
153© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_9

CHAPTER 9

Importing and
Creating Data
When you are loading data into R or R Studio, you have a number of

options. For external files, there are several functions that read data from

specific kinds of files into R. For data that are not in files, but accessible

through connections, there are a number of functions that connect to

connections.

In R Studio, many datasets can be read using the “Import Dataset”

tab—under the “Environment” tab in the upper right window. Other types

of files can be loaded into the “Source” (upper left) window in RStudio, as

described in Chapter 2.

R comes with a number of canned datasets, which can be loaded.

Sometimes, the user wants to create data. R has a multitude of random

number generators for data creation. Data can also be entered manually

using c() or by using various other functions to create data with certain

patterns.

On a low level, R reads using connection functions. The higher level

functions that are covered in this chapter use these low-level functions.

For more information about the low-level functions, enter ?connections at

the R prompt or use the “Help” tab in R Studio.

https://doi.org/10.1007/978-1-4842-4405-0_9
https://doi.org/10.1007/978-1-4842-4405-0_2

154

The first section of this chapter covers reading data into R and R

Studio and loading R datasets. The second section covers probability

distributions, including random number generators and the function

sample(). The third section covers manual data entry and creating data

with patterns.

�Reading Data into R and R Studio,
Including R Datasets
There are a number of R functions that read text data into R. The most

common ones are scan()—to read data of a given mode, and read.table()

and read.csv()—to read data from a spreadsheet structured table. Some

of the other ones are read.fortran()—to read data coded in FORTRAN

format, read.fwf()—for reading tables in fixed width format, and

read.delim()—for tab delineated columns. There are also functions to read

data in from files created by other statistical software and from databases.

The function dget() reads text files, including those saved with dput(), but

the authors at CRAN recommend against using them anymore, at least for

function and dataset transfers between workspaces, since they save and

load in text rather than binary format.

For binary data, the functions load(), attach(), and sometimes data()

load objects saved with the function save(). The function readRDS() loads

objects saved with saveRDB(). These functions are recommended by

CRAN for transferring R objects between R workspaces.

In R Studio, things are simpler for some specific types of datasets. Not

much effort is required to load datasets in R Studio.

For a complete listing and a lengthy discussion of importing into R, see

http://cran.r-project.org/doc/manuals/r-release/R-data.html.

Chapter 9 Importing and Creating Data

http://cran.r-project.org/doc/manuals/r-release/R-data.html

155

�The Function scan( )
The function scan() imports data from a file or connection, specified

by the value of the argument file or text, or directly from the console.

The function reads data of the atomic modes—the modes raw, logical,

numeric, complex, and character—and sometimes data of mode list.

Scan() reads the data row by row and creates a vector of that which is read.

For importing from a file or the console, the rows do not have to be of the

same length.

If file equals “” (the default value), R reads data from the console—or

from the value of stdin() if that value is different from the console.

The argument file can be set to the file location of the dataset to be read.

Alternatively, the file name can be given using the argument text, which

can also be assigned to a text string input at the console. For all of the modes

except list, all of the data must be interpretable as the same mode, which

is given. For list objects, each second level object must be interpretable

as a single atomic mode. The data contained in all of the second levels is

converted to the highest type present, where the order of the types from

lowest to highest is raw, logical, integer, numeric, complex, and character.

The function scan() is most often used to read an external file or

connection, such as a URL address or a file on the computer. The reference

to the file (the value assigned to file) or connection comes first in the call, if

not assigned using text, and must be contained within quotes or an object

of mode character. A file reference may be relative to the location of the

workspace or an absolute location. An example is

> scan("test.txt")

Read 7 items

[1] 1 3 5 7 1 4 6

where test.txt is a file containing the seven digits in two rows. (To browse

for a file, enter file.choose() for the file reference, that is scan(file.choose()).)

Chapter 9 Importing and Creating Data

156

To read in data at the console, just type or set the data equal to an

argument text, where the data is in quotation marks. For example:

> scan(text = "1 2 3 4")

Read 4 items

[1] 1 2 3 4

Data can also be read in directly from the console by using no

arguments. For example:

> scan()

1: 1

2: 4

3: 9

4: 3

5:

Read 4 items

[1] 1 4 9 3

Here, R cues for a data point with the point number followed by a

colon. To stop entering data, use control-z in Windows and control-d in

Linux, or enter a blank line by pressing the return(enter) key.

If the type of the data being entered is not numeric, the argument what
must be included in the call to scan(). The argument what is set equal to

type(), where type is the type of the data. For example:

> scan("test.txt", what=complex())

Read 7 items

[1] 1+0i 3+0i 5+0i 7+0i 1+0i 4+0i 6+0i

which converts the integer data in the external file test.txt to complex

data. For non-numeric lists, the argument what is set equal to a vector of

the types in the elements of the list. If some of the data in the file is not

readable as the given type, scan() returns an error.

Chapter 9 Importing and Creating Data

157

The function scan() also has the argument sep, which tells scan() the

separator between values in either an external file or in the value of text.
By default, the separator is white space. The argument sep can be set to

any one-byte value that R can read. In the call to scan(), the value for sep

is placed within quotation marks. For example:

> scan(text="1, 2, 3, 4", sep=",")

Read 4 items

[1] 1 2 3 4

Here, a comma is used as the separator between data values.

