
223© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_13

CHAPTER 13

C Program GPIO
Whether your application needs fast access or specialized access from

GPIO, a C/C++ program is the most convenient way to go. Python

programs likewise can have direct access with the help of a module.

This chapter looks at how to access the GPIO ports directly from within

a program, starting with the unfinished business of using the uevent file, to

detect input GPIO changes with the help of interrupts behind the scenes.

 Edge Events
The previous chapter introduced the uevents pseudo file that the GPIO

driver provides. There it was explained that you needed to use one of the

system calls poll(2) or select(2) to take advantage of this notification.

Here I’ll illustrate the use of poll(2), since it is the preferred system call of

the two.

The idea behind poll(2) is that you supply a structured array of open

file descriptors and indicate the events that you are interested in. The

structure that poll(2) uses is defined as:

struct pollfd {

 int fd; /* file descriptor */

 short events; /* requested events */

 short revents; /* returned events */

};

https://doi.org/10.1007/978-1-4842-3948-3_13

224

The open file descriptor is placed into the fd member, while the events

of interest are saved to member events. The structure member revents is

populated by the system call, which is available upon return.

In directory ~/RPi/evinput you will find the C program source file

evinput.c. The portion that performs the poll(2) call is illustrated in

Listing 13-1.

Listing 13-1. The gpio_poll() function, invoking the poll(2) system call

0126: static int

0127: gpio_poll(int fd) {

0128: struct pollfd polls[1];

0129: char buf[32];

0130: int rc, n;

0131:

0132: polls[0].fd = fd; /* /sys/class/gpio17/value */

0133: polls[0].events = POLLPRI; /* Events */

0134:

0135: do {

0136: rc = poll(polls,1,-1); /* Block */

0137: if (is_signaled)

0138: return -1; /* Exit if ^C received */

0139: } while (rc < 0 && errno == EINTR);

0140:

0141: assert(rc > 0);

0142:

0143: lseek(fd,0,SEEK_SET);

0144: n = read(fd,buf,sizeof buf); /* Read value */

0145: assert(n>0);

0146: buf[n] = 0;

0147:

0148: rc = sscanf(buf,"%d",&n);

0149: assert(rc==1);

Chapter 13 C program gpIo

225

0150: return n; /* Return value */

0151: }

In this program, we are interested in only one GPIO, so the array is

declared with one element:

0128: struct pollfd polls[1];

Prior to calling poll(2), the structure polls[0] is initialized:

0132: polls[0].fd = fd; /* /sys/class/gpio17/value */

0133: polls[0].events = POLLPRI; /* Events */

If there was a second entry, then polls[1] would be initialized also.

After this, the system call can be invoked:

0136: rc = poll(polls,1,-1); /* Block */

The first argument supplies the address of the first structure entry

(equivalent to &polls[0]). The second argument indicates how many

entries apply to this call (there is only one). The last argument is a timeout

parameter in milliseconds, with the negative value meaning to block forever.

If the system call returns a positive value (rc), this indicates how many

structure entries returned an event (in member revents). When this

happens, the caller must scan the array (polls) for any returned events. In

theory, the program should test:

if (polls[0].revents & POLLPRI)

to see if there was activity for this file descriptor. In this program we

don’t test it because only one file descriptor is provided (it’s the only file

descriptor that can return activity). But if you were testing for two or more

GPIOs, this test would be required.

When the returned value from poll(2) is zero, it simply means that the

timeout has occurred. In this program, no timeout is used, so this cannot

happen.

Chapter 13 C program gpIo

226

If the returned value is -1, then the system call has returned because of an

error. There is one special error code, EINTR, which will be explained shortly.

For normal read data, the event macro name to use is POLLIN. For the

uevent pseudo file, the event macro name is POLLPRI, indicating urgent

data to be read. The data to be read is indeed urgent because the state of

the GPIO port could change by the time you read the value pseudo file. So

if you’re hoping to catch rising events, don’t be surprised if you sometimes

read back a zero. When that has happened, the rising event has come and

gone by the time that the GPIO state was read.

 EINTR Error
Unix veterans are quick to come to grips with the EINTR error code. We see

reference to it in this loop:

0135: do {

0136: rc = poll(polls,1,-1); /* Block */

0137: if (is_signaled)

0138: return -1; /* Exit if ^C received */

0139: } while (rc < 0 && errno == EINTR);

The problem with poll(2) is that when no timeout is possible, there

is no way to respond to a signal (like the terminal Control-C). The signal

handler is limited in what it can do, since it is an asynchronous call, which

could be interrupting the middle of a malloc(3) call, for example. For

this reason, the evinput.c program specifies a safe interrupt handler for

Control-C. It simply sets the variable is_signaled to 1.

