
283© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_16

CHAPTER 16

SPI Bus
The Serial Peripheral Interface bus, known affectionately as spy, is a

synchronous serial interface that was named by Motorola.18 The SPI

protocol operates in full-duplex mode, allowing it to send and receive data

simultaneously. Generally speaking, SPI has a speed advantage over the

I2C protocol but requires more connections.

 SPI Basics
Devices on the SPI bus communicate on a master/slave basis. Multiple

slaves coexist on a given SPI bus, with each slave being selected for

communication by a slave select signal (also known as chip select).

Figure 16-1 shows the Raspberry Pi as the master communicating with

one slave device. Additional slaves would be connected as shown with the

exception that a different slave select signal would be used.

Figure 16-1. SPI interface

https://doi.org/10.1007/978-1-4842-3948-3_16

284

Data is transmitted from the master to the slave by using the MOSI line

(master out, slave in). As each bit is being sent out by the master, the slave

simultaneously sends data on the MISO line (master in, slave out). Bits are

shifted out of the master and into the slave, while bits are shifted out of the

slave and into the master. Both transfers occur to the beat of the system

clock (CLK).

Many SPI devices support only 8-bit transfers, while others are more

flexible. The SPI bus is a de facto standard, meaning that there is no

standard for data transfer width and SPI mode.18 The SPI controller can

also be configured to transmit the most significant or the least significant

bit first. All of this flexibility can result in confusion.

 SPI Mode
SPI operates in one of four possible clock signaling modes, based on two

parameters:

Parameter Description

CPOL Clock polarity

CPHA Clock phase

Each parameter has two possibilities, resulting in four possible SPI

modes of operation. Table 16-1 lists all four available modes. Note that

a given mode is often referred to by using a pair of numbers like 1,0

or simply as mode 2 (for the same mode, as shown in the table). Both

references types are shown in the Mode column.

CHAPter 16 SPI BuS

285

Peripheral manufacturers did not define a standard signaling

convention in the beginning. Consequently SPI controllers often allow

configuration of any of the four modes while the remaining only permit

two of the modes. However, once a mode has been chosen, all slaves on

the same bus must agree.

 Signaling
The clock polarity determines the idle clock level, while the phase

determines whether the data line is sampled on the rising or falling clock

signal. Figure 16-2 shows mode 0,0, which is perhaps the preferred form of

SPI signaling. In Figure 16-2, the slave is selected first, by making the SS

(slave select) active. Only one slave can be selected at a time, since there

must be one slave driving the MISO line. Shortly after the slave is selected,

the master drives the MOSI line, and the slave simultaneously drives the

MISO line with the first data bit. This can be the most or least significant

bit, depending on how the controller is configured. The diagram shows the

least significant bit first.

Table 16-1. SPI Modes

CPOL CPHA Mode Description

0 0 0,0 0 Noninverted clock, sampled on rising edge

0 1 0,1 1 Noninverted clock, sampled on falling edge

1 0 1,0 2 Inverted clock, sampled on rising edge

1 1 1,1 3 Inverted clock, sampled on falling edge

Clock Sense Description

Noninverted Signal is idle low, active high

Inverted Signal is idle high, active low

CHAPter 16 SPI BuS

286

In mode 0,0 the first bit is clocked into the master and slave when the

clock line falls from high to low. This clock transition is positioned midway

in the data bit cell. The remaining bits are successively clocked into master

and slave simultaneously as the clock transitions from high to low. The

transmission ends when the master deactivates the slave select line. When

the clock polarity is reversed (CPOL = 1, CPHA = 0), the clock signal shown

in Figure 16-2 is simply inverted. The data is clocked at the same time in

the data cell, but on the rising edge of the clock instead.

Figure 16-3 shows the clock signals with the phase set to 1 (CPHA = 1).

