	4.2	 Methods
	4.2.1	 Computing Ray Directions from Viewport Coordinates
	4.2.2	 Circular Stereoscopic Projection
	4.2.3	 Depth of Field
	4.2.4	 Antialiasing

	4.3	 Planetarium Dome Master Projection Sample Code

	Chapter 5: Computing Minima and Maxima of Subarrays
	5.1	 Motivation
	5.2	 Naive Full Table Lookup
	5.3	 The Sparse Table Method
	5.4	 The (Recursive) Range Tree Method
	5.5	 Iterative Range Tree Queries
	5.6	 Results
	5.7	 Summary


	Part II: Intersections and Efficiency
	Chapter 6: A Fast and Robust Method for Avoiding Self-Intersection
	6.1	 Introduction
	6.2	 Method
	6.2.1	 Calculating the Intersection Point on the Surface
	6.2.2	 Avoiding Self-Intersection
	6.2.2.1	 Exclusion Using the Primitive Identifier
	6.2.2.2	 Limiting the Ray Interval
	6.2.2.3	 Offsetting Along the Shading Normal or the Old Ray Direction
	6.2.2.4	 Adaptive Offsetting Along the Geometric Normal


	6.3	 Conclusion

	Chapter 7: Precision Improvements for  Ray/Sphere Intersection
	7.1	 Basic Ray/Sphere Intersection
	7.2	 Floating-Point Precision Considerations
	7.3	 Related Resources

	Chapter 8: Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections
	8.1	 Introduction and Prior Art
	8.1.1	 Performance Measurements
	8.1.2	 Mesh Quadrangulation

	8.2	 GARP Details
	8.3	 Discussion of Results
	8.4	 Code

	Chapter 9: Multi-Hit Ray Tracing in DXR
	9.1	 Introduction
	9.2	 Implementation
	9.2.1	 Naive Multi-Hit Traversal
	9.2.2	 Node-Culling Multi-Hit BVH Traversal

	9.3	 Results
	9.3.1	 Performance Measurements
	9.3.1.1	 Find First Intersection
	9.3.1.2	 Find All Intersections
	9.3.1.3	 Find Some Intersections

	9.3.2	 Discussion

	9.4	 Conclusions

	Chapter 10: A Simple Load-Balancing Scheme with High Scaling Efficiency
	10.1	 Introduction
	10.2	 Requirements
	10.3	 Load Balancing
	10.3.1	 Naive Tiling
	10.3.2	 Task Size
	10.3.3	 Task Distribution
	10.3.4	 Image Assembly

	10.4	 Results


	Part III: Reflections, Refractions, and Shadows
	Chapter 11: Automatic Handling of Materials in Nested Volumes
	11.1	 Modeling Volumes
	11.1.1	 Unique Borders
	11.1.2	 Additional Air Gap
	11.1.3	 Overlapping Hulls

	11.2	 Algorithm
	11.2.1	 Implementation

	11.3	 Limitations

	Chapter 12: A Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem
	12.1	 Introduction
	12.2	 Previous Work
	12.3	 Method
	12.3.1	 The Normal Distribution
	12.3.2	 The Shadowing Function

	12.4	 Results

	Chapter 13: Ray Traced Shadows: Maintaining Real-Time Frame Rates
	13.1	 Introduction
	13.2	 Related Work
	13.3	 Ray Traced Shadows
	13.4	 Adaptive Sampling
	13.4.1	 Temporal Reprojection
	13.4.2	 Identifying Penumbra Regions
	13.4.3	 Computing the Number of Samples
	13.4.4	 Sampling Mask
	13.4.5	 Computing Visibility Values
	13.4.5.1 Temporal Filtering
	13.4.5.2 Spatial Filtering


	13.5	 Implementation
	13.5.1	 Sample-Set Generation
	13.5.2	 Distance-Based Light Culling
	13.5.3	 Limiting the Total Sample Count
	13.5.4	 Forward Rendering Pipeline Integration

