
73© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_5

CHAPTER 5

Classes of Objects
In R, objects belong to classes as well as modes and types. Classes tell

something about how an object is structured. S3 and S4 differ with regard

to classes. In S3, there are specific classes into which an R object falls.

In S4, the user defines a class for an S4 object. Classes in S3 are called

informal classes, whereas classes in S4 are called formal classes. This

chapter covers both kinds of classes.

 Some Basics on Classes
S3 classes are attributes of S3 objects and are not usually assigned by the

user. Given an object, the class of the object can be found by using the

function class(). If an object has not been given a class in the package

to which the object belongs, then the class of the object is just the mode

of the object. For example, an object of mode function is also of class

function.

The output from many functions will have a class attribute specific

to the function. For example, the class of the output from a linear model

fit with the function lm() is lm. Also, objects can belong to more than

one class. An example is a model fit using the generalized linear model

function glm(). The classes of the output are glm and lm.

On a more technical side, according to the help page for class(), the

classes of an object are the classes from which an object inherits. So, the

output of lm() inherits from lm, and the output from glm() inherits from

both lm and glm.

https://doi.org/10.1007/978-1-4842-4405-0_5

74

One useful function for classes is the function methods(). Entering

methods(class=name), where name is the name of a class, will show

functions specifically written to be applied to objects of the class. For

example:

> methods(class=lm)

 [1] add1 alias anova case.names

 [5] coerce confint cooks.distance deviance

 [9] dfbeta dfbetas drop1 dummy.coef

[13] effects extractAIC family formula

[17] hatvalues influence initialize kappa

[21] labels logLik model.frame model.matrix

[25] nobs plot predict print

[29] proj qr residuals rstandard

[33] rstudent show simulate slotsFromS3

[37] summary variable.names vcov

see '?methods' for accessing help and source code

S4 (formal) classes are the starting point for S4 methods. An S4 class

contains a user-defined name for the class and the variables to be used by

methods associated with the class, along with the classes of the variables.

Entering ?class at the R prompt or using the R Studio “Help” tab gives

more information about S3 and S4 classes and inheritance.

 Vectors
Although there is no class vector, the vector merits discussion as one

of the most basic kinds of objects. For atomic mode vectors, a vector is a

collection of elements of only one dimension. The class is just the mode

of the vector, except for integer vectors, which take on the class integer.

Another reason vectors are important is that for the as.name() functions,

where name is the name of an atomic mode, except for the mode NULL,

as.name() returns a vector.

Chapter 5 Classes of objeCts

75

The functions vector(), as.vector(), and is.vector() exist and

operate somewhat like the similar functions for the modes. The function

vector() takes the arguments mode and length and creates a vector of the

given mode and length. The acceptable modes are the atomic modes—except

NULL, the list mode, and the expression mode. Other modes give an error.

For the atomic modes,

vector(mode="name", length=n)

behaves the same way as

name(length=n),

where name is the name of the mode and n is the length argument. Note

that name must be in quotes in the call to vector(). For the list mode,

vector() returns a list of NULLs of length given by the length argument.

With the mode set equal to expression, vector() gives an expression with

NULLs for arguments, where the number of NULLs is given by the length

argument.

The function as.vector() tries to coerce an object to a vector. For

some objects, as.vector() just passes the object through and does not

create a vector. For some other objects, an error is returned if the function

as.vector() is run.

For matrices and arrays, dimensional information is removed by

as.vector() (for example, names of columns in a matrix and the number

of rows and columns), and a vector of the elements of the matrix or array

is returned. The elements of the vector are ordered starting with the first

dimension of the matrix or array and continuing through the dimensions.

For example:

> a=array(1:8, c(2, 2, 2))

> dimnames(a)=list(c("a", "b"), c("m", "n"), c("y", "z"))

>

Chapter 5 Classes of objeCts

76

> a

, , y

 m n

a 1 3

b 2 4

, , z

 m n

a 5 7

b 6 8

> as.vector(a)

[1] 1 2 3 4 5 6 7 8

Here, the c() function is used to create the vector of the dimensions

for the 2x2x2 array() and to create names for the three dimensions of

the array.

For objects of mode list, as.vector() passes the list through.

Depending on the structure of the list, is.vector() operating on the result

can give either TRUE or FALSE. The mode does not change.

For objects of mode function, as.vector() returns an error.

For objects of mode call, as.vector() passes the object through but

does not create a vector. The mode does not change.

For objects of mode environment, as.vector() returns an error.

For objects of mode expression, as.vector() passes the expression

through, and the result gives TRUE for is.vector(). The mode does not change.

For the S4 mode, as.vector() returns an error.

The function is.vector() returns TRUE if the object is a vector and

FALSE otherwise, although some objects that do not look like vectors

return TRUE.

More information about vector(), as.vector(), and is.vector()

can be found by entering ?vector at the R prompt or by using the R

Studio Help tab.

Chapter 5 Classes of objeCts

77

 Some Common S3 Classes
Some common S3 classes are integer, numeric, matrix, and array.

Objects of class integer and numeric are vectors. Matrices are just that—

objects made up of elements in rows and columns, all of the same mode.

Arrays are like matrices, but they can have more than two dimensions.

Some other common S3 classes are ts and mts, for time series; factor,

for factors; Date, for dates; and POSIXct, for dates with times, all of which

are numeric.

Some common classes of mode list are data.frame, for data frames;

POSTXlt, for dates and times; and most output from higher-level functions

in the packages, such as lm and glm.

The class formula contains formulas and is of mode call.

