
33
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_2

CHAPTER 2

Generic Parallel
Algorithms
What is the best method for scheduling parallel loops? How do we process data

structures in parallel that do not support random-access iterators? What’s the best way to

add parallelism to applications that look like pipelines? If the TBB library only provided

tasks and a task scheduler, we would need to answer these questions ourselves. Luckily,

we don’t need to plow through the many master’s theses and doctoral dissertations

written on these topics. The TBB library developers have already done this dirty work

for us! They provide the best-known methods for addressing these scenarios as template

functions and template classes, a group of features known as the TBB generic parallel

algorithms. These algorithms capture many of the processing patterns that are the

cornerstones of multithreaded programming.

Note  The TBB library developers have historically used the term generic parallel
algorithms to describe this set of features. By algorithm, they do not mean
a specific computation like matrix multiplication, LU decomposition, or even
something like std::find, but instead they mean common execution patterns.
It has been argued by some reviewers of this book that these features would
therefore be more accurately referred to as patterns and not algorithms. However,
to align with the terminology that the TBB library has been using for many years,
we refer to these features as generic parallel algorithms in this book.

https://doi.org/10.1007/978-1-4842-4398-5_2

34

We should have a strong preference for using these prewritten algorithms, whenever

they apply, instead of writing our own implementations. The developers of TBB have

spent years testing and improving their performance! The set of algorithms included in

the TBB library do not, of course, exhaustively cover every possible scenario, but if one

of them does match our processing pattern, we should use it. The algorithms provided

by TBB capture the majority of the scalable parallelism in applications. In Chapter 8, we

discuss design patterns for parallel programming, such as those described in Patterns for

Parallel Programming by Mattson, Sanders and Massingill (Addison-Wesley), and how

we can implement them using the TBB generic parallel algorithms.

As shown in Figure 2-1, all of the TBB generic algorithms start from a single thread of

execution. When a thread encounters a parallel algorithm, it spreads the work associated

with that algorithm across multiple threads. When all of the pieces of work are done, the

execution merges back together and continues again on the initial single thread.

Figure 2-1.  The fork-join nature of the TBB parallel algorithms

TBB algorithms provide a powerful but relatively easy parallel model to apply

because they can often be added incrementally and with a fairly local view of the code

under consideration. We can look for the most time-consuming region of a program,

add a TBB parallel algorithm to speed up that region, then look for the next most time-

consuming region, add parallelism there, and so on.

It must be understood however that TBB algorithms do not guarantee parallel

execution! Instead, they only communicate to the library that parallel execution is allowed.

If we look at Figure 2-1 from a TBB perspective, this means that all of the worker threads may

participate in executing parts of the computation, only a subset of threads may participate,

or just the master thread may participate. Programs and libraries that assume that the

parallelism is optional, like TBB does, are referred to as having relaxed sequential semantics.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_8

35

A parallel program has sequential semantics if executing it using only a single thread

does not change the program’s semantics. As we will note several times in this book

though, the results of a sequential and parallel execution of a program may not always

match exactly due to rounding issues and other sources of inexactness. We acknowledge

these potential, nonsemantic differences by using the term relaxed sequential semantics.

While models like TBB and the OpenMP API offer relaxed sequential semantics, some

other models, such as MPI, let us write applications that have cyclic relationships that

require parallel execution. The relaxed sequential semantics of TBB are an important

part of what makes it useful for writing composable applications, as introduced in

Chapter 1 and described in more detail in Chapter 9. For now, we should just remember

that any of the algorithms described in this chapter will spread the work across one or

more threads, but not necessarily all of the threads available in the system.

The set of algorithms available in the Threading Building Blocks 2019 distribution is

shown in the table in Figure 2-2. They are all in namespace tbb and are available when

the tbb.h header file is included. The basics of the boldface algorithms are covered in

this chapter, with the other algorithms described in later chapters. We also provide a

sidebar Lambda expressions –vs- user-defined classes that explains that while we

almost exclusively use lambda expressions to pass code to the TBB algorithms in our

examples in this book, these arguments can almost always be replaced by user-defined

function objects if so desired.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_1
https://doi.org/10.1007/978-1-4842-4398-5_9

36

LAMBDA EXPRESSIONS –VS- USER-DEFINED CLASSES

Since the first release of TBB predates the C++11 standard that introduced lambda

expressions into the language, the TBB generic algorithms do not require the use of

lambda expressions. Sometimes we can use the same interface with lambda expressions

or with function objects (functors). In other cases, there are two sets of interfaces for an

Figure 2-2.  The Generic Algorithms in the Threading Building Blocks library.
The bold-face algorithms are described in more detail in this chapter.

Chapter 2 Generic Parallel Algorithms

37

algorithm: a set that is more convenient with lambda expressions and a set that is more

convenient with user-defined objects.

For example, in place of

we can use a user-defined class and write

Often the choice between using a lambda expression or a user-defined object is simply a

matter of preference.

�Functional / Task Parallelism
Perhaps the simplest algorithm provided by the TBB library is parallel_invoke, a

function that allows us to execute as few as two functions in parallel, or as many as we

wish to specify:

Chapter 2 Generic Parallel Algorithms

38

The pattern name for this concept is map – which we will discuss more in Chapter 8

when we discuss patterns explicitly. The independence expressed by this algorithm/

pattern allows it to scale very well, making it the preferred parallelism to use when

we can apply it. We will also see that parallel_for, because the loop bodies must be

independent, can be used to similar effect.

A complete description of the interfaces available for parallel_invoke can be

found in Appendix B. If we have a set of functions that we need to invoke and it is safe to

execute the invocations in parallel, we use a parallel_invoke. For example, we can sort

two vectors, v1 and v2, by calling a serialQuicksort on each vector, one after the other:

 serialQuicksort(serial_v1.begin(), serial_v1.end());

 serialQuicksort(serial_v2.begin(), serial_v2.end());

Or, since these calls are independent of each other, we can use a parallel_invoke to

allow the TBB library to create tasks that can be executed in parallel by different worker

threads to overlap the two calls, as shown in Figure 2-3.

