
513
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_18

CHAPTER 18

Beef Up Flow Graphs
with Async Nodes
Back in 2005, Herb Sutter wrote “The free lunch is over”1 paper to warn us about the dawn

of the multicore era and its implications on software development. In the multicore era,

developers who care about performance can no longer sit back and lazily wait for the next

processor generation in order to gleefully see their apps running faster. Those days are long

gone. Herb’s message was that developers who care about fully exploiting modern processors

would have to embrace parallelism. At this point of the book, we certainly know this, so what?

Well, we believe that today “Lunch is getting much too expensive.” Let’s elaborate on this.

In more recent years, strongly spurred by energy constraints, more complex

processors have emerged. Nowadays, it is not difficult to find heterogeneous systems

comprising one or more GPU, FPGA, or DSP alongside one or more multicore CPUs.

Much in the same way that we embraced parallelism to get the most of all CPU cores,

now it may also make sense to offload part of the computations to these accelerators.

But hey, this is tough! Yep, it is! If sequential programming was once the “free lunch,”

heterogeneous parallel programming today is more like a feast at a three-star Michelin

restaurant – we have to pay, but it is oh so good!

And does TBB help in saving some of the dinner price? Of course! How do you dare

doubt it? In this and the next chapter of our book, we walk through the features recently

incorporated to the TBB library in order to help make lunch affordable again –we show

how to offload computation to asynchronous devices thereby embracing heterogeneous

computing. In this chapter, we will pick up the TBB Flow Graph interface and reinforce it

with a new type of node: the async_node. In the next chapter, we will go even further and

put Flow Graph on OpenCL steroids.

1�“The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Herb Sutter.
www.gotw.ca/publications/concurrency-ddj.htm.

https://doi.org/10.1007/978-1-4842-4398-5_18
http://www.gotw.ca/publications/concurrency-ddj.htm

514

�Async World Example
Let’s start with the simplest example that uses an async_node. We will illustrate why this

particular flow graph node is useful, and we will also present a more complex example

that will be useful for the next chapter.

Since there is nothing simpler than a “Hello World” code snippet, we propose an “Async

World” alternative based on the flow graph API that includes an async_node in the graph.

If you have questions about flow graphs in TBB, you may wish to read through Chapter 3 for

a solid background and use the “Flow Graph” section in Appendix B as a reference for the

APIs. The flow graph that we build in this first example is depicted in Figure 18-1.

Our goal is to send a message from a source_node, in_node, to an asynchronous

node, a_node, but instead of processing the message inside a_node, this task is offloaded

to an asynchronous activity that is running somewhere (a different MPI node, an

OpenCL capable GPU, an FPGA, you name it). As soon as this asynchronous task

finishes, the flow graph engine has to get the control back, read the output of the async

activity, and propagate the message to the descendent nodes in the graph. In our very

simple “Async World” example, in_node just prints “Async” and passes a=10 to a_node.

The a_node receives a=10 as the input and forwards it to an AsyncActivity. In this

example, AsyncActivity is a class that just increments the input message and prints

“World!”. These two actions are carried out in a new thread that simulates here an

asynchronous operation or device. Only when the AsyncActivity deigns to respond

with output=11, out_node will receive this value and the program finishes.

Figure 18-1.  Flow graph for the “Async world” example

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://doi.org/10.1007/978-1-4842-4398-5_3

515

The code presented in Figure 18-2 includes the async_world() function definition

where we build the graph g composed of the three nodes of Figure 18-1.

Figure 18-2.  Building the flow graph for the “Async World” example

Chapter 18 Beef Up Flow Graphs with Async Nodes

516

The source_node interface is described in the first entry of the table in Figure B-37

of Appendix B. In our example, we create the in_node of the source_node type. The

argument of the lambda, int& a, is actually the output message that will be sent to its

successor node in the graph (the async_node). When the source node is activated near

the end of the async_world() function, by using in_node.activate(), the lambda will

be executed just once because it returns “true” just for the first invocation (initially

n=false, n is set to true inside the lambda, which only returns true if n=true). In this

single invocation, a message with a=10 is sent to the next node in the graph. The last

argument of the in_node is false so that the source node is created in hibernation mode

and only wakes up after the in_node.activate() is called (otherwise the node start

sending messages immediately after the output edge is connected).