 The Matrix Class: matrix
Objects of class matrix are matrices made up of elements of one of the

atomic modes, except NULL, or of the modes list or expression. The three

functions matrix(), as.matrix(), and is.matrix() exist and behave

similarly to the functions for atomic modes.

The function matrix() creates a matrix. The function takes five

possible arguments. The first argument is an object of atomic, list,

or expression mode. The second argument is nrow, the number of

rows. The third argument is ncol, the number of columns. The fourth

argument is byrow, which tells R to create the matrix going across rows

rather than down columns. The default value is FALSE. The byrow

argument is useful for scanning tabular atomic data into a matrix. The

fifth argument is dimnames, which assigns names to the rows and

columns within the call to matrix(). The default value for dimnames is

NULL and if supplied should be a list of two vectors of names. NULL can

be substituted for either vector.

Chapter 5 Classes of objeCts

78

Using the array a from the section on vectors, two examples of creating

a matrix follow:

> matrix(a, 3, 3)

 [,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 1

Warning message:

In matrix(a, 3, 3) :

 data length [8] is not a sub-multiple or multiple of the

number of rows [3]

and

> matrix(a,3,3, byrow=T, dimnames=list(NULL, c("c1","c2","c3")))

 c1 c2 c3

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 1

Warning message:

In matrix(a, 3, 3, byrow = T, dimnames = list(NULL, c("c1",

"c2", :

 data length [8] is not a sub-multiple or multiple of the

number of rows [3]

Note that R gives a warning if the product of the number of rows and

columns is not a multiple of the number of elements in the first argument.

The warning message does not affect the result.

For the atomic modes, if just the first argument is given, R creates a

matrix with the number of rows equal to the number of elements in the

object and the number of columns equal to one. If just nrow or ncol is

given, R creates a matrix out of the object in the first argument with the

given number of rows or columns, filling out as many of the columns

Chapter 5 Classes of objeCts

79

or rows that it takes to use up all of the elements in the first argument—

cycling if necessary. If both nrow and ncol are present, R will go through

the elements of the first argument until the matrix is full, cycling as

necessary. The byrow argument can be used to cycle the first argument

across rows rather than down columns.

For objects of the list mode, matrix() creates a matrix that describes

the contents of each lowest level element of the list. The elements of the list

do not need to be of the same mode. The description gives the mode of the

element and the size of the element. Sometimes, a ? is placed in the cell of

the matrix. Referencing cells in the matrix returns the contents of the list

for the cell. The following code gives an example:

> a.list = list(matrix(1:4, 2, 2), c("abc", "cde"), 1:3,

function(){ print(1:3) })

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

[1] 1 2 3

[[4]]

function ()

{

 print(1:3)

}

Chapter 5 Classes of objeCts

80

> matrix(a.list, 2, 2)

 [,1] [,2]

[1,] Integer,4 Integer,3

[2,] Character,2 ?

> matrix(a.list, 2, 2)[2, 2]

[[1]]

function ()

{

 print(1:3)

}

Objects of mode expression are legal for matrix(). The result of

matrix() is to return the contents of the expression, where the contents

cycle to fill in the size of the matrix and are enclosed within an expression

function statement.

The function as.matrix() attempts to coerce an object to class matrix

and is mainly used with data.frames. If the argument to as.matrix() can

be coerced to a vector and is not a matrix or data.frame, then as.matrix()

creates a single column matrix of the coerced elements. The class is

matrix. If the object is a matrix, as.matrix() just returns the matrix and

maintains row and column names.

If the object is a data.frame, then as.matrix() coerces the data frame

to a matrix. (A data.frame is a special kind of list for which the elements of

the list all have the same length and the elements in a column of the list are

all of the same atomic mode, but the modes are not necessarily the same

between columns.) If there is a column in the data.frame that contains

character data or raw data, then the entire data.frame is coerced to

character. Otherwise, the data.frame is coerced to a logical matrix if all of

the columns are logical, to an integer matrix if an integer column is present

but no numeric or complex columns are present, to a numeric matrix if a

numeric column is present and no complex columns are present, and to a

complex matrix if a complex column is present.

Chapter 5 Classes of objeCts

81

Data frames can also be converted to a matrix using the data.matrix()

function. The function data.matrix() converts a data frame to a matrix

by coercing all of the elements in the data frame to numeric. For complex

elements, the imaginary part is discarded. The function coerces character

columns to NAs and factor columns to integers, starting with 1. (When a

data frame is created, columns of mode character are changed to factors

by default. See the section on data.frame() for how data.frame() can

handle columns of mode character.)

The following example shows the results for as.matrix() and

data.matrix(), using a data.frame called a.df:

> a.df = data.frame(c(T, F), 1:2, 1:2+.5, 1:2+1i, c(as.raw

(1), as.raw(10)), c("a", "b"))

> dimnames(a.df)=list(1:2, c("logical", "integer", "double",

"complex", "raw", "character"))

> a.df

 logical integer double complex raw character

1 TRUE 1 1.5 1+1i 01 a

2 FALSE 2 2.5 2+1i 0a b

> as.matrix(a.df)

 logical integer double complex raw character

1 " TRUE" "1" "1.5" "1+1i" "01" "a"

2 "FALSE" "2" "2.5" "2+1i" "0a" "b"

> as.matrix(a.df[,1:5])

 logical integer double complex raw

1 " TRUE" "1" "1.5" "1+1i" "01"

2 "FALSE" "2" "2.5" "2+1i" "0a"

> as.matrix(a.df[,1:4])

 logical integer double complex

1 1+0i 1+0i 1.5+0i 1+1i

2 0+0i 2+0i 2.5+0i 2+1i

Chapter 5 Classes of objeCts

82

> as.matrix(a.df[,1:3])

 logical integer double

1 1 1 1.5

2 0 2 2.5

> as.matrix(a.df[,1:2])

 logical integer

1 1 1

2 0 2

> as.matrix(a.df[,1])

 [,1]

[1,] TRUE

[2,] FALSE

> data.matrix(a.df)

 logical integer double complex raw character

1 1 1 1.5 1 1 1

2 0 2 2.5 2 10 2

Warning message:

In data.matrix(a.df) : imaginary parts discarded in coercion

The function is.matrix() tests whether an object is of class matrix.

