
187© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_10

CHAPTER 10

Exporting from R
Being able to export from R makes R more useful. Objects may be

exported to files or connections. Since R Studio does not have specialized

methods for exporting objects, only command line R methods are

covered here. In this chapter, we cover exporting to external files on the

hard drive and to the console. You can find information about exporting

to connections by entering ?connections at the R prompt or by using the

“Help” tab in R Studio.

There are a number of functions that export to external text files, eight

of which we will discuss in this chapter. The first is the function dump().

The function dump() can write named objects of any kind to an external file

in text format.

The next function is sink(). The function sink() can sink output

that would normally be displayed at the console to an external file in text

format. Next is the function write(). The function write() can write

atomic data to an external file in text format. Next comes the function

write.matrix(). For matrices and data frames, the function write.

matrix() exports the matrix or data frame in tabular text format.

The next two functions are write.table() and write.csv(). For objects

that can be coerced to a data frame, write.table() and write.csv() can

write the object to an external file while maintaining the data frame structure.

The functions are slower but more sophisticated than write.matrix() and

write tabular text data.

https://doi.org/10.1007/978-1-4842-4405-0_10

188

The last two functions we cover are save() and saveRDS(). These

functions save objects in binary format by default and are the functions of

choice to transfer data sets and functions between workspaces.

There are also functions that convert data frames to Excel, SPSS, SAS,

and Stata formats, which we briefly cover in this chapter. Also, output at

the console can be cut and pasted to an external file.

A table of importing and exporting functions covered in the book is

given in Table 10-1, where some functions are paired.

 The Function dump()
The function dump() takes a vector of object names and exports the

contents of the objects to a file. The file will have a text format. (The

function source() reads the dumped file into a two element list containing

the value read and a logical value indicating if the result is visible. If more

than one object is dumped, only the last object is sourced.)

The first argument to dump() is list and is a collection of the objects to

be dumped. To enter the objects into the function, the object names are

collected into a character vector with the object names in quotes.

For example:

> a = function(){ print(1:4) }

> b = expression(x~y)

> c = list(1:4, "a")

> d = c(1, 2, 3, 4)

> dump(c("a", "b", "c", "d"), file="")

a <-

function(){print(1:4)}

b <-

expression(x ~ y)

c <-

Chapter 10 exporting from r

189

list(1:4, "a")

d <-

c(1, 2, 3, 4)

.

Other than the vector of named objects, the function takes the

arguments file, append, control, envir, and evaluate.

The argument file contains the location to which the function writes.

If the argument is set to “”, the dump goes to the console or stdout() if

stdout() is not the console. A hard drive address is an option for file and

can be either relative to the working directory or an absolute address. For a

hard drive address, the location is a character string or a character object.

The default value is “dumpdata.R”.

The argument append is a logical variable. If append is TRUE and file

equals a file name, dump() appends the dump to the existing file. If FALSE,

the existing file is overwritten. The default value is FALSE.

The argument envir is an argument of mode environment and tells

dump() in which environment to look for the objects to be dumped. The

default value is parent.frame().

The arguments control and evaluate have to do with saving and

reloading functions, where dump() is used to save and source() is used

to load the function. Control gives the deparse options used by dump(),

by default “all,” and evaluate is a logical variable that tell R whether to

evaluate promises, by default TRUE.

You can access the help page by entering ?dump at the R prompt or

under the “Help” tab in R Studio.

 The Function sink()
The function sink() sends output from command line commands to a

file or connection. The function sink() continues writing until sink()

or sink(file=NULL) is entered at the R prompt. The function takes four

arguments: file, append, type, and split.

Chapter 10 exporting from r

190

The file argument tells sink() where to write the output. If writing to a

hard drive file, the write location is a character argument, which is a hard

drive address within quotes. The address can be relative to the workspace

folder or absolute. The option file=“” does not work for sink().

The second argument, append, tells sink() whether to append or

overwrite the file. The argument is a logical argument. For append equal to

TRUE, the file is appended. For FALSE, the file is overwritten. The default

value is FALSE.

The third argument, type, tells sink() which of two possible streams to

sink. The argument is a character argument, which can take on one of two

values: output or message. For output, the output stream is sent to the file.

For message, any messages generated by the command are sent to the file.

The default value is output.

The fourth argument, split, is a logical argument that tells sink() how

to split the stream. If FALSE, the output stream is not sent to the console.

If TRUE the output stream is sent to both the file and the console. The

default value is FALSE.