Figure 2-3.  Using parallel_invoke to execute two serialQuicksort calls in
parallel

If the two invocations of serialQuicksort execute for roughly the same amount

of time and there are no resource constraints, this parallel implementation can be

completed in half the time it takes to sequentially invoke the functions one after the other.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_8

39

Note  We as developers are responsible for invoking functions in parallel only
when they can be safely executed in parallel. That is, TBB will not automatically
identify dependencies and apply synchronization, privatization, or other
parallelization strategies to make the code safe. This responsibility is ours when we
use parallel_invoke or any of the parallel algorithms we discuss in this chapter.

Using parallel_invoke is straightforward, but a single invocation of parallel_

invoke is not very scalable. A scalable algorithm makes effective use of additional cores

and hardware resources as they become available.

An algorithm shows strong scaling if it takes less time to solve a problem with a

fixed size as additional cores are added. For example, an algorithm that shows good

strong scaling may complete the processing of a given data set two times faster than

the sequential algorithm when two cores are available but complete the processing of

the same data set 100 times faster than the sequential algorithm when 100 cores are

available.

An algorithm shows weak scaling if it takes the same amount of time to solve a

problem with a fixed data set size per processor as more processors are added. For

example, an algorithm that shows good weak scaling may be able to process two times

the data than its sequential version in a fixed period of time using two processors and

100 times the data than its sequential version in that same fixed period of time when

using 100 processors.

Using a parallel_invoke to execute two sorts in parallel will demonstrate neither

strong nor weak scaling, since the algorithm can at most make use of two processors. If

we have 100 processors available, 98 of them will be idle because we have not given them

anything to do. Instead of writing code like our example, we should develop scalable

applications that allow us to implement parallelism once without the need to revisit the

implementation each time new architectures containing more cores become available.

Luckily, TBB can handle nested parallelism efficiently (described in detail in

Chapter 9), and so we can create scalable parallelism by using parallel_invoke in

recursive divide-and-conquer algorithms (a pattern we discuss in Chapter 8). TBB also

includes additional generic parallel algorithms, covered later in this chapter, to target

patterns that haven proven effective for achieving scalable parallelism, such as loops.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_9
https://doi.org/10.1007/978-1-4842-4398-5_8

40

�A Slightly More Complicated Example: A Parallel
Implementation of Quicksort
A well-known example of a recursive divide-and-conquer algorithm is quicksort, as shown

in Figure 2-4. Quicksort works by recursively shuffling an array around pivot values, placing

the values that are less than or equal to the pivot value in the left partition of the array and

the values that are greater than the pivot value in the right partition of the array. When the

recursion reaches the base case, arrays of size one, the whole array has been sorted.

Figure 2-4.  A serial implementation of quicksort

We can develop a parallel implementation of quicksort as shown in Figure 2-5

by replacing the two recursive calls to serialQuicksort with a parallel_invoke. In

addition to the use of parallel_invoke, we also introduce a cutoff value. In the original

serial quicksort, we recursively partition all the way down to arrays of a single element.

Chapter 2 Generic Parallel Algorithms

41

Note S pawning and scheduling a TBB task is not free – a rule of thumb is that
a task should execute for at least 1 microsecond or 10,000 processor cycles in
order to mitigate the overheads associated with task creation and scheduling.
We provide experiments that demonstrate and justify this rule of thumb in more
detail in Chapter 16.

To limit overheads in our parallel implementation, we recursively call parallel_

invoke only until we dip below 100 elements and then directly call serialQuicksort

instead.

Figure 2-5.  A parallel implementation of quicksort using parallel_invoke

You may notice that the parallel implementation of quicksort has a big limitation –

the shuffle is done completely serially. At the top level, this means we have an O(n)

operation that is done on a single thread before any of the parallel work can begin.

This can limit the speedup. We leave it up to those that are interested to see how this

limitation might be addressed by known parallel partitioning implementations (see the

“For More Information” section at the end of this chapter).

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_16

42

�Loops: parallel_for, parallel_reduce,
and parallel_scan
For many applications, the execution time is dominated by time spent in loops. There

are several TBB algorithms that express parallel loops, letting us quickly add scalable

parallelism to the important loops in an application. The algorithms labeled as “Simple

Loops” in Figure 2-2 are ones where the beginning and end of the iteration space can

easily be determined by the time that the loop starts.

For example, we know there will be exactly N iterations in the following loop, so we

classify it as a simple loop:

All of the simple loop algorithms in TBB are based on two important concepts, a

Range and a Body. A Range represents a recursively divisible set of values. For a loop, a

Range is typically the indices in the iteration space or the values that an iterator will take

on as it iterates through a container. The Body is the function we apply to each value

in the Range; in TBB, the Body is typically provided as a C++ lambda expression but

can also be provided as a function object (see Lambda expressions –vs- user-defined
classes).

�parallel_for: Applying a Body to Each Element
in a Range
Let’s start with a small serial for loop that applies a function to an element of an array in

each iteration:

We can create a parallel version of this loop by using a parallel_for:

Chapter 2 Generic Parallel Algorithms

43

A complete description of the interfaces available for parallel_for can be found in

Appendix B. In the small example loop, the Range is the half-open interval [0, N), the

step is 1, and the Body is f(a[i]). We can express this as shown in Figure 2-6.

Figure 2-6.  Creating a parallel loop using parallel_for

When TBB executes a parallel_for, the Range is divided up into chunks of

iterations. Each chunk, paired with a Body, becomes a task that is scheduled onto one

of the threads that participate in executing the algorithm. The TBB library handles the

scheduling of tasks for us, so all we need to do is to use the parallel_for function to

express that the iterations of the loop should be executed in parallel. In later chapters,

we discuss tuning the behavior of TBB parallel loops. For now, let us assume that TBB

generates a good number of tasks for the range size and number of available cores. In

most cases, this is a good assumption to make.