The function returns TRUE if the class of the argument is matrix and

FALSE otherwise. If an object of mode and class expression is used to

create a matrix or is coerced to a matrix, the result will have class matrix,

even though the structure of the result is not matrixlike.

More information on matrix(), as.matrix(), and is.matrix() can

be found by entering ?matrix at the R prompt. More information about

data.matrix() can be found by entering ?data.matrix at the R prompt.

You can also use the Help tab in R Studio.

Chapter 5 Classes of objeCts

83

 The Array Class: array
The array class is a class of data that is organized using dimensions,

such as a multidimensional contingency table. Matrices can be set

up as two-dimensional arrays, and vectors can be set up as one-

dimensional arrays. A vector created by array() will be of class array;

however, a two- dimensional array will have class matrix, even though

array() creates the object.

The function array() creates an array out of an object. The function

takes three arguments. The first argument is any object that can be coerced

to a vector. The second argument is a vector that contains the size of each

dimension and is of length equal to the number of dimensions of the array.

The third argument is a list of names for each of the dimensions and can

be omitted. The default value is NULL.

The following is an example of setting up an array:

> array(1:12, c(2, 3, 2), dimnames=list(c("", ""), c("a",

"b", "c"), NULL))

, , 1

 a b c

 1 3 5

 2 4 6

, , 2

 a b c

 7 9 11

 8 10 12

.

Other than there being more than two dimensions, array() behaves

the same as matrix().

Chapter 5 Classes of objeCts

84

The function as.array() attempts to coerce an object to class array.

The object must be of the atomic modes—except for the NULL mode—or

of the list or expression modes. Otherwise, as.array() returns an error.

For the legal modes, as.array() behaves like as.matrix().

The function is.array() tests an object to see if the class of the

object is array. The function returns TRUE if the class is array and FALSE

otherwise. Matrices return TRUE, independently of how the matrix was

created.

More information about array(), as.array(), and is.array() can

be found by entering ?array at the R prompt or under the Help tab in R

Studio.

 The Time Series Classes: ts and mts
Classes ts and mts refer to objects that have a starting point, an end

point, and a frequency or period defined, and for which observations are

assumed to be at equal intervals. The default time series class for a vector

of time series observations is ts. For a matrix of concurrent time series

observations, the default classes are mts, ts, and matrix. The class of the

time series can be changed when the time series object is created.

Time series objects can be created out of vector, matrix, some list,

and expression objects—as well as some other classes of objects such as

factor and Date—using the function ts(). Objects of mode array give

an error. All of the atomic modes are legal as arguments for the function

ts(), except the NULL mode. For list objects, depending on the contents

and structure of the list, the ts() function will create a, sometimes strange,

time series object. Similarly, operating on an object of mode expression

with ts() does not give an error but does give strange results.

If the argument to ts() is a data frame, then the data frame is coerced

to a matrix by the function data.matrix(). For matrix arguments, the

different time series go across the columns and time goes down the rows.

Chapter 5 Classes of objeCts

85

The function ts() takes eight arguments. The first argument is the

object to be changed into a time series. The second argument is start

and gives a value for the start of the series. The third argument is end and

gives a value for the end of the series. The fourth argument is frequency,

which give the periodic frequency for the series. The fifth argument is

deltat, which is the inverse of the frequency. Either frequency or deltat is

supplied, not both.

The sixth argument is ts.eps, which gives the acceptable tolerance

for comparing frequencies between different time series. The seventh

argument is class, which tells R what class to assign to the time series

object. The eighth argument is names and gives names to the time series

for time series matrices. If no names are given, R assigns the names

Series 1, Series 2, and so forth.

The second, third, fourth, and fifth arguments can be confusing.

R treats monthly or quarterly data as a special case when regarding

printing and plotting. Other types of periodic data have to be treated

specially. For monthly data, setting start equal to

start = c('year', 'month number')

and frequency equal to

frequency = 12

or deltat equal to

deltat = 1/12,

where year is the starting year and month number is the number of the

starting month (1 for January, 2 for February, and so on), assigns months

and years to the points in the object being converted to a time series.

To generate a monthly time series, include end with

end = c('year', 'month number'),

Chapter 5 Classes of objeCts

86

where year is the ending year and month number is the number of the

ending month. The function ts() will cycle the first argument until the time

series is filled out. (For any time series, supplying start, end, and frequency

will create a time series out of the first argument by cycling. If the first

argument is a matrix, each column cycles independently.)

For quarterly data, follow the same steps but use a frequency of four.

