
21© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_3

CHAPTER 3

Assignments and
Operators
R works with objects. Objects can include vectors, matrices, functions,

the results from a function, or a number of other kinds of objects. Objects

make working with information easier. This chapter covers assigning

names to objects, listing and removing objects, and object operations.

Part II (Chapters 4 and 5) covers the possible forms of objects.

Some objects come with the packages in R. Other objects are user

created. User-created objects have names that are assigned by the user.

Knowing how to create, list, and remove user-created objects is basic to R.

In R Studio, the user-created objects are listed in the upper right window

under the Environment tab.

 Types of Assignment
Names in R must begin with a letter or a period, cannot have breaks, and

can contain letters, numeric digits, periods, and underscores. The names

that begin with a period are hidden and are used by R for startup defaults,

the random seed, and other such things. The indexing symbols [], [[]], $,

and @ have special meanings with regard to R names, as explained in the

“Subscripting Operators” section of this chapter.

https://doi.org/10.1007/978-1-4842-4405-0_3
https://doi.org/10.1007/978-1-4842-4405-0_4
https://doi.org/10.1007/978-1-4842-4405-0_5

22

R originally used five types of assignment, four of which are still

current. The four types are

a <- b,

which assigns b to a,

a -> b,

which assigns a to b,

a <<- b,

which assigns b to a and can be used inside a function to bring the

assignment up to the workspace level, and

a ->> b,

which assigns a to b and brings an assignment in a function up to the

workspace level.

The developers at R have also included the more standard

a = b,

which assigns b to a. Using the equal sign for assignment is considered

poor practice in R, but we have never had a problem using it. While any

of the types of assignment can be used, the use of the equal sign is easiest

to type.

When R makes an assignment, the name is automatically saved in the

workspace. Note that no warning is given if the assigned name already

exists. The assignment will overwrite the object in the workspace with the

assigned object.

R is interesting in that a function of an object can be assigned to the

original object. For example,

a = 2*a,

where the object a is replaced by the original a times two.

Chapter 3 assignments and OperatOrs

23

For more information about assignment operators, enter

??“Assignment Operators” at the R prompt or in R Studio use the Help tab

in the lower right window.

 Example of Three Types of Assignment
An example of some of the types of assignment follows. Three objects are

created: abc, bcd, and cde. You create the objects by assigning sequences

to the objects. The sequences are generated when you put a colon between

two integers, which creates a sequence of integers starting with the first

integer and ending with the second integer.

To show that the objects actually contain the assigned sequence, the

contents of the three objects are displayed as follows. Note that entering

the name of an object at the R prompt will always display the contents of

the object. The [1] refers to the first element of the objects.

> abc = 1:10

> abc

 [1] 1 2 3 4 5 6 7 8 9 10

> bcd <- 11:20

> bcd

 [1] 11 12 13 14 15 16 17 18 19 20

> 21:30 -> cde

> cde

 [1] 21 22 23 24 25 26 27 28 29 30

As you can see, the assignment operators <- and = give the same result.

The assignment operator -> works in the opposite direction.

Chapter 3 assignments and OperatOrs

24

 Listing and Removing Objects in R
and R Studio
To see the objects present in the workspace, it is easier to use R Studio

rather than R - look under the Environment tab in the right upper window.

R has the function ls() to list the workspace objects.

Entering ls() at the R prompt for the preceding example gives

> ls()

[1] "abc" "bcd" "cde"

>,

which are the three objects created previously.

Although functions are covered in detail in Part III, one interesting

property of functions to note here is they can have arguments that the

user enters. Two of the possible arguments for ls() are pattern and

all.names.

The first argument is entered as pattern = “a string ”, where “a string”

is any part of an object name. For example, in the preceding workspace,

searching for those objects containing bc in the name gives abc and bcd,

that is

> ls(pattern="bc")

[1] "abc" "bcd"

The argument pattern can be reduced to pat, as in ls(pat=“bc”). The

shortening of arguments of functions is a property of R. All arguments in R

can be reduced to the shortest unique form, but they are usually given in

the full form in manuals.

