
259© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_15

CHAPTER 15

I2C Bus
The I2C bus, also known as the two-wire interface (TWI), was developed by

Philips circa 1982 to allow communication with lower-speed peripherals.17

It was also economical because it only required two wires (excluding

ground and power). Since then, other standards have been devised,

building upon this framework, such as the SMBus. However, the original I2C

bus remains popular as a simple, cost-effective way to connect peripherals.

 I2C Overview
Figure 15-1 shows the I2C bus in the Raspberry Pi context. The Raspberry

Pi provides the bus using the BCM2835 device as the bus master. Notice

that the Pi also provides the external pull-up resistors R1 and R2, shown

inside the dotted lines. Table 15-1 lists the two I2C bus lines that are

provided on the header strip.

Table 15-1. I2C Bus Connections

Connection GPIO Description

P1-03 GPIO-2 SDA1 (serial bus data)

P1-05 GPIO-3 SCL1 (serial bus clock)

https://doi.org/10.1007/978-1-4842-3948-3_15

260

The design of the I2C bus allows multiple peripherals to attach to the

SDA and the SCL lines. Each slave peripheral has its own unique 7-bit

address. For example, the MCP23017 GPIO extender peripheral might be

configured with the address of 0x20. Each peripheral is referenced by the

master by using this address. Nonaddressed peripherals are expected to

remain quiet.

 SDA and SCL
Both masters and slaves take turns at “grabbing the bus” at various times.

Master and slave use open-drain transistors to drive the bus lines. It is

because all participants are using open-drain drivers that pull-up resistors

must be used (provided by the Pi). Otherwise, the data and clock lines

would float between handoffs.

The open-drain driver design allows all participants to drive the

bus lines—just not at the same time. Slaves, for example, turn off their

line drivers, allowing the master to drive the signal lines. The slaves just

listen, until the master calls them by address. When the slave is required

Figure 15-1. The I2C bus on the Raspberry Pi

ChAPter 15 I2C BuS

261

to answer, the slave will then assert its driver, grabbing the line. It is

assumed by the slave that the master has already released the bus at this

point. When the slave completes its own transmission, it releases the bus,

allowing the master to resume.

The idle state for both lines is high. The high state for the Raspberry

Pi is +3.3 V. Other systems may use +5 V signaling. When shopping for I2C

peripherals, choose ones that will operate at the 3.3 V level. Sometimes 5 V

peripherals can be used with careful signal planning or using adapters.

 Bus Signaling
The start and stop bits are special in the I2C protocol. The start bit is

illustrated in Figure 15-2. Notice the SDA line transition from high to low,

while the clock remains in the high (idle) state. The clock will follow by

going low after 1/2 bit time following the SDA transition. This special

signal combination informs all connected devices to “listen up,” since the

next piece of information transmitted will be the device address.

Figure 15-2. I2C start/stop signaling

ChAPter 15 I2C BuS

262

The stop bit is also special in that it allows slave devices to know

whether more information is coming. When the SDA line transitions from

low to high midway through a bit cell, it is interpreted as a stop bit. The

stop bit signals the end of the message.

There is also the concept of a repeated start, often labeled in diagrams

as SR. This signal is electrically identical to the start bit, except that it

occurs within a message in place of a stop bit. This signals to the peripheral

that more data is being sent or required as part of another message.

 Data Bits
Data bit timings are approximately as shown in Figure 15-3. The SDA line

is expected to stabilize high or low according to the data bit being sent,

prior to the SCL line going high. The receiver clocks in the data on the

falling edge of SCL, and the process repeats for the next data bit. Note that

most significant bits are transmitted first (network order, or big endian).

 Message Formats
Figure 15-4 displays two example I2C messages that can be used with the

MCP23017 chip. The simplest message is the write register request.

Figure 15-3. I2C Data bit transmission

ChAPter 15 I2C BuS

263

The diagram shows each message starting with the S (start) bit and

ending with a P (stop) bit. After the start bit, each message begins with a

byte containing the 7-bit peripheral address and a read/write bit. Every

peripheral must read this byte in order to determine whether the message

is addressed to it.