When the clock is not inverted (CPOL = 0), the data is clocked on the rising

edge. The clock must transition to its nonidle state one-half clock cycle

earlier than when the phase is 0 (CPHA = 0). When the SPI mode is 1,1, the

data is clocked in on the falling edge of the clock.

Figure 16-2. SPI signaling, modes 0 and 2

CHAPter 16 SPI BuS

287

While the four different modes can be confusing, it is important to

realize that the data is sampled at the same times within the data bit cells.

The data bit is always sampled at the midpoint of the data cell. When the

clock phase is 0 (CPHA = 0), the data is sampled on the trailing edge of the

clock, whether falling or rising according to CPOL. When the clock phase is

1 (CPHA = 1), the data is sampled on the leading edge of the clock, whether

rising or falling according to CPOL.

 Slave Selection
Unlike I2C where slaves are addressed by using a transmitted address, the

SPI bus uses a dedicated select line for each. The Raspberry Pi dedicates

the GPIO pins listed in Table 16-2 as slave select lines (also known as chip

enable lines).

Figure 16-3. SPI signaling modes 1 and 3

Table 16-2. Raspberry Pi Built-in Chip Enable Pins

GPIO Chip Enable P1

8 CE0 P1-24

7 CE1 P1-26

CHAPter 16 SPI BuS

288

The Raspbian Linux kernel driver supports the use of only these two chip

enable lines. However, the driver is designed such that you don’t have to use

them, or only these. It is possible, for example, to use a different GPIO pin as a

select under user software control. The application simply takes responsibility

for activating the slave select GPIO line prior to the data I/O and deactivates it

after. When the driver is controlling the slave selects, this is done automatically.

 Driver Support
To enable the SPI driver, edit the /boot/config.txt file to uncomment the

line as:

dtparam=spi=on

and then reboot:

sync

/sbin/shutdown -r now

After the reboot, using the lsmod command, you should see the driver

spi_bcm2835 listed among the others.

$ lsmod

Module Size Used by

fuse 106496 3

rfcomm 49152 6

...

spi_bcm2835 16384 0

...

Once the kernel module support is present, the device driver nodes

should appear:

$ ls /dev/spi*

/dev/spidev0.0 /dev/spidev0.1

$

CHAPter 16 SPI BuS

289

These two device nodes are named according to which slave select

should be activated, as shown in Table 16-3.

If you open either of these device nodes with the C macro SPI_NO_CS,

the node chosen makes no difference. Macro SPI_NO_CS indicates that

slave select will be performed by the application instead of the driver, if

any select is used at all. When only one slave device is attached, might it be

possible to use a permanently hard-wired selected.

 SPI API
Like I2C under Linux, the bare-metal API for SPI involves calls to ioctl(2)

to configure the interface and for simultaneous read/write. The usual

read(2) and write(2) system calls can be used for one-sided transfers.

 Header Files
The header files needed for SPI programming are as follows:

#include <fcntl.h>

#include <unistd.h>

#include <stdint.h>

#include <sys/ioctl.h>

#include <linux/types.h>

#include <linux/spi/spidev.h>

Table 16-3. SPI Device Nodes

Pathname Bus Device GPIO SS

/dev/spidev0.0 0 0 8 CE0

/dev/spidev0.1 0 1 7 CE1

CHAPter 16 SPI BuS

290

The spidev.h include file defines several macros and the struct

spi_ioc_transfer. Table 16-4 lists the main macros that are declared. The

macros SPI_CPOL and SPI_CPHA are used in the definitions of the values

SPI_MODE_x. If you prefer, it is possible to use SPI_CPOL and SPI_CPHA in

place of the mode macros.

