
155© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_9

CHAPTER 9

SD Card Storage
The file system is central to the Unix system design from which Linux

borrows. The mass storage requirements have traditionally been

fulfilled through hard disk subsystems. However, as hosts become as

small as credit cards, flash memory technology has replaced the bulky

mechanical drive.

 SD Card Media
The first Pi’s used a standard-sized SD card. All newer models, however,

now use the MicroSD card shown in Figure 9-1, along with the standard SD

adapter.

Figure 9-1. SD MicroSD adapter (left) and 8 GB MicroSD card
at right

https://doi.org/10.1007/978-1-4842-3948-3_9

156

The 8 pins of the underside of the MicroSD are shown in Figure 9-2.

Figure 9-2. The underside of the MicroSD card, with its 8 pins
exposed

 SD Card Basics
The SD card includes an internal controller, also known as a Flash

Storage Processor (FSP). In this configuration, the host merely provides

a command and waits for the response. The FSP takes care of all erase,

programming, and read operations necessary to complete the command.

In this way, Flash card designs are permitted to increase in complexity as

new performance and storage densities are implemented.

The SD card manages data with a sector size of 512 bytes. This

was intentionally made the same as the IDE magnetic disk drive for

compatibility with existing operating systems. Commands issued by the

host include a sector address to allow read/writes of one or more sectors.

Note Operating systems may use a multiple of the 512-byte sector.

Chapter 9 SD CarD StOrage

157

Commands and data are protected by a CRC (cyclic redundancy

check) code generated by the FSP. The FSP also automatically performs

a read after write to verify that the data was written correctly.9 If the write

was defective, the FSP automatically corrects it, replacing the physical

sector with another if necessary.

The SD card soft error rate is much lower than a magnetic disk drive.

In the rare case when errors are discovered, the last line of defense is a

correcting ECC (error correction code), which allows for data recovery.

These errors are corrected in the media to prevent future unrecoverable

errors. All of this activity is transparent to the host.

 Raspbian Block Size
The block size used by the operating system may be a multiple of the

media’s sector size. To determine the physical block size used under

Raspbian, we first discover how the root file system is mounted (the

following listing has been trimmed):

$ mount

/dev/mmcblk0p2 on / type ext4 (rw,noatime,data=ordered)

...

/dev/mmcblk0p1 on /boot type vfat (rw,relatime,fmask=0022,dma

sk=0022, \

 codepage=437,iocharset=ascii,shortname=mixed,

errors=remount- ro)

From this we deduce that the device used for the root file system is

/dev/mmcblk0p2. The naming convention used tells us the following:

Component Name Number Type

prefix /dev/mmcblk MMC block

Device number 0 0

partition number p2 2

Chapter 9 SD CarD StOrage

158

From the earlier mount command output, notice that the /boot file

system was mounted on /dev/mmcblk0p1. This indicates that the /boot file

system is from partition 1 of the same SD card device.

Using the device information, we consult the /sys pseudo file system

to find out the physical and logical sector sizes. Here we supply mmcblk0 as

the third-level pathname qualifier to query the device:

$ cat /sys/block/mmcblk0/queue/physical_block_size

 512

$ cat /sys/block/mmcblk0/queue/logical_block_size

 512

$

The result shown informs us that the Raspbian Linux used in this

example uses a block (sector) size of 512 bytes, both physically and

logically. This precisely matches the SD card’s sector size.

 Disk Cache
While we’re examining mounted SD card file systems, let’s also check the

type of device node used:

$ ls -l /dev/mmcblk0p?

brw-rw---- 1 root disk 179, 1 Jun 19 07:42 /dev/mmcblk0p1

brw-rw---- 1 root disk 179, 2 Jun 19 07:42 /dev/mmcblk0p2

The example output displays a b at the beginning of the brw-rw----

field. This tells us that the disk device is a block device as opposed to

a character device. (The associated character device would show a c

instead.) Block devices are important for file systems because they provide

a disk cache capability to vastly improve the file system performance. The

output shows that both the root (partition 2) and the /boot (partition 1)

file systems are mounted using block devices.

Chapter 9 SD CarD StOrage

159

 Capacities and Performance
SD cards allow a configurable data bus width within limits of the media.

