
259© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_13

CHAPTER 13

Examples of Flow
Control
This chapter gives some examples of flow control as well as ways to do

the examples using indexing. The first example uses nested for loops and

if/else statements. The second example uses the while statement. The

third example is of nested for loops. The fourth example uses a for loop,

an if statement, and a next statement. The fifth example is of a for loop, a

repeat loop, an if statement, and a break statement.

�Nested ‘for’ Loops with an ‘if/else’
Statement
In this example, we do an element-by-element substitution into a matrix

based on an if/else test.

First, a two-by-five matrix x is generated and the matrix is displayed.

Next, two for loops cycle through the row and column indices of x. At each

cycle, a set of if/else statements test whether the element in the matrix is

greater than five.

If the value of the element is greater than five, the value of the element

is replaced with one. If not, control goes to the else statement. Within the

else statement, the value of the element is replaced by zero.

https://doi.org/10.1007/978-1-4842-4405-0_13

260

Last, the resultant matrix is displayed. The example follows:

> x = matrix(1:10, 2, 5)

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> for (i in 1:2) {

+ for (j in 1:5) {

+ if (x[i,j]>5) x[i,j]=1

+ else x[i,j]=0

+ }

+ }

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 1 1

[2,] 0 0 1 1 1

�Using Indices
Doing the same substitution without loops is easier. First, the matrix x

is generated and displayed. Next, the elements in x are set equal to the

new values based on the original values. Note that the order in which the

substitution is done matters, since one is less than six. Last, the resultant

matrix is displayed. The example follows:

> x = matrix(1:10, 2, 5)

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

Chapter 13 Examples of Flow Control

261

> x[x<=5] = 0

> x[x>5] = 1

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 1 1

[2,] 0 0 1 1 1

On my computer, using a matrix with 43,830 rows and 35 columns,

both methods took less than a second.

�A ‘while’ Loop
In this example, a while loop is used to find how many iterations it takes

for a sum of variables distributed randomly and uniformly between zero

and one to be greater than five.

After initially setting the seed for the random number generator and

setting n and x to zero, a while loop is started to increment n and to sum x.

A number generated using the random number generator for the uniform

distribution is added to x at each iteration. When x is greater than five, the

looping stops. The values for n and x are printed out. The example follows:

> set.seed(129435)

> n=0

> x=0

> while (x<=5) {

+ x = x + runif(1)

+ n = n + 1

+ }

Chapter 13 Examples of Flow Control

262

> n

[1] 7

> x

[1] 5.179325

�Using Indices
To do the same task using indices, a vector of uniform random variables is

generated of length greater than what would be expected for the result of

the sum.

Then, the function cumsum(), which creates a cumulative sum along a

vector, is used to find when the sum is greater than five. Since the elements

of x are always greater than zero, the accumulated sum always increases

along the vector.

Next, the function length() is used to find the number of elements for

which the sum is less than or equal to five. Then, the values for n and x are

printed out, where x equals x[n].

> set.seed(129435)

> x = runif(25)

> x = cumsum(x)

> n = length(x[x<=5])+1

> x = x[n]

> n

[1] 7

> x

[1] 5.179325

Note that the random number generator is set to the same seed value

for both parts of the example, so the results for the two match since the

same first seven numbers are generated.

Chapter 13 Examples of Flow Control

263

On my computer, if I substitute 1,000,000 for 5 in the preceding

examples, and 3,000,000 for 25, the method using indices is almost

instantaneous, while the method using looping takes about 5 seconds.

�Nested ‘for’ Loops
Sometimes, the differences between each of the columns of a matrix are

needed. In this example, nested for loops are used to find the differences.

First, a matrix x is generated with two rows and four columns and is

assigned column names. Next, the matrix is displayed. Then, a matrix xp of

zeroes with two rows and six columns is generated to hold the result of the

differences, and the matrix is assigned blank column names.

Next, a counter k for the columns in the matrix xp is set to zero. As the

two for loops increment, k will increase by one at each step.

Then, the two for loops are run. In the loops, the elements of xp are

filled with differences between the different columns in x. The two loops

loop through the columns in the matrix x in such a way that no column

combinations are repeated and the two columns are never the same. At

each step, the columns of xp are assigned names based on the names in x.

Last, the resulting matrix xp is displayed. The example follows:

> x = matrix(1:8, 2, 4)

> colnames(x) = paste("c", 1:4, sep="")

> x

 c1 c2 c3 c4

[1,] 1 3 5 7

[2,] 2 4 6 8

> xp = matrix(0, 2, 6)

> colnames(xp) = rep("", 6)

> xp

Chapter 13 Examples of Flow Control

264

[1,] 0 0 0 0 0 0

[2,] 0 0 0 0 0 0

> k=0

> for (i in 1:3) {

+ for (j in (i+1):4) {

+ k = k+1

+ xp[,k] = x[,i]-x[,j]

+ colnames(xp)[k] = paste(colnames(x)[i], "-",

 colnames(x)[j], sep="")

+ }

+ }

> xp

 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4

[1,] -2 -4 -6 -2 -4 -2

[2,] -2 -4 -6 -2 -4 -2

Note that the number of columns in xp equals p(p-1)/2, where p is the

number of columns in x.