It is important to understand that by using a parallel_for, we are asserting that it’s

safe to execute the iterations of the loop in any order and in parallel with each other. The

TBB library does nothing to check that executing the iterations of a parallel_for (or in

fact any of the generic algorithms) in parallel will generate the same results as a serial

execution of the algorithm – it is our job as developers to be sure that this is the case

when we choose to use a parallel algorithm. In Chapter 5, we discuss synchronization

mechanisms in TBB that can be used to make some unsafe code, safe. In Chapter 6, we

discuss concurrent containers that provide thread-safe data structures that can also

sometimes help us make code thread-safe. But ultimately, we need to ensure when we

use a parallel algorithm that any potential changes in read and write access patterns

do not change the validity of the results. We also need to ensure that we are using only

thread-safe libraries and functions from within our parallel code.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_6

44

For example, the following loop is not safe to execute as a parallel_for since each

iteration depends on the result of the previous iteration. Changing the order of execution

of this loop will alter the final values stored in the elements of array a:

Imagine if the array a={1,0,0,0,...,0}. After executing this loop sequentially, it will

hold {1,2,3,4,...,N}. But if the loop executes out-of-order, the results will be different.

A mental exercise, when looking for loops that are safe to execute in parallel, is to ask

yourself whether the results will be the same if the loop iterations are executed all at

once, or in random order, or in reverse order. In this case, if a={1,0,0,0,...,0} and the

iterations of the loop are executed in reverse order, a will hold {1,2,1,1,...,1} when

the loop is complete. Obviously, execution order matters for this loop!

Formal descriptions of data dependence analysis are beyond the scope of this

book but can be found in many compiler and parallel programming books, including

High-Performance Compilers for Parallel Computing by Michael Wolfe (Pearson)

and Optimizing Compilers for Modern Architectures by Allen and Kennedy (Morgan

Kaufmann). Tools like Intel Inspector in Intel Parallel Studio XE can also be used to find

and debug threading errors, including in applications that use TBB.

�A Slightly More Complicated Example: Parallel Matrix
Multiplication

Figure 2-7 shows a nonoptimized serial implementation of a matrix multiplication loop

nest that computes C = AB for MxM matrices. We use this kernel here for demonstration

purposes – if you ever need to use matrix multiply in a real application and do not

consider yourself to be an optimization guru – you will almost certainly be better served

by using a highly optimized implementation from a math library that implements the

Basic Linear Algebra Subprograms (BLAS) like the Intel Math Kernel Library (MKL),

BLIS, or ATLAS. Matrix multiplication is a good example here because it is a small kernel

and performs a basic operation we are all familiar with. With these disclaimers covered,

let us continue with Figure 2-7.

Chapter 2 Generic Parallel Algorithms

45

Figure 2-7.  A nonoptimized implementation of matrix multiplication

We can quickly implement a parallel version of the matrix multiplication in Figure 2-7

by using parallel_for as shown in Figure 2-8. In this implementation, we make the outer

i loop parallel. An iteration of the outer i loop executes the enclosed j and k loops and so,

unless M is very small, will have enough work to exceed the 1 microsecond rule of thumb.

It is often better to make outer loops parallel when possible to keep overheads low.

Figure 2-8.  A simple parallel_for implementation of matrix multiply

Chapter 2 Generic Parallel Algorithms

46

The code in Figure 2-8 quickly gets us a basic parallel version of matrix multiply.

While this is a correct parallel implementation, it will leave a lot of performance on the

table because of the way it is traversing the arrays. In Chapter 16, we will talk about the

advanced features of parallel_for that can be used to tune performance.

�parallel_reduce: Calculating a Single Result Across
a Range
Another very common pattern found in applications is a reduction, commonly known

as the “reduce pattern” or “map-reduce” because it tends to be used with a map pattern

(see more about pattern terminology in Chapter 8).

A reduction computes a single value from a collection of values. Example

applications include calculating a sum, a minimum value, or a maximum value.

Let’s consider a loop that finds the maximum value in an array:

Computing a maximum from a set of values is an associative operation; that is, it’s

legal to perform this operation on groups of values and then combine those partial

results, in order, later. Computing a maximum is also commutative, so we do not even

need to combine the partial results in any particular order.

For loops that perform associative operations, TBB provides the function parallel_

reduce:

A complete description of the parallel_reduce interfaces is provided in Appendix B.

Many common mathematical operations are associative, such as addition,

multiplication, computing a maximum, and computing a minimum. Some operations

are associative in theory but are not associative when implemented on real systems due

to limitations in numerical representations. We should be aware of the implications of

depending on associativity for parallelism (see Associativity and floating-point types).

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_8

47

ASSOCIATIVITY AND FLOATING-POINT TYPES

In computer arithmetic, it is not always practical to represent real numbers with exact

precision. Instead, floating-point types such as float, double, and long double are

used as an approximation. The consequence of these approximations is that mathematical

properties that apply to operations on real numbers do not necessarily apply to their floating-

point counterparts. For example, while addition is associative and commutative on real

numbers, it is neither of these for floating-point numbers.

For example, if we compute the sum of N real values, each of which is equal to 1.0, we would

expect the result to be N.

But there is a limited number of significant digits in the float representation and so not

all integer values can be represented exactly. So, for example, if we run this loop with N ==

10e6 (10 million), we will get an output of 10000000. But if we execute this loop with N ==

20e6, we get an output of 16777216. The variable r simply cannot represent 16777217

since the standard float representation has a 24-bit mantissa (significand) and 16777217

requires 25 bits. When we add 1.0, the result rounds down to 16777216, and each

subsequent addition of 1.0 also rounds down to 16777216. To be fair, at each step, the result

of 16777216 is a good approximation of 16777217. It is the accumulation of these rounding

errors that makes the final result so bad.