The addressed peripheral is expected to return an ACK/NAK bit after

the address is sent. If the peripheral fails to respond for any reason, the line

will go high due to the pull-up resistor, indicating a NAK. The master, upon

seeing a NAK, will send a stop bit and terminate the transmission.

When the addressed peripheral ACKs the address byte, the master then

continues to write when the request is a write. The first example shows

the MCP23017 8-bit register number being written next. This indicates

which of the peripheral’s registers is to be written to. The peripheral will

then ACK the register number, allowing the master to follow with the data

byte to be written, into the selected register. This too must be ACKed. If

the master has no more data to send, the P (stop) bit is sent to end the

transmission.

Figure 15-4. Example I2C messages

ChAPter 15 I2C BuS

264

The second example in Figure 15-4 shows how a message may be

composed of both write and read messages. The initial sequence looks like

the write, but this only writes a register number into the peripheral. Once

the register number is ACKed, the master then sends an SR (start, repeated)

bit. This tells the peripheral that no more write data is arriving and to expect

a peripheral address to follow. Since the address transmitted specifies the

same peripheral, the same peripheral responds with an ACK. This request

is a read, so the peripheral continues to respond with 8 bits of the requested

read data, with the master ACKing. The master terminates the message with

a P (stop) to indicate that no more data is to be read.

Many peripherals will support an auto-increment register mode. This

is a feature of the peripheral, however. Not all devices support this. Once

a peripheral’s register has been established by a write, successive reads

or writes can occur in auto-increment mode, with the register being

incremented with each byte transferred. This results in efficient transfers.

 I2C Bus Speed
Unlike the SPI bus, the I2C bus operates at a fixed speed within Raspbian

Linux. The SoC document claims I2C operation up to 400 kHz, but the

default is 100 kHz.

To use I2C, you must enable it in your /boot/config.txt file by

uncommenting it. You can also optionally specify the clock rate by

specifying the i2c_arm_baudrate parameter. The following enables I2C

and sets the clock to 400 kHz:

dtparam=i2c_arm=on,i2c_arm_baudrate=400000

The default clock rate is equivalent to:

dtparam=i2c_arm=on,i2c_arm_baudrate=100000

ChAPter 15 I2C BuS

265

Save the config.txt file and reboot. You can confirm that the clock rate

was accepted as follows:

xxd -g4 /sys/class/i2c-adapter/i2c-1/of_node/clock-frequency

00000000: 00061a80

gdb

GNU gdb (Raspbian 7.12-6) 7.12.0.20161007-git

Copyright (C) 2016 Free Software Foundation, Inc.

...

(gdb) p 0x00061a80

$1 = 400000

(gdb) quit

#

• The xxd command reports a group of 4 bytes (-g4) as

00061a80.

• The gdb command is used to print (p command) this

value in decimal (don’t forget to prefix the reported

number with 0x to indicate the value is hexadecimal).

 I2C Tools
Working with I2C peripherals is made easier with some utilities. These may

be preinstalled in your Raspbian Linux but are otherwise easily installed if

necessary.

$ sudo apt−get install i2c−tools

The i2c-tools package includes the following utilities:

i2cdetect: Detects peripherals on the I2C line

i2cdump: Dumps values from an I2C peripheral

ChAPter 15 I2C BuS

266

i2cset: Sets I2C registers and values

i2cget: Gets I2C registers and values

Each of these utilities has a man page available for additional information.

 MCP23017
The MCP23S17 is the I2C chip that provides 16 expansion GPIO ports. At

startup, the pins default to inputs, but can be configured as outputs like the

native Pi GPIO ports. The MCP23S17 is the companion chip for SPI bus.

The chip allows eight different I2C addresses to be wire configured.

Like the native Pi GPIOs, the ports can be configured active high or low.

The chip operates from a supply voltage of 1.8 to 5.5 V, making it perfect for

Pi 3.3 V operation.

The output mode GPIO can sink up to 8 mA of current and source

3 mA. This should be taken into account when driving loads, even LEDs.

For input GPIOs, it has an interrupt capability, signaling an input

change on the INTA (GPIOA0 to GPIOA7) or INTB pins (GPIOB0 to

GPIOB7). The chip can be configured to report all changes on INTA,

which is the way it will be used here. This is important for inputs because

otherwise you would need to continuously poll the device.

