
205© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_11

CHAPTER 11

Descriptive Functions
and Manipulating
Objects
For arrays, matrices, vectors, lists, and expressions, in command line R,

there are a number of functions that describe various attributes of an

object. In R Studio, many attributes, such as the number of columns in a

matrix or the length of a list, are given to the right of the object name under

the “Environment” tab in the upper right window.

Also, there are a number of functions that manipulate objects to create

new objects. The functions covered in this chapter are the descriptive

functions dim(), nrow(), NROW(), ncol(), NCOL(), length(), nchar(),

and nzchar(); the functions that manipulate objects: cbind() and

rbind(); the apply functions, sweep(), scale(), and aggregate(); the

table functions and the functions tabulate(), and ftable(); and the

string functions: grep(), grepl(), agrep(), grepRaw(), sub(),

gsub(), regexpr(), gregexp(), regexec(), substr(), substring(),

and strsplit().

https://doi.org/10.1007/978-1-4842-4405-0_11

206

�Descriptive Functions
The descriptive functions describe qualities of objects. This section

discusses some descriptive functions that are useful when writing

functions or creating objects. The functions are dim(), nrow(), ncol(),

NROW(), NCOL(), length(), and nchar().

�The Function dim( )
For objects for which dimensions make sense—such as matrices, data.

frames, tables, or arrays—the function dim() returns the number of levels

in each of the dimensions of the object. For objects of other classes, dim()

returns NULL. An example follows:

> a = 1:2

> b = 1:3

> dim(a)

NULL

> a %o% b %o% a

, , 1

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

, , 2

 [,1] [,2] [,3]

[1,] 2 4 6

[2,] 4 8 12

> dim(a %o% b %o% a)

[1] 2 3 2

Chapter 11 Descriptive Functions and Manipulating Objects

207

The dimensions of the object can be changed if the product of the

original dimensions equals the product of the dimensions of the result. An

example follows:

> a.ar = a %o% b

> a.ar

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

> dim(a.ar)

[1] 2 3

> dim(a.ar)= c(3, 2)

> a.ar

 [,1] [,2]

[1,] 1 4

[2,] 2 3

[3,] 2 6

You can find more information about dim() by entering ?dim at the R

prompt or by using the Help tab in R Studio.

�The Functions nrow( ), ncol( ), NROW( ),
and NCOL( )
For matrices, data.frames, and arrays, nrow() and ncol() give the number

of levels in the first and second dimensions of the matrix, data frame, or

array, respectively. Other classes of objects return NULL. An example

follows, using the a and b of the last section:

Chapter 11 Descriptive Functions and Manipulating Objects

208

> a %o% b

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

> nrow(a %o% b)

[1] 2

> ncol(a %o% b)

[1] 3

> nrow(1:20)

NULL

Sometimes vectors must be treated as matrices or arrays. The functions

NROW() and NCOL() treat vectors as one-column matrices but otherwise are

the same as nrow() and ncol(). An example follows:

> NROW(1:20)

[1] 20

> NCOL(1:20)

[1] 1

You can find more information about nrow(), ncol(), NROW(), and

NCOL()by entering ?nrow at the R prompt or by using the Help tab in R Studio.

�The Function length( )
The next descriptive function we will explain is length(). The argument

to length() can be any mode of object. For atomic objects, length()

returns the number of elements in the object. For list objects, length()

returns the number of the lowest level elements. For functions, length()

returns one. For calls, length() returns the number of arguments entered

Chapter 11 Descriptive Functions and Manipulating Objects

209

in the creation of the call. For expressions, length() returns the number of

elements in the expression. Some examples follow:

> a.mat=matrix(1:4, 2, 2)

> a.mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> length(a.mat)

[1] 4

> a.list=list(mat, c("abc", "cde"))

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

> length(a.list)

[1] 2

> a.fun = function(mu, se=1, alpha=.05){

 z_value = qnorm(1-alpha/2, mu, se)

 print(z_value)

}

> length(a.fun)

[1] 1

> a.call=call("lm", y~x)

> a.call

lm(y ~ x)

Chapter 11 Descriptive Functions and Manipulating Objects

210

> length(a.call)

[1] 2

1

> a.exp = expression(a.call, sin(1:5/180 * pi))

> a.exp

expression(a.call, sin(1:5/180 * pi))

> length(a.exp)

[1] 2

The length of an atomic or list object can be assigned using length().

For other mode objects, an attempted length() assignment returns an error.

If n is the length of an atomic object, then setting the length to a value larger

than n generates NAs for the extra elements. Setting the length shorter than n

removes elements. In either case, a vector is returned unless the length is not

changed, in which case the original object is returned. An example follows:

> a.mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> a.mat.2 = a.mat

> length(a.mat.2)=6

> a.mat.2

[1] 1 2 3 4 NA NA

> a.mat.2 = a.mat

> length(a.mat.2)=3

> a.mat.2

[1] 1 2 3

Chapter 11 Descriptive Functions and Manipulating Objects

211

> a.mat.2 = a.mat

> length(a.mat.2)=4

> a.mat.2

 [,1] [,2]

[1,] 1 3

[2,] 2 4

For objects of mode list, lengthening the list adds NULL elements at

the lowest level while shortening the list removes elements at the lowest

level. An example follows:

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

> length(a.list)=3

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

NULL

Chapter 11 Descriptive Functions and Manipulating Objects

212

> length(a.list)=1

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

You can find more information about length() by entering ?length at

the R prompt or by using the Help tab in R Studio.

�The Functions nchar( ) and nzchar( )
The function nchar() counts characters in objects that can be coerced to

mode character. The function nzchar() returns a logical vector indicating

which elements contain non-empty strings.

The function nchar() takes four arguments: x, type, allowNA, and

keepNA. The argument x is the object. The function coerces the object

to character, and the characters to be counted are the characters in each

element of the coerced object. For example, redefining a.list as defined in

the last section:

> a.list = list(matrix(1:4, 2,2), c("abc", "cde"), NULL)

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

NULL

Chapter 11 Descriptive Functions and Manipulating Objects

213

> as.character(a.list)

[1] "1:4" "c(\"abc\", \"cde\")" "NULL"

> nchar(a.list)

[1] 3 15 4

Quotes are not counted.

The argument type is a character argument and can take on the values

of “bytes,” “chars,” or “width.” If “bytes” is chosen, the bytes of the strings

are counted. If “chars” is chosen, the standard text number of characters is

counted. If “width” is chosen, the number of characters that the function

cat() would assign the strings is counted. The default value is “chars.”

Usually, there is no difference between the three.