	13.6	 Results
	13.6.1	 Comparison with Shadow Mapping
	13.6.2	 Soft Shadows versus Hard Shadows
	13.6.3	 Limitations

	13.7	 Conclusion and Future Work
	13.7.1	 Future Work


	Chapter 14: Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR
	14.1	 Introduction
	14.2	 Volumetric Lighting and Refracted Light
	14.3	 Algorithm
	14.3.1	 Compute Beam Compression Ratios
	14.3.2	 Render Caustics Map
	14.3.3	 Ray Trace Refracted Caustics Map and Accumulate Surface Caustics
	14.3.4	 Adaptively Tessellate the Triangles of the Water Surface
	14.3.5	 Build Triangular Beam Volumes
	14.3.6	 Render Volumetric Caustics Using Additive Blending
	14.3.7	 Combine Surface Caustics and Volumetric Caustics

	14.4	 Implementation Details
	14.5	 Results
	14.6	 Future Work
	14.7	 Demo


	Part IV: Sampling
	Chapter 15: On the Importance of Sampling
	15.1	 Introduction
	15.2	 Example: Ambient Occlusion
	15.3	 Understanding Variance
	15.4	 Direct Illumination
	15.5	 Conclusion

	Chapter 16: Sampling Transformations Zoo
	16.1	 The Mechanics of Sampling
	16.2	 Introduction to Distributions
	16.3	 One-Dimensional Distributions
	16.3.1	 Linear
	16.3.2	 Tent
	16.3.3	 Normal Distribution
	16.3.4	 Sampling from a One-Dimensional Discrete Distribution
	16.3.4.1 Just Once
	16.3.4.2 Multiple Times


	16.4	 Two-Dimensional Distributions
	16.4.1	 Bilinear
	16.4.2	 A Distribution Given a Two-Dimensional Texture
	16.4.2.1 Rejection Sampling
	16.4.2.2 Multi-Dimensional Inversion Method
	16.4.2.3 Hierarchical Transformation


	16.5	 Uniformly Sampling Surfaces
	16.5.1	 Disk
	16.5.1.1 Polar Mapping
	16.5.1.2 Concentric Mapping

	16.5.2	 Triangle
	16.5.2.1 Warping
	16.5.2.2 Flipping

	16.5.3	 Triangle Mesh
	16.5.4	 Sphere
	16.5.4.1 Latitude-Longitude Mapping
	16.5.4.2 Octahedral Concentric (Uniform) Map


	16.6	 Sampling Directions
	16.6.1	 Cosine-Weighted Hemisphere Oriented to the z-Axis
	16.6.2	 Cosine-Weighted Hemisphere Oriented to a Vector
	16.6.3	 Directions in a Cone
	16.6.4	 Phong Distribution
	16.6.5	 GGX Distribution

	16.7	 Volume Scattering
	16.7.1	 Distances in a Volume
	16.7.1.1 Homogeneous Media
	16.7.1.2 Inhomogeneous Media

	16.7.2	 Henyey-Greenstein Phase Function

	16.8	 Adding to the Zoo Collection

	Chapter 17: Ignoring the Inconvenient When Tracing Rays
	17.1	 Introduction
	17.2	 Motivation
	17.3	 Clamping
	17.4	 Path Regularization
	17.5	 Conclusion

	Chapter 18: Importance Sampling of Many Lights on the GPU
	18.1	 Introduction
	18.2	 Review of Previous Algorithms
	18.2.1	 Real-Time Light Culling
	18.2.2	 Many-Light Algorithms
	18.2.3	 Light Importance Sampling

	18.3	 Foundations
	18.3.1	 Lighting Integrals
	18.3.2	 Importance Sampling
	18.3.2.1	 Monte Carlo Method
	18.3.2.2	 Light Selection Importance Sampling
	18.3.2.3	 Light Source Sampling

	18.3.3	 Ray Tracing of Lights

	18.4	 Algorithm
	18.4.1	 Light Preprocessing
	18.4.2	 Acceleration Structure
	18.4.2.1	 Building the BVH
	18.4.2.2	 Light Orientation Cone
	18.4.2.3	 Defining the Split Plane

