
121© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_7

CHAPTER 7

User-Created
Functions, Scripts,
and S4 Methods
User-created functions and scripts often make the life of an R user easier.

If a repetitive task involves several different lines of code, creating a

function or script to do the task saves time. In S4, methods for generic

functions are the functional side of S4 and require special treatment.

Designing plots is one example of when a user-created function or

script makes sense. Plots often take several lines of code, and the design of

a plot is usually an interactive process. From command line R, creating a

function to do the plot and making changes to the function are often much

easier than using the up arrow and changing lines.

Another example of when a user-created function or script is useful

is when a user wants to try out a statistical technique that is not available

in the R packages. Often, the user can create a function or script for the

technique using functions that are available.

In R Studio, the Source window (the upper left window) provides

a place to create and run code, which can then be saved as an R script,

externally, or as a function, internally. The Source window is also a place

into which to load R scripts or other text files.

https://doi.org/10.1007/978-1-4842-4405-0_7

122

�Scripts
Scripts are code that is written in R and stored outside of the program.

A file containing an R script is a text file and has the extension .R. R scripts

can contain function definitions. From command line R, a script is run

using the function source(). For example, let lm.example.R, a file in the

working directory, contain

print(x)

print(y)

print(lm(y~x))

Then, running source() on the file gives

> source("lm.example.R")

[1] 1 2 3 4 5 6 7 8 9 10

[1] 21 22 23 24 25 26 27 28 29 30

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 20 1

Note that only the results of the functions are printed.

In R Studio, things are simpler. There is no need to edit the script

externally. If the script already exists outside of R, the script can be loaded

into the Source window. Click on the icon of a yellow folder with a green

arrow on the first menu just above the windows. Then, browse to the

location of the script and click on the file. The file will open in the Source

window. To run the file, click on the Run or Source icons to the right of the

Source window menu bar. To run a portion of the file, highlight the portion

and click on the Run icon.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

123

To enter a new script, open the far left icon in the menu bar above the

upper windows and choose the first option, “R Script.” The Source window

will open to a blank page. Just enter the lines of code. Run the code or

sections of code to debug the script. R Studio helps with the debugging,

flagging syntax errors. When done, you can save the script. Click on the

floppy disk icon in the menu of the Source window and enter a name for

the file. R Studio automatically gives the file an .R extension. To run the

code when saving the code, check the “Source to Save” box.

�The Structure of a Function
Functions that are not primitive functions all have the same structure.

On the first line of the function is the word function, followed by open

and close parentheses, which may or may not contain arguments. In most

cases, an open bracket follows the parentheses. Usually, the body of the

function is placed below the first line, and the last line is a blank line after

the close bracket, which is usually on its own line. Normally, functions are

assigned a name. For example:

> d.fun = function(){

+ print(1:5)

+ }

> d.fun

function(){

print(1:5)

}

> d.fun()

[1] 1 2 3 4 5

In this example, first, the function is assigned to d.fun; next, the

content of d.fun() is listed; and, last, the function d.fun() is run.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

124

The brackets are not necessary if the function consists of just one

statement—which can be entered on the same line as the function

statement or on the following line(s). For example:

> c.fun = function() print(1:5)

> c.fun

function() print(1:5)

> c.fun()

[1] 1 2 3 4 5

Again, the function is assigned a name, the function is listed, and the

function is run.

Arguments are objects or values that are used by the function and

that must be input to the function at the time the function is run, unless

a default value exists for the argument. Arguments are placed within the

parentheses when the function is created, separated by commas. A default

value is supplied by setting the argument equal to the value. Arguments

with default values do not have to be specified when the function is run.

If the value is not specified, the function uses the default value.

An example follows of a function with two arguments, where a does

not have a default value and must be specified, and b has the default value

of 3:

> e.fun = function(a, b=3){

+ print(a:b)

+ }

> e.fun

function(a, b=3){

print(a:b)

}

Chapter 7 User-Created Functions, Scripts, and S4 Methods

125

> e.fun(10)

[1] 10 9 8 7 6 5 4 3

> e.fun()

Error in a:b : 'a' is missing

Again, the function is assigned a name, listed, and run. Note that since

a is the first argument and b has a default value, a can be supplied without

a name. In the second attempt to run e.fun(), no argument is supplied for

a, so e.fun() returns an error.