The second argument is all.names, which can equal TRUE or FALSE.

If set to TRUE, the all.names argument instructs R to list all of the files

in the workspace, including those that begin with a period. FALSE is the

Chapter 3 assignments and OperatOrs

25

default value and does not need to be entered. For the previous example

workspace, setting all.names equal to TRUE gives

> ls(all.n=T)

[1] ".commander.done" ".First" ".Random.seed" ".Traceback"

[5] "abc" "bcd" "cde"

.

The [1] refers to “.commander.done” since “.commander.done” is the

first element of the vector, and the [5] refers to “abc” since “abc” is the fifth

element of the vector. (In R, if the elements of a vector have not been given

a name, the convention for listing the elements is to show the index of the

first element in each line of the lines of listed elements.)

The function rm() can be used to remove objects from the workspace.

For rm(), the names of the objects to be deleted are separated by commas.

For example,

rm(a, b, c)

will remove objects a, b, and c. To remove all objects,

rm(list=ls())

works. You remove S4 classes by using removeClass().

In R Studio, objects can be removed under the grid option for listing

the environmental objects. To the right side of the menu under the

Environment tab is an icon that says List. Click on the icon and choose

Grid instead of List. In the resulting grid, check the boxes to the left of

the objects to be removed. Then, click on the little broom in the middle

of the menu. You will be asked if you really want to delete the checked

objects.

For more information about ls() or rm(), enter ?ls or ?rm at the R

prompt or, in R Studio use the Help tab in the lower right window.

Chapter 3 assignments and OperatOrs

26

 Operators
Operators operate on objects. Operators can be logical, arithmetic, matrix,

relational, or subscripting, or they may have a special meaning. Each of the

types of operators is described here.

For operators, elementwise refers to performing the operation on each

element of an object or paired elements for two objects. If two objects do

not have the same dimensions, the operator will often cycle the smaller

object against the larger object. The cycling proceeds through each

dimension. For example, for matrices, the first dimension is the rows and

the second dimension is the columns, so the cycling is down rows starting

with the first column.

The letters NA are used to indicate that an element is missing data.

Most operators have rules for dealing with missing data and may return an

NA if data is missing.

CRAN gives a help page of information about operation precedence.

Enter ??“Operator Syntax and Precedence” at the R prompt to see the

page or use the Help tab in R Studio.

 Logical Operators and Functions
Logical operators and functions return the values TRUE, FALSE, or NA,

where NA refers to a missing value. The logical operators are the not

operator, two or operators, and two and operators. The functions xor(),

isTRUE(), isFALSE(), any(), and all() (which are functions that operate

on logical objects) also return logical values. For logical operators, if the

two objects do not have the same dimensions, the number of elements

in the larger object must be a multiple of the number of elements in the

smaller object for cycling to occur. The logical operators and five logical

functions are listed in Table 3-1.

Chapter 3 assignments and OperatOrs

27

The logical operators operate on objects that are logical, numeric, or

raw. When a numeric object is coerced to logical, all of the nonzero values

are set to TRUE, and the zero values are set to FALSE. For raw vectors, the

operators are applied bitwise.

The negation operator changes TRUE to FALSE and FALSE to TRUE in

a logical object. An NA remains an NA.