The argument allowNA is a logical argument. If set equal to TRUE,

strings that are not valid are set equal to NA. If set equal to FALSE, strings

that are not valid give an error and cause the function to stop. The default

value is FALSE.

The argument keepNA is a logical argument that tells nchar() whether

to convert NAs to character strings or to keep them as NAs. The default

value is NA, which tells nchar() to set the argument to TRUE if type is

“bytes” or “char” and to FALSE if type is “width”. If the argument is a data

frame, since a data frame is a list, each column is converted to a character

string, and the NAs are also made into character strings, before the

counting done by nchar(), whether keepNA is set to TRUE or FALSE.

For vectors, matrices, and arrays, NAs are not converted to strings.

For example:

> a.df=data.frame(1, NA, 12)

> as.character(a.df)

[1] "1" "NA" "12"

> nchar(a.df, keepNA=F)

 X1 NA. X12

 1 2 2

Chapter 11 Descriptive Functions and Manipulating Objects

214

> nchar(a.df, keepNA=T)

 X1 NA. X12

 1 2 2

> a.mat = as.matrix(a.df)

> as.character(a.mat)

[1] "1" NA "12"

> nchar(a.mat, keepNA=F)

 X1 NA. X12

[1,] 1 2 2

> nchar(a.mat, keepNA=T)

 X1 NA. X12

[1,] 1 NA 2

The function nzchar() gives a logical vector of the same length as

the object assigned to the first argument. The function returns a vector

of TRUEs, FALSEs, and NAs that depend on whether an element is a

nonempty string, and empty string or is missing. The function takes

two arguments, x and keepNA. The argument x is an object that can be

coerced to a character vector. The argument keepNA is logical and can

take on the values TRUE, FALSE or NA. If keepNA is TRUE, NA’s return

NA’s, if FALSE or NA, NAs returns TRUE. The default value is FALSE.

For example:

> nzchar(c("1", NA, "12", ""), keepNA=F)

[1] TRUE TRUE TRUE FALSE

> nzchar(c("1", NA, "12", ""), keepNA=NA)

[1] TRUE TRUE TRUE FALSE

> nzchar(c("1", NA, "12", ""), keepNA=T)

[1] TRUE NA TRUE FALSE

Chapter 11 Descriptive Functions and Manipulating Objects

215

You can find more information about nchar() and nzchar() by

entering ?nchar at the R prompt or by using the Help tab in R Studio.

�Manipulating Objects
There are a number of functions that manipulate R objects and make

programming easier. This subsection covers some of the functions,

including cbind(), rbind(), apply(), lapply(), sapply(), vapply(),

tapply(), mapply(), eapply(), sweep(), scale(), aggregate(), table(),

tabulate(), and ftable().

�The Functions cbind( ) and rbind( )
The functions cbind() and rbind() are self-explanatory for vectors,

matrices, and data frames. The function cbind() binds columns. The

function rbind() binds rows.

For lists that are not matrixlike, the functions return the type and

number of elements in each of the lowest level elements of the list, creating

a matrix of the types. Lists can be bound with nonlist objects. The result

will be a list, but the nonlist arguments will not be converted like the list

part of the result.

In the call to the function, the objects to be bound are separated by

commas. For cbind(), vectors are treated as columns. For rbind(), vectors

are treated as rows.

For vectors, vectors being bound do not have to be of the same length.

The vectors cycle with themselves and with higher dimensional objects.

For higher dimensional objects, the objects will not cycle. If, for rbind(),

the numbers of columns do no match or, for cbind(), the numbers of

rows do not match, an error is given.

Chapter 11 Descriptive Functions and Manipulating Objects

216

The resulting object takes on the type of the highest level object

entered, where the hierarchy, from lowest to highest, is raw, logical,

integer, double, complex, character, and list.

There is one argument to cbind() and rbind() other than the objects

to be bound—the argument deparse.level, which is used to create labels

for objects that are not matrixlike. The argument is an integer argument

and can take on the values of 0, 1, or 2, although any value that can be

coerced to an integer works. Values that do not give 1 or 2 when coerced to

an integer give the same result as 0. The default value is 1.

For data frames, if a data frame is included in the objects to be bound and

a list that is not a data frame is not included, then the result is a data frame. In

that case, any character columns are changed to factors unless specified to not.

For time series, cbind() gives a multivariate time series, whereas for

rbind(), the time series reverts to a plain matrix.

An example follows:

> ab.list = list(one=1:3, two=1:5)

> ab.list

$one

[1] 1 2 3

$two

[1] 1 2 3 4 5

> cbind(ab.list, 1:2)

 ab.list

one Integer,3 1

two Integer,5 2

> cbind(ab.list, 1:2, deparse.level=0)

 [,1] [,2]

one Integer,3 1

two Integer,5 2

Chapter 11 Descriptive Functions and Manipulating Objects

217

> cbind(ab.list, 1:2, deparse.level=2)

 ab.list 1:2

one Integer,3 1

two Integer,5 2

You can find more information about cbind() and rbind() by entering

?cbind at the R prompt or by using the Help tab in R Studio.

�The Apply Functions
There are several functions in R for applying a function over a subset of an

object, seven of which are covered here. The seven functions are apply(),

lapply(), sapply(), vapply(), tapply(), mapply(), and eapply(). The

functions to be applied can be user defined, which can be quite useful.

�The Function apply( )

The function apply() takes three arguments—X, MARGIN, and FUN—as

well as any arguments to the function FUN. The first argument, X, is an

array (including matrices). The second argument gives the margin(s) over

which the function is to operate, and FUN is the function to be applied.

For matrices, entering 1 for MARGIN applies the function across the

columns. For 2, the function is applied down the rows.

The function to be applied is entered without parentheses. Any

arguments to the function are entered next, separated by commas. The

result is an array, matrix, or vector. An example follows:

> a.mat=matrix(1:4, 2, 2, dimnames=list(c("r1", "r2"),

 c("c1", "c2")))

> a.mat

 c1 c2

r1 1 3

r2 2 4

Chapter 11 Descriptive Functions and Manipulating Objects

218

> apply(a.mat, 1, sum)

r1 r2

 4 6

> apply(a.mat, 1, pnorm, 3, 1)

 r1 r2

c1 0.02275013 0.1586553

c2 0.50000000 0.8413447

In the example, the first apply finds the sums of the rows. For the

second apply, the arguments to pnorm() are the rows in mat for the q

values, 3 for the value of mean, and 1 for the value of sd. Note that the

matrix is transposed in the result.

You can find more information about apply() by entering ?apply at

the R prompt or by using the Help tab in R Studio.

�The lapply( ), sapply( ), and vapply( ) Functions

The lapply(), sapply(), and vapply() functions work with vectors,

including lists, and expressions. If X is not a list, then X is coerced to a list.