If we break this sum into two loops and combine partial results, we get the right answer in

both cases:

Chapter 2 Generic Parallel Algorithms

48

Why? Because r can represent larger numbers, just not always exactly. The values in tmp1

and tmp2 are of similar magnitude, and therefore the addition impacts the available significant

digits in the representation, and we get a result that is a good approximation of 20 million.

This example is an extreme case of how associativity can change the results of a computation

using floating-point numbers.

The take-away of this discussion is that when we use a parallel_reduce, it uses

associativity to compute and combine partial results in parallel. So, we may get different results

when compared to a serial implementation when using floating-point numbers. And in fact,

depending on the number of participating threads, the implementation of parallel_reduce

may choose to create a different number of partial results from run to run. Therefore, we may

also get different results from run to run in the parallel implementation, even on the same input.

Before we panic and conclude that we should never use a parallel_reduce, we should

keep in mind that implementations that use floating-point numbers generally result in an

approximation. Getting different results on the same input does not necessarily mean that at

least one of the results is wrong. It just means that the rounding errors accumulated differently

for two different runs. It is up to us as developers to decide whether or not the differences

matter for an application.

If we want to ensure that we at least get the same results on each run on the same input data,

we can choose to use a parallel_deterministic_reduce as described in Chapter 16.

This deterministic implementation always creates the same number of partial results and

combines them in the same order for the same input, so the approximation will be the same

from run to run.

As with all of the simple loop algorithms, to use a TBB parallel_reduce, we need to

provide a Range (range) and Body (func). But we also need to provide an Identity Value

(identity) and a Reduction Body (reduction).

To create parallelism for a parallel_reduce, the TBB library divides the range into

chunks and creates tasks that apply func to each chunk. In Chapter 16, we discuss how

to use Partitioners to control the size of the chunks that are created, but for now, we

can assume that TBB creates chunks of an appropriate size to minimize overheads and

balance load. Each task that executes func starts with a value init that is initialized with

identity and then computes and returns a partial result for its chunk. The TBB library

combines these partial results by calling the reduction function to create a single final

result for the whole loop.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16

49

The identity argument is a value that leaves other values unchanged when they are

combined with it using the operation that is being parallelized. It is well known that the

identity element with respect to addition (additive identity) is “0” (since x + 0 = x) and

that the identity element with respect to multiplication (multiplicative identity) is “1”

(since x * 1 = x). The reduction function takes two partial results and combines them.

Figure 2-9 shows how func and reduction functions may be applied to compute the

maximum value from an array of 16 elements if the Range is broken into four chunks.

In this example, the associative operation applied by func to the elements of the array

is max() and the identity element is -∞, since max(x,- ∞)=x. In C++, we can use

std::max as the operation and std::numeric_limits<int>::min() as the programmatic

representation of -∞.

Figure 2-9.  How the func and reduction functions are called to compute a
maximum value

We can express our simple maximum value loop using a parallel_reduce as shown

in Figure 2-10.

Chapter 2 Generic Parallel Algorithms

50

Figure 2-10.  Using parallel_reduce to compute a maximum value

You may notice in Figure 2-10 that we use a blocked_range object for the Range, instead

of just providing the beginning and ending of the range as we did with parallel_for. The

parallel_for algorithm provides a simplified syntax that is not available with parallel_

reduce. For parallel_reduce, we must pass a Range object directly, but luckily we can

use one of the predefined ranges provided by the library, which include blocked_range,

blocked_range2d, and blocked_range3d among others. These other range objects will

be described in more detail in Chapter 16, and their complete interfaces are provided in

Appendix B.

A blocked_range, used in Figure 2-10, represents a 1D iteration space. To construct

one, we provide the beginning and ending value. In the Body, we use its begin() and

end() functions to get the beginning and ending values of the chunk of values that this

body execution has been assigned and then iterate over that subrange. In Figure 2-8,

each individual value in the Range was sent to the parallel_for Body, and so there is no

need for an i-loop to iterate over a range. In Figure 2-10, the Body receives a blocked_

range object that represents a chunk of iterations, and therefore we still have an i-loop

that iterates over the entire chunk assigned to it.

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_16

51

�A Slightly More Complicated Example: Calculating π by
Numerical Integration

Figure 2-11 shows an approach to calculate π by numerical integration. The height of

each rectangle is calculated using the Pythagorean Theorem. The area of one quadrant

of a unit circle is computed in the loop and multiplied by 4 to get the total area of the

circle, which is equal to π.

Figure 2-11.  A serial π calculation using the rectangular integral method

The code in Figure 2-11 computes the sum of the areas of all of the rectangles, a

reduction operation. To use a TBB parallel_reduce, we need to identify the range,

body, identity value, and reduction function. For this example, the range is [0, num_

intervals), and the body will be similar to the i-loop in Figure 2-11. The identity value

is 0.0 since we are performing a sum. And the reduction body, which needs to combine

Chapter 2 Generic Parallel Algorithms

52

partial results, will return the sum of two values. The parallel implementation using a

TBB parallel_reduce is shown in Figure 2-12.

Figure 2-12.  Implementation of pi using tbb::parallel_reduce

As with parallel_for, there are advanced features and options that can be used

with parallel_reduce to tune performance and to manage rounding errors (see

Associativity and floating-point types). These advanced options are covered in

Chapter 16.

�parallel_scan: A Reduction with Intermediate Values
A less common, but still important, pattern found in applications is a scan (sometimes

called a prefix). A scan is similar to a reduction, but not only does it compute a single

value from a collection of values, it also calculates an intermediate result for each element

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_16

53

in the Range (the prefixes). An example is a running sum of the values x0, x1, ... xN.