Next comes the async_node definition. The syntax required for the async_node

interface is

In our example, a_node is constructed here:

which creates an async_node<int, int> in the graph g with unlimited concurrency.

By using unlimited, we instruct the library to spawn a task as soon as a message

arrives, regardless of how many other tasks have been spawned. Should we want

only up to 4 concurrent invocations of a_node, we can change unlimited to 4.

The template parameter <int, int> points out that a message of type int enters

a_node and a message of type int leaves a_node. The lambda used in a_node

constructor is the following:

that captures by reference an AsyncActivity object, asyncAct, and declares the functor

that has to be run for each message reaching a_node. This functor has two arguments,

input and gateway, passed by reference. But wait, didn´t we say that the template

parameter <int, int> means that the node expects an incoming integer and emits an

Chapter 18 Beef Up Flow Graphs with Async Nodes

517

outgoing integer? Shouldn’t the functor’s prototype be (const int& input) -> int?

Well, it would have been that way for a regular function_node, but we are dealing now

with an async_node and its particularities. Here, we get const int& input as expected,

but also a second input argument, gateway_t& gateway, that serves as an interface to

inject the output of the AsyncActivity back into the graph. We will come to this trick

when explaining the AsyncActivity class. For the moment, to finish the description of

this node let’s just say that it basically dispatches the AsyncActivity with asyncAct.

run(input, gateway).

The output node, out_node, is a function_node that in this example has been

configured as an end node that does not send any output message:

This node receives the integer that comes from the AsyncActivity through the

gateway and finishes off just printing “Bye!” followed by the value of such integer.

In the last lines of our Async World example in Figure 18-2, we find two make_edge

calls to create the connections depicted in Figure 18-1, and finally the graph is awakened

with in_node.activate() to immediately wait until all messages have been processed

with g.wait_for_all().

Here comes the AsyncActivity class, which implements the asynchronous

computations in our example as can be seen in Figure 18-3.

Chapter 18 Beef Up Flow Graphs with Async Nodes

518

The public member function “run” (that was invoked in a_node’s functor with

asyncAct.run) first does gateway.reserve_wait(), which notifies the flow graph

that work has been submitted to an external activity so this can be taken into account

by g.wait_for_all() at the end of async_world(). Then, an asynchronous thread is

spawned to execute a lambda, which captures the gateway by reference and the input

integer by value. It is key to pass input by value because otherwise the referenced

variable, a in the source_node, can be destroyed before the thread reads its value (if the

source_node finishes before the asyncThread can read the value of a).

The lambda in the thread constructor first prints the “World” message and then

assigns output=11 (input+1, more precisely). This output is communicated back into

the flow graph by calling the member function gateway.try_put(output). Finally, with

gateway.release_wait(), we inform the flow graph that, as far as the AsyncActivity is

concerned, there is no need to wait any longer for it.

Figure 18-3.  Implementation of the asynchronous activity

Chapter 18 Beef Up Flow Graphs with Async Nodes

519

Note T here is no requirement to call member function reserve_wait()
for each input message submitted to an external activity. The only requirement
is that each call to reserve_wait() must have a corresponding call to
release_wait(). Note that wait_for_all() will not exit while there are some
reserve_wait() calls without matching release_wait()’s.

The output of the resulting code is

Async World! Input: 10

Bye! Received: 11

where “Async” is written by in_node, “World! Input: 10” by the asynchronous task and

the last line by out_node.

�Why and When async_node?
Now, there may be readers displaying a conceited smirk and thinking sort of “I

don’t need an async_node to implement this.” Why don’t we just rely on the good ol’

function_node?

For example, a_node could have been implemented as in Figure 18-4, where we use

a function_node that receives an integer, input, and returns another integer, output.

The corresponding lambda expression spawns a thread, asyncThread, that prints and

generates the output value, and then waits for the thread to finish with the asyncThread.

join() to gleefully return output.

Chapter 18 Beef Up Flow Graphs with Async Nodes

520

If you were not one of the smirking readers before, what about now? Because, what

is wrong with this much simpler implementation? Why not rely on the same approach to

also offload computations to a GPU or an FPGA, and wait for the accelerator to finish its

duty?

