
253© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_12

CHAPTER 12

Flow Control
Flow control statements are used to repeat a series of tasks a number of

times or to direct flow based on a logical object. For persons who came

into programming in the age of FORTRAN and BASIC, using loops is very

comfortable. In R, the better choice, if possible, is to use arrays and index

selection instead of looping. Using indices is much faster than looping.

That said, the control statements are if, if/else, while, for, and repeat.

They are sometimes necessary and often useful. In this chapter, we give

syntax for the flow control statements. We give examples of the use of flow

control in Chapter 13.

 Brackets “{}” and the Semicolon “;”
Curly brackets are used to enclose sections of code. Brackets can be used

with if, else, while, for, and repeat flow control statements to delineate the

section of code on which the control statement is to operate, both within

functions and at the R console.

Brackets can also be used without an accompanying flow control

statement, directly at the R console. Starting with an opening bracket,

code statements can be entered one line at a time. The statements do not

execute until the closing bracket is entered.

The semicolon is used to include more than one statement on one

line. A statement is not evaluated until the statement before it has finished

executing. If the first statement is a flow control statement followed

https://doi.org/10.1007/978-1-4842-4405-0_12
https://doi.org/10.1007/978-1-4842-4405-0_13

254

by a single statement of code, the control flow must finish before the

second statement executes. However, if the two—or more—statements

are enclosed in an opening and a closing bracket after a flow control

statement, all of the statements within the brackets are executed together

based on the flow control statement.

 The “if” and “if/else” Control Statements
The if control statement takes a logical object and executes code if the

object is true. If the object is not true, then, optionally, different code given

by an else statement executes.

The logical object must be an object that can be coerced to logical. If

the logical object is of length greater than one, only the first element of the

object is used.

The if statement can take the following forms:

if ('logical object') 'single code statement'

if ('logical object') 'single code statement';'single code

statement'

if ('logical object') {'more than one code statement separated

by semicolons'}

if ('logical object') {

'lines of code statements'

}

These four forms are not exhaustive of the possible forms. In the

second form, the second statement will execute even if the logical object is

false since the two statements are not enclosed in brackets.

Chapter 12 Flow Control

255

If the logical object is false, then the option exists to have R execute

different code by using an else statement. For the two control statements if

and else, two examples of form follow:

if ('logical object') 'single code statement' else 'single code

statement'

if ('logical object') {

'lines of the code statements'

}

else {

'lines of the code statements'

}

Again, the two forms are not exhaustive. If no else control statement

is present and logical object is false, then the code statements associated

with the if statement are skipped.

 The “while” Control Statement
The while control statement executes a block of code while a logical

condition is true. Again, the logical object must be an object that can be

coerced to logical. If the logical object is of length greater than one, only

the first element of the object is used.

The control statement can take the following forms:

while ('logical object') 'single code statement'

while ('logical object') 'single code statement'; 'single code

statement'

while ('logical object') {'multiple code statements separated

by semicolons'}

Chapter 12 Flow Control

256

while ('logical object') {

'lines of code statements'

}

Again, the forms shown are not exhaustive of the possible forms. Note

that for the second form, the second statement does not execute until the

while loop is ended since the two statements are not in brackets.

 The “for” Control Statement
The for control statement instructs R to loop through a section of code for

a set number of times. There are a number of ways that the looping can be

done based on the looping criteria.

The looping criteria can be quite flexible. The simplest form is

for (i in 1:n)

where i is an object that indexes from 1 to n and where n is an integer.

In general, the syntax of the flow control statement for for loops is

for ('indexing variable' in 'vector object')

where indexing variable is a variable whose value changes at each

iteration of the loop and vector object contains the values that indexing
value takes. The vector object can be any object that can be coerced to a

vector, including objects of mode list and expression.

The object indexing variable will take on the values of vector object

sequentially. Usually, the indexing variable is used in the code statements

executed by the for loop.

Note that if the vector object is created using the function seq() within

the for statement and the seq() argument along.with—which can be

abbreviated along—is used, seq() gives the indices of the elements of

along.with rather than the values of the object.

Chapter 12 Flow Control

257

Some forms of a for loop are the following:

for ('looping criteria') 'single code statement'

for ('looping criteria') 'single code statement'; 'single code

statement'

for ('looping criteria') {'multiple code statements separated

by semicolons'}

for ('looping criteria') {

'lines of code statements'

}

Again, the four forms are not exhaustive of the possible forms. In the

second form, the code after the semicolon does not execute until after the

for loop is finished since the two statements are not in brackets.

According to the CRAN help page for flow control, the value of the

indexing variable can be changed in the code statements referenced by

for but, at the start of the next loop, reverts to the next indexed value of the

variable. At the end of the looping, the value of indexing variable is the

final value of the indexing variable in the loop.

 The “repeat” Control Statement
The repeat flow control statement repeats a section of code until a

stopping point is reached. The stopping point must be programmed into

the section of code. Unlike while, repeat does not have a logical object as

part of the control statement, and, unlike for, no looping index is part of

the control statement. Following are two forms for repeat:

repeat {'some code statements separated by semicolons'}

repeat {

'lines of code statements'

}

Chapter 12 Flow Control

258

Again, the two are not exhaustive. Infinite loops are possible with

repeat, so use caution.

 The Statements “break” and “next”
The statements break and next are used for flow control within those

sections of code controlled by one of the flow controllers.

The statement break tells R to leave a for, while, or repeat loop or an if

section and go to the first statement after the loop or section.

The statement next tells R to stop executing the code statements in a

for, while, or repeat loop and start again at the beginning of the loop—

with the value of the indexing variable, if there is one, taking on the next

value of the variable.

 Nesting
Any of the flow control statements can be nested within other flow control

sections of code. For the sake of clarity and to prevent subtle bugs, use

brackets at all levels when nesting flow control sections within other flow

control sections.

Most of the information presented here on flow control is from the

CRAN help page on controlling flow, which can be found by entering ?“if”

at the R prompt or by using the “Help” tab in R Studio.

Chapter 12 Flow Control

	Chapter 12: Flow Control
	Brackets “{}” and the Semicolon “;”
	The “if” and “if/else” Control Statements
	The “while” Control Statement
	The “for” Control Statement
	The “repeat” Control Statement
	The Statements “break” and “next”
	Nesting