Perhaps the best part of all is that a kernel driver is available for it. This

makes it very convenient to use.

 Driver Setup
The first thing that must be configured is that I2C must be enabled, if

you have not done it already. The /boot/config.txt file must have the

following line uncommented:

dtparam=i2c_arm=on,i2c_arm_baudrate=100000

ChAPter 15 I2C BuS

267

Next you must enable the driver in config.txt:

dtoverlay=mcp23017,gpiopin=4,addr=0x20

• Optional parameter gpiopin=4 specifies that GPIO4

will be used for sensing interrupts in the chip. GPIO4 is

the default.

• Optional parameter addr=0x20 specifies the I2C address

for the MCP23017 chip. 0x20 is the default.

After editing these changes, reboot:

sync

/sbin/shutdown -r now

After the Pi boots back up, log in and check for suspicious error messages

using the dmesg command. You can skip that if you’re feeling lucky.

If all went well, you should see something like the following in the

/sys/class/gpio directory:

ls /sys/class/gpio

export gpiochip0 gpiochip128 gpiochip496 unexport

If you used I2C address 0x20 and you have your MCP23017 wired up

to the bus, you should see the subdirectory name gpiochip496 (higher for

other addresses). If you don’t see the chip listed, then:

• Scrutinize the dmesg log for errors.

• Check the configuration and wiring.

• Make sure that the MCP23017 chip’s RESET pin is

wired to +3.3 V.

ChAPter 15 I2C BuS

268

 Wiring
The wiring used in this example is illustrated in Figure 15-5. A few things

are worth noting about the circuit:

• Supply the MCP23017 chip from +3.3 V (not 5 V).

• No resistors are required for the bus since the

Raspberry Pi already provides R1 and R2.

• Important! Wire the RESET line to +3.3 V. Otherwise

random or complete failure will occur.

• Wiring the INTA line is not required if you only plan

to use output mode GPIOs. However, the driver will

consume the configured GPIO, whether used or not.

When the RESET line is not wired to +3.3 V, the input to the chip will

float. Sometimes the CMOS input will float high and sometimes low (causing

a chip reset). I ran into this when I initially wired up the circuit. The worst part

was that the driver and chip worked for a while but later developed problems.

Figure 15-5. Wiring for the MCP23017 to the Raspberry Pi

ChAPter 15 I2C BuS

269

The purpose of the INTA line (and GPIO4 in Figure 15-5) is to notify the

Pi that an input GPIO port has changed state. This informs the mcp23017

driver to send an I2C request to read the inputs. Without this notification,

the driver would have to busy the I2C bus with repeated read requests to

see if there is new input.

 Testing GPIO Output
With the circuit wired up and the configuration set and the system

rebooted, you should see the driver report its presence in /sys/class/

gpio as gpiochip496, if you used the I2C address of 0x20.

In the same way that native GPIOs were accessed in Chapter 12, we

can export this GPIO. But first we need to determine which GPIO number

corresponds to each MCP23017 GPIO port. There are two pseudo files for

this purpose:

 1. gpiochip496/base lists the starting GPIO number for

this device (496).

 2. gpiochip496/ngpio lists how many GPIOs are

supported (16).

The following shows an example discovery session:

cd /sys/class/gpio

ls

export gpio503 gpiochip0 gpiochip128 gpiochip496 unexport

ls gpiochip496

base device label ngpio power subsystem uevent

cat gpiochip496/base

496

cat gpiochip496/ngpio

16

#

ChAPter 15 I2C BuS

https://doi.org/10.1007/978-1-4842-3948-3_12

270

This information permits the creation of the chart in Table 15-2.

To use the MCP23017 GPIO A7 as an output, we do:

pwd

/sys/class/gpio

echo out >gpio503/direction

cat gpio503/direction

out

echo 1 >gpio503/value

cat gpio503/value

1

If you have an LED wired to A7 in active high configuration, it should be

lit. Otherwise measure it with your DMM and you should see +3.3 V on pin 28.

echo 0 >gpio503/value

cat gpio503/value

0

After the above, GPIO A7 should now go low.