To answer these questions, we have to bring back one of the fundamental TBB design

criteria, namely the composability requirement. TBB is a composable library because

performance does not take a hit if the developer decides or needs to nest parallel patterns

inside other parallel patterns, no matter how many levels are nested. One of the factors

that make TBB composable is that adding nested levels of parallelism does not increase

the number of worker threads. That in turn avoids oversubscription and its associated

overheads from ruining our performance. To make the most out of the hardware, TBB is

usually configured so that it runs as many worker threads as logical cores. The various

TBB algorithms (nested or not) only add enough user-level lightweight tasks to feed these

worker threads and thereby exploit the cores. However, as we warned in Chapter 5,

calling a blocking function inside a user-level task not only blocks the task but it also

blocks the OS-managed worker thread processing this task. In such an unfortunate case,

if we had a worker thread per core and one of them was blocked, the corresponding core

may become idle. In such a case, we would not be fully utilizing the hardware!

In our simple example of Figure 18-4, the asyncThread will use the idle core when

it runs the task outside the flow graph control. But what about offloading work to an

accelerator (GPU/FPGA/DSP, pick as you please!), and waiting for it? If a TBB task

calls blocking functions from OpenCL, CUDA, or Thrust code (to name a few), the TBB

worker running this task will inevitably block.

Figure 18-4.  A simplest implementation that creates and waits for an
asynchronous thread. Did someone say DANGER?

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://doi.org/10.1007/978-1-4842-4398-5_5

521

Before async_node was available in the flow graph list of nodes, a possible, although

not ideal, workaround was to oversubscribe the system with one extra thread. To

accomplish this (as described in more detail in Chapter 11), we usually rely on the

following lines:

This solution is still viable if we don’t require a flow graph in our code and just want

to offload work to an accelerator from, say, a parallel_invoke or one of the stages of

a parallel_pipeline. The caveat here is that we should know that the extra thread is

going to be blocked most of the time while waiting for the accelerator. However, the

glitch with this workaround is that there will be periods of time in which the system is

oversubscribed (before and after the offloading operation or even while the accelerator

driver decides to block2 the thread).

To avoid this issue, async_node comes to our rescue. When the async_node task

(usually its lambda) finishes, the worker thread that was taking care of this task switches

to work on other pending tasks of the flow graph. This way, the worker thread does not

block leaving an idle core. What it is key to remember is that before the async_node task

finishes, the flow graph should be warned of that an asynchronous task is in flight (using

gateway.reserve_wait()), and just after the asynchronous task re-injects its result back

into the flow graph (with try_put()) we should notify that the asynchronous task has

finished with gateway.release_wait(). Still smirking? If so, please tell us why.

�A More Realistic Example
The triad function of the well-known STREAM benchmark3 is a basic array operation,

also called “linked triad,” that essentially computes C = A + α∗B, where A, B, and C are

1D arrays. It is therefore quite similar to the BLAS 1 saxpy operation that implements

A=A+α∗B, but writing the result in a different vector. Pictorially, Figure 18-5 helps in

understanding this operation.

2�When a thread offloads a kernel to the GPU using a blocking call the driver may not immediately
block the calling thread. For example, some GPU drivers keep the thread spinning so that it
will respond earlier to lightweight kernels, and finally block the thread after some time to avoid
consuming resources while heavyweight kernels finish.

3�John McCalpin, STREAM benchmark, www.cs.virginia.edu/stream/ref.html.

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://doi.org/10.1007/978-1-4842-4398-5_11
http://www.cs.virginia.edu/stream/ref.html

522

In our implementation, we will assume that array sizes are determined by the

variable vsize and that the three arrays store single precision floats. Coming up with

a parallel implementation of this embarrassingly parallel algorithm is not challenging

enough for us at this point of the book. Let’s go for a heterogeneous implementation.

Okay, so you’ve got an integrated GPU? That don’t impress me much!4 Reportedly,

more than 95% of shipped processors come with an integrated GPU, sharing the die

along with the multicore CPU. Would you sleep soundly after running the triad code

on just one CPU core? Not quite, right? CPU cores shouldn’t be sitting idle. Much in

the same way, GPU cores shouldn’t be sitting idle either. On many occasions, we can

leverage the excellent GPU computing capabilities to further speed up some of our

applications.

In Figure 18-6, we illustrate the way in which the triad computation will be

distributed among the different computing devices.

