
167© Warren Gay 2018
W. Gay, Advanced Raspberry Pi, https://doi.org/10.1007/978-1-4842-3948-3_10

CHAPTER 10

UART
The Raspberry Pi has a UART interface to allow it to perform serial data

communication. The data lines used are 3.3 V logic-level signals and

should not be connected to TTL logic (+5 V) (they also are not RS-232

compatible). To communicate with equipment using RS-232, you will need

a converter module.

 RS-232 Converter
While an industrious person could build their own RS-232 converter, there

is little need to do so when cheap converters on a pcb are available.

Figure 10-1 shows a MAX232CSE chip pcb that I have used. This

particular unit supports only the RX and TX lines with no hardware flow

control. When searching for a unit, get one that works with 3.3 V logic

levels. Some units will only work with TTL (+5 V) logic, which would be

harmful to your Pi. The MAX232CSE chip supports 3.3 V operation when

its VCC supply pin is connected to +3.3 V.

https://doi.org/10.1007/978-1-4842-3948-3_10

168

I also recommended that you choose a unit supporting the hardware

flow control signals. Look for the CTS and DTR signals. A full RS-232

converter would also include DTR, DSR, and CD signals.

Note Throughout this text, we’ll refer to 3 V, knowing that it is more
precisely 3.3 V.

 TTL Adapters
You can also use TTL adapters instead of converting the signal to the +/-

voltages required by RS-232. The Pi requirement is that the signaling side

(TTL) should be capable of operating at +3.3 V instead of the usual +5 V.

Using a +5 V adapter could damage your Pi. Units that can interface +3.3 V

will likely have a jumper to select the voltage.

Figure 10-1. MAX232CSE interface

ChapTer 10 UarT

169

 DTE or DCE
When choosing your RS-232 converter, keep in mind that there are two

types of serial connections:

DCE: Data communications equipment (female

connector)

DTE: Data terminal equipment (male connector)

A normal USB serial adapter (for a laptop, for example) will present

a DTE (male) connector. The wiring of this cable is such that it expects

to plug into to a DCE (female) connection. When this holds true for your

Raspberry Pi’s adapter, the laptop’s serial adapter can plug straight into the

DCE (female) connector, eliminating the need for a crossover cable or null

modem.

Consequently, for your Pi, choose a RS-232 converter that provides

a female (DCE) connector. Likewise, make sure that you acquire for

the laptop/desktop a cable or USB device that presents a male (DTE)

connection. Connecting DTE to DTE or DCE to DCE requires a crossover

cable, and depending on the cable, a “gender mender” as well. It is best to

get things “straight” right from the start.

Assuming that you used a DCE converter for the Pi, connect the RS-232

converter’s 3 V logic TX to the Pi’s TXD0 and the RX to the Pi’s RXD0 data lines.

All this business about DCE and DTR has always been rather

confusing. If you also find this confusing, there is another practical way to

look at it. Start with the connectors and the cable(s) that you plan to use.

Make sure they mate at both ends and that the serial cable is known to be

a straight cable (vs. a crossover). Once those physical problems are taken

care of, you can get the wiring correct. Connect the TX to RX, and RX to

TX. In other words, you wire the crossover in your own wiring between the

RS-232 adapter and the Raspberry Pi. The important thing to remember

is that somewhere the transmitting side needs to send a signal into the RX

(receiving) side, in both directions.

ChapTer 10 UarT

170

Note a straight serial cable will connect pin 2 to pin 2, and pin 3 to
pin 3 on a DB9 or DB25 cable. a crossover cable will cross these two,
among other signal wires.

 RS-232
RS-232 is the traditional name for a series of standards related to serial

communication. It was first introduced by the Radio Sector of the EIA

in 1962. The first data terminals were teletypewriters (DTE)

communicating with modems (DCE). Early serial communications were

plagued by incompatibilities until later standards evolved.

A serial link includes two data lines, with data being transmitted from a

terminal and received by the same terminal. In addition to these data lines

are several handshaking signals (such as RTS and CTS). By default, these

are not provided for by the Raspberry Pi.

Figure 10-2 shows a serial signal transmission, with time progressing

from left to right. RS-232 equipment expects a signal that varies between

–15 V and +15 V.

Figure 10-2. Serial signal

ChapTer 10 UarT

171

The standard states that the signal is considered to be in a mark state,

when the voltage is between –3 and –15 V. The signal is considered in a

space state if the voltage is between +3 and +15 V. The RS-232 data line is in

the mark state when the line is idle.