If two separating symbols in the call to scan() do not have a value

between the two, then by default, the value is set to NA. For example:

> scan(text="1, 2, 3,, 4", sep=",")

Read 5 items

[1] 1 2 3 NA 4

For data with header lines, the argument skip tells scan() to skip lines

before reading data. The value of skip tells scan() how many lines to skip

and can be of any atomic mode except raw, complex where the imaginary

component is not zero, or character where the character is not a number

enclosed in quotes. The value is coerced to a positive integer if possible or

else interpreted as zero. If skip equals zero, no lines are skipped.

To read a header line, the argument nlines tells scan() to read lines up

to and including the value of nlines. The argument nlines behaves like skip

with regard to acceptable values. If nlines is set to zero, all lines are read.

To create a matrix or array, the call to scan() can be part of a call to

matrix() or array(). For example:

> matrix(scan(text="1 2 3 4 5 6 7 8 9 10"), 2, 5, byrow=T)

Read 10 items

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

Chapter 9 Importing and Creating Data

158

There are several other arguments for scan() that do things such as

limit the number of data points to be read, fill out lines of incomplete data,

or tell scan() the style of the decimal point in the data. Of interest are the

arguments fileEncoding and encoding for reading compressed files. More

information can be found by entering ?scan at the R prompt or by using

the “Help” tab in R Studio.

�The Functions read.table( ) and read.csv( )
The two functions read.table() and read.csv()are essentially the

same function, differing only in the default values of the argument

sep and the argument header. As with the function scan(), the

argument sep gives the symbol used to separate values of the data in

the file and can be any one-byte value. The argument header takes on

logical values and tells the function whether to read a header from the

first line or not.

The two functions import data from a file or connection, where the file

or connection is in the form of a matrix, or from values of the argument

text. The functions create a data frame from the data. If the data is from

a file, the location of the file is entered first in the call within quotation

marks. The location of the file can be relative to the workspace or absolute,

including URLs. To browse for a file, enter file.choose() for the quoted

name, for example, read.table(file.choose()). An example with a quoted

name follows:

> read.table("test2.txt")

 V1 V2 V3 V4

1 one 3 5 7

2 two 4 6 8

Note that the columns do not have to be of the same mode. Here, the

file test2.txt contains both character and numeric data and is in the

same folder as the R workspace.

Chapter 9 Importing and Creating Data

159

If the rows in the file are not all of the same length, by default the

function will return an error. The argument fill is a logical argument and tells

R to fill out rows that have fewer elements than other rows. For example:

> read.table("test4.txt", fill=T)

 V1 V2 V3 V4

1 one 3 5 7

2 two 4 6 NA

Here, test4.txt is missing the last element of the second row. R fills in

the element with NA.

If the argument text is used to enter a table, the end of a row is

indicated by \n. For example:

> read.table(text="1 2 3 4 \n 2 3 4 5")

 V1 V2 V3 V4

1 1 2 3 4

2 2 3 4 5

For read.table(), the default value for sep is white space and the

default value for header is FALSE. For read.csv(), the default value

for sep is a comma, and the default value for header is TRUE. (There is

another related functions, read.csv2(), which is for European use and has

dec, the style of the decimal point, set equal to , and sep set equal to ;.)
Since the two functions create a data frame out of the data, the

modes of the elements only need to be consistent down the columns.

If a column contains character data, then by default the column is

converted to a factor. By setting the argument as.is to TRUE, the

conversion is to character. For example:

> read.table("test3.txt", sep=",")

 V1 V2 V3 V4

1 one 1 3 4

2 1 four 3 2

Chapter 9 Importing and Creating Data

160

> class(read.table("test3.txt", sep=",")[,1])

[1] "factor"

> class(read.table("test3.txt", sep=",")[,3])

[1] "integer"

> read.table("test3.txt", sep=",", as.is=T)

 V1 V2 V3 V4

1 one 1 3 4

2 1 four 3 2

> class(read.table("test.txt3", sep=",", as.is=T)[,1])

[1] "character"

> class(read.table("test.txt3", sep=",", as.is=T)[,3])

[1] "integer"

You can see the difference between not setting as.is and setting as.is to

TRUE. The file test3.txt is a file in the same folder as the workspace, is in

matrix form, and contains both character and integer data.

The two functions can read only some types of atomic data: logical,

integer, double, complex, and character. From the R help page for the two

functions, R reads in the data as character data and then converts from

character to one of the classes logical, integer, numeric, complex, or

factor.

As noted above, if as.is is set to TRUE, columns containing character

data are not converted to factors but retain the class character. The

argument as.is can also be entered as a logical vector with a value for

each column. A shorter vector can be entered also, with the values cycling

across the columns.

The argument colClasses manually sets the class of each column and

can be used in place of as.is to keep a column in character mode. The

possible values for the column classes are NA, NULL, logical, integer,

numeric, complex, raw, character, factor, Date, or POSIXct. The values

Chapter 9 Importing and Creating Data

161

are quoted, except for NA and NULL, and are entered as a vector. The

values will cycle.