Table 3-1. The Logical Operators and Functions

Operator Operation Description

! not negation operator—e.g., !a

| or elementwise or operator—e.g., a|b

|| Or or operator, just evaluates the first elements in the

objects—e.g., a||b

& and elementwise and operator—e.g., a&b

&& and and operator, just evaluates the first elements in

the objects—e.g., a&&b

xor() exclusive or exclusive or function—e.g., xor(a,b)

isTRUE() logical test returns TRUE if the argument contains only one

value and the value is true, otherwise returns

FALSE—e.g., istrUe(a)

isFALSE() logical test returns TRUE if the argument contains only one

value and the value is false, otherwise returns

FALSE—e.g., isFaLse(a),

any() logical test returns TRUE if TRUE is present in a logical

object— e.g., any(a)

all() logical test returns TRUE if TRUE is the only value in a logical

object— e.g., all(a)

Chapter 3 assignments and OperatOrs

28

The operator | compares the two objects elementwise and, for each

pair of elements, returns TRUE if TRUE is present, FALSE if no TRUE or

NA is present, and NA if any NA is present. The operator || compares the

first element of the first object to the first element of the second object and

returns TRUE if both elements are TRUE, FALSE if both are FALSE and NA

if either element is NA.

The operator & compares two objects elementwise and, for each pair

of elements, returns TRUE if both elements are TRUE, FALSE if FALSE is

present, and NA if both elements are NA. The operator && compares the

first element of the first object to the first element of the second object

and returns TRUE if the first elements are both TRUE, FALSE if FALSE is

present, and NA if both elements are NA.

The xor() function compares objects elementwise and returns TRUE

if the paired elements are different and FALSE if the paired elements are

the same, unless an NA is present. If an NA is present, the test returns NA.

For a logical vector or a vector that can be coerced to logical, the

function any() will return TRUE if any of the elements are TRUE, FALSE if

no TRUE or NA is present, and NA if no TRUE is present but an NA is.

For a logical vector or a vector that can be coerced to logical, the

function all() will return TRUE if all of the elements are TRUE, otherwise

FALSE if a FALSE is present and NA if not.

The functions isTRUE() and isFALSE() only evaluate single element

objects or expressions. If more than one element is present, the function

will give an error. The function isTRUE() returns TRUE if the value is TRUE

and FALSE if otherwise. The function isFALSE() returns TRUE if the value

is FALSE and FALSE otherwise.

For more information about the logical operators and the functions

isTRUE() and isFALSE(), the CRAN help pages for logical operators can

be found by entering ??“logical operators” at the R prompt or by using the

Help tab in R Studio. The help page for any() and all() can be accessed

by entering ?any or ?all at the R prompt or by using the Help tab in R

Studio.

Chapter 3 assignments and OperatOrs

29

 Arithmetic Operators
Arithmetic operators can have numeric operands or operands that can be

coerced to numeric. For example, for logical objects, TRUE coerces to 1

and FALSE coerces to 0. For some types of objects, specific operators have

a different meaning, but those types of objects will not be covered in this

chapter.

Arithmetic expressions are evaluated elementwise. If the number of

elements is not the same between the objects in an expression, the smaller

object cycles through the larger one until the end of the larger one. The

numbers of elements in the larger object do not have to be a multiple of

the smaller object for cycling. Expressions are evaluated from left to right,

under the rules of precedence.

The arithmetic operators are the standard * for multiplication, / for

division, + for addition, and - for subtraction. The exponentiation symbol

is ^. The operator %% gives the modulus of the first argument with respect

to the second argument. The operator %/% performs integer division.

Expressions can be grouped using parentheses, for example (a+b)/c.

Table 3-2 lists the arithmetic operators.

Table 3-2. Arithmetic Operators

Operator Operation Example

* multiplication a*b

/ division a/b

+ addition a+b

- subtraction a-b

^ exponentiation a^b

%% modulus a%%b

%/% integer division a%/%b

Chapter 3 assignments and OperatOrs

30

For more information, the CRAN help pages for arithmetic operators

can be found by entering ??“arithmetic operators” at the R prompt or by

using the Help tab in R Studio. (At the time of writing, this help page was

not available using the above but can be brought up by using ?“+” at the R

prompt or + in the R Studio Help tab search box.)

 Matrix Operators and Functions
R provides operators and functions to manipulate matrices. A list of some

matrix operators and functions can be found in Table 3-3.

The matrix multiplication operator is %*%. R will return an error if the

two matrices do not conform.