 Start Bit
When an asynchronous character of data is to be sent, the line first shifts to

a space level for the duration of 1 bit. This is known as the start bit (0). Data

bits immediately follow.

Asynchronous lines do not use a clock signal like synchronous links.

The asynchronous receiver must have a clock matching the same baud

rate as the transmitter. The receiver samples the line 16 times in the bit cell

time to determine its value. Sampling helps to avoid a noise pulse from

triggering a false data read.

 Data Bits
Data bits immediately follow the start bit, with the least significant bit

first. A space is a 0 data bit, while mark represents a 1 bit. Early teletype

equipment used 5 data bits sending characters in the 5-bit Baudot code.11

For this reason, serial ports can be configured for 5, 6, 7, or 8 data bits.

Before the ASCII character set was extended to 8 bits, it was common to

use 7-bit serial data.

 Parity Bit
An optional parity bit can be generated when transmitting or can be

detected on the receiving side. The parity can be odd, even, or stick (mark

or space). The most commonly used setting today is No Parity, which saves

1-bit time for faster communication. Older equipment often used parity

ChapTer 10 UarT

172

to guard against errors from noisy serial lines. Odd parity is preferred

over even because it forces at least one signal transition in the byte’s

transmission. This helps with the data reliability.

Mark or space parity is unusual and has limited usefulness. Mark

parity could be used along with 2 stop bits to effectively provide 3 stop

bits for very slow teletypewriter equipment. Mark or space parity reduces

the effective throughput of data without providing any benefit, except

possibly for diagnostic purposes. Table 10-1 summarizes the various parity

configurations.

Table 10-1. RS-232 Parity Settings

Parity X Notes

None N No parity bit

even e 1 if even number of data 1-bits

Odd O 1 if odd number of data 1-bits

Mark M always at mark level (1)

Space S always at space level (0)

 Stop Bits
Asynchronous communication requires synchronizing the receiver with

the transmitter. For this reason, 1 or more stop bits exist so that the receiver

can synchronize with the leading edge of the next start bit. In effect, each

stop bit followed by a start bit provides built-in synchronization.

Many UARTs support 1, 1.5, or 2 stop bits. The Broadcom SoC

supports 1 or 2 stop bits only. The use of 2 stop bits was common for

teletypewriter equipment and probably rarely used today. Using 1 stop bit

increases the overall data throughput. Table 10-2 summarizes the stop-bit

configurations.

ChapTer 10 UarT

173

†Unsupported by the Raspberry Pi

 Baud Rate
The baud rate is calculated from bits per second, which includes the start,

data, parity, and stop bits. A link using 115200 baud, with no parity and 1

stop bit, provides the following data byte rate:

D
B

s d p S

bytes s

rate = + + +

=
+ + +

=

115200

1 8 0 1
11 520, /

where

B is the baud rate.

s is the start bit (always 1 bit).

d is the number of data bits (5, 6, 7, or 8).

p is the parity bit (0 or 1).

S is the stop bit (1, 1.5, or 2).

The 115200 baud link allows 11,250 bytes per second. If a parity bit is

added, the throughput is reduced:

D

bytes s

rate = + + +
=

115200

1 8 1 1
10 472 7, . /

Table 10-2. Stop-Bit Configuration

Stop Bits Description

1 1 stop bit

1.5 1.5 stop bits (†)

2 2 stop bits

ChapTer 10 UarT

174

The addition of a parity bit reduces the transmission rate to 10,472.7

bytes per second.

Table 10-3 lists the standard baud rates that a serial link can be

configured for on the Raspberry Pi.

Table 10-3. Standard Baud Rates

Rate Notes

75 Teletypewriters

110 Teletypewriters

300 Low-speed (acoustic) modem

1200

2400

4800

9600

19200

38400

57600

115200 raspberry pi console

 Break
With asynchronous communication, it is also possible to send and receive

a break signal. This is done by stretching the start bit beyond the data bits

and the stop bit(s), and eventually returning the line to the mark state.

When the receiver sees a space instead of a mark for the stop bit, it sees a

framing error.

Some UARTs distinguish between a framing error and a break by

noting how long the line remains in the space state. A simple framing

error can happen as part of noisy serial line communications (particularly

ChapTer 10 UarT

175

when modems were used) and normally attributed to a received character

error. Without break detection, it is possible to assume that a break has

been received when several framing errors occur in a sequence. Short

sequences of framing errors, however, can also just indicate a mismatch in

baud rates between the two endpoints.