If the value is NA, the normal conversion will take place. Otherwise,

if possible, the column elements are coerced to the class listed for the

column. For example:

> read.table("test2.txt", colClasses=c("character", "factor",

NA, NA))

 V1 V2 V3 V4

1 one 3 5 7

2 two 4 6 8

> class(read.table("test2.txt", colClasses=c("character",

"factor", NA, NA))[,1])

[1] "character"

> class(read.table("test2.txt", colClasses=c("character",

"factor", NA, NA))[,2])

[1] "factor"

> class(read.table("test2.txt", colClasses=c("character",

"factor", NA, NA))[,3])

[1] "integer"

The arguments row.names and col.names are used to give names to the

rows and columns of the data.frame. For row.names, the argument can be a

character vector of length equal to the number of rows in the data.frame; the

argument can be an integer specifying which column in the data.frame to use

as row names; or the argument can be a character value containing the name

of the column to be used as the row names. The row names do not cycle.

For col.names, the argument is a character vector of names for the

columns. The vector must be of the same length as the number of columns.

If col.names is not specified and header is FALSE, then the columns are

named V1, V2,..., Vn, where n is the number of the last column.

Chapter 9 Importing and Creating Data

162

If header is TRUE and the first column does not have a name, while

the rest of the columns do, then R sets the first column as the row names.

Some examples are the following:

For the matrix

" " " " " "

" "

" "

c1 c2 c3

one

two

3 5 7

4 6 8

é

ë

ê
ê
ê

ù

û

ú
ú
ú

which is the file test5.txt, the example is

> read.table("test5.txt", header=T)

 c1 c2 c3

one 3 5 7

two 4 6 8

Note that header is TRUE, and there is one less row in the first column.

For a matrix consisting of the second two rows of test5.txt, called

test6.txt, an example follows:

> read.table("test6.txt", col.names=c("c1", "c2", "c3", "c4"),

row.names=2)

 c1 c3 c4

3 one 5 7

4 two 6 8

The four names are assigned to the four columns, and then column

two is used for the names of the rows while the other columns retain the

assigned names.

There are several other arguments for the functions read.table() and

read.csv(). A full description of the functions can be found by entering

?read.table at the R prompt or by using the R Studio “Help” tab.

Chapter 9 Importing and Creating Data

163

�The Functions load( ), attach( ), and data( )
The function load() is used to load objects saved externally by the function

save(). When saved using save(), objects are saved in binary format by

default. For this reason, the two functions are preferred to the use of dput()

and dget() to save and load objects.

The arguments to load() are file, envir, and verbose. The argument

file gives the name of the file or connection to be read. The name of a

file must be quoted or a character object. The argument envir gives the

environment into which to load the object. The default value is parent.

env(). The argument verbose by default is FALSE. If verbose is FALSE,

nothing is printed out at the command line during the load. If verbose

is TRUE, the object names of the objects that are loaded are listed. The

objects loaded are loaded into the workspace under the name used when

they were saved. For example:

> load("a.fun.ex")

> load("a.fun.ex", verbose=T)

Loading objects:

 a.fun

 atl.strm

Here, “a.fun” and “atl.strm” are objects saved into the external file

“a.fun.ex”.

The function attach() can be used to give access to a data file saved

using save(). The data file is not actually loaded but is put in the search

stream. The arguments to attach() are what, pos, name, backtick,

and warn.conflicts. The argument what is assigned a character string

containing the name of the external file or a character object. The position

of the data file in the search stream is set by the argument pos, which

defaults to “2L,” the position after the last position used. The argument

name assigns a name to the attached data file. The argument backtick is

Chapter 9 Importing and Creating Data

164

not used. The argument warn.conflicts is logical and tells R whether to

warn the user if there are objects of the same name in lower positions in

the search stream. The default value is TRUE. For example:

> a.fun

Error: object 'a.fun' not found

> attach("a.fun.ex", name="one")

The following object is masked _by_ .GlobalEnv:

 atl.strm

> a.fun

function() {

 # an example

 print(1:5)

}

> ls(pat="a.fun")

character(0)

> detach(one)

> a.fun

Error: object 'a.fun' not found

Here, a.fun is not an object in the workspace, but after “a.fun.ex” is

attached, a.fun is accessible to the workspace. After “a.fun.ex” is detached,

a.fun is no longer accessible.

The function data() loads objects that have been saved in the

subdirectory “data” of the working directory or are in installed packages.

The arguments to data() are …, list, package, lib.loc, verbose, and

envir. The first arguments are character strings containing the names

of datasets for datasets in packages or the name of a file containing data

without its extension—where the extension can be .R, .r, .RData, .rda,

Chapter 9 Importing and Creating Data

165

.tab, .txt, .TXT, .csv, or .CSV. The second argument, list, contains the same

type of information as the first, but in the form of a character vector list.

The argument package lets you specify in which package to look for the

data. By default, all loaded packages and the “data” subdirectory of the

working directory are searched. The argument lib.loc gives the location

of the library(ies) containing the R library(ies) in which to look. By

default, libraries known by R are searched. The argument verbose gives

information about the call that is not normally given. The argument envir

gives the environment in which to put the data, by default “.GlobalEnv.”