0018: static int is_signaled = 0; /* Exit program when

signaled */

...

0156: static void

0157: sigint_handler(int signo) {

Chapter 13 C program gpIo

227

0158: is_signaled = 1; /* Signal to exit program */

0159: }

In order for the program to notice that the variable has changed to

non-zero, the kernel returns with rc=-1 to indicate an error, and sets the

errno=EINTR. The code EINTR simply means that the system call was

interrupted and should be retried. In the code presented, line 137 tests to see

if that variable was set to non-zero. If it was, the function immediately returns.

Otherwise, the while loop in line 139 keeps the system call retried in line 136.

 Reading uevent
Once it has been determined that there is urgent data to be read, there

is a bit of a two-step that needs to happen next. This is not a poll(2)

requirement but is the driver requirement for the pseudo file uevent:

0143: lseek(fd,0,SEEK_SET);

0144: n = read(fd,buf,sizeof buf); /* Read value */

0145: assert(n>0);

0146: buf[n] = 0;

0147:

0148: rc = sscanf(buf,"%d",&n);

0149: assert(rc==1);

0150: return n; /* Return value */

Line 143 effectively performs a rewind on the file descriptor before it

reads it in line 144. This informs the driver to make its event data available

for the upcoming read. Line 146 simply puts a null byte at the end of the

read data, so that sscanf(3) can use it. Since we are expecting a 0 or 1 in

text form, this is converted into the integer value n in line 148 and then

returned.

Chapter 13 C program gpIo

228

 Demonstration
To build a demonstration program, perform the following (do a “make

clobber” if you need to force a rebuild):

$ make

gcc -c -Wall -O0 -g evinput.c -o evinput.o

gcc evinput.o -o evinput

sudo chown root ./evinput

sudo chmod u+s ./evinput

This program will not require you to sudo, because it sets the evinput

executable to setuid root. On secure systems, you may want to review that.

Do display usage info, use the -h option:

$./evinput -h

Usage: ./evinput -g gpio [-f] [-r] [-b]

where:

 -f detect rising edges

 -r detect falling edges

 -b detect both edges

Defaults are: -g17 -b

Specify the GPIO you want to input from with the -g option (17 is the

default). By default, the program assumes the -b option, to report rising

and falling edges. Let’s try this now:

$./evinput -g 17 -b

Monitoring for GPIO input changes:

GPIO 17 changed: 0

GPIO 17 changed: 1

GPIO 17 changed: 0

GPIO 17 changed: 1

Chapter 13 C program gpIo

229

GPIO 17 changed: 0

^C

The example session shows a few changes from zero to one and back.

This will not always be so clean because of contact bounce and the speed

that these changes occur. Try now with rising changes:

$./evinput -g 17 -r

Monitoring for GPIO input changes:

GPIO 17 changed: 0

GPIO 17 changed: 1

GPIO 17 changed: 1

GPIO 17 changed: 1

GPIO 17 changed: 0

GPIO 17 changed: 1

^C

The expected value read is a 1 after a rising edge. However, notice

that one zero snuck in there, which is a reminder that contact bounce and

timing plays a role. The first value displayed by this program is always the

initial state of the GPIO.

 Multiple GPIO
The evinput.c program has been kept simple for illustration purposes. But

the usefulness of the edge detection may have you applying it to multple

GPIO ports at once. The beauty of the poll(2) approach is that your

application will not waste CPU cycles waiting for an event to occur. Instead

the GPIO interrupt will inform the kernel of the change when it occurs,

and thus inform the uevent driver. This in turn will inform poll(2) when

performed on the pseudo file.

Chapter 13 C program gpIo

230

To expand the demo code to multiple GPIOs, you will first need to

open multiple uevent pseudo files after putting the GPIO into the correct

configuration. Then you will need to expand the array polls[] to include

the number of GPIOs of interest (line 128). Then initialize each entry as

shown in lines 132 and 133.

The second argument to the poll(2) call in line 136 needs to match

the number of initialized array elements. If you are monitoring five GPIOs,

then argument two needs to be the value 5.

After the do while loop ending at line 139, you will need to scan the

array polls[] to determine which GPIO file descriptors reported an event

with something like:

for (x=0; x<rc; ++x) {

 if (polls[x].revents & EPOLLPRI) {

 // read polls[x].fd for GPIO value

 }

}

In this manner, your application can very efficiently monitor several

GPIO inputs for changes. Your code must however be able to cope with

contact bounce. Some ICs like the PCF8574 I2C GPIO expander, sport an

INT pin that can be monitored using this approach.