Often, the user uses brackets within a function to enclose groups of

statements, such as for if, else, for, while, and repeat groups. There must

be the same number of opening brackets as closing brackets in a function;

otherwise, the function will not save. Mismatched brackets are a common

source of errors in R code and are flagged in R Studio.

Lines of code in R (both in a function and at the R prompt) can be

broken and continued on the next line. R looks for things such as a closing

parenthesis, bracket, or quotation mark to designate the end of a statement

or a part of a statement.

Empty lines are legal in R functions. Also, any text can be commented

out by placing a pound sign (#) in front of the text. On a line, anything

entered after a pound sign is ignored. A piece of advice for writing

functions is to write a little chunk at a time, debug at each step, and use

plenty of comments.

�How to Enter a Function into R
This section describes four ways to get a function into R using the

command line and one way using R studio. The first involves using an

editor. The second involves inline entry, as shown in the preceding section.

The third involves creating a function outside of R and using dget() to get

Chapter 7 User-Created Functions, Scripts, and S4 Methods

126

the function into R. The fourth is a variation on the second and third and

involves copying and pasting from a source that can be outside of R. The

fifth involves using the R Studio Source window.

�Using an Editor
For the Windows and OS X operating systems, there is a function, edit(),

in the package utils that works well for creating new functions. The

purpose of the function edit() is to call an editing function.

In Windows, the default editing function is the internal editor. The

possible other choices for editor are xedit(), emacs(), xemacs(), vi(),

and pica(), where the choice is available only if the editor is present on

the system. The default editor is listed in options() and can be changed at

any time (Chapter 15).

For OS X systems, the only editor available is the vi editor, which

works well.

For Linux operating systems, calling edit() from the terminal window

does not give a good result. A better editor is emacs(), which is available

for Linux systems.

Most of the preceding information is from the help page for edit().

Enter ?edit at the R prompt for more information about the editing

functions.

To create an object that is a function by using an editor, the function

is first assigned to a name. For example, let the name be f.fun. To create

the function f.fun(), start by entering f.fun = function(){} at the R prompt.

The object f.fun then contains a function with no arguments and no

statements.

The next step is to edit the function. For simplicity, only the function

edit() is shown in the example here. The other editors behave similarly.

Enter f.fun = edit(f.fun) at the R prompt. An editing window opens up for

editing (Figure 7-1).

Chapter 7 User-Created Functions, Scripts, and S4 Methods

https://doi.org/10.1007/978-1-4842-4405-0_15

127

For the third step, the arguments are entered within the parentheses,

and the statements of the function are entered within the brackets

(Figure 7-2).

The fourth step is to exit the editor. To exit the editor, click the x at the

top right-hand corner of the editing window. A window will appear with

options to save the file, exit without saving, or to cancel the request and

Figure 7-1.  Creating a function: the first and second steps

Figure 7-2.  Creating a function: the third step

Chapter 7 User-Created Functions, Scripts, and S4 Methods

128

go back to editing. (If no changes were made to the file, the options screen

does not appear.) Click Yes to save the changes, No to revert to the earlier

version, or Cancel to go back to editing.

If the function is syntactically correct, the function will save. Otherwise,

edit() returns an error, such as the following:

Error in .External2(C_edit, name, file, title, editor) :

 unexpected '}' occurred on line 4

 use a command like

 x <- edit()

 to recover

To recover the work already done, enter f.fun = edit(). Using

parentheses with no content is very important. If the name of the function

is entered within the parentheses, the editing changes are lost, and the

function reverts to the version before the edit. Note that the error message

gives information about the problem with the R code.

The following shows the input and output at the R console when

creating the function f.fun() with the editor, followed by the listing of

the function, and the running of the function with the first argument set

to zero.