For example:

> ts(1:12, start=c(2019, 2), freq=12)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2019 1 2 3 4 5 6 7 8 9 10 11

2020 12

> ts(1:12, start=c(2019, 2), freq=4)

 Qtr1 Qtr2 Qtr3 Qtr4

2019 1 2 3

2020 4 5 6 7

2021 8 9 10 11

2022 12

On a more general level, say there is daily data for one week and three

days and the starting week is number 32. Let d.data be the data. Then, the

time series can be created as follows:

> ts(1:12, start=c(3, 2), freq=7)

Time Series:

Start = c(3, 2)

End = c(4, 6)

Frequency = 7

 [1] 1 2 3 4 5 6 7 8 9 10 11 12

> print(ts(1:12, start=c(3, 2), freq=7), calendar=T)

 p1 p2 p3 p4 p5 p6 p7

3 1 2 3 4 5 6

4 7 8 9 10 11 12

Chapter 5 Classes of objeCts

87

Note that the default for printing the time series is not in periods—

except for frequencies of 4 and 12, for which R assumes that the data is

monthly or quarterly. The printing of periods can be turned on and off

with the calendar argument to print().

If one number, instead of two, is used for each of start and end, then

only the quantities (n+i/f) can be used as the starting and end points,

where n is the integer of the first period, f is the frequency, and i can take

integer values between zero and (f-1). The quantity (n+i/f) must be taken

out to at least five decimal places if entered manually unless the argument

ts.eps is changed from the default value of 1.0E-5. The value of ts.eps is set

in options(). R is very picky here.

The function as.ts() attempts to coerce an object to class ts.

Objects that are vector—or matrixlike—will coerce. Arrays will not,

functions will not, calls will not, and environments will not; expressions

and lists will.

The function is.ts() tests if an object is of class ts and returns TRUE

if so and FALSE otherwise.

More information about ts(), as.ts(), and is.ts() can be found by

entering ?ts at the R prompt or by using the Help tab in R Studio.

 The Factor Classes: factor and ordered
The class factor is the class of objects that are factor levels. Factors

with ordered factor levels belong to two classes, ordered and factor.

Factors and ordered factors are used in modeling for which at least some

categorical data is present. The mode of factors and ordered factors is

numeric, and the levels are associated with integers that increase in value

from one. However, when printed, the nominal levels are given.

The factor levels are usually ordered alphabetically or numerically by

default, depending on the mode of the argument, but can be assigned a

different order.

Chapter 5 Classes of objeCts

88

The three functions factor(), as.factor(), and is.factor() exist,

as well as ordered(), as.ordered(), and is.ordered(). The second

set of functions behaves the same as the first set with regard to creating

and testing factor objects, so we only discuss the first set of functions

here.

The function factor() creates a vector of factor levels and an

associated list of levels. The function has six arguments. The first argument

is the object from which the factors will be generated. The argument must

be of an atomic mode or a list. Not all lists will form factors. The second

argument is levels and sets the order of the factor levels. The levels

argument is optional.

The third argument is labels and assigns labels to the levels. The third

argument is optional and defaults to the values of the elements of the

object. The fourth argument is exclude and gives any levels to be excluded

in the result. Excluded levels are set to <NA>. The argument is optional and

defaults to NA.

The fifth argument is ordered, which is in factor(), but not in

ordered(). The argument ordered tells factor() to create a factor with

ordered levels. The function factor() with ordered set to TRUE gives

the same result as the function ordered() (which is only included in

the current version of R for backward compatibility with S.) The sixth

argument is nmax and is described as the maximum number of levels to

use, where many values are present in the object to be made into a factor.

The argument does not appear to work too well.

Converting between factors and the original data is sometimes of

interest. If labels have not been assigned in factor(),

as.mode(levels(fac.obj))[fac.obj],

returns the original values of the object, where mode is the mode of the

original object and fac.obj is the factor object. Note that the function,

as.numeric(fac.obj),

Chapter 5 Classes of objeCts

89

returns the integers associated with the levels, even if the original object

was not of mode numeric. If labels have been assigned, then usually the

original data cannot be extracted.

An example follows:

> a.log = c(T, T, F, T)

> a.log

[1] TRUE TRUE FALSE TRUE

> af1 = factor(a.log)

> af1

[1] TRUE TRUE FALSE TRUE

Levels: FALSE TRUE

> as.logical(levels(af1))[af1]

[1] TRUE TRUE FALSE TRUE

> as.numeric(af1)

[1] 2 2 1 2

> af2 = factor(a.log, levels=c(T, F))

> af2

[1] TRUE TRUE FALSE TRUE

Levels: TRUE FALSE

> as.logical(levels(af2))[af2]

[1] TRUE TRUE FALSE TRUE

> as.numeric(af2)

[1] 1 1 2 1

> af3 =factor(a.log, labels=c("flab", "tlab"))

Chapter 5 Classes of objeCts

90

> af3

[1] tlab tlab flab tlab

Levels: flab tlab

> as.logical(levels(af3))[af3]

[1] NA NA NA NA

> as.numeric(af3)

[1] 2 2 1 2

> as.character(levels(af3)) [af3]

[1] "tlab" "tlab" "flab" "tlab"

The as.factor() function operates the same way as factor(), but

only takes one argument, an object to be made into a factor.

The is.factor() function tests if an object is a factor and returns

TRUE if so and FALSE otherwise.

There is also a related function, addNA(). The function creates a factor

object with a level for missing data (NAs). The function takes on two

arguments. The first argument is an object from which an object of class

factor can be created. The second argument is ifany. The ifany argument

is logical and takes on the value TRUE if the extra level is only added

when NAs are present and the value FALSE if the extra level is to always be

included.

More information about the seven functions can be found by entering

?factor at the R prompt or by using the Help tab in R Studio.