4�Shania Twain – That Don’t Impress Me Much, Come On Over album, 1997.

Figure 18-5.  Triad vector operation that computes C = A + α∗B (ci = ai + α∗bi, ∀i)

Chapter 18 Beef Up Flow Graphs with Async Nodes

523

In our implementation, we will rely on the offload_ratio variable, which controls

the fraction of the iteration space that is offloaded to the GPU, whereas the rest is

processed in parallel on the CPU. It goes without saying that 0 ≤ offload_ratio ≤ 1.

The code will be based on the flow graph depicted in Figure 18-7. The first node,

in_node, is a source_node that sends the same offload_ratio to a_node and cpu_node.

The former is an async_node that offloads the computation of the corresponding

subregion of the arrays to an OpenCL capable GPU. The latter is a regular function_node

that nests a TBB parallel_for to split the CPU assigned subregion of the arrays among

the available CPU cores. Execution time on both the GPU, Gtime, and CPU, Ctime, are

collected in the corresponding node and converted into a tuple inside the join_node.

Finally, in the out_node, those times are printed, and the heterogeneously computed

version of array C is compared with a golden version obtained by a plain serial execution

of the triad loop.

Figure 18-6.  Heterogeneous implementation of the triad computation

Chapter 18 Beef Up Flow Graphs with Async Nodes

524

Note W e love to gently introduce new concepts, and we try to toe the line on this,
especially when it comes to TBB content. However, OpenCL is outside the scope
of the book, so we have to give up our own rule and just comment briefly on the
OpenCL constructs that are used in the following examples.

For the sake of simplicity, in this example, we will accept the following assumptions:

	 1.	 In order to leverage a zero-copy buffer strategy that reduces the

overhead of data movement between devices, we assume that

an OpenCL 1.2 driver is available and that there is a common

region of memory visible from both the CPU and the GPU. This

is usually the case for integrated GPUs. For recent heterogeneous

chips, OpenCL 2.0 is also available, and in such a case we can take

advantage of the SVM (Shared Virtual Memory) as we will also

illustrate next.

	 2.	 In order to reduce the number of arguments of the flow graph

nodes and that way improve the readability of the code, pointers

to CPU and GPU views of the three arrays A, B, and C are globally

visible. The variable vsize is also global.

Figure 18-7.  Flow graph that implements heterogeneous triad

Chapter 18 Beef Up Flow Graphs with Async Nodes

525

	 3.	 In order to skip the aspects less related to TBB, all the OpenCL

boilerplate has been encapsulated into a single function opencl_

initialize(). This function takes care of getting the platform,

platform, selecting the GPU device, device, creating the GPU

context, context, and a command queue, queue, reading the

source code of the OpenCL kernel, compiling it to create the

kernel, and initializing the three buffers that store the GPU view

of arrays A, B, and C. Since the AsyncActivity also needs the

command queue and the program handlers, the corresponding

variables, queue and program, are also global. We took advantage

of the C++ wrappers available for the OpenCL C API. More

precisely, we used the cl2.hpp OpenCL C++ header that can be

found on https://github.com/KhronosGroup/OpenCL-CLHPP/.

Let’s start with the main function of the code; in Figure 18-8, we only show the

definition of the two first nodes: in_node and cpu_node.

Figure 18-8.  Main function of the heterogeneous triad computation with the first
two nodes

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://github.com/KhronosGroup/OpenCL-CLHPP/

526

Figure 18-8.  (continued)

We first read the program arguments and initialize the OpenCL boilerplate calling

opencl_initialize(). From this function, we only need to know that it initializes a

GPU command queue, queue, and an OpenCL program, program. The initialization

of the number of threads and the reason to initialize a global_control object will

be addressed at the end of the section. The source code of the GPU kernel is quite

straightforward:

This implements the triad operation, C = A + α∗B, assuming α=0.5 and that the

arrays of float are stored in global memory. At kernel launching time, we have to specify

the range of iterations that the GPU will traverse, and the GPU internal scheduler will

pick single iterations from this space with the instruction i=get_global_id(0). For each

one of these i’s, the computation C[i] = A[i] + alpha ∗ B[i] will be conducted in

parallel in the different compute units of the GPU.