 Flow Control
Any link that transmits from one side to a receiver on the other end has the

problem of flow control. Imagine a factory assembly line where parts to be

assembled arrive at the worker’s station faster than he/she can assemble

them. At some point, the conveyor belt must be temporarily stopped, or

some parts will not get assembled. Alternatively, if the conveyor belt is

reduced in speed, the assembly worker will be able to keep up, but at a

slower than optimal pace.

Unless the serial link receiver can process every character of data as fast

as it arrives, it will need flow control. The simplest approach is to simply

reduce the baud rate, so that the receiver will always keep up. But this

isn’t always satisfactory. A logging application might be able to write the

information quickly, except when writes occur to an SD card, for example.

A better approach is to signal to the transmitter to stop sending when

the receiver is bogged down. Once the receiver catches up, it can then tell

the transmitter to resume transmission. Note that this problem exists for

both sides of a serial link:

• Data transmitted to the terminal (DTE)

• Data transmitted to the data communications

equipment (DCE)

Two forms of flow control are used:

• Hardware flow control

• Software flow control

ChapTer 10 UarT

176

 Hardware Flow Control

Hardware flow control uses additional signal lines to regulate the flow of data.

The RS-232 standards have quite an elaborate set of signals defined, but the

main signals needed for flow control are shown in Table 10-4. Unlike the data

line, these signals are inactive in the space state and active in the mark state.

† Primary flow control signals

The most important signals are the ones marked with a dagger in

Table 10-4. When CTS is active (mark), for example, the DCE (Pi) is

indicating that it is OK to send data. If the DCE gets overwhelmed by the

volume of data, the CTS signal will change to the inactive (space) state.

Upon seeing this, the DTE (desktop) is required to stop sending data.

Otherwise, loss of data may occur.

Similarly, the desktop operating as the DTE is receiving data from the

DCE (Pi). If the laptop gets overwhelmed with the volume of incoming

data, the RTS signal is changed to the inactive state (space). The remote

end (DCE) is then expected to cease transmitting. When the desktop has

caught up, it will reassert RTS, giving the DCE permission to resume.

The DTR and DSR signals are intended to convey the readiness of the

equipment at each end. If the terminal was deemed not ready (DTR), DSR

is not made active by the DCE. Similarly, the terminal will not assert DTR

unless it is ready. In modern serial links, DTR and DSR are often assumed

to be true, leaving only CTS and RTS to handle flow control.

Table 10-4. Hardware Flow Controls

DTE Direction DCE Description Active

rTS → rTS request to send(†) Low

CTS ← CTS Clear to send(†)

DSr ← DSr Data set ready Low

DTr → DTr Data terminal ready

ChapTer 10 UarT

177

Where flow control is required, hardware flow control is considered

more reliable than software flow control.

 Software Flow Control

To simplify the cabling and the supporting hardware for serial

communications, the hardware flow controls can be omitted/ignored. In

its place, a data protocol is used instead.

Initially, each end of the link assumes readiness for reception of

data. Data is sent until an XOFF character is received, indicating that

transmission should stop. The receiver sends the XON character when it is

ready to resume reception again. These software flow control characters

are shown in Table 10-5.

In a terminal session, the keyboard commands can be used to control

the serial connection. For example, if information is displaying too fast,

the user can type Ctrl-S to cause the transmission to stop. Pressing Ctrl-Q

allows it to resume.

The disadvantages of software flow control include the following:

 1. Line noise can prevent the receiver from seeing the

XOFF character and can lead to loss of data (due to

data overrun).

 2. Line noise can prevent the remote end from

seeing the XON character and can fail to resume

transmission (causing a link “lockup”).

Table 10-5. Software Flow Control Characters

Code Meaning ASCII Hex Keyboard

XOFF pause transmission DC3 13 Control-S

XON resume transmission DC1 11 Control-Q

ChapTer 10 UarT

178

 3. Line noise can cause a false XON/XOFF character to

be received (data loss or link lockup).

 4. The delay in the remote end seeing a transmitted

XOFF character can cause loss of data if the receiving

buffer is full.

 5. The XON and XOFF characters cannot be used for data

in the transmission link.

Problems 1 to 3 can cause link lockups or data loss. Problem 4 is

avoidable if the buffer notifies the other end early enough to prevent

overflow. Problem 5 is an issue for binary data transmission.

 Raspberry Pi UARTs
The Raspberry Pi supports two UARTs:

UART Hardware Node GPIO ALT

UarT0 pL011 /dev/ttyaMa0 14 & 15 0

UarT1 Mini UART /dev/ttyS0 14 & 15 5

Whether the PL011 or the mini UART is used depends upon the model

of the Raspberry Pi. Originally, this question was simple to answer. The

Model B and Model A Pi’s simply used the PL011 (/dev/ttyAMA0) device

for the console. The mini UART (/dev/ttyS0) is a different hardware block

and was also available, albeit with limited features.

