
211© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_12

CHAPTER 12

Sysfs GPIO
This chapter examines GPIO driver access using the Raspbian Linux sysfs

pseudo file system. Using the Raspbian driver allows even a shell script to

configure, read, or write to GPIO pins.

The C/C++ programmer might be quick to dismiss this approach as

too slow. But the driver does provide reasonable edge detection that is

not possible with the direct register access approach. The driver has the

advantage of receiving interrupts about GPIO state changes. This information

can be passed onto the program using system calls such as poll(2).

 /sys/class/gpio
Explore the top level directory by changing to it as root:

$ sudo -i

cd /sys/class/gpio

At this point you should be able to see two main pseudo files of interest:

• export

• unexport

These are write-only pseudo files, which cannot be read—not even by

the root user:

cat export

cat: export: Input/output error

https://doi.org/10.1007/978-1-4842-3948-3_12

212

cat unexport

cat: unexport: Input/output error

Normally, the kernel manages the use of GPIO pins, especially for

peripherals like the UART that need them. The purpose of the export

pseudo file is to allow the user to reserve it for use, much like opening a

file. The unexport pseudo file is used to return the resource back to the

Raspbian kernel's care.

 Exporting a GPIO
To obtain exclusive use of GPIO17, the export pseudo file is written to as

follows:

echo 17 >/sys/class/gpio/export

echo $?

0

Notice that the return code was 0, when $? was queried. This indicates

no error occurred. If we had supplied an invalid GPIO number, or one that

was not relinquished, we get an error returned instead:

echo 170 >/sys/class/gpio/export

-bash: echo: write error: Invalid argument

echo $?

1

After the successful reservation of gpio17, a new pseudo subdirectory

should appear named gpio17.

ls /sys/class/gpio/gpio17

active_

low device direction edge power subsystem uevent value

Chapter 12 SySfS GpIO

213

 Configuring GPIO
Once you have access to a GPIO from an export, the main pseudo files are

of interest:

• direction: To set I/O direction

• value: To read or write a GPIO value

• active_low: To alter the sense of logic

• edge: To detect interrupt driven changes

 gpioX/direction:

The values that can be read or written to the direction pseudo file are

described in Table 12-1.

To configure our gpio17 as an output pin, perform the following:

echo out > /sys/class/gpio/gpio17/direction

cat /sys/class/gpio/gpio17/direction

out

The cat command that follows is not necessary but verifies that we

have configured gpio17 as an output.

Table 12-1. The Values for the gpiox/direction file

Value Meaning

in the GpIO port is an input.

out the GpIO port is an output.

high Configure as output and output a high to the port.

low Configure as output and output a low to the port.

Chapter 12 SySfS GpIO

214

It is also possible to use the direction pseudo file to configure the GPIO

as an output and set its value in one step:

echo high > /sys/class/gpio/gpio17/direction

echo low > /sys/class/gpio/gpio17/direction

 gpioX/value

The value pseudo file permits you to set values for the configured

GPIO. With the GPIO set to output mode, we can now write a high to the pin:

echo 1 > /sys/class/gpio/gpio17/value

Legal values are simply are simply 1 or 0. When reading inputs, the

value 1 or 0 is returned.

If you have an LED hooked up to GPIO17, it should now be lit. Use

Figure 11-4 (A) for the wiring of the LED and resistor. Whatever we write

out to the GPIO can also be read back in:

cat /sys/class/gpio/gpio17/value

1

Writing a zero to the pseudo file, sets the output value to low, turning

off the LED.

echo 0 > /sys/class/gpio/gpio17/value

Figure 12-1 illustrates the author’s “iRasp” setup—Raspberry Pi 3 B+

screwed to the back of an old Viewsonic monitor, using the Pi Cobbler

cable and adapter to bring the GPIO signals to the breadboard. Attached

to GPIO17 is a red LED, in series with a 330 ohm current limiting resistor.

