
139© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_8

CHAPTER 8

How to Use a Script
or Function
While scripts are just listings of code stored outside of R, functions are

objects of mode function and are stored in the workspace. Most functions

require specific kinds of arguments, which must be input into the function

correctly. For example, if a function calls for a matrix and a data.frame

is input, the function will return an error. Since external tables are often

read into the R workspace as data.frames, using a data.frame for a matrix

is quite a common error. This chapter covers calling a function, using

arguments in a function, and accessing the output of a function, as well as

an example of using a script to do a simple mining of Twitter.

�Calling a Function
Calling a function is straightforward. The name of the function is entered

at the R prompt followed by a set of parentheses which may or may not

contain arguments, depending on the function. If the function does

require arguments, the arguments are separated by commas within the

parentheses.

Sometimes the argument name must be used, but not always.

For values that are entered without names, R assigns the values to the

arguments which are unnamed in the call, starting with the first unnamed

https://doi.org/10.1007/978-1-4842-4405-0_8

140

variable and continuing in order until the unnamed arguments are

exhausted. The order of the arguments is the order of the arguments within

the parentheses of the function definition.

To illustrate the use of arguments, an example follows using a

function named f.fun(). The function f.fun() calculates a quantile of

the normal distribution given the mean, the standard deviation, and

alpha. The function returns the (1-alpha/2) x 100th percentile of the

distribution. The arguments “se” and “alpha” are given default values and

“mu” is not.

The example starts with a definition of the function, which is followed

by five different calls to the function:

> f.fun = function(mu, se=1, alpha=.05){

 q_value = qnorm(1-alpha/2, mu, se)

 print(q_value)

}

> f.fun(mu=0, se=1, alpha=0.05)

[1] 1.959964

In the first call, each of the arguments is specified by name.

In R, arguments can be in any order if specified by name.

> f.fun(0, 1, 0.10)

[1] 1.644854

In the second call, the values for the arguments are entered without

names. Since the arguments are entered in order, the function knows

which argument to assign to which value. The argument “mu” takes on the

value of “0”, “se” the value of “1,” and “alpha” the value of “0.10,” which is

the order of the arguments within the parentheses in the function.

> f.fun(0, alpha=0.20)

[1] 1.281552

Chapter 8 How to Use a Script or Function

141

In the third call, the first argument is entered without a name, and the

third argument is entered with a name. The second argument takes on the

default value. The argument “mu” takes on the value of “0,” “se” the value

of “1,” and “alpha” the value of “0.20.”

> f.fun(4, 4)

[1] 11.83986

In the fourth call, values for the first two arguments are entered

without names, and the third argument takes on the default value. The

argument “mu” takes on the value of “4,” as does “se.” The argument

“alpha” takes on the default value of “0.05.”

> f.fun(se=1, 0, 0.2)

[1] 1.281552

In the fifth call, the second argument is named, and the first and third

are not, so “mu” takes on the value “0” and “alpha” takes on the value “0.2,”

while “se” takes on the value “1.” Note that the named argument can be

placed anywhere in the list.

�Arguments
Given a function, a listing of the arguments to the function can be found

at the help page for the function. Most help pages distinguish between the

S3 and S4 versions of the functions. The S3 versions give the arguments for

the S3 form of the function. The S4 versions give only those arguments that

must be included, plus the “...” argument. In S4, each method for a generic

function is different, so the arguments may vary by the method.

For some functions, the user must know something about the

theory behind the function to understand the arguments, but for many

functions the arguments are straightforward. As noted in the last section,

arguments with default values do not have to be given a value when the

function is called.

Chapter 8 How to Use a Script or Function

142

Arguments to a function must be of the correct mode and class.

On the help page of a function, descriptions of the arguments are

listed in the “Arguments” section, sometimes giving the mode and(or)

class, but not always. Sometimes, the mode and(or) class is obvious.

Sometimes, more information can be found in the “Details” section.

Sometimes, looking in the “Examples” section is enough to clear up the

form of an argument.

One argument which needs a little explaining is the “...” argument.

The “...” argument tells the user that there are more arguments that may be

entered. The arguments would be to a lower-level function called by the

higher-level function. An example follows.