All SD cards start with one data bit line until the capabilities of the memory

card are known. After the capabilities of the media are known, the data

bus can be expanded under software control, as supported. Table 9-1

summarizes SD card capabilities.10

Table 9-1. SD Card Capabilities

Standard Description Greater Than Up To Data Bus

SDSC Standard capacity 0 2 gB 1-bit

SDhC high capacity 2 gB 32 gB 4-bit

SDXC extended capacity 32 gB 2 tB 4-bit

 Transfer Modes
There are three basic data transfer modes used by SD cards:

• SPI Bus mode

• 1-bit SD mode

• 4-bit SD mode

 SPI Bus Mode
The SPI Bus mode is used mainly by consumer electronics using small

microcontrollers supporting the SPI bus. Examining Table 9-2 reveals that

data is transmitted 1 bit at a time in this mode (pin 2 or 7).

Chapter 9 SD CarD StOrage

160

The various SD card connections are used in different ways, as

documented by the Table 9-2 mnemonics in the columns I/O and

Logic. Table 9-3 is a legend for these and also applies to Table 9-4.

Table 9-2. MicroSD SPI Bus Mode

Pin Name I/O Logic Description SPI

1 NC

2 /CS I pp Card select (active low) CS

3 DI I pp Data in MOSI

4 VDD S S power

5 CLK I pp Clock SCLK

6 VSS S S ground

7 DO O pp Data out MISO

8 reserved

Table 9-3. Legend for I/O and Logic

Notation Meaning Notes

I Input relative to card

O Output

I/O Input or output

pp push/pull logic

OD Open drain

S power supply

NC Not connected Or logic high

Chapter 9 SD CarD StOrage

161

 SD Mode
SD mode allows for varying data bus width for added I/O rates supported

by SDHC and SDXC cards. Higher data clock rates also improve transfer

rates. Table 9-4 lists the pin assignments.

Table 9-4. Micro SD Mode Pins

Pin Name I/O Logic Description

1 Dat2 I/O pp Data 2

2 CD/Dat3 I/O pp Card Detect/Data 3

3 CMD I/O pp/OD Command/response

4 VDD S S power

5 CLK I pp Clock

6 VSS S S ground

7 Dat0 I/O pp Data 0

8 Dat1 I/O pp Data 1

 Wear Leveling
Unfortunately, Flash memory is subject to wear for each write operation

performed (as each write requires erasing and programming a block of

data). The design of Flash memory requires that a large block of memory

be erased and rewritten, even if a single sector has changed value. For this

reason, wear leveling is used as a technique to extend the life of the media.

Wear leveling extends life by moving data to different physical blocks while

retaining the same logical address.

Whether or not a given memory card supports wear leveling
is an open question without supporting documentation. Some

manufacturers may not implement wear leveling at all or use a lower level

Chapter 9 SD CarD StOrage

162

of overprovisioning. Wear leveling is not specified in the SD card standard,

so no manufacturer is compelled to follow SanDisk’s lead.

 Direct File System Mounts
There are times when it is convenient to make changes to a SD card file

system with the Pi offline, using Linux. If you have an USB card adapter,

this could also be done by a different Pi. Using the SD card slot or a SD

card reader attached to your Linux box, you can mount the file systems

directly.

But how do you know what to mount? There are at least two helpful

commands you can apply:

• lsblk

• blkid

The lsblk command is great for showing you the block devices and the

partition arrangements:

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 149.1G 0 disk

├─sda1 8:1 0 147.3G 0 part /
├─sda2 8:2 0 1K 0 part
└─sda5 8:5 0 1.8G 0 part [SWAP]
sdb 8:16 1 14.5G 0 disk

├─sdb1 8:17 1 41.8M 0 part
└─sdb2 8:18 1 14.5G 0 part
sr0 11:0 1 1024M 0 rom

#

Chapter 9 SD CarD StOrage

163

From that display, you can see the Linux root file system is mounted

from /dev/sda1. Our SD card appears on /dev/sdb, with partitions sdb1

and sdb2. The blkid command gives us some more information, including

the partition labels:

blkid

/dev/sda1: UUID="51d355c1-2fe1-4f0e-aaae-01d526bb27b5"

TYPE="ext4" PARTUUID="61c63d91-01"

/dev/sda5: UUID="83a322e3-11fe-4a25-bd6c-b877ab0321f9"

TYPE="swap" PARTUUID="61c63d91-05"

/dev/sdb1: LABEL="boot" UUID="A75B-DC79" TYPE="vfat"

PARTUUID="2e37b5e0-01"

/dev/sdb2: LABEL="rootfs" UUID="485ec5bf-9c78-45a6-9314-

32be1d0dea38" TYPE="ext4" \

 PARTUUID="2e37b5e0-02"

This display shows that our Pi /boot partition is on /dev/sdb1, while

its root partition is available on /dev/sdb2. These can be mounted directly.