 Direct Register Access
It is sometimes necessary for a user mode program to have direct access

to the GPIO registers for performance or other reasons. This requires root

access to control user access and because if done incorrectly, can crash

your system. A crash is highly undesirable because it can cause loss of files.

The introduction of new Raspberry Pi models has added the challenge

of dealing with different hardware platforms. With the original Raspberry

Pi Model B and subsequent Model A, there was one fixed hardware offset

Chapter 13 C program gpIo

231

to the peripheral registers. However, that has changed, and we now need to

calculate the correct register address depending upon the hardware model

involved.

 Peripheral Base Address
In order to access the GPIO peripheral registers, we need to accomplish

two things:

 1. Determine base address of our register set

 2. Need to map physical memory into our virtual

address space

Given that Raspberry Pis now differ on where the registers are

physically located, we need to determine the peripheral base address.

Listing 13-2 shows how the pseudo file is opened and read, to determine

the actual base address.

Listing 13-2. Determining the peripheral base address

0315: uint32_t

0316: peripheral_base() {

0317: static uint32_t pbase = 0;

0318: int fd, rc;

0319: unsigned char buf[8];

0320:

0321: fd = open("/proc/device-tree/soc/ranges",O_RDONLY);

0322: if (fd >= 0) {

0323: rc = read(fd,buf,sizeof buf);

0324: assert(rc==sizeof buf);

0325: close(fd);

0326: pbase = buf[4] << 24 | buf[5] << 16 | buf[6] << 8 |

buf[7] << 0;

Chapter 13 C program gpIo

232

0327: } else {

0328: // Punt: Assume RPi2

0329: pbase = BCM2708_PERI_BASE;

0330: }

0331:

0332: return pbase;

0333: }

The basic steps are:

 1. Open the pseudo file (line 321).

 2. Read the first 8 bytes into character array buf (line 323).

 3. Once read, the file descriptor can be closed (line 325).

 4. Piece together the address in line 326.

 5. If step 1 fails, assume the value of macro BCM2708_

PERI_BASE (which is 0x3F00000).

 Mapping Memory
The next step in direct access to GPIO registers involves mapping physical

memory into the C/C++ program’s virtual memory. Listing 13-3 illustrates

how physical memory is mapped.

Listing 13-3. Mapping physical memory

0274: void *

0275: mailbox_map(off_t offset,size_t bytes) {

0276: int fd;

0277:

0278: fd = open("/dev/mem",O_RDWR|O_SYNC);

0279: if (fd < 0)

0280: return 0; // Failed (see errno)

Chapter 13 C program gpIo

233

0281:

0282: void *map = (char *) mmap(

0283: NULL, // Any address

0284: bytes, // # of bytes

0285: PROT_READ|PROT_WRITE,

0286: MAP_SHARED, // Shared

0287: fd, // /dev/mem

0288: offset

0289:);

0290:

0291: if ((long)map == -1L) {

0292: int er = errno; // Save errno

0293: close(fd);

0294: errno = er; // Restore errno

0295: return 0;

0296: }

0297:

0298: close(fd);

0299: return map;

0300: }

The basic steps performed are as follows:

 1. First memory is accessed by opening /dev/mem, for

read and write (line 278). This step requires root

access to protect the integrity of the system.

 2. Once that file is open, the mmap(2) system call is

used to map it into the caller’s virtual memory (lines

282 to 289).

 a. The first argument of the call is NULL, to specify

that any virtual memory address is acceptable.

This address can be specified, but the call will

fail if the kernel finds it unacceptable.

Chapter 13 C program gpIo

234

 b. Argument two is the number of bytes to map for

this region. In our demo program, this is set to

the kernel’s page size. It needs to be a multiple

of the page size.

 c. Argument three indicates that we want to read

and write the mapped memory. If you only want

to query registers, macro PROT_WRITE can be

dropped.

 d. Argument four is MAP_SHARED allowing our

calling program to share with any other

processes on the system that might be accessing

the same region.

 e. The fifth argument is the file descriptor that we

have open.

 f. The last argument is the starting offset of

physical memory that we wish to have access to.

 3. If the mmap(2) call fails for any reason, the return

value will be a long negative one. The value errno

will reflect the reason why (lines 291 to 296).

 4. Otherwise, the file can be closed (line 298) since

the memory access has already been granted. The

virtual memory address is returned in 299.