The elements must be of the correct mode for the function being applied.

The function lapply() is the simplest with just two arguments plus

any arguments to the function to be applied. The function sapply() takes

four arguments plus any extra arguments for the function to be applied.

The function vapply() also takes four arguments plus any extra for the

function to be applied.

The Function lapply( )

The function lapply() takes the arguments X and FUN, plus any extra

arguments for FUN. The function FUN is applied to every element of the

vector or to every second level element of the list. The result is a list.

An example follows:

Chapter 11 Descriptive Functions and Manipulating Objects

219

> b.list=list(1:7, 3:4)

> b.list

[[1]]

[1] 1 2 3 4 5 6 7

[[2]]

[1] 3 4

> lapply(b.list, sum)

[[1]]

[1] 28

[[2]]

[1] 7

You can enter arithmetic operators by enclosing the operators within

quotes. For example:

> lapply(1:2, "^", 2)

[[1]]

[1] 1

[[2]]

[1] 4

The Function sapply( )

The function sapply() also operates on vectors, including lists, and

expressions. The function takes the arguments X and FUN, then any

arguments to FUN followed by the arguments simplify and USE.NAMES.

The argument simplify can be logical or the character string “array”.

The argument simplify tells sapply() to simplify the list to a vector or

matrix if TRUE, and to an array if set equal to “array”. No simplification is

done if set equal to FALSE. For FALSE, a list is returned. The value TRUE is

the default.

Chapter 11 Descriptive Functions and Manipulating Objects

220

The argument USE.NAMES is a logical argument. For an object of

mode character, the argument USE.NAMES tells sapply() to use the

elements of the object as names for the result. The default value is TRUE.

An example follows:

> ac.list = list(one=1:5, two=3:7)

> ac.list

$one

[1] 1 2 3 4 5

$two

[1] 3 4 5 6 7

> sapply(ab.list, sum)

one two

 15 25

> a.char = paste0("a", 7:10)

> a.char

[1] "a7" "a8" "a9" "a10"

> sapply(a.char, paste, "b", sep="")

 a7 a8 a9 a10

 "a7b" "a8b" "a9b" "a10b"

> sapply(a.char, paste, "b", sep="", USE.NAMES=F)

[1] "a7b" "a8b" "a9b" "a10b"

The Function vapply( )

The function vapply() takes the arguments X, FUN, FUN.VALUE, any

arguments to FUN, and USE.NAMES, in that order.

The argument FUN.VALUE is a structure for the output from the

function. The structure is the structure of the result of applying FUN to a

single element of X. Dummy values of the correct mode are used in the

Chapter 11 Descriptive Functions and Manipulating Objects

221

structure. The number and mode of the dummy elements must be correct.

Any extra arguments for FUN are placed after FUN.VALUE. The default

value of USE.NAMES is TRUE. An example follows:

> set.seed(382765)

> ab.val=1:2

> vapply(ab.val, rnorm, matrix(.1, 2, 2), n=4, sd=1)

, , 1

 [,1] [,2]

[1,] 1.701435 1.1422971

[2,] 2.068151 0.9604146

, , 2

 [,1] [,2]

[1,] 0.3541925 1.186276

[2,] 2.6841000 1.745577

In the example, ab.val is a vector of means entered into the function

rnorm(), and the other arguments to rnorm() are n=4 and sd=1.

The function vapply() returns an array, matrix, or vector of objects of

the kind given by the argument FUN.VALUE.

You can find more information about lapply(), sapply(), and

vapply() by entering ?lapply at the R prompt or use the Help tab in R

Studio.

�The Function tapply( )

The function tapply() applies functions to cross-tabulated data. The

arguments are X, IND, FUN, any extra arguments to FUN, default, and

simplify. The default value for FUN is NULL, the default value for default

is NA, and the default value of simplify is TRUE.

Chapter 11 Descriptive Functions and Manipulating Objects

222

The argument X must be an atomic object and is coerced to a vector.

The argument can be a contingency table created by table(). The length

of X is then the product of the dimensions of the contingency table.

The argument IND must be a vector that can be coerced to a factor

or a list of vectors that can be coerced to factors. The length of X and the

length(s) of the factor vectors must all be the same.

The values of X are the number of observations with a given factor

combination, where the factor combinations are given by juxtaposing the

factor values. If combinations are repeated, the function does not work

right. There is no need to enter zeroes for factor combinations without

observations, but zeroes may be included.

Using tapply() without a function gives the index of the cells that

contain observations, while using a function gives the factor cross

table, with the function applied to the contents of the cells. An example

follows:

> cbind(c("a", "b", "b", "c"), c(5, 5, 6, 5))

 [,1] [,2]

[1,] "a" "5"

[2,] "b" "5"

[3,] "b" "6"

[4,] "c" "5"

> tapply(1:4, list(c("a", "b", "b", "c"), c(5, 5, 6, 5)))

[1] 1 2 5 3

> tapply(1:4, list(c("a", "b", "b", "c"), c(5, 5, 6, 5)),

 "^", 3)

 5 6

a 1 NA

b 8 27

c 64 NA

Chapter 11 Descriptive Functions and Manipulating Objects

223

In this example, the four observations are in the cells a5, b5, b6, and

c5, as can be seen by juxtaposing the two factor columns. There are six

possible cells, a5, b5, c5, a6, b6, and c6. The first call to tapply() gives

the cell identifiers for the four table counts. The second call applies the

cube function to the table counts and prints out a full table of the results,

returning NA for empty cells.

You can find more information about tapply()by entering ?tapply at

the R prompt or by using the Help tab in R Studio.

�The Function mapply( )

The function mapply() takes an object that is an atomic vector or a list

as an argument and applies a function to each element of the vector or

list. If an object that is not an atomic vector or list is entered, mapply()

attempts to coerce the object to an atomic vector or list. The elements of

the resulting object must be legal for the function to be applied. The result

of mapply() is an atomic vector, matrix, or list.

The arguments to mapply() are FUN, ..., MoreArgs, SIMPLIFY,

and USE.NAMES. The argument FUN is the function to be applied. The

argument ... refers to the atomic vectors or lists on which the argument

FUN operates and may be a collection of lists and/or vectors collected

using c(). The argument MoreArgs refers to any additional arguments to

FUN and by default equals NULL. The arguments must be in list mode,

with a separate list for each argument.