The results include each value in the running sum, y0, y1, ... yN, and the final sum yN.

y0 = x0

y1 = x0+ x1

. . .

yN = x0+ x1 + ... + xN

A serial loop that computes a running sum from a vector v follows:

On the surface, a scan looks like a serial algorithm. Each prefix depends on the

results computed in all of the previous iterations. While it might seem surprising, there

are however efficient parallel implementations of this seemingly serial algorithm.

The TBB parallel_scan algorithm implements an efficient parallel scan. Its interface

requires that we provide a range, an identity value, a scan body, and a combine body:

The range, identity value, and combine body are analogous to the range,

identity value, and reduction body of parallel_reduce. And, as with the other

simple loop algorithms, the range is divided by the TBB library into chunks and TBB

tasks are created to apply the body (scan) to these chunks. A complete description of the

parallel_scan interfaces is provided in Appendix B.

What is different about parallel_scan is that the scan body may be executed more

than once on the same chunk of iterations – first in a pre-scan mode and then later in a

final-scan mode.

Chapter 2 Generic Parallel Algorithms

54

In final-scan mode, the body is passed an accurate prefix result for the iteration that

immediately precedes its subrange. Using this value, the body computes and stores

the prefixes for each iteration in its subrange and returns the accurate prefix for the last

element in its subrange.

However, when the scan body is executed in pre-scan mode, it receives a starting

prefix value that is not the final value for the element that precedes its given range. Just

like with parallel_reduce, a parallel_scan depends on associativity. In pre-scan

mode, the starting prefix value may represent a subrange that precedes it, but not the

complete range that precedes it. Using this value, it returns a (not yet final) prefix for the

last element in its subrange. The returned value represents a partial result for the starting

prefix combined with its subrange. By using these pre-scan and final-scan modes, it is

possible to exploit useful parallelism in a scan algorithm.

�How Does This Work?
Let’s look at the running sum example again and think about computing it in three

chunks A, B, and C. In a sequential implementation, we compute all of the prefixes for A,

then B, and then C (three steps done in order). We can do better with a parallel scan as

shown in Figure 2-13.

Figure 2-13.  Performing a scan in parallel to compute a sum

Chapter 2 Generic Parallel Algorithms

55

First, we compute the scan of A in final-scan mode since it is the first set of values and

so its prefix values will be accurate if it is passed an initial value of identity. At the same

time that we start A, we start B in pre-scan mode. Once these two scans are done, we can

now calculate accurate starting prefixes for both B and C. To B we provide the final result

from A (92), and to C we provide the final-scan result of A combined with the pre-scan

result of B (92+136 = 228).

The combine operation takes constant time, so it is much less expensive than the

scan operations. Unlike the sequential implementation that takes three large steps that

are applied one after the other, the parallel implementation executes final-scan of A

and pre-scan of B in parallel, then performs a constant-time combine step, and then

finally computes final-scan of B and C in parallel. If we have at least two cores and N is

sufficiently large, a parallel prefix sum that uses three chunks can therefore be computed

in about two thirds of the time of the sequential implementation. And parallel_prefix

can of course execute with more than three chunks to take advantage of more cores.

Figure 2-14 shows an implementation of the simple partial sum example using a TBB

parallel_scan. The range is the interval [1, N), the identity value is 0, and the combine

function returns the sum of its two arguments. The scan body returns the partial sum for

all of the values in its subrange, added to the initial sum it receives. However, only when its

is_final_scan argument is true does it assign the prefix results to the running_sum array.

Figure 2-14.  Implementation of a running sum using parallel_scan

Chapter 2 Generic Parallel Algorithms

56

�A Slightly More Complicated Example: Line of Sight
Figure 2-15 shows a serial implementation of a line of sight problem similar to the one

described in Vector Models for Data-Parallel Computing, Guy E. Blelloch (The MIT Press).

Given the altitude of a viewing point and the altitudes of points at fixed intervals from the

viewing point, the line of sight code determines which points are visible from the viewing

point. As shown in Figure 2-15, a point is not visible if any point between it and the

viewing point, altitude[0], has a larger angle Ѳ. The serial implementation performs

a scan to compute the maximum Ѳ value for all points between a given point and the

viewing point. If the given point’s Ѳ value is larger than this maximum angle, then it is a

visible point; otherwise, it is not visible.

Figure 2-15.  A line of sight example

Chapter 2 Generic Parallel Algorithms

57

Figure 2-16 shows a parallel implementation of the line of sight example that uses a

TBB parallel_scan. When the algorithm completes, the is_visible array will contain

the visibility of each point (true or false). It is important to note that the code in

Figure 2-16 needs to compute the maximum angle at each point in order to determine

the point’s visibility, but the final output is the visibility of each point, not the maximum

angle at each point. Because the max_angle is needed but is not a final result, it is

computed in both pre-scan and final-scan mode, but the is_visible values are stored

for each point only during final-scan executions.

Figure 2-16.  An implementation of the line of sight using parallel_scan

�Cook Until Done: parallel_do and parallel_pipeline
For some applications, simple loops get us full coverage of the useful parallelism.

But for others, we need to express parallelism in loops where the range cannot be fully

computed before the loop starts. For example, consider a while loop:

Chapter 2 Generic Parallel Algorithms

58

This loop keeps reading in images until there are no more images to read. After each

image is read, it is processed by the function f. We cannot use a parallel_for because

we don’t know how many images there will be and so cannot provide a range.

A more subtle case is when we have a container that does not provide random-

access iterators:

Note  In C++, an iterator is an object that points to an element in a range of
elements and defines operators that provide the ability to iterate through the
elements of the range. There are different categories of iterators including forward,
bidirectional, and random-access iterators. A random-access iterator can be
moved to point to any element in the range in constant time.