For two arrays (arrays include vectors and matrices), %o%, or outer(),

gives the outer product of the arrays.

For two arrays, %x%, or kronecker(), gives the kronecker product of the

arrays.

To transpose a matrix, use the function t(), for example, t(a).

To get the cross product of one matrix with another (or the

original matrix), use either the function crossprod() or the function

tcrossprod(). If a and b are conforming matrices, then

crossprod(a) = t(a)%*%a,

tcrossprod(a) = a%*%t(a),

crossprod(a,b) = t(a)%*%b,

tcrossprod(a,b) = a%*%t(b).

To find the inverse of a nonsingular square matrix, use the function

solve(), for example, solve(a). The function solve() also can solve the

linear equation

Xa=b,

Chapter 3 assignments and OperatOrs

31

for a, where X is a nonsingular square matrix and b has the same number

of rows as X. The syntax is solve(X,b).

To find the determinant of a square matrix use det(X), where X is a

square matrix.

To create a diagonal matrix or obtain the diagonal of a matrix, use the

function diag(). If a is a vector, diag(a) will return a diagonal matrix with

the diagonal equal to the a. For example:

> a = 1:2

> a

[1] 1 2

Table 3-3. Matrix Operators and Functions

Operator / Function Operation Example

%*% matrix multiplication a%*%b

%o% or outer() outer product of two

vectors, matrices, or arrays

a%*%b, outer(a,b)

%x% or kronecker() kronecker product of a

matrix (or array)

a%x%b, kronecker(a,b)

t() transpose of a matrix t(a)

crossprod() or

tcrossprod()
crossproduct of a matrix

or two matrices

crossprod(a) or crossprod(a,b) or

tcrossprod(a) or tcrossprod(a,b)

diag() diagonal of a matrix or a

diagonal matrix

diag(a), a is a matrix or diag(a),

a is a vector

solve() inverse of a matrix or

solution to Xa=b
solve(a), solve(X,b)

det() determinant of a square

matrix

det(a)

Chapter 3 assignments and OperatOrs

32

> diag(a)

 [,1] [,2]

[1,] 1 0

[2,] 0 2

If a is a matrix, diag(a) will return the diagonal elements of the matrix,

even if the matrix is not square. For example:

> a = matrix(1:6,2,3)

> a

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> diag(a)

[1] 1 4

For more information, the CRAN help page for matrix multiplication

can be found by entering ??“matrix multiplication” at the R prompt. For

the six functions, entering ?name, where name is the name of the function,

brings up the help page for the function. You can also use the R Studio

Help tab. Enter ?“%” at the R prompt or % in The R Studio Help tab to see

the % operators.

 Relational Operators
Relational operators are used in logical tests. The six relational operators

are == for equal to, != for not equal to, < for less than, <= for less than or

equal to, > for greater than, and >= for greater than or equal to. The list of

logical operators can be found in Table 3-4.

Chapter 3 assignments and OperatOrs

33

Note that the equal to relational operator is ==, not =. A common

mistake is to enter = for == in a logical expression. R will return an error

for =.

As with arithmetic operators, logical expressions can be grouped using

parentheses. For example,

((a>0 & b>0) & (a<5 & b<5))

is a logical expression and can be assigned a name.

The CRAN help page for relational operators can be found by entering

??“relational operators” at the R prompt or == in the Help tab search box

in R Studio.

 Subscripting Operators
Many objects in R have more than one element. Subscripting is used to

access specific elements of an object. Vectors, matrices, arrays, lists, and

slots can be subscripted. In S3, single square brackets ([]), double square

brackets ([[]]), and dollar signs ($) are used. For S4 objects, the at symbol

(@) is used for subscripting. None are used elsewhere.

