
7© David Powers 2019
D. Powers, PHP 7 Solutions, https://doi.org/10.1007/978-1-4842-4338-1_2

CHAPTER 2

Getting Ready to Work with PHP

Now you’ve decided to use PHP to enrich your web pages, you need to make sure that you have everything
you need to get on with the rest of this book. Although you can test everything on your remote server, it’s
usually more convenient to test PHP pages on your local computer. Everything you need to install is free.
In this chapter, I’ll explain the various options for Windows and macOS. The necessary components are
normally installed by default on Linux.

This chapter covers

•	 Checking if your web site supports PHP

•	 Understanding why you should no longer use PHP 5

•	 Deciding whether to create a local testing setup

•	 Using a ready-made package in Windows and macOS

•	 Deciding where to store your PHP files

•	 Checking the PHP configuration on your local and remote servers

�Checking Whether Your Web Site Supports PHP
The easiest way to find out whether your web site supports PHP is to ask your hosting company. The other
way to find out is to upload a PHP page to your web site and see if it works. Even if you know that your site
supports PHP, do the following test to confirm which version is running:

	 1.	 Open your script editor, and type the following code into a blank page:

<?php echo phpversion();

	 2.	 Save the file as phpversion.php. It’s important to make sure that your operating
system doesn’t add a .txt filename extension after the .php. If you’re using
TextEdit on a Mac, make sure that it doesn’t save the file in Rich Text Format
(RTF). If you’re at all unsure, use phpversion.php from the ch02 folder in the files
accompanying this book.

	 3.	 Upload phpversion.php to your web site in the same way you would an HTML
page and then type the URL into a browser. Assuming you upload the file to
the top level of your site, the URL will be something like www.example.com/
phpversion.php.

https://doi.org/10.1007/978-1-4842-4338-1_2
http://www.example.com/phpversion.php
http://www.example.com/phpversion.php

Chapter 2 ■ Getting Ready to Work with PHP

8

If you see a three-part number like 7.2.0 displayed onscreen, you’re in business:
PHP is enabled. The number tells you which version of PHP is running on your
server. This book assumes you’re running PHP 7.2.0 or later.

	 4.	 If you get a message that says something like “Parse error”, it means PHP is
supported but that you have made a mistake in typing the code in the file. Use
the version in the ch02 folder instead.

	 5.	 If you just see the original code, it means PHP is not supported.

If your server is running a version of PHP prior to 7.2.0, contact your host and tell them you want the
most recent stable version of PHP. If your host refuses, it’s time to change your hosting company.

PHP versions comprise three numbers separated by dots. The first number is the major version; the
second is the branch; and the last one is the point release. Major versions introduce significant changes
that might break existing sites, including the removal of outdated features. Branches introduce new
features; but it’s extremely rare for a branch to break compatibility with the same major version. Point
releases contain fixes for bugs and security issues.

When PHP 5 was released in 2004, the development team continued to release security updates for
PHP 4. This not only delayed adoption of PHP 5, it slowed vital improvements to the new major version.
A change in policy led to PHP releasing a new branch once a year. Each branch receives two years of
active support for bug and security fixes, followed by a third year of critical security fixes. Thereafter it’s
no longer supported.

The final version of PHP 5 (5.6) received nearly two and a half years of extra support; but it reached
its end of life on December 31, 2018. Using PHP 5 puts your site and valuable data at risk because
security vulnerabilities won’t be fixed. Moreover, you won’t get the benefit of PHP 7’s new features, not
to mention that it’s twice as fast as PHP 5. All support for PHP 7.0 and active support for PHP 7.1 ended
before this book was published. That’s why this book requires a minimum of PHP 7.2. Although most of
the code in this book will run on older versions of PHP, some of it won’t.

�Deciding Where to Test Your Pages
Unlike ordinary web pages, you can’t just double-click PHP pages in Windows File Explorer or Finder on
a Mac and view them in your browser. They need to be parsed, or processed, through a web server that
supports PHP. If your hosting company supports PHP, you can upload your files to your web site and test
them there. However, you need to upload the file every time you make a change. In the early days, you’ll
probably find you have to do this often because of some minor mistake in your code. As you become more
experienced, you’ll still need to upload files frequently because you’ll want to experiment with different
ideas.

If you want to get working with PHP straight away, by all means use your own web site as a test bed.
However, you’ll soon discover the need for a local PHP test environment. The rest of this chapter is devoted
to showing you how to do this, with instructions for both Windows and macOS.