Given that the Pi 3 B+ has WIFI, this makes a convenient iMac-like

workstation that can be moved about. In the figure, it is operating headless,

but the four USB ports make it a simple matter to add a keyboard and

mouse. Observant folks may notice that the monitor stand was adapted

from another for this monitor.

Chapter 12 SySfS GpIO

https://doi.org/10.1007/978-1-4842-3948-3_11#Fig4

215

Figure 12-1. Raspberry Pi 3 B+ using Pi Cobbler to breadboard, with
red LED wired to GPIO17 in active high configuration

Chapter 12 SySfS GpIO

216

 gpioX/active_low

Sometimes the polarity of a signal is inconvenient. Active low

configuration recognizes the fact that the signal is active when the signal

is low, rather than the normal high. If this proves inconvenient, you can

change the sense of the signal using the active_low pseudo file:

cat /sys/class/gpio/gpio17/active_low

0

echo 1 > /sys/class/gpio/gpio17/active_low

cat /sys/class/gpio/gpio17/active_low

1

The first command (cat) simply reads the current setting. Zero means

that normal active high logic is in effect. The second command (echo)

changes the active high configuration to active low. The third command

confirms the setting was made. Now send a 1 to the gpio17/value pseudo file:

echo 1 > /sys/class/gpio/gpio17/value

With the active low configuration established, this should cause the

LED to go off. If we follow this with a write of zero to the pseudo file, the

LED will now go on:

echo 0 > /sys/class/gpio/gpio17/value

The sense of the logic has been inverted. If you change the wiring of the

LED so that it corresponds to Figure 11-4 (B), writing a zero will turn on the

LED. In this scenario, the sense of the logic matches the sense of the wiring.

 gpioX/edge and gpioX/uevent

Some applications require the detection of changes of a GPIO. Since a user

mode program does not receive interrupts, its only option is to continually

poll a GPIO for a change in state. This wastes CPU resources and is like

Chapter 12 SySfS GpIO

https://doi.org/10.1007/978-1-4842-3948-3_11#Fig4

217

kids in the back seat of the car asking, “Are we there yet? Are we there yet?”

The driver provides an indirect way for a program to receive a notification

of the change.

Acceptable values to be written to this pseudo file are listed in

Table 12-2.

These values can only be set on an input GPIO and exact case must be

used.

echo in > /sys/class/gpio/gpio17/direction

echo both > /sys/class/gpio/gpio17/edge

cat /sys/class/gpio/gpio17/edge

both

Once configured, it is possible to use the uevent pseudo file to check

for changes. This must be done using a C/C++ program that can use

poll(2) or selectl(2) to get notifications. When using poll(2), request

events POLLPRI and POLLERR. When using select(2), the file descriptor

should be placed into the exception set. The uevent file is no help to the

shell programmer unfortunately.

Table 12-2. Acceptable Values for Pseudo File Edge

Value Meaning

none No edge detection.

rising Detect a rising signal change.

falling Detect a falling signal change.

both Detect a rising or falling signal change.

Chapter 12 SySfS GpIO

218

 GPIO Test Script
A simple test script is provided in the directory ~/RPi/scripts/gp and listed

in Listing 12-1. To run it on GPIO17, invoke it as follows (from root):

$ sudo -i

~pi/RPi/scripts/gp 17

GPIO 17: on

GPIO 17: off Mon Jul 2 02:48:49 +04 2018

GPIO 17: on

GPIO 17: off Mon Jul 2 02:48:51 +04 2018

GPIO 17: on

GPIO 17: off Mon Jul 2 02:48:53 +04 2018

GPIO 17: on

GPIO 17: off Mon Jul 2 02:48:55 +04 2018

If you had an LED wired up to GPIO17, you should see it blinking

slowly.