The dataset “airmiles” is in the library “datasets” which is loaded

by default when R or R Studio is opened. An example using the dataset

“airmiles” follows:

> library(datasets)

> airmiles

Time Series:

Start = 1937

End = 1960

Frequency = 1

 [1] 412 480 683 1052 1385 1418 1634 2178 3362

[10] 5948 6109 5981 6753 8003 10566 12528 14760 16769

[19] 19819 22362 25340 25343 29269 30514

> ls(pattern="air")

character(0)

> detach("package:datasets", unload=TRUE)

> data("airmiles", package="datasets")

> ls(pattern="air")

[1] "airmiles"

Chapter 9 Importing and Creating Data

166

The dataset “airmiles” is available when “datasets” is loaded but is not

in the workspace, but when “datasets” is detached, “airmiles” is no longer

available. The call to data() loads “airmiles” into the workspace, even

though “datasets” is not loaded.

This second example loads data from the file system:

> save("atl.strm", "atl.strm.plot.fun", file="~/data/AS.RData")

> rm(atl.strm, atl.strm.plot.fun)

> ls(pat="atl")

character(0)

> data("AS")

> ls(pat="atl")

[1] "atl.strm" "atl.strm.plot.fun"

First, the objects “atl..strm” and “atl.strm.plot.fun” are saved to the file

“AS.RData.” Then, the objects are removed from the workspace. Last, the

objects are loaded back into the workspace using data(). In the example,

the file name syntax is that of OS X. The syntax should match that of your

operating system.

More information can be found by entering ?load for load(), ?attach for

attach() or ?data for data() at the R prompt, or by using the “Help” tab in R

Studio.

�The Function readRDS( )
The function readRDS() reads a single object saved using saveRDS(). Files

saved with saveRDS() are saved in binary format. The function readRD()

has two arguments, file and refhook. The argument file gives the name

of the file or connection where the object was saved and must be either a

character string or a character object. To quote from the R help page for

Chapter 9 Importing and Creating Data

167

readRDS(), the argument refhook contains “a hook function for handling

reference objects.” The default value is NULL.

Here is an example:

> saveRDS(atl.strm.plot.fun, "ASPF")

> rm(atl.strm.plot.fun)

> ls(pat="fun")

character(0)

> atl.strm.plot.fun = readRDS("ASPF")

> ls(pat="fun")

[1] "atl.strm.plot.fun"

First, the object “atl.strm.plot.fun” is saved to the file “ASPE” using

saveRDS(). Then, the object is removed from the workspace. Last, the file is

loaded back into the workspace using readRDS().

More information can be found by entering ?readRDS at the R prompt

or by using the “Help” tab in R Studio.

�Other Read Functions to Import Files
Other functions for importing files will not be covered here. A search

on read, done by entering ??read at the R prompt, gives many of the

functions that read into the R workspace.

�Reading Data Using R Studio
To load datasets into R Studio, go to the “Environment” tab in the

upper right window. Select “Import Dataset.” You are given six possible

selections; from text using functions in the base package, from text using

functions from the readr package, from an Excel dataset, from a SPSS

dataset, from a SAS dataset, and from a Stata dataset.

Chapter 9 Importing and Creating Data

168

If the data is in a text file in columns (for example, a .csv, .txt, or

.dat file), “From Text (base)” is appropriate. By selecting this choice,

you are taken to the directory of files on your computer. Select the file

containing the data to be loaded. A form opens with choices to be used

in reading the data on the left, and an “Input File” window and a “Data

Frame” window on the right. The “Input File” shows how R Studio sees

the input file given the default choices on the left and the “Data Frame”

window shows the data frame that would be created given the default

values.

The first choice on the left is the name to be supplied to the data

frame in the workspace. The default name is based on the file name.

Spaces in the file name are replaced by underscores. The name can

be changed. The second choice is the encoding of the text in the file.

Normally, the default value of “Automatic” will read the file. The third

choice is “Header,” which by default is “No.” If there is a header in the

data file, change “Header” to “Yes.”

The fourth choice is “Row names,” giving the choices of “Automatic,”

“Use first column,” or “Use numbers.” The default value is “Automatic.”

The fifth choice is “Separator.” Depending on the type of separator used in

the data file, the separator can be “Comma,” “Whitespace,” “Semicolon,”

or “Tab.” The sixth choice is the form of the decimal point in the data. The

choices are “Period” and “Comma.” The seventh choice is “Quote” for the

type of quoting used in the data file. The choices are “Double quote (“),”

“Single quote (‘),” and “None.”

The eighth choice is the symbol used to indicate that a line in the file is

a comment. The choices are: “#”, “!”, “%”, “@”, “/”, and “~”. The ninth choice

is the value to use for missing data. Any text can be entered. The default

value is “NA.” The last choice is “Strings as factors.” Uncheck the box if

strings should be read in as character strings rather than factors.

When the data in the “Data Frame” window is in the desired form,

select the “Import” button to the right below the window. R Studio will

import the dataset.

Chapter 9 Importing and Creating Data

169

With the import choice, “From Text (readr),” you can read using a file

or an “URL.” Enter the file or URL address in the “File/URL” box. After

entering the address, change the “Import Options” to the appropriate

options for the data. The choices are similar to those for “From Text

(base)” but a little more flexible. The option “Name” defaults to “dataset”

before the data is updated and is changed to the name of the dataset in the

address after updating. “Skip” tells R Studio how many lines to skip. If there

is no header row, uncheck “First Row as Names” (the first row is the row

after any skipped lines.)

Uncheck “Trim Spaces” to not trim white space in the data file.