The argument SIMPLIFY tells mapply() to attempt to simplify the

result to a vector or matrix. The default value is TRUE. The argument USE.
NAMES tells mapply() to use the names of the elements or, if the vector is

of mode character, the characters themselves, as names for the output. By

default, the value is TRUE. An example follows:

> set.seed(382765)

> a.mat = matrix(1, 4, 4)

Chapter 11 Descriptive Functions and Manipulating Objects

224

> b.mat = matrix(runif(9), 3, 3)

> c.vec = 1:2

> mapply(det, list(a.mat, b.mat))

[1] 0.0000000 -0.3349038

> mapply(mean, c(list(a.mat, b.mat), c.vec))

[1] 1.0000000 0.6208733 1.0000000 2.0000000

> mapply(mean, c(list(a.mat, b.mat), list(c.vec)))

[1] 1.0000000 0.6208733 1.5000000

Here, det finds the determinants of the elements, and mean finds the

means of the elements.

Another example—using MoreArgs—follows:

> set.seed(382765)

> mapply(cor, c(list(a.mat, b.mat), list(c.vec)),

 list(y=1:4, y=1:3, y=3:4),

 list(use="everything"),

 list(method="pearson"))

[[1]]

 [,1]

[1,] NA

[2,] NA

[3,] NA

[4,] NA

[[2]]

 [,1]

[1,] 0.1872769

[2,] 0.8836377

[3,] -0.4585219

Chapter 11 Descriptive Functions and Manipulating Objects

225

[[3]]

[1] 1

Warning message:

In (function (x, y = NULL, use = "everything", method =

c("pearson", :

 the standard deviation is zero

Here, the function is the correlation function and the arguments

y, use, and method are supplied, each as a list. For the first matrix,

four y values are given, so cor() is called four times since there are

16 elements in the matrix. For the second matrix, three y values are

given so cor() is called three times. For the third matrix, two y values

are given so cor() is only called once. The result is the three-element

list. The NAs in the first element of the list result from the first matrix

containing a single value only, so the correlations cannot be estimated

for the first element.

You can find more information about mapply()by entering ?mapply at

the R prompt or by using the Help tab in R Studio.

�The Function eapply( )
The function eapply() applies a function to all objects in an environment

and returns a list to the parent environment. The function takes five

arguments, env, FUN, …, all.names, and USE.NAMES. The argument env

is the name of the environment. The argument FUN is the function to be

applied. The argument … gives any arguments to the function, separated

by commas. The argument all.names is a logical variable indicating

whether to include objects whose names begin with a period or not.

The default value is FALSE. The argument USE.NAMES is a logical variable

indicating whether the resultant list has names assigned to the elements or

not. The default value is TRUE.

Chapter 11 Descriptive Functions and Manipulating Objects

226

For example:

> nwenv = new.env()

> nwenv

<environment: 0x10b448d30>

> nwenv$a = 1:10

> nwenv$b = 11:20

> nwenv$c = rnorm(100)

> eapply(nwenv, sd)

$a

[1] 3.02765

$b

[1] 3.02765

$c

[1] 0.9947994

> ls(nwenv)

[1] "a" "b" "c"

Here, an environment is created and populated with three numeric

objects. The function sd() (the function to find the standsrd deviation of the

values in a numeric object) was applied to the three objects, and the resultant

standard deviations were returned into .GlobalEnv as a three-element list.

More information about eapply() can be found by entering ?eapply at

the R prompt or by using the Help tab in R Studio.

�The sweep( ) and scale( ) Functions
The sweep() function operates on arrays (including matrices and vectors

that have been converted to matrices), and the scale() function operates on

numeric matrixlike objects. The sweep() function sweeps out a margin(s) of

an array (say, the columns of a matrix) with values (say, the column means)

Chapter 11 Descriptive Functions and Manipulating Objects

227

using a function (say, the subtraction operator). The scale() function by

default centers and normalizes the columns of matrices by subtracting the

mean and dividing by the standard deviation for each column.

�The Function sweep( )

The function sweep() takes the arguments x, MARGIN, STATS, FUN,

check.margin, and The argument x is the array. The array can be of any

atomic mode.

The argument MARGIN gives the margins over which the sweep is to

take place. For a matrix, MARGIN equals 1, 2, or 1:2 (or c(1,2)). If MARGIN

equals 1:2, the entire matrix is swept, rather than the sweeping being done

by column or row. For an array of more than two dimensions, MARGIN

can be any subset of the margins, including all of the margins.

The argument STATS gives the value(s) to sweep with. For example, to

use column means the function apply() can be applied; that is apply(mat, 2,
mean) would work as a value for STATS, where mat is the matrix being swept.

The value(s) for STATS cycle.

The argument FUN is the function to use. By default, FUN equals “-”,

the subtraction operator, but FUN can be any function legal for the values

of the array. For example, paste can be used with arrays of mode character.

The argument check.margin checks to see if the dimensions or

length of STATS agrees with the dimensions given by MARGIN. If not,

just a warning is given. The function does not stop but cycles the values in

STATS. The default value is TRUE.

The argument ... gives any extra arguments to the function FUN.

An example follows:

> a.mat = matrix(1:8, 2, 4)

> a.mat

 [,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

Chapter 11 Descriptive Functions and Manipulating Objects

228

> a.cent = sweep(a.mat, 2, apply(a.mat, 2, mean))

> a.cent

 [,1] [,2] [,3] [,4]

[1,] -0.5 -0.5 -0.5 -0.5

[2,] 0.5 0.5 0.5 0.5

> sweep(a.cent, 2, apply(a.mat, 2, sd), "/")

 [,1] [,2] [,3] [,4]

[1,] -0.7071068 -0.7071068 -0.7071068 -0.7071068

[2,] 0.7071068 0.7071068 0.7071068 0.7071068

Since MARGIN is set equal to 2, the function mean() takes the mean of

each column, and the function sd() takes the standard deviation of each

column. In the second statement, the mean of each column is subtracted

from the elements in the column. The subtraction function is the default,

so it does need not be entered. In the third statement, the centered

elements in the columns are divided by the standard deviations of the

columns.

Note that the function returns a matrix. You can find more information

about sweep()by entering ?sweep at the R prompt or by using the Help tab

in R Studio.

�The Function scale( )

The function scale() is used to scale columns of a matrix—that is, to

center the column to a specified center and to scale the column to a

specified standard deviation. The function scale() takes three arguments:

x, center, and scale. The argument x is a matrix or matrixlike numeric

object (for example a data frame or time series).

The argument center can be either logical or a numeric vector of

length equal to the number of columns in x. If set to TRUE, the column

mean is subtracted from each element in a column. If set to a vector

of numbers, then each number is subtracted from the elements in the

Chapter 11 Descriptive Functions and Manipulating Objects

229

number's corresponding column. If set equal to FALSE, nothing is

subtracted. The default value is TRUE.