�Using Indices
To do this problem using indices, two vectors of indices are created.

First, the initial matrix x is generated, assigned column names, and

displayed. Then, two sets of indices of the same length, ind.1 and ind.2,

are created. The respective indices in the two sets are never the same, and

all possible combinations are present and present only once.

Next, the resultant matrix xp is created by subtracting the columns of

x in the second index set from the columns of x in the first index set. Next,

the column names for xp are created and assigned using paste() and the

two index sets.

Chapter 13 Examples of Flow Control

265

Last, the matrix xp is displayed. The example follows:

> x = matrix(1:8, 2, 4)

> colnames(x) = paste("c", 1:4, sep="")

> x

 c1 c2 c3 c4

[1,] 1 3 5 7

[2,] 2 4 6 8

> ind.1 = rep(1:3, 3:1)

> ind.1

[1] 1 1 1 2 2 3

> ind.2 = numeric(0)

> for(i in 2:4) ind.2 = c(ind.2, i:4)

> ind.2

[1] 2 3 4 3 4 4

> xp = x[,ind.1] - x[,ind.2]

> colnames(xp) = paste("c", ind.1, "-c", ind.2, sep="")

> xp

 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4

[1,] -2 -4 -6 -2 -4 -2

[2,] -2 -4 -6 -2 -4 -2

Note that a for loop is used to create the second set of indices. Also,

column indices are repeated in both sets of indices.

For large matrices, the second method is faster than the first. On my

computer, column differences for two matrices each with 43,830 rows and

35 columns were found by the two methods. The two methods both gave

the same 43,830-by-595 matrix. The looping method took over 1.0 minute,

and the indexing method took less than 1.0 second.

Chapter 13 Examples of Flow Control

266

�A ‘for’ Loop, ‘if’ Statement, and ‘next’
Statement
In this example, standard normal random numbers are generated and

compared to 1.965. Only those values that are less than or equal to 1.965

are kept.

First, the seed for the random number generator is set to an arbitrary

value. Then, x is set equal to a numeric NULL value. In the for loop that

comes next, for 10,000 iterations, a standard normal random number is

generated at each iteration. If the number is larger than 1.965, the next

loop starts. Otherwise, the number is added to a vector of numbers.

A histogram is plotted of the final vector. See Figure 13-1 for the result.

The example follows:

> set.seed(69785)

> x = numeric(0)

> for (i in 1:10000) {

+ x2 = rnorm(1)

+ if (x2>1.965) next

+ x = c(x, x2)

+ }

> hist(x)

> box()

Chapter 13 Examples of Flow Control

267

�Using Indices
Using indices is much simpler. First, the random number generator seed

is set to the same value as for the previous example. Next, a vector of

standard normal random variables of length 10,000 is generated. Next,

only those values in the vector that are less than or equal to 1.965 are kept.

Last, a histogram of the vector is generated. The histogram is shown in

Figure 13-2. The example follows:

> set.seed(69785)

> x = rnorm(10000)

> x = x[x<=1.965]

> hist(x)

> box()

Figure 13-1.  Using a loop to generate a histogram of random
standard normal variates that are less then 1.965

Chapter 13 Examples of Flow Control

268

Note that the two histograms are the same since the seeds are the same

and the same 10,000 numbers are used.

If 10,000 is increased to 100,000 above, on my computer the method

using loops takes about 34 seconds while the method using indices takes

less than 1 second.

�A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’
Statement, and a ‘break’ Statement
In this example, random samples of size 100 of standard normal numbers

are generated within a repeat loop. The repeat loop is within a for loop

that goes through 10,000 iterations.

Figure 13-2.  Using indices to generate a histogram of random
standard normal variates that are less then 1.965

Chapter 13 Examples of Flow Control

269

For each sample, the sum of the sample is divided by the ten and then

compared to 1.965. (Since the expected value of the generated numbers

is zero, the standard error is one, and the numbers are independent, the

sample sum divided by ten is a standard normal variate.) If the value is less

than 1.965, then the repeat loop continues. Otherwise, the repeat loop

stops, the number of times through the loop is recorded, and the next for

loop starts. At the end, the vector of the numbers of times through the loop

is plotted in a histogram, and the mean and median of the numbers of

times is found.

First, the seed for the random number generator is set. Then, a vector

n.hist is created to hold the results, with a place for each iteration of the for

loop. Next, the for loop opens, and the counter n is set to zero. Then, the

repeat loop opens.

At the beginning of the repeat loop, the counter n is incremented by

one. Then, the sample is taken, divided by ten, and summed. The result is

set equal to x. Next, the value of x is compared to 1.965 in an if statement.