> f.fun = function(){}

> f.fun = edit(f.fun)

> f.fun

function(mu, se=1, alpha=.05){

 z_value = qnorm(1-alpha/2, mu, se)

 print(z_value)

}

> f.fun(0)

[1] 1.959964.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

129

�Inline Entry
As shown in the first section of this chapter, a function can be entered

inline. Let b.fun be the name of a new function created to list the digits

three through six. Then, the steps to create the function, to list the code,

and to run the function are as follows:

> b.fun = function(){

+ print(3:6)

+ }

> b.fun

function(){

print(3:6)

}

> b.fun()

[1] 3 4 5 6

If a syntactical error is made in the process of entering a function

inline, R will give an error and return to the R prompt. For example:

> b.fun = function(){

+ print(3:6

+ }

Error: unexpected '}' in:

"print(3:6

}"

For longer functions, using the R editor or an external editor tends to

be less frustrating.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

130

�An Outside Editor: dget( ) and Copying
and Pasting
An outside editor can be used to create a function. Any editor that

produces text files, such as Notepad, TextEdit, or gedit, can be used

to create an R function. The rules for creating a function are the same

as those described in the first section. Once the function is created,

the function can be imported into the workspace by using the function

dget() or by copying and pasting. (The function dget() and the

corresponding function dput() are one way to import and export

functions in R.)

Say that a function is in a file called function.txt in the same folder as

the R workspace and that the function is syntactically correct. Then, the

following line imports the function into the object g.fun:

g.fun = dget("function.txt")

(Note that R accepts more complex file paths for files, including

absolute addresses on the hard drive and URLs.)

If the text file is not syntactically correct, R returns an error with

information about the syntactical problem in the file.

If the file does not contain a function, or contains more than a

function, R will attempt to run the code.

The file can also be copied and pasted from an outside source—or

from elsewhere in the R session—into an object in R. Start by copying the

function onto the clipboard of the computer. Next, enter the name that

the object is to be called, followed by an equal sign, at the R prompt. The

cursor should then be to the right of the equal sign. Next, paste.

If the function is syntactically correct, the cursor stops to the right of

the close bracket. Press the Return key to complete the process. If the

function is not syntactically correct, copying and pasting will give an error

containing information about the problem with the syntax.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

131

�In R Studio
In R Studio, to create a new function, open a new R script (far left icon).

Use an R script rather than a text file so that you can run the code from the

Source window while debugging. Do not enter the function statement or

the enclosing brackets. Enter variables to be entered as arguments first,

assigning them values. When the lines of code run and run correctly,

click on the wand icon above the Source window and choose “Extract

Function.” R Studio will cue you for a name and create the function in

the Source window with the name assignment. The arguments should be

in the correct place, but you may need to do some editing on the result.

Running the resulting script assigns the function to the name within the

workspace.

Clicking on an existing function under the Environment tab, in the

upper right window in R Studio, opens the function in its own tab in the

Source window. You cannot edit or run the code, but you can copy it, open

a new R script, and paste the code into the R script for editing.

�S4 Methods

S4 methods structure the functions of S4. An S4 method includes a name

for the function being created, the class(s) of the data to be used by the

function, and the function definition. The method can also specify where

to store the method, if different from the workspace in which the method

is created, as well as whether to seal the definition (not allow future

changes.) S4 methods depend on the existence of a generic function that

has the same name given in the method.

In S3, generic functions are functions for which the way the

function behaves depends on the class of an argument. In S4, all

functions are generic. In S4, a generic function is either created or

exists and methods are created for the generic function. A method

depends on the class(s) of the data objects used by the method.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

132

The help page for setMethod() says that S4 usually does the creation

automatically when setMethod() is run for functions that are S3

generics, but it must be done manually for new functions. Methods can

be added to existing S4 generic functions.

The function setGeneric() creates a generic function. There are

ten arguments to setGeneric(), two of which are usually assigned.