Communicating with an SPI device consists of the following system calls:

open(2): Opens the SPI device driver node

read(2): Reads but no transmission

write(2): Writes data while discarding received data

ioctl(2): For configuration and bidirectional I/O

close(2): Closes the SPI device driver node

Table 16-4. SPI Macro Definitions

Macro Supported Description

SPI_CPOL Yes Clock polarity inverted (CPOL = 1)

SPI_CPHA Yes Clock phase is 1 (CPHA = 1)

SPI_MODe_0 Yes SPI Mode 0,0 (CPOL = 0, CPHA = 0)

SPI_MODe_1 Yes SPI Mode 0,1 (CPOL = 0, CPHA = 1)

SPI_MODe_2 Yes SPI Mode 1,0 (CPOL = 1, CPHA = 0)

SPI_MODe_3 Yes SPI Mode 1,1 (CPOL = 1, CPHA = 1)

SPI_CS_HIGH Yes Chip select is active high

SPI_LSB_FIrSt No LSB is transmitted first

SPI_3WIre No use 3-Wire data I/O mode

SPI_LOOP No Loop the MOSI/MISO data line

SPI_NO_CS Yes Do not apply Chip Select

SPI_reADY No enable extra ready signal

CHAPter 16 SPI BuS

291

In SPI communication, the use of read(2) and write(2) is generally

unusual. Normally, ioctl(2) is used to facilitate simultaneous read/write

transfers.

 Open Device
In order to perform SPI communication through the kernel driver, you

need to open one of the device nodes by using open(2). The general

format of the device pathname is

/dev/spidev<bus>.<device>

The following is a code snippet opening bus 0, device 0.

int fd;

fd = open("/dev/spidev0.0",O_RDWR);

if (fd < 0) {

 perror("Unable to open SPI driver");

 exit(1);

}

The driver is normally opened for read and write (O_RDWR) because SPI

usually involves reading and writing.

 SPI Mode Macros
Before SPI communications can be performed, the mode of

communication needs to be chosen. Table 16-5 lists the C language macros

that can be used to configure the SPI mode to apply.

CHAPter 16 SPI BuS

292

These bit values are simply or-ed together to specify the options that

are required. The use of SPI_CPOL implies CPOL = 1. Its absence implies

CPOL = 0. Similarly, the use of SPI_CPHA implies CPHA = 1 else CPHA = 0.

The macros SPI_MODE_x use the SPI_CPOL and SPI_CPHA macros to define

them, so don't use them both in your code. The mode definitions are

shown here:

#define SPI_MODE_0 (0|0)

#define SPI_MODE_1 (0|SPI_CPHA)

#define SPI_MODE_2 (SPI_CPOL|0)

#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)

The unsupported options are not shown, though one or more of these

could be supported in the future.

The following is an example that defines SPI_MODE_0:

uint8_t mode = SPI_MODE_0;

int rc;

rc = ioctl(fd,SPI_IOC_WR_MODE,&mode);

if (rc < 0) {

 perror("Can't set SPI write mode.");

Table 16-5. SPI Mode Macros

Macro Effect Comments

SPI_CPOL CPOL = 1 Or use SPI_MODe_x

SPI_CPHA CPHA = 1 Or use SPI_MODe_x

SPI_CS_HIGH SS is active high unusual

SPI_NO_CS Don’t assert select Not used/application controlled

CHAPter 16 SPI BuS

293

If you’d like to find out how the SPI driver is currently configured, you

can read the SPI mode with ioctl(2) as follows:

uint8_t mode;

int rc;

rc = ioctl(fd,SPI_IOC_RD_MODE,&mode);

if (rc < 0) {

 perror("Can't get SPI read mode.");

 Bits per Word
The SPI driver needs to know how many bits per I/O word are to be

transmitted. While the driver will likely default to 8 bits, it is best not to

depend on it. Note that the Pi only supports 8 bits or 9 bits in LoSSI mode (low

speed serial interface). This is configured with the following ioctl(2) call:

uint8_t bits = 8;

int rc;

rc = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD,&bits);

if (rc < 0) {

 perror ("Can't set bits per SPI word.");

The currently configured value can be fetched with ioctl(2) as follows:

uint8_t bits;

int rc;

rc = ioctl(fd,SPI_IOC_RD_BITS_PER_WORD,&bits);

if (rc == −1) {
 perror("Can't get bits per SPI word.");

When the number of bits is not an even multiple of eight, the bits are

assumed to be right-justified. For example, if the word length is set to 4 bits,

the least significant 4 bits are transmitted. The higher-order bits are ignored.