WHY YOU SHOULD NO LONGER USE PHP 5

Chapter 2 ■ Getting Ready to Work with PHP

9

�What You Need for a Local Test Environment
To test PHP pages on your local computer, you need to install the following:

•	 A web server, which is a piece of software that displays web pages, not a separate
computer

•	 PHP

•	 A MySQL or MariaDB database, and phpMyAdmin, a web-based front end for
administering the database

■■ Tip  MariaDB (https://mariadb.org/) is a community-developed drop-in replacement for MySQL.
The code in this book is fully compatible with both MySQL and MariaDB.

All the software you need is free. The only cost to you is the time it takes to download the necessary files,
plus, of course, the time to make sure everything is set up correctly. In most cases, you should be up and
running in less than an hour, probably considerably less. As long as you have at least 1GB of free disk space,
you should be able to install all the software on your computer—even one with modest specifications.

■■ Tip I f you already have a PHP 7 test environment on your local computer, there’s no need to reinstall. Just
check the section at the end of this chapter titled “Checking Your PHP Settings.”

�Individual Programs or an All-in-one Package?
For many years, I advocated installing each component of a PHP testing environment separately, rather
than using a package that installs Apache, PHP, MySQL, and phpMyAdmin in a single operation. My advice
was based on the dubious quality of some early all-in-one packages, which installed easily but were next to
impossible to uninstall or upgrade. However, the all-in-one packages currently available are excellent, and I
have no hesitation in now recommending them.

On my computers, I use XAMPP for Windows (www.apachefriends.org/index.html) and MAMP for
macOS (www.mamp.info/en/). Other packages are available; it doesn’t matter which you choose.

�Setting Up on Windows
Make sure that you’re logged on as an administrator before proceeding.

�Getting Windows to Display Filename Extensions
By default, most Windows computers hide common three- or four-letter filename extensions, such as .doc
or .html, so all you see in dialog boxes and Windows File Explorer is thisfile instead of thisfile.doc or
thisfile.html.

https://mariadb.org/
http://www.apachefriends.org/index.html
http://www.mamp.info/en/

Chapter 2 ■ Getting Ready to Work with PHP

10

Use these instructions to enable the display of filename extensions in Windows 10 and 8:

	 1.	 Open File Explorer.

	 2.	 Select View to expand the ribbon at the top of the File Explorer window.

	 3.	 Select the “File name extensions” check box.

Displaying filename extensions is more secure—you can tell if a virus writer has attached an .exe or
.scr executable file to an innocent-looking document.

�Choosing a Web Server
Most PHP installations run on the Apache web server. Both are open source and work well together.
However, Windows has its own web server, Internet Information Services (IIS), which also supports
PHP. Microsoft has worked closely with the PHP development team to improve the performance of PHP on
IIS to roughly the same level as Apache. So, which should you choose?

Unless you need IIS for ASP or ASP.NET, I recommend that you install Apache, using XAMPP or one of
the other all-in-one packages, as described in the next section. If you need to use IIS, the most convenient
way to install PHP is to use the Microsoft Web Platform Installer (Web PI), which you can download from
www.microsoft.com/web/downloads/platform.aspx.

�Installing an All-in-one Package on Windows
There are three popular packages for Windows that install Apache, PHP, MySQL or MariaDB, phpMyAdmin,
and several other tools on your computer in a single operation: XAMPP (www.apachefriends.org/index.html),
WampServer (www.wampserver.com/en/), and EasyPHP (www.easyphp.org). The installation process normally
takes only a few minutes. Once the package has been installed, you might need to change a few settings, as
explained later in this chapter.

Versions are liable to change over the lifetime of a printed book, so I won’t describe the installation
process. Each package has instructions on its web site.

�Setting Up on macOS
The Apache web server and PHP are preinstalled on macOS, but they’re not enabled by default. Rather than
using the preinstalled versions, I recommend that you use MAMP, which installs Apache, PHP, MySQL,
phpMyAdmin, and several other tools in a single operation.

To avoid conflicts with the preinstalled versions of Apache and PHP, MAMP locates all the applications
in a dedicated folder on your hard disk. This makes it easier to uninstall everything by simply dragging the
MAMP folder to the Trash if you decide you no longer want MAMP on your computer.

�Installing MAMP
Before you begin, make sure you’re logged in to your computer with administrative privileges.

	 1.	 Go to www.mamp.info/en/downloads/ and select the link for MAMP & MAMP
PRO. This downloads a disk image that contains both the free and paid-for
versions of MAMP.

