
71© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_6

CHAPTER 6

CPU
Several models of the Raspberry Pi have emerged since the first Model

B and Model A successor. In this chapter, the ARM architecture is

introduced along with CPU features supported by your Pi. Then the Linux

API (application programming interface) for managing CPU in your

application will be covered (threads).

 /proc/cpuinfo
Raspbian Linux provides a nice character device at /proc/cpuinfo, to list

information about your CPU. A sample was provided in Listing 6-1 taken

from a Raspberry Pi 3 Model B+. You don’t need root access to read this

information.

Listing 6-1. Session output listing /proc/cpuinfo on a Raspberry Pi 3

model B+

$ cat /proc/cpuinfo

processor : 0

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 \ idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

https://doi.org/10.1007/978-1-4842-3948-3_6

72

CPU architecture : 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

...

Hardware : BCM2835

Revision : a020d3

Serial : 00000000d4b81de4

There are four groups with processors identified as 0 through 3

(only the first was shown in the figure). At the bottom of the file is listed

Hardware, Revision, and a Serial number.

In the processor group is a line labeled “model name.” In this example,

we see “ARMv7 Processor rev 4 (v7l)” listed. Also at the bottom, there

is “Hardware” listed with the value “BCM2835”. Let’s take a moment to

discuss what the architecture name implies.

 ARM Architecture
An architecture is a design. In this case it defines the ARM programmer’s

model, including registers, addressing, memory, exceptions, and

all aspects of operation. In the Raspberry Pi context, different ARM

architectures have been used, listed in Table 6-1.

Table 6-1. Raspberry Pi ARM Architectures and Implementations

Architecture Name Bus Size Instruction Sets SoC

ARMv6Z 32-bit ARM and Thumb (16-bit) BCM2835

ARMv7-A 32-bit ARM and Thumb (16-bit) BCM2836

ARMv8-A 32/64- bit AArch32 (compatible with ARMv7-A)

and AArch64 execution states.

BCM2837

ChApTeR 6 CpU

73

The design and general capabilities are summarized in the columns

Bus Size and Instruction Sets. Each new architecture added new features to

the instruction set and other processor features.

The column SoC (system on chip) identifies the implementation of the

architecture by Broadcom.

The new ARMv8-A architecture has two possible run states:

• AArch32, with ARMv7-A architecture compatibility.

• AArch64, with a new ARM 64-bit instruction set.

The execution state must be chosen at system startup, which is why

Raspbian Linux reports the following on a Raspberry Pi 3 model B+:

$ uname -m

armv7l

It is running the AArch32 execution state, for compatibility with the

32-bit Raspbian Linux code. Someday hopefully, we will see a true 64-bit

Raspbian Linux.

 Architecture Suffix
Newer architectures have a suffix to identify the Cortex family:

• “A” for the Cortex-A family of application processors.

• “R” for the Cortex-R family of real-time processors.

• “M” for the Cortex-M family of low power,

microcontroller processors.

In the architecture names ARMv7-A or ARMv8-A, we see that these

belong to the application processor family. These are fully capable

members, while the Cortex-R and Cortex-M families are often subsets or

specialize in a few areas.

ChApTeR 6 CpU

74

 Features
Looking again at the /proc/cpuinfo output, notice the line labeled “Features.”

It has a list of names identifying features, which are unique to the CPU

(central processing unit). Table 6-2 lists some ARM features that you

might see.

Table 6-2. ARM Features That May Be Listed in /proc/cpuinfo

Feature Name Description

half half-word loads and stores

thumb 16-bit Thumb instruction set support

fastmult 32x32 producing 64-bit multiplication support

vfp early SIMD vector floating-point instructions

edsp DSp extensions

neon Advanced SIMD/NeON support

vfpv3 VFp version 3 support

tls TLS register

vfpv4 VFp version 4 with fast context switching

idiva SDIV and UDIV hardware division in ARM mode

idivt SDIV and UDIV hardware division in Thumb mode

vfpd32 VFp with 32 D-registers

lpae Large physical address extension (>4 GB physical memory on

32- bit architecture)

evtstrm Kernel event stream using generic architected timer

crc32 CRC-32 hardware accelerated support

ChApTeR 6 CpU

75

 Execution Environment
Connected with the idea of the CPU is program execution itself. Before

you look at program execution, take the high-level view of the execution

context. Figure 6-1 shows the operating environment of an executing

program.