Following is an example of the use of sink():

> sink("test.txt")

> rnorm(10)

> sink()

The file "test.txt" is relative to the folder containing the R

workspace. The contents of test.txt are

[1] -0.30618294 -0.52505474 0.47243057 -0.89954490

-1.06653790 0.03690703

[7] 1.81562861 -0.74177999 -0.28352208 -1.28133196

Note that the command lines are not output.

For more information, enter ?sink at the R prompt or use the “Help”

tab in R Studio.

Chapter 10 exporting from r

191

 The Function write()
The function write() can write atomic objects to a file, and it writes

in tabular text format. The objects are entered as a single vector, for

example, as a collection of objects collected using c(). If the data

are in a matrix or array, write() reads the data down the columns or

dimensions of the matrix or array, but writes across rows in the two-

dimensional output.

The first argument is x, the vector to be exported. The argument is

usually any object of an atomic mode. (See the help page for cat() for more

information on acceptable modes.)

Other than the vector to be exported, there are four more arguments

to write(). The first is the character argument file, which tells write()

where to write the output. The argument can be a connection or a location

on a hard drive, relative to the workspace or absolute. If “” is given for file,

the output is sent to the console or to the value of stdout() if stdout() is not

the console. The default value is “data.” The object can also be piped to a

command in R.

The second argument is ncolumns. The argument ncolumns can be

logical, numeric, or complex, and if it is not an integer, it is coerced to an

integer. The argument gives the number of columns for the exported table.

By default, the argument takes on the value if(is.character(x)) 1 else 5.

So, if the data is of mode character, the output matrix has one column by

default. Otherwise, the output matrix has five columns by default.

The input file does not have to be of a length divisible by ncolumns.

In other words, the last row does not have to be complete.

The third argument, append, is a logical argument. If set to TRUE, the

output is appended to the file. If set to FALSE, the file is overwritten.

The default value is FALSE.

The fourth argument, sep, is a character string that gives the characters

to be placed between the elements of the output matrix. The default value

is a white space.

Chapter 10 exporting from r

192

An example follows:

> x=1:4

> y=5:8

> z=rbind(x, y)

> w=paste("a", 1:3, sep="")

> b = rep(" ", 4)

> write(c(x, y, b, z, b, w), file="", ncol=4, sep=" + ")

1 + 2 + 3 + 4

5 + 6 + 7 + 8

 + + +

1 + 5 + 2 + 6

3 + 7 + 4 + 8

 + + +

a1 + a2 + a3

Note that when entered separately, x and y each exports as a row.

When x and y are bound together into a matrix using rbind(), write()

goes down the two columns to read and writes the result across the rows.

Also note that there are four columns as specified by ncol and that there

are only three elements in the last row.

You can find more information about write() by entering ?write at the

R prompt or by using the “Help” tab in R Studio.

 The Function write.matrix()
The function write.matrix() is in the package MASS, which is not

a package that is loaded by default. MASS can be loaded by entering

library(MASS) at the R prompt since MASS is installed by default when R

is installed. According to the CRAN writers, write.matrix() is much faster

than write.table() for large data sets, so the function may be preferable if

the matrix or data.frame is large and the data frame is appropriate.

Chapter 10 exporting from r

193

The function has the arguments x, file, sep, and blocksize. The

argument x is the object to be exported and should be a matrix or a data.

frame containing objects of just one mode. If modes are mixed, some

strange things can happen. The function only exports in one mode, which

is why write.matrix() is faster than write.table().

The argument file gives the location to which to write. For addresses

on the hard drive, the argument is of mode character and is either relative

to the workspace or absolute. The default value is “”, which directs output

to the console or to the value of stdout() if it is not the console.

The argument sep is a character string that gives the separator between

the outputted elements. The argument defaults to white space.

The argument blocksize has no default value and does not need to

be entered. If entered, the argument tells write.matrix() the size of

the block of data to be transferred at one time. According to the CRAN

writers, the value should be as large as possible for the amount of

memory available.

Here is an example. The object mat is a matrix, the object mat.df is

a data frame of one mode, the object mat.df.x is a data frame of mixed

numeric and character modes. The default value of file is used as follows,

so the outputs goes to the console.