 The Data Frame Class: data.frame
The class data.frame is a matrixlike class of mode list. Data frames and

how to use them are important. Many of the data sets that are available for

R are data frames. When data is read from external sources, many of the

functions that do the reading create data frames. Learning how to work

with and create data frames pays high dividends.

Chapter 5 Classes of objeCts

91

Data frames contain atomic data in rows and columns. Within a

column, all of the data must be of the same mode. Across columns, the

mode can change. Because data frames do not have to be of just one mode,

data frames are a special kind of list.

Accessing elements of the data frame can be done like matrices or

like lists, which makes data frames more versatile than the usual list. By

default, the columns take names that reflect what is or is not in the original

objects making up the data frame.

The functions data.frame(), as.data.frame(), and is.data.frame()

all exist in R. In data.frame(), the objects to be included in the data frame

are listed first, separated by commas. The objects can be any object of

atomic mode or lists made up of atomic columns. If an object is made up

of more than one column, like some matrices and lists, then each column

in the original object becomes a column in the data frame. Otherwise,

each object becomes a column. If the columns had names in the original

objects, the names are brought into the data frame by default.

The objects used to make up the data frame do not have to be of the

same length (or number of rows for matrices) but must be multiples of

each other in length. The number of rows in the data frame will equal the

length of the longest column. The data in the other columns will cycle until

the column has the right number of rows. For example:

> a.list

[[1]]

 a1 a2

[1,] 1 7

[2,] 2 8

[3,] 3 9

[4,] 4 10

[5,] 5 11

[6,] 6 12

Chapter 5 Classes of objeCts

92

[[2]]

[1] "abc" "cde"

>

> data.frame(a.list, 1:3)

 a1 a2 c..abc....cde.. X1.3

1 1 7 abc 1

2 2 8 cde 2

3 3 9 abc 3

4 4 10 cde 1

5 5 11 abc 2

6 6 12 cde 3

Note that R has created names for the third and fourth columns and

that the third and fourth columns both cycle.

The function data.frame() has four arguments in addition to the

objects that will make up the data frame. The first argument is row.
names, which assigns names to the rows and by default is NULL, that is,

no names are assigned. The second argument is check.rows, which is a

logical argument and will check for consistency of row lengths and row

names if set to TRUE. The default value is FALSE. The third argument is

check.names, which is also logical and which checks that column names

are syntactically correct and corrects names that are not. The default for

check.names is TRUE.

The last argument is stringsAsFactors. By default, data.frame()

converts any column containing character data into a factor. The argument

stringsAsFactors is a logical variable. If set to TRUE, factors are created.

If set to FALSE, character columns remain columns of mode character.

The actual default value is generated by default.stingsAsFactors(). The

value from default.stringsAsFactors() is set in options() (Chapter 15)

and by default is TRUE but can be changed in options().

Chapter 5 Classes of objeCts

https://doi.org/10.1007/978-1-4842-4405-0_15

93

The function I() can be used in the setting up of data frames. The

function is another way to stop data.frame() from converting a character

vector to factors. Also, I() ensures that for a matrix the column structure is

maintained in the data frame. An object in the data.frame() call enclosed

in I() will be treated as one element of the data frame, even if the object

contains more than one column. Objects enclosed in I() do not cycle. For

example:

> mat

 one two

row1 1 3

row2 2 4

> a.char

[1] "a1" "a2" "a3" "a4"

> a.df1 = data.frame(mat, a.char)

Warning message:

In data.frame(mat, a.char) :

 row names were found from a short variable and have been

discarded

> a.df1

 one two a.char

1 1 3 a1

2 2 4 a2

3 1 3 a3

4 2 4 a4

> a.df1[[3]]

[1] a1 a2 a3 a4

Levels: a1 a2 a3 a4

> a.df2 = data.frame(I(mat), I(a.char))

Chapter 5 Classes of objeCts

94

Error in data.frame(I(mat), I(a.char)) :

 arguments imply differing number of rows: 2, 4

> a.df2 = data.frame(I(mat), I(a.char[1:2]))

> a.df2

 mat.one mat.two a.char.1.2.

row1 1 3 a1

row2 2 4 a2

> a.df2[[1]]

 one two

row1 1 3

row2 2 4

> a.df2[[2]]

[1] "a1" "a2"

If row names are not entered in the call to data.frame(), row names

are taken from the first column if the first column has row labels and does

not cycle. Otherwise, row names are set to 1, 2, 3, and so forth. See the

above example.

The function as.data.frame() attempts to coerce an object to a data

frame. If the object is a list made up of atomic elements (and some other

simple lists) or is an object of an atomic mode, then as.data.frame()

creates a data frame out of the object. Otherwise, as.data.frame() gives

an error.

The function takes four arguments: the object to be coerced, row.
names, optional, and stringsAsFactors. The arguments row.names and

stringsAsFactors behave the same way as in data.frame(). The argument

optional is a logical variable that, if set to TRUE, tells as.data.frame()

that setting column names is optional. If set to TRUE, and no column

names have been set in the original object, column names are not present

in the result. The default value for optional is FALSE.

Chapter 5 Classes of objeCts

95

The function is.data.frame() tests if an object is of class data.frame

and, if so, returns TRUE. Otherwise, is.data.frame() returns FALSE.

The functions as.matrix() and data.matrix() can be used to convert

a data frame to a matrix. See the section on the matrix class for more

information about the two kinds of conversions.