Table 3-4. Logical Operators

Operator Operation Example

== equals a==9

!= not equal a!=9

> greater than a>9

>= greater than or equal to a>=9

< less than a<9

<= less than or equal to a<=9

Chapter 3 assignments and OperatOrs

34

 Vectors

For vectors, except list vectors, using single square brackets is usually

appropriate. Double square brackets can also be used, but they can

only access a single element of the vector at a time. Within single square

brackets, there may be a logical expression or a set of indices. For example:

a[3:7] or a[a>3]

The first expression results in the third through seventh elements of a.

The second expression results in those elements of a that are greater than

three.

If indices are given a negative sign, those indices are not included. For

example,

a[-2:-6]

would return the object a with elements two through six removed.

An object can be subsetted in one set of square brackets and subsetted

again in another set of square brackets. For example:

a[1:10][b>3],

where the length of a is greater than or equal to ten, and b is of length

ten. The expression would return those elements of the first ten elements

of a for which the corresponding element of b is greater than three. The

subsetting can be continued with more sets of square brackets. Each set

will operate on the result of all previous subsetting.

 Matrices

For matrices, both kinds of square brackets are also used. For single square

brackets, the selection instructions for the rows are separated from the

selection instructions for the columns by a comma. Or, by not using the

comma, the matrix is treated like a vector, going down the rows starting

Chapter 3 assignments and OperatOrs

35

with the first column. Like the subsetting for vectors, for single square

brackets, indices or a logical expression may be used to subset a matrix. To

reference all rows of a matrix, put nothing to the left of the comma inside

the brackets. To reference all columns of a matrix, put nothing to the right

of the comma inside the brackets.

Double square brackets return just one value. If subsetted with a

row and a column index separated by a comma, the value in the cell is

returned. If just one index value is entered within double square brackets,

R treats the matrix as a vector—going down rows—and returns the indexed

element of the vector.

An example of matrix subscripting is

a[a[,1]>3 , 1:4],

where a is a matrix with at least four columns. The expression would return

those rows of the first four columns for which the elements of the first

column are bigger than three. Notice that the a[,1] consists of one column

and contains all of the rows.

A matrix can also be subsetted using a matrix with two columns.

The two-column matrix would contain row and column indices and

would pick out individual cells in the matrix based on the indices in each

row. For example, if b is a matrix with [1 2] in the first row and [2 3] in

the second row, then a[b] would return the two elements a[1,2] and a[2,3].

 Arrays

Arrays are like matrices but can have more than two dimensions. Note

that a matrix is an array with two dimensions and a vector is an array with

one dimension. Subscripting arrays with more than two dimensions is just

like subscripting matrices except that, for single square brackets, there are

more commas in the brackets. An example is

a[1:3,,2:7],

Chapter 3 assignments and OperatOrs

36

where a is a three-dimensional array with at least three levels in the first

dimension and at least seven levels in the third dimension. The result of

the subsetting would be all of the elements in the second dimension for

which the index in the first dimension is one, two, or three and the indices

in the third dimension are between two and seven inclusive.

Like matrices, arrays can be subsetted using a matrix that has the same

number of columns as the number of dimensions of the array, the rows

of which would consist of indices for individual cells of the array. Single

square brackets with no comma and double square brackets work the

same as with vectors and matrices.

 Lists

Lists are collections of R objects (and a kind of vector). The objects can

be any type of object and do not have to be of the same type within a list.

The objects are indexed in the list. To look at objects in a list, single square

brackets are used. For example,

blist[1:5]

would return the first five objects in blist and would also be a list.

To access an object in a list, double square brackets or a dollar sign are

required. For example,

blist[[2]]

would return the second object in the list blist and

blist$b1

would return the object in blist with name b1. Objects in a list can only be

accessed one at a time.

If a list is created from objects that do not have names associated with

the objects, names will be given to the objects when the list is created. The

names can be changed at any time.

Chapter 3 assignments and OperatOrs

37

Data frames are a special kind of list. Data frames have the same

number of elements for every object in the list and are defined as a data.

frame. Each object in the list is of one atomic mode (to be described in

Chapter 4), though the different objects need not be of the same mode.