With the addition of Wireless and Bluetooth on the Pi 3 and the Pi

Zero W, the PL011 UART was commandeered for the BT (Bluetooth)

and WIFI support while the mini UART was substituted for the serial

console. All other models use the preferred PL011 device for the

console instead.

ChapTer 10 UarT

179

However, the rules for what is assigned is more complicated now

that the device tree overlays are being used. More detail is available from

raspberrypi.org. The following online document, which doesn't include a

date-stamp, has more of the gory details:

https://www.raspberrypi.org/documentation/configuration/uart.md

 Which Is in Use?
You can verify which serial device is being used as follows:

$ cat /boot/cmdline.txt

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 ...

The console= option can appear multiple times in the kernel

command line. In this Raspberry Pi 3 Model B example, we see that there

are two consoles defined, but only one is the serial port (serial0). Listing

the serial device shows:

$ ls -l /dev/serial0

lrwxrwxrwx 1 root root 5 Jun 19 22:04 /dev/serial0 -> ttyS0

The name /dev/serial0 is a symlink to the actual device /dev/ttyS0.

$ ls -l /dev/ttyS0

crw--w---- 1 root tty 4, 64 Jun 19 22:04 /dev/ttyS0

So this Pi is configured to use the mini UART (/dev/ttyS0).

Listing the boot command line on my Raspberry Pi 3 B+ yielded:

$ cat /boot/cmdline.txt

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 ...

It claims to be using /dev/serial0, but there is no serial0 device for this

configuration:

$ ls /dev/serial0

ls: cannot access '/dev/serial0': No such file or directory

ChapTer 10 UarT

http://raspberrypi.org
https://www.raspberrypi.org/documentation/configuration/uart.md

180

The raspberrypi.org page also states:

If cmdline.txt uses the alias serial0 to refer to the user- accessible
port, the firmware will replace it with the appropriate port
whether or not this overlay is used.

 Disabling the Serial Console
If you want to make use of the serial device for a non-console purpose,

then obviously we must disable the console. The easiest way to do this is to

become root and use raspi-config:

raspi-config

Cursor down to select “Interface Options” and press Return (Figure 10- 3).

Figure 10-3. The opening dialog for raspi-config, with “Interface
Options” selected

ChapTer 10 UarT

181

Then choose “<No>” to disable the console and press Return

(Figure 10-5).

Then cursor down (Figure 10-4) to select “Serial” and press Return.

Figure 10-4. Select “Serial” in raspi-config and press Return

Figure 10-5. Choose “<No>” to disable the console in raspi- config

The dialog completes (Figure 10-6) by prompting if you want to reboot.

This is necessary for a console change in the kernel. This prompt may be

skipped if you already had the chosen setting.

ChapTer 10 UarT

182

 Raspberry Pi 3 Serial Console

When booting the Raspberry Pi 3 with the serial port connected and

console enabled, the following login prompt is shown after booting up:

Raspbian GNU/Linux 9 rpi3bplus ttyS0

rpi3bplus login: pi

Password:

Note the “ttyS0” above the prompt. Despite the fact that /dev/serial0

does not exist (on the B+), Raspbian arranges that /dev/ttyS0 (mini

UART) is used as the console.

 Raspberry Zero Serial Console

Booting the Raspberry Pi Zero (not W) with the serial console enabled

confirms that it uses the PL011 (/dev/ttyAMA0) device for the console:

Raspbian GNU/Linux 8 raspberrypi ttyAMA0

raspberrypi login: pi

Password:

Figure 10-6. The raspi-config dialog ends by asking if you want to
reboot

ChapTer 10 UarT

183

The Raspberry Pi Zero shown in Figure 10-7 has a female header strip

soldered into the board. The serial port adapter is a true RS232C converter

using the MAX232CSE IC. The connections are:

• P1-01 (+3.3 V) to VCC

• P1-06 to Gnd

• P1-08 (GPIO14) to TX

• P1-10 (GPIO15) to RX

With this arrangement, there is no flow control. Given the high baud

rate involved, if improved data integrity is needed, drop the baud rate to

something lower like 9600 baud.

 PL011 and Mini UART Differences
The mini UART has smaller FIFOs and does not support hardware flow

control. Without flow control, it will be prone to losing data at high data

rates. The mini’s baud rate is also linked to the VPU clock, leading to other

problems.