Figure 6-1. Program execution context

At the lowest end of the address space is the “text” region containing

the program code. This region of virtual memory is read-only, holding

read-only program constants in addition to executable code.

The next region (in increasing address) contains blocks of uninitialized

arrays, buffers, static C variables, and extern storage.

ChApTeR 6 CpU

76

At the high end of memory are environment variables for the program,

like PATH. You can easily check this yourself by using getenv("PATH") and

printing the returned address for it. Its address will likely be the highest

address in your Raspberry Pi application, except possibly for another

environment variable.

Below that, your main program’s stack begins and grows downward.

Each function call causes a new stack frame to be created below the

current one.

If you now add a thread to the program, a new stack has to be allocated

for it. Experiments on the Pi show that the first thread stack gets created

approximately 123 MB below the main stack’s beginning. A second thread

has its stack allocated about 8 MB below the first. Each new thread’s stack

(by default) is allocated 8 MB of stack space.

Dynamically allocated memory gets allocated from the heap, which

sits between the static/extern region and the bottom end of the stack.

 Threads
Every program gets one main thread of execution. But sometimes there is a

need for the performance advantage of multiple threads, especially on a Pi

with four cores.

 pthread Headers
All pthread functions require the following header file:

#include <pthread.h>

When linking programs using pthreads, add the linker option:

-lpthread

to link with the pthread library.

ChApTeR 6 CpU

77

 pthread Error Handling
The pthread routines return zero when they succeed and return an error

code when they fail. The value errno is not used for these calls.

The reason behind this is likely that it was thought that the traditional Unix

errno approach would be phased out in the near future (at the time POSIX

threads were being standardized). The original use of errno was as follows:

extern int errno;

However, this approach doesn't work for threaded programs. Imagine

two threads concurrently opening files with open(2), which set the errno

value upon failure. Both threads cannot share the same int value for errno.

Rather than change a vast body of code already using errno in this

manner, other approaches were implemented to provide each thread with

its own private copy of errno. This is one reason that programs today using

errno must include the header file errno.h. The header file takes care of

defining the thread specific reference to errno.

Because the pthread standard was developing before the errno

solution generally emerged, the pthread library returns the error code

directly and returns zero when successful. If Unix were to be rewritten

from scratch today, all system calls would probably work this way.

 pthread_create(3)
The function pthread_create(3) is used to create a new thread of

execution. The function call looks more daunting than it really is:

int pthread_create(

 pthread_t ∗thread,
 const pthread_attr_t ∗attr,
 void ∗(∗start_routine)(void ∗),
 void ∗arg
);

ChApTeR 6 CpU

78

The call to pthread_create(3) creates a new stack, sets up registers,

and performs other housekeeping. Let’s describe the arguments:

thread: This first argument is simply a pointer to a

pthread_t variable to receive the created thread’s ID

value. The ID value allows you to query and control

the created thread. If the call succeeds, the thread

ID is returned to the calling program.

attr: This is a pointer to a pthread_attr_t attribute

object that supplies various options and parameters.

If you can accept the defaults, simply supply zero or

NULL.

start_routine: As shown in the following code, this

is simply the name of a start routine that accepts a

void pointer and returns a void pointer.

arg: This generic pointer is passed to start_

routine. It may point to anything of interest to the

thread function (start_routine). Often this is a

structure containing values, or in a C++ program, it

can be the pointer to an object. If you don’t need an

argument value, supply zero (or NULL).

returns: Zero is returned if the function is successful;

otherwise, an error number is returned (not in errno).