 Register Access
Once the required memory has been mapped, it is possible to directly

access the peripheral registers. To calculate the correct virtual memory

address of a given register, macros are used like this one:

0040: #define GPIO_BASE_OFFSET 0x200000 // 0x7E20_0000

Chapter 13 C program gpIo

235

Additional macros reference a specific register relative to the base

offset. For example, this macro provides an offset to the register that

permits setting of GPIO bits.

0052: #define GPIO_GPSET0 0x7E20001C

These register accesses are rather messy. In the example gp.c program,

the following gpio_read() function uses a set_gpio32() helper function to

determine:

 1. The register address (saved to gpiolev, line 232).

 2. The bit shift needed (saved to variable shift, line 227).

 3. From the required register to be accessed (GPIO_

GPLEV0, line 232).

This procedure provides the calculated word address in gpiolev, and

a shift value to use to reference a specific bit. Listing 13-4 illustrates the

code for this procedure.

Listing 13-4. C function, gpio_read() to read a GPIO input bit

0225: int

0226: gpio_read(int gpio) {

0227: int shift;

0228:

0229: if (gpio < 0 || gpio > 31)

0230: return EINVAL;

0231:

0232: uint32_v *gpiolev = set_gpio32(gpio,&shift,GPIO_

GPLEV0);

0233:

0234: return !!(*gpiolev & (1<<shift));

0235: }

Chapter 13 C program gpIo

236

Line 234 then accesses the register containing the GPIO bit of interest

and returns it to the caller.

Write access is similar, except that the register is written with values

(Listing 13-5).

Listing 13-5. Writing GPIO registers by writing to the register address

0241: int

0242: gpio_write(int gpio,int bit) {

0243: int shift;

0244:

0245: if (gpio < 0 || gpio > 31)

0246: return EINVAL;

0247:

0248: if (bit) {

0249: uint32_v *gpiop = set_gpio32(gpio,&shift,GPIO_

GPSET0);

0250: *gpiop = 1u << shift;

0251: } else {

0252: uint32_v *gpiop = set_gpio32(gpio,&shift,GPIO_

GPCLR0);

0253: *gpiop = 1u << shift;

0254: }

0255: return 0;

0256: }

The one difference between read and write. however, is that the Pi has

different registers to set GPIO bits (line 249) and another to clear them

(line 252).

Chapter 13 C program gpIo

237

 Demonstration Program
Build the source code in ~/RPi/gpio (perform “make clobber” if you wish

to force a complete rebuild):

$ make

gcc -c -Wall -O0 -g gp.c -o gp.o

gcc gp.o -o gp

sudo chown root ./gp

sudo chmod u+s ./gp

Once again, this program uses setuid root so that you are not forced

to do a sudo to use it. The program has usage information, with the

application of the -h option:

$./gp -h | expand -t 8

Usage: ./gp -g gpio { input_opts | output_opts | -a | drive_

opts} [-v]

where:

 -g gpio GPIO number to operate on

 -A n Set alternate function n

 -a Query alt function

 -q Query drive, slew and hysteresis

 -v Verbose messages

Input options:

 -i n Selects input mode, reading for n seconds

 -I Input mode, but performing one read only

 -u Selects pull-up resistor

 -d Selects pull-down resistor

 -n Selects no pull-up/down resistor

Output options:

 -o n Write 0 or 1 to gpio output

 -b n Blink for n seconds

Chapter 13 C program gpIo

238

Drive Options:

 -D n Set drive level to 0-7

 -S Enable slew rate limiting

 -H Enable hysteresis

All invocations require the specification of the -g option to provide

the GPIO number to operate upon. Option -v can be added to provide

additional output.

 GPIO Input
The following example session configures the GPIO port 17 as an input

and selects pull-up high reading for 60 seconds:

$./gp -g17 -i60

GPIO = 1

GPIO = 0

GPIO = 1

GPIO = 0

GPIO = 1

GPIO = 0

GPIO = 1

GPIO = 0

Your session output might show some contact bounce, so don’t expect

all transitions to be consistently ones alternating with zeros.

For a one time read of input, use -I instead:

$./gp -g17 -I

GPIO = 1

Chapter 13 C program gpIo

239

 GPIO Output
To configure a GPIO as an output and write a value to it, use the following

command:

$./gp -g17 -o1 -v

gpio_peri_base = 3F000000

Wrote 1 to gpio 17

$./gp -g17 -o0 -v

gpio_peri_base = 3F000000

Wrote 0 to gpio 17

In this session, the verbose option was added for visual confirmation.