	18.4.3	 Light Importance Sampling
	18.4.3.1	 Probabilistic BVH Traversal
	18.4.3.2	 Random Number Usage
	18.4.3.3	 Sampling the Leaf Node
	18.4.3.4	 Sampling the Light Source


	18.5	 Results
	18.5.1	 Performance
	18.5.1.1	 Acceleration Structure Construction
	18.5.1.2	 Render Time per Frame

	18.5.2	 Image Quality
	18.5.2.1	 Build Options
	18.5.2.2	 Triangle Amount per Leaf Node
	18.5.2.3	 Sampling Methods


	18.6	 Conclusion


	Part V: Denoising and Filtering
	Chapter 19: Cinematic Rendering in UE4 with  Real-Time Ray Tracing and Denoising
	19.1	 Introduction
	19.2	 Integrating Ray Tracing in Unreal Engine 4
	19.2.1	 Phase 1: Experimental Integration
	19.2.1.1	 DirectX Raytracing Background on Acceleration Structures
	19.2.1.2	 Experimental Extensions to the UE4 RHI
	19.2.1.3	 Registering Geometry for a Variety of Engine Primitives
	19.2.1.4	 Updating the Ray Tracing Representation of the Scene
	19.2.1.5	 Iterating over All Objects
	19.2.1.6	 Customizing Shaders for Ray Traced Rendering
	19.2.1.7	 Batch Commit of Shader Parameters of Multiple Ray Types
	19.2.1.8	 Updating Instance Transformation
	19.2.1.9	 Building Acceleration Structures
	19.2.1.10	 Miss Shaders

	19.2.2	 Phase 2
	19.2.2.1	 Tier 1
	19.2.2.2	 Tier 2
	19.2.2.3	 Tier 3


	19.3	 Real-Time Ray Tracing and Denoising
	19.3.1	 Ray Traced Shadows
	19.3.1.1	 Lighting Evaluation
	19.3.1.2	 Shadow Denoising

	19.3.2	 Ray Traced Reflections
	19.3.2.1	 Simplified Reflection Shading
	19.3.2.2	 Denoising for Glossy Reflections
	19.3.2.3	 Specular Shading with Ray Traced Reflections

	19.3.3	 Ray Traced Diffuse Global Illumination
	19.3.3.1	 Ambient Occlusion
	19.3.3.2	 Indirect Diffuse from Light Maps
	19.3.3.3	 Real-Time Global Illumination
	19.3.3.4	 Denoising for Ambient Occlusion and Diffuse Global Illumination

	19.3.4	 Ray Traced Translucency
	19.3.4.1	 Ray Generation


	19.4	 Conclusions

	Chapter 20: Texture Level of Detail Strategies for Real-Time Ray Tracing
	20.1	 Introduction
	20.2	 Background
	20.3	 Texture Level of Detail Algorithms
	20.3.1	 Mip Level 0 with Bilinear Filtering
	20.3.2	 Ray Differentials
	20.3.2.1	 Eye Ray Setup
	20.3.2.2	 Optimized Differential Barycentric Coordinate Computation

	20.3.3	 Ray Differentials with the G-Buffer
	20.3.4	 Ray Cones
	20.3.4.1	 Screen Space
	20.3.4.2	 Reflection
	20.3.4.3	 Pixel Spread Angle
	20.3.4.4	 Surface Spread Angle for Reflections
	20.3.4.5	 Generalization


	20.4	 Implementation
	20.5	 Comparison and Results
	20.6	 Code

	Chapter 21: Simple Environment Map Filtering Using Ray Cones and Ray Differentials
	21.1	 Introduction
	21.2	 Ray Cones
	21.3	 Ray Differentials
	21.4	 Results

	Chapter 22: Improving Temporal Antialiasing with Adaptive Ray Tracing
	22.1	 Introduction
	22.2	 Previous Temporal Antialiasing
	22.3	 A New Algorithm
	22.3.1	 Segmentation Strategy
	22.3.1.1	 Automatic Segmentation
	22.3.1.2	 UE4 Automatic Segmentation Implementation
	22.3.1.3	 Manual Segmentation