The argument scale can also be logical or a vector of numbers. If scale

is set equal to TRUE, each centered (if centering has been done) element is

divided by the standard deviation of the elements in the column, where NAs

are ignored and the division is by n-1. If set equal to a vector of numbers,

each (centered) element of a column is divided by the corresponding

number in the vector. Dividing by zero will give an NaN but will not stop the

execution. If scale is set equal to FALSE, no division is done. The default

value is TRUE. An example follows:

> a.mat

 [,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

> scale(a.mat)

 [,1] [,2] [,3] [,4]

[1,] -0.7071068 -0.7071068 -0.7071068 -0.7071068

[2,] 0.7071068 0.7071068 0.7071068 0.7071068

attr(,"scaled:center")

[1] 1.5 3.5 5.5 7.5

attr(,"scaled:scale")

[1] 0.7071068 0.7071068 0.7071068 0.7071068

> a2.mat = matrix(c(1:8, NA, 2), 2, 5)

> a2.mat

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 NA

[2,] 2 4 6 8 2

Chapter 11 Descriptive Functions and Manipulating Objects

230

> scale(a2.mat, center=rep(3, 5), scale=rep(4, 5))

 [,1] [,2] [,3] [,4] [,5]

[1,] -0.50 0.00 0.50 1.00 NA

[2,] -0.25 0.25 0.75 1.25 -0.25

attr(,"scaled:center")

[1] 3 3 3 3 3

attr(,"scaled:scale")

[1] 4 4 4 4 4

Note that scale() returns the scaled matrix, the values used to center

the elements, and the values used to scale the elements.

For more information, enter ?scale at the R prompt or use the Help tab

in R Studio.

�The Functions aggregate( ), table( ), tabulate( ),
and ftable( )
Like the apply functions, the function aggregate() finds statistics for

data groups. The functions table(), tabulate(), and ftable() create

contingency tables out of data.

�The Function aggregate( )

The function aggregate() applies a function to the elements of an object

based on the values of another object. The object to be operated on is

either a time series, a data frame or an object that can be coerced to a data

frame. The values of the other object must be a list with elements that can

be interpretable as factors and, at the second level, must be of length equal

to the rows of the data frame or time series. The function treats data frames

and time series differently.

Chapter 11 Descriptive Functions and Manipulating Objects

231

Data Frames

For data frames, the arguments are x, by, FUN, ..., simplify, and drop.

The argument x is a data frame. The argument by is an object of mode

list consisting of elements that can be interpreted as factors. The

elements of by are used to group the rows of x.

The argument FUN is the function to be applied and ... are any extra

arguments for that function. The argument simplify tells aggregate()

whether to try to simplify the result to a vector or matrix. The default

value is TRUE. The argument drop is a logical variable. If TRUE, unused

combinations for the by factors are dropped. Starting with R 3.5.0 the

default value is TRUE.

The result of aggregate() for a data frame is a data frame. An example

follows:

> x=rep(1:2, 3)

> y1=1:6

> y2=7:12

> a.df=data.frame(y1, y2, x)

> a.df

 y1 y2 x

1 1 7 1

2 2 8 2

3 3 9 1

4 4 10 2

5 5 11 1

6 6 12 2

> aggregate(a.df[,1:2], by=list(x), FUN=mean)

 Group.1 y1 y2

1 1 3 9

2 2 4 10

Chapter 11 Descriptive Functions and Manipulating Objects

232

The function finds the means in each column for the two grouping

values in x.

For data frames, a formula may be used to classify x rather than using

the argument by. For the formula option, the arguments are formula, data,

FUN, ..., subset, and na.action. The argument formula takes the form y~x,

where y is numeric and can have more than one column and x is a formula

such as x1 or x1+x2, where both x1 and x2 can be interpreted as factors.

The argument data gives the name of the data frame and must be

included. The argument FUN is the function to be applied and ... contains

any extra arguments for FUN. The default value is sum. The argument

subset gives the rows of the data frame on which to operate. The argument

na.action gives the choice for how to handle missing values and is a

character string. The default value is “na.omit”, which tell aggregate() to

omit missing values. An example follows:

> a.df

 y1 y2 x

1 1 7 1

2 2 8 2

3 3 9 1

4 4 10 2

5 5 11 1

6 6 12 2

> aggregate(cbind(y1, y2)~x, data=a.df, sum, subset=1:3)

 x y1 y2

1 1 4 16

2 2 2 8

The first three rows of y1 and y2 are summed based on the value of x.

Note that the by variable must be a list while the right side of a formula

cannot be a list.

Chapter 11 Descriptive Functions and Manipulating Objects

233

Time Series

Time series have both a frequency and a period. In R, the frequency is

the inverse of the period and vice versa. For example, a year can be the

period of interest. Then, the months have a frequency of 12 while having

subperiods of 1/12.

For time series, the arguments are x, nfrequency, FUN, ndeltat, ts.eps,

and The argument x must be a time series. The argument nfrequency

is the number of subperiods for each period after FUN has operated on

the time series. The value must divide evenly into the original time series

frequency. For a monthly time series, aggregating to a quarter can be done

by setting nfrequency to four. The argument equals 1 by default. (The

original time series frequency divided by nfrequency gives the number of

elements that are grouped together—on which FUN operates.)

The argument FUN is the function to be applied and ... gives any extra

arguments to FUN. The argument ... is at the end of the argument list.

The function FUN must be legal for the values of the time series and is by

default sum.

The argument ndeltat tells aggregate() the length of the subperiods

for the output and equals 1 by default. The argument is the value of one

divided by nfequency. The product of the frequency of the original time

series and ndeltat must be an integer.

Either nfrequency or ndeltat can be set but not both. The product of

nfrequency and the inverse of ndeltat is the frequency of the original time

series, or its inverse if nfrequency is less than one.

The argument ts.eps gives the tolerance for accepting that nfrequency

divides evenly into the frequency of the time series. By default, ts.eps

equals getOption(“ts.eps”), which value can be found by entering

options(“ts.eps”) at the R prompt. The value is numeric and can be set

manually.

