
R Quick Syntax
Reference

A Pocket Guide to the Language,
APIs and Library
—
Second Edition
—
Margot Tollefson

R Quick Syntax
Reference

A Pocket Guide to the
Language, APIs and Library

Second Edition

Margot Tollefson

R Quick Syntax Reference: A Pocket Guide to the Language, APIs and
Library

ISBN-13 (pbk): 978-1-4842-4404-3		 ISBN-13 (electronic): 978-1-4842-4405-0
https://doi.org/10.1007/978-1-4842-4405-0

Copyright © 2019 by Margot Tollefson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484244043.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Margot Tollefson
Stratford, IA, USA

https://doi.org/10.1007/978-1-4842-4405-0

iii

Table of Contents

Part I: R Basics���1

Chapter 1: Downloading R and Setting Up a File System����������������������3

Downloading R and R Studio��3

Windows���4

Mac OS X��5

Linux���5

Installing and Updating Packages��6

Windows���7

Mac OS X��8

Updating R���9

Windows���9

Mac OS X��9

Using R in Separate Folders���10

Windows���10

Mac OS X��11

Linux���11

Projects in R Studio��11

About the Author��xi

Acknowledgments��xiii

Introduction���xv

iv

Chapter 2: The R Prompt and the R Studio Windows���������������������������13

The Three Parts of R: Objects, Operators, and Assignments��������������������������������13

The R Prompt���14

An Example of a Calculation��15

The Four R Studio Windows���16

The First Sub-window��16

The Second Sub-window���17

The Third Sub-window���17

The Fourth Sub-window���18

Chapter 3: Assignments and Operators���21

Types of Assignment��21

Example of Three Types of Assignment��23

Listing and Removing Objects in R and R Studio���24

Operators��26

Logical Operators and Functions��26

Arithmetic Operators��29

Matrix Operators and Functions���30

Relational Operators���32

Subscripting Operators���33

Odds and Ends���38

Part II: Kinds of Objects��41

Chapter 4: Modes and Types of Objects���43

Overview of the Modes and Types���43

Commonly Used Modes��44

Atomic, Recursive, and Language Modes���45

Table of ContentsTable of Contents

v

Some Functions for Atomic Modes (Types)��45

The NULL Mode��46

The Logical Mode���46

The Numeric Mode and the Integer or Double Types��������������������������������������48

The Complex Mode���51

The Raw Mode��54

The Character Mode���57

The Common Recursive and Language Modes��61

The List Mode���61

The Function Mode and the Closure, Special, and Built-In Types�������������������63

The Call Mode���64

The Expression Mode���66

The Environment Mode��68

The S4 Mode��71

Chapter 5: Classes of Objects��73

Some Basics on Classes��73

Vectors���74

Some Common S3 Classes��77

The Matrix Class: matrix���77

The Array Class: array���83

The Time Series Classes: ts and mts��84

The Factor Classes: factor and ordered��87

The Data Frame Class: data.frame���90

The Date and Time Classes: Date, POSIXct, POSIXlt, and difftime������������������95

The Formula Class: formula���98

The S4 Class��103

Names for Vectors, Matrices, Arrays, and Lists��106

Table of ContentsTable of Contents

vi

Part III: Functions���111

Chapter 6: Packaged Functions���113

The Libraries��113

Default Packages and Primitive Functions��115

Using the Help Pages���115

Identifier���116

Title���116

Description���116

Usage��117

Arguments��117

Details��118

Value���118

Some Other Optional Sections��119

References���119

See Also��119

Examples��120

Chapter 7: User-Created Functions, Scripts, and S4 Methods�����������121

Scripts��122

The Structure of a Function���123

How to Enter a Function into R��125

Using an Editor���126

Inline Entry���129

An Outside Editor: dget( ) and Copying and Pasting��������������������������������������130

In R Studio��131

Chapter 8: How to Use a Script or Function���������������������������������������139

Calling a Function��139

Arguments���141

Table of ContentsTable of Contents

vii

The Output from a Function���143

Example of a Script: Mining Twitter���146

Part IV: I/O and Manipulating Objects��������������������������������������151

Chapter 9: Importing and Creating Data��153

Reading Data into R and R Studio, Including R Datasets�����������������������������������154

The Function scan( )��155

The Functions read.table( ) and read.csv( )���158

The Functions load( ), attach( ), and data( )���163

The Function readRDS( )���166

Other Read Functions to Import Files���167

Reading Data Using R Studio��167

R Datasets��170

Probability Distributions and the Function sample( )��171

Probability Distributions���171

The Function sample( )���174

Manually Entering Data and Generating Data with Patterns������������������������������175

The Function c( )���176

The Functions seq( ) and rep( )��179

Combinatorics and Grid Expansion���183

The Function Paste���185

Chapter 10: Exporting from R��187

The Function dump( )���188

The Function sink( )��189

The Function write( )��191

The Function write.matrix( )���192

The Functions write.table( ) and write.csv( )���194

The Function save( )���199

Table of ContentsTable of Contents

viii

The Function saveRDS( )��202

Matching Importing and Exporting Functions��202

Other Exporting Functions���203

Chapter 11: Descriptive Functions and Manipulating Objects�����������205

Descriptive Functions��206

The Function dim( )���206

The Functions nrow( ), ncol( ), NROW( ), and NCOL( )�������������������������������������207

The Function length( )���208

The Functions nchar( ) and nzchar( )���212

Manipulating Objects���215

The Functions cbind( ) and rbind( )��215

The Apply Functions���217

The Function eapply( )��225

The sweep( ) and scale( ) Functions��226

The Functions aggregate( ), table( ), tabulate( ), and ftable( )������������������������230

Some Character String Functions���240

Part V: Flow control��251

Chapter 12: Flow Control���253

Brackets “{}” and the Semicolon “;”��253

The “if” and “if/else” Control Statements��254

The “while” Control Statement��255

The “for” Control Statement��256

The “repeat” Control Statement���257

The Statements “break” and “next”��258

Nesting���258

Table of ContentsTable of Contents

ix

Chapter 13: Examples of Flow Control��259

Nested ‘for’ Loops with an ‘if/else’ Statement���259

Using Indices��260

A ‘while’ Loop���261

Using Indices��262

Nested ‘for’ Loops��263

Using Indices��264

A ‘for’ Loop, ‘if’ Statement, and ‘next’ Statement��266

Using Indices��267

A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’ Statement, and a ‘break’ Statement�����������268

Using Indices��272

Chapter 14: The Functions ifelse() and switch()��������������������������������277

The Function ifelse( )��277

The Function switch( )��282

Part VI: Some Common Functions, Packages and
Techniques��285

Chapter 15: Some Common Functions��287

The Function options( )���287

The Functions round( ), signif( ), and noquote( )��291

The Function round( )��291

The Function signif( )��292

The Function noquote( )��292

The Function cat( )��293

The Functions format( ), print( ), plot( ), and summary( )�������������������������������������295

The Function format( )��296

The Function print( )��297

Table of ContentsTable of Contents

x

The Function plot( )���298

The Function summary( )��298

Some Functions for Models: anova( ), coef( ), effects( ), residuals( ),
fitted( ), vcov( ), confint( ), and predict( )��299

Chapter 16: The Packages base, stats, and graphics������������������������303

The base Package��304

Reserved Words��304

Built-In Constants���304

Trigonometric and Hyperbolic Functions��305

Beta- and Gamma-Related Functions��308

Miscellaneous Mathematical Functions���310

Complex Numbers��316

Matrices, Arrays, and Data Frames���317

A Few Other Functions and Some Comments��324

The stats Package��328

Basic Descriptive Statistics��328

Some Functions That Do Tests��333

Some Modeling Functions in stats���338

Clustering Algorithms and Other Multivariate Techniques����������������������������341

The graphics Package��343

Chapter 17: Tricks of the Trade��347

Value Substitution: NA, NaN, Inf, and –Inf��347

If Statements and Logical Vectors���351

Lists and the Functions list( )and c( )��352

Getting Data out of Functions��353

Recursive Functions���354

Some Final Comments���356

�Index��357

Table of ContentsTable of Contents

xi

About the Author

Margot Tollefson is a retired consulting

statistician residing in the tiny town of

Stratford in the corn and soybean fields

of north-central Iowa. She started using

the S-Plus language in the early 1990s and

happily switched to R about ten years ago.

Margot enjoys writing her own functions

in R—to do plots and simulations as well

as to implement custom modeling and

use published statistical methods. She earned her graduate degrees in

statistics from Iowa State University in Ames, Iowa.

xiii

Acknowledgments

I would like to thank the writers of the R Development Core Team at

the Comprehensive R Archive Network. Without their help pages, this

book could not have been written. I would also like to thank the editors

at Apress, Steve Anglin and Matthew Moodie, for guiding my progress;

and my husband, Clay Conard, for his support and patience over the

last few months.

xv

Introduction

R is a programming language that provides the user with powerful data

and graphical analysis options. R is both flexible and broad. From tasks

as simple as adding two numbers to tasks as complex as fitting an ARIMA

model, R is capable of crunching the numbers.

The purpose of R Quick Syntax Reference is to provide the reader with

the basic syntax of R. Often an R user gets stuck if, for example, a mode

is incorrect or a logical test does not work. Because the full spectrum of

R packages uses the same fairly simple syntax, R Quick Syntax Reference

provides the reader with the necessary information to get unstuck and run

and create all R functions and code.

The R language is based on the language S, a high-level programming

language developed mainly by Richard A. Becker, John M. Chambers,

and Allan R. Wilks in the AT&T laboratories in 1975. The R version of

the language first became available in 1993 and was developed by Ross

Ihaka and Robert Gentleman at the University of Auckland, New Zealand.

R is open source and is a GNU project. As open-source code, the R

language is free and constantly being improved. The R Foundation for

Statistical Computing maintains the program, and the R Development

Core Team currently does the development. Packages for specific analysis

techniques are added often. At the present time, there are over 10,000

packages available in R. Most users will use only a few packages. We

discuss using R at the command prompt in R Quick Syntax Reference.

We also cover the integrated development environment (IDE), R Studio.

RStudio was founded by J.J. Allaire and became available in a beta version

in 2011 and as a regular version in 2017. The Chief Scientist at R Studio is

Hadley Wickham.

http://en.wikipedia.org/wiki/Ross_Ihaka#Ross Ihaka
http://en.wikipedia.org/wiki/Ross_Ihaka#Ross Ihaka
http://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)#Robert Gentleman (statistician)
http://en.wikipedia.org/wiki/University_of_Auckland#University of Auckland
https://en.wikipedia.org/wiki/Joseph_J._Allaire#Joseph J. Allaire

xvi

This book is about the S3 and S4 versions of R—S3 and S4 standing

for the third and fourth versions of S, the commercial program on which

R is based. The two versions run concurrently. Even though version S4 is

quite different from S3, it is necessary to know the syntax of S3 in order

to use S4. And S3 remains a powerful, flexible language in its own right—

hence, this book.

Part I covers the basics of R. Chapter 1 describes how to download and

install R and R Studio for the Windows, Mac, and Linux operating systems

and also how to download packages. Because keeping separate folders for

different projects is very useful, Chapter 1 gives instructions for running R

and R Studio from different folders. It also gives the methods for updating

the R and R Studio programs themselves.

Chapter 2 introduces the R prompt, gives a sample calculation, and

describes the three parts of R—objects, operators, and assignments. We also

describe the four windows of R Studio and what R scripts are. Chapter 3

covers the assignment of names to objects, demonstrates the ls() function

that allows you to see the objects in a folder, and discusses the operators in

R and R Studio.

Part II describes R objects. Objects have modes, classes, and types.

Chapter 4 lists the modes and types and describes some of them. It also

shows how modes and types differ. Chapter 5 discusses some of the classes

and how classes differ between S3 and S4 R.

Part III covers functions. Chapter 6 starts with a list of the 30 default

packages in R and follows with instructions on how to use functions.

Because packaged functions all have help pages, the chapter provides

instructions on how to access and use the help page of a function in

both R and R studio. Chapter 7 describes how to create a function.

Chapter 8 explains how to run a function—with a detailed approach to

the argument list.

IntroductionIntroduction

xvii

Part IV focuses on importing and exporting data in R and R Studio and

methods for creating and manipulating some kinds of object. Chapter 9

describes several methods for importing data, gives a number of functions

to create data objects, and discusses some random-number generators. It

gives an example of data mining Twitter. Chapter 10 gives several methods

for exporting from R and R Studio. A table of matched importing and

exporting functions is included. Chapter 11 gives a number of functions

that operate on objects—to bind objects together, to find descriptive

qualities of an object, to assign qualities to an object, to aggregate an

object in some way, or to apply functions to portions of an object.

Part V covers flow conditioning commands and functions. Chapter 12

presents the flow conditioning statements, and Chapter 13 supplies

examples of them. Chapter 14 describes the two flow conditioning

functions and gives examples.

Part VI discusses functions related to formatting and outputting

output, looks at the results from packaged functions and at what some

of the default packages contain, and provides some tips for using R and

R Studio. Chapter 15 gives some rounding functions and some functions

for outputting from a function. It also gives some functions that vary

according to the class of the object on which the function operates and

that summarize the results of the function, either textually or visually.

Chapter 16 takes a look at the contents of the packages base, stats,

and graphics and glances at the datasets, grDevices, methods, and

utils packages. Chapter 17 describes how to deal with some common

frustrations in R. More information is given on outputting from functions,

plus an example of a recursive function and some advice on using R.

IntroductionIntroduction

R Basics

PART I

3© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_1

CHAPTER 1

Downloading R
and Setting Up a
File System
The first step in using R and R Studio is to download the two programs

from the Internet. R must be downloaded first. R and R Studio can be

downloaded for the modern operating systems Windows, Mac OS X, and

Linux. In this chapter, you will learn how to download and install R plus

the 30 basic packages and R Studio, as well as how to install other packages

and update R. Updating packages in R Studio is covered in Chapter 2. You

will also learn how to use R in individual folders within the file system of

the computer.

�Downloading R and R Studio
You can download R from the web site of the Comprehensive R Archive

Network (CRAN). CRAN updates the installation process from time to

time; however, the instructions in this book are for the current steps at time

of publication. CRAN provides instructions on the web site if the process

has changed.

4

Begin the download process by going to the web site https://

www.r-project.org/. At the web site, click on the link to choose the

CRAN mirror. Choose a mirror near you. Links to the current versions for

Windows, Mac OS X, and Linux systems are listed at the top of the window

that opens when the mirror link is clicked. Select the appropriate version.

�Windows
On the page that opens with the Windows link, select the link base, which

is the top link. In the next window, click on the download link for the given

Windows version. (Currently, the link is Download R 3.5.1 for Windows.)

If R has not already been installed on the computer, the downloader will

create a default folder in the Documents folder to hold R files. Unless there

is a reason to change the folder name or location, accept the default. R will

begin to download.

When the program finishes downloading, find the downloaded file

in your file system. Downloads are put in C://Users/User_folder/

Downloads, where User_folder is the folder of the user, unless another

folder was specified earlier in the installation. Click on the downloaded

file, which is an .exe installation file (currently R-3.5.1-win.exe.)

A question about the safety of the program may pop up. The installation

program is safe, so run the program.

The installation wizard will open. The installation process steps

through several pages. On the first page, read the GNU GENERAL PUBLIC

LICENSE; then, click on Next. For the rest of the pages, accepting the

defaults on each page is fine, so click on Next on each page.

At the page of additional choices, click on Next, and the program

will begin to install. When the installation is finished, click on Finish to

complete the installation. The program and the 30 base packages are now

installed. An icon for R will be on the computer desktop and, for Windows

10, in the start menu. To run R, click on the icon.

Chapter 1 Downloading R and Setting Up a File System

https://www.r-project.org/
https://www.r-project.org/

5

�Mac OS X
On the page that opens from the Mac OS X link, first read the section under

R for Mac OS X. The R project gives the advice to check the files for viruses

and other problems.

Under Latest release: the package choice is the current version.

Selecting the current version (the .pkg link, currently R-3.5.1.pkg) will

download the package. When the packages have finished downloading,

open the download folder under the username in Finder.

Select the R version .pkg file in the download folder. Opening the

version will open the installer. With the installer open, click on Continue

to go to the next page of the installer. Read the message from CRAN; then

click Continue. Again, read the message from CRAN; then click Continue.

On the next page, you will find the license. After reading the license,

click Agree to download R. On the next page, select either of the choices;

then click on Continue. (The Continue button will not light up until a

choice is made.)

On the next page, select Install. The installation program will ask for a

password. After you have entered a password, the installation will begin.

When the installation is finished, click on Close. You will next have the

choice of keeping the installation or discarding it. If you keep R, R will be

in the applications folder and on the launchpad and the 30 base packages

will be loaded. Start R by opening the launchpad and selecting the R icon

or by clicking on R in the applications folder.

�Linux
At the CRAN site, CRAN provides source code for R for the Linux

distributions Debian, openSuse, and Ubuntu. The Debian and Ubuntu

distributions have been updated in 2018. The openSuse distribution dates

from 2012.

Chapter 1 Downloading R and Setting Up a File System

6

The developers state that R is available through the package

management system for most distributions of Linux. Look under GNU R.

If the command line version of R is not available using the package

management system, installing R directly from the terminal is an option.

At http://cran.r-project.org/bin/linux/distribution, where

distribution is debian, suse, or ubuntu, you can find instructions for

installing R from the terminal command prompt.

The link to Red Hat at the CRAN site goes nowhere.

�R Studio

At the R Studio site, R studio provides free source code for R Studio, as

well as versions that cost. R Studio is available for Windows, Mac OS X,

and the Linux distributions Debian, Red Hat, openSUSE, Ubuntu, and

Fedora. To download the free version of R Studio, go to https://www.

rstudio.com/products/rstudio/download/ and go to the heading,

Installers for Supported Platforms. Click on the link for your operating

system and download and run the installer program. Follow the

directions of the installer for your operating system. The instructions are

similar to those for R.

On the Mac OS X system, the file RStudio-1.1.456.dmg in Filer must

be opened each time the computer is booted up in order to have R Studio

available in the system.

For Linux, R Studio may be available in the package manager. Search

under R Studio.

�Installing and Updating Packages
When initially installed, by default R comes with 30 packages. Often the

user will want to use the power of the many other packages available in

R. Installing and updating a package is straightforward.

Chapter 1 Downloading R and Setting Up a File System

http://cran.r-project.org/bin/linux/distribution
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

7

Using the command line in R, for any of the operating systems, if the

name of a package is known, typing

install.packages("package name")

at the R command prompt, where package name is the name of the

package, will install the package. To update packages, typing

update.packages()

at the R command prompt will find those packages with updates and

update the packages. To see which packages are already installed on the

computer, enter

installed.packages()

at the R prompt.

If the name of the package is not known (also for known names),

using the installer for the operating systems Windows and Mac OS X

is easy. For Linux, instructions can be found at the CRAN web site,

http://cran.r-project.org. Here you can find instructions for

Windows and Mac OS X.

Installing and updating packages in R Studio is much easier. How will

be given in Chapter 2, when the R Studio windows are described.

�Windows
To install a package in Windows not using the command line, start by

opening R. On the menu bar at the top of the screen, select Packages.

A menu will drop down. Select Install package(s)…. Either the CRAN

mirror window or the Packages window will come up. If the CRAN mirror

window comes up, select a close mirror and click OK, which will bring up

the Packages window.

Chapter 1 Downloading R and Setting Up a File System

http://cran.r-project.org

8

The Packages window consists of a list of all of the available packages.

Scroll down the list to find the package(s) you wish to install and select

the package(s). Click on OK to begin the installation. As the installation

proceeds, the steps of the installation will scroll on the R console. When

the R prompt returns to the screen, the installation is complete.

To update packages not using the command line, select Packages on

the menu bar and then select Update packages…. The Packages window

to be updated will open, and it will have a list of all of the installed packages

with updates. If there are none, the window will be empty. Choose the

packages for updating and click on the OK button. If a question about

using a personal library pops up, choose Yes. The packages will update.

When the R prompt returns to the screen, the updates are complete.

�Mac OS X
To install packages in Mac OS X, start by opening R. On the drop-down

menu bar at the top of the screen, select Packages & Data. From the drop-

down menu, select Package Installer, which brings up the R Package

Installer. Click on Get List for a full list of packages or use the Package
Search option to search for a package. Under either option, select the

package(s) to be installed from the list.

Below the list of packages are choices for the location to put the

packages. Hover over the list of location options for more information.

Usually, one of the first two options will be correct. To the right of the

location options are the Install Selected and Update All buttons. Before

clicking on Install Selected, check the Install Dependencies box to make

sure that any necessary packages are installed. Click on Install Selected to

start the installation process. The selected packages will install.

To update packages, select Packages & Data from the menu bar at the

top of the screen. From the drop-down menu, select Package Installer,

which opens up the R Package Installer. At the bottom right of the Installer,

select Update All and follow instructions.

Chapter 1 Downloading R and Setting Up a File System

9

�Updating R
Since CRAN does not provide automatic updates for R, you must update

it manually. The processes for Windows and Mac OS X are easy. For the

Linux distributions Debian, Suse, and Ubuntu, instructions can be found

in the ReadMe files at http://cran.r-project/bin/linux/distribution,

where distribution is either Debian, Suse, or Ubuntu.

�Windows
The first step in updating R in Windows is to open R and install the

package installr if the package has not already been installed. Next, use

the function library to provide access to installr. Type

library(installr)

at the command prompt and press enter. Then, to update R, type

updateR()

at the command prompt and press enter. R will either do an update or give

a message that the program is up-to-date and return False.

Once installr has been installed, installr does not need to be installed

again. The library must be accessed every time R is run.

�Mac OS X
The first step in updating R in Mac OS X is to open R and select R from

the drop-down menu bar at the top of the page. To run the updater,

select Check for R Updates in the drop-down menu under R and follow

instructions.

Chapter 1 Downloading R and Setting Up a File System

http://cran.r-project/bin/linux/distribution

10

�Using R in Separate Folders
Separate workspace images for R can be maintained in separate folders

for Windows, Mac OS X, and Linux. This property of R is very handy

for using R on separate projects. While the process of opening R in a

given folder varies by the operating system, once in a folder, saving the

workspace image is straightforward. When closing an R session, the

program asks if the user would like to save the workspace image. If Yes is

selected, then .RData and .Rhistory (.Rapp.history for Mac OS X) files

are saved in the current directory. (For Mac OS X, the files are hidden,

but the files are there.)

The .RData file contains the objects that were in R at the beginning

of the session plus any objects that were added during the session minus

any objects that were erased during the session. The .Rhistory (.Rapp.

history for Mac OS X) file contains the history of the lines input at the R

console. By default, all lines up to the last 512 lines are saved in Windows.

For Mac OS X and Linux, the default is 250 lines. Access to the lines carries

over from session to session if the history is saved.

�Windows
To initially set up R in a folder, open R at the desktop. (Click on the R icon

on the desktop or click on R in the list of programs or, in Windows 10, the

Start menu.) Select File on the menu bar at the top of the screen. From the

drop-down menu, select Change dir…. The Browse to folder window will

open. Navigate to the folder of choice.

When exiting R, save the workspace image and R will create .RData

and .Rhistory files in the folder. The .RData file will have a blue R icon

associated with the file. In the future, going to the folder and clicking on

the R icon will open R, and the history and objects saved within the folder

will be present.

Chapter 1 Downloading R and Setting Up a File System

11

As a note for the initial setup, any objects in the desktop R will still

be in R when the folder is changed. You can easily remove the objects.

Type rm(list=ls()) at the command prompt to remove all objects from

the folder.

�Mac OS X
For working within different folders in Mac OS X, there are two ways:

dragging and dropping or using the terminal. For R in the Applications

menu of Finder, if R is not open, dragging the folder in the Documents

menu of Finder to the R application will open R in the folder using the

.RData and .Rapp.history for that folder. (An image of the R application

can be put in the Documents folder to make the dragging easier.)

To open R using the terminal, open the terminal (located under

Applications/Utilities in Finder.) and type

open -a R folder

where folder is the location of the folder. Be sure to include the Documents

folder in the name and to quote the name. R will open in the folder using

the .RData and .Rapp.history files for that folder.

�Linux
To open R in a given folder in Linux, change the directory to the folder and

type R at the command prompt.

�Projects in R Studio
Another way to work with separate projects is by opening new projects in R

Studio. Each project has its own name and can be created using the menus

in R Studio. The project can be accessed by clicking on the name in the

directory where the project is saved. The extension for a project is .Rproj.

Chapter 1 Downloading R and Setting Up a File System

13© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_2

CHAPTER 2

The R Prompt and the
R Studio Windows
This chapter covers the R prompt and the R Studio windows. It starts with

descriptions of the three parts of R: objects, operators, and assignments.

It continues with a discussion of working with the R prompt, followed by

an example of doing a calculation at the R prompt. Afterward, it describes

the four R Studio windows.

In Windows and macOS, R runs in GUIs: RGUI in Windows and R.app

GUI in macOS. Both RGUI and R.app GUI open an R Console and run from

the R prompt in the R Console. GUIs are available in Linux, but this book

only covers running R from the terminal window R prompt. R in R Studio,

for the three operating systems, is covered.

�The Three Parts of R: Objects, Operators,
and Assignments
There are basically three parts of R: objects, operators, and assignments.

Objects contain information and can be, among

other things, data, functions, or the results of

functions. Objects always have a name. Users create

14

some objects, which are automatically saved on

creation. Other objects are constants, functions, and

datasets contained in the packages of R.

Operators manipulate objects, numbers, strings,

and/or logical variables. For example, entering

a = 2*b at the R prompt would multiply b by two

and assign the result to a. The objects a and b

are numeric objects, and * is the multiplication

operator. The equal sign makes an assignment of

two times b to a. Operators are a type of function.

Assignments assign an expression to an object.

Expressions can consist of objects, numbers, logical

variables, strings, lists, other expressions, and/or

functions, which are operated on by operators.

Expressions can be evaluated from the R prompt, instead of being

evaluated and assigned to an object. (The other places where assignments

and operations occur are within functions and within flow control.)

�The R Prompt
All of R flows from the R prompt. R is essentially the running of functions

and the doing of calculations. Functions and calculations can be run at

the R prompt with or without an assignment to an object. Functions and

calculations can also be run as part of another function, but everything

starts at the R prompt.

Using R from the R prompt may seem daunting at first. R opens with

some writing, and then a lonely little greater-than sign (>), which is the R

prompt. The opening writing gives the R version number and some other

information about the program, including the fact that the program runs

with no warranty.

Chapter 2 The R Prompt and the R Studio Windows

15

R remembers every line that is entered into the program, up to a set

number of lines. A very handy side of R is that the up and down arrows

on the keyboard will step through the lines. You only need to enter an

expression once. Corrections to expressions are easy to do without typing

the entire expression again.

To close R, enter q() at the R prompt or, for Windows and macOS, close

the window. R will close with the option to save the workspace. In Linux,

if the terminal window is closed without using q(), the current workspace

will be lost.

The workspace consists of any objects present in R at the time the

program is closed and the current history. Closing R without saving the

workspace will result in reverting to the workspace present at the time the

R session started.

�An Example of a Calculation
The simplest use of R is as a calculator. The following calculation was done

from the R prompt. There is no assignment in the calculation, so the result

is returned on the screen.

> (1 + 3 + 7)/5

[1] 2.2

>

The first line gives the expression to be evaluated and the second line

gives the result. The [1] in the second line is a label that tells the user that

the result is the first value returned from the expression. Many expressions

return more than one value. At the third line, the R prompt comes back

and R is ready for another task.

Chapter 2 The R Prompt and the R Studio Windows

16

�The Four R Studio Windows
On opening the program for the first time, R Studio presents you three

sub-windows. On the left side of the main R Studio window is a smaller single

window. On the right are two vertically aligned smaller windows. Across the

top, above the three windows, are two menus that provide several options for

working with R Studio. Both menus extend the full width of the main window.

In Windows and Linux, the upper menu is the main R Studio window,

while in macOS, the top menu is on the main macOS menu bar. In macOS, if R

Studio is expanded to the full screen, you must hover over the top of the page

to see the upper menu. One nice thing about R Studio is that, when you type, it

provides autocompletion for object names. But, R Studio can be slow to load.

The upper menu has the buttons “File”, “Edit”, “Code”, “View”, “Plots”,

“Session”, “Build”, “Debug”, “Profile”, “Tools”, and “Help”. Each button opens

a dropdown menu. The dropdown menus are self-explanatory.

The lower menu contains icons for (from left to right): opening new

things (an R Script, an R Notebook, an R Markdown document, a Shiny Web

App, a text file, an C++ file, an R Sweave document, an R HTML document,

an R presentation, or an R documentation file), opening a new project,

opening a file on the computer, saving the contents of the Source window

(see the section on the fourth window), saving the contents under all of

the Source window tabs, printing the contents of the active sub-window,

searching for and opening files in the working directory (it searches for the

letters from left to right and does not appear to work on macOS), adjusting

the look and positions of the sub-windows, and adding add-ins.

�The First Sub-window
The sub-window on the left opens to the standard R console, under a tab

labeled “console.” Commands are entered at the R prompt in the same way

as in R. To the right of the console tab is a tab labeled “terminal,” which

gives access to the terminal of the computer.

Chapter 2 The R Prompt and the R Studio Windows

17

�The Second Sub-window
The upper window on the right contains the tabs “Environment”, “History”,

and “Connections”. Under the “Environment” tab, R Studio lists the objects

in the workspace, classified as “Data”, “Values”, and “Functions”. “Data”

contains the data frame and matrix objects (to be defined later). “Values”

contains objects that are not data frames, matrices, or user-defined

functions. “Functions” contains user-defined functions. Various properties

of the objects are given in the window, such as the type of the object and

the number of dimensions of the object.

Under the “History” tab are the lines of code that have been entered

at the console. Only a set number of lines are retained. The code can be

highlighted and moved to the console. A search function is available to

search the history.

Under the “Connections” tab is a list of connections. Initially, there are

none. Connections are links to files, URLs, pipes, sockets, or other types of

data outside R. Connections provide for the interactive reading of outside

data and are used in data mining. Clicking on the “new connections”

button under the “Connections” tab gives a list of the possible connections

that R Studio sees as available. (Connections can also be opened from the

R prompt.)

�The Third Sub-window
The lower right window has the tabs “Files”, “Plots”, “Packages”, “Help”, and

“Viewer”. Under the Files tab is a list of the files and folders in the working

directory of the computer. Options exist to add a folder, delete a file,

rename a file, copy or move a file, and to got to or set a working a directory.

Under the Plots tab are any plots that have been created. You can

use the left and right arrow icons to move through the plots. Plots can be

exported to image or pdf files.

Chapter 2 The R Prompt and the R Studio Windows

18

The Packages tab gives a list of installed packages. Clicking on the

Install link opens a search box to find packages to install. Entering

characters into the search box brings up all packages beginning with the

characters, making it easy to find the package to be installed. Clicking on

the Update link gives a list of those installed packages with updates and

offers a choice to update them. Checking the box to the left of a package

in the list of packages opens the library in the console window, and

unchecking the box detaches the library.

The Help tab provides a link to the help pages. Entering characters

into the search box on the right side of the window menu bar brings up

available functions that begin with those characters. The search is case

sensitive. Only those functions whose libraries have been loaded are

available. There is a search box for searching within the help page on the

line below.

The Viewer tab is for viewing content on the local web. The R Studio

website has helpful information on using Viewer.

�The Fourth Sub-window
The fourth window is the “Source” window. The Source window contains

source code or data sets and, when open, is on the upper left side of the

main window. The Source window opens when a data object or function is

clicked in the Environment window. The data object or function appears in

the Source window for inspection but is not editable. The Source window

also opens if you open an external file for editing and(or) running, or a

blank page for new code.

If a source file (usually with an R extension) is in the working

directory, the file can be loaded into the Source window. A file with an

R extension is called a script and, when loaded, is editable and runable.

A text file with no R extension is not runnable but is editable and can be

saved. Also, new code can be entered into a blank window opened from

the lower main menu.

Chapter 2 The R Prompt and the R Studio Windows

19

Several pages can be opened in the Source window, but only one is

displayed at a given time. Each open page in the window has a tab above

the window containing the name of the source file or a label “Untitledn”,

where “n” is a number indicating which untitled object is under the tab.

The source files are displayed by clicking on the tab and closed by clicking

on the small “x” n the right side of the tab.

The menu above the sub-window is part of the tab for the object in

the window. If the object is a script, the menu offers the following options

(from left to right): arrows to go back to the previous tab or forward to the

next one, an icon to open the window in a stand-alone window, an icon

to save the current object as an R script, a checkbox to source (run) the

script when saving, an icon to use specialized editing tools, an icon to

run highlighted text, an icon to rerun text, and an icon to source (run) the

entire contents of the window.

If the object is a text file, the tab menu contains (from left to right) the

following: arrows to move among the tabs, an icon to open the text in a

new window, an icon to save the document to the working directory, a

spellchecker icon, and a find and replace icon.

If the object is a dataset, the menu contains (from left to right): arrows

to move through the tabs, an icon to open the window in a new standalone

window, a filter option to filter the columns by range values, and, on the far

right, a search box to search the data.

If the object is a function, the menu contains (from left to right) the

following: arrows to move through the tabs, an icon to open the window in

a standalone window, an icon to print the function, a search function, an

icon for code tools or an icon to open help functions for highlighted text,

and, on the right side of the menu, run and re-run icons for running all or a

selected part of the function.

Chapter 2 The R Prompt and the R Studio Windows

21© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_3

CHAPTER 3

Assignments and
Operators
R works with objects. Objects can include vectors, matrices, functions,

the results from a function, or a number of other kinds of objects. Objects

make working with information easier. This chapter covers assigning

names to objects, listing and removing objects, and object operations.

Part II (Chapters 4 and 5) covers the possible forms of objects.

Some objects come with the packages in R. Other objects are user

created. User-created objects have names that are assigned by the user.

Knowing how to create, list, and remove user-created objects is basic to R.

In R Studio, the user-created objects are listed in the upper right window

under the Environment tab.

�Types of Assignment
Names in R must begin with a letter or a period, cannot have breaks, and

can contain letters, numeric digits, periods, and underscores. The names

that begin with a period are hidden and are used by R for startup defaults,

the random seed, and other such things. The indexing symbols [], [[]], $,

and @ have special meanings with regard to R names, as explained in the

“Subscripting Operators” section of this chapter.

22

R originally used five types of assignment, four of which are still

current. The four types are

a <- b,

which assigns b to a,

a -> b,

which assigns a to b,

a <<- b,

which assigns b to a and can be used inside a function to bring the

assignment up to the workspace level, and

a ->> b,

which assigns a to b and brings an assignment in a function up to the

workspace level.

The developers at R have also included the more standard

a = b,

which assigns b to a. Using the equal sign for assignment is considered

poor practice in R, but we have never had a problem using it. While any

of the types of assignment can be used, the use of the equal sign is easiest

to type.

When R makes an assignment, the name is automatically saved in the

workspace. Note that no warning is given if the assigned name already

exists. The assignment will overwrite the object in the workspace with the

assigned object.

R is interesting in that a function of an object can be assigned to the

original object. For example,

a = 2*a,

where the object a is replaced by the original a times two.

Chapter 3 Assignments and Operators

23

For more information about assignment operators, enter

??“Assignment Operators” at the R prompt or in R Studio use the Help tab

in the lower right window.

�Example of Three Types of Assignment
An example of some of the types of assignment follows. Three objects are

created: abc, bcd, and cde. You create the objects by assigning sequences

to the objects. The sequences are generated when you put a colon between

two integers, which creates a sequence of integers starting with the first

integer and ending with the second integer.

To show that the objects actually contain the assigned sequence, the

contents of the three objects are displayed as follows. Note that entering

the name of an object at the R prompt will always display the contents of

the object. The [1] refers to the first element of the objects.

> abc = 1:10

> abc

 [1] 1 2 3 4 5 6 7 8 9 10

> bcd <- 11:20

> bcd

 [1] 11 12 13 14 15 16 17 18 19 20

> 21:30 -> cde

> cde

 [1] 21 22 23 24 25 26 27 28 29 30

As you can see, the assignment operators <- and = give the same result.

The assignment operator -> works in the opposite direction.

Chapter 3 Assignments and Operators

24

�Listing and Removing Objects in R
and R Studio
To see the objects present in the workspace, it is easier to use R Studio

rather than R - look under the Environment tab in the right upper window.

R has the function ls() to list the workspace objects.

Entering ls() at the R prompt for the preceding example gives

> ls()

[1] "abc" "bcd" "cde"

>,

which are the three objects created previously.

Although functions are covered in detail in Part III, one interesting

property of functions to note here is they can have arguments that the

user enters. Two of the possible arguments for ls() are pattern and

all.names.

The first argument is entered as pattern = “a string ”, where “a string”

is any part of an object name. For example, in the preceding workspace,

searching for those objects containing bc in the name gives abc and bcd,

that is

> ls(pattern="bc")

[1] "abc" "bcd"

The argument pattern can be reduced to pat, as in ls(pat=“bc”). The

shortening of arguments of functions is a property of R. All arguments in R

can be reduced to the shortest unique form, but they are usually given in

the full form in manuals.

The second argument is all.names, which can equal TRUE or FALSE.

If set to TRUE, the all.names argument instructs R to list all of the files

in the workspace, including those that begin with a period. FALSE is the

Chapter 3 Assignments and Operators

25

default value and does not need to be entered. For the previous example

workspace, setting all.names equal to TRUE gives

> ls(all.n=T)

[1] ".commander.done" ".First" ".Random.seed" ".Traceback"

[5] "abc" "bcd" "cde"

.

The [1] refers to “.commander.done” since “.commander.done” is the

first element of the vector, and the [5] refers to “abc” since “abc” is the fifth

element of the vector. (In R, if the elements of a vector have not been given

a name, the convention for listing the elements is to show the index of the

first element in each line of the lines of listed elements.)

The function rm() can be used to remove objects from the workspace.

For rm(), the names of the objects to be deleted are separated by commas.

For example,

rm(a, b, c)

will remove objects a, b, and c. To remove all objects,

rm(list=ls())

works. You remove S4 classes by using removeClass().

In R Studio, objects can be removed under the grid option for listing

the environmental objects. To the right side of the menu under the

Environment tab is an icon that says List. Click on the icon and choose

Grid instead of List. In the resulting grid, check the boxes to the left of

the objects to be removed. Then, click on the little broom in the middle

of the menu. You will be asked if you really want to delete the checked

objects.

For more information about ls() or rm(), enter ?ls or ?rm at the R

prompt or, in R Studio use the Help tab in the lower right window.

Chapter 3 Assignments and Operators

26

�Operators
Operators operate on objects. Operators can be logical, arithmetic, matrix,

relational, or subscripting, or they may have a special meaning. Each of the

types of operators is described here.

For operators, elementwise refers to performing the operation on each

element of an object or paired elements for two objects. If two objects do

not have the same dimensions, the operator will often cycle the smaller

object against the larger object. The cycling proceeds through each

dimension. For example, for matrices, the first dimension is the rows and

the second dimension is the columns, so the cycling is down rows starting

with the first column.

The letters NA are used to indicate that an element is missing data.

Most operators have rules for dealing with missing data and may return an

NA if data is missing.

CRAN gives a help page of information about operation precedence.

Enter ??“Operator Syntax and Precedence” at the R prompt to see the

page or use the Help tab in R Studio.

�Logical Operators and Functions
Logical operators and functions return the values TRUE, FALSE, or NA,

where NA refers to a missing value. The logical operators are the not

operator, two or operators, and two and operators. The functions xor(),

isTRUE(), isFALSE(), any(), and all() (which are functions that operate

on logical objects) also return logical values. For logical operators, if the

two objects do not have the same dimensions, the number of elements

in the larger object must be a multiple of the number of elements in the

smaller object for cycling to occur. The logical operators and five logical

functions are listed in Table 3-1.

Chapter 3 Assignments and Operators

27

The logical operators operate on objects that are logical, numeric, or

raw. When a numeric object is coerced to logical, all of the nonzero values

are set to TRUE, and the zero values are set to FALSE. For raw vectors, the

operators are applied bitwise.

The negation operator changes TRUE to FALSE and FALSE to TRUE in

a logical object. An NA remains an NA.

Table 3-1.  The Logical Operators and Functions

Operator Operation Description

! not negation operator—e.g., !a

| or elementwise or operator—e.g., a|b

|| Or or operator, just evaluates the first elements in the

objects—e.g., a||b

& and elementwise and operator—e.g., a&b

&& And and operator, just evaluates the first elements in

the objects—e.g., a&&b

xor( ) exclusive or exclusive or function—e.g., xor(a,b)

isTRUE( ) logical test returns TRUE if the argument contains only one

value and the value is true, otherwise returns

FALSE—e.g., isTRUE(a)

isFALSE( ) logical test returns TRUE if the argument contains only one

value and the value is false, otherwise returns

FALSE—e.g., isFALSE(a),

any( ) logical test returns TRUE if TRUE is present in a logical

object— e.g., any(a)

all( ) logical test returns TRUE if TRUE is the only value in a logical

object— e.g., all(a)

Chapter 3 Assignments and Operators

28

The operator | compares the two objects elementwise and, for each

pair of elements, returns TRUE if TRUE is present, FALSE if no TRUE or

NA is present, and NA if any NA is present. The operator || compares the

first element of the first object to the first element of the second object and

returns TRUE if both elements are TRUE, FALSE if both are FALSE and NA

if either element is NA.

The operator & compares two objects elementwise and, for each pair

of elements, returns TRUE if both elements are TRUE, FALSE if FALSE is

present, and NA if both elements are NA. The operator && compares the

first element of the first object to the first element of the second object

and returns TRUE if the first elements are both TRUE, FALSE if FALSE is

present, and NA if both elements are NA.

The xor() function compares objects elementwise and returns TRUE

if the paired elements are different and FALSE if the paired elements are

the same, unless an NA is present. If an NA is present, the test returns NA.

For a logical vector or a vector that can be coerced to logical, the

function any() will return TRUE if any of the elements are TRUE, FALSE if

no TRUE or NA is present, and NA if no TRUE is present but an NA is.

For a logical vector or a vector that can be coerced to logical, the

function all() will return TRUE if all of the elements are TRUE, otherwise

FALSE if a FALSE is present and NA if not.

The functions isTRUE() and isFALSE() only evaluate single element

objects or expressions. If more than one element is present, the function

will give an error. The function isTRUE() returns TRUE if the value is TRUE

and FALSE if otherwise. The function isFALSE() returns TRUE if the value

is FALSE and FALSE otherwise.

For more information about the logical operators and the functions

isTRUE() and isFALSE(), the CRAN help pages for logical operators can

be found by entering ??“logical operators” at the R prompt or by using the

Help tab in R Studio. The help page for any() and all() can be accessed

by entering ?any or ?all at the R prompt or by using the Help tab in R

Studio.

Chapter 3 Assignments and Operators

29

�Arithmetic Operators
Arithmetic operators can have numeric operands or operands that can be

coerced to numeric. For example, for logical objects, TRUE coerces to 1

and FALSE coerces to 0. For some types of objects, specific operators have

a different meaning, but those types of objects will not be covered in this

chapter.

Arithmetic expressions are evaluated elementwise. If the number of

elements is not the same between the objects in an expression, the smaller

object cycles through the larger one until the end of the larger one. The

numbers of elements in the larger object do not have to be a multiple of

the smaller object for cycling. Expressions are evaluated from left to right,

under the rules of precedence.

The arithmetic operators are the standard * for multiplication, / for

division, + for addition, and - for subtraction. The exponentiation symbol

is ^. The operator %% gives the modulus of the first argument with respect

to the second argument. The operator %/% performs integer division.

Expressions can be grouped using parentheses, for example (a+b)/c.

Table 3-2 lists the arithmetic operators.

Table 3-2.  Arithmetic Operators

Operator Operation Example

* multiplication a*b

/ division a/b

+ addition a+b

- subtraction a-b

^ exponentiation a^b

%% modulus a%%b

%/% integer division a%/%b

Chapter 3 Assignments and Operators

30

For more information, the CRAN help pages for arithmetic operators

can be found by entering ??“arithmetic operators” at the R prompt or by

using the Help tab in R Studio. (At the time of writing, this help page was

not available using the above but can be brought up by using ?“+” at the R

prompt or + in the R Studio Help tab search box.)

�Matrix Operators and Functions
R provides operators and functions to manipulate matrices. A list of some

matrix operators and functions can be found in Table 3-3.

The matrix multiplication operator is %*%. R will return an error if the

two matrices do not conform.

For two arrays (arrays include vectors and matrices), %o%, or outer(),

gives the outer product of the arrays.

For two arrays, %x%, or kronecker(), gives the kronecker product of the

arrays.

To transpose a matrix, use the function t(), for example, t(a).

To get the cross product of one matrix with another (or the

original matrix), use either the function crossprod() or the function

tcrossprod(). If a and b are conforming matrices, then

crossprod(a) = t(a)%*%a,

tcrossprod(a) = a%*%t(a),

crossprod(a,b) = t(a)%*%b,

tcrossprod(a,b) = a%*%t(b).

To find the inverse of a nonsingular square matrix, use the function

solve(), for example, solve(a). The function solve() also can solve the

linear equation

Xa=b,

Chapter 3 Assignments and Operators

31

for a, where X is a nonsingular square matrix and b has the same number

of rows as X. The syntax is solve(X,b).

To find the determinant of a square matrix use det(X), where X is a

square matrix.

To create a diagonal matrix or obtain the diagonal of a matrix, use the

function diag(). If a is a vector, diag(a) will return a diagonal matrix with

the diagonal equal to the a. For example:

> a = 1:2

> a

[1] 1 2

Table 3-3.  Matrix Operators and Functions

Operator / Function Operation Example

%*% matrix multiplication a%*%b

%o% or outer( ) outer product of two

vectors, matrices, or arrays

a%*%b, outer(a,b)

%x% or kronecker( ) kronecker product of a

matrix (or array)

a%x%b, kronecker(a,b)

t( ) transpose of a matrix t(a)

crossprod( ) or

tcrossprod( )
crossproduct of a matrix

or two matrices

crossprod(a) or crossprod(a,b) or

tcrossprod(a) or tcrossprod(a,b)

diag( ) diagonal of a matrix or a

diagonal matrix

diag(a), a is a matrix or diag(a),

a is a vector

solve( ) inverse of a matrix or

solution to Xa=b
solve(a), solve(X,b)

det( ) determinant of a square

matrix

det(a)

Chapter 3 Assignments and Operators

32

> diag(a)

 [,1] [,2]

[1,] 1 0

[2,] 0 2

If a is a matrix, diag(a) will return the diagonal elements of the matrix,

even if the matrix is not square. For example:

> a = matrix(1:6,2,3)

> a

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> diag(a)

[1] 1 4

For more information, the CRAN help page for matrix multiplication

can be found by entering ??“matrix multiplication” at the R prompt. For

the six functions, entering ?name, where name is the name of the function,

brings up the help page for the function. You can also use the R Studio

Help tab. Enter ?“%” at the R prompt or % in The R Studio Help tab to see

the % operators.

�Relational Operators
Relational operators are used in logical tests. The six relational operators

are == for equal to, != for not equal to, < for less than, <= for less than or

equal to, > for greater than, and >= for greater than or equal to. The list of

logical operators can be found in Table 3-4.

Chapter 3 Assignments and Operators

33

Note that the equal to relational operator is ==, not =. A common

mistake is to enter = for == in a logical expression. R will return an error

for =.

As with arithmetic operators, logical expressions can be grouped using

parentheses. For example,

((a>0 & b>0) & (a<5 & b<5))

is a logical expression and can be assigned a name.

The CRAN help page for relational operators can be found by entering

??“relational operators” at the R prompt or == in the Help tab search box

in R Studio.

�Subscripting Operators
Many objects in R have more than one element. Subscripting is used to

access specific elements of an object. Vectors, matrices, arrays, lists, and

slots can be subscripted. In S3, single square brackets ([]), double square

brackets ([[]]), and dollar signs ($) are used. For S4 objects, the at symbol

(@) is used for subscripting. None are used elsewhere.

Table 3-4.  Logical Operators

Operator Operation Example

== equals a==9

!= not equal a!=9

> greater than a>9

>= greater than or equal to a>=9

< less than a<9

<= less than or equal to a<=9

Chapter 3 Assignments and Operators

34

�Vectors

For vectors, except list vectors, using single square brackets is usually

appropriate. Double square brackets can also be used, but they can

only access a single element of the vector at a time. Within single square

brackets, there may be a logical expression or a set of indices. For example:

a[3:7] or a[a>3]

The first expression results in the third through seventh elements of a.

The second expression results in those elements of a that are greater than

three.

If indices are given a negative sign, those indices are not included. For

example,

a[-2:-6]

would return the object a with elements two through six removed.

An object can be subsetted in one set of square brackets and subsetted

again in another set of square brackets. For example:

a[1:10][b>3],

where the length of a is greater than or equal to ten, and b is of length

ten. The expression would return those elements of the first ten elements

of a for which the corresponding element of b is greater than three. The

subsetting can be continued with more sets of square brackets. Each set

will operate on the result of all previous subsetting.

�Matrices

For matrices, both kinds of square brackets are also used. For single square

brackets, the selection instructions for the rows are separated from the

selection instructions for the columns by a comma. Or, by not using the

comma, the matrix is treated like a vector, going down the rows starting

Chapter 3 Assignments and Operators

35

with the first column. Like the subsetting for vectors, for single square

brackets, indices or a logical expression may be used to subset a matrix. To

reference all rows of a matrix, put nothing to the left of the comma inside

the brackets. To reference all columns of a matrix, put nothing to the right

of the comma inside the brackets.

Double square brackets return just one value. If subsetted with a

row and a column index separated by a comma, the value in the cell is

returned. If just one index value is entered within double square brackets,

R treats the matrix as a vector—going down rows—and returns the indexed

element of the vector.