	22.3.2	 Sparse Ray Traced Supersampling
	22.3.2.1	 Subpixel Sample Distribution and Reuse


	22.4	 Early Results
	22.4.1	 Image Quality
	22.4.2	 Performance

	22.5	 Limitations
	22.6	 The Future of Real-Time Ray Traced Antialiasing
	22.7	 Conclusion


	Part VI: Hybrid Approaches and Systems
	Chapter 23: Interactive Light Map and Irradiance Volume Preview in Frostbite
	23.1	 Introduction
	23.2	 GI Solver Pipeline
	23.2.1	 Input and Output
	23.2.1.1	 Input
	23.2.1.2	 Output

	23.2.2	 GI Solver Pipeline Overview
	23.2.3	 Lighting Integration and Path Construction
	23.2.4	 Light Sources
	23.2.5	 Special Materials
	23.2.6	 Scheduling Texels
	23.2.7	 Performance Budgeting
	23.2.8	 Post-Process

	23.3	 Acceleration Techniques
	23.3.1	 View Prioritization
	23.3.2	 Light Acceleration Structure
	23.3.3	 Irradiance Caching
	23.3.3.1	 Direct Irradiance Cache Light Maps
	23.3.3.2	 Cache Update Process
	23.3.3.3	 Future Improvements


	23.4	 Live Update
	23.4.1	 Lighting Artist Workflow in Production
	23.4.2	 Scene Manipulation and Data Invalidation

	23.5	 Performance and Hardware
	23.5.1	 Method
	23.5.2	 Results
	23.5.3	 Hardware Setup

	23.6	 Conclusion

	Chapter 24: Real-Time Global Illumination with Photon Mapping
	24.1	 Introduction
	24.2	 Photon Tracing
	24.2.1	 RSM-Based First Bounce
	24.2.2	 Following Photon Paths
	24.2.3	 DXR Implementation

	24.3	 Screen-Space Irradiance Estimation
	24.3.1	 Defining the Splatting Kernel
	24.3.1.1 Uniform Scaling of the Kernel
	24.3.1.2 Adjusting the Kernel’s Shape

	24.3.2	 Photon Splatting
	24.3.2.1 Optimizing Splatting Using Reduced Resolution


	24.4	 Filtering
	24.4.1	 Temporal Filtering
	24.4.2	 Spatial Filtering
	24.4.2.1 Variance Clipping of Detail Coefficients

	24.4.3	 Incorporating the Effect of Shading Normals

	24.5	 Results
	24.6	 Future Work
	24.6.1	 Optimizing Irradiance Distribution by Skipping Splatting
	24.6.2	 Adaptive Constants for Variance Clipping of the Detail Coefficients


	Chapter 25: Hybrid Rendering for Real-Time Ray Tracing
	25.1	 Hybrid Rendering Pipeline Overview
	25.2	 Pipeline Breakdown
	25.2.1	 Shadows
	25.2.2	 Reflections
	25.2.3	 Ambient Occlusion
	25.2.4	 Transparency
	25.2.5	 Translucency
	25.2.6	 Global Illumination

	25.3	 Performance
	25.4	 Future
	25.5	 Code

	Chapter 26: Deferred Hybrid Path Tracing
	26.1	 Overview
	26.2	 Hybrid Approach
	26.3	 BVH Traversal
	26.3.1	 Geometry Selection
	26.3.2	 Vertex Preprocessing
	26.3.3	 Shading

	26.4	 Diffuse Light Transport
	26.4.1	 Ray Heuristic
	26.4.2	 Last Frame’s Reprojection
	26.4.3	 Temporal and Spatial Filtering via Optimized Multi-Pass

	26.5	 Specular Light Transport
	26.5.1	 Temporal Accumulation
	26.5.2	 Reuse of Diffuse Lobe
	26.5.3	 Path Traced Indirect Lighting
	26.5.4	 Lobe Footprint Estimation

	26.6	 Transparency
	26.7	 Performance
	26.7.1	 Stereo Rendering for Virtual Reality
	26.7.2	 Discussion


	Chapter 27: Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization
	27.1	 Introduction
	27.2	 Challenges Associated with Ray Tracing Large Scenes
	27.2.1	 Using the Right Geometric Primitive for the Job
	27.2.2	 Elimination of Redundancy, Compression, and Quantization
	27.2.3	 Considerations for Ray Tracing Acceleration Structures