Chapter 11 Descriptive Functions and Manipulating Objects

234

An example follows:

> a.ts=ts(cbind(1:12, 11:22), start=c(1, 1), freq=4)

> a.ts

 Series 1 Series 2

1 Q1 1 11

1 Q2 2 12

1 Q3 3 13

1 Q4 4 14

2 Q1 5 15

2 Q2 6 16

2 Q3 7 17

2 Q4 8 18

3 Q1 9 19

3 Q2 10 20

3 Q3 11 21

3 Q4 12 22

> aggregate(a.ts, nfreq=2)

Time Series:

Start = c(1, 1)

End = c(3, 2)

Frequency = 2

 Series 1 Series 2

1.0 3 23

1.5 7 27

2.0 11 31

2.5 15 35

3.0 19 39

3.5 23 43

Chapter 11 Descriptive Functions and Manipulating Objects

235

> aggregate(a.ts, ndelt=1/2)

Time Series:

Start = c(1, 1)

End = c(3, 2)

Frequency = 2

 Series 1 Series 2

1.0 3 23

1.5 7 27

2.0 11 31

2.5 15 35

3.0 19 39

3.5 23 43

> aggregate(a.ts, nfreq=1/2)

Time Series:

Start = 1

End = 1

Frequency = 0.5

 Series 1 Series 2

1 36 116

> aggregate(a.ts, ndelt=2)

Time Series:

Start = 1

End = 1

Frequency = 0.5

 Series 1 Series 2

1 36 116

Note that nfreq can be less than one but must give an integer if

multiplied by freq. In the example with nfreq=1/2, the first eight rows are

summed, but the last four rows are ignored.

You can find more information about aggregate() by entering

?aggregate at the R prompt or by using the Help tab in R Studio.

Chapter 11 Descriptive Functions and Manipulating Objects

236

�The Functions table( ), as.table( ), and is.table( )

There are three functions associated with creating tables using

table(). The function table() creates a contingency table from atomic

data or some lists. The data must be able to be interpreted as factors.

The result has class table. The function as.table() attempts to coerce

an object to class table. The function is.table() tests if an object is of

class table.

The arguments to table() are ..., exclude, useNA, dnn, and

deparse.level.

The argument ... refers to the object(s) that are to be cross-classified.

The objects are separated by commas and, for atomic objects, must have

same length. For list objects, the second level elements must all have the

same length and be atomic. Atomic and list objects cannot be combined in

a call to table().

The argument exclude gives values to be excluded from the

contingency table. By default, exclude equals if(useNA==“no”) c(NA,
NaA), which tells table() not to set a level for missing values or illegal

values—such as one divided by zero—if the argument useNA equals “no”.

The argument useNA is a character argument and can take on the value

“no”, “ifany”, or “always”. For “no”, no level is set for missing values. For

“ifany”, a level is set if missing values are present. For “always”, a level for

missing values is always set. The default level is “no”.

The argument dnn is a list argument and gives dimension names for

the contingency table. The default value is list.names(...). The function

list.names() is defined in table() and gives the names of the dimensions

being tabulated.

The argument deparse.level is an integer argument that can take

on the values of 0, 1, or 2. The argument controls list.names() if dnn is

not given. For 0, no names are given. For 1, the column names are used.

Chapter 11 Descriptive Functions and Manipulating Objects

237

For 2, column names are deparsed. The default value is 1. An example

follows:

> set.seed(203846)

> a1.samp=sample(3, 100, replace=T)

> a2.samp=sample(3, 100, replace=T)

> table(a1.samp, a2.samp)

 a2.samp

a1.samp 1 2 3

 1 12 10 14

 2 13 9 9

 3 15 8 10

> a2.samp[10]=NA

> table(a1.samp, a2.samp)

 a2.samp

a1.samp 1 2 3

 1 12 10 14

 2 12 9 9

 3 15 8 10

> table(a1.samp, a2.samp, useNA="ifany")

 a2.samp

a1.samp 1 2 3 <NA>

 1 12 10 14 0

 2 12 9 9 1

 3 15 8 10 0

Note that the second table does not include the missing value, but the

third does.

Chapter 11 Descriptive Functions and Manipulating Objects

238

The function as.table() takes the arguments x and The argument

x is the object to be coerced to the table class. The argument must be of

mode numeric. The argument... provides any arguments for lower-level

functions.

The function is.table() takes the argument x and returns TRUE if x is

of class table and FALSE if not.

You can find more information about table(), as.table(), and

is.table() by entering ?table() at the R prompt or by using the Help tab

in R Studio.

�The Function tabulate( )

The function tabulate() coerces numeric or factor objects to vectors

and bins the result. The arguments are bin and nbins. The argument

bin is the object to be binned. If the object is not an integer or factor

object, then the elements are rounded down to integers. The resulting

integers must be positive. If an illegal element is present, the element is

ignored.

The argument nbins gives the largest integer to be binned and by

default equals max(1, bin, na.rm=T)—that is, the largest value in bin,

assuming the largest value in bin is larger than one. By default, NAs are

removed.

If nbins is smaller than the largest value in bin, then only those

values with a value less than or equal nbins are binned. All of the integers

between one and nbins are binned even if there are zero elements in a

given bin. The function creates a vector without labels. The bins always

start with one. An example follows:

> tabulate(c(-3.5, .9, 1, 4, 5.6, 5.4, 4, 1, 3))

[1] 2 0 1 2 2

> tabulate(c(-3.5, .9, 1, 4, 5.6, 5.4, 4, 1, 3), nbins=3)

[1] 2 0 1

Chapter 11 Descriptive Functions and Manipulating Objects

239

In the example, there are two ones, zero twos, one three, two fours, and

two fives in the reduced object.

The function tabulate() is good when all of the bins, including those

with zero elements, are needed. You can find more information about

tabulate()by entering ?tabulate at the R prompt or by using the Help tab

in R Studio.

�The Function ftable( )

The function ftable() creates a matrix out of a contingency table—that

is, a matrix that is a flat table. The arguments are ..., exclude, row.vars,

and col.vars. The argument ... can be objects that can be coerced to a

vector and that can be interpreted as factors, separated by commas. The

argument can also be a list whose elements can be interpreted as factors,

or the argument can be of class table or ftable.

The argument exclude gives the values to be excluded when building

the flat table. By default, exclude equals c(NA, NaN).

The arguments row.vars and col.vars give the dimensions to put

in the rows and columns. The values can go from one to the number of

dimensions in the table—in other words, a table with three dimensions

can have row.vars and col.vars equal to 1:2 and 3; or 2:1 and 3; or 1 and 3;

or c(3,1) and 2; and so forth. An example follows:

> a.list = list(1:2, 3:4, 5:6)

> ftable(a.list)

 x.3 5 6

x.1 x.2

1 3 1 0

 4 0 0

2 3 0 0

 4 0 1

Chapter 11 Descriptive Functions and Manipulating Objects

240

> a1 = 1:2

> a2 = 3:4

> a3 = 5:6

> ftable(a1, a2, a3, row.vars=3, col.vars=2:1)

 a2 3 4

 a1 1 2 1 2

a3

5 1 0 0 0

6 0 0 0 1

> a.table = table(1:2, 3:4, 5:6)

> ftable(a.table, row.vars=2, col.vars=3)

 5 6

3 1 0

4 0 1

In these examples, the two observations are (1,3,5) and (2,4,6).