An example of matrix subscripting is

a[a[,1]>3 , 1:4],

where a is a matrix with at least four columns. The expression would return

those rows of the first four columns for which the elements of the first

column are bigger than three. Notice that the a[,1] consists of one column

and contains all of the rows.

A matrix can also be subsetted using a matrix with two columns.

The two-column matrix would contain row and column indices and

would pick out individual cells in the matrix based on the indices in each

row. For example, if b is a matrix with [1 2] in the first row and [2 3] in

the second row, then a[b] would return the two elements a[1,2] and a[2,3].

�Arrays

Arrays are like matrices but can have more than two dimensions. Note

that a matrix is an array with two dimensions and a vector is an array with

one dimension. Subscripting arrays with more than two dimensions is just

like subscripting matrices except that, for single square brackets, there are

more commas in the brackets. An example is

a[1:3,,2:7],

Chapter 3 Assignments and Operators

36

where a is a three-dimensional array with at least three levels in the first

dimension and at least seven levels in the third dimension. The result of

the subsetting would be all of the elements in the second dimension for

which the index in the first dimension is one, two, or three and the indices

in the third dimension are between two and seven inclusive.

Like matrices, arrays can be subsetted using a matrix that has the same

number of columns as the number of dimensions of the array, the rows

of which would consist of indices for individual cells of the array. Single

square brackets with no comma and double square brackets work the

same as with vectors and matrices.

�Lists

Lists are collections of R objects (and a kind of vector). The objects can

be any type of object and do not have to be of the same type within a list.

The objects are indexed in the list. To look at objects in a list, single square

brackets are used. For example,

blist[1:5]

would return the first five objects in blist and would also be a list.

To access an object in a list, double square brackets or a dollar sign are

required. For example,

blist[[2]]

would return the second object in the list blist and

blist$b1

would return the object in blist with name b1. Objects in a list can only be

accessed one at a time.

If a list is created from objects that do not have names associated with

the objects, names will be given to the objects when the list is created. The

names can be changed at any time.

Chapter 3 Assignments and Operators

37

Data frames are a special kind of list. Data frames have the same

number of elements for every object in the list and are defined as a data.

frame. Each object in the list is of one atomic mode (to be described in

Chapter 4), though the different objects need not be of the same mode.

Data frames can be subsetted like a matrix or like a list. If subsetted like a

matrix, the resulting object will be a list. If subsetted like a list, the resulting

object will be raw, complex, numeric, logical, or character depending on

whether the list object is raw, logical, numeric, complex, or character.

Individual cells in a data.frame can be accessed using indices in the

double square brackets. For example,

adframe[[1,2]]

would return the element in the first row and second column of the data

frame adframe.

Many functions return output in lists. Dollar sign subscripting is

usually used to access the output, although square bracket indexing can be

used. For example, for the linear model function lm(), entering

lm(y~x)$resid

or

lm(y~x)[[2]]

will return the residuals from a simple linear regression of y on x, as will

the two sets of statements

a=lm(y~x)

a$resid

or

a=lm(y~x)

a[[2]]

Chapter 3 Assignments and Operators

38

�Other Types

Other types of object can be subsetted, for example, factors and slots.

Objects that are factors are vectors and can be subsetted like vectors. Slots

are S4 objects and are subsetted using @. Slots should never be subsetted

except in a method statement, which will be described in the chapter on

functions. More information about subsetting both can be found by entering

??“Extract or Replace” at the R prompt or by using the R Studio Help tab.

�Odds and Ends
Two main object systems—S3 and S4—are used in R. Slots are part of S4.

S3 and S4 are discussed throughout the book and in the pdf at

www.r-project.org/conferences/useR-2004/Keynotes/Leisch.pdf.

Assignments can be done to subsets of an object. For example, let a be

a matrix, and let the user want to change those values in a that are greater

than 100 to 100. Then, the statement

a[a>100] = 100

will do the replacement and leave the rest of the matrix intact.

In R Studio, the help pages are easy to access and have their own

window. In R the ? and ?? operators open the help pages. For known

function names, ?name (or help(name)) will return the help page for the

function, where name is the name of the function. To search for functions

related to some techniques or methods, the operator, ?? is used. Entering

??“keywords” (or help.search(“keywords”)), where keywords consists of

keywords about the technique or method, may give a list of functions in

packages related to the topic. Sometimes, the search comes up blank. Try

again with different keywords.

The colon is used in four ways in R. Of interest here is just the use

of a single colon to define a sequence and the double colon to refer to

functions by package and name.

Chapter 3 Assignments and Operators

http://www.r-project.org/conferences/useR-2004/Keynotes/Leisch.pdf

39

If a and b are two numbers, the expression a:b will give the sequence

of integers between a rounded down to an integer and b rounded down to

an integer. Note that the number a can be larger than the number b.

The functions that come with R are all part of some package. If a

package is not loaded, a search using just the function name will return

nothing. The full name of a function is package.name::function.name,

where package.name is the name of the package and function name is the

name of the function.

For more information on colons, enter ?“:” at the R prompt or : under

the Help tab in R Studio.

The operator ~ is used in model formulas to separate the left and right

sides of a model. For more information, type ?“~” at the R prompt or

enter ~ under the Help tab in R Studio.

The symbol # is used for comments. When writing functions, anything

found to the right of a # on a line of the code is ignored.

The operator %in% returns TRUE for the values in the object to the left

of the operator that are in the object to the right of the operator and FALSE

for those that are not. The length of the result is the length of the first

object. If the first object has more than one dimension, it is converted to a

vector to get the result.

The CRAN help pages for subsetting are found by entering ??“Extract
or Replace” or by using the R Studio Help tab.

Chapter 3 Assignments and Operators

Kinds of Objects

PART II

43© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_4

CHAPTER 4

Modes and Types
of Objects
R objects exist within an object system. R has three object systems of which

this book covers two: S3 and S4. S4 is a newer version of R and contains

a new way to approach R programming. S3 is an earlier version. Both

versions run concurrently. S4 offers powerful new methods, but to use

those methods a solid knowledge of S3 is necessary. This book includes S4

syntax but focuses on S3 syntax.

�Overview of the Modes and Types
Modes describe the kind of information an object contains and are an

S3-level classification. The mode of an object can be found by using the

function mode(). The S4 level classification is by type and can be found

using the function typeof(). Currently, R objects fall into one of the

following modes: NULL, logical, numeric, complex, raw, character, list,

expression, name, function, pairlist, language, char, ..., environment,

externalptr, weakref, bytecode, promise, any, and S4. Since R is

constantly changing, the list of modes may change. With a few exceptions,

the types and the modes are the same, and most of the modes can be

found under the list of types. The list of types and modes can be found at

44

the help page for typeof(). Most of the instances for which mode() and

typeof() give different results can be found at the mode() help page and

are the following: the function typeof() returns either integer or double

where mode() returns numeric, typeof() returns closure, special, or

built-in where mode() returns function, typeof() returns symbol where

mode() returns name, and typeof() returns { or call where mode() returns

language.

�Commonly Used Modes
Most users will only use some of the modes. The commonly used modes

are NULL, logical, numeric, complex, raw, character, list, function,

call, expression, environment, and S4. The mode NULL is the mode of

an otherwise modeless empty object. Objects of mode logical contain

elements that can take on the values TRUE, FALSE, or NA, where NA

represents a missing value. Objects of mode numeric can take on integer or

real numeric values or NAs. Objects of mode complex can take on complex

numeric values or NAs. Objects of mode raw are made up of bytes. NAs are

converted to 00, with a warning.

Objects of mode character are made up of character strings or NAs.

The elements of character objects are quoted, except for NAs. Objects of

mode list are lists of other objects, which can be of any mode. Objects

of mode function are functions. Objects of mode call are functions and

arguments. Objects of mode expression are collections of objects such

as calls and names. Objects of mode environment are R environments,

such as packages. Objects of mode S4 are those S4 objects that are complex

(referring to the structure of the object, not to complex numbers). S4 uses

more specialized structures than S3.

The sources for the preceding information are the help pages for

mode() and typeof().

Chapter 4 Modes and Types of Objects

45

�Atomic, Recursive, and Language Modes
Modes come in four kinds: atomic, recursive, language, and S4. The

atomic modes are NULL, logical, numeric, complex, raw, and character.

Atomic refers to the elements of the objects being atomlike. For the atomic

modes, all of the elements within the object are of the same atomic mode.

Recursive modes are collections of objects and can contain objects of

different modes. Two types of recursive modes are list and function.

Most objects that are not atomic are recursive. The language modes are

name, call, and expression. More information about the kinds of modes

can be found under the help pages for the functions that test for the kind

of mode of an object: is.atomic(), is.recursive(), and is.language().

The S4 mode refers to S4 data objects.

�Some Functions for Atomic Modes (Types)
For atomic objects, the mode and type are the same, except for mode

numeric (types integer and double). We refer to mode here. Each of

the atomic modes, except NULL, has three functions associated with the

mode. If we let name be the name of the mode, the three functions are the

function named for the mode, name(); an as.name() function; and an

is.name() function. The name() function creates a vector of the length

given by the argument or arguments, if the argument(s) are of the correct

mode and permissible value(s).

The as.name() function attempts to coerce the argument of the

function to the named mode. If the coercion is not possible, the as.name()

function returns a vector of NAs or gives an error. Note that if the argument

is a matrix or array, a vector of the elements of the matrix or array will be

returned, where the conversion to a vector proceeds down each dimension

of the matrix or array in turn (in the case of a matrix, going down the rows

of the first column, then the second column, and so on).

Chapter 4 Modes and Types of Objects

46

The is.name() function tests whether the argument of the function is

of the named mode and returns TRUE or FALSE, depending on whether

the argument is or is not.

�The NULL Mode
NULL is a reserved object in R and is also a mode. While there is no

function NULL() in R, as.null() and is.null() are functions. With any

object used as an argument or with no argument, as.null() returns just

one NULL. The function is.null() returns TRUE if the argument is equal

to NULL; FALSE otherwise. For example:

> a0=1:3

> as.null(a0)

NULL

> is.null(a0)

[1] FALSE

> is.null(as.null(a0))

[1] TRUE

�The Logical Mode
The function logical() with no argument or with zero for an argument

returns logical(0), which is the logical empty set and has length zero.

The function logical() with an integer greater than zero as an argument

returns a vector of FALSEs of length equal to the integer. If the argument

is a single double precision element, the element is rounded down, and a

vector of FALSEs of the length equal to the resulting integer is created.

If the argument is a numeric object other than a single number, the function

Chapter 4 Modes and Types of Objects

47

gives an error. If the argument is of mode NULL, logical, character,

complex, raw, or a nonatomic mode, then logical() gives an error. For

example:

> logical()

logical(0)

> logical(0)

logical(0)

> logical(2)

[1] FALSE FALSE

> logical(2.7)

[1] FALSE FALSE

> logical(1, 2)

Error in logical(1, 2) : unused argument (2)

The function as.logical() takes two arguments, x and “…”. The

argument “…” is supplied for the use of other functions in the call. The

argument x is a single object. The function as.logical() coerces the

argument x to logical, if possible, and returns a vector containing TRUEs,

FALSEs, and/or NAs. If there is no argument or the argument is NULL,

as.logical() returns logical(0), a logical empty set of length zero. If the

argument is of mode numeric, zeroes will be returned as FALSEs and all

other numbers will be returned as TRUEs.

If the argument is a complex object, the function gives FALSE for

0+0i and TRUE otherwise. If the mode is raw, 00s will return FALSE and

any other value will return TRUE. If the argument is of mode or type

character, the function returns a vector of NAs of length equal to the

length of the argument. If the argument contains NAs, for any of the modes

except raw, NAs will be returned for the elements containing NAs. For the

raw mode, there are no NAs since NAs are coerced to 00s for the mode.

Chapter 4 Modes and Types of Objects

48

For the list mode, for lists made up of elements with just a single atomic

value each, if the mode of the elements will coerce to logical, the coercion

takes place. Otherwise, list objects give an error. For any other mode or

type, as.logical() gives an error. For example:

> as.logical()

logical(0)

> as.logical(0, 2)

[1] FALSE

> as.logical(c(0, 2))

[1] FALSE TRUE

> as.logical(list(0, 2.5, 0+1i, as.raw(NA), NA, "2"))

[1] FALSE TRUE TRUE FALSE NA NA

Warning message:

out-of-range values treated as 0 in coercion to raw

> as.logical(list(c(T, T), 0:3))

Error: (list) object cannot be coerced to type 'logical'

The function is.logical() returns TRUE if the argument is a logical

object and FALSE otherwise. The result of is.logical(logical(0)) is

TRUE.

For more information about the logical mode, enter ?logical at the R

prompt or use the Help tab in R Studio.

�The Numeric Mode and the Integer or
Double Types
For the mode numeric and types integer and double, things get a bit

complicated. Originally in S, numeric objects could be integer, real, or

double (for double precision). The real option is deprecated and should

Chapter 4 Modes and Types of Objects

49

not be used. In S3, the integer and double options are both under mode

numeric. In S4, each has a separate type. The functions numeric(),

is.numeric(), and as.numeric() are covered here. The functions

integer(), as.integer(), is.integer(), double(), as.double(), and

is.double() as used in S4 behave similarly.

The function numeric() takes a single object as an argument.

If the argument equals zero or there is no argument, numeric() returns

numeric(0), an empty object of mode numeric and length zero. For a single

positive numeric value for the argument where double precision numbers

are rounded down to an integer, the function returns a vector of zeroes

of length equal to the value of the argument. For negative arguments and

arguments of modes other than numeric or of length greater than one,

R returns an error—except for a character string containing a single

positive number, which behaves like a positive number. For example:

> numeric()

numeric(0)

> numeric(3)

[1] 0 0 0

> numeric(3.7)

[1] 0 0 0

> numeric("3.7")

[1] 0 0 0

> numeric(-3)

Error in numeric(-3) : invalid 'length' argument

> numeric(3:4)

Error in numeric(3:4) : invalid 'length' argument

The function as.numeric() attempts to coerce an object to double

precision. The function takes the same two arguments as as.logical().

Chapter 4 Modes and Types of Objects

50

The argument x can be any atomic mode object. If the argument is NULL

or no argument is given, numeric(0) is returned, where numeric(0) is an

empty object of mode numeric and length zero. If the object is logical,

TRUEs are set to one and FALSEs are set to zero in the object. If the object

is numeric, the values of the elements are returned as double precision

numbers. If the object is complex, only the real parts are returned—as

double precision numbers and a warning is given. If the object is of mode

raw, as.numeric() converts the hexadecimal values to double precision.

If the object is of mode character, the function returns NAs for the

elements of the object unless an element is a number enclosed in quotes,

in which case the number is returned. A warning is given if NAs are created.

If the argument is not atomic, but a single level list with each element of

the list equal to a single element atomic object that is not of mode raw,

as.numeric() returns the elements coerced to numeric. Otherwise, R gives

an error. Elements with a value of NA are returned as NA.

For example:

> as.numeric()

numeric(0)

> as.numeric(NULL)

numeric(0)

> as.numeric(c(F, T, NA))

[1] 0 1 NA

> as.numeric(1:3 + 0.2)

[1] 1.2 2.2 3.2

> as.numeric(1:3 + 2+3i)

[1] 3 4 5

Warning message:

imaginary parts discarded in coercion

Chapter 4 Modes and Types of Objects

51

> as.numeric(c("1", "a", "3"))

[1] 1 NA 3

Warning message:

NAs introduced by coercion

> as.numeric(as.raw(2))

[1] 2

> as.numeric(list(as.raw(2)))

Error: unimplemented type 'raw' in 'asReal'

> as.numeric(list(1:3))

Error: (list) object cannot be coerced to type 'double'

> as.numeric(list(1:3)[[1]])

[1] 1 2 3

The function is.numeric() tests an object to see if the object is a

numeric object and works with objects of any mode. The value TRUE is

returned if the object is numeric and FALSE otherwise.

More information about mode numeric objects can be found by

entering ?numeric at the R prompt or by using the R Studio Help tab.

�The Complex Mode
The complex mode is the mode of complex numbers. In R complex,

numbers can be created using complex() or by simply typing in the

numbers at the R prompt. For example:

> complex(real=1:5, imaginary=6:10)

[1] 1+ 6i 2+ 7i 3+ 8i 4+ 9i 5+10i

> 1:5 + 1i*6:10

[1] 1+ 6i 2+ 7i 3+ 8i 4+ 9i 5+10i

Chapter 4 Modes and Types of Objects

52

Note that for complex numbers there is always a number with no

operator in front of the i, which lets R know that the i is the imaginary root

of minus one.

For the function complex(), if the first argument is zero or there is

no argument, the function returns complex(0), an empty set of mode

complex and length zero. If the argument is a single positive number or a

string containing a single positive number, complex() returns a vector of

complex zeroes of the length of the number rounded down to an integer.

If the argument consists of a numeric object with more than one element,

a multi-element character object with the first element containing a

positive number in quotes, or if the argument is logical either with one

element or more than one element, only the first element of the argument

is used, where for logical objects FALSE is coerced to zero and TRUE to

one. Any other argument of gives an error. For example:

> complex()

complex(0)

>

> complex(0)

complex(0)

>

> complex(3)

[1] 0+0i 0+0i 0+0i

>

> complex("3")

[1] 0+0i 0+0i 0+0i

> complex(1:3)

[1] 0+0i

> complex(c("1", "2", "3"))

[1] 0+0i

Chapter 4 Modes and Types of Objects

53

> complex(c(T, F))

[1] 0+0i

> complex(list(T, F))

Error in complex(list(T, F)) : invalid length

The function complex() also takes the arguments real and imaginary

or modulus and argument. The arguments real and imaginary or

modulus and argument can be set equal to any numeric object, any

character object containing numbers in quotes, or any logical object.

The arguments real and imaginary are the real and imaginary parts of

the numbers, while the arguments modulus and argument are the polar

coordinates of the numbers, with modulus equal to the lengths of the

numbers and argument equal to the angles above the x axis of the numbers

in radians. The objects do not have to be the same length and will cycle.

For the real and imaginary pair, either one can be omitted, and the

omitted argument will be set to zero. For the modulus and argument

pair, if modulus is omitted, the value for modulus will be set to one, and

if argument is omitted, the value for argument will be set to zero. Some

examples of complex() include the following:

> complex(real=3:5)

[1] 3+0i 4+0i 5+0i

> complex(im=3:5)

[1] 0+3i 0+4i 0+5i

> complex(mod=3:5)

[1] 3+0i 4+0i 5+0i

> complex(arg=45/180*pi)

[1] 0.7071068+0.7071068i

> complex(modulus=c(1, 2), argument=45/180*pi)

[1] 0.7071068+0.7071068i 1.4142136+1.4142136i

Chapter 4 Modes and Types of Objects

54

The function as.complex() will try to coerce an object to mode

complex. The function takes the same arguments as as.logical() and

as.numeric(). If the x can be coerced to numeric (the atomic modes

and one level lists containing single element elements of the atomic

modes—except mode raw) but is not complex, then the result is a complex

object with the coerced argument as the real part and with zeros for the

imaginary part, except for NAs, which are returned simply as NAs. For

nonatomic modes, except for single value one level lists not containing raw

modes, as.complex() returns an error. For example:

> as.complex(list(NA, F, 2, 2i, "2"))

[1] NA 0+0i 2+0i 0+2i 2+0i

> as.complex(as.raw(2))

[1] 2+0i

> as.complex(list(as.raw(2)))

Error: unimplemented type 'raw' in 'asComplex'

> as.complex(NULL)

complex(0)

The function is.complex() tests whether the argument to the function

is of mode complex. The function returns TRUE if the argument is of the

complex mode and FALSE otherwise.

More information about the complex mode can be found by entering

?complex at the R prompt or by using the Help tab in R Studio.

�The Raw Mode
The raw mode is for bytewise analysis. The numbers in a raw object

are in hexadecimal format, with each element consisting of two digits,

either of which can take on any of the values zero through nine or a

through f. Raw elements cannot have a decimal equivalent of greater

Chapter 4 Modes and Types of Objects

55

than 255 (that is, be a hexadecimal number with more than two digits)

or be negative.

The function raw() returns a vector of 00s of length specified by

the argument. If no argument or an argument of zero is given, raw()

returns raw(0), an raw empty set with length zero. If a single number or

number enclosed in quotes is entered as the argument, raw() returns a

vector of length equal to the number rounded down to an integer. If any

other kind of object is entered as the argument, raw() gives an error.

For example:

> raw(0)

raw(0)

> raw(2)

[1] 00 00

> raw("2")

[1] 00 00

> raw(1:2)

Error in raw(1:2) : invalid 'length' argument

> raw("a")

Error in raw("a") : vector size cannot be NA/NaN

In addition: Warning message:

In raw("a") : NAs introduced by coercion

The function as.raw() attempts to coerce the argument of the function

to raw. If an atomic object can be coerced to numeric, and the resulting

numbers are greater than or equal to zero and less than 256, as.raw()

returns the hexadecimal value of the coerced element. Double precision

numbers are rounded down to integers. For NULL, as.raw() returns raw(0).

For logical mode objects, FALSEs are set to 00 and TRUEs are set to 01. For

numeric mode objects, for values less zero and greater than or equal to 256,

R returns 00 and a warning. For objects of mode complex, the real portion

Chapter 4 Modes and Types of Objects

56

is treated in the same way as numeric objects and the imaginary portion is

discarded. A warning is given that the conversion to numeric has occurred.

Objects of mode character give 00 unless a string contains a valid number

within quotes. Objects of modes other than the atomic modes, except for

lists with only one level consisting of single legal values, give an error.

For example:

> as.raw(NULL)

raw(0)

> as.raw(0)

[1] 00

> as.raw(c(T, F))

[1] 01 00

> as.raw(c(1, 2) + 0.1)

[1] 01 02

> as.raw(c(1, 2) + 0.1i)

[1] 01 02

Warning message:

imaginary parts discarded in coercion

> as.raw(c("1", "2"))

[1] 01 02

> as.raw(list("1.1", "2.1"))

[1] 01 02

 > as.raw(-30)

[1] 00

Warning message:

out-of-range values treated as 0 in coercion to raw

Chapter 4 Modes and Types of Objects

57

> as.raw(c("-1", "200", "a"))

[1] 00 c8 00

Warning messages:

1: NAs introduced by coercion

2: out-of-range values treated as 0 in coercion to raw

> as.raw(list(c("-1", "200"), 1:3))

Error: (list) object cannot be coerced to type 'raw'

The function is.raw() tests if an object is of mode raw. The function

returns TRUE if the object is of mode raw and FALSE otherwise. Any object

can be used as an argument to is.raw().

More information about the mode raw can be found by entering ?raw

at the R prompt or by using the Help tab in R Studio.

�The Character Mode
Character mode objects are made up of quoted strings. According to the

help page for character(), if an object is text, a line feed is inserted at each

500 characters for objects of more than 500 characters. This does not appear

to be true. The three usual functions also apply to the character mode.

The function character() creates a vector of empty strings and only

takes mode numeric objects or mode character objects containing a

number in quotes. The object must contain only one element. The default

value is zero. If the argument is greater than or equal to one, the argument

is rounded down to an integer and the function returns a vector of “s”’s of

length equal to the integer. If the argument is less than one and greater

than minus one, the character empty set of length zero, character(0), is

returned. Other arguments return an error. For example:

> character()

character(0)

Chapter 4 Modes and Types of Objects

58

> character(-0.5)

character(0)

> character(-3)

Error in character(-3) : invalid 'length' argument

> character(3)

[1] "" "" ""

>

> character("3")

[1] "" "" ""

> character(c(3, 4))

Error in character(c(3, 4)) : invalid 'length' argument

The function as.character() tries to convert the argument x to

strings. The function has the same arguments as as.logical(),

as.numeric(), and as.complex(). If x is not given or set equal to NULL,

character(0), the empty object of mode character, is returned. For the

atomic modes, the conversion is literal, but the elements are returned

within quotes. For double precision, numbers up to 15 significant digits

are used. Unlike the other atomic modes—except NULL—the function

as.character() also returns results for some of the recursive modes.

For example:

> as.character()

character(0)

> as.character(NULL)

character(0)

> as.character(c(T, F))

[1] "TRUE" "FALSE"

> as.character(1:4)

[1] "1" "2" "3" "4"

Chapter 4 Modes and Types of Objects

59

> as.character(1:4 + 2i)

[1] "1+2i" "2+2i" "3+2i" "4+2i"

> as.character(as.raw(100))

[1] "64"

Objects of mode list are described under the next section. In this

section, lists are collections of objects that can be of any mode. The

function lm() used in the succeeding example fits a linear regression

model, with the value to the left of the tilde being the dependent variable

and the value to the right the independent variable. The output from lm()

is a list.

With an object of mode list as an argument, as.character() may

return some strange things depending on the list. The function may return

something different from what is returned if the argument is entered at the

R prompt. Examples follow:

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] 1 2 3 4

[[3]]

[1] "a" "b"

>

> as.character(a.list)

[1] "1:4" "1:4" "c(\"a\", \"b\")"

>

> a.lm

Chapter 4 Modes and Types of Objects

60

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 1 1

> as.character(a.lm)

 [1] "c(0.999999999999999, 1)"

 [2] "c(0, 0, 0)"

 [3] "c(-5.19615242270663, -1.41421356237309, 0)"

 [4] "2"

 [5] "c(2, 3, 4)"

 [6] "0:1"

 [7] �"list(qr = c(-1.73205080756888, 0.577350269189626,

0.577350269189626, -3.46410161513776, -1.41421356237309,

0.965925826289068), qraux = c(1.57735026918963,

1.25881904510252), pivot = 1:2, tol = 1e-07, rank = 2)"

 [8] "1"

 [9] "list()"

[10] "lm(formula = y ~ x)"

[11] "y ~ x"

[12] "list(y = 2:4, x = 1:3)"

Play around with different kinds of lists to see how as.character()

performs.

Objects of modes call and expression can also be coerced to

character. Objects of modes function, environment, and S4 cannot.

The function is.character() tests to see if the argument to the

function is of mode character and returns TRUE if so and FALSE

otherwise. Any object can be used as an argument.

For more information about the character mode, enter ?character at

the R prompt or use the Help tab in R Studio.

Chapter 4 Modes and Types of Objects

61

�The Common Recursive and Language
Modes
The recursive and language modes covered in this book are list,

function, call, environment, and expression. The modes list,

function, call, environment, and expression are all recursive modes.

The modes call and expression are also language modes.

�The List Mode
Lists are collections of objects, which may be of any mode and which do

not have to be of the same mode within the list. The list mode has the

same three functions as the atomic modes; however, there are a few more.

The function list() creates a list out of the arguments to the function.

Within the parentheses, the arguments are separated by commas. The

arguments can be any kind of object. Creating an empty list differs from

the atomic modes. To create a list of a given number of objects where the

objects are NULLs, use

vector("list", n),

where n is the number of objects to be in the list. The variable, n, must

be numeric and greater than minus one, is rounded down to an integer if

positive and up if negative, and can only contain one element. If n equals

zero, is negative or is omitted, a list of length zero is created. For example:

> list(1:2)

[[1]]

[1] 1 2

> list(1, 2)

[[1]]

[1] 1

Chapter 4 Modes and Types of Objects

62

[[2]]

[1] 2

> list(-0.5)

[[1]]

[1] -0.5

> vector("list", -0.5)

list()

The function as.list() attempts to coerce the argument to mode

list. If more than one argument is supplied, only the first argument is

coerced. The other arguments are ignored. The argument NULL returns a

list of length zero. For example:

> as.list(NULL)

list()

>

> as.list(1:2, 3:4)

[[1]]

[1] 1

[[2]]

[1] 2

The function is.list() tests if the argument is a list (or a pairwise list,

which is not covered here). If the object is of mode list, TRUE is returned.

Otherwise, FALSE is returned.

The function unlist() removes the list property for lists of atomic

elements and, for those lists, returns a vector of the elements of the objects

in the list. For example:

> list(1:2, 3:4)

[[1]]

[1] 1 2

Chapter 4 Modes and Types of Objects

63

[[2]]

[1] 3 4

> unlist(list(1:2, 3:4))

[1] 1 2 3 4

The function alist() creates a list where the values of variables in the

list do not have to be specified. The function alist() is most often used in

evaluating functions, where some variables can be prespecified and others

are assigned at each running of the function.

More information can be found by entering ?list or ?unlist() at the

R prompt, which bring up the help pages for list(), alist(), and

unlist().

�The Function Mode and the Closure, Special,
and Built-In Types
Functions in R are of mode function. Objects of mode function can be of

types closure, special, or built-in. Functions of type closure are written in

the R language and have an argument list, a body, and an environment

in which they run. Functions of type special and built-in are primitive

functions and are written in C. Primitive functions are only found in

the base package, and the two kinds differ on how the arguments are

evaluated.

Of the three functions listed for atomic modes, only function() and

is.function() exist for the mode function. The function function()

creates functions, but the structure of functions is different from the

atomic modes and the list mode, and the help page for function() is

different from the help page for is.function(). We will cover the creation

of functions in Chapter 7. The function is.function() returns TRUE if the

argument is a function and FALSE otherwise.

The function is.primitive() exists to test if a function is primitive.

Chapter 4 Modes and Types of Objects

64

As an example of different types of functions, the function seq() is a

closure, the function log() is a special, and the function cos() is a built-in.

More information about the function mode and primitive functions

can be found by entering ?is.function at the R prompt or by using the Help

tab in R Studio.

�The Call Mode
Objects of the call mode are unevaluated functions with arguments, if

the function takes arguments. The same three functions that exist for the

atomic modes exist for the call mode: call(), as.call(), and is.call().

The function call() creates an object of mode call. The first

argument of call() is the name of the function in quotes. The rest of the

arguments to call are the arguments to the function. Some examples

include the following:

> a.call = call("lm", y~x)

> a.call

lm(y ~ x)

> b.call = call("ls")

> b.call

ls()

> c.call = call("ls", pattern="abc")

> c.call

ls(pattern = "abc")

Note that an object of mode call can be evaluated using the function

eval(). If all of the variables in the call exist in the workspace, eval() will

evaluate the function; otherwise, eval() will give an error. For example:

> x

[1] 1 2 3

Chapter 4 Modes and Types of Objects

65

> y

[1] 2 3 4

> eval(a.call)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 1 1

> z

Error: object 'z' not found

> a.call = call("lm", z~x)

> eval(a.call)

Error in eval(expr, envir, enclos) : object 'z' not found

The function as.call() tries to coerce the argument to an object

of mode call. If the argument is a list, then the conversion takes place;

otherwise an error is returned. However, if the list does not consist of the

name of a function followed by the arguments of that function, the object

cannot be evaluated. For example:

> as.call(list(sum, y, x))

.Primitive("sum")(c(0.246754763464546, 2.1732142053051,

-0.8773010303324

), 1:3)

> eval(as.call(list(sum, y, x)))

[1] 7.542668

> as.call(list(sum, y~x))

.Primitive("sum")(y ~ x)

Chapter 4 Modes and Types of Objects

66

> eval(as.call(list(sum, y~x)))

Error in .Primitive("sum")(y ~ x) : invalid 'type' (language)

of argument

The function is.call() tests the argument and returns TRUE if the

argument is of mode call and FALSE otherwise.

Further information about the mode call can be found by entering
?call at the R prompt.

�The Expression Mode
The expression mode is like the list mode, but mainly for objects

of modes like class or function. Objects of mode expression can be

subsetted like lists and are not evaluated when created. The expression

mode uses the three functions that the atomic modes use: expression(),

as.expression(), and is.expression().

The function expression() creates a listing of the objects entered

into the function. The objects are separated by commas and can be of

any mode. The function eval() can be used to evaluate the expression.

Only the last object in an expression is evaluated under eval(). Examples

follow:

> expression(sin(c(45, 90)/180*pi))

expression(sin(c(45, 90)/180 * pi))

> eval(expression(sin(c(45, 90)/180*pi)))

[1] 0.7071068 1.0000000

> expression(sin(c(45, 90)/180*pi, lm(y~x)))

expression(sin(c(45, 90)/180 * pi, lm(y ~ x)))

> eval(expression(sin(c(45, 90)/180*pi), lm(y~x)))

Chapter 4 Modes and Types of Objects

67

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 1.638 -0.562

The function as.expression() attempts to coerce the argument to

mode expression. The modes NULL, call, name, and pairlist are coerced

to a single element expression. Atomic modes other than NULL are coerced

elementwise. If more than one object is given, only the first object is used.

Lists are coerced with no changes except the mode. Other modes of objects

will give an error if coercion is attempted.

> a.exp1=as.expression (call("sum", y, x))

> a.exp1

expression(sum(c(0.246754763464546, 2.1732142053051,

-0.8773010303324

), 1:3))

> typeof(a.exp1)

[1] "expression"

> eval(a.exp1)

[1] 7.542668

> a.exp2=as.expression (y, x)

> a.exp2

expression(0.246754763464546, 2.1732142053051,

-0.8773010303324)

> typeof(a.exp2)

[1] "expression"

Chapter 4 Modes and Types of Objects

68

> eval(a.exp2)

[1] -0.877301

> a.exp3=as.expression (list(y, x))

> a.exp3

expression(c(0.246754763464546, 2.1732142053051,

-0.8773010303324

), 1:3)

> typeof(a.exp3)

[1] "expression"

> eval(a.exp3)

[1] 1 2 3

The function is.expression() tests the argument and will return

TRUE if the argument is of mode expression and FALSE otherwise.

More information about the expression mode can be found by

entering ?expression at the R prompt.

�The Environment Mode
Environments are the structures within which R works. The opening

environment in R is the global environment, R_GlobalEnv. The global

environment contains the workspace of the opening R session. Each

package in R has its own environment, which can be attached using

attach(), library(), or require() and detached using detach(). When a

function runs, it creates its own environment, which disappears when the

function finishes. Environments exist within other environments, and the

lowest level environment is the empty environment.

Chapter 4 Modes and Types of Objects

69

There are several functions associated with environments. The function

new.env() is used to assign a name to a new environment. The function

environment(), which takes a function, a formula, or NULL for the

argument, either returns the environment of the argument or has an

environment assigned to the argument.

The function is.environment() tests if the argument is of mode

environment. The function parent.env() returns the environment

containing the environment. The function search() returns the

environments present in the workspace in the order of the position of each

environment, starting with position one.

You can create an environment and assign objects to the environment

within an R session, for example:

> ne=new.env()

> ne

<environment: 0x110cce870>

> attach(ne)

> environment(lm)=ne

> environment(lm)

<environment: 0x110cce870>

> x=1:10

> y=2:11

> search()

 [1] ".GlobalEnv" "ne" "tools:rstudio"

 [4] "package:stats" "package:graphics" "package:grDevices"

 [7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Chapter 4 Modes and Types of Objects

70

> assign("x", 0:9, pos=2)

> assign("y", 2:11, pos=2)

> ls.str("ne")

x : int [1:10] 0 1 2 3 4 5 6 7 8 9

y : int [1:10] 2 3 4 5 6 7 8 9 10 11

> lm(y~x)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 1 1

> rm(y)

> rm(x)

> lm(y~x)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 2 1

> detach(ne)

> rm(ne)

First, the environment ne is created then attached. Then, function lm()

is associated with ne. Next, the variables x and y are assigned values at the

level of the global environment, then at the level of the environment ne.

The function ls.str() displays the contents of ne. Next, lm() is run twice.

Chapter 4 Modes and Types of Objects

71

The function lm() first searches the global environment for x and y. If it

does not find x and y in the global environment, the function searches the

ne environment. Last, ne is detached and removed.

In the preceding example, the mode of ne is environment.

Environments are found under “Data” in R Studio. The contents of an

environment can be found by opening the dropdown menu by “Global

Environment” under the “Environment” tab in R Studio and choosing the

name of the environment.

More information about environments and functions that operate on

environments can be found by entering ?environment at the R prompt or

by using the Help tab in R Studio.

�The S4 Mode
The mode S4 identifies objects that contain data and are assigned an S4

class. S4 classes contain the structure of data to be used by S4 methods.

The data for an S4 class are put into an object that identifies the class. The

data are entered as slots—referred to by name. An S4 method is a function

associated with the class(es). The function mode() returns S4 if the

argument is of mode S4. The isS4() function returns TRUE if an argument

is an S4 object and FALSE otherwise.

For example:

> setClass("linearmodel", slots=c(x="numeric", y="numeric"))

> setGeneric("lm.fun", function(object) { standardGeneric(

"lm.fun") })

[1] "lm.fun"

> setMethod("lm.fun", "linearmodel", function(object) { lm(

object@y~object@x) })

Chapter 4 Modes and Types of Objects

72

> lm.data=new("linearmodel", x=1:10, y=2:11)

> lm.fun(lm.data)

Call:

lm(formula = object@y ~ object@x)

Coefficients:

(Intercept) object@x

1 1

First, the S4 class is set. Next an S4 method is created. Then, an S4

data object is entered, and the function is run on the data object. The data

object, lm.data, is of mode S4. The method, lm.fun, is of mode function.

Both lm.data and lm.fun return TRUE when entered into isS4().

S4 functions are under “Values” in R Studio. S4 data objects are under

“Data”. More information about S4 classes is given in Chapter 5 and about

S4 functions in Chapter 7.

You can find more information by entering ?S4 at the R prompt or by

using the “Help” tab in R Studio.

Chapter 4 Modes and Types of Objects

73© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_5

CHAPTER 5

Classes of Objects
In R, objects belong to classes as well as modes and types. Classes tell

something about how an object is structured. S3 and S4 differ with regard

to classes. In S3, there are specific classes into which an R object falls.

In S4, the user defines a class for an S4 object. Classes in S3 are called

informal classes, whereas classes in S4 are called formal classes. This

chapter covers both kinds of classes.

�Some Basics on Classes
S3 classes are attributes of S3 objects and are not usually assigned by the

user. Given an object, the class of the object can be found by using the

function class(). If an object has not been given a class in the package

to which the object belongs, then the class of the object is just the mode

of the object. For example, an object of mode function is also of class

function.

The output from many functions will have a class attribute specific

to the function. For example, the class of the output from a linear model

fit with the function lm() is lm. Also, objects can belong to more than

one class. An example is a model fit using the generalized linear model

function glm(). The classes of the output are glm and lm.

On a more technical side, according to the help page for class(), the

classes of an object are the classes from which an object inherits. So, the

output of lm() inherits from lm, and the output from glm() inherits from

both lm and glm.

74

One useful function for classes is the function methods(). Entering

methods(class=name), where name is the name of a class, will show

functions specifically written to be applied to objects of the class. For

example:

> methods(class=lm)

 [1] add1 alias anova case.names

 [5] coerce confint cooks.distance deviance

 [9] dfbeta dfbetas drop1 dummy.coef

[13] effects extractAIC family formula

[17] hatvalues influence initialize kappa

[21] labels logLik model.frame model.matrix

[25] nobs plot predict print

[29] proj qr residuals rstandard

[33] rstudent show simulate slotsFromS3

[37] summary variable.names vcov

see '?methods' for accessing help and source code

S4 (formal) classes are the starting point for S4 methods. An S4 class

contains a user-defined name for the class and the variables to be used by

methods associated with the class, along with the classes of the variables.

Entering ?class at the R prompt or using the R Studio “Help” tab gives

more information about S3 and S4 classes and inheritance.

�Vectors
Although there is no class vector, the vector merits discussion as one

of the most basic kinds of objects. For atomic mode vectors, a vector is a

collection of elements of only one dimension. The class is just the mode

of the vector, except for integer vectors, which take on the class integer.

Another reason vectors are important is that for the as.name() functions,

where name is the name of an atomic mode, except for the mode NULL,

as.name() returns a vector.

Chapter 5 Classes of Objects

75

The functions vector(), as.vector(), and is.vector() exist and

operate somewhat like the similar functions for the modes. The function

vector() takes the arguments mode and length and creates a vector of the

given mode and length. The acceptable modes are the atomic modes—except

NULL, the list mode, and the expression mode. Other modes give an error.

For the atomic modes,

vector(mode="name", length=n)

behaves the same way as

name(length=n),

where name is the name of the mode and n is the length argument. Note

that name must be in quotes in the call to vector(). For the list mode,

vector() returns a list of NULLs of length given by the length argument.

With the mode set equal to expression, vector() gives an expression with

NULLs for arguments, where the number of NULLs is given by the length

argument.

The function as.vector() tries to coerce an object to a vector. For

some objects, as.vector() just passes the object through and does not

create a vector. For some other objects, an error is returned if the function

as.vector() is run.

For matrices and arrays, dimensional information is removed by

as.vector() (for example, names of columns in a matrix and the number

of rows and columns), and a vector of the elements of the matrix or array

is returned. The elements of the vector are ordered starting with the first

dimension of the matrix or array and continuing through the dimensions.

For example:

> a=array(1:8, c(2, 2, 2))

> dimnames(a)=list(c("a", "b"), c("m", "n"), c("y", "z"))

>

Chapter 5 Classes of Objects

76

> a

, , y

 m n

a 1 3

b 2 4

, , z

 m n

a 5 7

b 6 8

> as.vector(a)

[1] 1 2 3 4 5 6 7 8

Here, the c() function is used to create the vector of the dimensions

for the 2x2x2 array() and to create names for the three dimensions of

the array.

For objects of mode list, as.vector() passes the list through.

Depending on the structure of the list, is.vector() operating on the result

can give either TRUE or FALSE. The mode does not change.

For objects of mode function, as.vector() returns an error.

For objects of mode call, as.vector() passes the object through but

does not create a vector. The mode does not change.

For objects of mode environment, as.vector() returns an error.

For objects of mode expression, as.vector() passes the expression

through, and the result gives TRUE for is.vector(). The mode does not change.

For the S4 mode, as.vector() returns an error.

The function is.vector() returns TRUE if the object is a vector and

FALSE otherwise, although some objects that do not look like vectors

return TRUE.

More information about vector(), as.vector(), and is.vector()

can be found by entering ?vector at the R prompt or by using the R

Studio Help tab.

Chapter 5 Classes of Objects

77

�Some Common S3 Classes
Some common S3 classes are integer, numeric, matrix, and array.

Objects of class integer and numeric are vectors. Matrices are just that—

objects made up of elements in rows and columns, all of the same mode.

Arrays are like matrices, but they can have more than two dimensions.

Some other common S3 classes are ts and mts, for time series; factor,

for factors; Date, for dates; and POSIXct, for dates with times, all of which

are numeric.

Some common classes of mode list are data.frame, for data frames;

POSTXlt, for dates and times; and most output from higher-level functions

in the packages, such as lm and glm.

The class formula contains formulas and is of mode call.

�The Matrix Class: matrix
Objects of class matrix are matrices made up of elements of one of the

atomic modes, except NULL, or of the modes list or expression. The three

functions matrix(), as.matrix(), and is.matrix() exist and behave

similarly to the functions for atomic modes.

The function matrix() creates a matrix. The function takes five

possible arguments. The first argument is an object of atomic, list,

or expression mode. The second argument is nrow, the number of

rows. The third argument is ncol, the number of columns. The fourth

argument is byrow, which tells R to create the matrix going across rows

rather than down columns. The default value is FALSE. The byrow

argument is useful for scanning tabular atomic data into a matrix. The

fifth argument is dimnames, which assigns names to the rows and

columns within the call to matrix(). The default value for dimnames is

NULL and if supplied should be a list of two vectors of names. NULL can

be substituted for either vector.

Chapter 5 Classes of Objects

78

Using the array a from the section on vectors, two examples of creating

a matrix follow:

> matrix(a, 3, 3)

 [,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 1

Warning message:

In matrix(a, 3, 3) :

 �data length [8] is not a sub-multiple or multiple of the

number of rows [3]

and

> matrix(a,3,3, byrow=T, dimnames=list(NULL, c("c1","c2","c3")))

 c1 c2 c3

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 1

Warning message:

In matrix(a, 3, 3, byrow = T, dimnames = list(NULL, c("c1",

"c2", :

 �data length [8] is not a sub-multiple or multiple of the

number of rows [3]

Note that R gives a warning if the product of the number of rows and

columns is not a multiple of the number of elements in the first argument.

The warning message does not affect the result.

For the atomic modes, if just the first argument is given, R creates a

matrix with the number of rows equal to the number of elements in the

object and the number of columns equal to one. If just nrow or ncol is

given, R creates a matrix out of the object in the first argument with the

given number of rows or columns, filling out as many of the columns

Chapter 5 Classes of Objects

79

or rows that it takes to use up all of the elements in the first argument—

cycling if necessary. If both nrow and ncol are present, R will go through

the elements of the first argument until the matrix is full, cycling as

necessary. The byrow argument can be used to cycle the first argument

across rows rather than down columns.

For objects of the list mode, matrix() creates a matrix that describes

the contents of each lowest level element of the list. The elements of the list

do not need to be of the same mode. The description gives the mode of the

element and the size of the element. Sometimes, a ? is placed in the cell of

the matrix. Referencing cells in the matrix returns the contents of the list

for the cell. The following code gives an example:

> a.list = list(matrix(1:4, 2, 2), c("abc", "cde"), 1:3,

function(){ print(1:3) })

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

[1] 1 2 3

[[4]]

function ()

{

 print(1:3)

}

Chapter 5 Classes of Objects

80

> matrix(a.list, 2, 2)

 [,1] [,2]

[1,] Integer,4 Integer,3

[2,] Character,2 ?

> matrix(a.list, 2, 2)[2, 2]

[[1]]

function ()

{

 print(1:3)

}

Objects of mode expression are legal for matrix(). The result of

matrix() is to return the contents of the expression, where the contents

cycle to fill in the size of the matrix and are enclosed within an expression

function statement.

The function as.matrix() attempts to coerce an object to class matrix

and is mainly used with data.frames. If the argument to as.matrix() can

be coerced to a vector and is not a matrix or data.frame, then as.matrix()

creates a single column matrix of the coerced elements. The class is

matrix. If the object is a matrix, as.matrix() just returns the matrix and

maintains row and column names.

If the object is a data.frame, then as.matrix() coerces the data frame

to a matrix. (A data.frame is a special kind of list for which the elements of

the list all have the same length and the elements in a column of the list are

all of the same atomic mode, but the modes are not necessarily the same

between columns.) If there is a column in the data.frame that contains

character data or raw data, then the entire data.frame is coerced to

character. Otherwise, the data.frame is coerced to a logical matrix if all of

the columns are logical, to an integer matrix if an integer column is present

but no numeric or complex columns are present, to a numeric matrix if a

numeric column is present and no complex columns are present, and to a

complex matrix if a complex column is present.

Chapter 5 Classes of Objects

81

Data frames can also be converted to a matrix using the data.matrix()

function. The function data.matrix() converts a data frame to a matrix

by coercing all of the elements in the data frame to numeric. For complex

elements, the imaginary part is discarded. The function coerces character

columns to NAs and factor columns to integers, starting with 1. (When a

data frame is created, columns of mode character are changed to factors

by default. See the section on data.frame() for how data.frame() can

handle columns of mode character.)

The following example shows the results for as.matrix() and

data.matrix(), using a data.frame called a.df:

> a.df = data.frame(c(T, F), 1:2, 1:2+.5, 1:2+1i, c(as.raw

(1), as.raw(10)), c("a", "b"))

> dimnames(a.df)=list(1:2, c("logical", "integer", "double",

"complex", "raw", "character"))

> a.df

 logical integer double complex raw character

1 TRUE 1 1.5 1+1i 01 a

2 FALSE 2 2.5 2+1i 0a b

> as.matrix(a.df)

 logical integer double complex raw character

1 " TRUE" "1" "1.5" "1+1i" "01" "a"

2 "FALSE" "2" "2.5" "2+1i" "0a" "b"

> as.matrix(a.df[,1:5])

 logical integer double complex raw

1 " TRUE" "1" "1.5" "1+1i" "01"

2 "FALSE" "2" "2.5" "2+1i" "0a"

> as.matrix(a.df[,1:4])

 logical integer double complex

1 1+0i 1+0i 1.5+0i 1+1i

2 0+0i 2+0i 2.5+0i 2+1i

Chapter 5 Classes of Objects

82

> as.matrix(a.df[,1:3])

 logical integer double

1 1 1 1.5

2 0 2 2.5

> as.matrix(a.df[,1:2])

 logical integer

1 1 1

2 0 2

> as.matrix(a.df[,1])

 [,1]

[1,] TRUE

[2,] FALSE

> data.matrix(a.df)

 logical integer double complex raw character

1 1 1 1.5 1 1 1

2 0 2 2.5 2 10 2

Warning message:

In data.matrix(a.df) : imaginary parts discarded in coercion

The function is.matrix() tests whether an object is of class matrix.

The function returns TRUE if the class of the argument is matrix and

FALSE otherwise. If an object of mode and class expression is used to

create a matrix or is coerced to a matrix, the result will have class matrix,

even though the structure of the result is not matrixlike.

More information on matrix(), as.matrix(), and is.matrix() can

be found by entering ?matrix at the R prompt. More information about

data.matrix() can be found by entering ?data.matrix at the R prompt.

You can also use the Help tab in R Studio.

Chapter 5 Classes of Objects

83

�The Array Class: array
The array class is a class of data that is organized using dimensions,

such as a multidimensional contingency table. Matrices can be set

up as two-dimensional arrays, and vectors can be set up as one-

dimensional arrays. A vector created by array() will be of class array;

however, a two-dimensional array will have class matrix, even though

array() creates the object.

The function array() creates an array out of an object. The function

takes three arguments. The first argument is any object that can be coerced

to a vector. The second argument is a vector that contains the size of each

dimension and is of length equal to the number of dimensions of the array.

The third argument is a list of names for each of the dimensions and can

be omitted. The default value is NULL.

The following is an example of setting up an array:

> array(1:12, c(2, 3, 2), dimnames=list(c("", ""), c("a",

"b", "c"), NULL))

, , 1

 a b c

 1 3 5

 2 4 6

, , 2

 a b c

 7 9 11

 8 10 12

.

Other than there being more than two dimensions, array() behaves

the same as matrix().