Table 15-2. GPIO Associations for Gpiochip496 (I2C Address 0x20)

GPIO Pin MCP23017 GPIO Pin MCP23017

GPIO496 21 A0 GPIO504 1 B0

GPIO497 22 A1 GPIO505 2 B1

GPIO498 23 A2 GPIO506 3 B2

GPIO499 24 A3 GPIO507 4 B3

GPIO500 25 A4 GPIO508 5 B4

GPIO501 26 A5 GPIO509 6 B5

GPIO502 27 A6 GPIO510 7 B6

GPIO503 28 A7 GPIO511 8 B7

ChAPter 15 I2C BuS

271

 Testing GPIO Input
With the GPIO A7 still configured as an output, configure MCP23017 GPIO

A6 as an input:

ls

export gpio503 gpiochip0 gpiochip128 gpiochip496 unexport

echo 502 >export

ls

export

gpio502 gpio503 gpiochip0 gpiochip128 gpiochip496 unexport

echo in >gpio502/direction

Place a jumper wire from A7 (pin 28) to A6 (pin 27). Now let’s see if

input A6 agrees with output A7:

cat gpio502/value

0

cat gpio503/value

0

cat gpio502/value

0

echo 1 >gpio503/value

cat gpio502/value

1

As expected, as we changed A7, the input A6 followed.

 Test GPIO Input Interrupt
Being able to read a GPIO alone is often not enough. We need to know

when it has changed so that it can be read at that point in time. In

Figure 15-5, the MCP23017 chip has its INTA pin wired to the Pi’s GPIO4.

The MCP23017 will activate that line whenever an unread change in inputs

ChAPter 15 I2C BuS

272

occurs, alerting the driver in the Pi. Only then does the driver need to read

the chip’s current input status.

To test that this is working, we’ll reuse that evinput program to monitor

gpio502 (GPIO input A6):

$ cd ~/RPi/evinput

$./evinput -g502 -b

Changing to the root terminal session, let’s toggle A7 a couple of times:

pwd

/sys/class/gpio

ls

export

gpio502 gpio503 gpiochip0 gpiochip128 gpiochip496 unexport

echo 1 >gpio503/value

echo 0 >gpio503/value

echo 1 >gpio503/value

echo 0 >gpio503/value

Switch back to the evinput session, and see if we got any edges (the -b

option monitors for both rising and falling edges):

$./evinput -g502 -b

Monitoring for GPIO input changes:

GPIO 502 changed: 1

GPIO 502 changed: 0

GPIO 502 changed: 1

GPIO 502 changed: 0

^C

Indeed, this confirms that the interrupt facility works. Note that we

monitored GPIO502 (A6) rather than GPIO4. Only the driver needs to

monitor GPIO4.

ChAPter 15 I2C BuS

273

 Limitations
The driver support for the MCP23017 provides a very convenient way to

add sixteen GPIOs to your Raspberry Pi. As great as this is, here are a few

points to consider:

• The extended GPIOs are not as fast as the native Pi

GPIOs.

• You may need to do some homework to add more than

one MCP23017 chip. While the bus supports up to eight

uniquely addressed MCP23017 chips, the device driver

might not. It may be possible with added nodes to the

device tree.

• I/O performance is directly related to the I2C clock rate.

• The GPIOs are accessed through the sysfs pseudo file

system, further impacting performance.

The main thing to keep in mind is that all GPIO interaction occurs over

the I2C bus at the clock rate (100 kHz or 400 kHz). Each I/O may require

several bytes of transfer because the MCP23017 has a large set of registers.

Each byte transferred requires time. At the default of 100 kHz, a one-byte

transfer takes:

t
kHz

bits

s

= ´

=

1

100
8

80m

To read one GPIO input register requires a start bit, three bytes of data,

and a stop bit. This results in a minimum transaction time of 260 μs. That

limits the number of GPIO reads to approximately 3,800 reads/s. This

doesn’t account for sharing the bus with other devices.

In the end, the suitability depends upon the application. By shifting

the highest rate GPIO transactions to the Pi’s native GPIOs and the slower

I/Os to the extension GPIOs, you might find that the arrangement works

well enough.

ChAPter 15 I2C BuS

274

 I2C API
The bare-metal C language API for the I2C bus transactions will be

introduced in this section. Using this API you can program your own

interface with another GPIO expander such as the PCF8574, for example.