	27.3	 Visualization Methods
	27.3.1	 Ambient Occlusion Lighting in Scientific Visualization
	27.3.1.1 AO with Limited Occlusion Distance
	27.3.1.2 Reducing Monte Carlo Sampling Noise

	27.3.2	 Edge-Enhanced Transparent Surfaces
	27.3.3	 Peeling Away Excess Transparent Surfaces
	27.3.4	 Edge Outlines
	27.3.5	 Clipping Planes and Spheres

	27.4	 Closing Thoughts


	Part VII: Global Illumination
	Chapter 28: Ray Tracing Inhomogeneous Volumes
	28.1	 Light Transport in Volumes
	28.2	 Woodcock Tracking
	28.3	 Example: A Simple Volume Path Tracer
	28.4	 Further Reading

	Chapter 29: Efficient Particle Volume Splatting in a Ray Tracer
	29.1	 Motivation
	29.2	 Algorithm
	29.3	 Implementation
	29.3.1	 Ray Generation Program
	29.3.2	 Intersection and Any-Hit Programs
	29.3.3	 Sorting and Optimizations

	29.4	 Results
	29.5	 Summary

	Chapter 30: Caustics Using Screen-Space Photon Mapping
	30.1	 Introduction
	30.2	 Overview
	30.3	 Implementation
	30.3.1	 Photon Emission and Photon Tracing
	30.3.1.1	 Photon Emission
	30.3.1.2	 Photon Tracing
	30.3.1.3	 Storing Photons

	30.3.2	 Photon Gathering
	30.3.3	 Lighting

	30.4	 Results
	30.4.1	 Limitations and Future Works
	30.4.2	 Transparent Objects in the Depth Buffer
	30.4.3	 Practical Usage

	30.5	 Code

	Chapter 31: Variance Reduction via Footprint Estimation in the Presence of Path Reuse
	31.1	 Introduction
	31.2	 Why Assuming Full Reuse Causes a Broken MIS Weight
	31.3	 The Effective Reuse Factor
	31.3.1	 An Approximate Solution
	31.3.2	 Estimating the Footprint

	31.4	 Implementation Impacts
	31.4.1	 Performance Consequences

	31.5	 Results

	Chapter 32: Accurate Real-Time Specular Reflections with Radiance Caching
	32.1	 Introduction
	32.2	 Previous Work
	32.2.1	 Planar Reflections
	32.2.2	 Screen-Space Reflections
	32.2.3	 Image-Based Lighting
	32.2.4	 Hybrid Approaches
	32.2.5	 Miscellaneous

	32.3	 Algorithm
	32.3.1	 Radiance Cache
	32.3.1.1	 Rendering
	32.3.1.2	 Lighting

	32.3.2	 Ray Tracing
	32.3.2.1	 Sampling the Specular BRDF
	32.3.2.2	 Ray Generation and Hit Storage

	32.3.3	 Radiance Computation for Rays
	32.3.3.1	 Sampling the Radiance Cache and Screen-Space Illumination
	32.3.3.2	 Shading Cache-Missed Rays


	32.4	 Spatiotemporal Filtering
	32.4.1	 Spatial Filtering
	32.4.1.1	 Edge-Stopping Weight
	32.4.1.2	 Roughness Weight
	32.4.1.3	 Reflection-Direction Weight
	32.4.1.4	 Ray-Length Weight

	32.4.2	 Temporal Filtering
	32.4.3	 Reflection Motion Vectors
	32.4.3.1	 Understanding the Problem
	32.4.3.2	 Direct Solution
	32.4.3.3	 Geometrical Optics Approach
	32.4.3.4	 Obtaining Optical Parameters
	32.4.3.5	 Velocity Transformation for Dynamic Objects


	32.5	 Results
	32.5.1	 Performance
	32.5.2	 Quality

	32.6	 Conclusion
	32.7	 Future Work