Uncheck “Open Data Viewer” to not open the dataset in the source

window after loading. The “Delimiter” choices include the choice of a

user-specified one-byte delimiter. “Quotes” gives the method of quoting

if quotes are present. “Locale” gives default values for various formats

normal in the locale (country or language) of the data. “Escape” gives the

escape character for the data, if present. The possible values for indicating

a comment are “Default”, “#”, “%”, “//”, “””, “!”, “;”, “—“, “*”, “||”, “””, “*”, “\”, and

“*>”. The “NA” choices are “Default”, “NA”, “null”, “0”, and “empty”.

After choosing the import options, select the “Update” button to the

right of the “File/URL” box. The data will load into the “Data Frame”

window using the code in the “Code Preview” window—which can be

changed. “Name” will be changed to the file name. At this point, the name

to be assigned to the dataset in R Studio can be changed. If necessary,

make changes to the import options or the code, as indicated by the data

in the “Data Frame” window. The data preview will update as changes are

made. When ready, select the “Import” button in the lower right of the

“Import Text Data” window. The dataset will load. Or select “Cancel” to

leave the window without loading the data.

The options “From Excel,” “From SPSS,” “From SAS,” and “From Stata”

are similar to “For Text (readr)” and are not covered here.

Chapter 9 Importing and Creating Data

170

�R Datasets
Many of the packages in R come with datasets. Some of these datasets

are found in the package datasets, which is one of the packages installed

by default in R. To access datasets from the package datasets, enter

library(datasets) at the R prompt or check the box to the left of datasets

under the “Packages” tab in R Studio. To see the datasets in datasets,

enter library(help=datasets) at the R prompt or select datasets under

the “Packages” tab. Once the library is loaded, the datasets in datasets are

accessible.

You can also use the function attach() to get access to a dataset

in a library without loading the library. Both the package and the

dataset names are required, separated by two colons and unquoted,

for example, attach(datasets::attitude). Attached datasets

should be detached after you are done with them, for example,

detach(datasets::attitude).
For any library, once the library is loaded, the datasets in the library

are accessible like any other object in the workspace. A dataset can be

an atomic object, a data.frame, or a list. The function attach() gives an

error if the dataset is not a data frame or list, but the object is available

just by using the name of the object if the library is loaded. In R Studio,

the datasets do not appear under the “Environment” tab, however, so the

datasets are not in the workspace. Use the data() function to load the data

into the workspace, as seen previously.

The attach() function attaches into a certain position in the workspace.

R searches for objects through positions in the workspace. Position one is

the workspace. The first attach() call attaches in position two, the second

position three, and so on. A position may be specified in the call. R uses the

first object with the name that it finds, starting with position one.

Chapter 9 Importing and Creating Data

171

�Probability Distributions and the Function
sample( )
R has a wealth of random number generators. For probability

distributions, the random number generator is one of four functions

associated with the probability distribution. All of the four functions are

covered here. The functions associated with probability distributions

have the same basic form.

Entering ?distribution at the R prompt gives the distributions—and

generators—in the package stats. Many of the distributions in other

packages can be found at https://cran.r-project.org/web/views/

Distributions.html.

�Probability Distributions
For the probability distributions in the package stats, there are four

functions associated with a distribution: ddist(), pdist(), qdist(), and

rdist(), where dist describes the distribution. For example, for the normal

distribution, dist equals norm. Not all distributions have all four.

The first function is the function for the density. The function, ddist(),

gives the heights of the probability density function at specified values of a

vector of numbers. The second function is for the cumulative probability.

The function, pdist(), by default gives the areas under the probability

density function to the left of the specified values of a vector of numbers.

The third function is for quantiles. The function, qdist(), by default

gives the values on the real line for which the areas to the left of the

values are equal to the values of a specified vector of probabilities. The

fourth function is the random number generator. The function, rdist(),

generates pseudorandom variables from the distribution. For all of the

functions, the vectors can be vectors of length one.

Chapter 9 Importing and Creating Data

https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Distributions.html

172

The four functions have arguments to specify the standard parameters

of the given distribution, for many of which there are defaults. For

example, for the normal distribution, the arguments are mean and sd and

are set equal to 0 and 1 by default. Both the variables mean and sd can be

entered as vectors and will cycle. The vectors must be numeric or logical.

Logical vectors are coerced to numeric. The distributions in the package

stats are given in Table 9-1 along with the parameter arguments for the

distributions.

Table 9-1.  Probability Distributions in Package Stats

Distribution Name in R Parameters of the Distribution

beta shape1=1, shape2=2, npc=0

binom size, prob

birthday classes=365, coincident=2

cauchy location=0, scale=1

chisq df, npc=0

exp rate=1

f df1, df2, npc

gamma shape, rate=1, scale=1/rate

geom prob

hyper m, n, k

lnorm meanlog=0, sdlog=1

multinom size, prob

nbinom size, prob, mu

norm mean=0, sd=1

pois lambda

(continued)

Chapter 9 Importing and Creating Data

173

For all of the four functions, the first argument is required and does

not have a default. For the density functions, the first argument x is a

vector of real numbers or values that can be coerced to real numbers.

For the cumulative probability functions, the first argument q is also a

vector of real numbers or values that can be coerced to real numbers. For

the quantile functions, the first argument p is a vector of probabilities or

values that can be coerced to a value between zero and one inclusive.