That chip provides eight additional GPIOs but is economical and +3.3 V

friendly. It has only one configuration register making it easy to use directly.

 Kernel Module Support
Access to the I2C bus is provided through the use of kernel modules. If you

have enabled I2C in the config.txt as discussed earlier, you should be able

to list the bus controller:

i2cdetect -l

i2c-1 i2c bcm2835 I2C adapter I2C adapter

Access to the driver is provided by the following nodes:

ls -l /dev/i2c*

crw-rw---- 1 root i2c 89, 1 Jul 7 16:23 /dev/i2c-1

 Header Files
The following header files should be included in an I2C program:

#include <sys/ioctl.h>

#include <linux/i2c.h>

#include <linux/i2c−dev.h>

ChAPter 15 I2C BuS

275

 open(2)
Working with I2C devices is much like working with files. You open a file

descriptor, do some I/O operations with it, and then close it. The one

difference is that the ioctl(2) calls are used instead of the usual read(2)

and write(2).

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname,int flags,mode_t mode);

where

pathname is the name of the file/directory/driver

that you need to open/create.

flags is the list of optional flags (use O_RDWR for

reading and writing).

mode is the permission bits to create a file (omit

argument, or supply zero when not creating).

returns -1 (error code in errno) or open file

descriptor >=0.

Error Description

eACCeS Access to the file is not allowed.

eFAuLt the pathname points outside your accessible address space.

eMFILe the process already has the maximum number of files open.

eNFILe the system limit on the total number of open files has been

reached.

eNOMeM Insufficient kernel memory was available.

ChAPter 15 I2C BuS

276

To work with the I2C bus controller, your application must open the

driver, made available at the device node:

int fd;

fd = open("/dev/i2c−1",O_RDWR);
if (fd < 0) {

 perror("Opening /dev/i2c−1");

Note that the device node (/dev/i2c-1) is owned by root, so you’ll

need elevated privileges to open it or have your program use setuid(2).

 ioctl(2,I2C_FUNC)
In I2C code, a check is normally performed to make sure that the driver has

the right support. The I2C_FUNC ioctl(2) call allows the calling program

to query the I2C capabilities. The capability flags returned are documented

in Table 15-3.

long funcs;

int rc;

rc = ioctl(fd,I2C_FUNCS,&funcs);

if (rc < 0) {

 perror("ioctl(2,I2C_FUNCS)");

 abort();

}

/* Check that we have plain I2C support */

assert(funcs & I2C_FUNC_I2C);

ChAPter 15 I2C BuS

277

The assert() macro used to check that at least plain I2C support

exists. Otherwise, the program aborts.

 ioctl(2,I2C_RDWR)
While it is possible to use ioctl(2,I2C_SLAVE) and then use read(2) and

write(2) calls, this tends not to be practical. Consequently, the use of the

ioctl(2,I2C_RDWR) system call will be promoted instead. This system call

allows considerable flexibility in carrying out complex I/O transactions.

The general API for any ioctl(2) call is as follows:

#include <sys/ioctl.h>

int ioctl(int fd,int request,argp);

where

fd is the open file descriptor.

request is the I/O command to perform.

argp is an argument related to the command (type

varies according to request).

Table 15-3. I2C_FUNC Bits

Bit Mask Description

I2C_FuNC_I2C Plain I2C is supported (non SMBus)

I2C_FuNC_10BIt_ADDr Supports 10-bit addresses

I2C_FuNC_PrOtOCOL_MANGLING Supports:

I2C_M_IGNOre_NAK

I2C_M_reV_DIr_ADDr

I2C_M_NOStArt

I2C_M_NO_rD_ACK

ChAPter 15 I2C BuS

278

returns -1 (error code in errno), number of msgs

completed (when request = I2C_RDWR).

Error Description

eBADF fd is not a valid descriptor.

eFAuLt argp references an inaccessible memory area.

eINVAL request or argp is not valid.