	 2.	 When the download completes, launch the disk image. You’ll be presented with a
license agreement. You must click Agree to continue with mounting the disk image.

http://www.microsoft.com/web/downloads/platform.aspx
http://www.apachefriends.org/index.html
http://www.wampserver.com/en/
http://www.easyphp.org
http://www.mamp.info/en/downloads/

Chapter 2 ■ Getting Ready to Work with PHP

11

	 3.	 Follow the onscreen instructions.

	 4.	 Verify that MAMP has been installed in your Applications folder.

■■ Note  MAMP automatically installs both the free and paid-for versions in separate folders called MAMP and
MAMP PRO. The paid-for version makes it easier to configure PHP and to work with virtual hosts, but the free
version is perfectly adequate, especially for beginners. If you want to remove the MAMP PRO folder, don’t drag it
to the Trash. Open the folder and double-click the MAMP PRO uninstall icon. The paid-for version requires both
folders.

�Testing and Configuring MAMP
By default, MAMP uses nonstandard ports for Apache and MySQL. Unless you’re using multiple installations
of Apache and MySQL, change the port settings as described in the following steps:

	 1.	 Double-click the MAMP icon in Applications/MAMP. If you’re presented with
a panel inviting you to access your data from multiple Macs with MAMP Cloud
Functions, click the Close button at the top left to dismiss the panel. The MAMP
Cloud Functions are a paid-for service that’s not required for this book. You can
get details by clicking the Learn More button. There’s also a check box to prevent
the panel from being displayed each time you start MAMP.

	 2.	 Click Start Servers in the MAMP control panel (see Figure 2-1). Tiny green lights
should come on alongside Apache Server and MySQL Server to indicate that
they’re running. Your default browser should also launch and present you with
the MAMP welcome page.

Figure 2-1.  Starting the servers in the MAMP control panel

Chapter 2 ■ Getting Ready to Work with PHP

12

	 3.	 If your browser doesn’t launch automatically, click Open WebStart page in the
MAMP control panel.

	 4.	 Check the URL in the browser address bar. It begins with localhost:8888.
The :8888 indicates that Apache is listening for requests on the nonstandard
port 8888.

	 5.	 Minimize the browser and click anywhere in the MAMP control panel to make it
the active application.

	 6.	 Go to the main MAMP menu at the top of the screen and select Preferences
(or use the keyboard shortcut Cmd+,).

	 7.	 Select Ports at the top of the panel that opens. It shows that Apache and MySQL
are running on ports 8888 and 8889 (see Figure 2-2).

	 8.	 Click “Set Web & MySQL ports to 80 & 3306” as shown in Figure 2-2. The
numbers change to the standard ports: 80 for Apache and 3306 for MySQL.

■■ Note  MAMP now supports Nginx as an alternative web server. When I clicked “Set Web & MySQL ports to
80 & 3306,” both Apache Port and Nginx Port changed to 80, which prevented the settings from being accepted.
If this happens, manually reset Nginx Port to 7888.

	 9.	 Click OK and enter your Mac password when prompted. MAMP restarts both
servers.

■■ Tip I f any other program is using port 80, Apache won’t restart. If you can’t find what’s preventing Apache
from using port 80, open the MAMP preferences panel and click “Set MAMP ports to default.”

	 10.	 When both lights are green again, the MAMP welcome page reloads into your
browser. This time, the URL shouldn’t have a colon followed by a number
appearing after localhost because Apache is now listening on the default port.

Figure 2-2.  Changing the Apache and MySQL ports

Chapter 2 ■ Getting Ready to Work with PHP

13

�Where to Locate Your PHP Files (Windows and Mac)
You need to create your files in a location where the web server can process them. Normally, this means that
the files should be in the server’s document root or in a subfolder of the document root. The default location
of the document root for the most common setups is as follows:

•	 XAMPP: C:\xampp\htdocs

•	 WampServer: C:\wamp\www

•	 EasyPHP: C:\EasyPHP\www

•	 IIS: C:\inetpub\wwwroot

•	 MAMP: /Applications/MAMP/htdocs

To view a PHP page, you need to load it in a browser using a URL. The URL for the web server’s
document root in your local testing environment is http://localhost/.

■■ Caution I f you needed to reset MAMP back to its default ports, you will need to use http://
localhost:8888 instead of http://localhost.

If you store the files for this book in a subfolder of the document root called phpsols-4e, the URL is
http://localhost/phpsols-4e/ followed by the name of the folder (if any) and file.

■■ Tip  Use http://127.0.0.1/ if you have problems with http://localhost/. 127.0.0.1 is the
loopback IP address all computers use to refer to the local machine.