Figure 10-7. Raspberry Pi Zero with serial console wired to RS232C
adapter. The adapter has a true RS232C to USB plugged into it.

ChapTer 10 UarT

184

The mini UART also is deficient in the following ways:

• No break detection

• No framing error detection

• No parity bit support

• No receive timeout interrupt

• No DCD, DSR, DTR, or RI signals

The VPU clock presents a problem for the UART because the VPU

frequency governor normally varies the core frequency. This would cause

the UART baud rate to vary also. The raspberrypi.org states:

The Linux console can be re-enabled by adding enable_uart=1
to config.txt. This also fixes the core_freq to 250Mhz (unless
force_turbo is set, when it will fixe to 400Mhz), which means
that the UART baud rate stays consistent.

Avoid the mini UART if you can.

 PL011 UART Features

The Broadcom BCM2835 ARM Peripherals manual states that the following

features are unsupported:

• No Infrared Data Association (IrDA) support

• No Serial InfraRed (SIR) protocol encoder/decoder

(endec)

• No direct memory access (DMA)

• No support for signals DCD, DSR, DTR, and RI

The following features are supported, however:

• Separate 16×8 transmit and 16×12 receive FIFO buffers

• Programmable baud rate generator

ChapTer 10 UarT

185

• False start-bit detection

• Line-break generation and detection

• Support of control functions CTS and RTS

• Programmable hardware flow control

• Fully programmable serial interface characteristics:

• Data can be 5, 6, 7, or 8 bits.

• Even, odd, mark, space, or no-parity bit generation

and detection.

• 1 or 2 stop-bit generation.

• Baud rate generation, DC up to UARTCLK/16.

Broadcom also states that there are some differences between its

implementation of the UART and the 16C650 UART. But these are mostly

device driver details:

• Receive FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.

• Transmit FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.

• The internal register map address space and the bit

function of each register differ.

• 1.5 stop bits is not supported.

• No independent receive clock.

The only real concern to the application developer is that the 1.5 stop-

bits configuration option is not available, which is rarely used these days.

If you need the RS-232 DCD, DSR, DTR, and RI signals, these can

be implemented using GPIO input and output pins (along with the

appropriate RS-232 line-level shifters). These are relatively slow-changing

signals, which can easily be handled in user space. The one limitation of

this approach, however, is that the hang-up TTY controls provided by the

ChapTer 10 UarT

186

device driver will be absent. To change that, the device driver source code

could be modified to support these signals using GPIO. The Raspbian

Linux module of interest for this is as follows:

drivers/tty/serial/amba-pl011.c

 UART GPIO Pins
By default, the transmit and receive pins are GPIO 14 (TX) and 15 (RX),

which are pins P1-08 and P1-10 respectively on the GPIO header. When

the PL011 device is available, the hardware flow control signals can also be

made to appear on the GPIO header when alternate function 5 is chosen.

Table 10-6 lists these connections.

Table 10-6. UART Pins

Function GPIO P1/P5 ALT Direction Description

TXD 14 p1-08 0 Out DTe transmitted data

rXD 15 p1-10 0 In DTe received data

rTS 17 p1-11 5 Out request to send

CTS 30 p1-36 5 In Clear to send

 RTS/CTS Access
Hardware flow controls CTS and RTS are available on GPIO 30 (P1-26)

and 17 (P1-11), respectively, when configured. By default these are GPIO

inputs, but this can be reconfigured. To gain access to the UART’s CTS and

RTS signals, configure GPIO 30 and 17 to alternate function 5.

ChapTer 10 UarT

187

 Summary
As the Raspberry Pi has matured into new models, the features associated

with the serial device have become more complicated. Yet the Raspberry

Pi Foundation has provided you with the raspi-config tool to simplify the

configuration of the serial console or exclusive use serial line.

Armed with the information presented, you will be able to log into your

headless Raspberry Pi Zero using the serial adapter. This information puts

you in the best possible position to make use of this valuable resource.

ChapTer 10 UarT

	Chapter 10: UART
	RS-232 Converter
	TTL Adapters
	DTE or DCE

	RS-232
	Start Bit
	Data Bits
	Parity Bit
	Stop Bits
	Baud Rate
	Break
	Flow Control
	Hardware Flow Control
	Software Flow Control

	Raspberry Pi UARTs
	Which Is in Use?
	Disabling the Serial Console
	Raspberry Pi 3 Serial Console
	Raspberry Zero Serial Console

	PL011 and Mini UART Differences
	PL011 UART Features

	UART GPIO Pins
	RTS/CTS Access

	Summary