Chapter 5 Classes of Objects

84

The function as.array() attempts to coerce an object to class array.

The object must be of the atomic modes—except for the NULL mode—or

of the list or expression modes. Otherwise, as.array() returns an error.

For the legal modes, as.array() behaves like as.matrix().

The function is.array() tests an object to see if the class of the

object is array. The function returns TRUE if the class is array and FALSE

otherwise. Matrices return TRUE, independently of how the matrix was

created.

More information about array(), as.array(), and is.array() can

be found by entering ?array at the R prompt or under the Help tab in R

Studio.

�The Time Series Classes: ts and mts
Classes ts and mts refer to objects that have a starting point, an end

point, and a frequency or period defined, and for which observations are

assumed to be at equal intervals. The default time series class for a vector

of time series observations is ts. For a matrix of concurrent time series

observations, the default classes are mts, ts, and matrix. The class of the

time series can be changed when the time series object is created.

Time series objects can be created out of vector, matrix, some list,

and expression objects—as well as some other classes of objects such as

factor and Date—using the function ts(). Objects of mode array give

an error. All of the atomic modes are legal as arguments for the function

ts(), except the NULL mode. For list objects, depending on the contents

and structure of the list, the ts() function will create a, sometimes strange,

time series object. Similarly, operating on an object of mode expression

with ts() does not give an error but does give strange results.

If the argument to ts() is a data frame, then the data frame is coerced

to a matrix by the function data.matrix(). For matrix arguments, the

different time series go across the columns and time goes down the rows.

Chapter 5 Classes of Objects

85

The function ts() takes eight arguments. The first argument is the

object to be changed into a time series. The second argument is start

and gives a value for the start of the series. The third argument is end and

gives a value for the end of the series. The fourth argument is frequency,

which give the periodic frequency for the series. The fifth argument is

deltat, which is the inverse of the frequency. Either frequency or deltat is

supplied, not both.

The sixth argument is ts.eps, which gives the acceptable tolerance

for comparing frequencies between different time series. The seventh

argument is class, which tells R what class to assign to the time series

object. The eighth argument is names and gives names to the time series

for time series matrices. If no names are given, R assigns the names

Series 1, Series 2, and so forth.

The second, third, fourth, and fifth arguments can be confusing.

R treats monthly or quarterly data as a special case when regarding

printing and plotting. Other types of periodic data have to be treated

specially. For monthly data, setting start equal to

start = c('year', 'month number')

and frequency equal to

frequency = 12

or deltat equal to

deltat = 1/12,

where year is the starting year and month number is the number of the

starting month (1 for January, 2 for February, and so on), assigns months

and years to the points in the object being converted to a time series.

To generate a monthly time series, include end with

end = c('year', 'month number'),

Chapter 5 Classes of Objects

86

where year is the ending year and month number is the number of the

ending month. The function ts() will cycle the first argument until the time

series is filled out. (For any time series, supplying start, end, and frequency

will create a time series out of the first argument by cycling. If the first

argument is a matrix, each column cycles independently.)

For quarterly data, follow the same steps but use a frequency of four.

For example:

> ts(1:12, start=c(2019, 2), freq=12)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2019 1 2 3 4 5 6 7 8 9 10 11

2020 12

> ts(1:12, start=c(2019, 2), freq=4)

 Qtr1 Qtr2 Qtr3 Qtr4

2019 1 2 3

2020 4 5 6 7

2021 8 9 10 11

2022 12

On a more general level, say there is daily data for one week and three

days and the starting week is number 32. Let d.data be the data. Then, the

time series can be created as follows:

> ts(1:12, start=c(3, 2), freq=7)

Time Series:

Start = c(3, 2)

End = c(4, 6)

Frequency = 7

 [1] 1 2 3 4 5 6 7 8 9 10 11 12

> print(ts(1:12, start=c(3, 2), freq=7), calendar=T)

 p1 p2 p3 p4 p5 p6 p7

3 1 2 3 4 5 6

4 7 8 9 10 11 12

Chapter 5 Classes of Objects

87

Note that the default for printing the time series is not in periods—

except for frequencies of 4 and 12, for which R assumes that the data is

monthly or quarterly. The printing of periods can be turned on and off

with the calendar argument to print().

If one number, instead of two, is used for each of start and end, then

only the quantities (n+i/f) can be used as the starting and end points,

where n is the integer of the first period, f is the frequency, and i can take

integer values between zero and (f-1). The quantity (n+i/f) must be taken

out to at least five decimal places if entered manually unless the argument

ts.eps is changed from the default value of 1.0E-5. The value of ts.eps is set

in options(). R is very picky here.

The function as.ts() attempts to coerce an object to class ts.

Objects that are vector—or matrixlike—will coerce. Arrays will not,

functions will not, calls will not, and environments will not; expressions

and lists will.

The function is.ts() tests if an object is of class ts and returns TRUE

if so and FALSE otherwise.

More information about ts(), as.ts(), and is.ts() can be found by

entering ?ts at the R prompt or by using the Help tab in R Studio.

�The Factor Classes: factor and ordered
The class factor is the class of objects that are factor levels. Factors

with ordered factor levels belong to two classes, ordered and factor.

Factors and ordered factors are used in modeling for which at least some

categorical data is present. The mode of factors and ordered factors is

numeric, and the levels are associated with integers that increase in value

from one. However, when printed, the nominal levels are given.

The factor levels are usually ordered alphabetically or numerically by

default, depending on the mode of the argument, but can be assigned a

different order.

Chapter 5 Classes of Objects

88

The three functions factor(), as.factor(), and is.factor() exist,

as well as ordered(), as.ordered(), and is.ordered(). The second

set of functions behaves the same as the first set with regard to creating

and testing factor objects, so we only discuss the first set of functions

here.

The function factor() creates a vector of factor levels and an

associated list of levels. The function has six arguments. The first argument

is the object from which the factors will be generated. The argument must

be of an atomic mode or a list. Not all lists will form factors. The second

argument is levels and sets the order of the factor levels. The levels

argument is optional.

The third argument is labels and assigns labels to the levels. The third

argument is optional and defaults to the values of the elements of the

object. The fourth argument is exclude and gives any levels to be excluded

in the result. Excluded levels are set to <NA>. The argument is optional and

defaults to NA.

The fifth argument is ordered, which is in factor(), but not in

ordered(). The argument ordered tells factor() to create a factor with

ordered levels. The function factor() with ordered set to TRUE gives

the same result as the function ordered() (which is only included in

the current version of R for backward compatibility with S.) The sixth

argument is nmax and is described as the maximum number of levels to

use, where many values are present in the object to be made into a factor.

The argument does not appear to work too well.

Converting between factors and the original data is sometimes of

interest. If labels have not been assigned in factor(),

as.mode(levels(fac.obj))[fac.obj],

returns the original values of the object, where mode is the mode of the

original object and fac.obj is the factor object. Note that the function,

as.numeric(fac.obj),

Chapter 5 Classes of Objects

89

returns the integers associated with the levels, even if the original object

was not of mode numeric. If labels have been assigned, then usually the

original data cannot be extracted.

An example follows:

> a.log = c(T, T, F, T)

> a.log

[1] TRUE TRUE FALSE TRUE

> af1 = factor(a.log)

> af1

[1] TRUE TRUE FALSE TRUE

Levels: FALSE TRUE

> as.logical(levels(af1))[af1]

[1] TRUE TRUE FALSE TRUE

> as.numeric(af1)

[1] 2 2 1 2

> af2 = factor(a.log, levels=c(T, F))

> af2

[1] TRUE TRUE FALSE TRUE

Levels: TRUE FALSE

> as.logical(levels(af2))[af2]

[1] TRUE TRUE FALSE TRUE

> as.numeric(af2)

[1] 1 1 2 1

> af3 =factor(a.log, labels=c("flab", "tlab"))

Chapter 5 Classes of Objects

90

> af3

[1] tlab tlab flab tlab

Levels: flab tlab

> as.logical(levels(af3))[af3]

[1] NA NA NA NA

> as.numeric(af3)

[1] 2 2 1 2

> as.character(levels(af3)) [af3]

[1] "tlab" "tlab" "flab" "tlab"

The as.factor() function operates the same way as factor(), but

only takes one argument, an object to be made into a factor.

The is.factor() function tests if an object is a factor and returns

TRUE if so and FALSE otherwise.

There is also a related function, addNA(). The function creates a factor

object with a level for missing data (NAs). The function takes on two

arguments. The first argument is an object from which an object of class

factor can be created. The second argument is ifany. The ifany argument

is logical and takes on the value TRUE if the extra level is only added

when NAs are present and the value FALSE if the extra level is to always be

included.

More information about the seven functions can be found by entering

?factor at the R prompt or by using the Help tab in R Studio.

�The Data Frame Class: data.frame
The class data.frame is a matrixlike class of mode list. Data frames and

how to use them are important. Many of the data sets that are available for

R are data frames. When data is read from external sources, many of the

functions that do the reading create data frames. Learning how to work

with and create data frames pays high dividends.

Chapter 5 Classes of Objects

91

Data frames contain atomic data in rows and columns. Within a

column, all of the data must be of the same mode. Across columns, the

mode can change. Because data frames do not have to be of just one mode,

data frames are a special kind of list.

Accessing elements of the data frame can be done like matrices or

like lists, which makes data frames more versatile than the usual list. By

default, the columns take names that reflect what is or is not in the original

objects making up the data frame.

The functions data.frame(), as.data.frame(), and is.data.frame()

all exist in R. In data.frame(), the objects to be included in the data frame

are listed first, separated by commas. The objects can be any object of

atomic mode or lists made up of atomic columns. If an object is made up

of more than one column, like some matrices and lists, then each column

in the original object becomes a column in the data frame. Otherwise,

each object becomes a column. If the columns had names in the original

objects, the names are brought into the data frame by default.

The objects used to make up the data frame do not have to be of the

same length (or number of rows for matrices) but must be multiples of

each other in length. The number of rows in the data frame will equal the

length of the longest column. The data in the other columns will cycle until

the column has the right number of rows. For example:

> a.list

[[1]]

 a1 a2

[1,] 1 7

[2,] 2 8

[3,] 3 9

[4,] 4 10

[5,] 5 11

[6,] 6 12

Chapter 5 Classes of Objects

92

[[2]]

[1] "abc" "cde"

>

> data.frame(a.list, 1:3)

 a1 a2 c..abc....cde.. X1.3

1 1 7 abc 1

2 2 8 cde 2

3 3 9 abc 3

4 4 10 cde 1

5 5 11 abc 2

6 6 12 cde 3

Note that R has created names for the third and fourth columns and

that the third and fourth columns both cycle.

The function data.frame() has four arguments in addition to the

objects that will make up the data frame. The first argument is row.
names, which assigns names to the rows and by default is NULL, that is,

no names are assigned. The second argument is check.rows, which is a

logical argument and will check for consistency of row lengths and row

names if set to TRUE. The default value is FALSE. The third argument is

check.names, which is also logical and which checks that column names

are syntactically correct and corrects names that are not. The default for

check.names is TRUE.

The last argument is stringsAsFactors. By default, data.frame()

converts any column containing character data into a factor. The argument

stringsAsFactors is a logical variable. If set to TRUE, factors are created.

If set to FALSE, character columns remain columns of mode character.

The actual default value is generated by default.stingsAsFactors(). The

value from default.stringsAsFactors() is set in options() (Chapter 15)

and by default is TRUE but can be changed in options().

Chapter 5 Classes of Objects

93

The function I() can be used in the setting up of data frames. The

function is another way to stop data.frame() from converting a character

vector to factors. Also, I() ensures that for a matrix the column structure is

maintained in the data frame. An object in the data.frame() call enclosed

in I() will be treated as one element of the data frame, even if the object

contains more than one column. Objects enclosed in I() do not cycle. For

example:

> mat

 one two

row1 1 3

row2 2 4

> a.char

[1] "a1" "a2" "a3" "a4"

> a.df1 = data.frame(mat, a.char)

Warning message:

In data.frame(mat, a.char) :

 �row names were found from a short variable and have been

discarded

> a.df1

 one two a.char

1 1 3 a1

2 2 4 a2

3 1 3 a3

4 2 4 a4

> a.df1[[3]]

[1] a1 a2 a3 a4

Levels: a1 a2 a3 a4

> a.df2 = data.frame(I(mat), I(a.char))

Chapter 5 Classes of Objects

94

Error in data.frame(I(mat), I(a.char)) :

 arguments imply differing number of rows: 2, 4

> a.df2 = data.frame(I(mat), I(a.char[1:2]))

> a.df2

 mat.one mat.two a.char.1.2.

row1 1 3 a1

row2 2 4 a2

> a.df2[[1]]

 one two

row1 1 3

row2 2 4

> a.df2[[2]]

[1] "a1" "a2"

If row names are not entered in the call to data.frame(), row names

are taken from the first column if the first column has row labels and does

not cycle. Otherwise, row names are set to 1, 2, 3, and so forth. See the

above example.

The function as.data.frame() attempts to coerce an object to a data

frame. If the object is a list made up of atomic elements (and some other

simple lists) or is an object of an atomic mode, then as.data.frame()

creates a data frame out of the object. Otherwise, as.data.frame() gives

an error.

The function takes four arguments: the object to be coerced, row.
names, optional, and stringsAsFactors. The arguments row.names and

stringsAsFactors behave the same way as in data.frame(). The argument

optional is a logical variable that, if set to TRUE, tells as.data.frame()

that setting column names is optional. If set to TRUE, and no column

names have been set in the original object, column names are not present

in the result. The default value for optional is FALSE.

Chapter 5 Classes of Objects

95

The function is.data.frame() tests if an object is of class data.frame

and, if so, returns TRUE. Otherwise, is.data.frame() returns FALSE.

The functions as.matrix() and data.matrix() can be used to convert

a data frame to a matrix. See the section on the matrix class for more

information about the two kinds of conversions.

For more information about data.frame(), enter ?data.frame at the

R prompt. For more information about as.data.frame() and is.data.

frame(), enter ?as.data.frame at the R prompt. For more information

about I(), enter ?I at the R prompt. Or, use the Help tab in R Studio to

access the help pages.

�The Date and Time Classes: Date, POSIXct,
POSIXlt, and difftime
Sometimes, working with dates and times is useful, as when printing

and plotting against time. R provides classes for dates and for dates and

times. The classes are Date, POSIXct, POSIXlt, and difftime. Objects of

class Date, POSIXct, or difftime are of mode numeric and objects of class

POSIXlt are of mode list. Date is the date class, and POSIXlt and POSIXct

are the date and time classes. The class difftime contains objects formed

by taking the difference between two date or two date and time objects.

Of the three types of functions usual for the classes given above, only the

functions as.Date(), as.POSIXct(), and as.POSIXlt() exist for date and

date and time objects. Both difftime() and as.difftime() exist.

POSIX stands for Portable Operating System Interface and is a family

of standards used by the IEEE Computer Society. The formats used in the

Date, POSIXct, and POSIXlt classes are based on the POSIX standards, but

the standards are not universal across platforms.

To just get a date and time stamp in R, enter date() at the R prompt,

which returns the day of the week, date, and time. The result is of mode

and class character. The system date function Sys.Date() returns the

Chapter 5 Classes of Objects

96

system date and is of numeric mode and class Date. The system date and

time function is Sys.time() and returns the system date, time, and time

zone and is of mode numeric and classes POSIXct and POSIXlt. By default,

dates are read and returned in the format “Year-Month-Day” and times are

returned in the format “hour:minute:second.”

There are a number of functions that operate on the date and time

classes, including weekdays(), which returns the day of the week of objects

of class Date, POSIXlt, or POSIXct; the function difftime() takes two

date or date and time objects and finds the difference in time elementwise

between the two objects. For class Date objects the difference between

the dates are measured in days. For POSIXlt and POXITct objects the

difierences are measured in seconds.

The functions strftime() and strptime() lets the user convert to or

from any date time format.

More information about the date and time classes can be found at the help

page for DateTimeClasses by entering ?DateTimeClasses at the R prompt or

by using the Help tab in R Studio to access the help pages. Information about

the various date and time functions can be found at their help pages.

The function as.Date() creates a date object. The arguments to

as.Date() are the object to be converted to a date; format, which gives the

format of the object in terms of year, month, and day; tryFormats, which is

a character string of formats to try if format is not given; optional, which is

logical and, when set to TRUE, causes as.Date() to return an NA if format

matching returns an error; origin, which is an origin for the first argument

and must be of class Date or POSIXct; and tz for the time zone name.

If origin is used, the object to be converted can be any numeric object.

If origin is given, the function adds or subtracts the values of the object to

or from the date given by the origin argument and converts the result to a

date. An example of weekly spacing is

 > as.Date(0:1*7, origin="2019-1-1")

[1] "2019-01-01" "2019-01-08"

Chapter 5 Classes of Objects

97

If dates are used as the object and the dates are not in a “year-month-

day” format, then the format of the dates must be given. The format is a

character variable, where the POSIX standard for the year is %Y, the day is

%d, and the month is %m, such as

> as.Date("1/20/2000", format="%m/%d/%Y")

[1] "2000-01-20"

Note that the format is the format of the object to be converted, not the

format of the result.

The argument tz is for the time zone name. Some time zones are

recognized, some are not. See the help page for as.Date() for more

information.

The functions as.POSIXct() and as.POSIXlt() take the same

arguments as Date() except that the dates can contain time, too. The default

format for time is %H:%M:%S for hours, minutes, and seconds. For example:

> as.POSIXct("1/13/2000 00:30:00", format="%m/%d/%Y %H:%M:%S")

[1] "2000-01-13 00:30:00 CST"

Dates and dates and times can be operated on by addition and

subtraction. Decimals for times are converted correctly. Dates in function

Date() are incremented by days; times in the two date time functions are

incremented by seconds. Examples follow:

> as.POSIXct(Sys.time() + 1:2*3600)

[1] "2018-11-01 14:59:27 CDT"

[2] "2018-11-01 15:59:27 CDT"

> mode(as.POSIXct(Sys.time() + 1:2*3600))

[1] "numeric"

> as.POSIXlt(Sys.time() + 1:2*3600)

[1] "2018-11-01 15:02:53 CDT"

[2] "2018-11-01 16:02:53 CDT"

Chapter 5 Classes of Objects

98

> mode(as.POSIXlt(Sys.time() + 1:2*3600))

[1] "list"

> as.POSIXlt(Sys.time()) + 1:2*3600

[1] "2018-11-01 15:07:43 CDT"

[2] "2018-11-01 16:07:43 CDT"

> mode(as.POSIXlt(Sys.time()) + 1:2*3600)

[1] "numeric"

The functions difftime() and as.difftime() are not covered here.

An example of a date difference is

> (Sys.Date() - as.Date("2000-1-1"))

Time difference of 5125 days

> mode(Sys.Date() - as.Date("2000-1-1"))

[1] "numeric"

> class(Sys.Date() - as.Date("2000-1-1"))

[1] "difftime"

More information about date and time functions can be found by

entering ?as.Date, ?as.POSIXct, ?as.POSIXlt, ?difftime, or

?as.difftime at the R prompt or by using the Help tab in R Studio to

access the help pages.

�The Formula Class: formula
Formulas are used by various functions in R. For example: lm(), glm(),

nls(), plot(), coplot(), and boxplot(). Formulas have their own class

and are created by either setting an object equal to a formula, by using the

function formula(), or by using the function as.formula(). Formulas are

of mode call.

Chapter 5 Classes of Objects

99

If a data frame is specified in the function using the formula, then

the function looks first in the data frame for the variables in the formula.

If there is no data frame assigned or if the variable is not in the data

frame, where to look depends on the function used to create the formula.

The difference between the three methods is in which environment R

searches for the variables in the formula. Formulas that are just entered are

evaluated in the environment within which the formula is used. Formulas

created using formula() are evaluated in the environment in which

the formula was created. Formulas created by as.formula() have an

environment assigned by the env argument, which by default is the parent

environment. For each of the functions, the formula must be quoted for

the environment assignment to occur. For example:

> a.fun

function() {

at the first function level

formulas defined using the expression and formula()

 cat("\nlevel a \n\n")

 print(parent.frame())

 print(environment())

 x=1:10

 y=11:20

 cat("\nx=", x)

 cat("\ny=", y, "\n")

 a.formula="y~x"

 b.formula=formula("y~x")

Chapter 5 Classes of Objects

100

 b.fun=function() {

at the second function level

lm() is run for the formulas defined at the first level

 cat("\nlevel b \n\n")

 x=1:10

 y=21:30

 print(parent.frame())

 print(environment())

 print(lm(a.formula))

 cat("\nx=", x)

 cat("\ny=", y, "\n")

 print(lm(b.formula))

the cc environment is defined at the second level

the formula from as.formula() is run

 cat("\nenvironment cc \n\n")

 cc=new.env()

 assign("x", 1:10, env=cc)

 assign("y", 31:40, env=cc)

 c.formula=as.formula("y~x", env=cc)

 cat("\nx=", cc$x)

 cat("\ny=", cc$y, ”\n”)

 print(lm(c.formula))

 }

Chapter 5 Classes of Objects

101

 # the second function is run at the first level

 b.fun()

}

<bytecode: 0x10a767448>

The function a.fun() is run.

> a.fun()

level a

<environment: R_GlobalEnv>

<environment: 0x10d3d28c8>

x= 1 2 3 4 5 6 7 8 9 10

y= 11 12 13 14 15 16 17 18 19 20

level b

<environment: 0x10d3d28c8>

<environment: 0x10d39e388>

Call:

lm(formula = a.formula)

Coefficients:

(Intercept) x

 20 1

x= 1 2 3 4 5 6 7 8 9 10

y= 21 22 23 24 25 26 27 28 29 30

Call:

lm(formula = b.formula)

Coefficients:

(Intercept) x

 10 1

Chapter 5 Classes of Objects

102

environment cc

x= 1 2 3 4 5 6 7 8 9 10

y= 31 32 33 34 35 36 37 38 39 40

Call:

lm(formula = c.formula)

Coefficients:

(Intercept) x

 30 1

The formula object formula.a uses the data at level b, where it is run.

The formula object formula.b uses the data from level a, where it was

created. The formula object formula.c uses the data in the environment

cc, which was created for this example.

The formula function uses some specialized notation. The symbol ~

separates the left side of the formula from the right side. The symbol + tells

R to include the variables on either side of the + in the model. The symbol

– tells R not to use the variable to the right of the –. (Use -1 to not use an

intercept.) The symbol : tells R to use the interaction between the variables

on either side of :. The symbol * tells R to use all of the levels of interaction

between the variables on either side of *. If a data.frame is present in the

call, the symbol . on the right side tells R to use all of the variables in the

data frame not already used in the model. The symbol ^ tells R to use all

interactions up to the level of the ^. The operator %in% can be used to

nest variables. Functions of variables can be used within the formula, but

functions involving arithmetic expressions need to be enclosed in an I()

function to avoid confusing R, since the symbols have special meanings

inside of the formula statement.

For more information on formulas, enter ?formula at the R prompt or

use the Help tab in R Studio.

Chapter 5 Classes of Objects

103

�The S4 Class
In S4, data objects have a user-defined S4 (formal) class. There are

several functions associated with S4 classes, including setClass(),

removeClass(), getClass(), getClasses(), and isClass(). S4 classes

are used with S4 methods, to be covered in Chapter 7.

The function setClass() sets up a class and takes the arguments

Class, representation, prototype, contains, validity, access, where,
version, sealed, package, S3methods, and slots. The argument Class is

a character string containing the class name. There should be no blank

spaces in the string. The most important argument after the name is slots,

which is the only extra argument that must be included. The argument

slots is a vector with each element of the vector taking on a name and an

S4 class (most S3 classes have an S4 version.) For example:

> setClass("example", slots=c(x="numeric",

y="numeric", z="matrix"))

> getClass("example")

Class "example" [in ".GlobalEnv"]

Slots:

Name: x y z

Class: numeric numeric matrix

The second important argument is contains. The argument consists of

the names of other classes to be included in the class being defined. The

slots in the classes listed in the contains argument are included in the new

class. The names are a vector of character strings. For example:

> setClass("example.2", slots=c(xx="numeric", yy="numeric",

zz="matrix"), contains="example")

Chapter 5 Classes of Objects

104

> getClass("example.2")

Class "example.2" [in ".GlobalEnv"]

Slots:

Name: xx yy zz

Class: numeric numeric matrix

Name: x y z

Class: numeric numeric matrix

Extends: "example"

According to the authors at CRAN, the arguments where, sealed,

and package are redundant and need not be included. The argument

prototype, which gives default values for the slots, is better implemented

using the function initialize(), and the argument validity, which sets

restrictions on the values in the slots, is better implemented using the

function setValidity().

According to the authors at CRAN, the arguments representation,
access, version, and S3methods are deprecated and should not be used.

The function removeClass() removes a class. It takes two

arguments. The first argument is the name of the class to be removed,

in quotes. The second argument is where—the environment in which

to start looking for the class. The default value is the environment

where removeClass() is run. (To make changes to a class, remove the

class and redefine it.)

The function getClass() returns the contents of a class. The function

takes three arguments, the name of the class in quotes, .Force, and where.

The argument .Force is a logical variable. If set to TRUE, a NULL rather

than an error is returned if the class does not exist. The default value is

FALSE. The argument where is as described in the last paragraph. The two

examples given above use getClass().

Chapter 5 Classes of Objects

105

The function getClasses() gets the classes in an environment. The

function takes two arguments, where and inherits. The argument where

tells R the specific environment to search. The argument inherits is a

logical variable which, when set to TRUE, tells the function to look in all

of the parent environements. By default, inherits equals TRUE if where is

not used and FALSE otherwise. An example:

> getClasses(.GlobalEnv)

[1] "example.2" "example"

Running getClasses() without an argument returns every class in the

parent environments, which can be many.

The function isClass() tests if a class is an S4 (formal) class.

The function takes on three arguments, Class, formal, and where.

The argument Class is the name of the class, enclosed in quotes. The

argument formal is always set to TRUE, indicating that the test is for

S4 (formal) classes. The argument where tells R in which environment

to look for the class. By default, the level of the calling environment is

used. For example:

> isClass("example")

[1] TRUE

> isClass("numeric")

[1] TRUE

Here, numeric is both an S3 and an S4 class.

More information about S4 (formal) classes can be found by entering

?setClass, ?getClass, and ?getClasses at the R prompt, or by using the

Help tab in R Studio.

Chapter 5 Classes of Objects

106

�Names for Vectors, Matrices, Arrays,
and Lists
A chapter on objects would not be complete without information on how

to set names for vectors, matrices, arrays, and lists. Dimension names are

always of character mode. For objects of more than one dimension, the

name objects are put together in a list.

To see what names a vector has or to assign names to a vector, the

names() function is used. The function just has one argument, the object.

For example:

> cde

 [1] 21 22 23 24 25 26 27 28 29 30

> names(cde)

NULL

> names(cde) = paste("v", 1:10, sep="")

> cde

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

 21 22 23 24 25 26 27 28 29 30

> names(cde)

 [1] "v1" "v2" "v3" "v4" "v5" "v6" "v7" "v8" "v9" "v10"

> mode(names(cde))

[1] "character"

> class(names(cde))

[1] "character"

Chapter 5 Classes of Objects

107

You can also assign names directly to vectors at the time the vector is

created. For example:

> a.vec = c(a=1, b=2, c=3)

> a.vec

a b c

1 2 3

Some objects of mode list are vectors. For such lists, assigning names

to the lowest level of the list is done with names() or by direct assignment.

For matrices, there are three possible functions used to see the names

or to assign names: rownames(), colnames(), and dimnames(). The

functions rownames() and colnames() have three arguments, the R object,

do.NULL, and prefix. The argument do.NULL is logical with default value

TRUE, which tells the function to do nothing if the row or column names

are NULL. If do.NULL is FALSE, the row or column names are indexed

with the prefix equal to the value of the argument prefix. For example:

> mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> colnames(mat)

NULL

> colnames(mat) = colnames(mat, do.NULL=F, prefix="cl")

> mat

 cl1 cl2

[1,] 1 3

[2,] 2 4

Note that the right-hand side of the third expression only returns the

names of the columns and does not do the assignment.

Chapter 5 Classes of Objects

108

The function dimnames() can be used to see or assign names to

matrices and arrays. If dimnames() operates on an object, then the names

of the dimensions in the object are returned as a list. If names are assigned

using dimnames(), the object on the right side of the assignment must be a

list with the same number of lowest level elements as there are dimensions

in the object and with each lowest level element either being NULL or of

the same length as there are elements in each dimension of the matrix or

array. For example:

> a

, , d31

 d21 d22

d11 1 3

d12 2 4

, , d32

 d21 d22

d11 5 7

d12 6 8

>

> dimnames(a)

[[1]]

[1] "d11" "d12"

[[2]]

[1] "d21" "d22"

[[3]]

[1] "d31" "d32"

>

> dimnames(a) = list(c("11", "12") ,c("21", "22"),

c("31", "32"))

Chapter 5 Classes of Objects

109

>

> a

, , 31

 21 22

11 1 3

12 2 4

, , 32

 21 22

11 5 7

12 6 8

More information about names can be found by entering ?names,

?rownames, or ?dimnames at the R prompt or by using the Help tab in

R Studio.

Chapter 5 Classes of Objects

Functions

PART III

113© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_6

CHAPTER 6

Packaged Functions
R has over 10,000 packages, most of which contain functions. Functions

are at the heart of R and provide R with R’s great versatility. Functions

are R objects, and they are of both mode and class function. Packaged

functions are functions that have been created as a part of an R package.

On the computer, packages are stored in libraries and are installed to be

in a library.

�The Libraries
When R is initially installed, currently, the packages base, boot,

class, cluster, codetools, compiler, datasets, foreign, graphics,

grDevices, grid, KernSmooth, lattice, MASS, Matrix, methods,

mgcv, nlme, nnet, parallel, rpart, spatial, splines, stats, stats4,

survival, tcltk, tools, and utils are also installed in a folder on the

hard drive.

In Windows, any packages installed after the initial installation can

be installed in a different library, in another folder. The folder is created

when R is installed. In OS X, all installed packages are in the same folder

and library. In Linux, any packages installed after the initial installation are

installed in a different library, in another folder. The folder is created when

the first extra package is installed.

114

To see a listing of the installed packages with descriptions of each

package and the names of the package folders, enter library=(lib.loc =
.Library) at the R prompt. Running the function library() with no

arguments lists the packages, with descriptions, in the libraries. To view

much more information about the packages, enter installed.packages()

at the R prompt. In R Studio, the installed packages are listed under the

Packages tab in the lower right window.

Some R functions require other R functions to run. When R is running,

only those packages that have been loaded into R from the libraries are

accessible to the program. R gives an error if an attempt is made to run a

function where a necessary package(s) has not been loaded. Included in

the error message are the name(s) of the missing package(s). If a package

exists in one of the libraries on the computer, the package can be loaded

(made accessible) by entering library(‘package name’) at the R prompt,

where ‘package name’ is the name of the package. Or, in R Studio, you can

put a checkmark in the box to the left of the package under the Packages

tab to load the package.

If the package is not in one of the libraries, installing new packages is

straightforward (see Chapter 1). Once installed, the package can be loaded

using the library() function or by using the Packages tab in R Studio.

(If called from inside a function use require() instead of library{}. See

the library() help page.) At any given time, entering search() at the R

prompt gives a list of the packages that are loaded in the workspace. In R

Studio, which packages are loaded are those checkmarked.

To see the functions (and datasets) in a package, enter

help(package=‘package name’) at the R prompt, where ‘package name’

is the name of the package. Note that the package must be installed for

help(package=‘package name’) to return the contents of the package.

In R Studio, entering the package name under the Help tab will give access

to all of the objects in the package. Some of the files in a package may be

datasets, but for most packages the files are generally functions.

Chapter 6 Packaged Functions

115

�Default Packages and Primitive Functions
When a user starts an R session, the packages base, datasets, utils,

grDevices, graphics, stats, and methods are the default packages to be

loaded into the workspace. (Which default packages are loaded can be

changed by changing defaultPackages in the function options(). See

Chapter 15.) Often, depending on the computing needs of the user, no

more packages are needed.

Functions that are written in C and compiled at the time R is compiled

are called primitive functions. According to the help page found by

entering ?primitive at the R prompt or by entering primitive under the

R Studio Help tab, all primitive functions are in the package base, which

is always loaded. The advantage of using primitive functions is that the

functions are already compiled, so the functions run faster. The primitive

functions include the operators and most of the mathematical functions

as well as functions basic to the running and structure of R. A list of the

primitive functions can be found at http://cran.r-project.org/doc/

manuals/R-ints.html#g_t_002eInternal-vs-_002ePrimitive or under

the help page for base. Primitive functions are of type built-in or special,

depending on how the argument(s) are handled. Functions that are

written in R are of type closure. The function is.primitive() tests whether an

object is a primitive function.

�Using the Help Pages
Each function in R has a help page, and each help page has essentially the

same structure. Like much else in R, the help pages can be daunting at

first. However, the help pages often contain a wealth of information.

Given the name of a function, if the package containing the function

has been loaded, entering ?function or help(function) at the R prompt,

where function is the name of the function, brings up the help page for

Chapter 6 Packaged Functions

http://cran.r-project.org/doc/manuals/R-ints.html#g_t_002eInternal-vs-_002ePrimitive
http://cran.r-project.org/doc/manuals/R-ints.html#g_t_002eInternal-vs-_002ePrimitive

116

the function. If the package has been installed but not loaded, entering

?package::name, where package is the name of the package and name is

the name of the function, brings up the help page. In R Studio, the help

page can also be accessed under the Help tab by entering the name in the

Help tab search box.

Some functions share the same help page. The help page can be

brought up using any of the function names. In Windows and OS X R, the

help pages open in a separate window. In Linux, the help pages display in

the terminal. In R Studio, the help pages open in the lower right window.

�Identifier
The first line of the help page lists the function name, followed by the

function package in curly brackets, then the text “R Documentation.”

�Title
Below the identifier is a title that says something about the function(s).

For example, for the function lm(), the title is “Fitting Linear Models.”

�Description
Below the title is a description of how the function(s) is used, headed by

the word “Description.” The description can be long or short, depending

on the complexity of the function(s). For the function lm(), you will find

the following description:

lm is used to fit linear models. It can be used to carry out

regression, single stratum analysis of variance and analysis

of covariance (although aov may provide a more convenient

interface for these).

Chapter 6 Packaged Functions

117

�Usage
The section “Usage” is found below the description. In the “Usage”

section, the function(s) is listed with all of the possible arguments to the

function(s). For arguments with default values, the default values are

given. The Usage section lists the S4 usage. For many functions, S3 usages

are also listed.

For the function lm(), the “Usage” section contains the following:

lm(formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ...)

The arguments with default values are the arguments for which the

arguments have been set equal to a value.

�Arguments
Below the “Usage” section is a section entitled “Arguments.” In the

“Arguments” section, the arguments found in the “Usage” section are listed

with a description of each argument. The description includes the legal

values for the argument.

For example, from the lm() help page, the first two arguments listed

are as follows:

formula an object of class “formula” (or one that can be coerced to that class):
a symbolic description of the model to be fitted. The details of model
specification are given under “Details.”

data an optional data frame, list, or environment (or object coercible by

as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula),
typically the environment from which lm is called.

Chapter 6 Packaged Functions

http://127.0.0.1:10403/library/stats/help/formula
http://127.0.0.1:10403/library/stats/html/lm.html
http://127.0.0.1:10403/library/stats/help/as.data.frame

118

So, for the function lm(), the first argument is a formula, and the

second argument can be a data.frame, but the second argument is

optional.

�Details
Sometimes, there is a section entitled “Details,” which gives details related

to the arguments. In the lm() function example, the section on details

gives the rules for setting up a formula and how the function behaves for

differing inputs to the formula.

�Value
The next section is entitled “Value.” The “Value” section gives a description

of what is returned from the function(s). For some functions, what

functions can operate on the output and what components can be

subsetted from the output are relevant and listed in this section.

The first few lines of the “Value” section for the function lm() are as

follows:

lm returns an object of class "lm" or for multiple responses of class

c("mlm", "lm").

The functions summary and anova are used to obtain and print a

summary and analysis of variance table of the results. The generic accessor

functions coefficients, effects, fitted.values, and residuals extract various

useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following

components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted

values.

…

Chapter 6 Packaged Functions

http://127.0.0.1:20871/library/stats/help/class
http://127.0.0.1:20871/library/stats/help/anova

119

�Some Other Optional Sections
Following the “Value” section, there may be other sections giving more

information. For the function lm(), there are three other sections: “Using

time series,” “Note,” and “Author(s).” Some sections for other functions

might be “Warning,” “Source,” or other headings.

�References
The next section is called “References.” The “References” section gives

references to books and articles related to the method, both for more

information and for how the method was derived.

For the function lm(), the “References” section contains

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical

Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &

Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973). Symbolic

descriptions of factorial models for analysis of variance.

Applied Statistics, 22, 392–399. doi: 10.2307/2346786.

�See Also
The section “See Also” follows the “References” section. The “See Also”

section gives information about other functions related to the help page

function(s). For the function lm(), the first three lines of the “See Also”

section are the following:

summary.lm for summaries and anova.lm for the ANOVA table; aov

for a different interface.

The generic functions coef, effects, residuals, fitted, vcov.

Chapter 6 Packaged Functions

120

predict.lm (via predict) for prediction, including confidence

and prediction intervals; confint for confidence intervals of

parameters.

The “See Also” section is a good source for clues to functions related to

the method the user is applying.

�Examples
The final section, which most pages have, is “Examples.” The “Examples”

section gives examples of the use of the function(s). Seeing actual

examples of usage can be very helpful. From the help page of the function

lm(), part of the example includes the following:

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear

Models".

Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2, 10, 20, labels = c("Ctl","Trt"))

weight <- c(ctl, trt)

lm.D9 <- lm(weight ~ group)

lm.D90 <- lm(weight ~ group - 1) # omitting intercept

anova(lm.D9)

summary(lm.D90)

In this example, the structure of a formula is shown rather than

explained. Some of the functions that operate on an object of class lm are

also shown. Since the package graphics is loaded by default, the call to

require(graphics) would not normally be necessary.

Chapter 6 Packaged Functions

121© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_7

CHAPTER 7

User-Created
Functions, Scripts,
and S4 Methods
User-created functions and scripts often make the life of an R user easier.

If a repetitive task involves several different lines of code, creating a

function or script to do the task saves time. In S4, methods for generic

functions are the functional side of S4 and require special treatment.

Designing plots is one example of when a user-created function or

script makes sense. Plots often take several lines of code, and the design of

a plot is usually an interactive process. From command line R, creating a

function to do the plot and making changes to the function are often much

easier than using the up arrow and changing lines.

Another example of when a user-created function or script is useful

is when a user wants to try out a statistical technique that is not available

in the R packages. Often, the user can create a function or script for the

technique using functions that are available.

In R Studio, the Source window (the upper left window) provides

a place to create and run code, which can then be saved as an R script,

externally, or as a function, internally. The Source window is also a place

into which to load R scripts or other text files.

122

�Scripts
Scripts are code that is written in R and stored outside of the program.

A file containing an R script is a text file and has the extension .R. R scripts

can contain function definitions. From command line R, a script is run

using the function source(). For example, let lm.example.R, a file in the

working directory, contain

print(x)

print(y)

print(lm(y~x))

Then, running source() on the file gives

> source("lm.example.R")

[1] 1 2 3 4 5 6 7 8 9 10

[1] 21 22 23 24 25 26 27 28 29 30

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 20 1

Note that only the results of the functions are printed.

In R Studio, things are simpler. There is no need to edit the script

externally. If the script already exists outside of R, the script can be loaded

into the Source window. Click on the icon of a yellow folder with a green

arrow on the first menu just above the windows. Then, browse to the

location of the script and click on the file. The file will open in the Source

window. To run the file, click on the Run or Source icons to the right of the

Source window menu bar. To run a portion of the file, highlight the portion

and click on the Run icon.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

123

To enter a new script, open the far left icon in the menu bar above the

upper windows and choose the first option, “R Script.” The Source window

will open to a blank page. Just enter the lines of code. Run the code or

sections of code to debug the script. R Studio helps with the debugging,

flagging syntax errors. When done, you can save the script. Click on the

floppy disk icon in the menu of the Source window and enter a name for

the file. R Studio automatically gives the file an .R extension. To run the

code when saving the code, check the “Source to Save” box.

�The Structure of a Function
Functions that are not primitive functions all have the same structure.

On the first line of the function is the word function, followed by open

and close parentheses, which may or may not contain arguments. In most

cases, an open bracket follows the parentheses. Usually, the body of the

function is placed below the first line, and the last line is a blank line after

the close bracket, which is usually on its own line. Normally, functions are

assigned a name. For example:

> d.fun = function(){

+ print(1:5)

+ }

> d.fun

function(){

print(1:5)

}

> d.fun()

[1] 1 2 3 4 5

In this example, first, the function is assigned to d.fun; next, the

content of d.fun() is listed; and, last, the function d.fun() is run.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

124

The brackets are not necessary if the function consists of just one

statement—which can be entered on the same line as the function

statement or on the following line(s). For example:

> c.fun = function() print(1:5)

> c.fun

function() print(1:5)

> c.fun()

[1] 1 2 3 4 5

Again, the function is assigned a name, the function is listed, and the

function is run.

Arguments are objects or values that are used by the function and

that must be input to the function at the time the function is run, unless

a default value exists for the argument. Arguments are placed within the

parentheses when the function is created, separated by commas. A default

value is supplied by setting the argument equal to the value. Arguments

with default values do not have to be specified when the function is run.

If the value is not specified, the function uses the default value.

An example follows of a function with two arguments, where a does

not have a default value and must be specified, and b has the default value

of 3:

> e.fun = function(a, b=3){

+ print(a:b)

+ }

> e.fun

function(a, b=3){

print(a:b)

}

Chapter 7 User-Created Functions, Scripts, and S4 Methods

125

> e.fun(10)

[1] 10 9 8 7 6 5 4 3

> e.fun()

Error in a:b : 'a' is missing

Again, the function is assigned a name, listed, and run. Note that since

a is the first argument and b has a default value, a can be supplied without

a name. In the second attempt to run e.fun(), no argument is supplied for

a, so e.fun() returns an error.

Often, the user uses brackets within a function to enclose groups of

statements, such as for if, else, for, while, and repeat groups. There must

be the same number of opening brackets as closing brackets in a function;

otherwise, the function will not save. Mismatched brackets are a common

source of errors in R code and are flagged in R Studio.

Lines of code in R (both in a function and at the R prompt) can be

broken and continued on the next line. R looks for things such as a closing

parenthesis, bracket, or quotation mark to designate the end of a statement

or a part of a statement.

Empty lines are legal in R functions. Also, any text can be commented

out by placing a pound sign (#) in front of the text. On a line, anything

entered after a pound sign is ignored. A piece of advice for writing

functions is to write a little chunk at a time, debug at each step, and use

plenty of comments.

�How to Enter a Function into R
This section describes four ways to get a function into R using the

command line and one way using R studio. The first involves using an

editor. The second involves inline entry, as shown in the preceding section.

The third involves creating a function outside of R and using dget() to get

Chapter 7 User-Created Functions, Scripts, and S4 Methods

126

the function into R. The fourth is a variation on the second and third and

involves copying and pasting from a source that can be outside of R. The

fifth involves using the R Studio Source window.

�Using an Editor
For the Windows and OS X operating systems, there is a function, edit(),

in the package utils that works well for creating new functions. The

purpose of the function edit() is to call an editing function.

In Windows, the default editing function is the internal editor. The

possible other choices for editor are xedit(), emacs(), xemacs(), vi(),

and pica(), where the choice is available only if the editor is present on

the system. The default editor is listed in options() and can be changed at

any time (Chapter 15).

For OS X systems, the only editor available is the vi editor, which

works well.

For Linux operating systems, calling edit() from the terminal window

does not give a good result. A better editor is emacs(), which is available

for Linux systems.

Most of the preceding information is from the help page for edit().

Enter ?edit at the R prompt for more information about the editing

functions.

To create an object that is a function by using an editor, the function

is first assigned to a name. For example, let the name be f.fun. To create

the function f.fun(), start by entering f.fun = function(){} at the R prompt.

The object f.fun then contains a function with no arguments and no

statements.

The next step is to edit the function. For simplicity, only the function

edit() is shown in the example here. The other editors behave similarly.

Enter f.fun = edit(f.fun) at the R prompt. An editing window opens up for

editing (Figure 7-1).

Chapter 7 User-Created Functions, Scripts, and S4 Methods

127

For the third step, the arguments are entered within the parentheses,

and the statements of the function are entered within the brackets

(Figure 7-2).

The fourth step is to exit the editor. To exit the editor, click the x at the

top right-hand corner of the editing window. A window will appear with

options to save the file, exit without saving, or to cancel the request and

Figure 7-1.  Creating a function: the first and second steps

Figure 7-2.  Creating a function: the third step

Chapter 7 User-Created Functions, Scripts, and S4 Methods

128

go back to editing. (If no changes were made to the file, the options screen

does not appear.) Click Yes to save the changes, No to revert to the earlier

version, or Cancel to go back to editing.

If the function is syntactically correct, the function will save. Otherwise,

edit() returns an error, such as the following:

Error in .External2(C_edit, name, file, title, editor) :

 unexpected '}' occurred on line 4

 use a command like

 x <- edit()

 to recover

To recover the work already done, enter f.fun = edit(). Using

parentheses with no content is very important. If the name of the function

is entered within the parentheses, the editing changes are lost, and the

function reverts to the version before the edit. Note that the error message

gives information about the problem with the R code.

The following shows the input and output at the R console when

creating the function f.fun() with the editor, followed by the listing of

the function, and the running of the function with the first argument set

to zero.

> f.fun = function(){}

> f.fun = edit(f.fun)

> f.fun

function(mu, se=1, alpha=.05){

 z_value = qnorm(1-alpha/2, mu, se)

 print(z_value)

}

> f.fun(0)

[1] 1.959964.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

129

�Inline Entry
As shown in the first section of this chapter, a function can be entered

inline. Let b.fun be the name of a new function created to list the digits

three through six. Then, the steps to create the function, to list the code,

and to run the function are as follows:

> b.fun = function(){

+ print(3:6)

+ }

> b.fun

function(){

print(3:6)

}

> b.fun()

[1] 3 4 5 6

If a syntactical error is made in the process of entering a function

inline, R will give an error and return to the R prompt. For example:

> b.fun = function(){

+ print(3:6

+ }

Error: unexpected '}' in:

"print(3:6

}"

For longer functions, using the R editor or an external editor tends to

be less frustrating.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

130

�An Outside Editor: dget( ) and Copying
and Pasting
An outside editor can be used to create a function. Any editor that

produces text files, such as Notepad, TextEdit, or gedit, can be used

to create an R function. The rules for creating a function are the same

as those described in the first section. Once the function is created,

the function can be imported into the workspace by using the function

dget() or by copying and pasting. (The function dget() and the

corresponding function dput() are one way to import and export

functions in R.)

Say that a function is in a file called function.txt in the same folder as

the R workspace and that the function is syntactically correct. Then, the

following line imports the function into the object g.fun:

g.fun = dget("function.txt")

(Note that R accepts more complex file paths for files, including

absolute addresses on the hard drive and URLs.)

If the text file is not syntactically correct, R returns an error with

information about the syntactical problem in the file.

If the file does not contain a function, or contains more than a

function, R will attempt to run the code.

The file can also be copied and pasted from an outside source—or

from elsewhere in the R session—into an object in R. Start by copying the

function onto the clipboard of the computer. Next, enter the name that

the object is to be called, followed by an equal sign, at the R prompt. The

cursor should then be to the right of the equal sign. Next, paste.

If the function is syntactically correct, the cursor stops to the right of

the close bracket. Press the Return key to complete the process. If the

function is not syntactically correct, copying and pasting will give an error

containing information about the problem with the syntax.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

131

�In R Studio
In R Studio, to create a new function, open a new R script (far left icon).

Use an R script rather than a text file so that you can run the code from the

Source window while debugging. Do not enter the function statement or

the enclosing brackets. Enter variables to be entered as arguments first,

assigning them values. When the lines of code run and run correctly,

click on the wand icon above the Source window and choose “Extract

Function.” R Studio will cue you for a name and create the function in

the Source window with the name assignment. The arguments should be

in the correct place, but you may need to do some editing on the result.

Running the resulting script assigns the function to the name within the

workspace.

Clicking on an existing function under the Environment tab, in the

upper right window in R Studio, opens the function in its own tab in the

Source window. You cannot edit or run the code, but you can copy it, open

a new R script, and paste the code into the R script for editing.

�S4 Methods

S4 methods structure the functions of S4. An S4 method includes a name

for the function being created, the class(s) of the data to be used by the

function, and the function definition. The method can also specify where

to store the method, if different from the workspace in which the method

is created, as well as whether to seal the definition (not allow future

changes.) S4 methods depend on the existence of a generic function that

has the same name given in the method.

In S3, generic functions are functions for which the way the

function behaves depends on the class of an argument. In S4, all

functions are generic. In S4, a generic function is either created or

exists and methods are created for the generic function. A method

depends on the class(s) of the data objects used by the method.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

132

The help page for setMethod() says that S4 usually does the creation

automatically when setMethod() is run for functions that are S3

generics, but it must be done manually for new functions. Methods can

be added to existing S4 generic functions.

The function setGeneric() creates a generic function. There are

ten arguments to setGeneric(), two of which are usually assigned.

The first is “name,” which is a character string containing the name

to be assigned to the function. The standard for S4 function names is

lowercasefirstUpperCaseAfter. The second is def, which is a function

definition and is optional in some cases. For new generic functions, the

argument def is set equal to the function standardGeneric(), which

normally has one argument, f, set equal to the name of the function

in quotes. The rest of the arguments to setGeneric() are optional

or have a default value that should be used. Enter ?setGeneric and

?standardGeneric at the R prompt or use the Help tab in R Studio for

more information about the two functions.