�Using Virtual Hosts
The alternative to storing your PHP files in the web server’s document root is to use a virtual host. A virtual
host creates a unique address for each site and is how hosting companies manage shared hosting. MAMP
PRO simplifies setting up virtual hosts through its control panel. EasyPHP also has a plug-in module for
administering virtual hosts.

Manually setting up virtual hosts involves editing one of your computer’s system files to register the host
name on your local machine. You also need to tell the web server in your local testing environment where the
files are located. The process isn’t difficult, but it needs to be done each time you set up a new virtual host.

The advantage of setting up each site in a virtual host is that it matches more accurately the structure of
a live web site. However, when learning PHP, it’s probably more convenient to use a subfolder of your testing
server’s document root. Once you have gained experience with PHP, you can advance to using virtual hosts.
Instructions for manually setting up virtual hosts in Apache are on my web site at the following addresses:

•	 Windows: http://foundationphp.com/tutorials/apache_vhosts.php

•	 MAMP: http://foundationphp.com/tutorials/vhosts_mamp.php

■■ Tip R emember to start the web server in your testing environment to view PHP pages.

http://foundationphp.com/tutorials/apache_vhosts.php
http://foundationphp.com/tutorials/vhosts_mamp.php

Chapter 2 ■ Getting Ready to Work with PHP

14

�Checking Your PHP Settings
After installing PHP, it’s a good idea to check its configuration settings. In addition to the core features, PHP
has a large number of optional extensions. Both the all-in-one packages and the Microsoft Web PI install
all the extensions that you need for this book. However, some of the basic configuration settings might
be slightly different. To avoid unexpected problems, adjust your PHP configuration to match the settings
recommended in the following pages.

�Displaying the Server Configuration with phpinfo()
PHP has a built-in command, phpinfo(), that displays details of how PHP is configured on the server. The
amount of detail produced by phpinfo() can feel like massive information overload, but it’s invaluable
for determining why something works perfectly on your local computer yet not on your live web site. The
problem usually lies in the remote server having disabled a feature or not having installed an optional
extension.

The all-in-one packages make it easy to run phpinfo():

•	 XAMPP: Click the phpinfo link in the menu on the top of the XAMPP welcome
screen.

•	 MAMP: Click phpinfo in the main menu at the top of the MAMP welcome page.

•	 WampServer: Open the WampServer menu and click Localhost. The link for
phpinfo() is under Tools.

Alternatively, create a simple test file and load it in your browser using the following instructions:

	 1.	 Make sure that Apache or IIS is running on your local computer.

	 2.	 Type the following in a script editor:

<?php phpinfo();

There should be nothing else in the file.

	 3.	 Save the file as phpinfo.php in the server’s document root (see “Where to Locate
Your PHP Files (Windows and Mac)” earlier in this chapter).

■■ Caution  Make sure your editor doesn’t add a .txt or .rtf extension after .php.

	 4.	 Type http://localhost/phpinfo.php in your browser address bar and press
Enter.

	 5.	 You should see a page similar to that in Figure 2-3 displaying the version of PHP
followed by extensive details of your PHP configuration.

Chapter 2 ■ Getting Ready to Work with PHP

15

	 6.	 Make a note of the value for the Loaded Configuration File item. This tells you
where to find php.ini, the text file that you need to edit in order to change most
settings in PHP.

	 7.	 Scroll down to the section labeled Core and compare the settings with those
recommended in Table 2-1. Make a note of any differences so you can change
them as described later in this chapter.

	 8.	 The rest of the configuration page shows you which PHP extensions are enabled.
Although the page seems to go on forever, the extensions are all listed in
alphabetical order. To work with this book, make sure the following extensions
are enabled:

•	 gd: Enables PHP to generate and modify images and fonts.

•	 mysqli: Connects to MySQL/MariaDB (note the “i,” which stands for “improved.”
PHP 7 doesn’t support the older mysql one, which should no longer be used).

Table 2-1.  Recommended PHP configuration settings

Directive Local value Remarks
display_errors On Essential for debugging mistakes in your scripts. If

set to Off, errors result in a completely blank screen,
leaving you clueless as to the possible cause.

error_reporting 32767 This sets error reporting to the highest level.

file_uploads On Allows you to use PHP to upload files to a web site.

log_errors Off With display_errors set on, you don’t need to fill
your hard disk with an error log.

Figure 2-3.  Running the phpinfo() command displays full details of your PHP configuration

Chapter 2 ■ Getting Ready to Work with PHP

16

•	 PDO: Provides software-neutral support for databases (optional).

•	 pdo_mysql: Alternative method of connecting to MySQL/MariaDB (optional).