CHAPter 16 SPI BuS

294

Likewise, when receiving data, the least significant bits contain the

data. All of this is academic on the Pi, however, since the driver supports

only byte-wide transfers.

 Clock Rate
To configure the data transmission rate, you can set the clock rate with

ioctl(2) as follows:

uint32_t speed = 500000; /* Hz */

int rc;

rc = ioctl(fd,SPI_IOC_WR_MAX_SPEED_HZ,&speed);

if (rc < 0) {

 perror("Can't configure SPI clock rate.");

The clock rate provided in speed should be a multiple of two (it is

automatically rounded down). The current configured clock rate can be

fetched using the following ioctl(2) call:

uint32_t speed; /* Hz */

int rc;

rc = ioctl(fd,SPI_IOC_RD_MAX_SPEED_HZ,&speed);

if (rc < 0) {

 perror("Can't get SPI clock rate.");

 Data I/O
SPI communication often involves transmitting data while simultaneously

receiving data. For this reason, the read(2) and write(2) system calls

cannot be used. The ioctl(2) call will, however, perform a simultaneous

read and write.

CHAPter 16 SPI BuS

295

The SPI_IOC_MESSAGE(n) form of the ioctl(2) call uses the following

structure as its argument:

struct spi_ioc_transfer {

 __u64 tx_buf; /* Ptr to tx buffer */

 __u64 rx_buf; /* Ptr to rx buffer */

 __u32 len; /* # of bytes */

 __u32 speed_hz; /* Clock rate in Hz */

 __u16 delay_usecs; /* Delay in microseconds */

 __u8 bits_per_word; /* Bits per "word" */

 __u8 cs_change; /* Apply chip select */

 __u32 pad; /* Reserved */

};

The tx_buf and rx_buf structure members are defined as 64-bit

unsigned integers (__u64). For this reason, you must cast your buffer

pointers when making assignments to them:

uint8_t tx[32], rx[32];

struct spi_ioc_transfer tr;

tr.tx_buf = (unsigned long) tx;

tr.rx_buf = (unsigned long) rx;

On the Raspberry Pi, you will see example code that simply casts the

pointers to unsigned long. The compiler automatically promotes these

32-bit values to a 64-bit value. This is safe on the Pi because the pointer

value is 32 bits in size.

If you don’t wish to receive data (maybe because it is “don’t care”

data), you can null out the receive buffer:

uint8_t tx[32];

struct spi_ioc_transfer tr;

tr.tx_buf = (unsigned long) tx;

tr.rx_buf = 0; /* ignore received data */

CHAPter 16 SPI BuS

296

Note that to receive data, the master must always transmit data in

order to shift data out of the slave peripheral. If any byte transmitted will

do, you can omit the transmit buffer. Zero bytes will then be automatically

transmitted by the driver to shift the slave data out.

It is also permissible to transmit from the buffer you’re receiving into:

uint8_t io[32];

struct spi_ioc_transfer tr;

tr.tx_buf = (unsigned long) io; /* Transmit buffer */

tr.rx_buf = (unsigned long) io; /* is also recv buffer */

The len structure member indicates the number of bytes for the I/O

transfer. Receive and transmit buffers (when both used) are expected to

transfer the same number of bytes.

The member speed_hz defines the clock rate that you wish to use for

this I/O, in Hz. This overrides any value configured in the mode setup, for

the duration of the I/O. The value will be automatically rounded down to a

supported clock rate when necessary.

When the value speed_hz is 0, the previously configured clock rate is

used (SPI_IOC_WR_MAX_SPEED_HZ).