Listing 12-1. The ~/RPi/scripts/gp test script

0001: #!/bin/bash

0002:

0003: GPIO="$1"

0004: SYS=/sys/class/gpio

0005: DEV=/sys/class/gpio/gpio$GPIO

0006:

0007: if [! -d $DEV] ; then

0008: # Make pin visible

0009: echo $GPIO >$SYS/export

0010: fi

0011:

0012: # Set pin to output

0013: echo out >$DEV/direction

Chapter 12 SySfS GpIO

219

0014:

0015: function put() {

0016: # Set value of pin (1 or 0)

0017: echo $1 >$DEV/value

0018: }

0019:

0020: # Main loop:

0021: while true ; do

0022: put 1

0023: echo "GPIO $GPIO: on"

0024: sleep 1

0025: put 0

0026: echo "GPIO $GPIO: off $(date)"

0027: sleep 1

0028: done

0029:

0030: # End

 GPIO Input Test
Another simple script is shown in Listing 12-2, which will report the state

of an input GPIO as it changes. It requires three arguments:

 1. Input GPIO number (defaults to 25)

 2. Output GPIO number (defaults to 24)

 3. Active sense: 0=active high, 1=active low (default 0)

The following invocation assumes the input GPIO is 25, the LED output

is on 17, and the configuration is active high. Press Control-C to exit.

~pi/RPi/scripts/input 25 17 0

0000 Status: 0

0001 Status: 1

Chapter 12 SySfS GpIO

220

0002 Status: 0

0003 Status: 1

0004 Status: 0

^C

Listing 12-2. The ~/RPi/scripts/input script

0001: #!/bin/bash

0002:

0003: INP="${1:-25}" # Read from GPIO 25 (GEN6)

0004: OUT="${2:-24}" # Write to GPIO 24 (GEN5)

0005: ALO="${3:-0}" # 1=active low, else 0

0006:

0007: set -eu

0008: trap "close_all" 0

0009:

0010: function close_all() {

0011: close $INP

0012: close $OUT

0013: }

0014: function open() { # pin direction

0015: dev=$SYS/gpio$1

0016: if [! -d $dev] ; then

0017: echo $1 >$SYS/export

0018: fi

0019: echo $2 >$dev/direction

0020: echo none >$dev/edge

0021: echo $ALO >$dev/active_low

0022: }

0023: function close() { # pin

0024: echo $1 >$SYS/unexport

Chapter 12 SySfS GpIO

221

0025: }

0026: function put() { # pin value

0027: echo $2 >$SYS/gpio$1/value

0028: }

0029: function get() { # pin

0030: read BIT <$SYS/gpio$1/value

0031: echo $BIT

0032: }

0033:

0034: count=0

0035: SYS=/sys/class/gpio

0036:

0037: open $INP in

0038: open $OUT out

0039: put $OUT 1

0040: LBIT=2

0041:

0042: while true ; do

0043: RBIT=$(get $INP)

0044: if [$RBIT -ne $LBIT] ; then

0045: put $OUT $RBIT

0046: printf "%04d Status: %d\n" $count $RBIT

0047: LBIT=$RBIT

0048: let count=count+1

0049: else

0050: sleep 1

0051: fi

0052: done

0053:

0054: # End

Chapter 12 SySfS GpIO

222

 Summary
This chapter has shown how to apply the sysfs driver interface to GPIO

ports. While it may seem that this interface is primarily for use with shell

scripts, the uevent pseudo file requires a C/C++ program to take advantage

of it. These pseudo files otherwise provide a command-line interface,

allowing different GPIO actions.

The next chapter will examine program access to the uevent file and

explore direct access to the GPIO registers themselves.

Chapter 12 SySfS GpIO

	Chapter 12: Sysfs GPIO
	/sys/class/gpio
	Exporting a GPIO
	Configuring GPIO
	gpioX/direction:
	gpioX/value
	gpioX/active_low
	gpioX/edge and gpioX/uevent

	GPIO Test Script
	GPIO Input Test
	Summary