Error Description

eAGAIN Insufficient resources to create another thread, or a system-imposed limit

on the number of threads was encountered.

eINVAL Invalid settings in attr.

epeRM No permission to set the scheduling policy and parameters specified in attr.

ChApTeR 6 CpU

79

The C language syntax of argument 3 is a bit nasty for beginning C

programmers. Let’s just show what the function for argument 3 looks like:

void ∗
start_routine(void ∗arg) {
 ...

 return some_ptr;

}

The following is perhaps the simplest example of thread creation possible:

static void ∗
my_thread(void ∗arg) {
 ... // thread execution

 return 0;

}

int

main(int argc, char ∗∗argv) {
 pthread_t tid; // Thread ID

 int rc;

 rc = pthread_create(&tid,0,my_thread,0);

 assert(!rc);

This example does not use thread attributes (argument 2 is zero). We

also don’t care about the value passed into my_thread(), so argument 4

is provided a zero. Argument 3 simply needs to tell the system call what

function to execute. The value of rc will be zero if the thread is successfully

created (tested by the assert(3) macro).

At this point, the main thread and the function my_thread() execute

in parallel. Since there is only one CPU on the Raspberry Pi, only one

executes at any instant of time. But they both execute concurrently, trading

blocks of execution time in a preemptive manner. Each, of course, runs

using its own stack.

Thread my_thread() terminates gracefully, by returning.

ChApTeR 6 CpU

80

 pthread_attr_t
There are several thread attributes that can be fetched and set. You’ll look

only at perhaps the most important attribute (stack size) to keep this crash

course brief. For the full list of attributes and functions, you can view the

man pages for it:

$ man pthread_attr_init

To initialize a new attribute, or to release a previously initialized

pthread attribute, use this pair of routines:

int pthread_attr_init(pthread_attr_t ∗attr);
int pthread_attr_destroy(pthread_attr_t ∗attr);

attr: Address of the pthread_attr_t variable to

initialize/destroy

returns: Zero upon success, or an error code when

it fails (not in errno)

Error Description

eNOMeM Insufficient resources (memory)

The Linux implementation of pthread_attr_init(3) may never

return the ENOMEM error, but other Unix platforms might.

The following is a simple example of creating and destroying an

attribute object:

pthread_attr_t attr;

pthread_attr_init(&attr); // Initialize attr

...

pthread_attr_destroy(&attr); // Destroy attr

ChApTeR 6 CpU

81

Perhaps one of the most important attributes of a thread is the stack

size attribute:

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t

stacksize);

int pthread_attr_getstacksize(pthread_attr_t *attr, size_t

*stacksize);

attr: The pointer to the attribute to fetch a value

from, or to establish an attribute in.

stacksize: This is a stack size value when setting

the attribute, and a pointer to the receiving size_t

variable when fetching the stack size.

returns: Returns zero if the call is successful;

otherwise, returns an error number (not in errno).

The following error is possible for pthread_attr_setstacksize(3):

Error Description

eINVAL The stack size is less than pThReAD_STACK_MIN (16,384) bytes.

The Linux man page further states:

On some systems, pthread_attr_setstacksize() can fail
with the error EINVAL if stack size is not a multiple of the
system page size.

The following simple example obtains the system default stack size

and increases it by 8 MB:

pthread_attr_t attr;

size_t stksiz;

ChApTeR 6 CpU

82

pthread_attr_init(&attr); // Initialize attr

pthread_attr_getstacksize (&attr,&stksiz); // Get stack size

stksiz += 8 ∗ 1024 ∗ 1024; // Add 8 MB
pthread_attr_setstacksize(&attr,stksiz); // Set stack size

The system default is provided by the initialization of attr. Then it is a

matter of “getting” a value out of the attr object, and then putting in a new

stack size in the call to pthread_attr_setstacksize().