> mat = matrix(1:4, 2, 2, dimnames=list(c("r1", "r2"),

c("c1", "c2")))

> mat

 c1 c2

r1 1 3

r2 2 4

> write.matrix(mat)

c1 c2

1 3

2 4

Chapter 10 exporting from r

194

> mat.df=data.frame(mat)

> mat.df

 c1 c2

r1 1 3

r2 2 4

> write.matrix(mat.df)

c1 c2

1 3

2 4

> mat.df.x = data.frame(mat, c("art", "birth"))

> mat.df.x

 c1 c2 c..art....birth..

r1 1 3 art

r2 2 4 birth

> write.matrix(mat.df.x)

c1 c2 c..art....birth..

1 3 art

2 4 birth

More about write.matrix() can be found by entering ?MASS::write.
matrix at the R prompt or by loading MASS in R Studio, then using the

“Help” tab.

 The Functions write.table() and write.csv()
The functions write.table() and write.csv() also export matrices

and data frames in tabular text format. The two are essentially the same

function but with different defaults. All of the defaults for write.table()

can be changed. For write.csv(), the defaults append, col.names, sep,

dec, and qmethod cannot be changed. (As with read.csv() there is also

Chapter 10 exporting from r

195

the function write.csv2() for European users. The function write.csv2()

uses a semicolon for the separator and a comma for the decimal point, but

otherwise is the same as write.csv().)

The functions take the arguments x, file, append, quote, sep, eol, na,

dec, row.names, col.names, qmethod, and fileEncoding. The argument

x is the object to be exported and must be an object that can be coerced to

a data frame.

The argument file gives the location to which to export. For external

files, file is of mode character and the address is either relative to the

workspace or absolute. If file equals “”, then the functions export to the

console or to stdout() if stdout() is not the console. The value of file is “” by

default.

The argument append is a logical argument. If append is TRUE,

then the file is appended with the new data frame. If FALSE, the file is

overwritten. The default value is FALSE.

The argument quote is either logical or a numeric vector of column

numbers and gives rules for placing quotes around elements. The default

value is TRUE. If set to FALSE, nothing is quoted.

The argument sep is a character argument and gives the separator

to be used between the elements of the exported data. The separator is

entered within quotes. For write.table(), the default value is a white

space. For write.csv(), the value is a comma.

The argument eol is an argument of mode character and gives the

end of line delineator. By default, eol is equal to “\n”. The correct value for

eol varies with operating system. Use “\n” for Windows, “\r” for OS X, and

“\r\n” for Linux.

The argument na is also a character argument and gives the string to

be output where data is missing. The default value is “NA.”

The argument dec is another character argument and gives the

character to be used as the decimal point. By default, dec equals “.”.

Chapter 10 exporting from r

196

The argument row.names is either a logical value or a character vector

of row names. Note that write.table() and write.csv() treat the row

names differently if row.names is set to TRUE or to a character vector

of names. If a column of row names is in the exported data frame, the

function write.table() does not create a blank character string for the

name of the row name column, while write.csv() does. If row.names is

equal to FALSE, there is no difference between the two with regard to row

names since no row names are exported.

If no row names are given, row names are not present in the data.

frame (for example, if a matrix without row names is entered for x) and

row.names is TRUE, then the rows are given names, starting with “1”

and incrementing by one with each row. By default, row.names equals

TRUE.

The argument col.names is either logical or a character vector of

column names. For write.table(), if col.names is set equal to TRUE,

either the column names are taken from the data frame or, if no names

are present in the data frame, column names are created starting with

“V1” and incrementing the integer by one for each new column. If column

names are supplied, the column names are set equal to the supplied

names.

As noted previously, for write.table(), by default, no column name

value is given for the column of row names if the row name column

exists in the exported file. However, if col.names is set equal to NA, then

columns are treated the same as for col.names set equal to TRUE except

that a blank character string is added for the row name column. If row.
names equals FALSE, then setting col.names equal to NA gives an error.

If col.names is set equal to FALSE, no column names are assigned in the

exported file.

For write.csv(), the default for col.names depends on the value of

row.names. The default cannot be changed. If row.names equals TRUE,

col.names is set to NA. Otherwise, col.names is set equal to TRUE.

Chapter 10 exporting from r

197

In either case, column names are given by either the names in the data

frame or, if there are no column names in the data frame, names starting

with “V1” and with the integer incrementing by one for each new column.

The next argument is qmethod and can take on the values “escape”

or “double”. The default value is “escape”. The argument gives instructions

for double quoted values. See the help page for write.table() for more

information. The last argument is fileEncoding, which need not be

assigned, but if assigned tell R how to encode the output, for example in

UTF-8 format.