When the delay_usecs member is non-zero, it specifies the number

of microseconds to delay between transfers. It is applied at the end of a

transfer, rather than at the start. When there are multiple I/O transfers in a

single ioctl(2) request, this allows time in between so that the peripheral

can process the data.

The bits_per_word member defines how many bits there are in a

“word” unit. Often the unit is 1 byte (8 bits), but it need not be (but note

that the Raspbian Linux driver supports only 8 bits or 9 in LoSSI mode).

When the bits_per_word value is 0, the previously configured value

from SPI_IOC_WR_BITS_PER_WORD is used.

CHAPter 16 SPI BuS

297

The cs_change member is treated as a Boolean value. When 0, no chip

select is performed by the driver. The application is expected to do what is

necessary to notify the peripheral that it is selected (usually a GPIO pin is

brought low). Once the I/O has completed, the application then must then

unselect the slave peripheral.

When the cs_change member is true (non-zero), the slave selected

will depend on the device pathname that was opened. The bus and the slave

address are embedded in the device name:

/dev/spidev<bus>.<device>

When cs_change is true, the driver asserts GPIO8 for spidev0.0 and

asserts GPIO7 for spidev0.1 prior to I/O and then deactivates the same

upon completion. Of course, using these two nodes require two different

open(2) calls.

The SPI_IOC_MESSAGE(n) macro is used in the ioctl(2) call to

perform one or more SPI I/O operations. This macro is unusual because it

requires an argument n. (This differs considerably from the I2C approach.)

This specifies how many I/O transfers you would like to perform. An

array of spi_ioc_transfer structures is declared and configured for each

transfer required, as shown in the next example:

struct spi_ioc_transfer io[3]; /* Define 3 transfers */

int rc;

io[0].tx_buf = ...; /* Configure I/O */

...

io[2].bits_per_word = 8;

rc = ioctl(fd,SPI_IOC_MESSAGE(3),& io[0]);

The preceding example will perform three I/O transfers. Since the

application never gets to perform any GPIO manipulation in between

these I/Os, this applies to communicating with one particular slave device.

CHAPter 16 SPI BuS

298

The following example code brings all of the concepts together, to

demonstrate one I/O. The spi_ioc_transfer structure is initialized so that

32 bytes are transmitted and simultaneously 32 are received.

uint8_t tx[32], rx[32];

struct spi_ioc_transfer tr;

int rc;

tr.tx_buf = (unsigned long) tx;

tr.rx_buf = (unsigned long) rx;

tr.len = 32;

tr.delay_usecs = delay;

tr.speed_hz = speed;

tr.bits_per_word = bits;

rc = ioctl(fd,SPI_IOC_MESSAGE(1),&tr);

if (rc < 1) {

 perror("Can't send spi message");

Here a single I/O transmission occurs, with data being sent from array

tx and received into array rx. The return value from the ioctl(2) call

returns the number of bytes transferred (32 in the example). Otherwise, -1

is returned to indicate that an error has occurred.

 Close
Like all Unix I/O operations, the device must be closed when the open file

descriptor is no longer required (otherwise it will be done upon process

termination):

close(fd);

CHAPter 16 SPI BuS

299

 Write
The write(2) system call can be used if the received data is unimportant.

Note, however, that no delay is possible with this call.

 Read
The read(2) system call is actually inappropriate for SPI since the master

must transmit data on MOSI in order for the slave to send bits back on the

MISO line. However, when read(2) is used, the driver will automatically

send out zero bits as necessary to accomplish the read. (Be careful that

your peripheral will accept zero bytes without unintended consequences.)

Like the write(2) call, no delay is possible.

 SPI Testing
When developing your SPI communication software, you can perform a

simple loopback test to test your framework. Once the framework checks out,

you can then turn your attention to communicating with the actual device.

While the SPI_LOOP mode bit is not supported by the Pi hardware, you

can still physically loop your SPI bus by connecting a wire from the MOSI

output back to the MISO input pin (connect GPIO 10 to GPIO 9).