Note that this set of operations has simply prepared the attributes

object attr for use in a pthread_create() call. The attribute takes effect in

the new thread, when the thread is actually created:

pthread_attr_t attr;

...

rc = pthread_create(&tid,&attr,my_thread,0);

 pthread_join(3)
In the earlier pthread_create() example, the main program creates my_

thread() and starts it executing. At some point, the main program is going

to finish and want to exit (or return). If the main program exits before my_

thread() completes, the entire process and the threads in it are destroyed,

even if they have not completed.

To cause the main program to wait until the thread completes, the

function pthread_join(3) is used:

int pthread_join(pthread_t thread, void **retval);

thread: Thread ID of the thread to be joined with.

retval: Pointer to the void * variable to receive the

returned value. If you are uninterested in a return value,

this argument can be supplied with zero (or NULL).

returns: The function returns zero when successful;

otherwise, an error number is returned (not in errno).

ChApTeR 6 CpU

83

The following example has added pthread_join(3), so that the main

program does not exit until my_thread() exits.

int

main(int argc,char ∗∗argv) {
 pthread_t tid; // Thread ID

 void ∗retval = 0; // Returned
value pointer

 int rc;

 rc = pthread_create(&tid,0,my_thread,0);

 assert(!rc);

 rc = pthread_join(tid,&retval); // Wait for

my_thread()

 assert(!rc);

 return 0;

}

 pthread_detach(3)
The function pthread_join(3) causes the caller to wait until the indicated

thread returns. Sometimes, however, a thread is created and never

checked again. When that thread exits, some of its resources are retained

to allow for a join operation on it. If there is never going to be a join, it is

better for that thread to be forgotten when it exits and have its resources

immediately released.

The pthread_detach(3) function is used to indicate that no join will

be performed on the named thread. This way, the named thread becomes

configured to release itself automatically, when it exits.

int pthread_detach(pthread_t thread);

ChApTeR 6 CpU

84

The argument and return values are as follows:

thread: The thread ID of the thread to be altered,

so that it will not wait for a join when it completes.

Its resources will be immediately released upon the

named thread’s termination.

returns: Zero if the call was successful; otherwise,

an error code is returned (not in errno).

Error Description

eINVAL Thread is not a joinable thread.

eSRCh No thread with the ID thread could be found.

The pthread_detach function simply requires the thread ID value as

its argument:

pthread_t tid; // Thread ID

int rc;

rc = pthread_create(&tid,0,my_thread,0);

assert(!rc);

pthread_detach(tid); // No joining with this thread

 pthread_self(3)
Sometimes it is convenient in a piece of code to find out what the current

thread ID is. The pthread_self(3) function is the right tool for the job:

pthread_t pthread_self(void);

An example of its use is shown here:

pthread_t tid;

tid = pthread_self();

ChApTeR 6 CpU

85

 pthread_kill(3)
The pthread_kill(3) function allows the caller to send a signal to another

thread. The handling of thread signals is beyond the scope of this text. But

there is one very useful application of this function, which you’ll examine

shortly:

#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

Notice that the header file for signal.h is needed for the function

prototype and the signal definitions.

thread: This is the thread ID that you want to signal

(or test).

sig: This is the signal that you wish to send. Alternatively,

supply zero to test whether the thread exists.

returns: Returns zero if the call is successful, or an

error code (not in errno).

Error Description

eINVAL An invalid signal was specified.

eSRCh No thread with the ID thread could be found.

One useful application of the pthread_kill(3) function is to test

whether another thread exists. If the sig argument is supplied with zero,

no actual signal is delivered, but the error checking is still performed. If the

function returns zero, you know that the thread still exists.

But what does it mean when the thread exists? Does it mean that it is

still executing? Or does it mean that it has not been reclaimed as part of a

pthread_join(3), or as a consequence of pthread_detach(3) cleanup?

ChApTeR 6 CpU

86

It turns out that when the thread exists, it means that it is still

executing. In other words, it has not returned from the thread function that

was started. If the thread has returned, it is considered to be incapable of

receiving a signal.