Here are some examples. The object mat.df.x is a data frame with row

and column names. The object mat is a matrix that does not have row or

column names.

> mat.df.x

 c1 c2 C3

r1 1 3 art

r2 2 4 birth

> write.table(mat.df.x)

"c1" "c2" "C3"

"r1" 1 3 "art"

"r2" 2 4 "birth"

> write.table(mat.df.x, sep=",")

"c1","c2","C3"

"r1",1,3,"art"

"r2",2,4,"birth"

> write.table(mat.df.x, sep=",", col.names=NA)

"","c1","c2","C3"

"r1",1,3,"art"

"r2",2,4,"birth"

Chapter 10 exporting from r

198

> write.table(mat.df.x, col.names=F)

"r1" 1 3 "art"

"r2" 2 4 "birth"

> write.table(mat.df.x, row.names=F, col.names=F)

1 3 "art"

2 4 "birth"

> write.table(mat.df.x, sep=",", row.names=F)

"c1","c2","C3"

1,3,"art"

2,4,"birth"

> write.csv(mat.df.x)

"","c1","c2","C3"

"r1",1,3,"art"

"r2",2,4,"birth"

> write.csv(mat.df.x, row.names=F)

"c1","c2","C3"

1,3,"art"

2,4,"birth"

> mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> write.table(mat)

"V1" "V2"

"1" 1 3

"2" 2 4

Chapter 10 exporting from r

199

> write.table(mat, row.names=c("r1", "r2"), col.names=NA)

"" "V1" "V2"

"r1" 1 3

"r2" 2 4

> write.table(mat, row.names=F, col.names=F)

1 3

2 4

> write.csv(mat)

"","V1","V2"

"1",1,3

"2",2,4

> write.csv(mat, row.names=c("r1", "r2"))

"","V1","V2"

"r1",1,3

"r2",2,4

To access the help page for write.table() and write.csv(), enter

?write.table at the R prompt or use the “Help” tab in R Studio.

 The Function save()
The function save() saves R objects, by default in binary form, to a file. The

saved objects can be loaded into a workspace using load() or sometimes

data() or attached to a workspace using attach(). See the previous chapter

for information about load(), data(), and attach().

The function save() takes the arguments … , list, file, ascii, version,

envir, compress, compression_level, eval.promises, and precheck. The

names of the objects to be saved can be entered in two ways: symbols or

character strings containing the object names separated by commas or a

Chapter 10 exporting from r

200

character vector containing the names of the objects (or both).

The argument file gives the location where the objects are to be saved.

For example:

> save("ClintonCorpus", "mat", list=c("junk", "trst"),

file="save.bin")

> load("save.bin", ver=T)

Loading objects:

 junk

 trst

 ClintonCorpus

 mat

> class(junk)

[1] "list"

> class(trst)

[1] "asS4"

attr(,"package")

[1] ".GlobalEnv"

> class(ClintonCorpus)

[1] "SimpleCorpus" "Corpus"

> class(mat)

[1] "data.frame"

Here, four objects are saved to the file “save.bin,” which is then

reloaded. The four objects belong to different classes.

Any types of objects can be saved using save(). When loaded, the

objects are loaded into the workspace under their original names and are

not displayed at the console.

Chapter 10 exporting from r

201

The argument “ascii” tells save() to write an ASCII file if given the value

TRUE. If given FALSE—the default—a binary file is created. For NA, see the

help page for save(). From the help page for save(), the argument “version”

tells save() which version of the workspace format to use. The choices are

NULL—for the current default format and 1, 2, or 3 for the default formats

in R 0.99.0 to R 1.3.1, R 1.4.0, and from R 3.5.0 on respectively.

The argument “envir” tells save() the environment in which to

find the object(s). The mode of the argument is environment, and the

default value is “parent.frame().” The argument “compress” indicates

what kind of compression to do or if to do compression. If FALSE, no

compression is done. If TRUE, “gzip” compression is done. Setting the

value equal to “gzip,” “bzip2,” or “xz” tells save() to use that method

of compression. The default value is “isTRUE(!ascii),” so if “ascii” is

FALSE, compression is done by default. According to the help page for

save(), this argument is ignored if the file argument is a connection or if

the workspace format is version 1.

The argument “compression_level” gives the level of compression if

“compress” is not equal to FALSE. If the compression method is “gzip,” the

default level is “6.” For “bzip2” or “xz,” the default level is “9.”