You can find more information about ftable() by entering ?ftable at

the R prompt or by using the Help tab in R Studio.

�Some Character String Functions
There are a number of functions for searching for patterns in character

strings and for replacing parts of strings with other strings based on

matching. This section covers the grep functions, the sub functions, the

regex functions, the str functions, and the character case transformation

functions.

Chapter 11 Descriptive Functions and Manipulating Objects

241

�The grep Functions

The grep() and grepl() functions search for matches to a pattern in a vector

of character strings. The function grep() returns either the index or the

value of those strings that contain the pattern. The function grepl() returns

a logical vector of the same length as the character vector with elements

equal to TRUE if there is a match, and FALSE if there is not a match, for

each element of the character vector.

The arguments of grep() are pattern, x, ignore.case, perl, value, fixed,

and useBytes. The argument pattern is a character string or an object

that can be coerced to a character string by using as.character(). If the

argument contains more than one element, only the first one is used.

The argument x is the character vector in which to look for the matches.

The argument ignore.case tells grep() to ignore case in doing the matching

if set equal to TRUE. The default value is FALSE.

The arguments perl and fixed tell grep() what type of matching to do.

(See the help page for regex for more information.) Both arguments are

FALSE by default. The argument value tells grep() to return the value of

the element if set to TRUE and the index of the element if set to FALSE.

The default value is FALSE. The argument useBytes, if set to TRUE, tells

grep() to match byte-wise rather than character-wise. The default value is

FALSE. The argument inverse, if set equal to TRUE, tells grep() to return

the elements that do not contain matches rather than those that do. The

default value is FALSE.

An example:

> ab.char=c("achar1", "achar2", "achar3")

> ab.char

[1] "achar1" "achar2" "achar3"

> grep("achar", ab.char)

[1] 1 2 3

Chapter 11 Descriptive Functions and Manipulating Objects

242

> grep("1", ab.char, value=T)

[1] "achar1"

> grep("Achar", ab.char)

integer(0)

> grep("Achar", ab.char, ignore.case=T)

[1] 1 2 3

> grep("Achar", ab.char, ignore.case=T, invert=T)

integer(0)

The function grepl() takes the same arguments as grep() except that

there are no arguments value or invert. The function returns a logical

vector, for example:

> grepl("1", ab.char)

[1] TRUE FALSE FALSE

> grepl("Achar", ab.char)

[1] FALSE FALSE FALSE

The functions agrep() and agrepl() are similar to grep() and grepl(),

except that agrep() and agrepl() do “fuzzy” matching. For example:

> grepl("Achar", ab.char)

[1] FALSE FALSE FALSE

> agrepl("Achar", ab.char)

[1] TRUE TRUE TRUE

See the help page for agrep() for more information on how the

matching can be done.

The function grepRaw() does pattern matching for raw vectors. The

function takes the arguments pattern, x, offset, ignore.case, value, fixed,

all, and invert.

Chapter 11 Descriptive Functions and Manipulating Objects

243

The argument pattern is the pattern to be matched and can be a raw

vector or a single character string. The argument x is also a raw vector or a

single character string and is the object in which to search for the pattern.

In grepRaw(), before the search, the character strings are converted to raw

vectors using the function charToRaw().

The argument offset gives the index of the raw vector at which to start

searching. The value must be able to be coerced to a positive integer. If the

value is an object of length greater than one, only the first element is used.

The default value for offset is 1L.

The argument ignore.case, if set equal to TRUE, tells grepRaw() to

match both capital letters and lower case letters given a letter of either

case. The default value is FALSE.

The argument value, if set equal to TRUE, returns the first raw vector

containing the match or a list of the raw vectors containing the matches,

depending on whether the argument all is FALSE or TRUE. If value is

FALSE, either the index of the first element of the first match, or the indices

of the first elements of all of the matches, is(are) returned, depending on

the value of the argument all—FALSE or TRUE. The default value of value

is FALSE.

The argument all tells grepRaw() to just return the first match if set

equal to FALSE and all matches if set equal to TRUE. The default value is

FALSE. The arguments fixed and invert are as defined for grep() and by

default are FALSE.

An example:

> a=charToRaw("abc123")

 > a

[1] 61 62 63 31 32 33

> grepRaw("b", a)

[1] 2

Chapter 11 Descriptive Functions and Manipulating Objects

244

> grepRaw("b", a, value=T)

[1] 62

> grepRaw("B", a, value=T, ignore.case=T)

[1] 62

> grepRaw("ab", "abab")

[1] 1

> grepRaw("ab", "abab", all=T)

[1] 1 3

> grepRaw("ab", "abab", value=T, all=T)

[[1]]

[1] 61 62

[[2]]

[1] 61 62

> grepRaw("ab", "Abab", value=T, all=T)

[[1]]

[1] 61 62

> grepRaw("ab", "Abab", value=T, all=T, ignore.case=T)

[[1]]

[1] 41 62

[[2]]

[1] 61 62

The functions sub() and gsub() replace a new string for a substring

in the element(s) of an object that can be coerced to a character

vector. The arguments to both functions are pattern, replacement,

x, ignore.case, perl, fixed, and useBytes. The only new argument is

replacement, the replacement value. The replacement value must be

an object that can be coerced to a character string. If the replacement

Chapter 11 Descriptive Functions and Manipulating Objects

245

object has more than one element, only the first element is used, and

a warning is given. The function sub() replaces the first occurrence

of the pattern in each element of x. The function gsub() replaces all

occurrences of the pattern.

For example:

> sub("b1", "c", c("b1b2b1", "cb1"))

[1] "cb2b1" "cc"

> gsub("b1", "c", c("b1b2b1", "cb1"))

[1] "cb2c" "cc"

The functions regexpr(), gregexpr(), and regexec() return the location

and length of a string within a character vector, plus some other attributes

such as type of expression. For all three of the functions, a list is returned.

A minus one is returned if no match is found. The arguments to the three

functions are pattern, text, ignore.case, perl, fixed, and useBytes. Here,

text is the object in which to search for the pattern. The other arguments

are as described previously.

The function regexpr() finds the first occurrence of the pattern for

each element of text and returns a vector and some attributes. The vector

is a vector of integers, where for each element in text, the integer is the

position of the first occurrence of the pattern in the element. If the pattern

is not in the element, a minus one is used.

The first attribute of the result is “match.length”—a vector of integers

which contains the number of characters or bytes (depending on whether

useBytes is FALSE or TRUE) in the first match of the pattern. Again, if there

is no match, minus one is used. Two other possible attributes are “index.

type” and “useBytes.”