The function setMethod(), is similar to setGeneric(), but also includes

the class(s) associated with the method. The first argument is f and is a

character string of the name to be assigned to the function. For a newly

defined function, you must create the generic function with the desired

name before creating the method. (See the succeeding example.) If the

generic function exists, the names must match. The second argument is

signature which is a character vector and gives the class(s) associated with

the data objects used by the method.

The third argument, definition, defines the function of the method.

The function definition is usually a mixture of S3 and S4; however,

variables entered through the signature class(s) are subscripted using

@ or the function slots() rather than $ or [[. But, if—say—there is

a slot mat in class mats, where mat is a matrix, then mat could be

subscripted with a combination of S3 and S4 methods; for example,

mats@mat[1:3, 4].

Chapter 7 User-Created Functions, Scripts, and S4 Methods

133

The last three arguments to setMethod() are usually left as their

default values. The argument where tells R where to store the method,

by default the namespace of the package for which the function is being

defined. The argument valueClass is obsolete and by default is set to

NULL. The argument sealed lets you freeze changes to the method and by

default is set to FALSE.

This information is from the help page for setMethod(), which can be

accessed by entering ?setMethod at the R prompt or by using the Help tab

in R Studio.

A second example of creating and running a method (there is one in

chapter 5) is as follows:

> setClass("xyz", slots=c(x="numeric", y="numeric"))

> setMethod("lmFunction", signature="xyz", function(x="xyz",

y="missing", ...)

{ print(lm(x@y ~ x@x)) })

Error in setMethod("lmFunction", signature = "xyz", function

(x = "xyz", :

 no existing definition for function ‘lmFunction’

> setGeneric("lmFunction", function(x, y, ...) {

standardGeneric("lmFunction") })

[1] "lmFunction"

> setMethod("lmFunction", signature="xyz", function(x="xyz",

y="missing", ...)

{ print(lm(x@y ~ x@x)) })

> xy1=new("xyz", x=1:10, y=21:30)

> lmFunction(xy1)

Chapter 7 User-Created Functions, Scripts, and S4 Methods

134

Call:

lm(formula = x@y ~ x@x)

Coefficients:

(Intercept) x@x

 20 1

You can see that the method cannot be defined until the generic

function is defined. Note that x as defined in setMethod() has both

the x and the y from the definition of xy1 and that y is set to missing.

In setMethod(), a variable set to missing is not used. Also note that

the function is a new function, not in any of the loaded packages.

There are some testing functions to determine qualities of a function.

The functions isGeneric(), isS4(), isS3method(), and isS3stdGeneric()

can help determine if a S4 method can be defined with a function name.

For example:

> isGeneric("lm")

[1] FALSE

> isS4("lm")

[1] FALSE

> isS3method("lm")

[1] FALSE

> isS3stdGeneric("lm")

[1] FALSE

> setClass("lm", slots=c(fo="formula", df="data.frame"))

Error in setClass("lm", slots = c(fo = "formula", df = "data.

frame")) :

 "lm" has a sealed class definition and cannot be redefined

Chapter 7 User-Created Functions, Scripts, and S4 Methods

135

Here, lm() has a sealed class definition, so a new method cannot be

defined for the function. For some S3 functions, methods can be defined.

For example:

> isGeneric("plot")

[1] FALSE

> isS4("plot")

[1] FALSE

> isS3method("plot")

[1] FALSE

> isS3stdGeneric("plot")

plot

TRUE

> setClass("plot", slots=c(x="numeric", y="numeric"))

> setMethod("plot", signature="plot", definition=function

(x, y ,...){ plot(x@x, x@y) })

> tester=new("plot", x=1:10, y=21:30)

> plot (tester)

> isGeneric("plot")

[1] TRUE

> isS4("plot")

[1] FALSE

> isS3method("plot")

[1] FALSE

> isS3stdGeneric("plot")

[1] FALSE

Chapter 7 User-Created Functions, Scripts, and S4 Methods

136

Note that after creating the method for plot(), the function becomes

an S4 generic function rather than an S3 standard generic function, at least

in the workspace environment.

There are a number of other functions associated with

S4 methods. The functions selectMethod(), findMethod(),

getMethod(), existsMethod(), and hasMethod() are all grouped

together in one help page. The functions selectMethod() and

getMethod() return the function and the class of the method. The

functions existsMethod() and hasMethod() return a logical value

of TRUE or FALSE depending on if the method is found or not. The

functions differ as to whether they allow inheritance. The functions

selectMethod() and existsMethod() do. The function findMethod()

returns the location of the method.

The first argument to all of the functions is f, the name of a generic

function. The second argument is signature, a character vector of

class name(s) consisting of class(s) for which method is defined. The

functions selectMethod() and getMethod() behave similarly, except

that selectMethod() has three arguments that getMethod() does

not have; useInherited, verbose, and doCache, none of which are

normally used.

All of the functions except selectMethod() have the argument where,

which is an optional character variable giving the environment in which

to look for the method. Both selectMethod() and getMethod() have the

arguments optional, mlist, and fdef. The argument optional, if set to

TRUE, tells R to return NULL rather than an error if selectMethod() does

not find a method. The argument does not appear to affect getMethod().

The default value is FALSE for both functions. According to the help page

for these functions, the other arguments are rarely used. More information

can be found by entering ?getMethod at the R prompt or by using the R

Studio help tab.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

137

The function removeMethod() removes a method. The function

takes the f, signature, and where arguments, which are as described

previously. Note that to make changes to a method, the method must

be removed and assigned again after making the changes. For more

information, enter ?removeMethod at the R prompt or use the Help

tab in R Studio.

Generic functions also must be removed at times. Generic functions

are removed by using removeGeneric(). The function is one of a group

of functions under the same help page: Tools for Managing Generic
Functions. The arguments to removeGeneric() are f and signature, which

are as described previously. Some of the other functions listed in the help

page are isGeneric() already described; findFunction() which finds

the locations of a function; removeMethods() which removes all methods

associated with a function; and getGenerics() which lists all generics. For

the last two functions, the location can be specified (use .GobalEnv for

the workspace.) The function standardGeneric() is also at this help page.

Enter ?removeGeneric at the R prompt or use the Help tab in R Studio for

more information.

The function showMethods() shows the methods for S4 generic

functions. The function takes eight arguments. The first is f, the name(s)

of the function(s). The argument is optional. If not used, the function

returns all S4 generic functions. The second is where, the environment(s)

in which to look for the function(s). By default, where is set to the parent

environment of the workspace. To see the methods in the workspace, set

where equal to .GlobalEnv.

The third argument is classes and is a list of classes used to

restrict the search. The argument is optional. The fourth argument is

includeDefs, a logical variable. If TRUE, the functions are printed out.

The default value is FALSE. The fifth argument is inherited, a logical

variable. If TRUE, the inherited methods that have been used during

the session are included in the list of methods. The default value is the

opposite value of includeDefs.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

138

The sixth argument is showEmpty, a logical variable. See the help

page for more information. The seventh argument is printTo, which tell R

where to print the result of the call to the function. By default, the function

prints to the standard output, usually the terminal. The last argument

is fdef which allows you the option of choosing which generic function

definition to use. The argument is optional. Enter ?showMethods for more

information or use the R Studio Help tab.

CRAN’S introduction to S4 methods can be found by entering

?methods::Introduction at the R prompt or by using the Help tab in R

Studio.

Chapter 7 User-Created Functions, Scripts, and S4 Methods

139© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_8

CHAPTER 8

How to Use a Script
or Function
While scripts are just listings of code stored outside of R, functions are

objects of mode function and are stored in the workspace. Most functions

require specific kinds of arguments, which must be input into the function

correctly. For example, if a function calls for a matrix and a data.frame

is input, the function will return an error. Since external tables are often

read into the R workspace as data.frames, using a data.frame for a matrix

is quite a common error. This chapter covers calling a function, using

arguments in a function, and accessing the output of a function, as well as

an example of using a script to do a simple mining of Twitter.

�Calling a Function
Calling a function is straightforward. The name of the function is entered

at the R prompt followed by a set of parentheses which may or may not

contain arguments, depending on the function. If the function does

require arguments, the arguments are separated by commas within the

parentheses.

Sometimes the argument name must be used, but not always.

For values that are entered without names, R assigns the values to the

arguments which are unnamed in the call, starting with the first unnamed

140

variable and continuing in order until the unnamed arguments are

exhausted. The order of the arguments is the order of the arguments within

the parentheses of the function definition.

To illustrate the use of arguments, an example follows using a

function named f.fun(). The function f.fun() calculates a quantile of

the normal distribution given the mean, the standard deviation, and

alpha. The function returns the (1-alpha/2) x 100th percentile of the

distribution. The arguments “se” and “alpha” are given default values and

“mu” is not.

The example starts with a definition of the function, which is followed

by five different calls to the function:

> f.fun = function(mu, se=1, alpha=.05){

 q_value = qnorm(1-alpha/2, mu, se)

 print(q_value)

}

> f.fun(mu=0, se=1, alpha=0.05)

[1] 1.959964

In the first call, each of the arguments is specified by name.

In R, arguments can be in any order if specified by name.

> f.fun(0, 1, 0.10)

[1] 1.644854

In the second call, the values for the arguments are entered without

names. Since the arguments are entered in order, the function knows

which argument to assign to which value. The argument “mu” takes on the

value of “0”, “se” the value of “1,” and “alpha” the value of “0.10,” which is

the order of the arguments within the parentheses in the function.

> f.fun(0, alpha=0.20)

[1] 1.281552

Chapter 8 How to Use a Script or Function

141

In the third call, the first argument is entered without a name, and the

third argument is entered with a name. The second argument takes on the

default value. The argument “mu” takes on the value of “0,” “se” the value

of “1,” and “alpha” the value of “0.20.”

> f.fun(4, 4)

[1] 11.83986

In the fourth call, values for the first two arguments are entered

without names, and the third argument takes on the default value. The

argument “mu” takes on the value of “4,” as does “se.” The argument

“alpha” takes on the default value of “0.05.”

> f.fun(se=1, 0, 0.2)

[1] 1.281552

In the fifth call, the second argument is named, and the first and third

are not, so “mu” takes on the value “0” and “alpha” takes on the value “0.2,”

while “se” takes on the value “1.” Note that the named argument can be

placed anywhere in the list.

�Arguments
Given a function, a listing of the arguments to the function can be found

at the help page for the function. Most help pages distinguish between the

S3 and S4 versions of the functions. The S3 versions give the arguments for

the S3 form of the function. The S4 versions give only those arguments that

must be included, plus the “...” argument. In S4, each method for a generic

function is different, so the arguments may vary by the method.

For some functions, the user must know something about the

theory behind the function to understand the arguments, but for many

functions the arguments are straightforward. As noted in the last section,

arguments with default values do not have to be given a value when the

function is called.

Chapter 8 How to Use a Script or Function

142

Arguments to a function must be of the correct mode and class.

On the help page of a function, descriptions of the arguments are

listed in the “Arguments” section, sometimes giving the mode and(or)

class, but not always. Sometimes, the mode and(or) class is obvious.

Sometimes, more information can be found in the “Details” section.

Sometimes, looking in the “Examples” section is enough to clear up the

form of an argument.

One argument which needs a little explaining is the “...” argument.

The “...” argument tells the user that there are more arguments that may be

entered. The arguments would be to a lower-level function called by the

higher-level function. An example follows.

The example starts by listing two vectors, “x” and “y,” and then

continues with two calls to the function lm() with two different values for

the argument “tol.” (The function lm() fits a linear model.) On the help

page for lm(), there is no argument “tol.” However, there is the argument

“...,” indicating that lm() calls another function for which an argument can

be entered.

The function lm.fit() is a lower level function which lm() calls and

lm.fit() has the argument “tol.” (The argument “tol” gives the tolerance for

the QR decomposition as to whether a matrix is singular.) In the first call

to lm(), the default value for “tol” is used, since “tol” is not specified. In the

second call, lm() passes the value for “tol” to lm.fit().

> x

[1] 2.001 2.000 2.000

> y

[1] 4.03 4.00 4.01

> lm(y~x)

Call:

lm(formula = y ~ x)

Chapter 8 How to Use a Script or Function

143

Coefficients:

(Intercept) x

 -45.99 25.00

> lm(y~x, tol=.001)

Call:

lm(formula = y ~ x, tol = 0.001)

Coefficients:

(Intercept) x

 4.013 NA

In the first call, the default value for “tol” is 1.0e-7, so lm.fit() does not

find a linear dependency in the matrix consisting of a column of ones and

“x.” As a result two coefficients are fit.

In the second call, “tol” is set to 1.0e-3, and lm() determines that there

is a linear dependency in the matrix consisting of a column of ones and “x,”

so only one coefficient is fit.

�The Output from a Function
The output from a function will vary with the function. Plotting functions

mainly give plots. Summary functions give summarized results. Functions

that test a hypothesis give the results from the test.

Most packaged functions print some results directly to the screen,

but most packaged functions also have output which can be accessed

through subscripting. For example, looking at the help page of the

function lm(), under the “Value” Section, coefficients, residuals, fitted.

values, rank, weights, df.residual, call, terms, contrasts, xlevels, offset, y,

x, model, and na.action are all values which can be accessed from a call

to the function.

Chapter 8 How to Use a Script or Function

144

The most common method used to access values is with the “$”

operator, although index subscripting can be used, too. For most functions,

the output is of mode list. The elements of the list can be of any mode.

For the first simple regression model fit in the last section, the

accessible 15 values are as follows:

> a.lm = lm(y~x)

> a.lm$coef

(Intercept) x

 -45.995 25.000

> a.lm$res

 1 2 3

-4.336809e-19 -5.000000e-03 5.000000e-03

> a.lm$fit

 1 2 3

4.030 4.005 4.005

> a.lm$rank

[1] 2

> a.lm$weights

NULL

> a.lm$df

[1] 1

> a.lm$call

lm(formula = y ~ x)

> a.lm$terms

y ~ x

attr(,"variables")

list(y, x)

Chapter 8 How to Use a Script or Function

145

attr(,"factors")

 x

y 0

x 1

attr(,"term.labels")

[1] "x"

attr(,"order")

[1] 1

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>

attr(,"predvars")

list(y, x)

attr(,"dataClasses")

 y x

"numeric" "numeric"

> a.lm$contrasts

NULL

> a.lm$xlevels

named list()

> a.lm$offset

NULL

> a.lm$y

NULL

> a.lm$x

named list()

Chapter 8 How to Use a Script or Function

146

> a.lm$model

 y x

1 4.03 2.001

2 4.00 2.000

3 4.01 2.000

> a.lm$na.action

NULL

In the example, the call to lm() was assigned a name, but lm() could

have been subscripted directly. An example is lm(y~x)$coef. Values

accessed from a call to a function are often used in another function.

Running an R function takes a little care, but with some

experimentation and determination, the results can be very useful.

�Example of a Script: Mining Twitter
This example demonstrates a way to mine Twitter and gives a result

from a mining call. The example is stored on the hard drive as a script

and is not a function. A mixture of S3 and S4 is used in the script. Most

of the objects in “tm,” the text mining package used here, are S4 objects

and are methods.

In order to mine Twitter, you must create a developer account on

Twitter and create an app. To create a developer account, you must have a

Twitter account. If you have a Twitter account, create a developer account

at https://developer.twitter.com. Otherwise, open a Twitter account,

then create a developer account.

To open an account at the developer site, open the “Apply” button

toward the right side of the top menu. Follow the instructions. When the

account is approved, the name you have chosen for the developer account

should then be on the top menu of the developer page, to the right. Choose

the “Apps” item in the dropdown menu below the name.

Chapter 8 How to Use a Script or Function

https://developer.twitter.com

147

In the window that opens, choose the “Create an App” button. Follow

the instructions to create an app. On the page that opens after the app

is created, click on “Details” and look under the “Keys and tokens” tab.

There, you will find the consumer API key and API secret key:

Consumer API keys

(API key)

(API secret key)

(The pound signs in the above will be letters and numbers in the actual

result.)

Below the customer API keys is a button to regenerate the keys. You

can regenerate the keys at any time. Below the regenerate button is a

button to generate tokens.

Select the button to generate tokens. The result will be:

Access token & access token secret

(Access token)

(Access token secret)

(The pound signs will be mostly letters and numbers in the actual

result.) Below the tokens is the access level. The default access is read

and write:

Read and write (Access level)

Below the access level are buttons to revoke the tokens or to

regenerate them. The tokens can be revoked or regenerated at any time.

The tokens and keys are used by the “twitteR” package in R to connect to

the Twitter API.

The Twitter developer app must be open when R or R Studio is run or

the program will crash when R attempts to connect with Twitter and all of

your work will be lost.

Chapter 8 How to Use a Script or Function

148

The libraries “twitteR” and “tm” (for text mining) are loaded first in the

script. The script is below:

library(twitteR)

library(tm)

Connect to Twitter; the consumer_key, consumer_secret,

access_token, access_secret are the ones generated by Twitter.

setup_twitter_oauth(

 consumer_key = "#########################",

 consumer_secret = "###",

 access_token = "###",

 access_secret = "##"

)

Fetch at most 100 tweets about "Clinton" and within 70 miles of

42 N and 95.5 W. The tweets are fetched backwards in time.

tweetsClinton = searchTwitter("Clinton", n = 100,

geocode = "42,-95.5,70mi")

The types and classes of tweetsClinton and of the elements of

tweetsClinton (tweetsClinton is a list).

print(typeof(tweetsClinton))

print(class(tweetsClinton))

print(typeof(tweetsClinton[[1]]))

print(class(tweetsClinton[[1]]))

Manipulate the S4 objects in tweetsClinton into an S3 matrix of

the number of a given word in each tweet. The words are assigned

to the row names.

Chapter 8 How to Use a Script or Function

149

tweetsClintonDF = twListToDF(tweetsClinton)

ClintonCorpus = Corpus(VectorSource(tweetsClintonDF$text))

ClintonTDM = TermDocumentMatrix(ClintonCorpus)

ClintonMatrix = as.matrix(ClintonTDM)

Create a data frame with words in the first column and

the frequencies of the words in the second. Only keep words

with a frequency greater than 12. Print out the result.

ClintonFrqMat = data.frame(Word = rownames(ClintonMatrix),

 Frequency = rowSums(ClintonMatrix))

ClintonFrqMatReduced = ClintonFrqMat[ClintonFrqMat[, 2] > 12,]

print(ClintonFrqMatReduced)

Sourcing the script in R gives:

> source('~/Documents/RQSRexample.R')

[1] "Using direct authentication"

[1] "list"

[1] "list"

[1] "S4"

[1] "status"

attr(,"package")

[1] "twitteR"

 Word Frequency

and and 19

for for 13

hillary hillary 23

https https 77

clinton clinton 43

that that 15

Chapter 8 How to Use a Script or Function

150

the the 58

was was 16

trump trump 18

you you 14

georgepapa19 georgepapa19 15

The tweets have not been cleaned in any way. Usually tweets are

reduced to nontrivial words. Note that “clinton” only shows up in 43 times

in the tweets. The tweets include tweets related to Clinton as well as tweets

including the word “Clinton.”

The sources for the above information include the R help pages and

stack overflow.

More information about the above functions can be found by entering

??tm::tm or ??twitteR::twitteR at the R prompt or by using the “Help” tab in

R Studio.

Chapter 8 How to Use a Script or Function

I/O and Manipulating
Objects

PART IV

153© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_9

CHAPTER 9

Importing and
Creating Data
When you are loading data into R or R Studio, you have a number of

options. For external files, there are several functions that read data from

specific kinds of files into R. For data that are not in files, but accessible

through connections, there are a number of functions that connect to

connections.

In R Studio, many datasets can be read using the “Import Dataset”

tab—under the “Environment” tab in the upper right window. Other types

of files can be loaded into the “Source” (upper left) window in RStudio, as

described in Chapter 2.

R comes with a number of canned datasets, which can be loaded.

Sometimes, the user wants to create data. R has a multitude of random

number generators for data creation. Data can also be entered manually

using c() or by using various other functions to create data with certain

patterns.

On a low level, R reads using connection functions. The higher level

functions that are covered in this chapter use these low-level functions.

For more information about the low-level functions, enter ?connections at

the R prompt or use the “Help” tab in R Studio.

154

The first section of this chapter covers reading data into R and R

Studio and loading R datasets. The second section covers probability

distributions, including random number generators and the function

sample(). The third section covers manual data entry and creating data

with patterns.

�Reading Data into R and R Studio,
Including R Datasets
There are a number of R functions that read text data into R. The most

common ones are scan()—to read data of a given mode, and read.table()

and read.csv()—to read data from a spreadsheet structured table. Some

of the other ones are read.fortran()—to read data coded in FORTRAN

format, read.fwf()—for reading tables in fixed width format, and

read.delim()—for tab delineated columns. There are also functions to read

data in from files created by other statistical software and from databases.

The function dget() reads text files, including those saved with dput(), but

the authors at CRAN recommend against using them anymore, at least for

function and dataset transfers between workspaces, since they save and

load in text rather than binary format.

For binary data, the functions load(), attach(), and sometimes data()

load objects saved with the function save(). The function readRDS() loads

objects saved with saveRDB(). These functions are recommended by

CRAN for transferring R objects between R workspaces.

In R Studio, things are simpler for some specific types of datasets. Not

much effort is required to load datasets in R Studio.

For a complete listing and a lengthy discussion of importing into R, see

http://cran.r-project.org/doc/manuals/r-release/R-data.html.

Chapter 9 Importing and Creating Data

http://cran.r-project.org/doc/manuals/r-release/R-data.html

155

�The Function scan( )
The function scan() imports data from a file or connection, specified

by the value of the argument file or text, or directly from the console.

The function reads data of the atomic modes—the modes raw, logical,

numeric, complex, and character—and sometimes data of mode list.

Scan() reads the data row by row and creates a vector of that which is read.

For importing from a file or the console, the rows do not have to be of the

same length.

If file equals “” (the default value), R reads data from the console—or

from the value of stdin() if that value is different from the console.

The argument file can be set to the file location of the dataset to be read.

Alternatively, the file name can be given using the argument text, which

can also be assigned to a text string input at the console. For all of the modes

except list, all of the data must be interpretable as the same mode, which

is given. For list objects, each second level object must be interpretable

as a single atomic mode. The data contained in all of the second levels is

converted to the highest type present, where the order of the types from

lowest to highest is raw, logical, integer, numeric, complex, and character.

The function scan() is most often used to read an external file or

connection, such as a URL address or a file on the computer. The reference

to the file (the value assigned to file) or connection comes first in the call, if

not assigned using text, and must be contained within quotes or an object

of mode character. A file reference may be relative to the location of the

workspace or an absolute location. An example is

> scan("test.txt")

Read 7 items

[1] 1 3 5 7 1 4 6

where test.txt is a file containing the seven digits in two rows. (To browse

for a file, enter file.choose() for the file reference, that is scan(file.choose()).)

Chapter 9 Importing and Creating Data

156

To read in data at the console, just type or set the data equal to an

argument text, where the data is in quotation marks. For example:

> scan(text = "1 2 3 4")

Read 4 items

[1] 1 2 3 4

Data can also be read in directly from the console by using no

arguments. For example:

> scan()

1: 1

2: 4

3: 9

4: 3

5:

Read 4 items

[1] 1 4 9 3

Here, R cues for a data point with the point number followed by a

colon. To stop entering data, use control-z in Windows and control-d in

Linux, or enter a blank line by pressing the return(enter) key.

If the type of the data being entered is not numeric, the argument what
must be included in the call to scan(). The argument what is set equal to

type(), where type is the type of the data. For example:

> scan("test.txt", what=complex())

Read 7 items

[1] 1+0i 3+0i 5+0i 7+0i 1+0i 4+0i 6+0i

which converts the integer data in the external file test.txt to complex

data. For non-numeric lists, the argument what is set equal to a vector of

the types in the elements of the list. If some of the data in the file is not

readable as the given type, scan() returns an error.

Chapter 9 Importing and Creating Data

157

The function scan() also has the argument sep, which tells scan() the

separator between values in either an external file or in the value of text.
By default, the separator is white space. The argument sep can be set to

any one-byte value that R can read. In the call to scan(), the value for sep

is placed within quotation marks. For example:

> scan(text="1, 2, 3, 4", sep=",")

Read 4 items

[1] 1 2 3 4

Here, a comma is used as the separator between data values.

If two separating symbols in the call to scan() do not have a value

between the two, then by default, the value is set to NA. For example:

> scan(text="1, 2, 3,, 4", sep=",")

Read 5 items

[1] 1 2 3 NA 4

For data with header lines, the argument skip tells scan() to skip lines

before reading data. The value of skip tells scan() how many lines to skip

and can be of any atomic mode except raw, complex where the imaginary

component is not zero, or character where the character is not a number

enclosed in quotes. The value is coerced to a positive integer if possible or

else interpreted as zero. If skip equals zero, no lines are skipped.

To read a header line, the argument nlines tells scan() to read lines up

to and including the value of nlines. The argument nlines behaves like skip

with regard to acceptable values. If nlines is set to zero, all lines are read.

To create a matrix or array, the call to scan() can be part of a call to

matrix() or array(). For example:

> matrix(scan(text="1 2 3 4 5 6 7 8 9 10"), 2, 5, byrow=T)

Read 10 items

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

Chapter 9 Importing and Creating Data

158

There are several other arguments for scan() that do things such as

limit the number of data points to be read, fill out lines of incomplete data,

or tell scan() the style of the decimal point in the data. Of interest are the

arguments fileEncoding and encoding for reading compressed files. More

information can be found by entering ?scan at the R prompt or by using

the “Help” tab in R Studio.

�The Functions read.table( ) and read.csv( )
The two functions read.table() and read.csv()are essentially the

same function, differing only in the default values of the argument

sep and the argument header. As with the function scan(), the

argument sep gives the symbol used to separate values of the data in

the file and can be any one-byte value. The argument header takes on

logical values and tells the function whether to read a header from the

first line or not.

The two functions import data from a file or connection, where the file

or connection is in the form of a matrix, or from values of the argument

text. The functions create a data frame from the data. If the data is from

a file, the location of the file is entered first in the call within quotation

marks. The location of the file can be relative to the workspace or absolute,

including URLs. To browse for a file, enter file.choose() for the quoted

name, for example, read.table(file.choose()). An example with a quoted

name follows:

> read.table("test2.txt")

 V1 V2 V3 V4

1 one 3 5 7

2 two 4 6 8

Note that the columns do not have to be of the same mode. Here, the

file test2.txt contains both character and numeric data and is in the

same folder as the R workspace.

Chapter 9 Importing and Creating Data

159

If the rows in the file are not all of the same length, by default the

function will return an error. The argument fill is a logical argument and tells

R to fill out rows that have fewer elements than other rows. For example:

> read.table("test4.txt", fill=T)

 V1 V2 V3 V4

1 one 3 5 7

2 two 4 6 NA

Here, test4.txt is missing the last element of the second row. R fills in

the element with NA.

If the argument text is used to enter a table, the end of a row is

indicated by \n. For example:

> read.table(text="1 2 3 4 \n 2 3 4 5")

 V1 V2 V3 V4

1 1 2 3 4

2 2 3 4 5

For read.table(), the default value for sep is white space and the

default value for header is FALSE. For read.csv(), the default value

for sep is a comma, and the default value for header is TRUE. (There is

another related functions, read.csv2(), which is for European use and has

dec, the style of the decimal point, set equal to , and sep set equal to ;.)
Since the two functions create a data frame out of the data, the

modes of the elements only need to be consistent down the columns.

If a column contains character data, then by default the column is

converted to a factor. By setting the argument as.is to TRUE, the

conversion is to character. For example:

> read.table("test3.txt", sep=",")

 V1 V2 V3 V4

1 one 1 3 4

2 1 four 3 2

Chapter 9 Importing and Creating Data

160

> class(read.table("test3.txt", sep=",")[,1])

[1] "factor"

> class(read.table("test3.txt", sep=",")[,3])

[1] "integer"

> read.table("test3.txt", sep=",", as.is=T)

 V1 V2 V3 V4

1 one 1 3 4

2 1 four 3 2

> class(read.table("test.txt3", sep=",", as.is=T)[,1])

[1] "character"

> class(read.table("test.txt3", sep=",", as.is=T)[,3])

[1] "integer"

You can see the difference between not setting as.is and setting as.is to

TRUE. The file test3.txt is a file in the same folder as the workspace, is in

matrix form, and contains both character and integer data.

The two functions can read only some types of atomic data: logical,

integer, double, complex, and character. From the R help page for the two

functions, R reads in the data as character data and then converts from

character to one of the classes logical, integer, numeric, complex, or

factor.

As noted above, if as.is is set to TRUE, columns containing character

data are not converted to factors but retain the class character. The

argument as.is can also be entered as a logical vector with a value for

each column. A shorter vector can be entered also, with the values cycling

across the columns.

The argument colClasses manually sets the class of each column and

can be used in place of as.is to keep a column in character mode. The

possible values for the column classes are NA, NULL, logical, integer,

numeric, complex, raw, character, factor, Date, or POSIXct. The values

Chapter 9 Importing and Creating Data

161

are quoted, except for NA and NULL, and are entered as a vector. The

values will cycle.

If the value is NA, the normal conversion will take place. Otherwise,

if possible, the column elements are coerced to the class listed for the

column. For example:

> read.table("test2.txt", colClasses=c("character", "factor",

NA, NA))

 V1 V2 V3 V4

1 one 3 5 7

2 two 4 6 8

> class(read.table("test2.txt", colClasses=c("character",

"factor", NA, NA))[,1])

[1] "character"

> class(read.table("test2.txt", colClasses=c("character",

"factor", NA, NA))[,2])

[1] "factor"

> class(read.table("test2.txt", colClasses=c("character",

"factor", NA, NA))[,3])

[1] "integer"

The arguments row.names and col.names are used to give names to the

rows and columns of the data.frame. For row.names, the argument can be a

character vector of length equal to the number of rows in the data.frame; the

argument can be an integer specifying which column in the data.frame to use

as row names; or the argument can be a character value containing the name

of the column to be used as the row names. The row names do not cycle.

For col.names, the argument is a character vector of names for the

columns. The vector must be of the same length as the number of columns.

If col.names is not specified and header is FALSE, then the columns are

named V1, V2,..., Vn, where n is the number of the last column.

Chapter 9 Importing and Creating Data

162

If header is TRUE and the first column does not have a name, while

the rest of the columns do, then R sets the first column as the row names.

Some examples are the following:

For the matrix

" " " " " "

" "

" "

c1 c2 c3

one

two

3 5 7

4 6 8

é

ë

ê
ê
ê

ù

û

ú
ú
ú

which is the file test5.txt, the example is

> read.table("test5.txt", header=T)

 c1 c2 c3

one 3 5 7

two 4 6 8

Note that header is TRUE, and there is one less row in the first column.

For a matrix consisting of the second two rows of test5.txt, called

test6.txt, an example follows:

> read.table("test6.txt", col.names=c("c1", "c2", "c3", "c4"),

row.names=2)

 c1 c3 c4

3 one 5 7

4 two 6 8

The four names are assigned to the four columns, and then column

two is used for the names of the rows while the other columns retain the

assigned names.

There are several other arguments for the functions read.table() and

read.csv(). A full description of the functions can be found by entering

?read.table at the R prompt or by using the R Studio “Help” tab.

Chapter 9 Importing and Creating Data

163

�The Functions load( ), attach( ), and data( )
The function load() is used to load objects saved externally by the function

save(). When saved using save(), objects are saved in binary format by

default. For this reason, the two functions are preferred to the use of dput()

and dget() to save and load objects.

The arguments to load() are file, envir, and verbose. The argument

file gives the name of the file or connection to be read. The name of a

file must be quoted or a character object. The argument envir gives the

environment into which to load the object. The default value is parent.

env(). The argument verbose by default is FALSE. If verbose is FALSE,

nothing is printed out at the command line during the load. If verbose

is TRUE, the object names of the objects that are loaded are listed. The

objects loaded are loaded into the workspace under the name used when

they were saved. For example:

> load("a.fun.ex")

> load("a.fun.ex", verbose=T)

Loading objects:

 a.fun

 atl.strm

Here, “a.fun” and “atl.strm” are objects saved into the external file

“a.fun.ex”.

The function attach() can be used to give access to a data file saved

using save(). The data file is not actually loaded but is put in the search

stream. The arguments to attach() are what, pos, name, backtick,

and warn.conflicts. The argument what is assigned a character string

containing the name of the external file or a character object. The position

of the data file in the search stream is set by the argument pos, which

defaults to “2L,” the position after the last position used. The argument

name assigns a name to the attached data file. The argument backtick is

Chapter 9 Importing and Creating Data

164

not used. The argument warn.conflicts is logical and tells R whether to

warn the user if there are objects of the same name in lower positions in

the search stream. The default value is TRUE. For example:

> a.fun

Error: object 'a.fun' not found

> attach("a.fun.ex", name="one")

The following object is masked _by_ .GlobalEnv:

 atl.strm

> a.fun

function() {

 # an example

 print(1:5)

}

> ls(pat="a.fun")

character(0)

> detach(one)

> a.fun

Error: object 'a.fun' not found

Here, a.fun is not an object in the workspace, but after “a.fun.ex” is

attached, a.fun is accessible to the workspace. After “a.fun.ex” is detached,

a.fun is no longer accessible.

The function data() loads objects that have been saved in the

subdirectory “data” of the working directory or are in installed packages.

The arguments to data() are …, list, package, lib.loc, verbose, and

envir. The first arguments are character strings containing the names

of datasets for datasets in packages or the name of a file containing data

without its extension—where the extension can be .R, .r, .RData, .rda,

Chapter 9 Importing and Creating Data

165

.tab, .txt, .TXT, .csv, or .CSV. The second argument, list, contains the same

type of information as the first, but in the form of a character vector list.

The argument package lets you specify in which package to look for the

data. By default, all loaded packages and the “data” subdirectory of the

working directory are searched. The argument lib.loc gives the location

of the library(ies) containing the R library(ies) in which to look. By

default, libraries known by R are searched. The argument verbose gives

information about the call that is not normally given. The argument envir

gives the environment in which to put the data, by default “.GlobalEnv.”

The dataset “airmiles” is in the library “datasets” which is loaded

by default when R or R Studio is opened. An example using the dataset

“airmiles” follows:

> library(datasets)

> airmiles

Time Series:

Start = 1937

End = 1960

Frequency = 1

 [1] 412 480 683 1052 1385 1418 1634 2178 3362

[10] 5948 6109 5981 6753 8003 10566 12528 14760 16769

[19] 19819 22362 25340 25343 29269 30514

> ls(pattern="air")

character(0)

> detach("package:datasets", unload=TRUE)

> data("airmiles", package="datasets")

> ls(pattern="air")

[1] "airmiles"

Chapter 9 Importing and Creating Data

166

The dataset “airmiles” is available when “datasets” is loaded but is not

in the workspace, but when “datasets” is detached, “airmiles” is no longer

available. The call to data() loads “airmiles” into the workspace, even

though “datasets” is not loaded.

This second example loads data from the file system:

> save("atl.strm", "atl.strm.plot.fun", file="~/data/AS.RData")

> rm(atl.strm, atl.strm.plot.fun)

> ls(pat="atl")

character(0)

> data("AS")

> ls(pat="atl")

[1] "atl.strm" "atl.strm.plot.fun"

First, the objects “atl..strm” and “atl.strm.plot.fun” are saved to the file

“AS.RData.” Then, the objects are removed from the workspace. Last, the

objects are loaded back into the workspace using data(). In the example,

the file name syntax is that of OS X. The syntax should match that of your

operating system.

More information can be found by entering ?load for load(), ?attach for

attach() or ?data for data() at the R prompt, or by using the “Help” tab in R

Studio.

�The Function readRDS( )
The function readRDS() reads a single object saved using saveRDS(). Files

saved with saveRDS() are saved in binary format. The function readRD()

has two arguments, file and refhook. The argument file gives the name

of the file or connection where the object was saved and must be either a

character string or a character object. To quote from the R help page for

Chapter 9 Importing and Creating Data

167

readRDS(), the argument refhook contains “a hook function for handling

reference objects.” The default value is NULL.

Here is an example:

> saveRDS(atl.strm.plot.fun, "ASPF")

> rm(atl.strm.plot.fun)

> ls(pat="fun")

character(0)

> atl.strm.plot.fun = readRDS("ASPF")

> ls(pat="fun")

[1] "atl.strm.plot.fun"

First, the object “atl.strm.plot.fun” is saved to the file “ASPE” using

saveRDS(). Then, the object is removed from the workspace. Last, the file is

loaded back into the workspace using readRDS().

More information can be found by entering ?readRDS at the R prompt

or by using the “Help” tab in R Studio.

�Other Read Functions to Import Files
Other functions for importing files will not be covered here. A search

on read, done by entering ??read at the R prompt, gives many of the

functions that read into the R workspace.

�Reading Data Using R Studio
To load datasets into R Studio, go to the “Environment” tab in the

upper right window. Select “Import Dataset.” You are given six possible

selections; from text using functions in the base package, from text using

functions from the readr package, from an Excel dataset, from a SPSS

dataset, from a SAS dataset, and from a Stata dataset.

Chapter 9 Importing and Creating Data

168

If the data is in a text file in columns (for example, a .csv, .txt, or

.dat file), “From Text (base)” is appropriate. By selecting this choice,

you are taken to the directory of files on your computer. Select the file

containing the data to be loaded. A form opens with choices to be used

in reading the data on the left, and an “Input File” window and a “Data

Frame” window on the right. The “Input File” shows how R Studio sees

the input file given the default choices on the left and the “Data Frame”

window shows the data frame that would be created given the default

values.

The first choice on the left is the name to be supplied to the data

frame in the workspace. The default name is based on the file name.

Spaces in the file name are replaced by underscores. The name can

be changed. The second choice is the encoding of the text in the file.

Normally, the default value of “Automatic” will read the file. The third

choice is “Header,” which by default is “No.” If there is a header in the

data file, change “Header” to “Yes.”

The fourth choice is “Row names,” giving the choices of “Automatic,”

“Use first column,” or “Use numbers.” The default value is “Automatic.”

The fifth choice is “Separator.” Depending on the type of separator used in

the data file, the separator can be “Comma,” “Whitespace,” “Semicolon,”

or “Tab.” The sixth choice is the form of the decimal point in the data. The

choices are “Period” and “Comma.” The seventh choice is “Quote” for the

type of quoting used in the data file. The choices are “Double quote (“),”

“Single quote (‘),” and “None.”

The eighth choice is the symbol used to indicate that a line in the file is

a comment. The choices are: “#”, “!”, “%”, “@”, “/”, and “~”. The ninth choice

is the value to use for missing data. Any text can be entered. The default

value is “NA.” The last choice is “Strings as factors.” Uncheck the box if

strings should be read in as character strings rather than factors.

When the data in the “Data Frame” window is in the desired form,

select the “Import” button to the right below the window. R Studio will

import the dataset.

Chapter 9 Importing and Creating Data

169

With the import choice, “From Text (readr),” you can read using a file

or an “URL.” Enter the file or URL address in the “File/URL” box. After

entering the address, change the “Import Options” to the appropriate

options for the data. The choices are similar to those for “From Text

(base)” but a little more flexible. The option “Name” defaults to “dataset”

before the data is updated and is changed to the name of the dataset in the

address after updating. “Skip” tells R Studio how many lines to skip. If there

is no header row, uncheck “First Row as Names” (the first row is the row

after any skipped lines.)

Uncheck “Trim Spaces” to not trim white space in the data file.

Uncheck “Open Data Viewer” to not open the dataset in the source

window after loading. The “Delimiter” choices include the choice of a

user-specified one-byte delimiter. “Quotes” gives the method of quoting

if quotes are present. “Locale” gives default values for various formats

normal in the locale (country or language) of the data. “Escape” gives the

escape character for the data, if present. The possible values for indicating

a comment are “Default”, “#”, “%”, “//”, “””, “!”, “;”, “—“, “*”, “||”, “””, “*”, “\”, and

“*>”. The “NA” choices are “Default”, “NA”, “null”, “0”, and “empty”.

After choosing the import options, select the “Update” button to the

right of the “File/URL” box. The data will load into the “Data Frame”

window using the code in the “Code Preview” window—which can be

changed. “Name” will be changed to the file name. At this point, the name

to be assigned to the dataset in R Studio can be changed. If necessary,

make changes to the import options or the code, as indicated by the data

in the “Data Frame” window. The data preview will update as changes are

made. When ready, select the “Import” button in the lower right of the

“Import Text Data” window. The dataset will load. Or select “Cancel” to

leave the window without loading the data.

The options “From Excel,” “From SPSS,” “From SAS,” and “From Stata”

are similar to “For Text (readr)” and are not covered here.

Chapter 9 Importing and Creating Data

170

�R Datasets
Many of the packages in R come with datasets. Some of these datasets

are found in the package datasets, which is one of the packages installed

by default in R. To access datasets from the package datasets, enter

library(datasets) at the R prompt or check the box to the left of datasets

under the “Packages” tab in R Studio. To see the datasets in datasets,

enter library(help=datasets) at the R prompt or select datasets under

the “Packages” tab. Once the library is loaded, the datasets in datasets are

accessible.

You can also use the function attach() to get access to a dataset

in a library without loading the library. Both the package and the

dataset names are required, separated by two colons and unquoted,

for example, attach(datasets::attitude). Attached datasets

should be detached after you are done with them, for example,

detach(datasets::attitude).
For any library, once the library is loaded, the datasets in the library

are accessible like any other object in the workspace. A dataset can be

an atomic object, a data.frame, or a list. The function attach() gives an

error if the dataset is not a data frame or list, but the object is available

just by using the name of the object if the library is loaded. In R Studio,

the datasets do not appear under the “Environment” tab, however, so the

datasets are not in the workspace. Use the data() function to load the data

into the workspace, as seen previously.

The attach() function attaches into a certain position in the workspace.

R searches for objects through positions in the workspace. Position one is

the workspace. The first attach() call attaches in position two, the second

position three, and so on. A position may be specified in the call. R uses the

first object with the name that it finds, starting with position one.

Chapter 9 Importing and Creating Data

171

�Probability Distributions and the Function
sample( )
R has a wealth of random number generators. For probability

distributions, the random number generator is one of four functions

associated with the probability distribution. All of the four functions are

covered here. The functions associated with probability distributions

have the same basic form.

Entering ?distribution at the R prompt gives the distributions—and

generators—in the package stats. Many of the distributions in other

packages can be found at https://cran.r-project.org/web/views/

Distributions.html.

�Probability Distributions
For the probability distributions in the package stats, there are four

functions associated with a distribution: ddist(), pdist(), qdist(), and

rdist(), where dist describes the distribution. For example, for the normal

distribution, dist equals norm. Not all distributions have all four.

The first function is the function for the density. The function, ddist(),

gives the heights of the probability density function at specified values of a

vector of numbers. The second function is for the cumulative probability.

The function, pdist(), by default gives the areas under the probability

density function to the left of the specified values of a vector of numbers.

The third function is for quantiles. The function, qdist(), by default

gives the values on the real line for which the areas to the left of the

values are equal to the values of a specified vector of probabilities. The

fourth function is the random number generator. The function, rdist(),

generates pseudorandom variables from the distribution. For all of the

functions, the vectors can be vectors of length one.

Chapter 9 Importing and Creating Data

https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Distributions.html

172

The four functions have arguments to specify the standard parameters

of the given distribution, for many of which there are defaults. For

example, for the normal distribution, the arguments are mean and sd and

are set equal to 0 and 1 by default. Both the variables mean and sd can be

entered as vectors and will cycle. The vectors must be numeric or logical.

Logical vectors are coerced to numeric. The distributions in the package

stats are given in Table 9-1 along with the parameter arguments for the

distributions.

Table 9-1.  Probability Distributions in Package Stats

Distribution Name in R Parameters of the Distribution

beta shape1=1, shape2=2, npc=0

binom size, prob

birthday classes=365, coincident=2

cauchy location=0, scale=1

chisq df, npc=0

exp rate=1

f df1, df2, npc

gamma shape, rate=1, scale=1/rate

geom prob

hyper m, n, k

lnorm meanlog=0, sdlog=1

multinom size, prob

nbinom size, prob, mu

norm mean=0, sd=1

pois lambda

(continued)

Chapter 9 Importing and Creating Data

173

For all of the four functions, the first argument is required and does

not have a default. For the density functions, the first argument x is a

vector of real numbers or values that can be coerced to real numbers.

For the cumulative probability functions, the first argument q is also a

vector of real numbers or values that can be coerced to real numbers. For

the quantile functions, the first argument p is a vector of probabilities or

values that can be coerced to a value between zero and one inclusive.

For the random number generators, the first argument n (nn for the

hypergeometric, sign rank, and wilcox distributions) is a positive integer,

or a value that can be coerced to integer, that tells R how many numbers to

generate.

In general, for the density functions, if the values of the first argument

are to be considered as logs of the values of interest, the logical argument

log is set to TRUE. For the probability and quantile functions, the logical

argument log.p is set to true if the values that are for the probabilities are

entered or output as logs of the probabilities.

Distribution Name in R Parameters of the Distribution

signrank n

t df, ncp

tukey nmeans, df, nranges=1

unif min=0, max=1

weibull shape, scale=1

wilcox m, n

The prefixes are d, p, q, and r. The multinom function only has d and r.
The tukey function only has p and q. The birthday function only has p
and q and does not have a log.p argument. From the CRAN help page
for distribution.

Table 9-1.  (continued)

Chapter 9 Importing and Creating Data

174

In general, for the cumulative probability and quantile functions,

whether to use the upper tail or the lower tail of the distribution can be

set using the logical argument lower.tail. The lower tail is set by default.

Lower tails are the area under the distribution function for values less than

or equal to the values of the first argument, and upper tails are the area

under the distribution function for values greater than the values of the

first argument.

Also, in general, parameters can be entered as vectors and will

cycle. If an illegal value for a parameter is entered, the function will

give an error.

More information about a given probability distribution can be

found by entering ?ddist at the R prompt, where dist is the name of the

distribution from Table 9-1, except for the tukey and birthday distributions

for which ?pdist works. Or use the “Help” tab in R Studio.

�The Function sample( )
Sometimes, a random sample is needed rather than random numbers. The

function sample() takes a random sample of atomic objects, list objects, or

any other mode object for which length is defined.

The function sample() takes four arguments. The first argument, x,

is the object to be sampled. If x is a single positive real number greater

than one, sample() samples from the sequence from 1 to the real number

rounded down to an integer. If x is an object that can be coerced to a vector

or a single positive number and no other arguments are given, sample()

returns a permutation of the object or the sequence from one to the

number rounded down to an integer.

The second argument size is the number of items to be sampled. The

argument size can be a nonnegative integer or a real number that can be

rounded down to a nonnegative integer.

Chapter 9 Importing and Creating Data

175

The third argument is the logical argument replace, which tells

sample() whether to sample with replacement. The default value is

FALSE, that is to sample without replacement. If size is larger than the

length of x and replace is FALSE, then sample() will give an error.

The fourth argument is prob and gives a list of weights for the

sampling. The argument prob must be of the same length as x, must have

elements that can be coerced to non-negative numeric elements and

for which at least half of the coerced elements are nonzero. The coerced

elements of prob do not have to sum to one.

For example:

> sample(10)

 [1] 8 10 6 4 7 5 3 9 1 2

> sample(10, 5)

[1] 3 1 6 8 9

> sample(c("a1", "a2", "a3"), 6, replace=T)

[1] "a1" "a1" "a1" "a3" "a3" "a1"

> sample(11:21, prob=1:11)

 [1] 18 20 14 21 19 17 12 16 15 13 11

More information about sample() can be found by entering ?sample

at the R prompt or by using the “Help” tab in R Studio.

�Manually Entering Data and Generating
Data with Patterns
Data can be entered manually using the function c(), where the c stands

for collect. Sometimes data with a certain pattern is needed, for example, in

setting up indices for matrix or array manipulation or as input to functions.

Chapter 9 Importing and Creating Data

176

There are a number of functions in R that give patterned results, which

can be useful. Sometimes indexed names are needed for dimensions

in a vector, matrix, or array. The function paste() can be used to create

indexed names.

�The Function c( )
The function c() collects objects together into a single object. The objects

to be collected are separated by commas within the call to c(). The objects

can be NULL, raw, logical, integer, double, character strings (which

must be quoted), named objects (which must be atomic objects, lists, or

expressions), lists, and/or expressions. Objects can also be functional calls

that return any of the above classes.

If all of the objects in the call are atomic objects, the function c()

collects the objects into a vector of the elements making up the objects.

The class of the resulting vector is the highest level class within the

elements of the vector, where the levels of the classes increase in the order

NULL, raw, logical, integer, double, complex, and character.

An example of the hierarchy follows:

> rw = as.raw(c(36, 37, 38, 39))

> rw

[1] 24 25 26 27

> c(rw, rw)

[1] 24 25 26 27 24 25 26 27

> c(rw, TRUE)

[1] TRUE TRUE TRUE TRUE TRUE

> c(rw, 40)

[1] 36 37 38 39 40

Chapter 9 Importing and Creating Data

177

> c(rw, 40.5)

[1] 36.0 37.0 38.0 39.0 40.5

> c(rw, 1+1i)

[1] 36+0i 37+0i 38+0i 39+0i 1+1i

> c(rw, "six")

[1] "24" "25" "26" "27" "six"

The conversion from raw is automatic except for the conversion to

character, which maintains the raw values.

The function c() has one possible named argument, the logical

argument recursive. The default value of recursive is FALSE. If recursive

is set to TRUE and the collection contains a list but not an expression, then

the list is taken apart to the lowest level of the individual elements in the

list and a vector of atomic elements is returned. The object takes on the

class of the highest level of class in the object. If recursive is FALSE, the

resulting object becomes a list.

In the hierarchy of classes, list is above the atomic classes but below

expression. If an expression is included in the call to c(), then the result

has class expression.