The argument “precheck” is a logical argument that when set equal

to TRUE, the default tells save() to check to see if an object exists before

opening a file or connection. If set equal to FALSE, the file or connection

is opened even if nothing is saved. For version 1, “precheck” does not

apply—according to the help page for save().

The argument “safe” is a logical argument that, when set equal to

TRUE, tells save() to open a temporary file when saving a workspace in

case the save fails. TRUE is the default value but causes the save to use

more disk space during the saving. If set equal to FALSE, the workspace

can be lost if the save fails.

For more information about save(), enter ?save at the R prompt or use

the “Help” tab in R Studio.

Chapter 10 exporting from r

202

 The Function saveRDS()
The function saveRDS() saves a single object to a file. Objects saved with

saveRDS() can be loaded with readRDS()—see the previous chapter.

The arguments to saveRDS() are “object,” “file,” “ascii,” “compress,” and

“refhook.”

The argument “object” is set equal to the name of the object, which

is not quoted. The argument “file” is the name to be assigned to the file,

which is a character string or a connection. The argument “ascii” behaves

the same as for save().

The next argument is “version.” From the help page for saveRDS(),

setting “version” equal to NULL tells the function to use the default

value—currently 2—since R 1.4.0. For R 3.5.0 and later, the legal options for

“version” are 2 and 3.

The argument compress behaves like in save(). See the help page for

information about the argument “refhook.”

For more information, enter ?saveRDS at the R prompt or use the

“Help” tab in R Studio.

 Matching Importing and Exporting
Functions
Many of the importing and exporting functions are paired with each other.

For example: source() with dump(); save() with load(), data() or attach();

dput() with dget(); and write.table() with read.table(). Table 10-1 gives

importing and exporting functions based on pairing.

Chapter 10 exporting from r

203

 Other Exporting Functions
Like the functions that read in data, there are a variety of functions that

write data. The CRAN page on the package rio for importing and exporting

data lists many of the packages and what they do. The CRAN vignette

can be found at https://cran.r-project.org/web/packages/rio/

vignettes/rio.html.

For SPSS, SAS, and Stata, the function write.foreign(), which can be

found in the package foreign, can import and export in the correct format.

The function write.foreign() also exports in some other formats. Other

exporting functions can also be found in the package foreign.

Table 10-1. Paired Import and Export Functions

Importing Exporting Use

source() dump() Create and source external files in a text format

scan() read textual data as a vector

sink() Write textual output from commands

write() Write textual data in tabular form

write.matrix() Write a matrix or data frame using one atomic

mode, maintains the original structure

read.table()

read.csv()

write.table()

write.csv()

read and write a matrix or data frame in textual

form, maintains the original structure

load()

data()

attach()

save() read and write objects, mainly in binary format,

used to transfer objects

readrDS() saverDS() read and write an object, mainly in binary

format, used to transfer an object

dget() dput() of historical interest, uses the text format

Chapter 10 exporting from r

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://cran.r-project.org/web/packages/rio/vignettes/rio.html

204

The package foreign is one of the packages installed by default.

To see the contents of foreign, enter help(package=foreign) at the R

prompt or use the “Packages” tab in R Studio. Click on “foreign” in the

list of packages. To load foreign, enter library(foreign) at the R prompt

or check the box to the left of “foreign” under the “Packages” tab in R

Studio.

A newer package to read and write SPSS, SAS, and Stata files is

the package haven. The package is not installed by default, unlike the

package foreign, so haven must be installed before you can load it.

After installing haven, you can see the contents of haven by entering

help(package=haven) at the R prompt or by using the “Packages” tab

in R Studio. Click on “haven” in the list of packages. To load haven, enter

library(haven) at the R prompt or check the box to the left of “haven”

under the “Packages” tab in R Studio.

For Excel, there is a package, xlsx, specifically for working with

Excel. The package xlsx is not a default package in R, so it must be

installed. After xlsx is installed, information about xlsx can be found

by entering help(package=xlsx) at the R prompt. For older Excel files,

the package readxl has functions to write and read the Excel files. Like

the package xlsx, readxl is not installed by default, so must be installed

before it is loaded.

Chapter 10 exporting from r

	Chapter 10: Exporting from R
	The Function dump()
	The Function sink()
	The Function write()
	The Function write.matrix()
	The Functions write.table() and write.csv()
	The Function save()
	The Function saveRDS()
	Matching Importing and Exporting Functions
	Other Exporting Functions