Based on this, you know that you will get a zero returned when the

thread is still executing. When error code ESRCH is returned instead, you

know that the thread has completed.

 Mutexes
While not strictly a CPU topic, mutexes are inseparable from a discussion

about threads. A mutex is a locking device that allows the software designer

to stop one or more threads while another is working with a shared resource.

In other words, one thread receives exclusive access. This is necessary to

facilitate inter-thread communication. I’m simply going to describe the

mutex API here, rather than the theory behind the application of mutexes.

 pthread_mutex_create(3)
A mutex is initialized with the system call to pthread_mutex_init(3):

int pthread_mutex_init(

 pthread_mutex_t ∗mutex,
 const pthread_mutexattr_t ∗attr
);

mutex: A pointer to a pthread_mutex_t object, to

be initialized.

attr: A pointer to a pthread_mutexattr_t object,

describing mutex options. Supply zero (or NULL), if

you can accept the defaults.

returns: Returns zero if the call is successful;

otherwise, returns an error code (not in errno).

ChApTeR 6 CpU

87

Error Description

eAGAIN The system lacks the necessary resources (other than memory) to

initialize another mutex.

eNOMeM Insufficient memory exists to initialize the mutex.

epeRM The caller does not have the privilege to perform the operation.

eBUSY The implementation has detected an attempt to reinitialize the object

referenced by mutex, a previously initialized, but not yet destroyed, mutex.

eINVAL The value specified by attr is invalid.

An example of mutex initialization is provided here:

pthread_mutex_t mutex;

int rc;

rc = pthread_mutex_init(&mutex,0);

assert (!rc);

 pthread_mutex_destroy(3)
When the application no longer needs a mutex, it should use pthread_

mutex_destroy(3) to release its resources:

pthread_mutex_t mutex ;

int rc;

...

rc = pthread_mutex_destroy(&mutex);

assert(!rc);

mutex: The address of the mutex to release resources for.

returns: Returns zero when successful, or an error

code when it fails (not in errno).

ChApTeR 6 CpU

88

Error Description

eBUSY Mutex is locked or in use in conjunction with a pthread_cond_

wait(3) or pthread_cond_timedwait(3).

eINVAL The value specified by mutex is invalid.

 pthread_mutex_lock(3)
When a thread needs exclusive access to a resource, it must lock the

resource’s mutex. As long as the cooperating threads follow the same

procedure of locking first, they cannot both access the shared object at the

same time.

int pthread_mutex_lock(pthread_mutex_t ∗mutex);

mutex: A pointer to the mutex to lock.

returns: Returns zero if the mutex was successfully

locked; otherwise, an error code is returned (not in

errno).

Error Description

eINVAL The mutex was created with the protocol attribute having the value

pThReAD_pRIO_pROTeCT, and the calling thread’s priority is higher

than the mutex’s current priority ceiling. Or the value specified by the

mutex does not refer to an initialized mutex object.

eAGAIN Maximum number of recursive locks for mutex has been exceeded.

eDeADLK The current thread already owns the mutex.

ChApTeR 6 CpU

89

The following shows the function being called:

pthread_mutex_t mutex;

int rc;

...

rc = pthread_mutex_lock(&mutex);

 pthread_mutex_unlock(3)
When exclusive access to a resource is no longer required, the mutex is

unlocked:

int pthread_mutex_unlock(pthread_mutex_t ∗mutex);

mutex: A pointer to the mutex to be unlocked.

returns: Returns zero if the mutex was unlocked

successfully; otherwise, an error code is returned

(not in errno).

Error Description

eINVAL The value specified by mutex does not refer

to an initialized mutex object.

epeRM The current thread does not own the mutex.

A simple example of unlocking a mutex is provided here:

pthread_mutex_t mutex;

int rc;

...

rc = pthread_mutex_unlock(&mutex);

ChApTeR 6 CpU

90

 Condition Variables
Sometimes mutexes alone are not enough for efficient scheduling of CPU

between different threads. Mutexes and condition variables are often used

together to facilitate inter-thread communication. New comers might

struggle with this concept, at first.