For more information about data.frame(), enter ?data.frame at the

R prompt. For more information about as.data.frame() and is.data.

frame(), enter ?as.data.frame at the R prompt. For more information

about I(), enter ?I at the R prompt. Or, use the Help tab in R Studio to

access the help pages.

 The Date and Time Classes: Date, POSIXct,
POSIXlt, and difftime
Sometimes, working with dates and times is useful, as when printing

and plotting against time. R provides classes for dates and for dates and

times. The classes are Date, POSIXct, POSIXlt, and difftime. Objects of

class Date, POSIXct, or difftime are of mode numeric and objects of class

POSIXlt are of mode list. Date is the date class, and POSIXlt and POSIXct

are the date and time classes. The class difftime contains objects formed

by taking the difference between two date or two date and time objects.

Of the three types of functions usual for the classes given above, only the

functions as.Date(), as.POSIXct(), and as.POSIXlt() exist for date and

date and time objects. Both difftime() and as.difftime() exist.

POSIX stands for Portable Operating System Interface and is a family

of standards used by the IEEE Computer Society. The formats used in the

Date, POSIXct, and POSIXlt classes are based on the POSIX standards, but

the standards are not universal across platforms.

To just get a date and time stamp in R, enter date() at the R prompt,

which returns the day of the week, date, and time. The result is of mode

and class character. The system date function Sys.Date() returns the

Chapter 5 Classes of objeCts

96

system date and is of numeric mode and class Date. The system date and

time function is Sys.time() and returns the system date, time, and time

zone and is of mode numeric and classes POSIXct and POSIXlt. By default,

dates are read and returned in the format “Year-Month-Day” and times are

returned in the format “hour:minute:second.”

There are a number of functions that operate on the date and time

classes, including weekdays(), which returns the day of the week of objects

of class Date, POSIXlt, or POSIXct; the function difftime() takes two

date or date and time objects and finds the difference in time elementwise

between the two objects. For class Date objects the difference between

the dates are measured in days. For POSIXlt and POXITct objects the

difierences are measured in seconds.

The functions strftime() and strptime() lets the user convert to or

from any date time format.

More information about the date and time classes can be found at the help

page for DateTimeClasses by entering ?DateTimeClasses at the R prompt or

by using the Help tab in R Studio to access the help pages. Information about

the various date and time functions can be found at their help pages.

The function as.Date() creates a date object. The arguments to

as.Date() are the object to be converted to a date; format, which gives the

format of the object in terms of year, month, and day; tryFormats, which is

a character string of formats to try if format is not given; optional, which is

logical and, when set to TRUE, causes as.Date() to return an NA if format

matching returns an error; origin, which is an origin for the first argument

and must be of class Date or POSIXct; and tz for the time zone name.

If origin is used, the object to be converted can be any numeric object.

If origin is given, the function adds or subtracts the values of the object to

or from the date given by the origin argument and converts the result to a

date. An example of weekly spacing is

 > as.Date(0:1*7, origin="2019-1-1")

[1] "2019-01-01" "2019-01-08"

Chapter 5 Classes of objeCts

97

If dates are used as the object and the dates are not in a “year-month-

day” format, then the format of the dates must be given. The format is a

character variable, where the POSIX standard for the year is %Y, the day is

%d, and the month is %m, such as

> as.Date("1/20/2000", format="%m/%d/%Y")

[1] "2000-01-20"

Note that the format is the format of the object to be converted, not the

format of the result.

The argument tz is for the time zone name. Some time zones are

recognized, some are not. See the help page for as.Date() for more

information.

The functions as.POSIXct() and as.POSIXlt() take the same

arguments as Date() except that the dates can contain time, too. The default

format for time is %H:%M:%S for hours, minutes, and seconds. For example:

> as.POSIXct("1/13/2000 00:30:00", format="%m/%d/%Y %H:%M:%S")

[1] "2000-01-13 00:30:00 CST"

Dates and dates and times can be operated on by addition and

subtraction. Decimals for times are converted correctly. Dates in function

Date() are incremented by days; times in the two date time functions are

incremented by seconds. Examples follow:

> as.POSIXct(Sys.time() + 1:2*3600)

[1] "2018-11-01 14:59:27 CDT"

[2] "2018-11-01 15:59:27 CDT"

> mode(as.POSIXct(Sys.time() + 1:2*3600))

[1] "numeric"

> as.POSIXlt(Sys.time() + 1:2*3600)

[1] "2018-11-01 15:02:53 CDT"

[2] "2018-11-01 16:02:53 CDT"

Chapter 5 Classes of objeCts

98

> mode(as.POSIXlt(Sys.time() + 1:2*3600))

[1] "list"

> as.POSIXlt(Sys.time()) + 1:2*3600

[1] "2018-11-01 15:07:43 CDT"

[2] "2018-11-01 16:07:43 CDT"

> mode(as.POSIXlt(Sys.time()) + 1:2*3600)

[1] "numeric"

The functions difftime() and as.difftime() are not covered here.

An example of a date difference is

> (Sys.Date() - as.Date("2000-1-1"))

Time difference of 5125 days

> mode(Sys.Date() - as.Date("2000-1-1"))

[1] "numeric"

> class(Sys.Date() - as.Date("2000-1-1"))

[1] "difftime"

More information about date and time functions can be found by

entering ?as.Date, ?as.POSIXct, ?as.POSIXlt, ?difftime, or

?as.difftime at the R prompt or by using the Help tab in R Studio to

access the help pages.