Chapter 18 Beef Up Flow Graphs with Async Nodes

527

Inside the opencl_initialize() function, we also allocate the three OpenCL buffers

and the corresponding CPU pointers that point to the same buffers from the CPU side

(what we call the CPU view of the arrays). Assuming we have OpenCL 1.2, for the input

array A, we rely on the OpenCL cl::Buffer constructor to allocate a GPU accessible

array called Adevice:

The flag CL_MEM_ALLOC_HOST_PTR is key to take advantage of the zero-copy buffer

OpenCL feature because it forces the allocation of host-accessible memory. The same

call is used for the other two GPU views of the arrays, Bdevice and Cdevice. To get a

pointer to the CPU view of these buffers, the OpenCL enqueueMapBuffer is available

and used as follows:

which gives us a float pointer Ahost that can be used from the CPU to read and write

in the same memory region. Similar calls are needed for pointers Bhost and Chost. In

modern processors with integrated GPUs, this call does not imply data copy overheads

and hence the zero-copy buffer name for this strategy. There are additional subtleties

regarding OpenCL like the meaning and functionality of clEnqueueUnmapMemObject()

and potential issues arising of having both the CPU and GPU writing in different regions

of the same array, but they fall beyond the scope of this book.

Note I f your device supports OpenCL 2.0, the implementation is easier especially
if the heterogeneous chip implements what is called fine-grained buffer SVM. In
that case, it is possible to allocate a region of memory that not only is visible
by both the CPU and GPU, but that can also be updated concurrently and kept
coherent by the underlying hardware. In order to check whether or not OpenCL
2.0 and fine-grained buffer SVM are available, we need to use: device.
getInfo<CL_DEVICE_SVM_CAPABILITIES>();

Chapter 18 Beef Up Flow Graphs with Async Nodes

528

To exploit this feature, in the opencl_initialize(), we can use
cl::SVMAllocator() and pass it as the allocator template argument of the
std::vector constructor. This will give us a std::vector A, that is at the
same time the GPU view and the CPU view of the data:

This is, no need for Ahost and Adevice anymore. Just A. As with any shared
data, we are responsible of avoiding data races. In our example, this is easy
because the GPU writes in a region of the array C that does not overlap with the
region written by the CPU. If this condition is not met, in some cases, the solution is
to resort to an array of atomics. Such a solution is usually called platform atomics,
or system atomics, since they can be atomically updated by the CPU and the
GPU. This feature is optionally implemented and requires that we instantiate the
SVMAllocator with cl::SVMTraitAtomic<>.

The next thing in Figure 18-8 is the declaration of the graph g and definition of the

source_node, in_node, which is quite similar to the one explained in Figure 18-2, with

the single difference that it passes a message with the value of offload_ratio.

The next node in our example is a function_node, cpu_node, which receives a

float (actually, offload_ratio) and sends a double (the time required to do the CPU

computation). Inside the cpu_node lambda, a parallel_for is invoked and its first

argument is a blocked range like this:

which means that only the upper part of the arrays will be traversed. The lambda of this

parallel_for computes in parallel Chost[i] = Ahost[i] + alpha ∗ Bhost[i] for

different chunks of iterations in which the range is automatically partitioned.

Chapter 18 Beef Up Flow Graphs with Async Nodes

529

We can continue in Figure 18-9 with the next node, a_node, that is an asynchronous

node that receives a float (again the offload_ratio value) and sends the time required

by the GPU computation. This is accomplished asynchronously in a_node’s lambda

where the member function run of an AsyncActivity object, asyncAct, is called,

similarly to what we already saw in Figure 18-2.

Figure 18-9.  Main function of the heterogeneous triad computation with the
definition of the last three nodes

The join_node does not deserve our time here because it was already covered in

Chapter 3. Suffice to say that it forwards a tuple, which packs the GPU time and the CPU

time, to the next node.

The final node is a function_node, out_node, which receives the tuple with the

times. Before printing them, it checks that the resulting C array has been correctly

computed partially on the CPU and partially on the GPU. To this end, a golden version

of C, CGold, is allocated and then computed serially using the STL algorithm transform.

Then, if Chost coincides with CGold, we are all set. The equal STL algorithm comes in

handy to implement this comparison.