To separate out the vector from the attributes, you can use the function

as.vector() on the result. To access the attributes, you can use the function

attr().

Chapter 11 Descriptive Functions and Manipulating Objects

246

For example:

> a=regexpr("ab", c("ababab", "ba"))

> a

[1] 1 -1

attr(,"match.length")

[1] 2 -1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> as.vector(a)

[1] 1 -1

> attr(a, "match.length")

[1] 2 -1

The function gregexpr() finds all matches to the argument pattern

in each element of text. The function takes the same arguments as

regexpr() and returns a list of the same length as text. The first element

of the list contains the information for the first element of text; the

second information about the second; and so forth. The structure of each

element of the list is structured like the output from regexpr() except the

reference is to all matches in the element rather than for the first match

in each element.

For example:

> ag=gregexpr("ab", c("ababab", "ba"))

> ag

[[1]]

[1] 1 3 5

Chapter 11 Descriptive Functions and Manipulating Objects

247

attr(,"match.length")

[1] 2 2 2

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

[[2]]

[1] -1

attr(,"match.length")

[1] -1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> as.vector(ag[[1]])

[1] 1 3 5

> as.vector(ag[[2]])

[1] -1

The function regexec() is regexpr() with output in the form of gregexpr().

For more information on grep(), grepl(), sub(), gsub(), regexpr(),

gregexpr(), and regexec() enter ?grep at the R prompt or use the Help tab

in R Studio. For more information about agrep() and grepRaw(), enter

?agrep and ?grepRaw at the R prompt or use the Help tab in R Studio.

�Functions to Manipulate Case in Character Strings

Three functions that can be used to change the case of a character string

are tolower(), toupper(), and chartr(). The functions tolower() and

toupper() take one argument, x, which can be any vector that can be

coerced to character by using as.character(). The functions change the

Chapter 11 Descriptive Functions and Manipulating Objects

248

case of the entire vector either to lower or upper case. Characters that are

not letters are not changed.

For example:

> tolower(c("Jane Doe", "John Doe"))

[1] "jane doe" "john doe"

> toupper(c("Jane Doe", "John Doe"))

[1] "JANE DOE" "JOHN DOE"

The function chartr() changes characters in a vector, x, to other

characters. The function takes three arguments, old, new and x. The

arguments old and new must be character strings and of the same length.

The characters to be replaced make up old, while the replacement

characters are in new, where there is a one to one transformation between

the two. Each character in the string is evaluated separately. Characters

can be referred to by a range.

For example:

> chartr("ao", "oa", c("Jane Doe", "John Doe"))

[1] "Jone Dae" "Jahn Dae"

> chartr("a-e", "ABCDE", c("Jane Doe", "John Doe"))

[1] "JAnE DoE" "John DoE"

More information about tolower(), toupper(), and chartr() can be

found by entering ?tolower at the R prompt or by using the “Help” tab in R

Studio.

�The Functions substr( ), substring( ), and strsplit( )

The functions substr(), substring(), and strsplit() work with strings by

specifying where on the string to operate. The function substring() takes

three arguments, x, start, and stop. The argument x is a character vector;

the argument start tells substr() the how far into the character string to

Chapter 11 Descriptive Functions and Manipulating Objects

249

go before selecting or changing the sub string; the argument stop tells

substr() where to stop. Both values should be positive integers. Either

of the integers can be larger than the number of characters in a string.

Neither start nor stop has default values.

For example:

> substr(c("Jane Doe", "John Doe", "Ms. X"), 2, 7)

[1] "ane Do" "ohn Do" "s. X"

> substr(c("Jane Doe", "John Doe", "Ms. X"), 6, 7)

[1] "Do" "Do" ""

> a.str=c("Jane Doe", "John Doe", "Ms. X")

> substr(a.str, 6, 7) = "soA"

> a.str

[1] "Jane soe" "John soe" "Ms. X"

In the first part of the example, substr() operates on the second

through seventh characters in each element of the vector. In the second

part, substr() operates on the sixth through seventh characters in each

element. Note that the third element only has five characters. In the third

part, only two characters are replaced, characters six and seven.

The function substring() performs much like substr(), except that

the three arguments are text, first, and last. last has the default value of

1000000L, so need not be specified.

Using “a.str” from the above example

> a.str

[1] "Jane Doe" "John Doe" "Ms. X"

> substring(a.str, 2) = "osa"

> a.str

[1] "Josa Doe" "Josa Doe" "MosaX"

Chapter 11 Descriptive Functions and Manipulating Objects

250

The function strsplit() splits the elements of a character vector into a

list of smaller vectors based on a string or an object that can be coerced

to a string. The function takes five arguments, x, split, fixed, perl, and

useBytes. The arguments fixed, perl, and useBytes are as described

previously and on the help page. The argument x is the object to be split

and must be a character vector. The argument split is the string used for

splitting. The value(s) in string are not included in the split. For splitting

on periods, use the string “[.]” rather than “.”. To split out the string into

individual characters set string to “”, NULL, or character(0).

For example:

> strsplit("a.b.b", "b.")

[[1]]

[1] "a." "b"

> strsplit("a.b.b", ".")

[[1]]

[1] "" "" "" "" ""

> strsplit("a.b.b", "[.]")

[[1]]

[1] "a" "b" "b"

> strsplit(c("a.b.b", "d.f.d"), "")

[[1]]

[1] "a" "." "b" "." "b"

[[2]]

[1] "d" "." "f" "." "d"

More information about substr() and substring() can be found by

entering ?substr at the R prompt or by using the Help tab in R Studio. For

strsplit(), enter ?strsplit or use the Help tab.

Chapter 11 Descriptive Functions and Manipulating Objects

	Chapter 11: Descriptive Functions and Manipulating Objects
	Descriptive Functions
	The Function dim()
	The Functions nrow(), ncol(), NROW(), and NCOL()
	The Function length()
	The Functions nchar() and nzchar()

	Manipulating Objects
	The Functions cbind() and rbind()
	The Apply Functions
	The Function apply()
	The lapply(), sapply(), and vapply() Functions
	The Function lapply()
	The Function sapply()
	The Function vapply()

	The Function tapply()
	The Function mapply()

	The Function eapply()
	The sweep() and scale() Functions
	The Function sweep()
	The Function scale()

	The Functions aggregate(), table(), tabulate(), and ftable()
	The Function aggregate()
	Data Frames
	Time Series

	The Functions table(), as.table(), and is.table()
	The Function tabulate()
	The Function ftable()

	Some Character String Functions
	The grep Functions
	Functions to Manipulate Case in Character Strings
	The Functions substr(), substring(), and strsplit()