Because a std::list does not support random access to its elements, we can obtain

the delimiters of the range my_images.begin() and my_images.end(), but we cannot

get to elements in between these points without sequentially traversing the list. The TBB

library therefore cannot quickly (in constant time) create chunks of iterations to hand

out as tasks since it cannot quickly point to the beginning and ending points of these

chunks.

To handle complex loops like these, The TBB library provides two generic

algorithms: parallel_do and parallel_pipeline.

�parallel_do: Apply a Body Until There Are No More
Items Left
A TBB parallel_do applies a Body to work items until there are no more items to

process. Some work items can be provided up front when the loop begins, and others

can be added by Body executions as they are processing other items.

The parallel_do function has two interfaces, one that accepts a first and last iterator

and another that accepts a container. A complete description of the parallel_do

Chapter 2 Generic Parallel Algorithms

59

interfaces is provided in Appendix B. In this section, we will look at the version that

receives a container:

As a simple example, let us start with a std::list of std::pair<int, bool>

elements, each of which contains a random integer value and false. For each element,

we will calculate whether or not the int value is a prime number; if so, we store true to

the bool value. We will assume that we are given functions that populate the container

and determine if a number is prime. A serial implementation follows:

We can create a parallel implementation of this loop using a TBB parallel_do as

shown in Figure 2-17.

Figure 2-17.    An implementation of the prime number loop using a parallel_do

The TBB parallel_do algorithm will safely traverse the container sequentially,

while creating tasks to apply the body to each element. Because the container has to be

traversed sequentially, a parallel_do is not as scalable as a parallel_for, but as long

Chapter 2 Generic Parallel Algorithms

60

as the body is relatively large (> 100,000 clock cycles), the traversal overhead will be

negligible compared to the parallel executions of the body on the elements.

In addition to handling containers that do not provide random access, the parallel_

do also allows us to add additional work items from within the body executions. If bodies

are executing in parallel and they add new items, these items can be spawned in parallel

too, avoiding the sequential task spawning limitations of parallel_do.

Figure 2-18 provides a serial implementation that calculates whether values are

prime numbers, but the values are stored in a tree instead of a list.

Figure 2-18.  Checking for prime numbers in a tree of elements

We can create a parallel implementation of this tree version using a parallel_do,

as shown in Figure 2-19. To highlight the different ways to provide work items, in this

implementation we use a container that holds a single tree of values. The parallel_do

starts with only a single work item, but two items are added in each body execution,

one to process the left subtree and the other to process the right subtree. We use the

parallel_do_feeder.add method to add new work items to the iteration space. The

class parallel_do_feeder is defined by the TBB library and is passed as the second

argument to the body.

Chapter 2 Generic Parallel Algorithms

61

The number of available work items increases exponentially as the bodies traverse

down the levels of the tree. In Figure 2-19, we add new items through the feeder even

before we check if the current element is a prime number, so that the other tasks are

spawned as quickly as possible.

Figure 2-19.  Checking for prime numbers in a tree of elements using a TBB
parallel_do

Chapter 2 Generic Parallel Algorithms

62

We should note that the two uses we considered of parallel_do have the potential

to scale for different reasons. The first implementation, without the feeder in Figure 2-17,

can show good performance if each body execution has enough work to do to mitigate

the overheads of traversing the list sequentially. In the second implementation, with the

feeder in Figure 2-19, we start with only a single work item, but the number of available

work items grows quickly as the bodies execute and add new items.

�A Slightly More Complicated Example: Forward Substitution

Forward substitution is a method to solve a set of equations Ax = b, where A is an nxn

lower triangular matrix. Viewed as matrices, the set of equations looks like

	

a

a a

a a a

x

x

xn n nn n

11

21 22

1 2

1

2

0 0

0

�
�

� � � �
�

�

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
úú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

b

b

bn

1

2

�
	

and can be solved a row at a time:

	 x b a1 1 11= / 	

	 x b a x a2 2 21 1 22= -()/ 	

	 x b a x a x a3 3 31 1 32 2 33= - -()/ 	

	 

	

	 x b a x a x a x am n n n nn n nn= - - -¼-()- -1 1 2 2 1 1 / 	

The serial code for a direct implementation of this algorithm is shown in Figure 2-20.

In the serial code, b is destructively updated to store the sums for each row.

Chapter 2 Generic Parallel Algorithms

63

Figure 2-21(a) shows the dependencies between the iterations of the body of the

i,j loop nest in Figure 2-20. Each iteration of the inner j loop (shown by the rows in

the figure) performs a reduction into b[i] and also depends on all of the elements of

x that were written in earlier iterations of the i loop. We could use a parallel_reduce

to parallelize the inner j loop, but there may not be enough work in the early iterations

of the i loop to make this profitable. The dotted line in Figure 2-21(a) shows that there

is another way to find parallelism in this loop nest by looking diagonally across the

iteration space. We can exploit this parallelism by using a parallel_do to add iterations

only as their dependencies are satisfied, similar to how we added new tree elements as

we discovered them in Figure 2-19.

Figure 2-20.  The serial code for a direct implementation of forward substitution.
This implementation is written to make the algorithm clear – not for best
performance.

Chapter 2 Generic Parallel Algorithms

64

If we express the parallelism for each iteration separately, we will create tasks that are

too small to overcome scheduling overheads since each task will only be a few floating-

point operations. Instead, we can modify the loop nest to create blocks of iterations, as

shown in Figure 2-21(b). The dependence pattern stays the same, but we will be able to

schedule these larger blocks of iterations as tasks. A blocked version of the serial code is

shown in Figure 2-22.

Figure 2-21.  The dependencies in forward substitution for a small 8 × 8 matrix.
In (a), the dependencies between iterations are shown. In (b), the iterations are
grouped into blocks to reduce scheduling overheads. In both (a) and (b), each
block must wait for its neighbor above and its neighbor to its left to complete before
it can safely execute.