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://doi.org/10.1007/978-1-4842-4398-5_3

530

Figure 18-10 finishes off the main() function with the node connections, thanks

to five make_edge calls, followed by the in_node activation to trigger the execution of

the graph. We wait for completion with g.wait_for_all().

Finally, in Figure 18-11, we present the implementation of the AsyncActivity class,

whose run member function is invoked from the async_node.

Figure 18-10.  Last part of the triad main function where nodes are connected and
the graph is dispatched

Chapter 18 Beef Up Flow Graphs with Async Nodes

531

Instead of spawning a thread as we did in the AsyncActivity of Figure 18-3, we

follow here a more elaborated and efficient alternative. Remember that we postponed

the explanation of why we used a global_control object in Figure 18-8. In this figure, we

initialized the scheduler as follows:

If you remember from Chapter 11, the task_scheduler_init line will result in the

following:

Figure 18-11.  AsyncActivity implementation, where the actual GPU kernel
invocation takes place

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://doi.org/10.1007/978-1-4842-4398-5_11

532

•	 A default arena will be created with nth slots (one of them reserved

for the master thread).

•	 nth - 1 worker threads will be populated in the global thread pool,

which would occupy the worker slots of the arena as soon as there is

work pending in such arena.

But later, the global_control object, gc, is constructed so that the actual number of

workers in the global thread pool is incremented. This extra thread has no slot available

in the default arena so it will be put to sleep.

Now, the AsyncActivity class, instead of spawning a new thread as we did before, it

awakes the dormant thread, which is usually faster, especially if we are invoking several

times the AsyncActivity. To that end, the constructor of the class initializes a new arena,

a = tbb::task_arena{1,0}, that has one worker thread slot since it reserves 0 slots for

the master. When the member function run() is invoked, a new task is enqueued in this

arena with a.enqueue(). This will result in the dispatch of the dormant thread that will

occupy the slot of this new arena and complete the task.

Next, the task spawned in this AsyncActivity follows the usual steps to offload

computations to a GPU. First, construct the triad_kernel KernelFunctor informing

that the triad kernel has three cl::Buffer arguments. Second, call triad_kernel

passing the NDRange, which is calculated as ceil(vsize∗offload_ratio), and the GPU

view of the buffers, Adevice, Bdevice, and Cdevice.

When running this code on an Intel processor with an integrated GPU, these two

lines are generated:

Time cpu: 0.132203 sec.

Time gpu: 0.130705 sec.

where vsize is set to 100 million elements and we have been playing with offload_

ratio until both devices consume approximately the same time in computing their

assigned subregion of the arrays.

Chapter 18 Beef Up Flow Graphs with Async Nodes

533

�Summary
In this chapter, we have first introduced the async_node class that enhances the flow

graph capabilities when it comes to dealing with asynchronous tasks that escape the

flow graph control. In a first simple Async World example, we illustrated the use of

this class and its companion gateway interface, useful to re-inject a message from the

asynchronous task back into the flow graph. We then motivated the relevance of this

extension to the TBB flow graph, which is easily understood if we realize that blocking a

TBB task results in blocking a TBB worker thread. The async_node allows for dispatching

an asynchronous work outside the flow graph but without blocking a TBB worker thread

when waiting for this asynchronous work to complete. We wrapped up the chapter with a

more realistic example that puts to work the async_node to offload some of the iterations

of a parallel_for to a GPU. We hope we have provided the basis to elaborate more

complex projects in which asynchronous work is involved. However, if we usually target

an OpenCL capable GPU, we have good news: in the next chapter, we cover the opencl_

node feature of TBB, which provides a friendlier interface to put the GPU to work for us!

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn

Toward Concurrency in Software,” www.gotw.ca/publications/

concurrency-ddj.htm.

•	 John McCalpin, STREAM benchmark, www.cs.virginia.edu/

stream/ref.html.

•	 David Kaeli, Perhaad Mistri, Dana Schaa, Dong Ping Zhang.

Heterogeneous Computing with OpenCL 2.0. Morgan Kaufmann

2015.

Chapter 18 Beef Up Flow Graphs with Async Nodes

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html

534

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 18 Beef Up Flow Graphs with Async Nodes

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 18: Beef Up Flow Graphs with Async Nodes
	Async World Example
	Why and When async_node?
	A More Realistic Example
	Summary
	For More Information