Why do we need condition variables when we have mutexes?

Consider what is necessary in building a software queue that can hold

a maximum of eight items. Before we can queue something, we need to

first see if the queue is full. But we cannot test that until we have the queue

locked—otherwise, another thread could be changing things under our

own noses.

So we lock the queue but find that it is full. What do we do now? Do we

simply unlock and try again? This works but it wastes CPU time. Wouldn’t

it be better if we had some way of being alerted when the queue was no

longer full?

The condition variable works in concert with a mutex and a “signal”

(of sorts). In pseudo code terms, a program trying to queue an item on a

queue would perform the following steps:

 1. Lock the mutex. We cannot examine anything in the

queue until we lock it.

 2. Check the queue’s capacity. Can we place a new

item in it? If so:

 a. Place the new item in the queue.

 b. Unlock and exit.

 3. If the queue is full, the following steps are performed:

 a. Using a condition variable, “wait” on it, with the

associated mutex.

 b. When control returns from the wait, return to step 2.

ChApTeR 6 CpU

91

How does the condition variable help us? Consider the following steps:

 1. The mutex is locked (1).

 2. The wait is performed (3a). This causes the kernel to

do the following:

 a. Put the calling thread to sleep (put on a kernel

wait queue).

 b. Unlock the mutex that was locked in step 1.

Unlocking of the mutex in step 2b is necessary so that another thread

can do something with the queue (hopefully, take an entry from the queue

so that it is no longer full). If the mutex remained locked, no thread would

be able to move.

At some future point in time, another thread will do the following:

 1. Lock the mutex.

 2. Find entries in the queue (it was currently full), and

pull one item out of it.

 3. Unlock the mutex.

 4. Signal the condition variable that the “waiter” is

using, so that it can wake up.

The waiting thread then awakens:

 1. The kernel makes the “waiting” thread ready.

 2. The mutex is successfully relocked.

Once that thread awakens with the mutex locked, it can recheck the

queue to see whether there is room to queue an item. Notice that the

thread is awakened only when it has already reacquired the mutex lock.

This is why condition variables are paired with a mutex in their use.

ChApTeR 6 CpU

92

 pthread_cond_init(3)
Like any other object, a condition variable needs to be initialized:

int pthread_cond_init(

 pthread_cond_t ∗cond,
 const pthread_condattr_t ∗attr
);

cond: A pointer to the pthread_cond_t structure to

be initialized.

attr: A pointer to a cond variable attribute if one is

provided, or supply zero (or NULL).

returns: Zero is returned if the call is successful;

otherwise, an error code is returned (not in errno).

Error Description

eAGAIN The system lacked the necessary resources.

eNOMeM Insufficient memory exists to initialize the condition variable.

eBUSY The implementation has detected an attempt to reinitialize the object

referenced by cond, a previously initialized, but not yet destroyed,

condition variable.

eINVAL The value specified by attr is invalid.

 pthread_cond_destroy(3)
When a condition (cond) variable is no longer required, its resources

should be released with the following call:

int pthread_cond_destroy(pthread_cond_t ∗cond);

ChApTeR 6 CpU

93

cond: Condition variable to be released.

returns: Zero if the call was successful; otherwise,

returns an error code (not in errno).

Error Description

eBUSY Detected an attempt to destroy the object referenced by cond while it

is referenced by pthread_cond_wait() or pthread_cond_timedwait() in

another thread.

eINVAL The value specified by cond is invalid.

 pthread_cond_wait(3)
This function is one-half of the queue solution. The pthread_cond_

wait(3) function is called with the mutex already locked. The kernel will

then put the calling thread to sleep (on the wait queue) to release the CPU,

while at the same time unlocking the mutex. The calling thread remains

blocked until the condition variable cond is signaled in some way (more

about that later).