For the random number generators, the first argument n (nn for the

hypergeometric, sign rank, and wilcox distributions) is a positive integer,

or a value that can be coerced to integer, that tells R how many numbers to

generate.

In general, for the density functions, if the values of the first argument

are to be considered as logs of the values of interest, the logical argument

log is set to TRUE. For the probability and quantile functions, the logical

argument log.p is set to true if the values that are for the probabilities are

entered or output as logs of the probabilities.

Distribution Name in R Parameters of the Distribution

signrank n

t df, ncp

tukey nmeans, df, nranges=1

unif min=0, max=1

weibull shape, scale=1

wilcox m, n

The prefixes are d, p, q, and r. The multinom function only has d and r.
The tukey function only has p and q. The birthday function only has p
and q and does not have a log.p argument. From the CRAN help page
for distribution.

Table 9-1.  (continued)

Chapter 9 Importing and Creating Data

174

In general, for the cumulative probability and quantile functions,

whether to use the upper tail or the lower tail of the distribution can be

set using the logical argument lower.tail. The lower tail is set by default.

Lower tails are the area under the distribution function for values less than

or equal to the values of the first argument, and upper tails are the area

under the distribution function for values greater than the values of the

first argument.

Also, in general, parameters can be entered as vectors and will

cycle. If an illegal value for a parameter is entered, the function will

give an error.

More information about a given probability distribution can be

found by entering ?ddist at the R prompt, where dist is the name of the

distribution from Table 9-1, except for the tukey and birthday distributions

for which ?pdist works. Or use the “Help” tab in R Studio.

�The Function sample( )
Sometimes, a random sample is needed rather than random numbers. The

function sample() takes a random sample of atomic objects, list objects, or

any other mode object for which length is defined.

The function sample() takes four arguments. The first argument, x,

is the object to be sampled. If x is a single positive real number greater

than one, sample() samples from the sequence from 1 to the real number

rounded down to an integer. If x is an object that can be coerced to a vector

or a single positive number and no other arguments are given, sample()

returns a permutation of the object or the sequence from one to the

number rounded down to an integer.

The second argument size is the number of items to be sampled. The

argument size can be a nonnegative integer or a real number that can be

rounded down to a nonnegative integer.

Chapter 9 Importing and Creating Data

175

The third argument is the logical argument replace, which tells

sample() whether to sample with replacement. The default value is

FALSE, that is to sample without replacement. If size is larger than the

length of x and replace is FALSE, then sample() will give an error.

The fourth argument is prob and gives a list of weights for the

sampling. The argument prob must be of the same length as x, must have

elements that can be coerced to non-negative numeric elements and

for which at least half of the coerced elements are nonzero. The coerced

elements of prob do not have to sum to one.

For example:

> sample(10)

 [1] 8 10 6 4 7 5 3 9 1 2

> sample(10, 5)

[1] 3 1 6 8 9

> sample(c("a1", "a2", "a3"), 6, replace=T)

[1] "a1" "a1" "a1" "a3" "a3" "a1"

> sample(11:21, prob=1:11)

 [1] 18 20 14 21 19 17 12 16 15 13 11

More information about sample() can be found by entering ?sample

at the R prompt or by using the “Help” tab in R Studio.

�Manually Entering Data and Generating
Data with Patterns
Data can be entered manually using the function c(), where the c stands

for collect. Sometimes data with a certain pattern is needed, for example, in

setting up indices for matrix or array manipulation or as input to functions.

Chapter 9 Importing and Creating Data

176

There are a number of functions in R that give patterned results, which

can be useful. Sometimes indexed names are needed for dimensions

in a vector, matrix, or array. The function paste() can be used to create

indexed names.

�The Function c( )
The function c() collects objects together into a single object. The objects

to be collected are separated by commas within the call to c(). The objects

can be NULL, raw, logical, integer, double, character strings (which

must be quoted), named objects (which must be atomic objects, lists, or

expressions), lists, and/or expressions. Objects can also be functional calls

that return any of the above classes.

If all of the objects in the call are atomic objects, the function c()

collects the objects into a vector of the elements making up the objects.

The class of the resulting vector is the highest level class within the

elements of the vector, where the levels of the classes increase in the order

NULL, raw, logical, integer, double, complex, and character.

An example of the hierarchy follows:

> rw = as.raw(c(36, 37, 38, 39))

> rw

[1] 24 25 26 27

> c(rw, rw)

[1] 24 25 26 27 24 25 26 27

> c(rw, TRUE)

[1] TRUE TRUE TRUE TRUE TRUE

> c(rw, 40)

[1] 36 37 38 39 40

Chapter 9 Importing and Creating Data

177

> c(rw, 40.5)

[1] 36.0 37.0 38.0 39.0 40.5

> c(rw, 1+1i)

[1] 36+0i 37+0i 38+0i 39+0i 1+1i

> c(rw, "six")

[1] "24" "25" "26" "27" "six"

The conversion from raw is automatic except for the conversion to

character, which maintains the raw values.

The function c() has one possible named argument, the logical

argument recursive. The default value of recursive is FALSE. If recursive

is set to TRUE and the collection contains a list but not an expression, then

the list is taken apart to the lowest level of the individual elements in the

list and a vector of atomic elements is returned. The object takes on the

class of the highest level of class in the object. If recursive is FALSE, the

resulting object becomes a list.