When the request argument is provided as I2C_RDWR, the argp

argument is a pointer to struct i2c_rdwr_ioctl_data. This structure

points to a list of messages and indicates how many of them are involved.

struct i2c_rdwr_ioctl_data {

 struct i2c_msg *msgs; /* ptr to array of simple messages */

 int nmsgs; /* number of messages to exchange */

};

The individual I/O messages referenced by the preceding structure are

described by struct i2c_msg:

struct i2c_msg {

 __u16 addr; /* 7/10 bit slave address */

 __u16 flags; /* Read/Write & options */

 __u16 len; /* No. of bytes in buf */

 __u8 *buf; /* Data buffer */

};

The members of this structure are as follows:

addr: Normally this is the 7-bit slave address, unless

flag I2C_M_TEN and function

I2C_FUNC_10BIT_ADDR are used. Must be provided

for each message.

ChAPter 15 I2C BuS

279

flags: Valid flags are listed in Table 15-4. Flag I2C_M_

RD indicates the operation is a read. Otherwise, a

write operation is assumed when this flag is absent.

buf: The I/O buffer to use for reading/writing this

message component.

len: The number of bytes to read/write in this

message component.

An actual ioctl(2,I2C_RDWR) call would be coded like the following.

In this example, a MCP23017 register address of 0x15 is being written out to

peripheral address 0x20, followed by a read of 1 byte:

int fd;

struct i2c_rdwr_ioctl_data msgset;

struct i2c_msg iomsgs[2];

static unsigned char reg_addr[] = {0x15};

unsigned char rbuf[1];

int rc;

Table 15-4. I2C Capability Flags

Flag Description

I2C_M_teN 10-bit slave address used

I2C_M_rD read into buffer

I2C_M_NOStArt Suppress (re)Start bit

I2C_M_reV_DIr_ADDr Invert r/W bit

I2C_M_IGNOre_NAK treat NAK as ACK

I2C_M_NO_rD_ACK read will not have ACK

I2C_M_reCV_LeN Buffer can hold 32 additional bytes

ChAPter 15 I2C BuS

280

iomsgs[0].addr = 0x20; /* MCP23017−A */
iomsgs[0].flags = 0; /* Write operation. */

iomsgs[0].buf = reg_addr;

iomsgs[0].len = 1;

iomsgs[1].addr = iomsgs[0].addr; /* Same MCP23017-A */

iomsgs[1].flags = I2C_M_RD; /* Read operation */

iomsgs[1].buf = rbuf;

iomsgs[1].len = 1;

msgset.msgs = iomsgs;

msgset.nmsgs = 2;

rc = ioctl(fd,I2C_RDWR,&msgset);

if (rc < 0) {

 perror("ioctl (2, I2C_RDWR)");

The example shown defines iomsgs[0] as a write of 1 byte, containing

a register number. The entry iomsgs[1] describes a read of 1 byte from

the peripheral. These two messages are performed in one ioctl(2)

transaction. The flags member in iomsgs[x] determines whether the

operation is a read (I2C_M_RD) or a write (0).

Note Don’t confuse the peripheral’s internal register number with
the peripheral’s I2C address.

Each of the iomsgs[x].addr members must contain a valid I2C

peripheral address. Each message can potentially address a different

peripheral. The ioctl(2) will return an error with the first message failure.

For this reason, you may not always want to combine multiple messages in

one ioctl(2) call, especially when different devices are involved.

The returned value, when successful, is the number of struct i2c_msg

messages successfully performed.

ChAPter 15 I2C BuS

281

 Summary
From this chapter you saw that adding sixteen GPIOs to your Pi can be

realized with the addition of one chip and a little wiring. Considering the

cost of add-on boards, this can save your project considerably. With the

driver support for the MCP23017, using these extension GPIOs is just as

simple as the native ports.

For the developer that wants to interact directly over I2C with his

devices, the C API for doing so was presented. Whether though the driver

or through direct the C API, no Pi developer is left wanting for access to

GPIO ports.

ChAPter 15 I2C BuS

	Chapter 15: I2C Bus
	I2C Overview
	SDA and SCL
	Bus Signaling
	Data Bits
	Message Formats
	I2C Bus Speed
	I2C Tools
	MCP23017
	Driver Setup
	Wiring
	Testing GPIO Output
	Testing GPIO Input
	Test GPIO Input Interrupt
	Limitations

	I2C API
	Kernel Module Support
	Header Files
	open(2)
	ioctl(2,I2C_FUNC)
	ioctl(2,I2C_RDWR)

	Summary