 The Formula Class: formula
Formulas are used by various functions in R. For example: lm(), glm(),

nls(), plot(), coplot(), and boxplot(). Formulas have their own class

and are created by either setting an object equal to a formula, by using the

function formula(), or by using the function as.formula(). Formulas are

of mode call.

Chapter 5 Classes of objeCts

99

If a data frame is specified in the function using the formula, then

the function looks first in the data frame for the variables in the formula.

If there is no data frame assigned or if the variable is not in the data

frame, where to look depends on the function used to create the formula.

The difference between the three methods is in which environment R

searches for the variables in the formula. Formulas that are just entered are

evaluated in the environment within which the formula is used. Formulas

created using formula() are evaluated in the environment in which

the formula was created. Formulas created by as.formula() have an

environment assigned by the env argument, which by default is the parent

environment. For each of the functions, the formula must be quoted for

the environment assignment to occur. For example:

> a.fun

function() {

at the first function level

formulas defined using the expression and formula()

 cat("\nlevel a \n\n")

 print(parent.frame())

 print(environment())

 x=1:10

 y=11:20

 cat("\nx=", x)

 cat("\ny=", y, "\n")

 a.formula="y~x"

 b.formula=formula("y~x")

Chapter 5 Classes of objeCts

100

 b.fun=function() {

at the second function level

lm() is run for the formulas defined at the first level

 cat("\nlevel b \n\n")

 x=1:10

 y=21:30

 print(parent.frame())

 print(environment())

 print(lm(a.formula))

 cat("\nx=", x)

 cat("\ny=", y, "\n")

 print(lm(b.formula))

the cc environment is defined at the second level

the formula from as.formula() is run

 cat("\nenvironment cc \n\n")

 cc=new.env()

 assign("x", 1:10, env=cc)

 assign("y", 31:40, env=cc)

 c.formula=as.formula("y~x", env=cc)

 cat("\nx=", cc$x)

 cat("\ny=", cc$y, ”\n”)

 print(lm(c.formula))

 }

Chapter 5 Classes of objeCts

101

 # the second function is run at the first level

 b.fun()

}

<bytecode: 0x10a767448>

The function a.fun() is run.

> a.fun()

level a

<environment: R_GlobalEnv>

<environment: 0x10d3d28c8>

x= 1 2 3 4 5 6 7 8 9 10

y= 11 12 13 14 15 16 17 18 19 20

level b

<environment: 0x10d3d28c8>

<environment: 0x10d39e388>

Call:

lm(formula = a.formula)

Coefficients:

(Intercept) x

 20 1

x= 1 2 3 4 5 6 7 8 9 10

y= 21 22 23 24 25 26 27 28 29 30

Call:

lm(formula = b.formula)

Coefficients:

(Intercept) x

 10 1

Chapter 5 Classes of objeCts

102

environment cc

x= 1 2 3 4 5 6 7 8 9 10

y= 31 32 33 34 35 36 37 38 39 40

Call:

lm(formula = c.formula)

Coefficients:

(Intercept) x

 30 1

The formula object formula.a uses the data at level b, where it is run.

The formula object formula.b uses the data from level a, where it was

created. The formula object formula.c uses the data in the environment

cc, which was created for this example.

The formula function uses some specialized notation. The symbol ~

separates the left side of the formula from the right side. The symbol + tells

R to include the variables on either side of the + in the model. The symbol

– tells R not to use the variable to the right of the –. (Use -1 to not use an

intercept.) The symbol : tells R to use the interaction between the variables

on either side of :. The symbol * tells R to use all of the levels of interaction

between the variables on either side of *. If a data.frame is present in the

call, the symbol . on the right side tells R to use all of the variables in the

data frame not already used in the model. The symbol ^ tells R to use all

interactions up to the level of the ^. The operator %in% can be used to

nest variables. Functions of variables can be used within the formula, but

functions involving arithmetic expressions need to be enclosed in an I()

function to avoid confusing R, since the symbols have special meanings

inside of the formula statement.

For more information on formulas, enter ?formula at the R prompt or

use the Help tab in R Studio.

Chapter 5 Classes of objeCts

103

 The S4 Class
In S4, data objects have a user-defined S4 (formal) class. There are

several functions associated with S4 classes, including setClass(),

removeClass(), getClass(), getClasses(), and isClass(). S4 classes

are used with S4 methods, to be covered in Chapter 7.

The function setClass() sets up a class and takes the arguments

Class, representation, prototype, contains, validity, access, where,
version, sealed, package, S3methods, and slots. The argument Class is

a character string containing the class name. There should be no blank

spaces in the string. The most important argument after the name is slots,

which is the only extra argument that must be included. The argument

slots is a vector with each element of the vector taking on a name and an

S4 class (most S3 classes have an S4 version.) For example:

> setClass("example", slots=c(x="numeric",

y="numeric", z="matrix"))

> getClass("example")

Class "example" [in ".GlobalEnv"]

Slots:

Name: x y z

Class: numeric numeric matrix

The second important argument is contains. The argument consists of

the names of other classes to be included in the class being defined. The

slots in the classes listed in the contains argument are included in the new

class. The names are a vector of character strings. For example:

> setClass("example.2", slots=c(xx="numeric", yy="numeric",

zz="matrix"), contains="example")

Chapter 5 Classes of objeCts

https://doi.org/10.1007/978-1-4842-4405-0_7

104

> getClass("example.2")

Class "example.2" [in ".GlobalEnv"]

Slots:

Name: xx yy zz

Class: numeric numeric matrix

Name: x y z

Class: numeric numeric matrix

Extends: "example"

According to the authors at CRAN, the arguments where, sealed,

and package are redundant and need not be included. The argument

prototype, which gives default values for the slots, is better implemented

using the function initialize(), and the argument validity, which sets

restrictions on the values in the slots, is better implemented using the

function setValidity().