A simple program, shown next, demonstrates this type of loopback

test. It will write out 4 bytes (0x12, 0x23, 0x45, and 0x67) to the SPI driver.

Because you have wired the MOSI pins to the MISO input, anything

transmitted will also be received.

When the program executes, it will report the number of bytes received

and four hexadecimal values:

$ sudo ./spiloop

rc=4 12 23 45 67

$

CHAPter 16 SPI BuS

300

If you remove the wire between MOSI and MISO, and connect the

MISO to a high (+3.3 V), you should be able to read 0xFF for all of the

received bytes. If you then connect MISO to ground, 0x00 will be received

for each byte instead. Be certain to apply to the correct pin to avoid

damage (Listing 16-1).

Listing 16-1. The spiloop.c SPI loopback program

/**

 * spiloop.c − Example loop test
 * Connect MOSI (GPIO 10) to MISO (GPIO 9)

 **/

0005: #include <stdio.h>

0006: #include <errno.h>

0007: #include <stdlib.h>

0008: #include <stdint.h>

0009: #include <fcntl.h>

0010: #include <unistd.h>

0011: #include <sys/ioctl.h>

0012: #include <linux/types.h>

0013: #include <linux/spi/spidev.h>

0014:

0015: static void

0016: errxit(const char *msg) {

0017: perror(msg);

0018: exit(1);

0019: }

0020:

0021: int

0022: main(int argc, char ** argv) {

0023: static uint8_t tx[] = {0x12, 0x23, 0x45, 0x67};

0024: static uint8_t rx[] = {0xFF, 0xFF, 0xFF, 0xFF};

0025: struct spi_ioc_transfer ioc = {

CHAPter 16 SPI BuS

301

0026: .tx_buf = (unsigned long) tx,

0027: .rx_buf = (unsigned long) rx,

0028: .len = 4,

0029: .speed_hz = 100000,

0030: .delay_usecs = 10,

0031: .bits_per_word = 8,

0032: .cs_change = 1

0033: };

0034: uint8_t mode = SPI_MODE_0;

0035: int rc, fd=-1;

0036:

0037: fd = open("/dev/spidev0.0",O_RDWR);

0038: if (fd < 0)

0039: errxit("Opening SPI device.");

0040:

0041: rc = ioctl(fd,SPI_IOC_WR_MODE,&mode);

0042: if (rc < 0)

0043: errxit("ioctl (2) setting SPI mode.");

0044:

0045: rc = ioctl(fd,SPI_IOC_WR_BITS_PER_WORD,&ioc.bits_per_word);

0046: if (rc < 0)

0047: errxit("ioctl (2) setting SPI bits perword.");

0048:

0049: rc = ioctl(fd,SPI_IOC_MESSAGE(1),&ioc);

0050: if (rc < 0)

0051: errxit("ioctl (2) for SPI I/O");

0052: close(fd);

0053:

0054: printf("rc=%d %02X %02X %02X %02X\n",

0055: rc, rx[0], rx[1], rx[2], rx[3]);

0056: return 0;

0057: }

CHAPter 16 SPI BuS

302

 Summary
The SPI bus and its operation were presented along with the C

programming API. The chapter ended with a simple SPI loop test program.

No extra hardware was required to run this.

That loop test provides a good coverage of the API being applied. The

reader can take this one step further and access an actual slave device on

the SPI bus. That last step adds the slave select to the overall picture and

any command/response processing required of the device. You are now

the SPI master!

CHAPter 16 SPI BuS

	Chapter 16: SPI Bus
	SPI Basics
	SPI Mode
	Signaling
	Slave Selection
	Driver Support
	SPI API
	Header Files
	Open Device
	SPI Mode Macros
	Bits per Word
	Clock Rate
	Data I/O
	Close
	Write
	Read

	SPI Testing
	Summary