•	 session: Sessions maintain information associated with a user and are used,
among other things, for user authentication.

You should also run phpinfo() on your remote server to check which features are enabled. If the listed
extensions aren’t supported, some of the code in this book won’t work when you upload your files to your
web site. PDO and pdo_mysql aren’t always enabled on shared hosting, but you can use mysqli instead. The
advantage of PDO is that it’s software-neutral, so you can adapt scripts to work with a database other than
MySQL by changing only one or two lines of code. Using mysqli ties you to MySQL/MariaDB.

If any of the Core settings in your setup are different from the recommendations in Table 2-1, you will
need to edit the PHP configuration file, php.ini, as described in the next section.

■■ Caution T he output displayed by phpinfo( ) reveals a lot of information that could be used by a malicious
hacker to attack your web site. Always delete the file from your remote server after checking your configuration.
Don’t leave it there for future convenience. What’s convenient for you is even more convenient for the bad guys.

�Editing php.ini
The PHP configuration file, php.ini, is a very long file, which tends to unnerve newcomers to programming,
but there’s nothing to worry about. It’s written in plain text, and one reason for its length is that it contains
copious comments explaining the various options. That said, it’s a good idea to make a backup copy before
editing php.ini in case you make a mistake.

How you open php.ini depends on your operating system and how you installed PHP:

•	 If you used an all-in-one package, such as XAMPP, on Windows, double-click
php.ini in Windows Explorer. The file opens automatically in Notepad.

•	 If you installed PHP using the Microsoft Web PI, php.ini is normally located in a
subfolder of Program Files. Although you can open php.ini by double-clicking it,
you won’t be able to save any changes you make. Instead, right-click Notepad and
select Run as Administrator. Inside Notepad, select File ➤ Open and set the option to
display All Files (*.*). Navigate to the folder where php.ini is located, select the file,
and click Open.

•	 On macOS, use a plain text editor to open php.ini. If you use TextEdit, make sure it
saves the file as plain text, not Rich Text Format.

Lines that begin with a semicolon (;) are comments. The lines you need to edit do not begin with a
semicolon.

Use your text editor’s Find functionality to locate the directives you need to change to match the
recommendations in Table 2-1. Most directives are preceded by one or more examples of how they should
be set. Make sure you don’t edit one of the commented examples by mistake.

For directives that use On or Off, just change the value to the recommended one. For example, if you
need to turn on the display of error messages, edit this line:

display_errors = Off

Chapter 2 ■ Getting Ready to Work with PHP

17

by changing it to this:

display_errors = On

To set the level of error reporting, you need to use PHP constants, which are written in uppercase and
are case-sensitive. The directive should look like this:

error_reporting = E_ALL

After editing php.ini, save the file and then restart Apache or IIS so that the changes take effect. If the
web server won’t start, check the server’s error log file. It can be found in the following locations:

•	 XAMPP: In the XAMPP Control Panel, click the Logs button alongside Apache and
then select Apache (error.log).

•	 MAMP: In /Applications/MAMP/logs, double-click apache_error.log to open it in
Console.

•	 WampServer: In the WampServer menu, select Apache ➤ Apache error log.

•	 EasyPHP: Right-click the EasyPHP icon in the system tray and select Log Files ➤
Apache.

•	 IIS: The default location of log files is C:\inetpub\logs.

The most recent entry in the error log should give you an indication of what prevented the server
from restarting. Use that information to correct the changes you made to php.ini. If that doesn’t work, be
thankful you made a backup of php.ini before editing it. Start again with a fresh copy and check your edits
carefully.

�What’s Next?
Now that you’ve got a working test bed for PHP, you’re no doubt raring to go. The last thing I want to do is
dampen any enthusiasm, but before using PHP in a live web site, you should have a basic understanding of
the rules of the language. So, before jumping into the cool stuff, read the next chapter, which explains how to
write PHP scripts. Don’t skip it, even if you’ve already dabbled with PHP—it’s really important.

	Chapter 2: Getting Ready to Work with PHP
	Checking Whether Your Web Site Supports PHP
	Deciding Where to Test Your Pages

	What You Need for a Local Test Environment
	Individual Programs or an All-in-one Package?

	Setting Up on Windows
	Getting Windows to Display Filename Extensions
	Choosing a Web Server
	Installing an All-in-one Package on Windows

	Setting Up on macOS
	Installing MAMP
	Testing and configuring MAMP

	Where to Locate Your PHP Files (Windows and Mac)
	Using Virtual Hosts

	Checking Your PHP Settings
	Displaying the Server Configuration with phpinfo()
	Editing php.ini

	What’s Next?