According to the authors at CRAN, the arguments representation,
access, version, and S3methods are deprecated and should not be used.

The function removeClass() removes a class. It takes two

arguments. The first argument is the name of the class to be removed,

in quotes. The second argument is where—the environment in which

to start looking for the class. The default value is the environment

where removeClass() is run. (To make changes to a class, remove the

class and redefine it.)

The function getClass() returns the contents of a class. The function

takes three arguments, the name of the class in quotes, .Force, and where.

The argument .Force is a logical variable. If set to TRUE, a NULL rather

than an error is returned if the class does not exist. The default value is

FALSE. The argument where is as described in the last paragraph. The two

examples given above use getClass().

Chapter 5 Classes of objeCts

105

The function getClasses() gets the classes in an environment. The

function takes two arguments, where and inherits. The argument where

tells R the specific environment to search. The argument inherits is a

logical variable which, when set to TRUE, tells the function to look in all

of the parent environements. By default, inherits equals TRUE if where is

not used and FALSE otherwise. An example:

> getClasses(.GlobalEnv)

[1] "example.2" "example"

Running getClasses() without an argument returns every class in the

parent environments, which can be many.

The function isClass() tests if a class is an S4 (formal) class.

The function takes on three arguments, Class, formal, and where.

The argument Class is the name of the class, enclosed in quotes. The

argument formal is always set to TRUE, indicating that the test is for

S4 (formal) classes. The argument where tells R in which environment

to look for the class. By default, the level of the calling environment is

used. For example:

> isClass("example")

[1] TRUE

> isClass("numeric")

[1] TRUE

Here, numeric is both an S3 and an S4 class.

More information about S4 (formal) classes can be found by entering

?setClass, ?getClass, and ?getClasses at the R prompt, or by using the

Help tab in R Studio.

Chapter 5 Classes of objeCts

106

 Names for Vectors, Matrices, Arrays,
and Lists
A chapter on objects would not be complete without information on how

to set names for vectors, matrices, arrays, and lists. Dimension names are

always of character mode. For objects of more than one dimension, the

name objects are put together in a list.

To see what names a vector has or to assign names to a vector, the

names() function is used. The function just has one argument, the object.

For example:

> cde

 [1] 21 22 23 24 25 26 27 28 29 30

> names(cde)

NULL

> names(cde) = paste("v", 1:10, sep="")

> cde

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

 21 22 23 24 25 26 27 28 29 30

> names(cde)

 [1] "v1" "v2" "v3" "v4" "v5" "v6" "v7" "v8" "v9" "v10"

> mode(names(cde))

[1] "character"

> class(names(cde))

[1] "character"

Chapter 5 Classes of objeCts

107

You can also assign names directly to vectors at the time the vector is

created. For example:

> a.vec = c(a=1, b=2, c=3)

> a.vec

a b c

1 2 3

Some objects of mode list are vectors. For such lists, assigning names

to the lowest level of the list is done with names() or by direct assignment.

For matrices, there are three possible functions used to see the names

or to assign names: rownames(), colnames(), and dimnames(). The

functions rownames() and colnames() have three arguments, the R object,

do.NULL, and prefix. The argument do.NULL is logical with default value

TRUE, which tells the function to do nothing if the row or column names

are NULL. If do.NULL is FALSE, the row or column names are indexed

with the prefix equal to the value of the argument prefix. For example:

> mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> colnames(mat)

NULL

> colnames(mat) = colnames(mat, do.NULL=F, prefix="cl")

> mat

 cl1 cl2

[1,] 1 3

[2,] 2 4

Note that the right-hand side of the third expression only returns the

names of the columns and does not do the assignment.

Chapter 5 Classes of objeCts

108

The function dimnames() can be used to see or assign names to

matrices and arrays. If dimnames() operates on an object, then the names

of the dimensions in the object are returned as a list. If names are assigned

using dimnames(), the object on the right side of the assignment must be a

list with the same number of lowest level elements as there are dimensions

in the object and with each lowest level element either being NULL or of

the same length as there are elements in each dimension of the matrix or

array. For example:

> a

, , d31

 d21 d22

d11 1 3

d12 2 4

, , d32

 d21 d22

d11 5 7

d12 6 8

>

> dimnames(a)

[[1]]

[1] "d11" "d12"

[[2]]

[1] "d21" "d22"

[[3]]

[1] "d31" "d32"

>

> dimnames(a) = list(c("11", "12") ,c("21", "22"),

c("31", "32"))

Chapter 5 Classes of objeCts

109

>

> a

, , 31

 21 22

11 1 3

12 2 4

, , 32

 21 22

11 5 7

12 6 8

More information about names can be found by entering ?names,

?rownames, or ?dimnames at the R prompt or by using the Help tab in

R Studio.

Chapter 5 Classes of objeCts

	Chapter 5: Classes of Objects
	Some Basics on Classes
	Vectors
	Some Common S3 Classes
	The Matrix Class: matrix
	The Array Class: array
	The Time Series Classes: ts and mts
	The Factor Classes: factor and ordered
	The Data Frame Class: data.frame
	The Date and Time Classes: Date, POSIXct, POSIXlt, and difftime

	The Formula Class: formula
	The S4 Class
	Names for Vectors, Matrices, Arrays, and Lists