An example for objects of class list and expression follows:

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

Chapter 9 Importing and Creating Data

178

> c(a.list, 1:2)

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

[1] 1

[[4]]

[1] 2

> c(a.list, 1:2, recursive=T)

[1] "1" "2" "3" "4" "abc" "cde" "1" "2"

> a.expr = expression(y ~ x, `1`)

> c(a.list, a.expr)

expression(1:4, c("abc", "cde"), y ~ x, `1`)

In the first call to c(), an object of class list is returned. In the second

call, an object of class character is returned. In the third call, an object of

class expression is returned.

Names can be assigned to the elements of the object created by c() by

setting the elements equal to a name in the listing—for example:

> c(a=1,b=2,3)

a b

1 2 3

Here, the first two elements are assigned the names a and b while the

third element is not assigned a name.

Chapter 9 Importing and Creating Data

179

More information about c() can be found by entering ?c at the R

prompt or by using the “Help” tab in R Studio.

�The Functions seq( ) and rep( )
The functions seq() and rep() are used for sequences and repeated

patterns. In the simplest form, using seq() is the same as using the

colon operator to create a sequence. However, seq() can create more

sophisticated sequences than the colon operator. The function rep()

repeats the first argument to the function a specified number of times,

where there are two possible ways to do the repetition.

�The Function seq( )

The function seq() has six arguments. The first two arguments are the

starting and ending values of the sequence and are named from and to.

The arguments from and to can take on logical, numeric, or complex

values. For logical values, TRUE is coerced to one and FALSE is coerced to

zero. For complex values, the imaginary part is dropped. Both to and from

are set to one by default.

The third argument is by. The argument by gives the value by which to

increment the sequence. The argument can also take on logical, numeric,

and complex values; however, it cannot equal FALSE since FALSE coerces

to zero and by cannot equal zero. The argument does not have to divide

into the difference between to and from evenly. The sequence will stop

at the largest value less than or equal to to if to is greater than from. If to

is less than from, then by must be negative and the sequence stops at the

smallest value greater than or equal to to.

The fourth argument is length.out. By default, length.out is set to

NULL. The argument length.out can be used in place of by. The argument

gives the length of the sequence to be output. If length.out is specified, by

defaults to (to - from) / (length.out-1).

Chapter 9 Importing and Creating Data

180

The fifth argument is along.with. The argument along.with is also

used in place of by. The length of the sequence to be output is given

by the length of along.with. The sixth argument is the argument ... for

any arguments to or from lower-level functions used by seq(). Some

examples follow:

> seq(3)

[1] 1 2 3

Entering just one value without a name gives a sequence from one to

the largest integer less than or equal to the value for positive values or the

smallest integer greater than or equal to the value if the value is negative.

> seq(3, 10)

[1] 3 4 5 6 7 8 9 10

When two values are entered without names, the first is interpreted

as the from value, the second is interpreted as the to value, and by is set

equal to one.

> seq(3, 10, 2)

[1] 3 5 7 9

When three values are entered without names, the first is interpreted

as the from value, the second is interpreted as the to value, and the third is

interpreted as the by value.

> seq(3, 10, len=4)

[1] 3.000000 5.333333 7.666667 10.000000

Here, length.out is shortened to len.

 > seq(3, 10, along=c(1,2,1,2))

[1] 3.000000 5.333333 7.666667 10.000000

Chapter 9 Importing and Creating Data

181

Here, along.with is shortened to along.

> seq(c(1,2,1,2))

[1] 1 2 3 4

If a vector with more than one element is entered as the only

argument, a sequence starting with one is created, with by equal to one,

and of length equal to the length of the vector.

> seq(len=4)

[1] 1 2 3 4

> seq(7,along=c(1,2,1,2))

[1] 7 8 9 10

> seq(7,len=4)

[1] 7 8 9 10

Entering length.out or along.with alone or with a value for from

returns a vector starting with the value of from, with by equal to 1, and of

the correct length. For long sequences, there are lower level functions that

are faster. See the help page for seq(). More information about seq() can

be found by entering ?seq at the R prompt or use the “Help” tab in R Studio.

�The Function rep( )

The function rep() repeats the first argument in a pattern determined by

the other the arguments. The first argument can be any type of object that

can be coerced to a vector. The other three arguments are times, each, and

length.out. The default values for times, each, and length.out in the S3

system are 1, 1, and NA, respectively.

The argument times is a vector of values that can be coerced to integer.

The argument must be either a single value or of the same length as the

first argument. If the argument takes a single value, the first argument is

repeated the number of times of the single value.

Chapter 9 Importing and Creating Data

182

If the argument times is of length equal to the length of the first

argument, then each element of the first argument is repeated the number

of times indicated by the corresponding element of the argument times.

The argument times is the second argument to rep(). For example:

> rep(0,5)

[1] 0 0 0 0 0

> rep(1:3, 5)

 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

> rep(1:3, 2:4)

[1] 1 1 2 2 2 3 3 3 3

Here, the second argument is not explicitly called times, but times

implicitly takes on the value.

The argument each can be any object that can be coerced to a vector of

integers, where the first element is non-negative. Only the first element of

the object is used. The argument tells rep() to repeat each element of the

first argument each times. For example:

> rep(1:3, each=3)

[1] 1 1 1 2 2 2 3 3 3

>

> rep(1:3, each=3, times=2)

 [1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

>

> rep(rep(1:3, times=2:4), each=2)

 [1] 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3

>

> rep(rep(1:3, times=2:4), times=2)

 [1] 1 1 2 2 2 3 3 3 3 1 1 2 2 2 3 3 3 3

Chapter 9 Importing and Creating Data

183

The last argument is length.out. The argument can take on any value

that can be coerced to an integer vector and for which the first element

is non-negative. Only the first element is used. If length.out is set to a

value, only the number of elements given by the value of the argument is

returned. For example:

> rep(rep(1:3, times=2:4), times=2, len=8)

[1] 1 1 2 2 2 3 3 3

Here, length.out is shortened to len.

More information about rep() can be found by entering ?rep at the R

prompt or use the “Help” tab in R Studio.

�Combinatorics and Grid Expansion
Combinatorics is a subject about the combinations that can be made from

a set of discrete values. Combinations are all of the combinations that are

possible from a discrete set of values for a given number of elements in

each combination, where no element is repeated. Permutations are the set

of all possible permutations of a given size from a discrete set of elements.

Grid expansion is about the expansion of different sets of elements so that

each element of each set is linked with every element of the other sets.

Probably the easiest way to see what the combinations, permutations, and

grid expansion involve is by showing some examples.

Three functions that are relevant are combn(), permsn()—which

is in library prob—and expand.grid. The function combn() takes the

arguments x, m, FUN, simplify, and The argument x is any object

that can be coerced to a vector and is the discrete set from which the

combinations are formed. The argument m is the number of elements

to include in each combination. The argument FUN is an optional

Chapter 9 Importing and Creating Data

184

function to operate on the elements of x. The argument simplify

is logical. If TRUE, an array or matrix is returned. If FALSE, a list is

returned. The default value is TRUE. The argument ... contains any

arguments for FUN. For example:

> combn(1:3,2)

 [,1] [,2] [,3]

[1,] 1 1 2

[2,] 2 3 3

Note that the combinations are down the rows.

The function permsn() is in the package prob. Since the package is

not one of the packages installed by default, the package may need to be

installed. (See Chapter 1.) If the package is installed, the package must be

loaded with

library(prob)

The function permsn() takes just two arguments, x and m, which are as

described for combn(). Following is an example for permsn():

> permsn(1:3,2)

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 1 3 2 3

[2,] 2 1 3 1 3 2

Note that the permutations are down the rows. Also note that while

combn() just has the combination (1,2), permsn() includes both (1,2) and

(2,1) and so forth. The function permsn() returns a matrix.

The function expand.grid() takes objects as arguments. The objects

are separated by commas and must be able to be coerced to a vector.

Chapter 9 Importing and Creating Data

185

The function returns the vectors crossed with each other in a data frame.

For example:

> expand.grid(1:2,3:4,5:6)

 Var1 Var2 Var3

1 1 3 5

2 2 3 5

3 1 4 5

4 2 4 5

5 1 3 6

6 2 3 6

7 1 4 6

8 2 4 6

Here, the combinations are across the rows.

More information about combn(), permsn(), and expand.grid() can

be found by entering ?combn, ?prob::permsn, and ?expand.grid at the

R prompt. Note that if prob is not installed, the second command will not

work. Or use the “Help” tab in R Studio after installing the package “prob.”

�The Function Paste
This chapter ends with the function paste(). The function is used to

create character strings out of any type of object. Other than the objects

to be strung together, which are separated by commas, paste takes two

arguments, sep and collapse. The argument sep gives the value of what

is to separate the individual terms and is by default a white space. The

argument sep must be a character string or character object. To set the

value to nothing, set sep equal to “”.

The argument collapse is also a character string or object and is used

to separate results.

Chapter 9 Importing and Creating Data

186

One() of the useful applications of paste()is the creation of

dimension names. Here is an example of three simple applications

of paste(). The second example would be appropriate for creating

dimension labels.

> paste("a", 1:3)

[1] "a 1" "a 2" "a 3"

>

> paste("a", 1:3, sep="")

[1] "a1" "a2" "a3"

>

> paste("a", 1:3, sep="", collapse="+")

[1] "a1+a2+a3"

You can find more information about paste() by entering ?paste at

the R prompt or by using the “Help” tab in R Studio.

Chapter 9 Importing and Creating Data

187© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_10

CHAPTER 10

Exporting from R
Being able to export from R makes R more useful. Objects may be

exported to files or connections. Since R Studio does not have specialized

methods for exporting objects, only command line R methods are

covered here. In this chapter, we cover exporting to external files on the

hard drive and to the console. You can find information about exporting

to connections by entering ?connections at the R prompt or by using the

“Help” tab in R Studio.

There are a number of functions that export to external text files, eight

of which we will discuss in this chapter. The first is the function dump().

The function dump() can write named objects of any kind to an external file

in text format.

The next function is sink(). The function sink() can sink output

that would normally be displayed at the console to an external file in text

format. Next is the function write(). The function write() can write

atomic data to an external file in text format. Next comes the function

write.matrix(). For matrices and data frames, the function write.

matrix() exports the matrix or data frame in tabular text format.

The next two functions are write.table() and write.csv(). For objects

that can be coerced to a data frame, write.table() and write.csv() can

write the object to an external file while maintaining the data frame structure.

The functions are slower but more sophisticated than write.matrix() and

write tabular text data.

188

The last two functions we cover are save() and saveRDS(). These

functions save objects in binary format by default and are the functions of

choice to transfer data sets and functions between workspaces.

There are also functions that convert data frames to Excel, SPSS, SAS,

and Stata formats, which we briefly cover in this chapter. Also, output at

the console can be cut and pasted to an external file.

A table of importing and exporting functions covered in the book is

given in Table 10-1, where some functions are paired.

�The Function dump( )
The function dump() takes a vector of object names and exports the

contents of the objects to a file. The file will have a text format. (The

function source() reads the dumped file into a two element list containing

the value read and a logical value indicating if the result is visible. If more

than one object is dumped, only the last object is sourced.)

The first argument to dump() is list and is a collection of the objects to

be dumped. To enter the objects into the function, the object names are

collected into a character vector with the object names in quotes.

For example:

> a = function(){ print(1:4) }

> b = expression(x~y)

> c = list(1:4, "a")

> d = c(1, 2, 3, 4)

> dump(c("a", "b", "c", "d"), file="")

a <-

function(){print(1:4)}

b <-

expression(x ~ y)

c <-

Chapter 10 Exporting from R

189

list(1:4, "a")

d <-

c(1, 2, 3, 4)

.

Other than the vector of named objects, the function takes the

arguments file, append, control, envir, and evaluate.

The argument file contains the location to which the function writes.

If the argument is set to “”, the dump goes to the console or stdout() if

stdout() is not the console. A hard drive address is an option for file and

can be either relative to the working directory or an absolute address. For a

hard drive address, the location is a character string or a character object.

The default value is “dumpdata.R”.

The argument append is a logical variable. If append is TRUE and file

equals a file name, dump() appends the dump to the existing file. If FALSE,

the existing file is overwritten. The default value is FALSE.

The argument envir is an argument of mode environment and tells

dump() in which environment to look for the objects to be dumped. The

default value is parent.frame().

The arguments control and evaluate have to do with saving and

reloading functions, where dump() is used to save and source() is used

to load the function. Control gives the deparse options used by dump(),

by default “all,” and evaluate is a logical variable that tell R whether to

evaluate promises, by default TRUE.

You can access the help page by entering ?dump at the R prompt or

under the “Help” tab in R Studio.

�The Function sink( )
The function sink() sends output from command line commands to a

file or connection. The function sink() continues writing until sink()

or sink(file=NULL) is entered at the R prompt. The function takes four

arguments: file, append, type, and split.

Chapter 10 Exporting from R

190

The file argument tells sink() where to write the output. If writing to a

hard drive file, the write location is a character argument, which is a hard

drive address within quotes. The address can be relative to the workspace

folder or absolute. The option file=“” does not work for sink().

The second argument, append, tells sink() whether to append or

overwrite the file. The argument is a logical argument. For append equal to

TRUE, the file is appended. For FALSE, the file is overwritten. The default

value is FALSE.

The third argument, type, tells sink() which of two possible streams to

sink. The argument is a character argument, which can take on one of two

values: output or message. For output, the output stream is sent to the file.

For message, any messages generated by the command are sent to the file.

The default value is output.

The fourth argument, split, is a logical argument that tells sink() how

to split the stream. If FALSE, the output stream is not sent to the console.

If TRUE the output stream is sent to both the file and the console. The

default value is FALSE.

Following is an example of the use of sink():

> sink("test.txt")

> rnorm(10)

> sink()

The file "test.txt" is relative to the folder containing the R

workspace. The contents of test.txt are

[1] �-0.30618294 -0.52505474 0.47243057 -0.89954490

-1.06653790 0.03690703

[7] 1.81562861 -0.74177999 -0.28352208 -1.28133196

Note that the command lines are not output.

For more information, enter ?sink at the R prompt or use the “Help”

tab in R Studio.

Chapter 10 Exporting from R

191

�The Function write( )
The function write() can write atomic objects to a file, and it writes

in tabular text format. The objects are entered as a single vector, for

example, as a collection of objects collected using c(). If the data

are in a matrix or array, write() reads the data down the columns or

dimensions of the matrix or array, but writes across rows in the two-

dimensional output.

The first argument is x, the vector to be exported. The argument is

usually any object of an atomic mode. (See the help page for cat() for more

information on acceptable modes.)

Other than the vector to be exported, there are four more arguments

to write(). The first is the character argument file, which tells write()

where to write the output. The argument can be a connection or a location

on a hard drive, relative to the workspace or absolute. If “” is given for file,

the output is sent to the console or to the value of stdout() if stdout() is not

the console. The default value is “data.” The object can also be piped to a

command in R.

The second argument is ncolumns. The argument ncolumns can be

logical, numeric, or complex, and if it is not an integer, it is coerced to an

integer. The argument gives the number of columns for the exported table.

By default, the argument takes on the value if(is.character(x)) 1 else 5.

So, if the data is of mode character, the output matrix has one column by

default. Otherwise, the output matrix has five columns by default.

The input file does not have to be of a length divisible by ncolumns.

In other words, the last row does not have to be complete.

The third argument, append, is a logical argument. If set to TRUE, the

output is appended to the file. If set to FALSE, the file is overwritten.

The default value is FALSE.

The fourth argument, sep, is a character string that gives the characters

to be placed between the elements of the output matrix. The default value

is a white space.

Chapter 10 Exporting from R

192

An example follows:

> x=1:4

> y=5:8

> z=rbind(x, y)

> w=paste("a", 1:3, sep="")

> b = rep(" ", 4)

> write(c(x, y, b, z, b, w), file="", ncol=4, sep=" + ")

1 + 2 + 3 + 4

5 + 6 + 7 + 8

 + + +

1 + 5 + 2 + 6

3 + 7 + 4 + 8

 + + +

a1 + a2 + a3

Note that when entered separately, x and y each exports as a row.

When x and y are bound together into a matrix using rbind(), write()

goes down the two columns to read and writes the result across the rows.

Also note that there are four columns as specified by ncol and that there

are only three elements in the last row.

You can find more information about write() by entering ?write at the

R prompt or by using the “Help” tab in R Studio.

�The Function write.matrix( )
The function write.matrix() is in the package MASS, which is not

a package that is loaded by default. MASS can be loaded by entering

library(MASS) at the R prompt since MASS is installed by default when R

is installed. According to the CRAN writers, write.matrix() is much faster

than write.table() for large data sets, so the function may be preferable if

the matrix or data.frame is large and the data frame is appropriate.

Chapter 10 Exporting from R

193

The function has the arguments x, file, sep, and blocksize. The

argument x is the object to be exported and should be a matrix or a data.

frame containing objects of just one mode. If modes are mixed, some

strange things can happen. The function only exports in one mode, which

is why write.matrix() is faster than write.table().

The argument file gives the location to which to write. For addresses

on the hard drive, the argument is of mode character and is either relative

to the workspace or absolute. The default value is “”, which directs output

to the console or to the value of stdout() if it is not the console.

The argument sep is a character string that gives the separator between

the outputted elements. The argument defaults to white space.

The argument blocksize has no default value and does not need to

be entered. If entered, the argument tells write.matrix() the size of

the block of data to be transferred at one time. According to the CRAN

writers, the value should be as large as possible for the amount of

memory available.

Here is an example. The object mat is a matrix, the object mat.df is

a data frame of one mode, the object mat.df.x is a data frame of mixed

numeric and character modes. The default value of file is used as follows,

so the outputs goes to the console.

> mat = matrix(1:4, 2, 2, dimnames=list(c("r1", "r2"),

c("c1", "c2")))

> mat

 c1 c2

r1 1 3

r2 2 4

> write.matrix(mat)

c1 c2

1 3

2 4

Chapter 10 Exporting from R

194

> mat.df=data.frame(mat)

> mat.df

 c1 c2

r1 1 3

r2 2 4

> write.matrix(mat.df)

c1 c2

1 3

2 4

> mat.df.x = data.frame(mat, c("art", "birth"))

> mat.df.x

 c1 c2 c..art....birth..

r1 1 3 art

r2 2 4 birth

> write.matrix(mat.df.x)

c1 c2 c..art....birth..

1 3 art

2 4 birth

More about write.matrix() can be found by entering ?MASS::write.
matrix at the R prompt or by loading MASS in R Studio, then using the

“Help” tab.

�The Functions write.table( ) and write.csv( )
The functions write.table() and write.csv() also export matrices

and data frames in tabular text format. The two are essentially the same

function but with different defaults. All of the defaults for write.table()

can be changed. For write.csv(), the defaults append, col.names, sep,

dec, and qmethod cannot be changed. (As with read.csv() there is also

Chapter 10 Exporting from R

195

the function write.csv2() for European users. The function write.csv2()

uses a semicolon for the separator and a comma for the decimal point, but

otherwise is the same as write.csv().)

The functions take the arguments x, file, append, quote, sep, eol, na,

dec, row.names, col.names, qmethod, and fileEncoding. The argument

x is the object to be exported and must be an object that can be coerced to

a data frame.

The argument file gives the location to which to export. For external

files, file is of mode character and the address is either relative to the

workspace or absolute. If file equals “”, then the functions export to the

console or to stdout() if stdout() is not the console. The value of file is “” by

default.

The argument append is a logical argument. If append is TRUE,

then the file is appended with the new data frame. If FALSE, the file is

overwritten. The default value is FALSE.

The argument quote is either logical or a numeric vector of column

numbers and gives rules for placing quotes around elements. The default

value is TRUE. If set to FALSE, nothing is quoted.

The argument sep is a character argument and gives the separator

to be used between the elements of the exported data. The separator is

entered within quotes. For write.table(), the default value is a white

space. For write.csv(), the value is a comma.

The argument eol is an argument of mode character and gives the

end of line delineator. By default, eol is equal to “\n”. The correct value for

eol varies with operating system. Use “\n” for Windows, “\r” for OS X, and

“\r\n” for Linux.

The argument na is also a character argument and gives the string to

be output where data is missing. The default value is “NA.”

The argument dec is another character argument and gives the

character to be used as the decimal point. By default, dec equals “.”.

Chapter 10 Exporting from R

196

The argument row.names is either a logical value or a character vector

of row names. Note that write.table() and write.csv() treat the row

names differently if row.names is set to TRUE or to a character vector

of names. If a column of row names is in the exported data frame, the

function write.table() does not create a blank character string for the

name of the row name column, while write.csv() does. If row.names is

equal to FALSE, there is no difference between the two with regard to row

names since no row names are exported.

If no row names are given, row names are not present in the data.

frame (for example, if a matrix without row names is entered for x) and

row.names is TRUE, then the rows are given names, starting with “1”

and incrementing by one with each row. By default, row.names equals

TRUE.

The argument col.names is either logical or a character vector of

column names. For write.table(), if col.names is set equal to TRUE,

either the column names are taken from the data frame or, if no names

are present in the data frame, column names are created starting with

“V1” and incrementing the integer by one for each new column. If column

names are supplied, the column names are set equal to the supplied

names.

As noted previously, for write.table(), by default, no column name

value is given for the column of row names if the row name column

exists in the exported file. However, if col.names is set equal to NA, then

columns are treated the same as for col.names set equal to TRUE except

that a blank character string is added for the row name column. If row.
names equals FALSE, then setting col.names equal to NA gives an error.

If col.names is set equal to FALSE, no column names are assigned in the

exported file.

For write.csv(), the default for col.names depends on the value of

row.names. The default cannot be changed. If row.names equals TRUE,

col.names is set to NA. Otherwise, col.names is set equal to TRUE.

Chapter 10 Exporting from R

197

In either case, column names are given by either the names in the data

frame or, if there are no column names in the data frame, names starting

with “V1” and with the integer incrementing by one for each new column.

The next argument is qmethod and can take on the values “escape”

or “double”. The default value is “escape”. The argument gives instructions

for double quoted values. See the help page for write.table() for more

information. The last argument is fileEncoding, which need not be

assigned, but if assigned tell R how to encode the output, for example in

UTF-8 format.

Here are some examples. The object mat.df.x is a data frame with row

and column names. The object mat is a matrix that does not have row or

column names.

> mat.df.x

 c1 c2 C3

r1 1 3 art

r2 2 4 birth

> write.table(mat.df.x)

"c1" "c2" "C3"

"r1" 1 3 "art"

"r2" 2 4 "birth"

> write.table(mat.df.x, sep=",")

"c1","c2","C3"

"r1",1,3,"art"

"r2",2,4,"birth"

> write.table(mat.df.x, sep=",", col.names=NA)

"","c1","c2","C3"

"r1",1,3,"art"

"r2",2,4,"birth"

Chapter 10 Exporting from R

198

> write.table(mat.df.x, col.names=F)

"r1" 1 3 "art"

"r2" 2 4 "birth"

> write.table(mat.df.x, row.names=F, col.names=F)

1 3 "art"

2 4 "birth"

> write.table(mat.df.x, sep=",", row.names=F)

"c1","c2","C3"

1,3,"art"

2,4,"birth"

> write.csv(mat.df.x)

"","c1","c2","C3"

"r1",1,3,"art"

"r2",2,4,"birth"

> write.csv(mat.df.x, row.names=F)

"c1","c2","C3"

1,3,"art"

2,4,"birth"

> mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> write.table(mat)

"V1" "V2"

"1" 1 3

"2" 2 4

Chapter 10 Exporting from R

199

> write.table(mat, row.names=c("r1", "r2"), col.names=NA)

"" "V1" "V2"

"r1" 1 3

"r2" 2 4

> write.table(mat, row.names=F, col.names=F)

1 3

2 4

> write.csv(mat)

"","V1","V2"

"1",1,3

"2",2,4

> write.csv(mat, row.names=c("r1", "r2"))

"","V1","V2"

"r1",1,3

"r2",2,4

To access the help page for write.table() and write.csv(), enter

?write.table at the R prompt or use the “Help” tab in R Studio.

�The Function save( )
The function save() saves R objects, by default in binary form, to a file. The

saved objects can be loaded into a workspace using load() or sometimes

data() or attached to a workspace using attach(). See the previous chapter

for information about load(), data(), and attach().

The function save() takes the arguments … , list, file, ascii, version,

envir, compress, compression_level, eval.promises, and precheck. The

names of the objects to be saved can be entered in two ways: symbols or

character strings containing the object names separated by commas or a

Chapter 10 Exporting from R

200

character vector containing the names of the objects (or both).

The argument file gives the location where the objects are to be saved.

For example:

> save("ClintonCorpus", "mat", list=c("junk", "trst"),

file="save.bin")

> load("save.bin", ver=T)

Loading objects:

 junk

 trst

 ClintonCorpus

 mat

> class(junk)

[1] "list"

> class(trst)

[1] "asS4"

attr(,"package")

[1] ".GlobalEnv"

> class(ClintonCorpus)

[1] "SimpleCorpus" "Corpus"

> class(mat)

[1] "data.frame"

Here, four objects are saved to the file “save.bin,” which is then

reloaded. The four objects belong to different classes.

Any types of objects can be saved using save(). When loaded, the

objects are loaded into the workspace under their original names and are

not displayed at the console.

Chapter 10 Exporting from R

201

The argument “ascii” tells save() to write an ASCII file if given the value

TRUE. If given FALSE—the default—a binary file is created. For NA, see the

help page for save(). From the help page for save(), the argument “version”

tells save() which version of the workspace format to use. The choices are

NULL—for the current default format and 1, 2, or 3 for the default formats

in R 0.99.0 to R 1.3.1, R 1.4.0, and from R 3.5.0 on respectively.

The argument “envir” tells save() the environment in which to

find the object(s). The mode of the argument is environment, and the

default value is “parent.frame().” The argument “compress” indicates

what kind of compression to do or if to do compression. If FALSE, no

compression is done. If TRUE, “gzip” compression is done. Setting the

value equal to “gzip,” “bzip2,” or “xz” tells save() to use that method

of compression. The default value is “isTRUE(!ascii),” so if “ascii” is

FALSE, compression is done by default. According to the help page for

save(), this argument is ignored if the file argument is a connection or if

the workspace format is version 1.

The argument “compression_level” gives the level of compression if

“compress” is not equal to FALSE. If the compression method is “gzip,” the

default level is “6.” For “bzip2” or “xz,” the default level is “9.”

The argument “precheck” is a logical argument that when set equal

to TRUE, the default tells save() to check to see if an object exists before

opening a file or connection. If set equal to FALSE, the file or connection

is opened even if nothing is saved. For version 1, “precheck” does not

apply—according to the help page for save().

The argument “safe” is a logical argument that, when set equal to

TRUE, tells save() to open a temporary file when saving a workspace in

case the save fails. TRUE is the default value but causes the save to use

more disk space during the saving. If set equal to FALSE, the workspace

can be lost if the save fails.

For more information about save(), enter ?save at the R prompt or use

the “Help” tab in R Studio.

Chapter 10 Exporting from R

202

�The Function saveRDS( )
The function saveRDS() saves a single object to a file. Objects saved with

saveRDS() can be loaded with readRDS()—see the previous chapter.

The arguments to saveRDS() are “object,” “file,” “ascii,” “compress,” and

“refhook.”

The argument “object” is set equal to the name of the object, which

is not quoted. The argument “file” is the name to be assigned to the file,

which is a character string or a connection. The argument “ascii” behaves

the same as for save().

The next argument is “version.” From the help page for saveRDS(),

setting “version” equal to NULL tells the function to use the default

value—currently 2—since R 1.4.0. For R 3.5.0 and later, the legal options for

“version” are 2 and 3.

The argument compress behaves like in save(). See the help page for

information about the argument “refhook.”

For more information, enter ?saveRDS at the R prompt or use the

“Help” tab in R Studio.

�Matching Importing and Exporting
Functions
Many of the importing and exporting functions are paired with each other.

For example: source() with dump(); save() with load(), data() or attach();

dput() with dget(); and write.table() with read.table(). Table 10-1 gives

importing and exporting functions based on pairing.

Chapter 10 Exporting from R

203

�Other Exporting Functions
Like the functions that read in data, there are a variety of functions that

write data. The CRAN page on the package rio for importing and exporting

data lists many of the packages and what they do. The CRAN vignette

can be found at https://cran.r-project.org/web/packages/rio/

vignettes/rio.html.

For SPSS, SAS, and Stata, the function write.foreign(), which can be

found in the package foreign, can import and export in the correct format.

The function write.foreign() also exports in some other formats. Other

exporting functions can also be found in the package foreign.

Table 10-1.  Paired Import and Export Functions

Importing Exporting Use

source( ) dump( ) Create and source external files in a text format

scan( ) Read textual data as a vector

sink( ) Write textual output from commands

write( ) Write textual data in tabular form

write.matrix( ) Write a matrix or data frame using one atomic

mode, maintains the original structure

read.table( )

read.csv( )

write.table( )

write.csv( )

Read and write a matrix or data frame in textual

form, maintains the original structure

load( )

data( )

attach( )

save( ) Read and write objects, mainly in binary format,

used to transfer objects

readRDS( ) saveRDS( ) Read and write an object, mainly in binary

format, used to transfer an object

dget( ) dput( ) Of historical interest, uses the text format

Chapter 10 Exporting from R

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://cran.r-project.org/web/packages/rio/vignettes/rio.html

204

The package foreign is one of the packages installed by default.

To see the contents of foreign, enter help(package=foreign) at the R

prompt or use the “Packages” tab in R Studio. Click on “foreign” in the

list of packages. To load foreign, enter library(foreign) at the R prompt

or check the box to the left of “foreign” under the “Packages” tab in R

Studio.

A newer package to read and write SPSS, SAS, and Stata files is

the package haven. The package is not installed by default, unlike the

package foreign, so haven must be installed before you can load it.

After installing haven, you can see the contents of haven by entering

help(package=haven) at the R prompt or by using the “Packages” tab

in R Studio. Click on “haven” in the list of packages. To load haven, enter

library(haven) at the R prompt or check the box to the left of “haven”

under the “Packages” tab in R Studio.

For Excel, there is a package, xlsx, specifically for working with

Excel. The package xlsx is not a default package in R, so it must be

installed. After xlsx is installed, information about xlsx can be found

by entering help(package=xlsx) at the R prompt. For older Excel files,

the package readxl has functions to write and read the Excel files. Like

the package xlsx, readxl is not installed by default, so must be installed

before it is loaded.

Chapter 10 Exporting from R

205© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_11

CHAPTER 11

Descriptive Functions
and Manipulating
Objects
For arrays, matrices, vectors, lists, and expressions, in command line R,

there are a number of functions that describe various attributes of an

object. In R Studio, many attributes, such as the number of columns in a

matrix or the length of a list, are given to the right of the object name under

the “Environment” tab in the upper right window.

Also, there are a number of functions that manipulate objects to create

new objects. The functions covered in this chapter are the descriptive

functions dim(), nrow(), NROW(), ncol(), NCOL(), length(), nchar(),

and nzchar(); the functions that manipulate objects: cbind() and

rbind(); the apply functions, sweep(), scale(), and aggregate(); the

table functions and the functions tabulate(), and ftable(); and the

string functions: grep(), grepl(), agrep(), grepRaw(), sub(),

gsub(), regexpr(), gregexp(), regexec(), substr(), substring(),

and strsplit().

206

�Descriptive Functions
The descriptive functions describe qualities of objects. This section

discusses some descriptive functions that are useful when writing

functions or creating objects. The functions are dim(), nrow(), ncol(),

NROW(), NCOL(), length(), and nchar().

�The Function dim( )
For objects for which dimensions make sense—such as matrices, data.

frames, tables, or arrays—the function dim() returns the number of levels

in each of the dimensions of the object. For objects of other classes, dim()

returns NULL. An example follows:

> a = 1:2

> b = 1:3

> dim(a)

NULL

> a %o% b %o% a

, , 1

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

, , 2

 [,1] [,2] [,3]

[1,] 2 4 6

[2,] 4 8 12

> dim(a %o% b %o% a)

[1] 2 3 2

Chapter 11 Descriptive Functions and Manipulating Objects

207

The dimensions of the object can be changed if the product of the

original dimensions equals the product of the dimensions of the result. An

example follows:

> a.ar = a %o% b

> a.ar

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

> dim(a.ar)

[1] 2 3

> dim(a.ar)= c(3, 2)

> a.ar

 [,1] [,2]

[1,] 1 4

[2,] 2 3

[3,] 2 6

You can find more information about dim() by entering ?dim at the R

prompt or by using the Help tab in R Studio.

�The Functions nrow( ), ncol( ), NROW( ),
and NCOL( )
For matrices, data.frames, and arrays, nrow() and ncol() give the number

of levels in the first and second dimensions of the matrix, data frame, or

array, respectively. Other classes of objects return NULL. An example

follows, using the a and b of the last section:

Chapter 11 Descriptive Functions and Manipulating Objects

208

> a %o% b

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

> nrow(a %o% b)

[1] 2

> ncol(a %o% b)

[1] 3

> nrow(1:20)

NULL

Sometimes vectors must be treated as matrices or arrays. The functions

NROW() and NCOL() treat vectors as one-column matrices but otherwise are

the same as nrow() and ncol(). An example follows:

> NROW(1:20)

[1] 20

> NCOL(1:20)

[1] 1

You can find more information about nrow(), ncol(), NROW(), and

NCOL()by entering ?nrow at the R prompt or by using the Help tab in R Studio.

�The Function length( )
The next descriptive function we will explain is length(). The argument

to length() can be any mode of object. For atomic objects, length()

returns the number of elements in the object. For list objects, length()

returns the number of the lowest level elements. For functions, length()

returns one. For calls, length() returns the number of arguments entered

Chapter 11 Descriptive Functions and Manipulating Objects

209

in the creation of the call. For expressions, length() returns the number of

elements in the expression. Some examples follow:

> a.mat=matrix(1:4, 2, 2)

> a.mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> length(a.mat)

[1] 4

> a.list=list(mat, c("abc", "cde"))

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

> length(a.list)

[1] 2

> a.fun = function(mu, se=1, alpha=.05){

 z_value = qnorm(1-alpha/2, mu, se)

 print(z_value)

}

> length(a.fun)

[1] 1

> a.call=call("lm", y~x)

> a.call

lm(y ~ x)

Chapter 11 Descriptive Functions and Manipulating Objects

210

> length(a.call)

[1] 2

1

> a.exp = expression(a.call, sin(1:5/180 * pi))

> a.exp

expression(a.call, sin(1:5/180 * pi))

> length(a.exp)

[1] 2

The length of an atomic or list object can be assigned using length().

For other mode objects, an attempted length() assignment returns an error.

If n is the length of an atomic object, then setting the length to a value larger

than n generates NAs for the extra elements. Setting the length shorter than n

removes elements. In either case, a vector is returned unless the length is not

changed, in which case the original object is returned. An example follows:

> a.mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> a.mat.2 = a.mat

> length(a.mat.2)=6

> a.mat.2

[1] 1 2 3 4 NA NA

> a.mat.2 = a.mat

> length(a.mat.2)=3

> a.mat.2

[1] 1 2 3

Chapter 11 Descriptive Functions and Manipulating Objects

211

> a.mat.2 = a.mat

> length(a.mat.2)=4

> a.mat.2

 [,1] [,2]

[1,] 1 3

[2,] 2 4

For objects of mode list, lengthening the list adds NULL elements at

the lowest level while shortening the list removes elements at the lowest

level. An example follows:

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

> length(a.list)=3

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

NULL

Chapter 11 Descriptive Functions and Manipulating Objects

212

> length(a.list)=1

> a.list

[[1]]

 cl1 cl2

[1,] 1 3

[2,] 2 4

You can find more information about length() by entering ?length at

the R prompt or by using the Help tab in R Studio.

�The Functions nchar( ) and nzchar( )
The function nchar() counts characters in objects that can be coerced to

mode character. The function nzchar() returns a logical vector indicating

which elements contain non-empty strings.

The function nchar() takes four arguments: x, type, allowNA, and

keepNA. The argument x is the object. The function coerces the object

to character, and the characters to be counted are the characters in each

element of the coerced object. For example, redefining a.list as defined in

the last section:

> a.list = list(matrix(1:4, 2,2), c("abc", "cde"), NULL)

> a.list

[[1]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] "abc" "cde"

[[3]]

NULL

Chapter 11 Descriptive Functions and Manipulating Objects

213

> as.character(a.list)

[1] "1:4" "c(\"abc\", \"cde\")" "NULL"

> nchar(a.list)

[1] 3 15 4

Quotes are not counted.

The argument type is a character argument and can take on the values

of “bytes,” “chars,” or “width.” If “bytes” is chosen, the bytes of the strings

are counted. If “chars” is chosen, the standard text number of characters is

counted. If “width” is chosen, the number of characters that the function

cat() would assign the strings is counted. The default value is “chars.”

Usually, there is no difference between the three.

The argument allowNA is a logical argument. If set equal to TRUE,

strings that are not valid are set equal to NA. If set equal to FALSE, strings

that are not valid give an error and cause the function to stop. The default

value is FALSE.

The argument keepNA is a logical argument that tells nchar() whether

to convert NAs to character strings or to keep them as NAs. The default

value is NA, which tells nchar() to set the argument to TRUE if type is

“bytes” or “char” and to FALSE if type is “width”. If the argument is a data

frame, since a data frame is a list, each column is converted to a character

string, and the NAs are also made into character strings, before the

counting done by nchar(), whether keepNA is set to TRUE or FALSE.

For vectors, matrices, and arrays, NAs are not converted to strings.

For example:

> a.df=data.frame(1, NA, 12)

> as.character(a.df)

[1] "1" "NA" "12"

> nchar(a.df, keepNA=F)

 X1 NA. X12

 1 2 2

Chapter 11 Descriptive Functions and Manipulating Objects

214

> nchar(a.df, keepNA=T)

 X1 NA. X12

 1 2 2

> a.mat = as.matrix(a.df)

> as.character(a.mat)

[1] "1" NA "12"

> nchar(a.mat, keepNA=F)

 X1 NA. X12

[1,] 1 2 2

> nchar(a.mat, keepNA=T)

 X1 NA. X12

[1,] 1 NA 2

The function nzchar() gives a logical vector of the same length as

the object assigned to the first argument. The function returns a vector

of TRUEs, FALSEs, and NAs that depend on whether an element is a

nonempty string, and empty string or is missing. The function takes

two arguments, x and keepNA. The argument x is an object that can be

coerced to a character vector. The argument keepNA is logical and can

take on the values TRUE, FALSE or NA. If keepNA is TRUE, NA’s return

NA’s, if FALSE or NA, NAs returns TRUE. The default value is FALSE.

For example:

> nzchar(c("1", NA, "12", ""), keepNA=F)

[1] TRUE TRUE TRUE FALSE

> nzchar(c("1", NA, "12", ""), keepNA=NA)

[1] TRUE TRUE TRUE FALSE

> nzchar(c("1", NA, "12", ""), keepNA=T)

[1] TRUE NA TRUE FALSE

Chapter 11 Descriptive Functions and Manipulating Objects

215

You can find more information about nchar() and nzchar() by

entering ?nchar at the R prompt or by using the Help tab in R Studio.

�Manipulating Objects
There are a number of functions that manipulate R objects and make

programming easier. This subsection covers some of the functions,

including cbind(), rbind(), apply(), lapply(), sapply(), vapply(),

tapply(), mapply(), eapply(), sweep(), scale(), aggregate(), table(),

tabulate(), and ftable().

�The Functions cbind( ) and rbind( )
The functions cbind() and rbind() are self-explanatory for vectors,

matrices, and data frames. The function cbind() binds columns. The

function rbind() binds rows.

For lists that are not matrixlike, the functions return the type and

number of elements in each of the lowest level elements of the list, creating

a matrix of the types. Lists can be bound with nonlist objects. The result

will be a list, but the nonlist arguments will not be converted like the list

part of the result.

In the call to the function, the objects to be bound are separated by

commas. For cbind(), vectors are treated as columns. For rbind(), vectors

are treated as rows.

For vectors, vectors being bound do not have to be of the same length.

The vectors cycle with themselves and with higher dimensional objects.

For higher dimensional objects, the objects will not cycle. If, for rbind(),

the numbers of columns do no match or, for cbind(), the numbers of

rows do not match, an error is given.

Chapter 11 Descriptive Functions and Manipulating Objects

216

The resulting object takes on the type of the highest level object

entered, where the hierarchy, from lowest to highest, is raw, logical,

integer, double, complex, character, and list.

There is one argument to cbind() and rbind() other than the objects

to be bound—the argument deparse.level, which is used to create labels

for objects that are not matrixlike. The argument is an integer argument

and can take on the values of 0, 1, or 2, although any value that can be

coerced to an integer works. Values that do not give 1 or 2 when coerced to

an integer give the same result as 0. The default value is 1.

For data frames, if a data frame is included in the objects to be bound and

a list that is not a data frame is not included, then the result is a data frame. In

that case, any character columns are changed to factors unless specified to not.

For time series, cbind() gives a multivariate time series, whereas for

rbind(), the time series reverts to a plain matrix.

An example follows:

> ab.list = list(one=1:3, two=1:5)

> ab.list

$one

[1] 1 2 3

$two

[1] 1 2 3 4 5

> cbind(ab.list, 1:2)

 ab.list

one Integer,3 1

two Integer,5 2

> cbind(ab.list, 1:2, deparse.level=0)

 [,1] [,2]

one Integer,3 1

two Integer,5 2

Chapter 11 Descriptive Functions and Manipulating Objects

217

> cbind(ab.list, 1:2, deparse.level=2)

 ab.list 1:2

one Integer,3 1

two Integer,5 2

You can find more information about cbind() and rbind() by entering

?cbind at the R prompt or by using the Help tab in R Studio.

�The Apply Functions
There are several functions in R for applying a function over a subset of an

object, seven of which are covered here. The seven functions are apply(),

lapply(), sapply(), vapply(), tapply(), mapply(), and eapply(). The

functions to be applied can be user defined, which can be quite useful.

�The Function apply( )

The function apply() takes three arguments—X, MARGIN, and FUN—as

well as any arguments to the function FUN. The first argument, X, is an

array (including matrices). The second argument gives the margin(s) over

which the function is to operate, and FUN is the function to be applied.

For matrices, entering 1 for MARGIN applies the function across the

columns. For 2, the function is applied down the rows.

The function to be applied is entered without parentheses. Any

arguments to the function are entered next, separated by commas. The

result is an array, matrix, or vector. An example follows:

> a.mat=matrix(1:4, 2, 2, dimnames=list(c("r1", "r2"),

 c("c1", "c2")))

> a.mat

 c1 c2

r1 1 3

r2 2 4

Chapter 11 Descriptive Functions and Manipulating Objects

218

> apply(a.mat, 1, sum)

r1 r2

 4 6

> apply(a.mat, 1, pnorm, 3, 1)

 r1 r2

c1 0.02275013 0.1586553

c2 0.50000000 0.8413447

In the example, the first apply finds the sums of the rows. For the

second apply, the arguments to pnorm() are the rows in mat for the q

values, 3 for the value of mean, and 1 for the value of sd. Note that the

matrix is transposed in the result.

You can find more information about apply() by entering ?apply at

the R prompt or by using the Help tab in R Studio.

�The lapply( ), sapply( ), and vapply( ) Functions

The lapply(), sapply(), and vapply() functions work with vectors,

including lists, and expressions. If X is not a list, then X is coerced to a list.

The elements must be of the correct mode for the function being applied.

The function lapply() is the simplest with just two arguments plus

any arguments to the function to be applied. The function sapply() takes

four arguments plus any extra arguments for the function to be applied.

The function vapply() also takes four arguments plus any extra for the

function to be applied.

The Function lapply( )

The function lapply() takes the arguments X and FUN, plus any extra

arguments for FUN. The function FUN is applied to every element of the

vector or to every second level element of the list. The result is a list.

An example follows:

Chapter 11 Descriptive Functions and Manipulating Objects

219

> b.list=list(1:7, 3:4)

> b.list

[[1]]

[1] 1 2 3 4 5 6 7

[[2]]

[1] 3 4

> lapply(b.list, sum)

[[1]]

[1] 28

[[2]]

[1] 7

You can enter arithmetic operators by enclosing the operators within

quotes. For example:

> lapply(1:2, "^", 2)

[[1]]

[1] 1

[[2]]

[1] 4

The Function sapply( )

The function sapply() also operates on vectors, including lists, and

expressions. The function takes the arguments X and FUN, then any

arguments to FUN followed by the arguments simplify and USE.NAMES.

The argument simplify can be logical or the character string “array”.

The argument simplify tells sapply() to simplify the list to a vector or

matrix if TRUE, and to an array if set equal to “array”. No simplification is

done if set equal to FALSE. For FALSE, a list is returned. The value TRUE is

the default.

Chapter 11 Descriptive Functions and Manipulating Objects

220

The argument USE.NAMES is a logical argument. For an object of

mode character, the argument USE.NAMES tells sapply() to use the

elements of the object as names for the result. The default value is TRUE.

An example follows:

> ac.list = list(one=1:5, two=3:7)

> ac.list

$one

[1] 1 2 3 4 5

$two

[1] 3 4 5 6 7

> sapply(ab.list, sum)

one two

 15 25

> a.char = paste0("a", 7:10)

> a.char

[1] "a7" "a8" "a9" "a10"

> sapply(a.char, paste, "b", sep="")

 a7 a8 a9 a10

 "a7b" "a8b" "a9b" "a10b"

> sapply(a.char, paste, "b", sep="", USE.NAMES=F)

[1] "a7b" "a8b" "a9b" "a10b"

The Function vapply( )

The function vapply() takes the arguments X, FUN, FUN.VALUE, any

arguments to FUN, and USE.NAMES, in that order.

The argument FUN.VALUE is a structure for the output from the

function. The structure is the structure of the result of applying FUN to a

single element of X. Dummy values of the correct mode are used in the

Chapter 11 Descriptive Functions and Manipulating Objects

221

structure. The number and mode of the dummy elements must be correct.

Any extra arguments for FUN are placed after FUN.VALUE. The default

value of USE.NAMES is TRUE. An example follows:

> set.seed(382765)

> ab.val=1:2

> vapply(ab.val, rnorm, matrix(.1, 2, 2), n=4, sd=1)

, , 1

 [,1] [,2]

[1,] 1.701435 1.1422971

[2,] 2.068151 0.9604146

, , 2

 [,1] [,2]

[1,] 0.3541925 1.186276

[2,] 2.6841000 1.745577

In the example, ab.val is a vector of means entered into the function

rnorm(), and the other arguments to rnorm() are n=4 and sd=1.

The function vapply() returns an array, matrix, or vector of objects of

the kind given by the argument FUN.VALUE.

You can find more information about lapply(), sapply(), and

vapply() by entering ?lapply at the R prompt or use the Help tab in R

Studio.

�The Function tapply( )

The function tapply() applies functions to cross-tabulated data. The

arguments are X, IND, FUN, any extra arguments to FUN, default, and

simplify. The default value for FUN is NULL, the default value for default

is NA, and the default value of simplify is TRUE.

Chapter 11 Descriptive Functions and Manipulating Objects

222

The argument X must be an atomic object and is coerced to a vector.

The argument can be a contingency table created by table(). The length

of X is then the product of the dimensions of the contingency table.

The argument IND must be a vector that can be coerced to a factor

or a list of vectors that can be coerced to factors. The length of X and the

length(s) of the factor vectors must all be the same.

The values of X are the number of observations with a given factor

combination, where the factor combinations are given by juxtaposing the

factor values. If combinations are repeated, the function does not work

right. There is no need to enter zeroes for factor combinations without

observations, but zeroes may be included.

Using tapply() without a function gives the index of the cells that

contain observations, while using a function gives the factor cross

table, with the function applied to the contents of the cells. An example

follows:

> cbind(c("a", "b", "b", "c"), c(5, 5, 6, 5))

 [,1] [,2]

[1,] "a" "5"

[2,] "b" "5"

[3,] "b" "6"

[4,] "c" "5"

> tapply(1:4, list(c("a", "b", "b", "c"), c(5, 5, 6, 5)))

[1] 1 2 5 3

> tapply(1:4, list(c("a", "b", "b", "c"), c(5, 5, 6, 5)),

 "^", 3)

 5 6

a 1 NA

b 8 27

c 64 NA

Chapter 11 Descriptive Functions and Manipulating Objects

223

In this example, the four observations are in the cells a5, b5, b6, and

c5, as can be seen by juxtaposing the two factor columns. There are six

possible cells, a5, b5, c5, a6, b6, and c6. The first call to tapply() gives

the cell identifiers for the four table counts. The second call applies the

cube function to the table counts and prints out a full table of the results,

returning NA for empty cells.

You can find more information about tapply()by entering ?tapply at

the R prompt or by using the Help tab in R Studio.

�The Function mapply( )

The function mapply() takes an object that is an atomic vector or a list

as an argument and applies a function to each element of the vector or

list. If an object that is not an atomic vector or list is entered, mapply()

attempts to coerce the object to an atomic vector or list. The elements of

the resulting object must be legal for the function to be applied. The result

of mapply() is an atomic vector, matrix, or list.

The arguments to mapply() are FUN, ..., MoreArgs, SIMPLIFY,

and USE.NAMES. The argument FUN is the function to be applied. The

argument ... refers to the atomic vectors or lists on which the argument

FUN operates and may be a collection of lists and/or vectors collected

using c(). The argument MoreArgs refers to any additional arguments to

FUN and by default equals NULL. The arguments must be in list mode,

with a separate list for each argument.