If the value is greater than 1.965, then n.hist for index i is set equal to the

counter n and a break statement breaks the function out of the repeat

loop. Otherwise, the repeat loop continues looping.

At the end, hist() is run to create a histogram of n.hist, mean() is

run to find the mean of n.hist, and median() is run to find the median of

n.hist. See Figure 13-3 for the histogram. The example follows:

> set.seed(69785)

> n.hist = numeric(10000)

Chapter 13 Examples of Flow Control

270

> for (i in 1:10000) {

+ n=0

+ repeat{

+ n=n+1

+ x=sum(rnorm(100)/10)

+ if (x>1.965) { n.hist[i]=n; break }

+ }

+ }

> hist(n.hist, breaks=25, xlim=c(0, 500))

> box()

> mean(n.hist)

[1] 40.4769

> median(n.hist)

[1] 28

Chapter 13 Examples of Flow Control

271

Fi
gu

re
 1

3-
3.

 T
he

 n
u

m
be

rs
 o

f t
im

es
 n

ee
de

d
u

n
ti

l t
he

 r
es

u
lt

 e
xc

ee
d

1.
96

5
fo

r
su

m
s

of
 1

00
 s

ta
n

da
rd

n

or
m

al
 v

ar
ia

bl
e

di
vi

de
d

by
 1

0—
u

si
n

g
a

fo
r

lo
op

Chapter 13 Examples of Flow Control

272

Note that the mean is close to 40, which is the expected number of

trials necessary on average to see an event with a probability of 0.0247 of

occurring. However, the median is much smaller since the distribution is

highly skewed.

�Using Indices
To do this example using indices, we found the repeat loop necessary, but

that the for loop could be dispensed with.

Once again, the random number generator seed is set—to the same

number as in the first part of the example—and n.hist is defined numeric

with 10,000 elements. Then, the counter n is set to zero, the counter cl.sv is

set to zero, and the counter n.col is set to 10,000.

Next, the repeat loop opens. The matrix x is defined as a matrix

with 100 rows and n.col columns (initially 10,000). The elements of x

are randomly generated standard normal numbers and the number of

elements is the product 100 and n.col.
Next, the function apply() is used to sum each column of the matrix,

and the result is assigned to x. Then, x is divided by 10. Next, the length

of the vector containing those elements of x that are larger than 1.965 is

found and assigned to x.

Then, x is added to cl.sv so that cl.sv contains the number of columns

for which a result larger than 1.965 has been found. Then, n is incremented

by one. Next, x values of n.hist are set equal to n, where cl.sv and x are

used to say where along the vector n.hist to put the value of n.

Next, n.col is decremented by the value of x. The repeat loop

continues until n.col equals zero. At each iteration, n increases by one.

The histogram of n.hist is generated using hist(), the mean of n.hist

using mean(), and the median of n.hist using median(). See Figure 13-4 for

the histogram. The example follows:

> set.seed(69785)

Chapter 13 Examples of Flow Control

273

> n.hist = numeric(10000)

> n = 0

> cl.sv = 0

> n.col = 10000

> repeat{

+ x = matrix(rnorm(n.col*100), 100, n.col)

+ x = apply(x, 2, sum)

+ x = x/10

+ x = length(x[x>1.965])

+ cl.sv = cl.sv + x

+ n = n+1

+ n.hist[(cl.sv-x+1):cl.sv] = n

+ n.col = n.col-x

+ if (n.col==0) break

+ }

> hist(n.hist, breaks=25, xlim=c(0, 500))

> box()

> mean(n.hist)

[1] 40.5015

> median(n.hist)

[1] 28

Chapter 13 Examples of Flow Control

274

Fi
gu

re
 1

3-
4.

 T
he

 n
u

m
be

rs
 o

f t
im

es
 n

ee
de

d
to

 e
xc

ee
d

1.
96

5
fo

r
su

m
s

of
 1

00
 s

ta
n

da
rd

 n
or

m
al

 v
ar

ia
bl

e
di

vi
de

d
by

 1
0—

u
si

n
g

in
di

ce
s

Chapter 13 Examples of Flow Control

275

Once again, the mean is close to 40 and the median is 28.

Both methods use about the same amount of time. If 10,000 is replaced

by 100,000 above, then the looping method takes about 44 seconds and the

indexing method takes about 45 seconds on my computer.

Since the process of generating the random samples is different

between the two methods, the results for the two methods are not identical

even though the seed for the random number generator is the same.

Chapter 13 Examples of Flow Control

	Chapter 13: Examples of Flow Control
	Nested ‘for’ Loops with an ‘if/else’ Statement
	Using Indices

	A ‘while’ Loop
	Using Indices

	Nested ‘for’ Loops
	Using Indices

	A ‘for’ Loop, ‘if’ Statement, and ‘next’ Statement
	Using Indices

	A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’ Statement, and a ‘break’ Statement
	Using Indices