First make sure you have directory entries to mount them on (if they don’t

exist already):

mkdir /mnt/1

mkdir /mnt/2

Now they can be mounted:

mount /dev/sdb1 /mnt/1

mount /dev/sdb2 /mnt/2

Once mounted like this, you can list or change files at will in directories

/mnt/1 or /mnt/2.

 Read-Only Problem
What do you do when Linux complains that your SD card is read-only?

Chapter 9 SD CarD StOrage

164

mount /dev/sdb1 -o rw /mnt/1

mount: /dev/sdb1 is write-protected, mounting read-only

This problem can stem from at least three possible sources:

• The switch on the MicroSD adapter has slipped to the

“Protect” (or locked) position.

• Linux has a software lock on the device.

• Or the MicroSD adapter is faulty (bad connection).

 MicroSD Adapter Switch

The slide switch for the MicroSD adapter can be a real nuisance as it

accidentally gets slid into the “locked” position. The solution is to pull it

back out and fix the switch setting.

 Software Protection

Another possibility is that Linux has a software lock on the device. The -r1

option turns this feature on:

hdparm -r1 /dev/sdb1

/dev/sdb1:

 setting readonly to 1 (on)

 readonly = 1 (on)

mount /dev/sdb1 /mnt/1

mount: /dev/sdb1 is write-protected, mounting read-only

#

The hdparm command using the -r1 command can set a software

lock for the device. Attempting to mount the file system with this lock

enabled results in a read-only mount. The solution to this is to disable this

protection using option -r0:

hdparm -r0 /dev/sdb1

Chapter 9 SD CarD StOrage

165

/dev/sdb1:

 setting readonly to 0 (off)

 readonly = 0 (off)

mount /dev/sdb1 /mnt/1

 MicroSD Adapter Quality

When this read-only issue happened to me for the first time, I thought

the issue was with the hardware in the Linux computer I was using.

Researching this I discovered that some people had reported that their

MicroSD adapter was the problem. After trying three different MicroSD

adapters, I was eventually successful. The first two adapters failed with a

bad connection making the device read-only.

If you got an adapter with your MicroSD card, that is probably the

adapter you want to use. However, that may not guarantee success.

 Image Files
If you lack a way to mount the SD card directly, then you can still

manipulate the image file. This might be the downloaded Raspbian

image or perhaps a friend was able to get it to you somehow. Perhaps they

created the image from the SD card from their computer:

dd if=/dev/sdb of=/tmp/sdcard.img bs=1024k

That dd command copies the input disk (/dev/sdb) to an output file (/

tmp/sdcard.img), using a block size of 1 MB (1024k). The large block size

is used for greater efficiency.

The problem with the image file is that it contains two partitions. If it

were a single partition, then it could be mounted directly. The partitions

require us to do a bit more work. Installing kpartx will make this task

easier:

apt-get install kpartx

Chapter 9 SD CarD StOrage

166

Now when we have an image file to mount we can use it as follows:

kpartx -v -a /tmp/sdcard.img

add map loop0p1 (254:0): 0 85611 linear /dev/loop0 8192

add map loop0p2 (254:1): 0 30351360 linear /dev/loop0 98304

Notice the names loop0p1 and loop0p2? Use them to mount the file

system partitions in the image file:

mount /dev/mapper/loop0p1 /mnt/1

mount /dev/mapper/loop0p2 /mnt/2

Now you will find your /boot files in /mnt/1 and the Pi root partition

mounted at /mnt/2. When you are done with making your changes,

unmount the partitions:

umount /mnt/1

umount /mnt/2

After unmounting the file systems, you can copy the image file back to

your SD card.

 Summary
This chapter briefly introduced the SD card and its operation. Then two

different ways of working with the SD card file system outside of the

Raspberry Pi were examined—mounting the SD card on Linux directly

and mounting an image file. Both have their uses, particularly in rescue

operations.

Chapter 9 SD CarD StOrage

	Chapter 9: SD Card Storage
	SD Card Media
	SD Card Basics
	Raspbian Block Size
	Disk Cache

	Capacities and Performance
	Transfer Modes
	SPI Bus Mode
	SD Mode
	Wear Leveling

	Direct File System Mounts
	Read-Only Problem
	MicroSD Adapter Switch
	Software Protection
	MicroSD Adapter Quality

	Image Files
	Summary