The first is “name,” which is a character string containing the name

to be assigned to the function. The standard for S4 function names is

lowercasefirstUpperCaseAfter. The second is def, which is a function

definition and is optional in some cases. For new generic functions, the

argument def is set equal to the function standardGeneric(), which

normally has one argument, f, set equal to the name of the function

in quotes. The rest of the arguments to setGeneric() are optional

or have a default value that should be used. Enter ?setGeneric and

?standardGeneric at the R prompt or use the Help tab in R Studio for

more information about the two functions.

The function setMethod(), is similar to setGeneric(), but also includes

the class(s) associated with the method. The first argument is f and is a

character string of the name to be assigned to the function. For a newly

defined function, you must create the generic function with the desired

name before creating the method. (See the succeeding example.) If the

generic function exists, the names must match. The second argument is

signature which is a character vector and gives the class(s) associated with

the data objects used by the method.

The third argument, definition, defines the function of the method.

The function definition is usually a mixture of S3 and S4; however,

variables entered through the signature class(s) are subscripted using

@ or the function slots() rather than $ or [[. But, if—say—there is

a slot mat in class mats, where mat is a matrix, then mat could be

subscripted with a combination of S3 and S4 methods; for example,

mats@mat[1:3, 4].

Chapter 7 User-Created Functions, Scripts, and S4 Methods

133

The last three arguments to setMethod() are usually left as their

default values. The argument where tells R where to store the method,

by default the namespace of the package for which the function is being

defined. The argument valueClass is obsolete and by default is set to

NULL. The argument sealed lets you freeze changes to the method and by

default is set to FALSE.

This information is from the help page for setMethod(), which can be

accessed by entering ?setMethod at the R prompt or by using the Help tab

in R Studio.

A second example of creating and running a method (there is one in

chapter 5) is as follows:

> setClass("xyz", slots=c(x="numeric", y="numeric"))

> setMethod("lmFunction", signature="xyz", function(x="xyz",

y="missing", ...)

{ print(lm(x@y ~ x@x)) })

Error in setMethod("lmFunction", signature = "xyz", function

(x = "xyz", :

 no existing definition for function ‘lmFunction’

> setGeneric("lmFunction", function(x, y, ...) {

standardGeneric("lmFunction") })

[1] "lmFunction"

> setMethod("lmFunction", signature="xyz", function(x="xyz",

y="missing", ...)

{ print(lm(x@y ~ x@x)) })

> xy1=new("xyz", x=1:10, y=21:30)

> lmFunction(xy1)

Chapter 7 User-Created Functions, Scripts, and S4 Methods

https://doi.org/10.1007/978-1-4842-4405-0_5

134

Call:

lm(formula = x@y ~ x@x)

Coefficients:

(Intercept) x@x

 20 1

You can see that the method cannot be defined until the generic

function is defined. Note that x as defined in setMethod() has both

the x and the y from the definition of xy1 and that y is set to missing.

In setMethod(), a variable set to missing is not used. Also note that

the function is a new function, not in any of the loaded packages.

There are some testing functions to determine qualities of a function.

The functions isGeneric(), isS4(), isS3method(), and isS3stdGeneric()

can help determine if a S4 method can be defined with a function name.

For example:

> isGeneric("lm")

[1] FALSE

> isS4("lm")

[1] FALSE

> isS3method("lm")

[1] FALSE

> isS3stdGeneric("lm")

[1] FALSE

> setClass("lm", slots=c(fo="formula", df="data.frame"))

Error in setClass("lm", slots = c(fo = "formula", df = "data.

frame")) :

 "lm" has a sealed class definition and cannot be redefined

Chapter 7 User-Created Functions, Scripts, and S4 Methods

135

Here, lm() has a sealed class definition, so a new method cannot be

defined for the function. For some S3 functions, methods can be defined.

For example:

> isGeneric("plot")

[1] FALSE

> isS4("plot")

[1] FALSE

> isS3method("plot")

[1] FALSE

> isS3stdGeneric("plot")

plot

TRUE

> setClass("plot", slots=c(x="numeric", y="numeric"))

> setMethod("plot", signature="plot", definition=function

(x, y ,...){ plot(x@x, x@y) })

> tester=new("plot", x=1:10, y=21:30)

> plot (tester)

> isGeneric("plot")

[1] TRUE

> isS4("plot")

[1] FALSE

> isS3method("plot")

[1] FALSE

> isS3stdGeneric("plot")

[1] FALSE

Chapter 7 User-Created Functions, Scripts, and S4 Methods

136

Note that after creating the method for plot(), the function becomes

an S4 generic function rather than an S3 standard generic function, at least

in the workspace environment.