Chapter 2 Generic Parallel Algorithms

65

A parallel implementation that uses parallel_do is shown in Figure 2-23. Here,

we use the interface of parallel_do that allows us to specify a beginning and ending

iterator, instead of an entire container. You can see the details of this interface in

Appendix B.

Unlike with the prime number tree example in Figure 2-19, we don’t want to simply

send every neighboring block to the feeder. Instead, we initialize an array of counters,

ref_count, to hold the number of blocks that must complete before each block is

allowed to start executing. Atomic variables will be discussed more in Chapter 5. For our

purposes here, we can view these as variables that we can modify safely in parallel; in

particular, the decrements are done in a thread-safe way. We initialize the counters so

that the top-left element has no dependencies, the first column and the blocks along the

diagonal have a single dependency, and all others have two dependencies. These counts

match the number of predecessors for each block as shown in Figure 2-21.

Figure 2-22.  A blocked version of the serial implementation of forward substitution

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_5

66

Figure 2-23.  An implementation of forward substitution using parallel_do

Chapter 2 Generic Parallel Algorithms

67

In the call to parallel_do in Figure 2-23, we initially provide only the top-left block,

[&top_left, &top_left+1). But in each body execution, the if-statements at the

bottom decrement the atomic counters of the blocks that are dependent on the block

that was just processed. If a counter reaches zero, that block has all of its dependencies

satisfied and is provided to the feeder.

Like the previous prime number examples, this example demonstrates the hallmark of

applications that use parallel_do: the parallelism is constrained by the need to sequentially

access a container or by the need to dynamically find and feed work items to the algorithm.

�parallel_pipeline: Streaming Items Through a Series
of Filters
The second generic parallel algorithm in TBB used to handle complex loops is parallel_

pipeline. A pipeline is a linear sequence of filters that transform items as they pass through

them. Pipelines are often used to process data that stream into an application such as video

or audio frames, or financial data. In Chapter 3, we will discuss the Flow Graph interfaces

that let us build more complex graphs that include fan-in and fan-out to and from filters.

Figure 2-24 shows a small example loop that reads in arrays of characters, transforms

the characters by changing all of the lowercase characters to uppercase and all of the

uppercase characters to lowercase, and then writes the results in order to an output file.

Figure 2-24.  A serial case change example

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_3

68

The operations have to be done in order on each buffer, but we can overlap the

execution of different filters applied to different buffers. Figure 2-25(a) shows this

example as a pipeline, where the “write buffer” operates on bufferi, while in parallel the

“process” filter operates on bufferi+1 and the “get buffer” filter reads in bufferi+2.

get buffer process write buffer

Figure 2-25.  The case change example using a pipeline

As illustrated in Figure 2-25(b), in the steady state, each filter is busy, and their

executions are overlapped. However, as shown in Figure 2-25(c), unbalanced filters

decrease speedup. The performance of a pipeline of serial filters is limited by the slowest

serial stage.

Chapter 2 Generic Parallel Algorithms

69

The TBB library supports both serial and parallel filters. A parallel filter can be

applied in parallel to different items in order to increase the throughput of the filter.

Figure 2-26(a) shows the “case change” example, with the middle/process filter

executing in parallel on two items. Figure 2-26(b) illustrates that if the middle filter

takes twice as long as the other filters to complete on any given item, then assigning two

threads to this filter will allow it to match the throughput of the other filters.

Figure 2-26.  The case change example using a pipeline with a parallel filter.
By using two copies of the parallel filter, the pipeline maximizes throughput.

A complete description of the parallel_pipeline interfaces is provided in Appendix B.

The interface of parallel_pipeline we use in this section is shown as follows:

Chapter 2 Generic Parallel Algorithms

70

The first argument max_number_of_live_tokens is the maximum number of

items that will be allowed to flow through the pipeline at any given time. This value is

necessary to constrain resource consumption. For example, consider the simple three

filter pipeline. What if the middle filter is a serial filter and it takes 1000 times longer than

the filter that gets new buffers? The first filter might allocate 1000 buffers only to queue

them up before the second filter – wasting a lot of memory.

The second argument to parallel_pipeline is filter_chain, a series of filters

created by concatenating filters that are created using the make_filter function:

The template arguments T and U specify the input and output types of the filter. The

mode argument can be serial_in_order, serial_out_of_order, or parallel. And the

f argument is the body of the filter. Figure 2-27 shows the implementation of the case

change example using a TBB parallel_pipeline. A more complete description of the

parallel_pipeline interfaces is provided in Appendix B.

We can note that the first filter, since its input type is void, receives a special

argument of type tbb::flow_control. We use this argument to signal when the first

filter in a pipeline is no longer going to generate new items. For example, in the first filter

in Figure 2-27, we call stop() when the pointer returned by getCaseString() is null.

Chapter 2 Generic Parallel Algorithms

71

Figure 2-27.  The case change example using a pipeline with a parallel middle
filter

Chapter 2 Generic Parallel Algorithms

72

In this implementation, the first and last filters are created using the serial_in_

order mode. This specifies that both filters should run on only one item at a time and

that the last filter should execute the items in the same order that the first filter generated

them in. A serial_out_of_order filter is allowed to execute the items in any order. The

middle filter is passed parallel as its mode, allowing it to execute on different items in

parallel. The modes supported by parallel_pipeline are described in more detail in

Appendix B.

�A Slightly More Complicated Example: Creating 3D Stereoscopic
Images

A more complicated example of a pipeline is shown in Figure 2-28. A while loop reads

in frame numbers, and then for each frame it reads a left and right image, adds a red

coloring to the left image and a blue coloring to the right image. It then merges the

resulting two images into a single red-cyan 3D stereoscopic image.