In the hierarchy of classes, list is above the atomic classes but below

expression. If an expression is included in the call to c(), then the result

has class expression.

An example for objects of class list and expression follows:

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

Chapter 9 Importing and Creating Data

178

> c(a.list, 1:2)

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

[1] 1

[[4]]

[1] 2

> c(a.list, 1:2, recursive=T)

[1] "1" "2" "3" "4" "abc" "cde" "1" "2"

> a.expr = expression(y ~ x, `1`)

> c(a.list, a.expr)

expression(1:4, c("abc", "cde"), y ~ x, `1`)

In the first call to c(), an object of class list is returned. In the second

call, an object of class character is returned. In the third call, an object of

class expression is returned.

Names can be assigned to the elements of the object created by c() by

setting the elements equal to a name in the listing—for example:

> c(a=1,b=2,3)

a b

1 2 3

Here, the first two elements are assigned the names a and b while the

third element is not assigned a name.

Chapter 9 Importing and Creating Data

179

More information about c() can be found by entering ?c at the R

prompt or by using the “Help” tab in R Studio.

�The Functions seq( ) and rep( )
The functions seq() and rep() are used for sequences and repeated

patterns. In the simplest form, using seq() is the same as using the

colon operator to create a sequence. However, seq() can create more

sophisticated sequences than the colon operator. The function rep()

repeats the first argument to the function a specified number of times,

where there are two possible ways to do the repetition.

�The Function seq( )

The function seq() has six arguments. The first two arguments are the

starting and ending values of the sequence and are named from and to.

The arguments from and to can take on logical, numeric, or complex

values. For logical values, TRUE is coerced to one and FALSE is coerced to

zero. For complex values, the imaginary part is dropped. Both to and from

are set to one by default.

The third argument is by. The argument by gives the value by which to

increment the sequence. The argument can also take on logical, numeric,

and complex values; however, it cannot equal FALSE since FALSE coerces

to zero and by cannot equal zero. The argument does not have to divide

into the difference between to and from evenly. The sequence will stop

at the largest value less than or equal to to if to is greater than from. If to

is less than from, then by must be negative and the sequence stops at the

smallest value greater than or equal to to.

The fourth argument is length.out. By default, length.out is set to

NULL. The argument length.out can be used in place of by. The argument

gives the length of the sequence to be output. If length.out is specified, by

defaults to (to - from) / (length.out-1).

Chapter 9 Importing and Creating Data

180

The fifth argument is along.with. The argument along.with is also

used in place of by. The length of the sequence to be output is given

by the length of along.with. The sixth argument is the argument ... for

any arguments to or from lower-level functions used by seq(). Some

examples follow:

> seq(3)

[1] 1 2 3

Entering just one value without a name gives a sequence from one to

the largest integer less than or equal to the value for positive values or the

smallest integer greater than or equal to the value if the value is negative.

> seq(3, 10)

[1] 3 4 5 6 7 8 9 10

When two values are entered without names, the first is interpreted

as the from value, the second is interpreted as the to value, and by is set

equal to one.

> seq(3, 10, 2)

[1] 3 5 7 9

When three values are entered without names, the first is interpreted

as the from value, the second is interpreted as the to value, and the third is

interpreted as the by value.

> seq(3, 10, len=4)

[1] 3.000000 5.333333 7.666667 10.000000

Here, length.out is shortened to len.

 > seq(3, 10, along=c(1,2,1,2))

[1] 3.000000 5.333333 7.666667 10.000000

Chapter 9 Importing and Creating Data

181

Here, along.with is shortened to along.

> seq(c(1,2,1,2))

[1] 1 2 3 4

If a vector with more than one element is entered as the only

argument, a sequence starting with one is created, with by equal to one,

and of length equal to the length of the vector.

> seq(len=4)

[1] 1 2 3 4

> seq(7,along=c(1,2,1,2))

[1] 7 8 9 10

> seq(7,len=4)

[1] 7 8 9 10

Entering length.out or along.with alone or with a value for from

returns a vector starting with the value of from, with by equal to 1, and of

the correct length. For long sequences, there are lower level functions that

are faster. See the help page for seq(). More information about seq() can

be found by entering ?seq at the R prompt or use the “Help” tab in R Studio.

�The Function rep( )

The function rep() repeats the first argument in a pattern determined by

the other the arguments. The first argument can be any type of object that

can be coerced to a vector. The other three arguments are times, each, and

length.out. The default values for times, each, and length.out in the S3

system are 1, 1, and NA, respectively.

The argument times is a vector of values that can be coerced to integer.

The argument must be either a single value or of the same length as the

first argument. If the argument takes a single value, the first argument is

repeated the number of times of the single value.

Chapter 9 Importing and Creating Data

182

If the argument times is of length equal to the length of the first

argument, then each element of the first argument is repeated the number

of times indicated by the corresponding element of the argument times.

The argument times is the second argument to rep(). For example:

> rep(0,5)

[1] 0 0 0 0 0

> rep(1:3, 5)

 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

> rep(1:3, 2:4)

[1] 1 1 2 2 2 3 3 3 3

Here, the second argument is not explicitly called times, but times

implicitly takes on the value.