The argument SIMPLIFY tells mapply() to attempt to simplify the

result to a vector or matrix. The default value is TRUE. The argument USE.
NAMES tells mapply() to use the names of the elements or, if the vector is

of mode character, the characters themselves, as names for the output. By

default, the value is TRUE. An example follows:

> set.seed(382765)

> a.mat = matrix(1, 4, 4)

Chapter 11 Descriptive Functions and Manipulating Objects

224

> b.mat = matrix(runif(9), 3, 3)

> c.vec = 1:2

> mapply(det, list(a.mat, b.mat))

[1] 0.0000000 -0.3349038

> mapply(mean, c(list(a.mat, b.mat), c.vec))

[1] 1.0000000 0.6208733 1.0000000 2.0000000

> mapply(mean, c(list(a.mat, b.mat), list(c.vec)))

[1] 1.0000000 0.6208733 1.5000000

Here, det finds the determinants of the elements, and mean finds the

means of the elements.

Another example—using MoreArgs—follows:

> set.seed(382765)

> mapply(cor, c(list(a.mat, b.mat), list(c.vec)),

 list(y=1:4, y=1:3, y=3:4),

 list(use="everything"),

 list(method="pearson"))

[[1]]

 [,1]

[1,] NA

[2,] NA

[3,] NA

[4,] NA

[[2]]

 [,1]

[1,] 0.1872769

[2,] 0.8836377

[3,] -0.4585219

Chapter 11 Descriptive Functions and Manipulating Objects

225

[[3]]

[1] 1

Warning message:

In (function (x, y = NULL, use = "everything", method =

c("pearson", :

 the standard deviation is zero

Here, the function is the correlation function and the arguments

y, use, and method are supplied, each as a list. For the first matrix,

four y values are given, so cor() is called four times since there are

16 elements in the matrix. For the second matrix, three y values are

given so cor() is called three times. For the third matrix, two y values

are given so cor() is only called once. The result is the three-element

list. The NAs in the first element of the list result from the first matrix

containing a single value only, so the correlations cannot be estimated

for the first element.

You can find more information about mapply()by entering ?mapply at

the R prompt or by using the Help tab in R Studio.

�The Function eapply( )
The function eapply() applies a function to all objects in an environment

and returns a list to the parent environment. The function takes five

arguments, env, FUN, …, all.names, and USE.NAMES. The argument env

is the name of the environment. The argument FUN is the function to be

applied. The argument … gives any arguments to the function, separated

by commas. The argument all.names is a logical variable indicating

whether to include objects whose names begin with a period or not.

The default value is FALSE. The argument USE.NAMES is a logical variable

indicating whether the resultant list has names assigned to the elements or

not. The default value is TRUE.

Chapter 11 Descriptive Functions and Manipulating Objects

226

For example:

> nwenv = new.env()

> nwenv

<environment: 0x10b448d30>

> nwenv$a = 1:10

> nwenv$b = 11:20

> nwenv$c = rnorm(100)

> eapply(nwenv, sd)

$a

[1] 3.02765

$b

[1] 3.02765

$c

[1] 0.9947994

> ls(nwenv)

[1] "a" "b" "c"

Here, an environment is created and populated with three numeric

objects. The function sd() (the function to find the standsrd deviation of the

values in a numeric object) was applied to the three objects, and the resultant

standard deviations were returned into .GlobalEnv as a three-element list.

More information about eapply() can be found by entering ?eapply at

the R prompt or by using the Help tab in R Studio.

�The sweep( ) and scale( ) Functions
The sweep() function operates on arrays (including matrices and vectors

that have been converted to matrices), and the scale() function operates on

numeric matrixlike objects. The sweep() function sweeps out a margin(s) of

an array (say, the columns of a matrix) with values (say, the column means)

Chapter 11 Descriptive Functions and Manipulating Objects

227

using a function (say, the subtraction operator). The scale() function by

default centers and normalizes the columns of matrices by subtracting the

mean and dividing by the standard deviation for each column.

�The Function sweep( )

The function sweep() takes the arguments x, MARGIN, STATS, FUN,

check.margin, and The argument x is the array. The array can be of any

atomic mode.

The argument MARGIN gives the margins over which the sweep is to

take place. For a matrix, MARGIN equals 1, 2, or 1:2 (or c(1,2)). If MARGIN

equals 1:2, the entire matrix is swept, rather than the sweeping being done

by column or row. For an array of more than two dimensions, MARGIN

can be any subset of the margins, including all of the margins.

The argument STATS gives the value(s) to sweep with. For example, to

use column means the function apply() can be applied; that is apply(mat, 2,
mean) would work as a value for STATS, where mat is the matrix being swept.

The value(s) for STATS cycle.

The argument FUN is the function to use. By default, FUN equals “-”,

the subtraction operator, but FUN can be any function legal for the values

of the array. For example, paste can be used with arrays of mode character.

The argument check.margin checks to see if the dimensions or

length of STATS agrees with the dimensions given by MARGIN. If not,

just a warning is given. The function does not stop but cycles the values in

STATS. The default value is TRUE.

The argument ... gives any extra arguments to the function FUN.

An example follows:

> a.mat = matrix(1:8, 2, 4)

> a.mat

 [,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

Chapter 11 Descriptive Functions and Manipulating Objects

228

> a.cent = sweep(a.mat, 2, apply(a.mat, 2, mean))

> a.cent

 [,1] [,2] [,3] [,4]

[1,] -0.5 -0.5 -0.5 -0.5

[2,] 0.5 0.5 0.5 0.5

> sweep(a.cent, 2, apply(a.mat, 2, sd), "/")

 [,1] [,2] [,3] [,4]

[1,] -0.7071068 -0.7071068 -0.7071068 -0.7071068

[2,] 0.7071068 0.7071068 0.7071068 0.7071068

Since MARGIN is set equal to 2, the function mean() takes the mean of

each column, and the function sd() takes the standard deviation of each

column. In the second statement, the mean of each column is subtracted

from the elements in the column. The subtraction function is the default,

so it does need not be entered. In the third statement, the centered

elements in the columns are divided by the standard deviations of the

columns.

Note that the function returns a matrix. You can find more information

about sweep()by entering ?sweep at the R prompt or by using the Help tab

in R Studio.

�The Function scale( )

The function scale() is used to scale columns of a matrix—that is, to

center the column to a specified center and to scale the column to a

specified standard deviation. The function scale() takes three arguments:

x, center, and scale. The argument x is a matrix or matrixlike numeric

object (for example a data frame or time series).

The argument center can be either logical or a numeric vector of

length equal to the number of columns in x. If set to TRUE, the column

mean is subtracted from each element in a column. If set to a vector

of numbers, then each number is subtracted from the elements in the

Chapter 11 Descriptive Functions and Manipulating Objects

229

number's corresponding column. If set equal to FALSE, nothing is

subtracted. The default value is TRUE.

The argument scale can also be logical or a vector of numbers. If scale

is set equal to TRUE, each centered (if centering has been done) element is

divided by the standard deviation of the elements in the column, where NAs

are ignored and the division is by n-1. If set equal to a vector of numbers,

each (centered) element of a column is divided by the corresponding

number in the vector. Dividing by zero will give an NaN but will not stop the

execution. If scale is set equal to FALSE, no division is done. The default

value is TRUE. An example follows:

> a.mat

 [,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

> scale(a.mat)

 [,1] [,2] [,3] [,4]

[1,] -0.7071068 -0.7071068 -0.7071068 -0.7071068

[2,] 0.7071068 0.7071068 0.7071068 0.7071068

attr(,"scaled:center")

[1] 1.5 3.5 5.5 7.5

attr(,"scaled:scale")

[1] 0.7071068 0.7071068 0.7071068 0.7071068

> a2.mat = matrix(c(1:8, NA, 2), 2, 5)

> a2.mat

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 NA

[2,] 2 4 6 8 2

Chapter 11 Descriptive Functions and Manipulating Objects

230

> scale(a2.mat, center=rep(3, 5), scale=rep(4, 5))

 [,1] [,2] [,3] [,4] [,5]

[1,] -0.50 0.00 0.50 1.00 NA

[2,] -0.25 0.25 0.75 1.25 -0.25

attr(,"scaled:center")

[1] 3 3 3 3 3

attr(,"scaled:scale")

[1] 4 4 4 4 4

Note that scale() returns the scaled matrix, the values used to center

the elements, and the values used to scale the elements.

For more information, enter ?scale at the R prompt or use the Help tab

in R Studio.

�The Functions aggregate( ), table( ), tabulate( ),
and ftable( )
Like the apply functions, the function aggregate() finds statistics for

data groups. The functions table(), tabulate(), and ftable() create

contingency tables out of data.

�The Function aggregate( )

The function aggregate() applies a function to the elements of an object

based on the values of another object. The object to be operated on is

either a time series, a data frame or an object that can be coerced to a data

frame. The values of the other object must be a list with elements that can

be interpretable as factors and, at the second level, must be of length equal

to the rows of the data frame or time series. The function treats data frames

and time series differently.

Chapter 11 Descriptive Functions and Manipulating Objects

231

Data Frames

For data frames, the arguments are x, by, FUN, ..., simplify, and drop.

The argument x is a data frame. The argument by is an object of mode

list consisting of elements that can be interpreted as factors. The

elements of by are used to group the rows of x.

The argument FUN is the function to be applied and ... are any extra

arguments for that function. The argument simplify tells aggregate()

whether to try to simplify the result to a vector or matrix. The default

value is TRUE. The argument drop is a logical variable. If TRUE, unused

combinations for the by factors are dropped. Starting with R 3.5.0 the

default value is TRUE.

The result of aggregate() for a data frame is a data frame. An example

follows:

> x=rep(1:2, 3)

> y1=1:6

> y2=7:12

> a.df=data.frame(y1, y2, x)

> a.df

 y1 y2 x

1 1 7 1

2 2 8 2

3 3 9 1

4 4 10 2

5 5 11 1

6 6 12 2

> aggregate(a.df[,1:2], by=list(x), FUN=mean)

 Group.1 y1 y2

1 1 3 9

2 2 4 10

Chapter 11 Descriptive Functions and Manipulating Objects

232

The function finds the means in each column for the two grouping

values in x.

For data frames, a formula may be used to classify x rather than using

the argument by. For the formula option, the arguments are formula, data,

FUN, ..., subset, and na.action. The argument formula takes the form y~x,

where y is numeric and can have more than one column and x is a formula

such as x1 or x1+x2, where both x1 and x2 can be interpreted as factors.

The argument data gives the name of the data frame and must be

included. The argument FUN is the function to be applied and ... contains

any extra arguments for FUN. The default value is sum. The argument

subset gives the rows of the data frame on which to operate. The argument

na.action gives the choice for how to handle missing values and is a

character string. The default value is “na.omit”, which tell aggregate() to

omit missing values. An example follows:

> a.df

 y1 y2 x

1 1 7 1

2 2 8 2

3 3 9 1

4 4 10 2

5 5 11 1

6 6 12 2

> aggregate(cbind(y1, y2)~x, data=a.df, sum, subset=1:3)

 x y1 y2

1 1 4 16

2 2 2 8

The first three rows of y1 and y2 are summed based on the value of x.

Note that the by variable must be a list while the right side of a formula

cannot be a list.

Chapter 11 Descriptive Functions and Manipulating Objects

233

Time Series

Time series have both a frequency and a period. In R, the frequency is

the inverse of the period and vice versa. For example, a year can be the

period of interest. Then, the months have a frequency of 12 while having

subperiods of 1/12.

For time series, the arguments are x, nfrequency, FUN, ndeltat, ts.eps,

and The argument x must be a time series. The argument nfrequency

is the number of subperiods for each period after FUN has operated on

the time series. The value must divide evenly into the original time series

frequency. For a monthly time series, aggregating to a quarter can be done

by setting nfrequency to four. The argument equals 1 by default. (The

original time series frequency divided by nfrequency gives the number of

elements that are grouped together—on which FUN operates.)

The argument FUN is the function to be applied and ... gives any extra

arguments to FUN. The argument ... is at the end of the argument list.

The function FUN must be legal for the values of the time series and is by

default sum.

The argument ndeltat tells aggregate() the length of the subperiods

for the output and equals 1 by default. The argument is the value of one

divided by nfequency. The product of the frequency of the original time

series and ndeltat must be an integer.

Either nfrequency or ndeltat can be set but not both. The product of

nfrequency and the inverse of ndeltat is the frequency of the original time

series, or its inverse if nfrequency is less than one.

The argument ts.eps gives the tolerance for accepting that nfrequency

divides evenly into the frequency of the time series. By default, ts.eps

equals getOption(“ts.eps”), which value can be found by entering

options(“ts.eps”) at the R prompt. The value is numeric and can be set

manually.

Chapter 11 Descriptive Functions and Manipulating Objects

234

An example follows:

> a.ts=ts(cbind(1:12, 11:22), start=c(1, 1), freq=4)

> a.ts

 Series 1 Series 2

1 Q1 1 11

1 Q2 2 12

1 Q3 3 13

1 Q4 4 14

2 Q1 5 15

2 Q2 6 16

2 Q3 7 17

2 Q4 8 18

3 Q1 9 19

3 Q2 10 20

3 Q3 11 21

3 Q4 12 22

> aggregate(a.ts, nfreq=2)

Time Series:

Start = c(1, 1)

End = c(3, 2)

Frequency = 2

 Series 1 Series 2

1.0 3 23

1.5 7 27

2.0 11 31

2.5 15 35

3.0 19 39

3.5 23 43

Chapter 11 Descriptive Functions and Manipulating Objects

235

> aggregate(a.ts, ndelt=1/2)

Time Series:

Start = c(1, 1)

End = c(3, 2)

Frequency = 2

 Series 1 Series 2

1.0 3 23

1.5 7 27

2.0 11 31

2.5 15 35

3.0 19 39

3.5 23 43

> aggregate(a.ts, nfreq=1/2)

Time Series:

Start = 1

End = 1

Frequency = 0.5

 Series 1 Series 2

1 36 116

> aggregate(a.ts, ndelt=2)

Time Series:

Start = 1

End = 1

Frequency = 0.5

 Series 1 Series 2

1 36 116

Note that nfreq can be less than one but must give an integer if

multiplied by freq. In the example with nfreq=1/2, the first eight rows are

summed, but the last four rows are ignored.

You can find more information about aggregate() by entering

?aggregate at the R prompt or by using the Help tab in R Studio.

Chapter 11 Descriptive Functions and Manipulating Objects

236

�The Functions table( ), as.table( ), and is.table( )

There are three functions associated with creating tables using

table(). The function table() creates a contingency table from atomic

data or some lists. The data must be able to be interpreted as factors.

The result has class table. The function as.table() attempts to coerce

an object to class table. The function is.table() tests if an object is of

class table.

The arguments to table() are ..., exclude, useNA, dnn, and

deparse.level.

The argument ... refers to the object(s) that are to be cross-classified.

The objects are separated by commas and, for atomic objects, must have

same length. For list objects, the second level elements must all have the

same length and be atomic. Atomic and list objects cannot be combined in

a call to table().

The argument exclude gives values to be excluded from the

contingency table. By default, exclude equals if(useNA==“no”) c(NA,
NaA), which tells table() not to set a level for missing values or illegal

values—such as one divided by zero—if the argument useNA equals “no”.

The argument useNA is a character argument and can take on the value

“no”, “ifany”, or “always”. For “no”, no level is set for missing values. For

“ifany”, a level is set if missing values are present. For “always”, a level for

missing values is always set. The default level is “no”.

The argument dnn is a list argument and gives dimension names for

the contingency table. The default value is list.names(...). The function

list.names() is defined in table() and gives the names of the dimensions

being tabulated.

The argument deparse.level is an integer argument that can take

on the values of 0, 1, or 2. The argument controls list.names() if dnn is

not given. For 0, no names are given. For 1, the column names are used.

Chapter 11 Descriptive Functions and Manipulating Objects

237

For 2, column names are deparsed. The default value is 1. An example

follows:

> set.seed(203846)

> a1.samp=sample(3, 100, replace=T)

> a2.samp=sample(3, 100, replace=T)

> table(a1.samp, a2.samp)

 a2.samp

a1.samp 1 2 3

 1 12 10 14

 2 13 9 9

 3 15 8 10

> a2.samp[10]=NA

> table(a1.samp, a2.samp)

 a2.samp

a1.samp 1 2 3

 1 12 10 14

 2 12 9 9

 3 15 8 10

> table(a1.samp, a2.samp, useNA="ifany")

 a2.samp

a1.samp 1 2 3 <NA>

 1 12 10 14 0

 2 12 9 9 1

 3 15 8 10 0

Note that the second table does not include the missing value, but the

third does.

Chapter 11 Descriptive Functions and Manipulating Objects

238

The function as.table() takes the arguments x and The argument

x is the object to be coerced to the table class. The argument must be of

mode numeric. The argument... provides any arguments for lower-level

functions.

The function is.table() takes the argument x and returns TRUE if x is

of class table and FALSE if not.

You can find more information about table(), as.table(), and

is.table() by entering ?table() at the R prompt or by using the Help tab

in R Studio.

�The Function tabulate( )

The function tabulate() coerces numeric or factor objects to vectors

and bins the result. The arguments are bin and nbins. The argument

bin is the object to be binned. If the object is not an integer or factor

object, then the elements are rounded down to integers. The resulting

integers must be positive. If an illegal element is present, the element is

ignored.

The argument nbins gives the largest integer to be binned and by

default equals max(1, bin, na.rm=T)—that is, the largest value in bin,

assuming the largest value in bin is larger than one. By default, NAs are

removed.

If nbins is smaller than the largest value in bin, then only those

values with a value less than or equal nbins are binned. All of the integers

between one and nbins are binned even if there are zero elements in a

given bin. The function creates a vector without labels. The bins always

start with one. An example follows:

> tabulate(c(-3.5, .9, 1, 4, 5.6, 5.4, 4, 1, 3))

[1] 2 0 1 2 2

> tabulate(c(-3.5, .9, 1, 4, 5.6, 5.4, 4, 1, 3), nbins=3)

[1] 2 0 1

Chapter 11 Descriptive Functions and Manipulating Objects

239

In the example, there are two ones, zero twos, one three, two fours, and

two fives in the reduced object.

The function tabulate() is good when all of the bins, including those

with zero elements, are needed. You can find more information about

tabulate()by entering ?tabulate at the R prompt or by using the Help tab

in R Studio.

�The Function ftable( )

The function ftable() creates a matrix out of a contingency table—that

is, a matrix that is a flat table. The arguments are ..., exclude, row.vars,

and col.vars. The argument ... can be objects that can be coerced to a

vector and that can be interpreted as factors, separated by commas. The

argument can also be a list whose elements can be interpreted as factors,

or the argument can be of class table or ftable.

The argument exclude gives the values to be excluded when building

the flat table. By default, exclude equals c(NA, NaN).

The arguments row.vars and col.vars give the dimensions to put

in the rows and columns. The values can go from one to the number of

dimensions in the table—in other words, a table with three dimensions

can have row.vars and col.vars equal to 1:2 and 3; or 2:1 and 3; or 1 and 3;

or c(3,1) and 2; and so forth. An example follows:

> a.list = list(1:2, 3:4, 5:6)

> ftable(a.list)

 x.3 5 6

x.1 x.2

1 3 1 0

 4 0 0

2 3 0 0

 4 0 1

Chapter 11 Descriptive Functions and Manipulating Objects

240

> a1 = 1:2

> a2 = 3:4

> a3 = 5:6

> ftable(a1, a2, a3, row.vars=3, col.vars=2:1)

 a2 3 4

 a1 1 2 1 2

a3

5 1 0 0 0

6 0 0 0 1

> a.table = table(1:2, 3:4, 5:6)

> ftable(a.table, row.vars=2, col.vars=3)

 5 6

3 1 0

4 0 1

In these examples, the two observations are (1,3,5) and (2,4,6).

You can find more information about ftable() by entering ?ftable at

the R prompt or by using the Help tab in R Studio.

�Some Character String Functions
There are a number of functions for searching for patterns in character

strings and for replacing parts of strings with other strings based on

matching. This section covers the grep functions, the sub functions, the

regex functions, the str functions, and the character case transformation

functions.

Chapter 11 Descriptive Functions and Manipulating Objects

241

�The grep Functions

The grep() and grepl() functions search for matches to a pattern in a vector

of character strings. The function grep() returns either the index or the

value of those strings that contain the pattern. The function grepl() returns

a logical vector of the same length as the character vector with elements

equal to TRUE if there is a match, and FALSE if there is not a match, for

each element of the character vector.

The arguments of grep() are pattern, x, ignore.case, perl, value, fixed,

and useBytes. The argument pattern is a character string or an object

that can be coerced to a character string by using as.character(). If the

argument contains more than one element, only the first one is used.

The argument x is the character vector in which to look for the matches.

The argument ignore.case tells grep() to ignore case in doing the matching

if set equal to TRUE. The default value is FALSE.

The arguments perl and fixed tell grep() what type of matching to do.

(See the help page for regex for more information.) Both arguments are

FALSE by default. The argument value tells grep() to return the value of

the element if set to TRUE and the index of the element if set to FALSE.

The default value is FALSE. The argument useBytes, if set to TRUE, tells

grep() to match byte-wise rather than character-wise. The default value is

FALSE. The argument inverse, if set equal to TRUE, tells grep() to return

the elements that do not contain matches rather than those that do. The

default value is FALSE.

An example:

> ab.char=c("achar1", "achar2", "achar3")

> ab.char

[1] "achar1" "achar2" "achar3"

> grep("achar", ab.char)

[1] 1 2 3

Chapter 11 Descriptive Functions and Manipulating Objects

242

> grep("1", ab.char, value=T)

[1] "achar1"

> grep("Achar", ab.char)

integer(0)

> grep("Achar", ab.char, ignore.case=T)

[1] 1 2 3

> grep("Achar", ab.char, ignore.case=T, invert=T)

integer(0)

The function grepl() takes the same arguments as grep() except that

there are no arguments value or invert. The function returns a logical

vector, for example:

> grepl("1", ab.char)

[1] TRUE FALSE FALSE

> grepl("Achar", ab.char)

[1] FALSE FALSE FALSE

The functions agrep() and agrepl() are similar to grep() and grepl(),

except that agrep() and agrepl() do “fuzzy” matching. For example:

> grepl("Achar", ab.char)

[1] FALSE FALSE FALSE

> agrepl("Achar", ab.char)

[1] TRUE TRUE TRUE

See the help page for agrep() for more information on how the

matching can be done.

The function grepRaw() does pattern matching for raw vectors. The

function takes the arguments pattern, x, offset, ignore.case, value, fixed,

all, and invert.

Chapter 11 Descriptive Functions and Manipulating Objects

243

The argument pattern is the pattern to be matched and can be a raw

vector or a single character string. The argument x is also a raw vector or a

single character string and is the object in which to search for the pattern.

In grepRaw(), before the search, the character strings are converted to raw

vectors using the function charToRaw().

The argument offset gives the index of the raw vector at which to start

searching. The value must be able to be coerced to a positive integer. If the

value is an object of length greater than one, only the first element is used.

The default value for offset is 1L.

The argument ignore.case, if set equal to TRUE, tells grepRaw() to

match both capital letters and lower case letters given a letter of either

case. The default value is FALSE.

The argument value, if set equal to TRUE, returns the first raw vector

containing the match or a list of the raw vectors containing the matches,

depending on whether the argument all is FALSE or TRUE. If value is

FALSE, either the index of the first element of the first match, or the indices

of the first elements of all of the matches, is(are) returned, depending on

the value of the argument all—FALSE or TRUE. The default value of value

is FALSE.

The argument all tells grepRaw() to just return the first match if set

equal to FALSE and all matches if set equal to TRUE. The default value is

FALSE. The arguments fixed and invert are as defined for grep() and by

default are FALSE.

An example:

> a=charToRaw("abc123")

 > a

[1] 61 62 63 31 32 33

> grepRaw("b", a)

[1] 2

Chapter 11 Descriptive Functions and Manipulating Objects

244

> grepRaw("b", a, value=T)

[1] 62

> grepRaw("B", a, value=T, ignore.case=T)

[1] 62

> grepRaw("ab", "abab")

[1] 1

> grepRaw("ab", "abab", all=T)

[1] 1 3

> grepRaw("ab", "abab", value=T, all=T)

[[1]]

[1] 61 62

[[2]]

[1] 61 62

> grepRaw("ab", "Abab", value=T, all=T)

[[1]]

[1] 61 62

> grepRaw("ab", "Abab", value=T, all=T, ignore.case=T)

[[1]]

[1] 41 62

[[2]]

[1] 61 62

The functions sub() and gsub() replace a new string for a substring

in the element(s) of an object that can be coerced to a character

vector. The arguments to both functions are pattern, replacement,

x, ignore.case, perl, fixed, and useBytes. The only new argument is

replacement, the replacement value. The replacement value must be

an object that can be coerced to a character string. If the replacement

Chapter 11 Descriptive Functions and Manipulating Objects

245

object has more than one element, only the first element is used, and

a warning is given. The function sub() replaces the first occurrence

of the pattern in each element of x. The function gsub() replaces all

occurrences of the pattern.

For example:

> sub("b1", "c", c("b1b2b1", "cb1"))

[1] "cb2b1" "cc"

> gsub("b1", "c", c("b1b2b1", "cb1"))

[1] "cb2c" "cc"

The functions regexpr(), gregexpr(), and regexec() return the location

and length of a string within a character vector, plus some other attributes

such as type of expression. For all three of the functions, a list is returned.

A minus one is returned if no match is found. The arguments to the three

functions are pattern, text, ignore.case, perl, fixed, and useBytes. Here,

text is the object in which to search for the pattern. The other arguments

are as described previously.

The function regexpr() finds the first occurrence of the pattern for

each element of text and returns a vector and some attributes. The vector

is a vector of integers, where for each element in text, the integer is the

position of the first occurrence of the pattern in the element. If the pattern

is not in the element, a minus one is used.

The first attribute of the result is “match.length”—a vector of integers

which contains the number of characters or bytes (depending on whether

useBytes is FALSE or TRUE) in the first match of the pattern. Again, if there

is no match, minus one is used. Two other possible attributes are “index.

type” and “useBytes.”

To separate out the vector from the attributes, you can use the function

as.vector() on the result. To access the attributes, you can use the function

attr().

Chapter 11 Descriptive Functions and Manipulating Objects

246

For example:

> a=regexpr("ab", c("ababab", "ba"))

> a

[1] 1 -1

attr(,"match.length")

[1] 2 -1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> as.vector(a)

[1] 1 -1

> attr(a, "match.length")

[1] 2 -1

The function gregexpr() finds all matches to the argument pattern

in each element of text. The function takes the same arguments as

regexpr() and returns a list of the same length as text. The first element

of the list contains the information for the first element of text; the

second information about the second; and so forth. The structure of each

element of the list is structured like the output from regexpr() except the

reference is to all matches in the element rather than for the first match

in each element.

For example:

> ag=gregexpr("ab", c("ababab", "ba"))

> ag

[[1]]

[1] 1 3 5

Chapter 11 Descriptive Functions and Manipulating Objects

247

attr(,"match.length")

[1] 2 2 2

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

[[2]]

[1] -1

attr(,"match.length")

[1] -1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> as.vector(ag[[1]])

[1] 1 3 5

> as.vector(ag[[2]])

[1] -1

The function regexec() is regexpr() with output in the form of gregexpr().

For more information on grep(), grepl(), sub(), gsub(), regexpr(),

gregexpr(), and regexec() enter ?grep at the R prompt or use the Help tab

in R Studio. For more information about agrep() and grepRaw(), enter

?agrep and ?grepRaw at the R prompt or use the Help tab in R Studio.

�Functions to Manipulate Case in Character Strings

Three functions that can be used to change the case of a character string

are tolower(), toupper(), and chartr(). The functions tolower() and

toupper() take one argument, x, which can be any vector that can be

coerced to character by using as.character(). The functions change the

Chapter 11 Descriptive Functions and Manipulating Objects

248

case of the entire vector either to lower or upper case. Characters that are

not letters are not changed.

For example:

> tolower(c("Jane Doe", "John Doe"))

[1] "jane doe" "john doe"

> toupper(c("Jane Doe", "John Doe"))

[1] "JANE DOE" "JOHN DOE"

The function chartr() changes characters in a vector, x, to other

characters. The function takes three arguments, old, new and x. The

arguments old and new must be character strings and of the same length.

The characters to be replaced make up old, while the replacement

characters are in new, where there is a one to one transformation between

the two. Each character in the string is evaluated separately. Characters

can be referred to by a range.

For example:

> chartr("ao", "oa", c("Jane Doe", "John Doe"))

[1] "Jone Dae" "Jahn Dae"

> chartr("a-e", "ABCDE", c("Jane Doe", "John Doe"))

[1] "JAnE DoE" "John DoE"

More information about tolower(), toupper(), and chartr() can be

found by entering ?tolower at the R prompt or by using the “Help” tab in R

Studio.

�The Functions substr( ), substring( ), and strsplit( )

The functions substr(), substring(), and strsplit() work with strings by

specifying where on the string to operate. The function substring() takes

three arguments, x, start, and stop. The argument x is a character vector;

the argument start tells substr() the how far into the character string to

Chapter 11 Descriptive Functions and Manipulating Objects

249

go before selecting or changing the sub string; the argument stop tells

substr() where to stop. Both values should be positive integers. Either

of the integers can be larger than the number of characters in a string.

Neither start nor stop has default values.

For example:

> substr(c("Jane Doe", "John Doe", "Ms. X"), 2, 7)

[1] "ane Do" "ohn Do" "s. X"

> substr(c("Jane Doe", "John Doe", "Ms. X"), 6, 7)

[1] "Do" "Do" ""

> a.str=c("Jane Doe", "John Doe", "Ms. X")

> substr(a.str, 6, 7) = "soA"

> a.str

[1] "Jane soe" "John soe" "Ms. X"

In the first part of the example, substr() operates on the second

through seventh characters in each element of the vector. In the second

part, substr() operates on the sixth through seventh characters in each

element. Note that the third element only has five characters. In the third

part, only two characters are replaced, characters six and seven.

The function substring() performs much like substr(), except that

the three arguments are text, first, and last. last has the default value of

1000000L, so need not be specified.

Using “a.str” from the above example

> a.str

[1] "Jane Doe" "John Doe" "Ms. X"

> substring(a.str, 2) = "osa"

> a.str

[1] "Josa Doe" "Josa Doe" "MosaX"

Chapter 11 Descriptive Functions and Manipulating Objects

250

The function strsplit() splits the elements of a character vector into a

list of smaller vectors based on a string or an object that can be coerced

to a string. The function takes five arguments, x, split, fixed, perl, and

useBytes. The arguments fixed, perl, and useBytes are as described

previously and on the help page. The argument x is the object to be split

and must be a character vector. The argument split is the string used for

splitting. The value(s) in string are not included in the split. For splitting

on periods, use the string “[.]” rather than “.”. To split out the string into

individual characters set string to “”, NULL, or character(0).

For example:

> strsplit("a.b.b", "b.")

[[1]]

[1] "a." "b"

> strsplit("a.b.b", ".")

[[1]]

[1] "" "" "" "" ""

> strsplit("a.b.b", "[.]")

[[1]]

[1] "a" "b" "b"

> strsplit(c("a.b.b", "d.f.d"), "")

[[1]]

[1] "a" "." "b" "." "b"

[[2]]

[1] "d" "." "f" "." "d"

More information about substr() and substring() can be found by

entering ?substr at the R prompt or by using the Help tab in R Studio. For

strsplit(), enter ?strsplit or use the Help tab.

Chapter 11 Descriptive Functions and Manipulating Objects

Flow control

PART V

253© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_12

CHAPTER 12

Flow Control
Flow control statements are used to repeat a series of tasks a number of

times or to direct flow based on a logical object. For persons who came

into programming in the age of FORTRAN and BASIC, using loops is very

comfortable. In R, the better choice, if possible, is to use arrays and index

selection instead of looping. Using indices is much faster than looping.

That said, the control statements are if, if/else, while, for, and repeat.

They are sometimes necessary and often useful. In this chapter, we give

syntax for the flow control statements. We give examples of the use of flow

control in Chapter 13.

�Brackets “{}” and the Semicolon “;”
Curly brackets are used to enclose sections of code. Brackets can be used

with if, else, while, for, and repeat flow control statements to delineate the

section of code on which the control statement is to operate, both within

functions and at the R console.

Brackets can also be used without an accompanying flow control

statement, directly at the R console. Starting with an opening bracket,

code statements can be entered one line at a time. The statements do not

execute until the closing bracket is entered.

The semicolon is used to include more than one statement on one

line. A statement is not evaluated until the statement before it has finished

executing. If the first statement is a flow control statement followed

254

by a single statement of code, the control flow must finish before the

second statement executes. However, if the two—or more—statements

are enclosed in an opening and a closing bracket after a flow control

statement, all of the statements within the brackets are executed together

based on the flow control statement.

�The “if” and “if/else” Control Statements
The if control statement takes a logical object and executes code if the

object is true. If the object is not true, then, optionally, different code given

by an else statement executes.

The logical object must be an object that can be coerced to logical. If

the logical object is of length greater than one, only the first element of the

object is used.

The if statement can take the following forms:

if ('logical object') 'single code statement'

if ('logical object') 'single code statement';'single code

statement'

if ('logical object') {'more than one code statement separated

by semicolons'}

if ('logical object') {

'lines of code statements'

}

These four forms are not exhaustive of the possible forms. In the

second form, the second statement will execute even if the logical object is

false since the two statements are not enclosed in brackets.

Chapter 12 Flow Control

255

If the logical object is false, then the option exists to have R execute

different code by using an else statement. For the two control statements if

and else, two examples of form follow:

if ('logical object') 'single code statement' else 'single code

statement'

if ('logical object') {

'lines of the code statements'

}

else {

'lines of the code statements'

}

Again, the two forms are not exhaustive. If no else control statement

is present and logical object is false, then the code statements associated

with the if statement are skipped.

�The “while” Control Statement
The while control statement executes a block of code while a logical

condition is true. Again, the logical object must be an object that can be

coerced to logical. If the logical object is of length greater than one, only

the first element of the object is used.

The control statement can take the following forms:

while ('logical object') 'single code statement'

while ('logical object') 'single code statement'; 'single code

statement'

while ('logical object') {'multiple code statements separated

by semicolons'}

Chapter 12 Flow Control

256

while ('logical object') {

'lines of code statements'

}

Again, the forms shown are not exhaustive of the possible forms. Note

that for the second form, the second statement does not execute until the

while loop is ended since the two statements are not in brackets.

�The “for” Control Statement
The for control statement instructs R to loop through a section of code for

a set number of times. There are a number of ways that the looping can be

done based on the looping criteria.

The looping criteria can be quite flexible. The simplest form is

for (i in 1:n)

where i is an object that indexes from 1 to n and where n is an integer.

In general, the syntax of the flow control statement for for loops is

for ('indexing variable' in 'vector object')

where indexing variable is a variable whose value changes at each

iteration of the loop and vector object contains the values that indexing
value takes. The vector object can be any object that can be coerced to a

vector, including objects of mode list and expression.

The object indexing variable will take on the values of vector object

sequentially. Usually, the indexing variable is used in the code statements

executed by the for loop.

Note that if the vector object is created using the function seq() within

the for statement and the seq() argument along.with—which can be

abbreviated along—is used, seq() gives the indices of the elements of

along.with rather than the values of the object.

Chapter 12 Flow Control

257

Some forms of a for loop are the following:

for ('looping criteria') 'single code statement'

for ('looping criteria') 'single code statement'; 'single code

statement'

for ('looping criteria') {'multiple code statements separated

by semicolons'}

for ('looping criteria') {

'lines of code statements'

}

Again, the four forms are not exhaustive of the possible forms. In the

second form, the code after the semicolon does not execute until after the

for loop is finished since the two statements are not in brackets.

According to the CRAN help page for flow control, the value of the

indexing variable can be changed in the code statements referenced by

for but, at the start of the next loop, reverts to the next indexed value of the

variable. At the end of the looping, the value of indexing variable is the

final value of the indexing variable in the loop.

�The “repeat” Control Statement
The repeat flow control statement repeats a section of code until a

stopping point is reached. The stopping point must be programmed into

the section of code. Unlike while, repeat does not have a logical object as

part of the control statement, and, unlike for, no looping index is part of

the control statement. Following are two forms for repeat:

repeat {'some code statements separated by semicolons'}

repeat {

'lines of code statements'

}

Chapter 12 Flow Control

258

Again, the two are not exhaustive. Infinite loops are possible with

repeat, so use caution.

�The Statements “break” and “next”
The statements break and next are used for flow control within those

sections of code controlled by one of the flow controllers.

The statement break tells R to leave a for, while, or repeat loop or an if

section and go to the first statement after the loop or section.

The statement next tells R to stop executing the code statements in a

for, while, or repeat loop and start again at the beginning of the loop—

with the value of the indexing variable, if there is one, taking on the next

value of the variable.

�Nesting
Any of the flow control statements can be nested within other flow control

sections of code. For the sake of clarity and to prevent subtle bugs, use

brackets at all levels when nesting flow control sections within other flow

control sections.

Most of the information presented here on flow control is from the

CRAN help page on controlling flow, which can be found by entering ?“if”

at the R prompt or by using the “Help” tab in R Studio.

Chapter 12 Flow Control

259© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_13

CHAPTER 13

Examples of Flow
Control
This chapter gives some examples of flow control as well as ways to do

the examples using indexing. The first example uses nested for loops and

if/else statements. The second example uses the while statement. The

third example is of nested for loops. The fourth example uses a for loop,

an if statement, and a next statement. The fifth example is of a for loop, a

repeat loop, an if statement, and a break statement.

�Nested ‘for’ Loops with an ‘if/else’
Statement
In this example, we do an element-by-element substitution into a matrix

based on an if/else test.

First, a two-by-five matrix x is generated and the matrix is displayed.

Next, two for loops cycle through the row and column indices of x. At each

cycle, a set of if/else statements test whether the element in the matrix is

greater than five.

If the value of the element is greater than five, the value of the element

is replaced with one. If not, control goes to the else statement. Within the

else statement, the value of the element is replaced by zero.

260

Last, the resultant matrix is displayed. The example follows:

> x = matrix(1:10, 2, 5)

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> for (i in 1:2) {

+ for (j in 1:5) {

+ if (x[i,j]>5) x[i,j]=1

+ else x[i,j]=0

+ }

+ }

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 1 1

[2,] 0 0 1 1 1

�Using Indices
Doing the same substitution without loops is easier. First, the matrix x

is generated and displayed. Next, the elements in x are set equal to the

new values based on the original values. Note that the order in which the

substitution is done matters, since one is less than six. Last, the resultant

matrix is displayed. The example follows:

> x = matrix(1:10, 2, 5)

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

Chapter 13 Examples of Flow Control

261

> x[x<=5] = 0

> x[x>5] = 1

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 1 1

[2,] 0 0 1 1 1

On my computer, using a matrix with 43,830 rows and 35 columns,

both methods took less than a second.

�A ‘while’ Loop
In this example, a while loop is used to find how many iterations it takes

for a sum of variables distributed randomly and uniformly between zero

and one to be greater than five.

After initially setting the seed for the random number generator and

setting n and x to zero, a while loop is started to increment n and to sum x.

A number generated using the random number generator for the uniform

distribution is added to x at each iteration. When x is greater than five, the

looping stops. The values for n and x are printed out. The example follows:

> set.seed(129435)

> n=0

> x=0

> while (x<=5) {

+ x = x + runif(1)

+ n = n + 1

+ }

Chapter 13 Examples of Flow Control

262

> n

[1] 7

> x

[1] 5.179325

�Using Indices
To do the same task using indices, a vector of uniform random variables is

generated of length greater than what would be expected for the result of

the sum.

Then, the function cumsum(), which creates a cumulative sum along a

vector, is used to find when the sum is greater than five. Since the elements

of x are always greater than zero, the accumulated sum always increases

along the vector.

Next, the function length() is used to find the number of elements for

which the sum is less than or equal to five. Then, the values for n and x are

printed out, where x equals x[n].

> set.seed(129435)

> x = runif(25)

> x = cumsum(x)

> n = length(x[x<=5])+1

> x = x[n]

> n

[1] 7

> x

[1] 5.179325

Note that the random number generator is set to the same seed value

for both parts of the example, so the results for the two match since the

same first seven numbers are generated.

Chapter 13 Examples of Flow Control

263

On my computer, if I substitute 1,000,000 for 5 in the preceding

examples, and 3,000,000 for 25, the method using indices is almost

instantaneous, while the method using looping takes about 5 seconds.

�Nested ‘for’ Loops
Sometimes, the differences between each of the columns of a matrix are

needed. In this example, nested for loops are used to find the differences.

First, a matrix x is generated with two rows and four columns and is

assigned column names. Next, the matrix is displayed. Then, a matrix xp of

zeroes with two rows and six columns is generated to hold the result of the

differences, and the matrix is assigned blank column names.

Next, a counter k for the columns in the matrix xp is set to zero. As the

two for loops increment, k will increase by one at each step.

Then, the two for loops are run. In the loops, the elements of xp are

filled with differences between the different columns in x. The two loops

loop through the columns in the matrix x in such a way that no column

combinations are repeated and the two columns are never the same. At

each step, the columns of xp are assigned names based on the names in x.

Last, the resulting matrix xp is displayed. The example follows:

> x = matrix(1:8, 2, 4)

> colnames(x) = paste("c", 1:4, sep="")

> x

 c1 c2 c3 c4

[1,] 1 3 5 7

[2,] 2 4 6 8

> xp = matrix(0, 2, 6)

> colnames(xp) = rep("", 6)

> xp

Chapter 13 Examples of Flow Control

264

[1,] 0 0 0 0 0 0

[2,] 0 0 0 0 0 0

> k=0

> for (i in 1:3) {

+ for (j in (i+1):4) {

+ k = k+1

+ xp[,k] = x[,i]-x[,j]

+ colnames(xp)[k] = paste(colnames(x)[i], "-",

 colnames(x)[j], sep="")

+ }

+ }

> xp

 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4

[1,] -2 -4 -6 -2 -4 -2

[2,] -2 -4 -6 -2 -4 -2

Note that the number of columns in xp equals p(p-1)/2, where p is the

number of columns in x.

�Using Indices
To do this problem using indices, two vectors of indices are created.

First, the initial matrix x is generated, assigned column names, and

displayed. Then, two sets of indices of the same length, ind.1 and ind.2,

are created. The respective indices in the two sets are never the same, and

all possible combinations are present and present only once.

Next, the resultant matrix xp is created by subtracting the columns of

x in the second index set from the columns of x in the first index set. Next,

the column names for xp are created and assigned using paste() and the

two index sets.

Chapter 13 Examples of Flow Control

265

Last, the matrix xp is displayed. The example follows:

> x = matrix(1:8, 2, 4)

> colnames(x) = paste("c", 1:4, sep="")

> x

 c1 c2 c3 c4

[1,] 1 3 5 7

[2,] 2 4 6 8

> ind.1 = rep(1:3, 3:1)

> ind.1

[1] 1 1 1 2 2 3

> ind.2 = numeric(0)

> for(i in 2:4) ind.2 = c(ind.2, i:4)

> ind.2

[1] 2 3 4 3 4 4

> xp = x[,ind.1] - x[,ind.2]

> colnames(xp) = paste("c", ind.1, "-c", ind.2, sep="")

> xp

 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4

[1,] -2 -4 -6 -2 -4 -2

[2,] -2 -4 -6 -2 -4 -2

Note that a for loop is used to create the second set of indices. Also,

column indices are repeated in both sets of indices.

For large matrices, the second method is faster than the first. On my

computer, column differences for two matrices each with 43,830 rows and

35 columns were found by the two methods. The two methods both gave

the same 43,830-by-595 matrix. The looping method took over 1.0 minute,

and the indexing method took less than 1.0 second.

Chapter 13 Examples of Flow Control

266

�A ‘for’ Loop, ‘if’ Statement, and ‘next’
Statement
In this example, standard normal random numbers are generated and

compared to 1.965. Only those values that are less than or equal to 1.965

are kept.

First, the seed for the random number generator is set to an arbitrary

value. Then, x is set equal to a numeric NULL value. In the for loop that

comes next, for 10,000 iterations, a standard normal random number is

generated at each iteration. If the number is larger than 1.965, the next

loop starts. Otherwise, the number is added to a vector of numbers.

A histogram is plotted of the final vector. See Figure 13-1 for the result.

The example follows:

> set.seed(69785)

> x = numeric(0)

> for (i in 1:10000) {

+ x2 = rnorm(1)

+ if (x2>1.965) next

+ x = c(x, x2)

+ }

> hist(x)

> box()

Chapter 13 Examples of Flow Control

267

�Using Indices
Using indices is much simpler. First, the random number generator seed

is set to the same value as for the previous example. Next, a vector of

standard normal random variables of length 10,000 is generated. Next,

only those values in the vector that are less than or equal to 1.965 are kept.

Last, a histogram of the vector is generated. The histogram is shown in

Figure 13-2. The example follows:

> set.seed(69785)

> x = rnorm(10000)

> x = x[x<=1.965]

> hist(x)

> box()

Figure 13-1.  Using a loop to generate a histogram of random
standard normal variates that are less then 1.965

Chapter 13 Examples of Flow Control

268

Note that the two histograms are the same since the seeds are the same

and the same 10,000 numbers are used.

If 10,000 is increased to 100,000 above, on my computer the method

using loops takes about 34 seconds while the method using indices takes

less than 1 second.

�A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’
Statement, and a ‘break’ Statement
In this example, random samples of size 100 of standard normal numbers

are generated within a repeat loop. The repeat loop is within a for loop

that goes through 10,000 iterations.

Figure 13-2.  Using indices to generate a histogram of random
standard normal variates that are less then 1.965

Chapter 13 Examples of Flow Control

269

For each sample, the sum of the sample is divided by the ten and then

compared to 1.965. (Since the expected value of the generated numbers

is zero, the standard error is one, and the numbers are independent, the

sample sum divided by ten is a standard normal variate.) If the value is less

than 1.965, then the repeat loop continues. Otherwise, the repeat loop

stops, the number of times through the loop is recorded, and the next for

loop starts. At the end, the vector of the numbers of times through the loop

is plotted in a histogram, and the mean and median of the numbers of

times is found.

First, the seed for the random number generator is set. Then, a vector

n.hist is created to hold the results, with a place for each iteration of the for

loop. Next, the for loop opens, and the counter n is set to zero. Then, the

repeat loop opens.

At the beginning of the repeat loop, the counter n is incremented by

one. Then, the sample is taken, divided by ten, and summed. The result is

set equal to x. Next, the value of x is compared to 1.965 in an if statement.

If the value is greater than 1.965, then n.hist for index i is set equal to the

counter n and a break statement breaks the function out of the repeat

loop. Otherwise, the repeat loop continues looping.

At the end, hist() is run to create a histogram of n.hist, mean() is

run to find the mean of n.hist, and median() is run to find the median of

n.hist. See Figure 13-3 for the histogram. The example follows:

> set.seed(69785)

> n.hist = numeric(10000)

Chapter 13 Examples of Flow Control

270

> for (i in 1:10000) {

+ n=0

+ repeat{

+ n=n+1

+ x=sum(rnorm(100)/10)

+ if (x>1.965) { n.hist[i]=n; break }

+ }

+ }

> hist(n.hist, breaks=25, xlim=c(0, 500))

> box()

> mean(n.hist)

[1] 40.4769

> median(n.hist)

[1] 28

Chapter 13 Examples of Flow Control

271

Fi
gu

re
 1

3-
3.

 T
he

 n
u

m
be

rs
 o

f t
im

es
 n

ee
de

d
u

n
ti

l t
he

 r
es

u
lt

 e
xc

ee
d

1.
96

5
fo

r
su

m
s

of
 1

00
 s

ta
n

da
rd

n

or
m

al
 v

ar
ia

bl
e

di
vi

de
d

by
 1

0—
u

si
n

g
a

fo
r

lo
op

Chapter 13 Examples of Flow Control

272

Note that the mean is close to 40, which is the expected number of

trials necessary on average to see an event with a probability of 0.0247 of

occurring. However, the median is much smaller since the distribution is

highly skewed.

�Using Indices
To do this example using indices, we found the repeat loop necessary, but

that the for loop could be dispensed with.

Once again, the random number generator seed is set—to the same

number as in the first part of the example—and n.hist is defined numeric

with 10,000 elements. Then, the counter n is set to zero, the counter cl.sv is

set to zero, and the counter n.col is set to 10,000.

Next, the repeat loop opens. The matrix x is defined as a matrix

with 100 rows and n.col columns (initially 10,000). The elements of x

are randomly generated standard normal numbers and the number of

elements is the product 100 and n.col.
Next, the function apply() is used to sum each column of the matrix,

and the result is assigned to x. Then, x is divided by 10. Next, the length

of the vector containing those elements of x that are larger than 1.965 is

found and assigned to x.

Then, x is added to cl.sv so that cl.sv contains the number of columns

for which a result larger than 1.965 has been found. Then, n is incremented

by one. Next, x values of n.hist are set equal to n, where cl.sv and x are

used to say where along the vector n.hist to put the value of n.

Next, n.col is decremented by the value of x. The repeat loop

continues until n.col equals zero. At each iteration, n increases by one.

The histogram of n.hist is generated using hist(), the mean of n.hist

using mean(), and the median of n.hist using median(). See Figure 13-4 for

the histogram. The example follows:

> set.seed(69785)

Chapter 13 Examples of Flow Control

273

> n.hist = numeric(10000)

> n = 0

> cl.sv = 0

> n.col = 10000

> repeat{

+ x = matrix(rnorm(n.col*100), 100, n.col)

+ x = apply(x, 2, sum)

+ x = x/10

+ x = length(x[x>1.965])

+ cl.sv = cl.sv + x

+ n = n+1

+ n.hist[(cl.sv-x+1):cl.sv] = n

+ n.col = n.col-x

+ if (n.col==0) break

+ }

> hist(n.hist, breaks=25, xlim=c(0, 500))

> box()

> mean(n.hist)

[1] 40.5015

> median(n.hist)

[1] 28

Chapter 13 Examples of Flow Control

274

Fi
gu

re
 1

3-
4.