The example starts by listing two vectors, “x” and “y,” and then

continues with two calls to the function lm() with two different values for

the argument “tol.” (The function lm() fits a linear model.) On the help

page for lm(), there is no argument “tol.” However, there is the argument

“...,” indicating that lm() calls another function for which an argument can

be entered.

The function lm.fit() is a lower level function which lm() calls and

lm.fit() has the argument “tol.” (The argument “tol” gives the tolerance for

the QR decomposition as to whether a matrix is singular.) In the first call

to lm(), the default value for “tol” is used, since “tol” is not specified. In the

second call, lm() passes the value for “tol” to lm.fit().

> x

[1] 2.001 2.000 2.000

> y

[1] 4.03 4.00 4.01

> lm(y~x)

Call:

lm(formula = y ~ x)

Chapter 8 How to Use a Script or Function

143

Coefficients:

(Intercept) x

 -45.99 25.00

> lm(y~x, tol=.001)

Call:

lm(formula = y ~ x, tol = 0.001)

Coefficients:

(Intercept) x

 4.013 NA

In the first call, the default value for “tol” is 1.0e-7, so lm.fit() does not

find a linear dependency in the matrix consisting of a column of ones and

“x.” As a result two coefficients are fit.

In the second call, “tol” is set to 1.0e-3, and lm() determines that there

is a linear dependency in the matrix consisting of a column of ones and “x,”

so only one coefficient is fit.

�The Output from a Function
The output from a function will vary with the function. Plotting functions

mainly give plots. Summary functions give summarized results. Functions

that test a hypothesis give the results from the test.

Most packaged functions print some results directly to the screen,

but most packaged functions also have output which can be accessed

through subscripting. For example, looking at the help page of the

function lm(), under the “Value” Section, coefficients, residuals, fitted.

values, rank, weights, df.residual, call, terms, contrasts, xlevels, offset, y,

x, model, and na.action are all values which can be accessed from a call

to the function.

Chapter 8 How to Use a Script or Function

144

The most common method used to access values is with the “$”

operator, although index subscripting can be used, too. For most functions,

the output is of mode list. The elements of the list can be of any mode.

For the first simple regression model fit in the last section, the

accessible 15 values are as follows:

> a.lm = lm(y~x)

> a.lm$coef

(Intercept) x

 -45.995 25.000

> a.lm$res

 1 2 3

-4.336809e-19 -5.000000e-03 5.000000e-03

> a.lm$fit

 1 2 3

4.030 4.005 4.005

> a.lm$rank

[1] 2

> a.lm$weights

NULL

> a.lm$df

[1] 1

> a.lm$call

lm(formula = y ~ x)

> a.lm$terms

y ~ x

attr(,"variables")

list(y, x)

Chapter 8 How to Use a Script or Function

145

attr(,"factors")

 x

y 0

x 1

attr(,"term.labels")

[1] "x"

attr(,"order")

[1] 1

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>

attr(,"predvars")

list(y, x)

attr(,"dataClasses")

 y x

"numeric" "numeric"

> a.lm$contrasts

NULL

> a.lm$xlevels

named list()

> a.lm$offset

NULL

> a.lm$y

NULL

> a.lm$x

named list()

Chapter 8 How to Use a Script or Function

146

> a.lm$model

 y x

1 4.03 2.001

2 4.00 2.000

3 4.01 2.000

> a.lm$na.action

NULL

In the example, the call to lm() was assigned a name, but lm() could

have been subscripted directly. An example is lm(y~x)$coef. Values

accessed from a call to a function are often used in another function.

Running an R function takes a little care, but with some

experimentation and determination, the results can be very useful.

�Example of a Script: Mining Twitter
This example demonstrates a way to mine Twitter and gives a result

from a mining call. The example is stored on the hard drive as a script

and is not a function. A mixture of S3 and S4 is used in the script. Most

of the objects in “tm,” the text mining package used here, are S4 objects

and are methods.

In order to mine Twitter, you must create a developer account on

Twitter and create an app. To create a developer account, you must have a

Twitter account. If you have a Twitter account, create a developer account

at https://developer.twitter.com. Otherwise, open a Twitter account,

then create a developer account.