Chapter 2 Generic Parallel Algorithms

73

Figure 2-28.  A red-cyan 3D stereoscopic sample application

Chapter 2 Generic Parallel Algorithms

74

Similar to the simple case change sample, we again have a series of inputs that pass

through a set of filters. We identify the important functions and convert them to pipeline

filters: getNextFrameNumber, getLeftImage, getRightImage, increasePNGChannel (to

left image), increasePNGChannel (to right image), mergePNGImages, and right.write().

Figure 2-29 shows the example drawn as a pipeline. The increasePNGChannel filter is

applied twice, first on the left image and then on the right image.

Figure 2-29.  The 3D stereoscopic sample application as a pipeline

The parallel implementation using a TBB parallel_pipeline is shown in

Figure 2-30.

Chapter 2 Generic Parallel Algorithms

75

Figure 2-30.  The stereoscopic 3D example implemented using parallel_pipeline

Chapter 2 Generic Parallel Algorithms

76

The TBB parallel_pipeline function imposes a linearization of the pipeline filters.

The filters are applied one after the other as the input from the first stage flows through

the pipeline. This is in fact a limitation for this sample. The processing of the left and

right images is independent until the mergeImageBuffers filter, but because of the

interface of parallel_pipeline, the filters must be linearized. Even so, only the filters

that read in the images are serial filters, and therefore this implementation can still be

scalable if the execution time is dominated by the later, parallel stages.

In Chapter 3, we introduce the TBB Flow Graph, which will allow us to more directly

express applications that benefit from nonlinearized execution of filters.

�Summary
This chapter offered a basic overview of the generic parallel algorithms provided by the

TBB library, including patterns that capture functional parallelism, simple and complex

loops, and pipeline parallelism. These prepackaged algorithms (patterns) provide well-

tested and tuned implementations that can be applied incrementally to an application to

improve performance.

The code shown in this chapter provides small examples that show how these

algorithms can be used. In Part 2 of this book (starting with Chapter 9), we discuss

how to get the most out of TBB by combining these algorithms in composable ways

and tuning applications using the library features available for optimizing locality,

minimizing overheads, and adding priorities. Part 2 of the book also discusses how to

deal with exception handling and cancellation when using the TBB generic parallel

algorithms.

We continue in the next chapter by taking a look at another one of TBB’s high-level

features, the Flow Graph.

�For More Information
Here are some additional reading materials we recommend related to this chapter.

•	 We discussed design patterns for parallel programming and how

these relate to the TBB generic parallel algorithms. A collection of

design patterns can be found in

Chapter 2 Generic Parallel Algorithms

https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_9

77

Timothy Mattson, Beverly Sanders, and Berna Massingill, Patterns for

Parallel Programming (First ed.), 2004, Addison-Wesley Professional.

•	 When discussing the parallel implementation of quicksort, we noted

that the partitioning was still a serial bottleneck. Papers that discuss

parallel partitioning implementations include

P. Heidelberger, A. Norton and J. T. Robinson, “Parallel Quicksort

using fetch-and-add,” in IEEE Transactions on Computers, vol. 39, no.

1, pp. 133-138, Jan 1990.

P. Tsigas and Y. Zhang. A simple, fast parallel implementation of

quicksort and its performance evaluation on SUN enterprise 10000.

In 11th Euromicro Workshop on Parallel, Distributed and Network-

Based Processing (PDP 2003), pages 372–381, 2003.

•	 You can learn more about data dependence analysis in a number of

compiler or parallel programming books, including

Michael Joseph Wolfe, High-Performance Compilers for Parallel

Computing, 1995, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Kennedy and John R. Allen, Optimizing Compilers for Modern

Architectures, 2001, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

•	 When we discussed matrix multiplication, we noted that unless we

are optimization gurus, we should typically prefer to use prepackaged

implementations of linear algebra kernels when available.

Such packages include

The Basic Linear Algebra Subprograms (BLAS) at www.netlib.org/

blas/

The Intel Math Kernel Library (Intel MKL) at https://software.

intel.com/mkl

Automatically Tuned Linear Algebra Software (ATLAS) found at

http://math-atlas.sourceforge.net/

Chapter 2 Generic Parallel Algorithms

http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://software.intel.com/mkl
https://software.intel.com/mkl
http://math-atlas.sourceforge.net/

78

The FLAME project researches and develops dense linear algebra

libraries. Their BLIS software framework can be used to create

high-performance BLAS libraries. The FLAME project can be found

at www.cs.utexas.edu/~flame.

•	 The line of sight example in this chapter was implemented using

parallel scan based on the description provided in

Vector Models for Data-Parallel Computing, Guy E. Blelloch

(The MIT Press).

The photograph used in Figures 2-28a, 2-29, and 3-7, was taken by Elena Adams, and is

used with permission from the Halide project’s tutorials at http://halide-lang.org.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 2 Generic Parallel Algorithms

https://www.cs.utexas.edu/~flame
https://doi.org/10.1007/978-1-4842-4398-5_3Fig#7
http://halide-lang.org
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 2: Generic Parallel Algorithms
	Functional / Task Parallelism
	A Slightly More Complicated Example: A Parallel Implementation of Quicksort

	Loops: parallel_for, parallel_reduce, and parallel_scan
	parallel_for: Applying a Body to Each Element in a Range
	A Slightly More Complicated Example: Parallel Matrix Multiplication

	parallel_reduce: Calculating a Single Result Across a Range
	A Slightly More Complicated Example: Calculating π by Numerical Integration

	parallel_scan: A Reduction with Intermediate Values
	How Does This Work?
	A Slightly More Complicated Example: Line of Sight

	Cook Until Done: parallel_do and parallel_pipeline
	parallel_do: Apply a Body Until There Are No More Items Left
	A Slightly More Complicated Example: Forward Substitution

	parallel_pipeline: Streaming Items Through a Series of Filters
	A Slightly More Complicated Example: Creating 3D Stereoscopic Images

	Summary
	For More Information