There are a number of other functions associated with

S4 methods. The functions selectMethod(), findMethod(),

getMethod(), existsMethod(), and hasMethod() are all grouped

together in one help page. The functions selectMethod() and

getMethod() return the function and the class of the method. The

functions existsMethod() and hasMethod() return a logical value

of TRUE or FALSE depending on if the method is found or not. The

functions differ as to whether they allow inheritance. The functions

selectMethod() and existsMethod() do. The function findMethod()

returns the location of the method.

The first argument to all of the functions is f, the name of a generic

function. The second argument is signature, a character vector of

class name(s) consisting of class(s) for which method is defined. The

functions selectMethod() and getMethod() behave similarly, except

that selectMethod() has three arguments that getMethod() does

not have; useInherited, verbose, and doCache, none of which are

normally used.

All of the functions except selectMethod() have the argument where,

which is an optional character variable giving the environment in which

to look for the method. Both selectMethod() and getMethod() have the

arguments optional, mlist, and fdef. The argument optional, if set to

TRUE, tells R to return NULL rather than an error if selectMethod() does

not find a method. The argument does not appear to affect getMethod().

The default value is FALSE for both functions. According to the help page

for these functions, the other arguments are rarely used. More information

can be found by entering ?getMethod at the R prompt or by using the R

Studio help tab.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

137

The function removeMethod() removes a method. The function

takes the f, signature, and where arguments, which are as described

previously. Note that to make changes to a method, the method must

be removed and assigned again after making the changes. For more

information, enter ?removeMethod at the R prompt or use the Help

tab in R Studio.

Generic functions also must be removed at times. Generic functions

are removed by using removeGeneric(). The function is one of a group

of functions under the same help page: Tools for Managing Generic
Functions. The arguments to removeGeneric() are f and signature, which

are as described previously. Some of the other functions listed in the help

page are isGeneric() already described; findFunction() which finds

the locations of a function; removeMethods() which removes all methods

associated with a function; and getGenerics() which lists all generics. For

the last two functions, the location can be specified (use .GobalEnv for

the workspace.) The function standardGeneric() is also at this help page.

Enter ?removeGeneric at the R prompt or use the Help tab in R Studio for

more information.

The function showMethods() shows the methods for S4 generic

functions. The function takes eight arguments. The first is f, the name(s)

of the function(s). The argument is optional. If not used, the function

returns all S4 generic functions. The second is where, the environment(s)

in which to look for the function(s). By default, where is set to the parent

environment of the workspace. To see the methods in the workspace, set

where equal to .GlobalEnv.

The third argument is classes and is a list of classes used to

restrict the search. The argument is optional. The fourth argument is

includeDefs, a logical variable. If TRUE, the functions are printed out.

The default value is FALSE. The fifth argument is inherited, a logical

variable. If TRUE, the inherited methods that have been used during

the session are included in the list of methods. The default value is the

opposite value of includeDefs.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

138

The sixth argument is showEmpty, a logical variable. See the help

page for more information. The seventh argument is printTo, which tell R

where to print the result of the call to the function. By default, the function

prints to the standard output, usually the terminal. The last argument

is fdef which allows you the option of choosing which generic function

definition to use. The argument is optional. Enter ?showMethods for more

information or use the R Studio Help tab.

CRAN’S introduction to S4 methods can be found by entering

?methods::Introduction at the R prompt or by using the Help tab in R

Studio.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

	Chapter 7: User-Created Functions, Scripts, and S4 Methods
	Scripts
	The Structure of a Function
	How to Enter a Function into R
	Using an Editor
	Inline Entry
	An Outside Editor: dget() and Copying and Pasting
	In R Studio
	S4 Methods