Data frames can be subsetted like a matrix or like a list. If subsetted like a

matrix, the resulting object will be a list. If subsetted like a list, the resulting

object will be raw, complex, numeric, logical, or character depending on

whether the list object is raw, logical, numeric, complex, or character.

Individual cells in a data.frame can be accessed using indices in the

double square brackets. For example,

adframe[[1,2]]

would return the element in the first row and second column of the data

frame adframe.

Many functions return output in lists. Dollar sign subscripting is

usually used to access the output, although square bracket indexing can be

used. For example, for the linear model function lm(), entering

lm(y~x)$resid

or

lm(y~x)[[2]]

will return the residuals from a simple linear regression of y on x, as will

the two sets of statements

a=lm(y~x)

a$resid

or

a=lm(y~x)

a[[2]]

Chapter 3 assignments and OperatOrs

https://doi.org/10.1007/978-1-4842-4405-0_4

38

 Other Types

Other types of object can be subsetted, for example, factors and slots.

Objects that are factors are vectors and can be subsetted like vectors. Slots

are S4 objects and are subsetted using @. Slots should never be subsetted

except in a method statement, which will be described in the chapter on

functions. More information about subsetting both can be found by entering

??“Extract or Replace” at the R prompt or by using the R Studio Help tab.

 Odds and Ends
Two main object systems—S3 and S4—are used in R. Slots are part of S4.

S3 and S4 are discussed throughout the book and in the pdf at

www.r-project.org/conferences/useR-2004/Keynotes/Leisch.pdf.

Assignments can be done to subsets of an object. For example, let a be

a matrix, and let the user want to change those values in a that are greater

than 100 to 100. Then, the statement

a[a>100] = 100

will do the replacement and leave the rest of the matrix intact.

In R Studio, the help pages are easy to access and have their own

window. In R the ? and ?? operators open the help pages. For known

function names, ?name (or help(name)) will return the help page for the

function, where name is the name of the function. To search for functions

related to some techniques or methods, the operator, ?? is used. Entering

??“keywords” (or help.search(“keywords”)), where keywords consists of

keywords about the technique or method, may give a list of functions in

packages related to the topic. Sometimes, the search comes up blank. Try

again with different keywords.

The colon is used in four ways in R. Of interest here is just the use

of a single colon to define a sequence and the double colon to refer to

functions by package and name.

Chapter 3 assignments and OperatOrs

http://www.r-project.org/conferences/useR-2004/Keynotes/Leisch.pdf

39

If a and b are two numbers, the expression a:b will give the sequence

of integers between a rounded down to an integer and b rounded down to

an integer. Note that the number a can be larger than the number b.

The functions that come with R are all part of some package. If a

package is not loaded, a search using just the function name will return

nothing. The full name of a function is package.name::function.name,

where package.name is the name of the package and function name is the

name of the function.

For more information on colons, enter ?“:” at the R prompt or : under

the Help tab in R Studio.

The operator ~ is used in model formulas to separate the left and right

sides of a model. For more information, type ?“~” at the R prompt or

enter ~ under the Help tab in R Studio.

The symbol # is used for comments. When writing functions, anything

found to the right of a # on a line of the code is ignored.

The operator %in% returns TRUE for the values in the object to the left

of the operator that are in the object to the right of the operator and FALSE

for those that are not. The length of the result is the length of the first

object. If the first object has more than one dimension, it is converted to a

vector to get the result.

The CRAN help pages for subsetting are found by entering ??“Extract
or Replace” or by using the R Studio Help tab.

Chapter 3 assignments and OperatOrs

	Chapter 3: Assignments and Operators
	Types of Assignment
	Example of Three Types of Assignment
	Listing and Removing Objects in R and R Studio
	Operators
	Logical Operators and Functions
	Arithmetic Operators
	Matrix Operators and Functions
	Relational Operators
	Subscripting Operators
	Vectors
	Matrices
	Arrays
	Lists
	Other Types

	Odds and Ends