To open an account at the developer site, open the “Apply” button

toward the right side of the top menu. Follow the instructions. When the

account is approved, the name you have chosen for the developer account

should then be on the top menu of the developer page, to the right. Choose

the “Apps” item in the dropdown menu below the name.

Chapter 8 How to Use a Script or Function

https://developer.twitter.com

147

In the window that opens, choose the “Create an App” button. Follow

the instructions to create an app. On the page that opens after the app

is created, click on “Details” and look under the “Keys and tokens” tab.

There, you will find the consumer API key and API secret key:

Consumer API keys

(API key)

(API secret key)

(The pound signs in the above will be letters and numbers in the actual

result.)

Below the customer API keys is a button to regenerate the keys. You

can regenerate the keys at any time. Below the regenerate button is a

button to generate tokens.

Select the button to generate tokens. The result will be:

Access token & access token secret

(Access token)

(Access token secret)

(The pound signs will be mostly letters and numbers in the actual

result.) Below the tokens is the access level. The default access is read

and write:

Read and write (Access level)

Below the access level are buttons to revoke the tokens or to

regenerate them. The tokens can be revoked or regenerated at any time.

The tokens and keys are used by the “twitteR” package in R to connect to

the Twitter API.

The Twitter developer app must be open when R or R Studio is run or

the program will crash when R attempts to connect with Twitter and all of

your work will be lost.

Chapter 8 How to Use a Script or Function

148

The libraries “twitteR” and “tm” (for text mining) are loaded first in the

script. The script is below:

library(twitteR)

library(tm)

Connect to Twitter; the consumer_key, consumer_secret,

access_token, access_secret are the ones generated by Twitter.

setup_twitter_oauth(

 consumer_key = "#########################",

 consumer_secret = "###",

 access_token = "###",

 access_secret = "##"

)

Fetch at most 100 tweets about "Clinton" and within 70 miles of

42 N and 95.5 W. The tweets are fetched backwards in time.

tweetsClinton = searchTwitter("Clinton", n = 100,

geocode = "42,-95.5,70mi")

The types and classes of tweetsClinton and of the elements of

tweetsClinton (tweetsClinton is a list).

print(typeof(tweetsClinton))

print(class(tweetsClinton))

print(typeof(tweetsClinton[[1]]))

print(class(tweetsClinton[[1]]))

Manipulate the S4 objects in tweetsClinton into an S3 matrix of

the number of a given word in each tweet. The words are assigned

to the row names.

Chapter 8 How to Use a Script or Function

149

tweetsClintonDF = twListToDF(tweetsClinton)

ClintonCorpus = Corpus(VectorSource(tweetsClintonDF$text))

ClintonTDM = TermDocumentMatrix(ClintonCorpus)

ClintonMatrix = as.matrix(ClintonTDM)

Create a data frame with words in the first column and

the frequencies of the words in the second. Only keep words

with a frequency greater than 12. Print out the result.

ClintonFrqMat = data.frame(Word = rownames(ClintonMatrix),

 Frequency = rowSums(ClintonMatrix))

ClintonFrqMatReduced = ClintonFrqMat[ClintonFrqMat[, 2] > 12,]

print(ClintonFrqMatReduced)

Sourcing the script in R gives:

> source('~/Documents/RQSRexample.R')

[1] "Using direct authentication"

[1] "list"

[1] "list"

[1] "S4"

[1] "status"

attr(,"package")

[1] "twitteR"

 Word Frequency

and and 19

for for 13

hillary hillary 23

https https 77

clinton clinton 43

that that 15

Chapter 8 How to Use a Script or Function

150

the the 58

was was 16

trump trump 18

you you 14

georgepapa19 georgepapa19 15

The tweets have not been cleaned in any way. Usually tweets are

reduced to nontrivial words. Note that “clinton” only shows up in 43 times

in the tweets. The tweets include tweets related to Clinton as well as tweets

including the word “Clinton.”

The sources for the above information include the R help pages and

stack overflow.

More information about the above functions can be found by entering

??tm::tm or ??twitteR::twitteR at the R prompt or by using the “Help” tab in

R Studio.

Chapter 8 How to Use a Script or Function

	Chapter 8: How to Use a Script or Function
	Calling a Function
	Arguments
	The Output from a Function
	Example of a Script: Mining Twitter