 T
he

 n
u

m
be

rs
 o

f t
im

es
 n

ee
de

d
to

 e
xc

ee
d

1.
96

5
fo

r
su

m
s

of
 1

00
 s

ta
n

da
rd

 n
or

m
al

 v
ar

ia
bl

e
di

vi
de

d
by

 1
0—

u
si

n
g

in
di

ce
s

Chapter 13 Examples of Flow Control

275

Once again, the mean is close to 40 and the median is 28.

Both methods use about the same amount of time. If 10,000 is replaced

by 100,000 above, then the looping method takes about 44 seconds and the

indexing method takes about 45 seconds on my computer.

Since the process of generating the random samples is different

between the two methods, the results for the two methods are not identical

even though the seed for the random number generator is the same.

Chapter 13 Examples of Flow Control

277© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_14

CHAPTER 14

The Functions ifelse()
and switch()
The two functions ifelse() and switch() execute flow control within a

function or script. The function ifelse() evaluates a logical expression

and chooses one of two values based on the result. The function switch()

takes a value as an argument and returns another value based on the value

of the first argument.

�The Function ifelse( )
The ifelse() function takes three arguments. The first is a logical object

or any object that can be coerced to logical, such as objects of the atomic

modes or objects of mode list where there is only one level of depth to

the list and where each element takes on only one value. Also, you can use

a function that returns values that can be coerced to logical. The second

argument is the value(s) to be returned where the first argument is true.

The third argument is the value(s) to be returned where the first argument

is false.

Each element of the first argument is tested separately. Elements of

mode character and missing elements return NA. Otherwise, the value

that is returned for a given element is the value in the same position in

278

the second (or third) argument. For example, if the first argument is the

vector (T,T,F,T), the second argument is the vector (1,2,1,2), and the third

argument is (4,5,6,4), then ifelse() returns (1,2,6,2). That is:

> ifelse(c(T, T, F, T), c(1, 2, 1, 2), c(4, 5, 6, 4))

[1] 1 2 6 2

If possible, the result has the same dimensions as the first argument.

Otherwise, a vector of mode list of length equal to the length of the first

argument is returned. For example:

> a.mat = matrix(0:3, 2, 2)

> a.mat

 [,1] [,2]

[1,] 0 2

[2,] 1 3

> a.list = list(a.mat, c("a", "b", "c"))

> a.list

[[1]]

 [,1] [,2]

[1,] 0 2

[2,] 1 3

[[2]]

[1] "a" "b" "c"

> ifelse(a.mat, 1:4, 30:33)

 [,1] [,2]

[1,] 30 3

[2,] 2 4

Chapter 14 The Functions ifelse() and switch()

279

> ifelse(a.mat, 1:4, a.list)

[[1]]

 [,1] [,2]

[1,] 0 2

[2,] 1 3

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] 4

Note that in the second call to ifelse(), the first element of a.mat
results in a FALSE and the first element of a.list is a matrix, so a list is

generated.

If the first argument is of length less than the length of the second

(or third) argument, only those elements in the second (or third) argument

up to the length of the first argument will be used. For example:

> ifelse(c(T, F), 1:5, 10:15)

[1] 1 11

The first element of 1:5 is 1 and the second element of 10:15 is 11, so

(1,11) is returned.

If the first argument is of length longer than the second (or third)

argument, the second (or third) argument cycles. For example:

> ifelse(c(T, F, F, F, T), 1:3, 10:12)

[1] 1 11 12 10 2

The second argument cycles to (1,2,3,1,2) and the third argument

cycles to (10,11,12,10,11).

Chapter 14 The Functions ifelse() and switch()

280

If the modes of the resulting elements are not the same, then the

result will have the mode of the element with the highest hierarchy, where

the hierarchy goes—from lowest to highest—logical, integer, double,

complex, character, and list. Objects of mode NULL and raw give an

error. For example:

> ifelse(c(T, F, F, F, T), 1:5+1i, 1:5)

[1] 1+1i 2+0i 3+0i 4+0i 5+1i

> ifelse(c(T, F, F, F, T), as.raw(2:6), as.raw(12:16))

Error in ifelse(c(T, F, F, F, T), as.raw(2:6), as.raw(12:16)) :

 �incompatible types (from raw to logical) in subassignment

type fix

A function can be used as the value for any of the three arguments.

If the function(s) is evaluated, the result(s) of the function is(are) returned

first. The last result is the result of the substitution. For example:

> f.fun = function(mu, se=1, alpha=.05){

 q_value = qnorm(1-alpha/2, mu, se)

 print(q_value)

}

> ifelse(f.fun(1:2, alpha=1.0), f.fun(1:2), f.fun(3))

[1] 1 2

[1] 2.959964 3.959964

[1] 2.959964 3.959964

> ifelse(f.fun(0:2, alpha=1.0), f.fun(1:2), f.fun(3))

[1] 0 1 2

[1] 2.959964 3.959964

[1] 4.959964

[1] 4.959964 3.959964 2.959964

Chapter 14 The Functions ifelse() and switch()

281

Note that in the first call to f.fun(), alpha is set to 1.0, so the median is

returned. Also, in the first call, the first two functions are evaluated, while

in the second call all three functions are evaluated.

If the result is assigned to an object, then the results of the functions

are printed at the console, but the result of the ifelse() is passed to the

object. For example:

> a=ifelse (f.fun(1:2, alpha=1.0), f.fun(1:2), f.fun(3))

[1] 1 2

[1] 2.959964 3.959964

> a

[1] 2.959964 3.959964

The function ifelse() can be nested. For example, a first-order

Markov chain of length six with two states, where the transition matrix is

0 7 0 3

0 8 0 2

. .

. .

é

ë
ê

ù

û
ú

can be generated using nested ifelse() functions. That is, letting “A” be

the first state and “B” be the second state:

> set.seed(6978)

> mc="A"

> for (i in 2:6) {

+ rn = runif(1)

+ mc = c(mc, ifelse(mc[i-1]=="A", ifelse(rn<=0.7, "A", "B"),

+. ifelse(rn<=0.8, "B", "A")))

+ }

> mc

[1] "A" "A" "B" "B" "B" "B"

Chapter 14 The Functions ifelse() and switch()

282

You can find more information about ifelse()by entering ?ifelse at

the R prompt or by using the Help tab in R Studio.

�The Function switch( )
The function switch() takes any number of arguments. The first argument

tells switch() which of the following arguments to return. The arguments

that follow the first argument are the objects to be returned. The first

argument must be numeric, logical, complex, character, or NA, and it must

consist of a single element. The rest of the arguments can be of any mode

and dimension. Commas separate the arguments.

If the first argument is numeric, the number is rounded down to an

integer; if logical, TRUE is coerced to 1 and FALSE to 0; and if complex,

the imaginary part is discarded and the real part is treated like numeric.

A warning is given.

The function returns the argument indicated by the first argument.

For example, if the first argument is 3, then the fourth argument is returned.

That is:

> switch(3, 5, "a", "b", 6)

[1] "b"

If the first argument is larger than the number of arguments minus

one, is less than one, or is NA, then a NULL object is returned. For

example:

> switch(0, 1, 2, 3)

> mode(switch(0, 1, 2, 3))

[1] "NULL"

A character string for the first element causes switch() to behave

differently. The function looks at the names of the arguments following the

character string to try to find a match. All of the following arguments must

Chapter 14 The Functions ifelse() and switch()

283

be named with the exception of one possible element without a name.

(Arguments can be named in the listing by entering the name, followed by

an equal sign, followed by an—optional—value.)

If there is an argument without a name, then that argument becomes the

default value if there is no match to the character string. If there is no argument

without a name, then the default value is a NULL object. For example:

> switch("e", a=1, b=2, c=3, d=4, e=f.fun(0))

[1] 1.959964

> switch("e", a=1, b=2, c=3, d=4, 25)

[1] 25

> switch("e", a=1, b=2, c=3, d=4)

> mode(switch("e", a=1, b=2, c=3, d=4))

[1] "NULL"

The unnamed argument can appear anywhere in the listing except as

the first argument. If more than one unnamed argument is entered, then

switch() returns an error.

With a character string for the first argument, the subsequent

arguments do not have to be assigned a value, only a name. If the character

string matches a name without a value, then switch() continues along the

listing of the arguments and returns the value of the next argument with a

value. If none of the subsequent arguments contain a value, switch returns

a NULL object. For example:

> switch("b", a=1, b=, c=3, d=)

[1] 3

> switch("b", a=1, b=, c=, d=)

> mode(switch("b", a=1, b=, c=, d=))

[1] "NULL"

Chapter 14 The Functions ifelse() and switch()

284

Note that the first argument is enclosed in quotes, while the

names of the subsequent arguments are not. The switch() function

can be nested.

You can find more information about switch() by entering ?switch at

the R prompt or by using the Help tab in R Studio.

Chapter 14 The Functions ifelse() and switch()

Some Common
Functions, Packages
and Techniques

PART VI

287© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_15

CHAPTER 15

Some Common
Functions
This chapter covers some common functions in R. The first section

discusses the function options(), which sets the default options for

R. The second section describes the functions round(), signif(), and

noquote(), which are used in formatting objects. The third section covers

the function cat(), which is used to print results to the console, a file,

or a connection. The fourth section discusses the functions format(),

print(), plot(), and summary() for displaying objects. The functions in

the fourth section operate differently on different classes of objects so are

generic functions. In the fifth section, we cover the functions anova(),

coef(), effects(), residuals(), fitted(), vcov(), confint(), and

predict(), which are functions that operate specifically on models and

which are also generic.

�The Function options( )
Currently on my OS X system, there are 84 options in the function

options(). The options are loaded when the packages using the

options are loaded. To see a list of the options with their set values,

enter options() at the R prompt. The options for all loaded packages

are in the list.

288

To see the value(s) of specific options, enter options("opt1", "opt2",

... ,"opt_n") at the R prompt, where opt1 through opt_n are the names

of the options. To access the value(s) of an option, use getOption("opt"),

where opt is the name of the option.

To set option values, enter options(opt1=value1, opt2=value2,

opt3=value3, ... , opt_n=value_n) at the R prompt, where opt1

through opt_n are the options and value1 through value_n are the values

assigned to the options. Note that for setting and accessing an option, the

option is entered as a character string (in quotes), whereas for setting a

value, the option is entered as an object (no quotes).

For descriptions of the options and the packages to which they belong,

enter ?options at the R prompt or use the Help tab in R Studio.

When options are changed during an R session, the change is only

good for the session. To change the values of the option defaults that are

loaded when R is run, try creating the file .Rprofile in the same folder as

.RData and .Rhistory. If the file does not already exist, this method works.

If the file does exist, editing the file works. The file .Rprofile must be a

plain text file with no extension. The file tells R what functions to run at

startup.

Putting lines in the file to run options() sets default options. For

example, the contents of .Rprofile might be the following:

options(defaultPackages=c(getOption("defaultPackages"),

"MASS"),

 contrasts=c("contr.sum", "contr.poly"))

Here, the package MASS is added to the packages that are loaded at

startup and the contrast for unordered factors is changed from the default

“contr.treatment” to “contr.sum”. More about the startup process can be

found by entering ?Startup at the R prompt or by using the Help tab in R

Studio.

Chapter 15 Some Common Functions

289

Some options include the following:

continue—a character string—gives what R prints

at the console when more than one line is used for R

code—the default value is “+”.

contrasts—character strings—the types of

contrasts to use for factor data in linear models—the

default values are “contr.treatment” for unordered

contrasts and “contr.poly” for ordered contrasts—

other possible values are “contr.sum” and “contr.

helmert”—information about the contrasts can be

found by entering ?contrasts at the R prompt or use

the Help tab in R Studio.

defaultPackages—character strings—the

packages to be loaded by default when R is

run—the default values are “datasets”, “utils”,

“grDevices”, “graphics”, “stats”, and “methods”

(base is always loaded).

digits—an integer—the recommendation for the

number of digits to be returned for numbers—R

does not necessarily use the recommended

number—the default value is “7”.

editor—a character string—gives the editor that the

function edit() calls—the default value varies with

operating system—see the help page for edit() for

more information.

expressions—an integer—how deep nesting can

go—the value can be between 25 and 500,000—the

default value is “5000”.

Chapter 15 Some Common Functions

290

na.action—a character string giving a function—

gives the option for missing values—the default

value is “na.omit”—other values are “na.fail”, “na.

pass”, and “na.exclude”—see the help pages for na.

omit(), na.fail(), na.pass(), and na.exclude()

for more information.

scipen—an integer—an option that gives R a

tendency toward either scientific notation (negative

integers) or fixed notation (positive integers)—see

the options() help page for more information—the

default value is “0.”

show.coef.Pvalues—a logical value—an option

that tells R whether to show p values in the

summary() output from linear models—the default

value is “TRUE.”

show.signif.stars—a logical value—an option

that tells R whether to show stars to give significance

levels in the summary() output from linear models—

the default value is “TRUE”.

stringsAsFactor—a logical value—tells data.

frame() and read.table() whether to convert

character strings to factors—the default value is

“TRUE”—yes convert strings.

OutDec—a single character string—gives the value to

use for a decimal point—the default value is “ . ”.

prompt—a character string—the value to use as the

R prompt—the default value is “>”.

ts.eps—a numeric value—the tolerance level for

comparing time periods in more than one time

series—the default value is “1.0e-5”.

Chapter 15 Some Common Functions

291

�The Functions round( ), signif( ),
and noquote( )
The functions round(), signif(), and noquote() make output easier

to read.

�The Function round( )
The function round() rounds the elements of objects of mode numeric or

complex to a given number of digits after the decimal point. The function

takes two arguments, the object to be rounded, x, and the number of digits,

digits. A negative number for digits rounds to places to the left of the

decimal point. For example:

> set.seed(69235)

> round(c(1.2344, 5.67, 1234.567), 3)

[1] 1.234 5.670 1234.567

> round(rnorm(3) + 63, -1)

[1] 60 60 60

> round(1.34+3.0i, 1)

[1] 1.3+3i

Note that all of the values returned have the same number of places

after the decimal point, if there is one, except that the real and imaginary

parts of complex numbers are treated separately. The default value for

digits is zero. See the help page of round() for rounding rules if the last

digit in x equals five. The help page can be found by entering ?round at the

R prompt or by using the Help tab in R.

Chapter 15 Some Common Functions

292

�The Function signif( )
The function signif() rounds the elements of a numeric or complex

object to a given number of significant digits. The function takes two

arguments, the object x and the number of significant digits digit.
For example:

> set.seed(69235)

> signif(c(1.2344, 5.67, 1234.567), 3)

[1] 1.23 5.67 1230.00

> signif(rnorm(3) + 63, -1)

[1] 60 60 60

> signif(1.34+3.0i, 1)

[1] 1+3i

Note that, like round(), all of the returned numbers go out to the same

number of places, but the significant digits are limited to the integer given

by digit. If a value less than one is given for digit, then the number of

significant digits is set to one. The default value for digit is six. For more

information about signif(), enter ?signif at the R prompt or use the Help

tab in R Studio.

�The Function noquote( )
The function noquote() returns output where the quotes have been

removed from any character strings in the object. The function takes one

argument obj, which can be any type of object. For example:

> noquote(c(" a", "bc", "d"))

[1] a bc d

Chapter 15 Some Common Functions

293

More information about noquote() can be found by entering

?noquote at the R prompt. Information can also be found by using the

Help tab in R Studio.

�The Function cat( )
The function cat() can be used to output data from a function to

the console, a file, or a connection. The function name cat stands for

concatenate. The objects to be concatenated must be of mode atomic and

separated by commas. The objects are coerced to vectors. The function has

five arguments other than the objects to be concatenated.

The five arguments are file, sep, fill, labels, and append. The

argument file tells cat() where to send the output. The argument is a

character string and can be a file address, a connection, or “”—for the

console if the console is the standard output, stdout(), otherwise the value

of stdout(). The default value is “”. The argument sep is a character string.

The value of sep separates the objects printed in the output. The default

value is “ ”.

The argument fill is either a logical variable or a positive number.

If FALSE, line breaks are set with an \n or a line break within a quoted

string. If TRUE, the value of the option width is used to set the width

of the output (where width is set in options() and is the number of

characters—including blank spaces—on a line and by default

equal to 30.) If fill is a positive number, the number is used to set the

width. The default value is FALSE.

The argument labels is a vector of character strings that is used to label

the lines of output and is only used if fill is TRUE or numeric. The default

value is NULL. The argument append is used when file is an external

file. If TRUE, then the output is appended to the file. Otherwise, the file is

overwritten. The default value is FALSE.

Chapter 15 Some Common Functions

294

For an example:

> set.seed(69235)

> x=1:4

> y= runif(4)

> a.lm=lm(y~x)

> a.sm=summary(a.lm)

> cat("\nThe intercept is ", round(coef(a.lm)[1], 3), ".

The slope is ",

 �round(coef(a.lm)[2], 3), ". The F statistic is ",

round(a.sm$f[1], 4), " on ",

 �a.sm$f[2], " and ", a.sm$f[3], " degrees of

freedom. The p value is ",

 �round(1-pf(a.sm$f[1], a.sm$f[2], a.sm$f[3]), 4),

".\n", sep="")

The intercept is -0.301. The slope is 0.257. The F statistic

is 4.5039 on 1 and 2 degrees of freedom. The p value is 0.167

> cat(round(coef(a.lm)[1], 3), round(coef(a.lm)[2], 3),

round(a.sm$f[1], 4),

 �a.sm$f[2], a.sm$f[3], round(1-pf(a.sm$f[1],

a.sm$f[2], a.sm$f[3]), 3),

 �fill=17, labels = c("intercept ",

"slope ", "F ", "df 1 & 2 ",

 "p value "))

intercept -0.301

slope 0.257

F 4.5039

df 1 & 2 1 2

p value 0.168

Chapter 15 Some Common Functions

295

More information about cat() can be found by entering ?cat at the R

prompt or by using the Help tab in R Studio.

�The Functions format( ), print( ), plot( ),
and summary( )
The functions format(), print(), plot(), and summary() behave

differently depending on the class of the object on which the functions

operate. They are generic functions, and methods (the way they behave)

are defined for them. In S3, the methods are already created. In S4,

methods are created by the user depending on a user-defined class(es).

This section covers S3 methods for the four functions.

For a given function, in order to see the classes of objects that have

special methods for the function, enter methods(‘function’) at the

R prompt, where function is the name of the function. In R Studio,

entering the function name in the search box under the Help tab

will open a drop-down menu with the function name followed by a

period, then the name of the class for the function, for example: plot.

acf. The menu is in alphabetical order. If the menu is longer than the

space available, entering one letter after the period will list the classes

starting with that letter.

R automatically uses the special method for an object if the class of the

object has a special function, even if the class extension is not included.

For example, plot(a.ts) and plot.ts(a.ts) give the same result if a.ts is

a time series. If there is no special function for the class of the object, then

the default method is used, if there is a default method. For information

about the default method, enter ?function.default at the R prompt,

where function is the name of the function; for example, ?plot.default.

Or use the Help tab in R Studio.

Chapter 15 Some Common Functions

296

�The Function format( )
The function format() has 73 methods on my OS X system, including

default. The function returns a character version of atomic objects and, for

many list objects, reduced character versions of the list. The function takes

several arguments that can structure the output to make a visually nice

result. The arguments vary from method to method. For example:

> a.date = as.Date(1:4, "2014-3-9")

> a.date

[1] "2014-03-10" "2014-03-11" "2014-03-12" "2014-03-13"

> format(a.date, "%m/%d/%Y")

[1] "03/10/2014" "03/11/2014" "03/12/2014" "03/13/2014"

> a.list = list(c("a", "b", "c"), matrix(1:4, 2, 2))

> dimnames(a.list[[2]]) = list(c("r1", "r2"),

c("c1", "c2"))

> a.list

[[1]]

[1] "a" "b" "c"

[[2]]

 c1 c2

r1 1 3

r2 2 4

> format(a.list)

[1] "a, b, c" "1, 2, 3, 4"

Chapter 15 Some Common Functions

297

For more information about format(), enter ?format or

?format.'ext' at the R prompt, where ext is the extension for the class.

Extensions can be found by entering methods(format) at the R prompt or

as described above in R Studio.

�The Function print( )
The function print() prints objects. The function has 209 methods on

my OS X system, including default. The functions can take on a variety

of arguments depending on the class of the object to be printed. Some

useful ones that are available for many classes are quote, which is a logical

argument that tells print whether to print quotes or not; print.gap, which

is an integer argument that tells print() how many spaces to put between

columns for matrices, arrays, and data frames; and right, which is a

logical argument that tells print whether to right or left justify strings. For

example:

> a.mat = matrix(paste("m", 1:8, sep=""), 2, 4)

> print(a.mat)

 [,1] [,2] [,3] [,4]

[1,] "m1" "m3" "m5" "m7"

[2,] "m2" "m4" "m6" "m8"

> print(a.mat, quote=F, right=T, print.gap=3)

 [,1] [,2] [,3] [,4]

[1,] m1 m3 m5 m7

[2,] m2 m4 m6 m8

To find more information about print() and the various print

methods, enter at the R prompt ?print or ?print.‘ext’ where ext is the

extension for the class of the object or use the Help tab in R Studio.

Chapter 15 Some Common Functions

298

�The Function plot( )
The function plot() is one of the functions that makes plots. The function

has 30 methods on my OS X system, including default. Plotting in R can

go from simple descriptive plots to very sophisticated plots. The subject

deserves a book of its own; consequently, it will not be covered here.

Information about plot() can be found by entering ?plot or ?plot.‘ext’,
where ext is the extension for the class of the object to be plotted or by

using the Help tab in R Studio.

�The Function summary( )
The function summary() has 40 methods on my OS X system, including

default. For some objects, for example, the output from lm(), summary() is

sub-scriptable and returns variables not returnable from the object itself.

Some examples follow:

> set.seed(69235)

> x = sample(3, 1000, rep=T)

> y = sample(5, 1000, rep=T)

> a.tab = table(x, y)

> a.tab

 y

x 1 2 3 4 5

 1 68 72 58 58 55

 2 61 78 68 67 68

 3 76 60 72 76 63

> summary(a.tab)

Number of cases in table: 1000

Number of factors: 2

Chapter 15 Some Common Functions

299

Test for independence of all factors:

 Chisq = 7.066, df = 8, p-value = 0.5295

> a.ar = array(1:8, c(2, 2, 2))

> a.ar

, , 1

 [,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

 [,1] [,2]

[1,] 5 7

[2,] 6 8

> summary(a.ar)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 2.75 4.50 4.50 6.25 8.00

More information about summary() can be found by entering

?summary or ?summary.‘ext’, where ext is the extension for the class of

the object, at the R prompt or by using the Help tab in R Studio.

�Some Functions for Models: anova( ), coef( ),
effects( ), residuals( ), fitted( ), vcov( ),
confint( ), and predict( )
While print(), plot(), and summary() have special methods for model

classes such as lm and glm, the functions also cover many other classes.

The functions anova(), coef(), effects(), residuals(), fitted(),

vcov(), confint(), and predict() are generic functions and are

specifically written for models.

Chapter 15 Some Common Functions

300

For the examples in this section, we use the following liner model:

> set.seed(69235)

> x=1:5

> y = rnorm(5)

> a.lm = lm(y~x)

The function anova() has seven methods on my OS X system and

returns an anova table for a model. For example:

> anova(a.lm)

Analysis of Variance Table

Response: y

 Df Sum Sq Mean Sq F value Pr(>F)

x 1 0.00198 0.00198 0.0052 0.9469

Residuals 3 1.13477 0.37826

The function coef() has six methods on my OS X system, including

default, and returns the coefficients of a model. For example:

> coef(a.lm)

(Intercept) x

-0.71642237 0.01406824

The function effects() has two methods (lm and glm) on my OS X

system and returns the treatment effects of a model. For example:

> effects(a.lm)

(Intercept) x

 1.50759648 0.04448769 0.81718478 0.55367470

-0.40052873

attr(,"assign")

[1] 0 1

Chapter 15 Some Common Functions

301

attr(,"class")

[1] "coef"

The function residuals() has eight methods on my OS X system,

including default. The function returns the residuals of a model. For

example:

> residuals(a.lm)

 1 2 3 4 5

-0.41553118 -0.01699453 0.66935097 0.37440635 -0.61123162

The function fitted() has five methods on my OS X system, including

default, and returns the fitted values for a model. For example:

> fitted(a.lm)

 1 2 3 4 5

-0.7023541 -0.6882859 -0.6742176 -0.6601494 -0.6460812

The function vcov() has eight methods on my OS X system and returns

the estimated variance-covariance matrix of the coefficients of the model.

There is no default method.

For an example:

> vcov(a.lm)

 (Intercept) x

(Intercept) 0.4160823 -0.11347699

x -0.1134770 0.03782566

The function confint() has eight methods on my Windows system,

including default. The function returns confidence intervals for the

coefficients of a model. For example:

> confint(a.lm)

 2.5 % 97.5 %

(Intercept) -2.769242 1.3363968

x -0.604880 0.6330165

Chapter 15 Some Common Functions

302

The function predict() has 16 methods on my OS X system and

returns predictions from the model. For some classes of objects,

predict() can return confidence or prediction intervals for predicted

values. If the original model is used for the first argument in predict(),

then the intervals are for the fitted values. For our model a.lm and

for finding 95-percent confidence intervals for the fitted values, an

example follows:

> predict(a.lm, interval="confidence")

 fit lwr upr

1 -0.7023541 -2.218462 0.8137533

2 -0.6882859 -1.760336 0.3837640

3 -0.6742176 -1.549543 0.2011074

4 -0.6601494 -1.732199 0.4119005

5 -0.6460812 -2.162189 0.8700263

More information for the functions in this section can be found

by entering ?'function' or ?'function.ext' at the R prompt, where

function is the function name and ext is the extension for the class or by

using the Help tab in R Studio.

Chapter 15 Some Common Functions

303© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_16

CHAPTER 16

The Packages base,
stats, and graphics
In this chapter, we take a quick look at the packages base, stats, and

graphics—three of the packages loaded by default in R. The package

base contains things such as the trigonometric function and other

mathematical functions, many of the as. and is. functions, the arithmetic

operators, the flow control statements, some apply functions, and many

other basic functions in R.

The package stats contains many basic statistical functions, such as

functions to find the median, the standard deviation, and the variance.

It also includes the functions associated with common probability

distributions as well as many more statistical functions. The package

graphics contains the basic plotting functions and their ancillary functions.

The other packages loaded by default are datasets, which contains

data sets; utils, which contains utility functions; grDevices, which

contains information used in plotting—such as fonts and colors; and

methods, which contains functions and information for working with S4

(formal) methods and classes.

For a list of the functions in a package with clickable links to

the function help pages, enter help(package="package.name") or

library(help=package.name) at the R prompt, where package.name is

the name of the package.

The source of the information in this chapter is the CRAN help pages.

304

�The base Package
The base package contains many functions basic to R. The list of links to

the help pages for base is 30 pages long. This section covers the reserved

words, the built-in constants, the trigonometric and hyperbolic functions,

the functions related to the beta and gamma functions, some other

mathematical functions, and functions for complex numbers, matrix

functions, and a few other functions. It also discusses some other functions

for the package base.

�Reserved Words
The reserved words in R are if, else, repeat, while, for, function, next,

break, in, TRUE, FALSE, Inf, NULL, NA, NaN, NA_integer_, NA_real_,

NA_complex_, NA_character_, ..., ..1, ..2, and so forth. See Table 16-1.

For more information, enter ?Reserved at the R prompt or use the

Help tab in R Studio.

Table 16-1.  The Reserved Words in R

if else repeat while for

in next break function TRUE

FALSE Inf NULL NA NAN

NA_integer_ NA_real_ NA_complex_ NA_character_

‘. . .’ ‘. ._1’ ‘. ._2’ ‘. . _n’

�Built-In Constants
The built-in constants in R are LETTERS, which are the 26 letters in the

English alphabet and which are capitalized; letters, which are the 26

letters in the English alphabet and which are lowercase; month.abb,

Chapter 16 The Packages base, stats, and graphics

305

which are three-letter abbreviations of the names of the months in English;

month.name, which are the names of the months in English; and pi, the

mathematical constant π. See Table 16-2 for a listing of the constants.

You can find more information about the constants by entering

?Constants at the R prompt or by using the Help tab in R.

�Trigonometric and Hyperbolic Functions
The trigonometric and hyperbolic functions available in R are the cosine—

cos(), the cosine for which pi has been accounted—cospi(), the sine—sin(), the

sine for which pi has been accounted—sinpi(), the tangent—tan(), the tangent

for which pi has been accounted—tanpi(), the inverse cosine—acos(), the

inverse sine—asin(), two versions of the inverse tangent—atan() and atan2(),

the hyperbolic cosine—cosh(), the hyperbolic sine—sinh(), the hyperbolic

tangent—tanh(), the inverse hyperbolic cosine—acosh(), the inverse

hyperbolic sine—asinh(), and the inverse hyperbolic tangent—atanh().

Angles are entered into the functions as radians (radians = pi/180

x degrees), except for cospi(), sinpi(), and tanpi()—for which angles

are entered as double fractions of a circle (degrees per 180°; that is, one

equals 180°.) For the inverse functions, the angles are returned in radians

Table 16-2.  The Built-In Constants in R

Constants Description

LETTERS the 26 capital letters

letters the 26 lowercase letters

month.abb the 12 names of the months abbreviated

to three letters

month.name the 12 names of the months

pi π; 1/2 the circumference of a unit circle

Chapter 16 The Packages base, stats, and graphics

306

(degrees = 180/pi x radians). The arguments must be of an atomic mode

and logical, numeric, or complex—except for cospi(), sinpi(), and tanpi()

which cannot be complex. Logical values are coerced to numeric.

For the inverse cosine and sine, the values must be between –1 and 1,

inclusive. For other values, the result is NaN. For the inverse tangent,

atan() takes one argument, and the result falls between –π/2 and π/2.

The function atan2() takes two arguments. The function returns the

inverse tangent of the ratio of the two arguments, with the first argument

being the numerator and the second the denominator. The function takes

any number (real or complex) for the numerator and any number (real or

complex) as the denominator. The arguments can be of different lengths

and will cycle.

The function atan2() returns results between -π and π. The quadrant

of the angle depends on signs of the numerator and the denominator, that

is: (+,+) first quadrant; (+,–) second quadrant; (–,–) third quadrant; and

(–,+) fourth quadrant. (By definition, the tangent of x, for any number x, is

the sine of x divided by the cosine of x.) Zero in the denominator returns

π/2 or –π/2 depending on the sign of the numerator.

The hyperbolic functions can also take on any number (real or

complex). For the inverse of the hyperbolic functions, the argument

for acosh() must be between 1 and ∞, inclusive, and the argument for

atanh() must be between –1 and 1, inclusive.

Arguments can be vectors, matrices, data frames, or arrays. For

arguments with more than one element, the operation is carried out

element-wise. For atan2(), which takes two arguments, the arguments

cycle. The functions return an object of the same dimensions as the

argument(s) to the function.

See Table 16-3 for a listing of the functions, with restrictions.

You can find more information about the trigonometric functions by

entering ?Trig at the R prompt; for the hyperbolic functions, by entering

?cosh at the R prompt or using the Help tab in R Studio.

Chapter 16 The Packages base, stats, and graphics

307

Table 16-3.  The Trigometric and Hyperbolic Functions

Function R Function Restrictions

cosine cos(x) logical, numeric, or complex;

logical coerced to numeric

sine sin(x) see cosine

tangent tan(x) see cosine

cosine with pi cospi(x) logical or numeric; logical

coerced to numeric

sine with pi sinpi(x) see cosine with pi

tangent with pi tanpi(x) see cosine with pi

inverse cosine acos(x) -1 ≤ x ≤ 1

inverse sine asin(x) see inverse cosine

inverse tangent atan(x) see cosine

 “” atan2(y,x) see cosine; inverse of tangent

of y divided by x; maintains

quadrant information

hyperbolic cosine cosh(x) see cosine

hyperbolic sine sine(x) see cosine

hyperbolic tangent tanh(x) see cosine

inverse hyperbolic cosine acosh(x) 1 ≤ x ≤ ∞

inverse hyperbolic sine asinh(x) see cosine

inverse hyperbolic tangent atanh(x) -1 ≤ x ≤ 1

Chapter 16 The Packages base, stats, and graphics

308

�Beta- and Gamma-Related Functions
The functions related to the beta and gamma functions are beta(),

lbeta(), gamma(), lgamma(), psigamma(), bigamma(), trigamma(),

choose(), lchoose(), factorial(), and lfactorial(). In R, these

functions are the Special functions. The arguments to these functions

must be of the atomic mode and logical (which are coerced to numeric) or

numeric. The function returns a result in the same form as the argument

(the same dimensions). Arguments cycle.

The beta() and lbeta() functions take the arguments a and b, both

of which must be non-negative, and return the value of the beta function

or the natural logarithm of the value of the beta function, respectively.

Negative numbers return NaN, with a warning.

The gamma(), lgamma(), psigamma(), digamma(), and

trigamma()functions take the argument x, and for psigamma(), the

argument deriv. The argument x can be any number, except for zero

or the negative integers, for which NaNs are returned, with a warning.

The functions gamma() and lgamma() return the value of the gamma

function and the natural logarithm of the absolute value of the gamma

function, respectively. The function psigamma() returns the derivative of

the natural logarithm of the gamma function to the order given by deriv.

The argument deriv must be an integer greater than or equal to zero.

Otherwise, NaNs are returned, with a warning. By default, deriv equals

zero. The function digamma() returns the value of the first derivative of the

natural logarithm of the gamma function while trigamma() returns the

second derivative.

The functions choose() and lchoose() return binomial coefficients

and the natural logarithms of the absolute values of binomial coefficients,

respectively. Both functions take the arguments n, which can be any

real number, and k, which can be any real number and is rounded to an

Chapter 16 The Packages base, stats, and graphics

309

integer. Negative rounded numbers for k return 0. The function choose()

is the familiar “n choose k” for n a positive integer and k a non-negative

integer less than or equal to n.

The functions factorial() and lfactorial() return the factorial

value and the natural logarithm of the absolute value of the factorial value,

respectively. The functions take one argument, x. The value of x can be any

real number (numeric or logical coerced to numeric). The factorial value is

defined as

factorial(x) = gamma(x+1)

for any value of x and equals x! (that is, (x)(x-1)(x-2)...(2)(1)) for positive

integer values of x. For x equal to zero, factorial(x) equals one. Negative

integers return NaNs, with a warning.

See Table 16-4 for a listing of the functions. You can find more

information about the functions by entering ?Special at the R prompt or

by using the Help tab in R Studio.

Table 16-4.  The Beta, Gamma, and Related Functions

Function Function in R Arguments

beta beta(a, b) a, b; both integers ≥ 0

natural log beta lbeta(a, b) see beta

gamma gamma(x) x, any real number; zero and

negative integers return NaN

natural log of absolute value

of gamma

lgamma(x) x, any real number; zero and

negative integers return Inf

nth derivative of natural log of

gamma function where deriv

equals n

psigamma(x,

deriv=0)

x, any real number;

deriv, an integer ≥ 0; returns NaN’s

where not defined

(continued)

Chapter 16 The Packages base, stats, and graphics

310

�Miscellaneous Mathematical Functions
Some other mathematical functions include the following:

abs() for the absolute values of the elements of an

object

sqrt() for the square roots of the elements of an

object

ceiling() for rounding the elements of an object

up to an integer

Function Function in R Arguments

first derivative of natural log

of gamma function

digamma(x) x, any real number; returns NaN’s

where not defined

second derivative of natural

log of gamma function

trigamma(x) see digamma

binomial coefficients choose(n, k) n, any real number

k, any real number; rounds to

nearest integer, negative integers

return 0

natural log absolute value

binomial coefficients

lchoose(n, k) see binomial coefficients

factorial factorial(x) x, any real number; factorial(x)

equals gamma(x+1); negative

integers return NaN

natural log absolute value

factorial

lfactorial(x) x, any real number; lfactorial(x)

equals lgamma(x+1); negative

integers return Inf

Table 16-4.  (continued)

Chapter 16 The Packages base, stats, and graphics

311

floor() for rounding the elements of an object down

to an integer

trunc() for truncating the elements of an object to

the decimal point

cummax() for the cumulative maximum over an

atomic object

cummin() for the cumulative minimum over an

atomic object

cumprod() for the cumulative product over an

atomic object

cumsum() for the cumulative sum over an atomic

object

exp() for e to the powers of the elements of an

object

log(), log10(), and log2() for the logarithms of the

elements of an object for a specified base (defaults

to the natural logarithm), base 10, and base 2,

respectively

max() for the maximum of the elements in an object,

can be character

min() for the minimum of the elements in an object,

can be character

pmax() for multiple vectors or matrices (will cycle)—

returns the maximum across rows between objects

pmin() for multiple vectors or matrices (will cycle)—

returns the minimum across rows between objects

sum() for the sum of the elements of an object

Chapter 16 The Packages base, stats, and graphics

312

prod() for the product of the elements of an object

mean() for the mean of the elements of an object

range() for the range of the elements of an object

rank() for the ranks of the elements of an object

sign() for the signs of the elements of an object—

returns 1 for positive numbers, –1 for negative

numbers, and 0 for zeroes

order() for indices giving the order of the elements

of an object; with more than one object, the order

of the first object, using the second object for ties,

and so forth; used to reorder vectors, matrices, data

frames, and arrays; x[order(x)] equals sort(x)

sort() for sorting the elements of objects

zapsmall() for setting very small numbers to zero

Atomic vectors, matrices, arrays, and data frames of the legal modes

can be used for these functions. The results of these functions are various

types of objects, depending on the function.

See Table 16-5 for a listing of the functions with restrictions.

You can find more information about any of these functions by going

to the help page of the function (?function.name, where function.name is

the name of the function, or use the Help tab in R Studio.)

Chapter 16 The Packages base, stats, and graphics

313

Table 16-5.  Some Other Mathematical Functions

Function in R Restrictions

abs(x) logical, numeric, or complex objects; logical coerced to

numeric; returns object of same dimensions

sqrt(x) see abs(); negative real numbers return NaN

ceiling(x) logical or numeric object; logical coerced to numeric;

returns object of same dimensions

floor(x) see ceiling()

trunc(x, ...) x, logical or numeric object; logical coerced to numeric;

returns object of same dimensions

. . ., any arguments to be passed on to lower level

functions called by trunc()

cummax(x) raw, logical, numeric, or character object; will be

coerced to numeric; character objects that are not a

number in quotes return NAs; returns vector

cummin(x) see cummax()

cumsum(x) see cummax()

cumprod(x) see cummax()

exp(x) logical, numeric, or complex object; logical coerced to

numeric; returns object of same dimensions

log(x, base=exp(1)) x, logical, numeric, or complex object; logical coerced to

numeric; x ≥ 0; 0’s return –Inf; negative real numbers

return NaN; returns object of same dimensions

base, the base for the logarithm; numeric or complex—

logical is legal but returns Inf for T and 0 for F; base ≥ 0

(continued)

Chapter 16 The Packages base, stats, and graphics

314

Function in R Restrictions

log2(x) logical, numeric, or complex; logical coerced to numeric;

x ≥ 0; 0’s return –Inf; negative real numbers return

NaN; returns object of same dimensions

log10(x) see log2()

max(...,

na.rm=FALSE)

. . ., logical, numeric, complex, and character objects

separated by commas; do not need to be of the same

length; can mix modes; returns a single value

na.rm, logical; if an NA is present and na.rm is set to

FALSE returns NA, if TRUE ignores the NA

min(...,

na.rm=FALSE)

see max()

pmax(...,

na.rm=FALSE)

. . ., logical, numeric, and character objects separated

by commas; do not need to be of the same length—

cycle; can mix modes; returns a vector or matrix

na.rm, logical; if an NA is present and na.rm is set to

FALSE returns NA, if TRUE ignores the NA

pmin(...,

na.rm=FALSE)

see pmax()

sum(...,

na.rm=FALSE)

. . ., logical, numeric, and complex objects separated by

commas; can mix modes; returns a single value

na.rm, logical; if an NA is present and na.rm is set to

FALSE returns NA, if TRUE ignores the NA; NaN similar

but are treated differently for complex numbers

Table 16-5.  (continued)

(continued)

Chapter 16 The Packages base, stats, and graphics

315

Function in R Restrictions

prod(...,

na.rm=FALSE)

see sum()

mean(x, trim=0,

na.rm=FALSE, ...)

x, logical, numeric, or complex object; returns a single

value; for complex trim must equal zero

trim, 0 ≤ trim ≤ .5; is proportion of elements to trim

before taking the mean

na.rm, logical; if an NA is present and na.rm is FALSE

returns NA, if TRUE ignores NA; NaN the same

. . . any arguments to be passed to lower level functions

called by mean()

range(...,

na.rm=FALSE)

. . ., logical, numeric, and character objects separated

by commas; can mix modes; returns two values

na.rm, logical; if an NA is present and na.rm is set to

FALSE returns NA, if TRUE ignores the NA; NaN the

same

rank(x,

na.last=TRUE,

ties.method=

c("average",

"first", "random",

"max", "min"))

x, logical, numeric, complex, or character object

na.last, logical or character; if TRUE, NAs and NaNs

are ranked last, if FALSE they are first, if NA they are

discarded, if “keep” they keep their place in the order;

NaNs return NAs; returns a vector

ties.method, character; method for setting a value for

ties; the default is “average”

sign(x) logical or numeric object; returns object of same

dimensions

Table 16-5.  (continued)

(continued)

Chapter 16 The Packages base, stats, and graphics

316

Function in R Restrictions

order(...,

na.last=TRUE,

decreasing=FALSE)

..., logical, numeric, complex or character vectors of

the same length—can use just one vector—can mix

modes; returns a permutation of indices of length equal

to the length of the vector(s)

na.last, logical; for TRUE NAs are placed last, for FALSE

NAs first, for NA NAs are removed

decreasing, logical; must be TRUE or FALSE; if TRUE

order is decreasing, if FALSE increasing

sort(x,

decreasing=FALSE,

na.last=NA, ...)

x, logical, numeric, complex, or character object; sorts

real and imaginary parts of complex separately; returns

a vector

decreasing, logical; if TRUE sorts in decreasing order, if

FALSE increasing; must be TRUE or FALSE

na.last, logical; if TRUE, NAs are put last, if FASLE, they

are put first, if NA they are discarded; NaNs are put last

. . ., any arguments to be passed on to lower level

functions called by sort()

zapsmall(x,

digits=getOptions

("digits"))

x, logical, numeric, or complex object; returns object of

same dimensions

digits, numeric; will round to an integer

Table 16-5.  (continued)

�Complex Numbers
The following functions are for complex numbers:

Re(), the real part of a complex number

Img(), the imaginary part of a complex number

Chapter 16 The Packages base, stats, and graphics

317

Arg(), the angle from the x axis in radians of the line

between the origin and the complex number

Mod(), the modulus of a complex number; equals

the length of the line between the origin and the

complex number

Conj(), the complex conjugate of a complex

number

The functions take logical, numeric, and complex objects for

arguments. Logical arguments are coerced to numeric. The result has the

same dimensions as the argument.

You can find more information about the complex functions by

entering ?Re at the R prompt or by using the Help tab in R Studio.

�Matrices, Arrays, and Data Frames
There are a number of functions for matrices, arrays, and data frames in

base that we have not yet covered.

Some of the functions include the following:

aperm(), which permutes an array

rowsum(), which sums over rows of a matrix or data

frame in groups set by the group variable

colMeans(), which returns the means of the

columns of a data frame or matrix or the means for

given dimensions for an array—going from the first

dimension to the specified dimension

colSums(), which returns the sums of the columns

of a data frame or matrix or the sums for an array—

going from the first dimension to the specified

dimension

Chapter 16 The Packages base, stats, and graphics

318

rowMeans(), which returns the means of the rows of

a data frame or matrix or the sums over dimensions

of an array—going from the specified dimension

plus one to the last dimension

rowSums(), which returns the sums of the rows or

a data frame or matrix—going from the specified

dimension plus one to the last dimension

col(), which returns a matrix of the same

dimensions as the argument and which contains the

column indices in the columns or a matrix of factors

with each column one factor

row(), which returns a matrix of the same

dimensions as the argument and which contains the

row indices in the rows or a matrix of factors with

each row one factor

det(), which returns the determinant of a matrix

determinant(), which returns the modulus or the

logarithm of the modulus of the determinant and

the sign of the modulus

eigen(), which returns the eigenvalues and

eigenvectors of a matrix

kappa(), which calculates the condition of a square

matrix

kronecker(), which returns the matrix or array

which is the kronecker product of two objects and

where product is a specified function. The two

objects can be vectors, matrices, and/or arrays.

The dimensions of the result are the products of the

dimensions of the two objects.

Chapter 16 The Packages base, stats, and graphics

319

norm(), which returns the norm of a matrix

calculated by the one, infinity, Frobenius,

maximum modulus, or spectral (or 2) method

Some functions used in model fitting are the following:

backsolve(), which solves a matrix equation where

the matrix on the left of the equation is upper

triangular

forwardsolve(), solves a matrix equation where the

matrix on the left of the equation is lower triangular

chol(), the Choleski decomposition of a square

positive definite matrix

chol2inv(), the inverse of a positive definite matrix

using the Choleski decomposition of the matrix

qr(), the QR decomposition of a matrix

svd(), a singular value decomposition of a matrix.

See Table 16-6 for a listing of the functions with arguments.

You can find more information by going to the individual help pages

(?function.name, where function.name is the name of the function) or by

using the Help tab in R Studio.

Chapter 16 The Packages base, stats, and graphics

320

Table 16-6.  Some Functions for Matrices, Arrays, and Data Frames

Function in R Restrictions

aperm(a,

perm=NULL,

resize=TRUE,

...)

a, matrix or array

perm, NULL, integer or character vector; gives order of the

dimensions by index or character string; if not NULL must

be of length equal to the dimensions of a and a permutation

of the dimensions of a; NULL returns the dimensions

reversed

resize, logical; must be TRUE or FALSE

..., any arguments to be passed to lower level functions

rowsum(x, group,

reorder=TRUE,

na.rm=FALSE,

...)

x, any numeric matrix

group, a vector or factor of length equal to the number of

rows in x—used for grouping

reorder, logical; must be TRUE or FALSE

na.rm, logical; must be TRUE or FALSE

..., any arguments to be passed to or from lower level

functions

colMeans(x,

na.rm=FALSE,

dims=1)

x, logical, numeric or complex matrix, data frame, or array

na.rm, logical; must be TRUE or FALSE

dims, numeric; 1 ≤ dims ≤ n-1, where n is the number of

dimensions

colSums(x,

na.rm=FALSE,

dims=1)

see colMeans()

(continued)

Chapter 16 The Packages base, stats, and graphics

321

Function in R Restrictions

rowMeans(x,

na.rm=FALSE,

dims=1)

see colMeans()

rowSums(x,

na.rm=FALSE,

dims=1)

see colMeans()

col(x,

as.factor=FALSE)

x, any matrix

as.factor, logical; must be TRUE or FALSE

row(x,

as.factor=FALSE)

see col()

det(x, ...) x, a logical or numeric square matrix; logical coerced to

numeric

..., ignored

determinant(x,

logarithm=TRUE,

...)

x, a logical or numeric square matrix; logical coerced to

numeric

logarithm, logical; must be TRUE or FALSE

..., ignored

eigen(x,

symmetric, only.

values=FALSE,

EISPACK=FALSE)

x, a logical, numeric, or complex square matrix; logical

coerced to numeric

symmetric, logical; if TRUE matrix is assumed symmetric, if

FALSE not

only.values, logical; if TRUE only eigenvalues are returned, if

FALSE both eigenvalues and eigenvectors are returned

EISPACK, logical; defunct and ignored

Table 16-6.  (continued)

(continued)

Chapter 16 The Packages base, stats, and graphics

322

Function in R Restrictions

kappa(z,

exact=FALSE,

norm=NULL,

method= c("qr",

"direct"), ..)

z, logical or numeric square matrix; logical coerced to numeric

exact, logical; must be TRUE or FALSE

norm, character; must be NULL, “O”, or “I”—for norm one

and norm infinite

method, character; must be “qr” or “direct”; default is “qr”

..., any arguments to lower level functions

kronecker(X, Y,

FUN="*", make.

names=FALSE,

...)