The argument each can be any object that can be coerced to a vector of

integers, where the first element is non-negative. Only the first element of

the object is used. The argument tells rep() to repeat each element of the

first argument each times. For example:

> rep(1:3, each=3)

[1] 1 1 1 2 2 2 3 3 3

>

> rep(1:3, each=3, times=2)

 [1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

>

> rep(rep(1:3, times=2:4), each=2)

 [1] 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3

>

> rep(rep(1:3, times=2:4), times=2)

 [1] 1 1 2 2 2 3 3 3 3 1 1 2 2 2 3 3 3 3

Chapter 9 Importing and Creating Data

183

The last argument is length.out. The argument can take on any value

that can be coerced to an integer vector and for which the first element

is non-negative. Only the first element is used. If length.out is set to a

value, only the number of elements given by the value of the argument is

returned. For example:

> rep(rep(1:3, times=2:4), times=2, len=8)

[1] 1 1 2 2 2 3 3 3

Here, length.out is shortened to len.

More information about rep() can be found by entering ?rep at the R

prompt or use the “Help” tab in R Studio.

�Combinatorics and Grid Expansion
Combinatorics is a subject about the combinations that can be made from

a set of discrete values. Combinations are all of the combinations that are

possible from a discrete set of values for a given number of elements in

each combination, where no element is repeated. Permutations are the set

of all possible permutations of a given size from a discrete set of elements.

Grid expansion is about the expansion of different sets of elements so that

each element of each set is linked with every element of the other sets.

Probably the easiest way to see what the combinations, permutations, and

grid expansion involve is by showing some examples.

Three functions that are relevant are combn(), permsn()—which

is in library prob—and expand.grid. The function combn() takes the

arguments x, m, FUN, simplify, and The argument x is any object

that can be coerced to a vector and is the discrete set from which the

combinations are formed. The argument m is the number of elements

to include in each combination. The argument FUN is an optional

Chapter 9 Importing and Creating Data

184

function to operate on the elements of x. The argument simplify

is logical. If TRUE, an array or matrix is returned. If FALSE, a list is

returned. The default value is TRUE. The argument ... contains any

arguments for FUN. For example:

> combn(1:3,2)

 [,1] [,2] [,3]

[1,] 1 1 2

[2,] 2 3 3

Note that the combinations are down the rows.

The function permsn() is in the package prob. Since the package is

not one of the packages installed by default, the package may need to be

installed. (See Chapter 1.) If the package is installed, the package must be

loaded with

library(prob)

The function permsn() takes just two arguments, x and m, which are as

described for combn(). Following is an example for permsn():

> permsn(1:3,2)

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 1 3 2 3

[2,] 2 1 3 1 3 2

Note that the permutations are down the rows. Also note that while

combn() just has the combination (1,2), permsn() includes both (1,2) and

(2,1) and so forth. The function permsn() returns a matrix.

The function expand.grid() takes objects as arguments. The objects

are separated by commas and must be able to be coerced to a vector.

Chapter 9 Importing and Creating Data

https://doi.org/10.1007/978-1-4842-4405-0_1

185

The function returns the vectors crossed with each other in a data frame.

For example:

> expand.grid(1:2,3:4,5:6)

 Var1 Var2 Var3

1 1 3 5

2 2 3 5

3 1 4 5

4 2 4 5

5 1 3 6

6 2 3 6

7 1 4 6

8 2 4 6

Here, the combinations are across the rows.

More information about combn(), permsn(), and expand.grid() can

be found by entering ?combn, ?prob::permsn, and ?expand.grid at the

R prompt. Note that if prob is not installed, the second command will not

work. Or use the “Help” tab in R Studio after installing the package “prob.”

�The Function Paste
This chapter ends with the function paste(). The function is used to

create character strings out of any type of object. Other than the objects

to be strung together, which are separated by commas, paste takes two

arguments, sep and collapse. The argument sep gives the value of what

is to separate the individual terms and is by default a white space. The

argument sep must be a character string or character object. To set the

value to nothing, set sep equal to “”.

The argument collapse is also a character string or object and is used

to separate results.

Chapter 9 Importing and Creating Data

186

One() of the useful applications of paste()is the creation of

dimension names. Here is an example of three simple applications

of paste(). The second example would be appropriate for creating

dimension labels.

> paste("a", 1:3)

[1] "a 1" "a 2" "a 3"

>

> paste("a", 1:3, sep="")

[1] "a1" "a2" "a3"

>

> paste("a", 1:3, sep="", collapse="+")

[1] "a1+a2+a3"

You can find more information about paste() by entering ?paste at

the R prompt or by using the “Help” tab in R Studio.

Chapter 9 Importing and Creating Data

	Chapter 9: Importing and Creating Data
	Reading Data into R and R Studio, Including R Datasets
	The Function scan()
	The Functions read.table() and read.csv()
	The Functions load(), attach(), and data()
	The Function readRDS()
	Other Read Functions to Import Files
	Reading Data Using R Studio
	R Datasets

	Probability Distributions and the Function sample()
	Probability Distributions
	The Function sample()

	Manually Entering Data and Generating Data with Patterns
	The Function c()
	The Functions seq() and rep()
	The Function seq()
	The Function rep()

	Combinatorics and Grid Expansion
	The Function Paste