It is useful to have a blinking output when testing. Do this using the -b

option. The argument specifies the number of seconds to blink for:

$./gp -g17 -b4 -v

gpio_peri_base = 3F000000

GPIO 17 -> 1

GPIO 17 -> 0

GPIO 17 -> 1

GPIO 17 -> 0

 Drive, Hysteresis, and Slew
The drive, slew rate limiting, and hysteresis options can be both set and

queried by the -D and -q options. -D sets the values and -q queries:

$./gp -g17 -D7, -S1 -H0 -q -v

gpio_peri_base = 3F000000

 Set Drive=7, slew=true, hysteresis=false

 Got Drive=7, slew=true, hysteresis=false

Chapter 13 C program gpIo

240

The Set Drive line is suppressed without the verbose option.

The -q option is performed after the set operation and reports on the

configuration after the change. It can be used to query only:

$./gp -g17 -q

 Got Drive=7, slew=true, hysteresis=false

 Alternate Mode
The alternate mode of the GPIO can also be queried and set:

$./gp -g17 -a

GPIO 17 is in Output mode.

Setting the alternate mode is done with the -A option:

$./gp -g17 -A5

$./gp -g17 -a

GPIO 17 is in ALT5 mode.

 Transistor Driver
Before we leave the topic of GPIO, let’s review a simple transistor driver

that can be used in situations where a complete IC solution might be

overkill. The GPIO pins of the Raspberry Pi are limited in their ability to

drive current. Even configured for full drive, they are limited to 16 mA.

Rather than enlist a buffer IC, you might find that you only need one

signal buffered. A cheap utility transistor like the 2N2222A may be all you

need. Figure 13-1 illustrates the circuit.

Chapter 13 C program gpIo

241

The input signal arrives from the GPIO output on the left side of the

circuit and flows through resistor R1, through the base emitter junction to

ground. R1 limits this current to a safe value. Resistor R2 connects between

the collector of Q1 and the power supply, which can be somewhat higher

than +3.3 V. This is safe because the collector base junction is reversed

biased. Be careful to not exceed the collector base voltage, however.

The maximum power that Q1 can handle is 0.5 W at 25°C. When the

transistor is conducting (saturated), the voltage across Q1 (VCE) is between

0.3 and 1 V. The remainder of the voltage is developed across the load. If

we assume the worst case of 1 V for VCE we can compute the maximum

current for Q1:

I
P

V

A

C
Q

CE

=

=

=

1

1

0 3
3 3
.
.

Figure 13-1. A simple bipolar transistor driver

Chapter 13 C program gpIo

242

This calculated current exceeds the datasheet limit for IC=600 mA, so

we now switch to using 600 mA instead. Let’s assume that we only need

100 mA, rather than the absolute limit.

Next we want to know the lowest applicable HFE for the part being used

at the collector current chosen. Based upon a STMicroelectronic datasheet,

it is estimated that the lowest HFE is about 50 near 100 mA. This value is

important because it affects how much base current drive is needed.

I
I

H

mA

mA

B
C

FE

=

=

=

100

50
2

Knowing now, the minimum base current to drive the transistor, we

can compute the base resistor R1:

R
GPIO V

I

ohms

HIGH BE

B
1

3 0 7

0 002
1150

=
-

=
-

=

.

.

The nearest 10% resistor value is 1.2 kohms.

 Inductive Loads
It’s not unusual to drive a relay coil when larger currents or voltages are

involved. The problem with inductive loads, however, is that when the

magnetic field collapses, a reverse voltage is induced into the driving

circuit. This occurs when the coil current is removed. Special care must

be taken to suppress this. Figure 13-2 illustrates a transistor driving a relay

coil. The relay opens and closes the load contacts K1.

Chapter 13 C program gpIo

243

The relay coil needs a reversed biased diode (D1) across it to bleed any

reverse kick that occurs when the current is removed from the coil (pins

5 and 2 in the figure). This will have the effect of slowing the release of the

contacts. But this is preferred over the inductive spike causing a system crash.

 Summary
The source code provided in gp.c is written entirely in the C language

and kept to the bare essentials. It not only demonstrates the direct register

access steps involved but provides you with code that you can reuse in

your own C/C++ programs.

The chapter finished with a brief look at using a driver transistor when

a driver is needed. Often an IC is sought when a cheaper one-transistor

solution may be enough.

Figure 13-2. An inductive load driven by Q1

Chapter 13 C program gpIo

	Chapter 13: C Program GPIO
	Edge Events
	EINTR Error
	Reading uevent
	Demonstration
	Multiple GPIO

	Direct Register Access
	Peripheral Base Address
	Mapping Memory
	Register Access

	Demonstration Program
	GPIO Input
	GPIO Output
	Drive, Hysteresis, and Slew
	Alternate Mode

	Transistor Driver
	Inductive Loads

	Summary