X, Y, vectors, matrices, and arrays; do not have to be of the

same mode; must be legal for the function FUN

FUN, a function; can be a character string

make.names, logical; must be TRUE or FALSE; does not

work with all functions

..., any arguments for the function FUN

norm(x, type=

c("O","I",

"F","M","2")

x, logical, numeric, or complex matrix; logical and complex

are coerced to numeric

type, character; default value is “O”

backsolve(r,

x, k=ncol(r),

upper.tri=TRUE,

transpose=FALSE)

r, upper triangular matrix of mode logical, numeric, or

complex—logical and complex values are coerced to

numeric

x, vector or matrix of mode logical, numeric, or complex—

logical and complex values are coerced to numeric

k, numeric—rounds down to an integer; 1 ≤ k ≤ ncol(r); is

the number of columns in ‘r’ to use

upper.tri, logical; for TRUE the upper triangle is used, for

FALSE, the lower is used

transpose, logical; for TRUE r is transposed in the formula

Table 16-6.  (continued)

(continued)

Chapter 16 The Packages base, stats, and graphics

323

Table 16-6.  (continued)

(continued)

Function in R Restrictions

forwardsolve(l,

x, k=ncol(l),

upper.tri=FALSE,

transpose=FALSE)

l, lower triangular matrix of mode logical, numeric, or

complex—logical and complex values are coerced to

numeric

x, a vector or matrix of mode logical, numeric, or complex—

logical and complex values are coerced to numeric

k, numeric—rounds down to an integer; 1 ≤ k ≤ ncol(l); the

number of columns in ‘l’ to use

upper.tri, logical; for TRUE the upper triangle is used, for

FALSE, the lower is used

transpose, logical; for TRUE l is transposed in the formula

chol(x,

pivot=FALSE,

LINPACK=FALSE,

tol=-1, ...)

x, raw, logical, or numeric matrix—where raw and logical

matrices are coerced to numeric; must be square and

positive definite

pivot, logical; for TRUE pivot, FALSE do not pivot

LINPACK, (deprecated) logical; for TRUE use LINPACK, FALSE

do not use LINPACK

tol, numeric; tolerance when pivot=TRUE and

LINPACK=FALSE

..., any arguments to be passed to lower level functions

chol2inv(x,

size=NCOL(x),

LINPACK=FALSE)

x, matrix for which the first size columns are a Choleski

decomposition

size, numeric, logical, or complex—logical and complex

coerced to numeric; 1 ≤ size ≤ ncol(x)

LINPACK, logical; defunct—no longer used

Chapter 16 The Packages base, stats, and graphics

324

Function in R Restrictions

qr(x, tol=1e-7,

LAPACK=FALSE,

...)

x, logical, numeric, or complex matrix; logical matrices are

coerced to numeric

tol, numeric; tolerance for singularity

LAPACK, logical; if FALSE qr() uses

LINPACK

..., any arguments to be passed to lower level functions

svd(x,

nu=min(n,p),

nv=min(n,p),

LINPACK=FALSE)

x, logical, numeric, or complex matrix; logical matrices are

coerced to numeric

nu, integer; 0 ≤ nu ≤ n; n = nrow(x)

nv, integer; 0 ≤ nv ≤ p; p = ncol(x)

LINPACK, logical; defunct and ignored

Table 16-6.  (continued)

�A Few Other Functions and Some Comments
A few other functions that are often useful

are R.home(), R.Version(), all.equal(),

Identical(), dir(), getwd(), setwd(),

unique(), hexamode(), jitter(), append(),

duplicated() (and anyDuplicated()), attr() (and

attributes()), pretty(), margin.table(), prop.

table(), cut(), rev(), readline(), system(),

try(), warnings(), and stop(). For the functions,

we will just describe what they do. You can find

more information about the functions by entering

?‘function.name’ at the R prompt, where function.
name is the name of the function or by using the

Help tab in R Studio..

Chapter 16 The Packages base, stats, and graphics

325

Following are the function descriptions:

R.home() gives the full path to the directory

containing the R program.

R.Version() gives the R version and other

information about the version.

all.equal() tests if two objects are nearly equal.

Identical() tests if two objects are identically

equal.

dir() returns the contents of a directory on the hard

drive.

getwd() returns the working directory on the hard

drive.

setwd() sets the working directory on the hard

drive.

unique()returns a vector with any duplicated

elements in the original vector removed. The

function only works on vectors, including vectors of

mode list.

hexmode() returns the hexadecimal value of a

number.

jitter() adds a little jitter (noise) to the elements

of numeric objects. The arguments to jitter()

control how much jitter is added.

append() is used to append vectors. An argument

to append() gives where along the vector the

appending is done.

Chapter 16 The Packages base, stats, and graphics

326

duplicated() and anyDuplicated() look

for duplicates. For vectors, including lists,

duplicated() returns a vector of the same length

containing FALSE for elements that are not

duplicated and for the first instance of elements that

are duplicated. The function returns TRUE for the

rest of the duplicates. For matrices and data frames,

rows are compared. The function anyDuplicated()

counts how many differing elements have

duplicates, or duplicated rows for matrices and data

frames.

attr() and attributes() return an attribute or a

list of the attributes of an object. To use an attribute,

the function attr() returns a value that can be

accessed. To see a list of the attributes of an object,

use attributes().

pretty() takes any object that can be coerced to

numeric and returns a vector of evenly spaced

values close to a given length and similar to the

values in the original object.

margin.table() takes a logical, numeric, or

complex object and returns margin sums for a

margin in a table.

prop.table() takes a logical, numeric, or complex

object and returns the object divided by the sum

of the elements in the object. Logical objects are

coerced to numeric and the real and imaginary parts

of complex objects are treated separately.

Chapter 16 The Packages base, stats, and graphics

327

cut() cuts a numeric vector into factors and returns

a character vector with the factor names in the place

of the original elements. The object to be cut can be

any object that can be coerced to vector, but must be

numeric. The break points and factor names can be

assigned, but cut() creates break points and factor

names from the break points by default.

rev() reverses the order of the elements of an object

and returns a vector. The object can be atomic or of

any mode where reversing the order makes sense,

like the modes list, expression, and call.

readline() reads a line from the console—for

interactive use of an R function.

system() runs a system command from inside

R—the command is entered in quotes.

try() attempts to execute a expression or

function—returns an error message or the result of

the execution. Errors do not stop the program.

warnings() returns the warning messages if a

program has run with warnings.

stop() tells R to stop the execution of a function.

If stop() has a character string for an argument, the

character string prints when stop() executes. The

function is very useful for the process of debugging a

function as well as for checking if conditions are met

for objects entered into a function.

gc() garbage collection—cleans up the session.

Chapter 16 The Packages base, stats, and graphics

328

There are many other functions in base, many of which have to do with

the running of R. The as. and is. functions are prevalent. In the list of help

pages, there are 110 links for as. functions and 46 links for is. functions. If

you are interested in what is in the listings, go to the page of the links and

look at what is there. The Bessel functions and bitwise logical functions are

also part of base.

�The stats Package
The stats package contains items such as basic descriptive statistics,

probability distributions, tests, functions to fit models, clustering

functions, some plotting functions, and other functions used for outputting

results. The list of links to the help pages for stats is 18 pages long

(help(package=stats)). In this chapter, we cover the basic descriptive

statistics, the tests, clustering and other functions for multivariate data,

and modeling functions, but in little detail. The probability distributions

can be found in Chapter 9.

�Basic Descriptive Statistics
Some of the basic statistical functions in package stats include the

following:

weighted.mean(), which finds the weighted mean

of an object

sd(), which finds the standard deviation of an

object

var(), which finds the variance of a vector or the

covariance matrix of a matrix or data frame

cov(), which finds the covariance matrix of a matrix

or data frame—more flexible than var()

Chapter 16 The Packages base, stats, and graphics

329

cov.wt(), which finds the weighted covariance or

correlation matrix of a matrix or data frame

cor(), which finds the correlation between vectors

or within matrices and data frames

median(), which finds the median of the elements of

an object

mad(), which finds the median absolute deviation of

the elements of an object

IQR(), which finds the interquartile range of the

elements of an object

quantile(), which finds specific quantiles of the

elements in an object

fivenum(), which finds Tukey’s five-number

summary for the elements in an object

ave(), which uses a function to operate on different

rows of an object based on factor values

cancor(), which finds the canonical correlation

between two matrices

dist(), which finds a type of average difference

between the rows of a matrix, based on the type of

distance and the power used to find the average

mahalanobis(), which finds the Mahalanobis

distance between rows of a matrix

ecdf(), which finds the empirical cumulative

distribution function of the elements in an object—a

quantile method exists for the function

Chapter 16 The Packages base, stats, and graphics

330

r2dtable(), which creates a random two-way

table based on marginal values—using Patefield’s

algorithm

simulate(), which simulates observations from a

model that has been fitted

TukeyHSD(), which finds confidence intervals for

the coefficients of a model that take into account

that more than one hypothesis is being tested—for

analysis of variance models

xtabs(), which creates a contingency table based

on a formula

smooth(), which creates a smoother version of a

noisy set of data using Tukey’s running median

smoothers—usually used for time series

See Table 16-7 for a listing of the functions, with arguments.

You can find more information about the functions by entering

? function.name at the R prompt where function.name is the name of the

function or by using the Help tab in R Studio.

Table 16-7.  Basic Statistical Functions in Package stats

Function in R Description

weighted.mean(x, w,

..., na.rm=FALSE)

Finds the weighted mean of x, where x is coerced to

a vector.

sd(x, na.rm=FALSE) Finds the standard deviation x, where x is coerced to

a vector; divides by the square root of (n-1).

(continued)

Chapter 16 The Packages base, stats, and graphics

331

Function in R Description

var(x, y=NULL,

na.rm=FALSE, use)

Finds the variance of x if x is a vector or the

covariance of x and y or the covariance matrix of x if

x is a matrix or data frame; divides by (n-1)

cov(x, y=NULL,

use="everything",

method=c("pearson",

"kendall",

"spearman"))

Finds the covariance between x and y if y is given

or the covariance matrix of x if x is a matrix or data

frame; more options are available than with var( )

cov.wt(x, wt=rep(1/

nrow(x), nrow(x)),

cor=FALSE,

center=TRUE,

method=c("unbiased",

"ML"))

Finds the weighted covariance matrix or weighted

correlation matrix of x, where x is a matrix or data

frame

cor(x, y=NULL,

use="everything",

method=c("pearson",

"kendall",

"spearman"))

Finds the correlation between x and y if y is supplied

or within x if just x is supplied, where x is a vector,

matrix, or data frame

median(x, na.rm=FALSE) Finds the median of the elements of x

mad(x,

center=median(x),

constant=1.4826,

na.rm=FALSE,

low=FALSE, high=FALSE)

Finds the median absolute deviation of x

Table 16-7.  (continued)

(continued)

Chapter 16 The Packages base, stats, and graphics

332

Function in R Description

IQR(x, na.rm=FALSE,

type=7)

Finds the interquartile range of x

quantile(x,

probs=seq(0,1,.25),

na.rm=FALSE,

names=TRUE,

type=7, ...)

Finds the quantiles of x for the values of probs

fivenum(x, na.rm=FALSE) Finds Tukey’s five-number summary for x

ave(x, ..., FUN=mean) The function in FUN operates on groups of the

elements of x, where the grouping variables are in

the argument ...

cancor(x, y,

xcenter=TRUE,

ycenter=TRUE)

Finds canonical correlation between the matrices x

and y

dist(x,

method="euclidean",

diag=FALSE,

upper=FALSE, p=2)

Finds distance between rows of a matrix, where the

type of distance is specified by method

mahalanobis(x, center,

cov, inverted=FALSE)

Finds the Mahalanobis distance between rows of a

matrix

ecdf(x) Finds the empirical cumulative distribution function

of x

r2dtable(n, r, c) Creates a random table based on marginal totals for

the rows and columns

(continued)

Table 16-7.  (continued)

Chapter 16 The Packages base, stats, and graphics

333

Function in R Description

simulate(x, nsim=1,

seed=NULL, ...)

Simulates observations from the model given in x; x

is a model

TukeyHSD(x, which,

order=FALSE, conf.

level=0.95, ...)

Tukey’s honest significant differences for analysis of

variance models

xtabs(formula=~.,

data=parent.frame(),

subset, sparse=FALSE,

na.action,

exclude=c(NA,NaN),

drop.unused.

levels=FALSE)

Creates a contingency table based on the formula,

where the variables on the right side of the formula

are used to group the object on the left

smooth(x, kind=c

("3RS3R", "3RSS",

"3RSR", "3R",

"3S", "3", "S"),

twiceit=FALSE,

endrule="Tukey",

do.ends=FALSE)

Smooths a vector or time series using Tukey’s

running median smoothers

Table 16-7.  (continued)

�Some Functions That Do Tests
There are a number of functions in stats that do hypothesis tests. Some of

the functions include the following:

ansari.test() for the Ansari-Bradley test for testing

for a difference between the scale parameters of two

samples

Chapter 16 The Packages base, stats, and graphics

334

bartlett.test() for the homogeneity of variances

binomial.test() for exact tests using the binomial

distribution

Box.test() for the Box-Pierce and Ljug-Box tests—

used in time series to test for independence

chisq.test() for testing count data using Pearson’s test

cor.test() for correlations in paired samples

fisher.test() for contingency tables using Fisher’s

exact test

fligner.test() for the Fligner-Killeen test for

homogeneity of variances

friedman.test() for the Friedman rank sum test

kruskal.test() for the Kruskal-Wallis rank sum test

ks.test() for the Kolmogorov-Smirnov tests on one

or two samples

mantelhaen.test() for the Cochran-Mantel-

Haenszel chi squared test for count data

mauchly.test() for the test of sphericity developed

by Mauchly

mcnemar.test() for the chi squared test for count

data developed by McNemar

mood.test() for the two sample tests of scale

developed by Mood

oneway.test() for testing for equal means if the

layout is one way

pairwise.prop.test() for comparing proportions

pairwise

Chapter 16 The Packages base, stats, and graphics

335

pairwise.t.test() for comparing t tests pairwise

pairwise.wilcox.test() for comparing Wilcox

rank sum tests pairwise

poisson.test() for an exact test using the Poisson

distribution

power.anova.test() to find powers for a balanced

one-way analysis of variance

power.prop.test() to find the powers for

comparing two proportions

power.t.test() for the powers in one and two

sample t tests

PP.test() for the Phillops-Perron test to test for

unit roots in time series data

prop.test() for testing proportions

prop.trend.test() for testing trend in proportions

quade.test() for the Quade test

shapiro.test() for the Shapiro-Wilk test for

normality

t.test() for doing a t test

var.test() for an F test to compare two variances

wilcox.test() for Wilcoxon rank sum and sign tests

The tests are listed with arguments in Table 16-8.

For more information about any of the tests, enter ? function.name at

the R prompt where function.name is the name of the function or use the

Help tab in R Studio.

Chapter 16 The Packages base, stats, and graphics

336

Table 16-8.  Some Tests in stats

Test

ansari.test(x, y, alternative=c(“two-sided”, “less”, “greater”), exact=NULL, conf.

int=FALSE, conf.level=0.95, . . .)

bartlett.test(x, g, ...)

biniom.test(x, n, p=0.5, alternative=c(“two-sided”, “less”, “greater”), conf.

level=0.95)

Box.test(x, lag=1, type=c(“Box-Pierce”, “Ljung-Box”), fitdf=0)

chisq.test(x, y=NULL, correct=TRUE, p=rep(1/length(x), length(x)), rescale.p=FALSE,

B=2000)

cor.test(x, y, alternative=c(“two.sided”, “less”, “greater”), method=c(“pearson”,

“kendall”, “spearman”), exact=NULL, conf.level=0.95, continuity=FALSE, . . .)

fisher.test(x, y=NULL, workspace=200000, hybrid=FALSE, control=list(), or=1,

alternative=“two.sided”, conf.int=TRUE, conf.level=0.95, simulate.p.value=FALSE,

B=2000)

fligner.test(x, g, . . .)

friedman.test(y, groups, blocks, . . .)

kruskal(x, g, . . .)

ks.test(x, y, . . . , alternative=c(“two-sided”, “less”, “greater”), exact=NULL)

mantelhaen.test(x, y=NULL, z=NULL, alternative=c(“two.sided”, “less”, “greater”),

correct=T, exact=F, conf.level=0.95)

mauchly.test(object, . . .)

mcnemar.test(x, y=NULL, correct=TRUE)

mood.test(x, y, alternative=c(“two.sided”, “less”, “greater”), . . .)

oneway.test(formula, data, subset, na.action, var.equal=FALSE)

(continued)

Chapter 16 The Packages base, stats, and graphics

337

Table 16-8.  (continued)

pairwise.prop.test(x, n, p.adjust.method=p.adjust.methods, . . .)

pairwise.t.test(x, g, p.adjust.method=p.adjust.methods, pool.sd=!paired,

paired=FALSE, alternative=c(“two.sided”, “less”, “greater”), . . .)

pairwise.wilcox.test(x, g, p.adjust.method=p.adjust.methods, paired=FALSE, . . .)

poisson.test(x, T=1, r=1, alternative=c(“two-sided”, “less”, “greater”), conf.

level=0.95)

power.anova.test(groups=NULL, n=NULL, between.var=NULL, within.var=NULL, sig.

level=0.05, power=NULL)

power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=0.05, power=NULL,

alternative=c(“two-sided”, “one.sided”), strict=FALSE)

power.t.test(n=NULL, delta=NULL, sd=1, sig.level=0.05, type=c(“two.sample”,

“one.sample”, “paired”), alternative=c(“two.sided”, “one.sided”), strict=FALSE)

PP.test(x, lshort=TRUE)

prop.test(x, n, p=NULL, alternative=c(“two-sided”, “less”, “greater”), conf.

level=0.95, correct=TRUE)

prop.tend.test(x, n, score=seq_along(x))

quade.test(y, . . .)

shapiro.test(x)

t.test(x, y=NULL, alternative=c(“two-sided”, “less”, “greater”), mu=0,

paired=FALSE, var.equal=FALSE, conf.level=0.95, . . .)

var.test(x, y, ratio=1, alternative=c(“two-sided”, “less”, “greater”), conf.level=0.95, . . .)

wilcox.test(x, y=NULL, alternative=c(“two-sided”, “less”, “greater”), mu=0,

paired=FALSE, exact=NULL, correct=TRUE, conf.int=FALSE, conf.level=0.95, . . .)

Test

Chapter 16 The Packages base, stats, and graphics

338

�Some Modeling Functions in stats
There are a number of functions in stats that do modeling, including the

following:

acf() to estimate autocorrelation and

autocovariance in time series

acf2AR() to exactly fit an autoregressive model to an

autocorrelation function

add1() to find those single terms that can be added

or dropped from a model, fit the models, and

tabulate the results of the fitting

AIC() and BIC() to find the Akaike’s ‘An Information

Criterion’ or the ‘Schwartz Bayesian criterion’ for an

appropriate model

aov() to fit an analysis of variance model

approx() and approxfun() to do linear

interpolation

ar() to fit a time series autoregressive model

arima() to fit an autoregressive integrated moving

average to time series data

arima.sim() to do simulations from an ARIMA

model

ccf() to estimate cross correlation and cross

covariance for two time series

complete.cases() to find complete cases for a

sequence of vectors, matrices, or data.frames

Chapter 16 The Packages base, stats, and graphics

339

contrasts() to set or get contrasts for a factor

object

cpgram() to plot a cumulative periodogram for time

series data

decompose() to decompose seasonal patterns using

moving average

density() for kernel density estimation

ecdf() for the empirical cumulative distribution

function

fft() for fast discrete fourier transforms for time

series data

filter() for linear filtering of time series

glm() to fit a generalized linear model

isoreg() isotonic or monotone regression

KalmanForcast(), KalmanLike(), KalmanRun(),

KalmanSmooth(), and makeARIMA() for Kalman

filtering

ksmooth() to smooth using a kernel smoother

line() to fit a line robustly—based on Tukey’s

Exploratory Data Analysis

lm() to fit a linear model

loess() to fit a local polynomial model

loglin() to fit a loglinear model

lsfit() to fit a least squared linear model with one

explanatory variable

Chapter 16 The Packages base, stats, and graphics

340

manova() to fit multiple analysis of variance models

medpolish() for a median polish of a matrix

mvfft() for fast discrete fourier transforms for

matrices

nlm() to find a minimum of a nonlinear model

nls() to fit a nonlinear least squares model

optim(), optimHess(), optimise(), and optimize()

to optimize a function

pacf() to estimate partial autocovariances and

autocorrelations for a time series

poly() and polym() to create orthogonal

polynomials of the desired degree

ppr() to fit a projection pursuit regression model

profile() to profile models—generic function

smooth.spline() to fit a smooth spline model

spec() to find the spectral density for time series

data

step() to use the AIC to choose a model using a

stepwise algorithm

stl() to use the loess method to seasonally

decompose a time series

StrucTS() to fit a structural time series model

supsmu() for Friedman’s super smoother

update() for updating a model

Chapter 16 The Packages base, stats, and graphics

341

There are many functions in stats that support the modeling

functions, which we do not cover. You can find more information at the

help pages for the individual functions: enter ?function.name at the R

prompt where function.name is the name of the function or use the Help

tab in R Studio.

�Clustering Algorithms and Other Multivariate
Techniques
Some of the functions used in multivariate analysis for clustering and

working with multivariate data are the following:

cmdscale() for classical multidimensional scaling

cophenetic() for cophenetic distances in

hierarchical clustering

cut.dendrogram() for a general tree structure

cutree() for cutting a tree into groups

dendrapply() to apply a function to all nodes of a

dendrogram

as.dendrogram() to give an appropriate object the

class dendrogram

factanal() for factor analysis

hclust() for hierarchical clustering

identify.hclust() to identify clusters

kmeans() for k means clustering

labels.dendrogram() gives the ordering of or the

labels of the leaves on a dendrogram

loadings() printing loadings from a factor analysis

Chapter 16 The Packages base, stats, and graphics

342

merge.dendrogram() merges two dendrograms

order.dendrogram() gives the ordering or the labels

of the leaves of a dendrogram

prcomp() does principal components analysis

princomp() also does principal component analysis

promax() used for rotation of axes in factor analysis

reorder.dendrogram() for reordering a

dendrogram maintaining the initial constraints

rev.dendrogram() reverses the order of the nodes

in a dendrogram

str.dendrogram() displays the internal structure of

a dendrogram

varimax() used for rotation of axes in factor analysis

For more information about any of the functions, enter ?‘function.
name’ at the R prompt where function.name is the name of the function

or use the Help tab in R Studio.

The package stats also contains several probability distributions

(see Chapter 9); eight as. functions; six is. functions; a number of

plotting functions—like heatmap() and 19 plot. functions—which are

specific for many of the classes associated with modeling functions;

functions used in kernel estimation; ancillary functions for models—

like the seven model. functions; seven na. functions—to handle

missing data; 13 predict.—functions for model output, 27 print.
functions for printing output; and nine summary. functions for

summarizing output.

Chapter 16 The Packages base, stats, and graphics

343

�The graphics Package
The package graphics contains the function plot()—for which the many

plot. methods are written. The ancillary functions for plot() are in

graphics. There are also several plotting functions for specific types of

plots—like histograms and bar charts. The list of links to the help pages for

graphics is three pages long (help(package=graphics)). In this section,

we cover the specific types of plots and a few other functions related to

plotting.

Following are the functions in graphics that do specific types of plots:

assocplot() for a Cohen-Friendly association plot;

used for contingency tables; will work with any

matrix that is logical or numeric

barplot() for a bar plot; takes vector or matrix

objects, which are of mode logical or numeric, for

the heights of the bars

boxplot() for box plots; logical or numeric vectors,

matrices, arrays, data frames, and some lists can be

used as input to the function

bxp() for box plots of summaries

cdplot() for a conditional density plot

coplot() for scatter plots using a conditioning

variable

dotchart() for a Cleveland’s dot plot; numeric

vectors and matrices can be used for the plot

fourfoldplot() for a four fold plot of 2 x 2 x k

contingency tables

Chapter 16 The Packages base, stats, and graphics

344

hist() for histograms; gives histograms for numeric

vectors, matrices, and arrays

mosaicplot() for mosaic plots; takes numeric or

logical arguments that are vectors, matrices, data

frames, or arrays; is meant for contingency tables

pairs() for scatter plots of paired variables; takes

numeric vectors, matrices, and data frames as input;

creates a matrix of plots

persp() for a perspective plot; does three-

dimensional plotting

pie() for pie charts; use numeric vectors, matrices,

and arrays as input

smoothScatter() for a smoothed version of scatter

plots—which are colored; is copyrighted by

M. P. Wand

spineplot() for spine plots; use a logical, numeric,

or complex matrix as input to the plot; logical and

complex matrices are coerced to numeric; was

developed for two-way contingency tables

stars() for star or segment plots; use a numeric

matrix or data frame for the input to the plot

stem() for a stem and leaf plot; use a numeric

vector, matrix, or array as the input to the plot

stripchart() for a one dimensional scatter plot

sunflowerplot() for a sunflower plot, which is a

scatter plot in which points with duplicates have

sunflower leaves for the duplicated points; use a

logical, numeric, or complex vector, matrix, or data

frame for the input to the plot

Chapter 16 The Packages base, stats, and graphics

345

There are also some functions in graphics that control the screen for

plotting functions. The function splitscreen() and its ancillary functions

close.screen(), erase.screen(), and screen() are used to split the

plotting screen into regions and to plot to the regions. The functions

frame() and plot.new() open a new frame for plotting.

The function par() is like options()—except for plotting—and

contains the default options for plots. The options can be changed at any

time. Calling par() opens a new plotting frame. To see the list of options,

call par() with no arguments.

The function plot() is the basic plotting function and has a numbers

of ancillary functions and is defined for quite a few methods. We do not

cover plot() in this book.

You can find more information about the functions in graphics by

entering ? function.name at the R prompt where function.name is the

name of the function or by using the Help tab in R Studio.

Chapter 16 The Packages base, stats, and graphics

347© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0_17

CHAPTER 17

Tricks of the Trade
This book would not be complete without advice on some tricky parts of

R. When it seems that everything is set up right, but things still do not do

what you expect and you do not know why, this chapter can help. This

chapter also describes some not-so-obvious parts of R.

�Value Substitution: NA, NaN, Inf, and –Inf
This section has to do with missing data (NA) or illegal elements (NaN,

Inf, or –Inf). Say you want to substitute a value, for example 0, for missing

values. The intuitive approach would be to enter something like the

following:

mat[mat==NA] = 0

This does not work. What does work is to enter the following:

mat [is.na(mat)] = 0

For example:

> mat = matrix(c(1, NA, 3, 4), 2, 2)

> mat

 [,1] [,2]

[1,] 1 3

[2,] NA 4

348

> mat[mat==NA]=2

> mat

 [,1] [,2]

[1,] 1 3

[2,] NA 4

> mat[is.na(mat)]=2

> mat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

The same method works for illegal values. The values NaN, Inf, and

–Inf are defined in R for illegal operations. For example:

> 1/0

[1] Inf

> -1/0

[1] -Inf

> 0/0

[1] NaN

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

In this example, dividing a positive number by zero results in plus

infinity; dividing a negative number by zero gives negative infinity;

dividing zero by zero is not defined, so NaN is returned. Trying to find the

logarithm of minus one returns NaN with a warning since the logarithm of

minus one is not defined.

Chapter 17 Tricks of the Trade

349

The functions is.finite(), is.infinite(), and is.nan() take the

place of is.na() in tests for finite, Inf and –Inf, and NaN elements.

For example:

> mat = matrix(c(1, NaN, Inf, -Inf), 2, 2)

> mat

 [,1] [,2]

[1,] 1 Inf

[2,] NaN -Inf

> mat[is.finite(mat)]=2

> mat

 [,1] [,2]

[1,] 2 Inf

[2,] NaN -Inf

> mat[is.infinite(mat)]=3

> mat

 [,1] [,2]

[1,] 2 3

[2,] NaN 3

> mat[is.nan(mat)]=4

> mat

 [,1] [,2]

[1,] 2 3

[2,] 4 3

Note that is.infinite() treats Inf and –Inf the same.

Chapter 17 Tricks of the Trade

350

The function sign() returns –1 for an argument equal to –Inf. As a

result, a simple way to handle the sign problem is to take the sign of the

object first, and then multiply the absolute value of the object resulting

from the substitution by the sign object after assigning a number to –Inf.
For example:

> mat=matrix(c(1, 2, Inf, -Inf), 2, 2)

> mat

 [,1] [,2]

[1,] 1 Inf

[2,] 2 -Inf

> sg.mat = sign(mat)

> sg.mat

 [,1] [,2]

[1,] 1 1

[2,] 1 -1

> mat[is.infinite(mat)] = 4

> mat

 [,1] [,2]

[1,] 1 4

[2,] 2 4

> mat = sg.mat*abs(mat)

> mat

 [,1] [,2]

[1,] 1 4

[2,] 2 -4

You can find more information about NA and is.na() by entering

?is.na at the R prompt. You can find more information about NaN, Inf,
–Inf, is.nan(), is.finite(), and is.infinite()by entering ?is.finite at

the R prompt. Or you can use the Help page in R Studio.

Chapter 17 Tricks of the Trade

351

�If Statements and Logical Vectors
Often when a logical test is done, the objects being tested are of length

greater than one. R does not like this and gives a warning that only the first

logical element is used. Suppose you want to test whether any element of

a logical object is TRUE. Then, the function any() is useful. The function

any() returns TRUE if there are any TRUEs in the object, and FALSE

otherwise. For example:

> a.logical=c(T, T, F, T)

> a.logical

[1] TRUE TRUE FALSE TRUE

> test=8

> test

[1] 8

> if (a.logical==T) test=1

Warning message:

In if (a.logical == T) test = 1 :

 �the condition has length > 1 and only the first element will

be used

> test

[1] 1

> if (any(a.logical)) test=2

> test

[1] 2

> if (any(!a.logical)) test=3

> test

[1] 3

Chapter 17 Tricks of the Trade

352

> if (any(!a.logical[1:2])) test=4

> test

[1] 3

Note that in the third and fourth tests, the test is for FALSEs. The ! is

used to logically negate the object as.logical in the test for FALSEs.

The function all() tests if all of the elements are TRUE.

You can find more information about any() and all() by entering

?any at the R prompt or by using the Help tab in R Studio.

�Lists and the Functions list( )and c( )
Adding to lists can be confusing. Do you use list() or c()? When creating

a list, the elements to be entered into the list are separated by commas. But

say you want to add some elements. Then, you will usually want to use c().

For example:

list(1:4, paste0("a", 1:7))

[[1]]

[1] 1 2 3 4

[[2]]

[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

> list(list(1:4, paste0("a", 1:7)), 1:3)

[[1]]

[[1]][[1]]

[1] 1 2 3 4

[[1]][[2]]

[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

[[2]]

[1] 1 2 3

Chapter 17 Tricks of the Trade

353

> c(list(1:4, paste0("a", 1:7)), 1:3)

[[1]]

[1] 1 2 3 4

[[2]]

[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

[[3]]

[1] 1

[[4]]

[1] 2

[[5]]

[1] 3

> c(list(1:4, paste0("a", 1:7)), list(1:3))

[[1]]

[1] 1 2 3 4

[[2]]

[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

[[3]]

[1] 1 2 3

The last result is probably what you wanted. (Another method

to get the same results is to use append() instead of c() in the above

expressions.)

�Getting Data out of Functions
When you are writing functions, sometimes the purpose of the function

is to print results to the console; sometimes the purpose is to export an

object—which will be written to the console if not assigned to an object;

Chapter 17 Tricks of the Trade

354

and sometimes both types of output are needed. The functions print()

and cat() write to the console. To output an object, the object must be the

last statement in the function or in a return() function. For example:

> a.fun = function(){

+ a = rnorm(5)

+ return(a)

+ }

> a.fun()

[1] 2.0435770 0.1182068 -0.8160913 -0.3456415 1.2234314

> b.fun = function(){

+ b = rnorm(5)

+ b

+ }

> b.fun()

[1] -0.26273333 -0.90655351 -1.25978662 -0.06758578 2.41723700

The first function uses return and the second function does not. The

random seed is different for the two function runs, so the numbers are

different.

�Recursive Functions
R functions can be applied recursively. A recursive function is a

function that calls itself until a condition is met. We use the series

that defines the exponential distribution to illustrate the workings of a

recursive function.

Recall that

e
x

i
x

i

i

=
=

¥

å
0 !

Chapter 17 Tricks of the Trade

355

So, we want a function that adds x i
i

! at each step for i equal to 0, 1, ..., n

for some stopping point n. Since x i
i

! decreases at each step and gets

arbitrarily small, we used the size of x i
i

! to set the stopping point.

The function follows:

> r.exp =

function(x, i=0){

 if (abs(x^i/factorial(i)) > 1.0e-8) {

 r.exp(x, i+1) + x^i/factorial(i)

 }

 else {

 0

 }

}

At the first step of the recursion, i equals zero, so the value of r.exp() is

r x
x

.exp
!

,1
0

0

() +

At the second step, the value is

r x
x x

.exp
! !

,2
1 0

1 0

() + +

If i equal to n is the last step before x i
i

! is less than our stopping point

of 1.0e-8, then for i equal to n, the value of r.exp() equals

r x n
x

ii

n i

.exp
!

, +()+
=
å1

0

Chapter 17 Tricks of the Trade

356

But

r x n.exp , +() =1 0

so the recursion stops. Since the expression in the if section of the function

is the last statement executed in the function, the function returns the

result.

To see how the function works, we let x equal one:

> r.exp(1)

[1] 2.718282

> exp(1)

[1] 2.718282

Note that for x equal to one, the function gives the same value as the

function exp().

�Some Final Comments
R is a great programming language. In this last section, we give some

final comments. R takes some determination to use. If you get stuck on a

problem and cannot find an answer, do not be afraid to experiment. You

cannot break R. If you are creating functions, remember to try to figure out

a way to use indices rather than loops. Take the process in small steps. And

remember that data frames are lists, not matrices.

Chapter 17 Tricks of the Trade

357© Margot Tollefson 2019
M. Tollefson, R Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-4405-0

Index

A
aggregate() function

data frames, 231–232
time series, 233–235

all.equal() function, 325
anova() function, 300
ansari.test() function, 333
append() function, 325
apply() function, 217
Argument function, 141
Arithmetic operators, 29
Arrays, 317
as.call() function, 65
as.character() function, 58
as.factor() function, 90
as.name() function, 45
as.numeric() function, 49
as.ordered() function, 88
Assignments

function.name, 39
package.name, 39
types, 21

as.table() function, 238
Atomic modes, 45

character() function, 57
complex(), 51
logical() function, 46–48

NULL(), 46
numeric() function, 49
raw() function, 54–57

attach() function, 163–166
attr()/attributes() function, 326

B
bartlett.test() function, 334
Base package, 304

all.equal() function, 325
append() function, 325
arrays, 317
attr()/attributes() function, 326
beta functions, 308
built-in constants, 304–305
complex numbers, 316–317
cut() function, 327
data frames, 317
dir() function, 325
duplicated() function, 326
gamma functions, 308
gc() function, 327
getwd() function, 325
hexmode() function, 325
hyperbolic functions, 306
Identical() function, 325
jitter() function, 325

https://doi.org/10.1007/978-1-4842-4405-0

358

mathematical functions, 310
matrices, 317
model fitting, 319
pretty() function, 326
prop.table() function, 326
readline() function, 327
reserved words, 304
rev() function, 327
setwd() function, 325
stop() function, 327
trigonometric functions, 305
try() function, 327
unique() function, 325
warnings() function, 327

beta()/lbeta() functions, 308
binomial.test() function, 334
Box.test() function, 334

C
Call function, 139
Call mode, 64
cat() function, 293, 354
cbind() function, 215
c() function, 176–179, 352–353
Character mode, 57
Character string functions

grep functions, 240
manipulate case, 247–248
strsplit() function, 250
substr() function, 248
substring() function, 249

chartr() function, 248
chisq.test() function, 334

choose()/lchoose() functions, 308
Clustering algorithms, 341
coef() function, 300
Combinatorics, 183
Complex mode, 51
Complex numbers, 316–317
Comprehensive R Archive Network

(CRAN), 3
confint() function, 301
cor.test() function, 334
cumsum()function, 262
cut() function, 327

D
Data frames, 317
data() function, 163–166
ddist() function, 171
Descriptive functions

dim() function, 206
length() function, 208
nchar() function, 212
NCOL() function, 208
NROW() function, 208
nzchar() function, 212–214

digamma() function, 308
dim() function, 206–207
dir() function, 325
dump() function, 187–189
duplicated() function, 326

E
eapply() function, 225–226
effects() function, 300

Base package (cont.)

INDEX

359

ifelse() function, 277–281
switch() function, 282, 284
Environment mode, 68–71
Exporting R functions

dump() function, 188–189
save() function, 199, 201
saveRDS() function, 202
package foreign, 204
paired import/export

functions, 202–203
sink() function, 189–190
write.csv() function, 194
write() function, 191
write.matrix() function, 192
write.table() function, 194
xlsx package, 204

Expression mode, 66

F
factor() function, 88
factorial()/lfactorial() functions, 309
f.fun() function, 140
fisher.test() function, 334
fitted() function, 301
fligner.test() function, 334
Flow control

brackets, 253
break and next statement, 258
if/else statement, 259
repeat loop, 269, 272
while loop, 261–262
for statement, 256–257
if/else statement, 255
if statement, 254

mean and median
function, 272, 275

nestedforloop, 259
indices, 264–265
matrix x and xp, 263–264

nested statement, 258
random number generator

arbitrary value, 266
histogram, 266–267
indices, 267–268

repeat loop, 268
repeat statement, 257
semicolon, 253–254
while statement, 255

for control statement, 256
for loop, 257
Formal classes, 73
format() function, 296–297
friedman.test() function, 334
ftable() function, 239–240
Function mode, 63–64

G
gamma()/lgamma()

functions, 308
gc() function, 327
getwd() function, 325
Graphics package, 343
gregexpr() function, 246
grep() function, 241
grepl() function, 241
grepRaw() function, 242–243
Grid expansion, 183–185
gsub() function, 244

INDEX

360

H
hexmode() function, 325
Hyperbolic functions, 306

I
Identical() function, 325
if and else control

statement, 254, 255
If statements, 351–352
Indexing variable, 256–257
Informal classes, 73
installed.packages(), 114
is.call() function, 66
is.character() function, 60
is.environment() function, 69–71
is.factor() function, 90
is.finite() function, 349
is.infinite() function, 349
is.name() function, 46
is.nan() function, 349
is.numeric() function, 51
is.ordered() function, 88
is.table() function, 238

J
jitter() function, 325

K
kruskal.test() function, 334
ks.test() function, 334

L
Language modes, 45

call() function, 64
expression() function, 66–68

lapply() function, 218
length() function, 208–210,

212, 262
List mode, 61
list() function, 352–353
lm.fit() function, 142
load() function, 163–166
Logical mode, 46–48
Logical operators and functions, 26
Logical vectors, 351–352
ls() and rm() Functions, 24

M
mantelhaen.test() function, 334
Manual data

c() function, 176
rep() function, 181
seq() function, 179

mapply() function, 223–225
Mathematical functions, 310
Matrices, 317
Matrix operators and functions, 30
mauchly.test() function, 334
mcnemar.test() function, 334
Modeling functions, 338
Modes

atomic (see Atomic modes)
definition, 43

INDEX

361

environments, 68–71
language, 64–68
recursive, 61–66
S4, 71–72
types, 44–45

mood.test() function, 334
Multivariate analysis, 341

N
name() function, 45
nchar() function, 212–214
noquote() function, 292–293
Numeric mode, 48–51
nzchar() function, 212–214

O
Object classes

array class, 83–84
data frame class

as.data.frame()
function, 91, 94

data.frame()
function, 90–92, 94

I() function, 93
is.data.frame() function, 91, 95
stringsAsFactors, 92

date and time class
as.Date() function, 96
as.POSIXct() function, 97
as.POSIXlt() function, 97
difftime()/as.difftime()

function, 98
system date function, 95

dimnames() function, 108–109
factor and ordered class, 87–90
formulas, 98–99, 101–102
glm and lm function, 73–74
matrix

as.matrix() function, 80–81
data.matrix() function, 81
byrow argument, 79
nrow/ncol argument, 78
is.matrix() function, 82

names() function, 106–107
rownames() and colnames()

function, 107
S4 class function, 103–105
time series classes, 84–87
vectors, 74–76

oneway.test() function, 334
Operators

arithmetic, 29
logical, 26
matrix, 30
relational, 32–33
subscripting (see Subscripting

operators)
options() function, 289–290
ordered() function, 88
Output from function, 143–146

P
Packaged function

defaultPackages, 115
help page

arguments, 117–118
description, 116

INDEX

362

examples, 120
fitting linear models, 116
optional sections, 119
references, 119
usage, 117
value, 118

library() function, 114
primitive function, 115

pairwise.prop.test() function, 334
pairwise.t.test() function, 335
pairwise.wilcox.test() function, 335
paste() function, 185–186
pdist() function, 171
plot() function types, 298, 343
poisson.test() function, 335
power.anova.test() function, 335
power.prop.test() function, 335
power.t.test() function, 335
pp.test() function, 335
predict() function, 302
pretty() function, 326
Primitive function, 115
print() function, 297, 354
Probability distributions, 171
prop.table() function, 326
prop.test() function, 335
prop.trend.test() function, 335
psigamma() function, 308

Q
qdist() function, 171
quade.test() function, 335

R
Raw mode, 54–57
rbind() function, 215
RData file, 10
R datasets, 170
read.csv() function, 158–162
Reading data into R

as.is to TRUE
argument, 159, 160

colClasses argument, 160
col.names argument, 161
header argument, 158
fill argument, 159
nlines argument, 157
R datasets, 170
read.csv() function, 159
read.table() function, 159
row.names argument, 161
scan() function, 155
sep argument, 157–158
skip argument, 157
text argument, 158, 159

readline() function, 327
readRDS() function, 166–167
read.table() function, 158–162
Recursive function, 354
Recursive modes, 45

call() function, 64
expression() function, 66–68
function(), 63–64
list, 61–63

regexpr() function, 245
Relational operators, 32–33

Packaged function (cont.)

INDEX

363

rdist() function, 171
repeat control statement, 257
rep() function, 181–183
residuals() function, 301
Resultant matrix, 260
rev() function, 327
R file system

download process
Linux, 5–6
OS X, 5
R studio, 6
Windows, 4

dragging and dropping, 11
installation packages, 6–8
RData file, 10–11
updation packages

OS X, 9
Windows, 9

Windows folder, 11
workspace image, 10

Rhistory file, 10
R objects manipulation

aggregate() function
data frames, 231
time series, 233

apply() function, 217
as.table() function, 238
cbind() function, 215
eapply() function, 225–226
ftable() function, 239–240
grep functions, 241
is.table() function, 238
lapply() function, 218
mapply() function, 223

rbind() function, 215, 217
sapply() function, 219
scale() function, 228
sweep() function, 227
table() function, 236
tabulate() function, 238
tapply() function, 221
vapply() function, 220

round() function, 291
R prompt

assignments, 14
calculations, 14–15, 19
expressions, 14
objects, 13
operators, 14

R Studio Windows, 16–19, 167–169

S
S3 level classification, 43
S4 level classification, 43
S4 mode, 71–72
sample() function, 174
sapply() function, 219–220
save() function, 199, 201
saveRDS() function, 202
scale() function, 228–230
scan() function, 155–158
Script, 122–123

example, mine Twitter, 146–147,
149–150

seq() function, 179–181
setGeneric() function, 132
setMethod()function, 132

INDEX

364

setwd() function, 325
shapiro.test() function, 335
showMethods(), 137
sign() function, 350
signif() function, 292
sink() function, 189–190
Statistical functions, 328
Stats package, 328

clustering algorithms, 341
hypothesis test function, 333
modeling functions, 338
multivariate analysis, 341
statistical functions, 328

stop() function, 327
strsplit() function, 250
sub() function, 244
Subscripting operators

arrays, 35–36
lists, 36–37
matrices, 34–35
slots, 38
subsetted—factors, 38
vectors, 34

substr() function, 248
substring() function, 248–249
summary() function, 298
sweep() function, 227–228
switch() function, 282–283

T
table() function, 236–237
tabulate() function, 238–239

tapply() function, 221, 223
tolower() function, 247
toupper() function, 247
Trigonometric functions, 305
try() function, 327
typeof() function, 43

U
unique() function, 325
User-created functions

R function
editing

function, 126–128
inline entry, 129
outside editor, 130

S4 methods
generic function, 136–137
setGeneric(), 132
setMethod(), 132–134
showMethods(), 137

scripts, 122–123
structure, 123–125

V
Value substitution

Inf, and -Inf, 348, 350
NA, 347
NaN, 348

vapply() function, 220–221
var.test() function, 335
vcov() function, 301

INDEX

365

W, X, Y, Z
warnings() function, 327
while control Statement, 255
wilcox.test() function, 335

write.csv() function, 194
write() function, 191
write.matrix() function, 192
write.table() function, 194

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Part I: R Basics
	Chapter 1: Downloading R and Setting Up a File System
	Downloading R and R Studio
	Windows
	Mac OS X
	Linux
	R Studio

	Installing and Updating Packages
	Windows
	Mac OS X

	Updating R
	Windows
	Mac OS X

	Using R in Separate Folders
	Windows
	Mac OS X
	Linux
	Projects in R Studio

	Chapter 2: The R Prompt and the R Studio Windows
	The Three Parts of R: Objects, Operators, and Assignments
	The R Prompt
	An Example of a Calculation
	The Four R Studio Windows
	The First Sub-window
	The Second Sub-window
	The Third Sub-window
	The Fourth Sub-window

	Chapter 3: Assignments and Operators
	Types of Assignment
	Example of Three Types of Assignment
	Listing and Removing Objects in R and R Studio
	Operators
	Logical Operators and Functions
	Arithmetic Operators
	Matrix Operators and Functions
	Relational Operators
	Subscripting Operators
	Vectors
	Matrices
	Arrays
	Lists
	Other Types

	Odds and Ends

	Part II: Kinds of Objects
	Chapter 4: Modes and Types of Objects
	Overview of the Modes and Types
	Commonly Used Modes
	Atomic, Recursive, and Language Modes

	Some Functions for Atomic Modes (Types)
	The NULL Mode
	The Logical Mode
	The Numeric Mode and the Integer or Double Types
	The Complex Mode
	The Raw Mode
	The Character Mode

	The Common Recursive and Language Modes
	The List Mode
	The Function Mode and the Closure, Special, and Built-In Types
	The Call Mode
	The Expression Mode

	The Environment Mode
	The S4 Mode

	Chapter 5: Classes of Objects
	Some Basics on Classes
	Vectors
	Some Common S3 Classes
	The Matrix Class: matrix
	The Array Class: array
	The Time Series Classes: ts and mts
	The Factor Classes: factor and ordered
	The Data Frame Class: data.frame
	The Date and Time Classes: Date, POSIXct, POSIXlt, and difftime

	The Formula Class: formula
	The S4 Class
	Names for Vectors, Matrices, Arrays, and Lists

	Part III: Functions
	Chapter 6: Packaged Functions
	The Libraries
	Default Packages and Primitive Functions
	Using the Help Pages
	Identifier
	Title
	Description
	Usage
	Arguments
	Details
	Value
	Some Other Optional Sections
	References
	See Also
	Examples

	Chapter 7: User-Created Functions, Scripts, and S4 Methods
	Scripts
	The Structure of a Function
	How to Enter a Function into R
	Using an Editor
	Inline Entry
	An Outside Editor: dget() and Copying and Pasting
	In R Studio
	S4 Methods

	Chapter 8: How to Use a Script or Function
	Calling a Function
	Arguments
	The Output from a Function
	Example of a Script: Mining Twitter

	Part IV: I/O and Manipulating Objects
	Chapter 9: Importing and Creating Data
	Reading Data into R and R Studio, Including R Datasets
	The Function scan()
	The Functions read.table() and read.csv()
	The Functions load(), attach(), and data()
	The Function readRDS()
	Other Read Functions to Import Files
	Reading Data Using R Studio
	R Datasets

	Probability Distributions and the Function sample()
	Probability Distributions
	The Function sample()

	Manually Entering Data and Generating Data with Patterns
	The Function c()
	The Functions seq() and rep()
	The Function seq()
	The Function rep()

	Combinatorics and Grid Expansion
	The Function Paste

	Chapter 10: Exporting from R
	The Function dump()
	The Function sink()
	The Function write()
	The Function write.matrix()
	The Functions write.table() and write.csv()
	The Function save()
	The Function saveRDS()
	Matching Importing and Exporting Functions
	Other Exporting Functions

	Chapter 11: Descriptive Functions and Manipulating Objects
	Descriptive Functions
	The Function dim()
	The Functions nrow(), ncol(), NROW(), and NCOL()
	The Function length()
	The Functions nchar() and nzchar()

	Manipulating Objects
	The Functions cbind() and rbind()
	The Apply Functions
	The Function apply()
	The lapply(), sapply(), and vapply() Functions
	The Function lapply()
	The Function sapply()
	The Function vapply()

	The Function tapply()
	The Function mapply()

	The Function eapply()
	The sweep() and scale() Functions
	The Function sweep()
	The Function scale()

	The Functions aggregate(), table(), tabulate(), and ftable()
	The Function aggregate()
	Data Frames
	Time Series

	The Functions table(), as.table(), and is.table()
	The Function tabulate()
	The Function ftable()

	Some Character String Functions
	The grep Functions
	Functions to Manipulate Case in Character Strings
	The Functions substr(), substring(), and strsplit()

	Part V: Flow control
	Chapter 12: Flow Control
	Brackets “{}” and the Semicolon “;”
	The “if” and “if/else” Control Statements
	The “while” Control Statement
	The “for” Control Statement
	The “repeat” Control Statement
	The Statements “break” and “next”
	Nesting

	Chapter 13: Examples of Flow Control
	Nested ‘for’ Loops with an ‘if/else’ Statement
	Using Indices

	A ‘while’ Loop
	Using Indices

	Nested ‘for’ Loops
	Using Indices

	A ‘for’ Loop, ‘if’ Statement, and ‘next’ Statement
	Using Indices

	A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’ Statement, and a ‘break’ Statement
	Using Indices

	Chapter 14: The Functions ifelse() and switch()
	The Function ifelse()
	The Function switch()

	Part VI: Some Common Functions, Packages and Techniques
	Chapter 15: Some Common Functions
	The Function options()
	The Functions round(), signif(), and noquote()
	The Function round()
	The Function signif()
	The Function noquote()

	The Function cat()
	The Functions format(), print(), plot(), and summary()
	The Function format()
	The Function print()
	The Function plot()
	The Function summary()

	Some Functions for Models: anova(), coef(), effects(), residuals(), fitted(), vcov(), confint(), and predict()

	Chapter 16: The Packages base, stats, and graphics
	The base Package
	Reserved Words
	Built-In Constants
	Trigonometric and Hyperbolic Functions
	Beta- and Gamma-Related Functions
	Miscellaneous Mathematical Functions
	Complex Numbers
	Matrices, Arrays, and Data Frames
	A Few Other Functions and Some Comments

	The stats Package
	Basic Descriptive Statistics
	Some Functions That Do Tests
	Some Modeling Functions in stats
	Clustering Algorithms and Other Multivariate Techniques

	The graphics Package

	Chapter 17: Tricks of the Trade
	Value Substitution: NA, NaN, Inf, and –Inf
	If Statements and Logical Vectors
	Lists and the Functions list()and c()
	Getting Data out of Functions
	Recursive Functions
	Some Final Comments

	Index