When the thread is awakened by the kernel, the system call returns

with the mutex locked. At this point, the thread can check the application

condition (like queue length) and then proceed if things are favorable, or

call pthread_cond_wait(3) again to wait further.

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

cond: Pointer to the condition variable to be used for

the wake-up call.

mutex: Pointer to the mutex to be associated with

the condition variable.

returns: Returns zero upon success; otherwise, an

error code is returned (not in errno).

ChApTeR 6 CpU

94

Error Description

eINVAL The value specified by cond, mutex is invalid. Or different mutexes

were supplied for concurrent pthread_cond_timedwait() or pthread_

cond_wait() operations on the same condition variable.

epeRM The mutex was not owned by the current thread at the time of the call.

The following code snippet shows how a queuing function would use

this. (Initialization of mutex and cond is assumed.)

pthread_mutex_t mutex;

pthread_cond_t cond;

...

pthread_mutex_lock(&mutex);

while (queue.length >=max_length)

 pthread_cond_wait(&cond,&mutex);

// queue the item

...

pthread_mutex_unlock(&mutex);

The while loop retries the test to see whether the queue is “not full.”

The while loop is necessary when multiple threads are inserting into the

queue. Depending on timing, another thread could beat the current thread

to queuing an item, making the queue full again.

 pthread_cond_signal(3)
When an item is taken off the queue, a mechanism needs to wake up

the thread attempting to put one entry into the full queue. One wake-up

option is the pthread_cond_signal(3) system call:

ChApTeR 6 CpU

95

int pthread_cond_signal(pthread_cond_t ∗cond);

cond: A pointer to the condition variable used to

signal one thread.

returns: Returns zero if the function call was

successful; otherwise, an error number is returned

(not in errno).

Error Description

eINVAL The value cond does not refer to an initialized condition variable.

It is not an error if no other thread is waiting. This function does,

however, wake up one waiting thread, if one or more are waiting on the

specified condition variable.

This call is preferred for performance reasons if signaling one thread

will “work.” When there are special conditions whereby some threads may

succeed and others would not, you need a broadcast call instead. When it

can be used, waking one thread saves CPU cycles.

 pthread_cond_broadcast(3)
This is the broadcast variant of pthread_cond_signal(3). If multiple

waiters have different tests, a broadcast should be used to allow all waiters

to wake up and consider the conditions found.

int pthread_cond_broadcast(pthread_cond_t ∗cond);

cond: A pointer to the condition variable to be

signaled, waking all waiting threads.

returns: Zero is returned when the call is

successful; otherwise, an error number is returned

(not in errno).

ChApTeR 6 CpU

96

Error Description

eINVAL The value cond does not refer to an initialized condition variable.

It is not an error to broadcast when there are no waiters.

 Summary
This chapter has introduced the CPU as a resource to be exploited. The /

proc/cpuinfo driver was described, which provides a quick summary of

your CPU capabilities (and number of processors).

An introduction to ARM architecture was provided, allowing you to

view architecture differs from implementation—that the BCM2837 is

Broadcom’s implementation of the ARMv8-A architecture, for example.

For the C programmer, the chapter finished with a whirlwind tour of the

pthread API, as supported by Linux.

ChApTeR 6 CpU

	Chapter 6: CPU
	/proc/cpuinfo
	ARM Architecture
	Architecture Suffix

	Features
	Execution Environment
	Threads
	pthread Headers
	pthread Error Handling
	pthread_create(3)
	pthread_attr_t
	pthread_join(3)
	pthread_detach(3)
	pthread_self(3)
	pthread_kill(3)

	Mutexes
	pthread_mutex_create(3)
	pthread_mutex_destroy(3)
	pthread_mutex_lock(3)
	pthread_mutex_unlock(3)

	Condition Variables
	pthread_cond_init(3)
	pthread_cond_destroy(3)
	pthread_cond_wait(3)
	pthread_cond_signal(3)
	pthread_cond_broadcast(3)

	Summary

