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CHAPTER 10

UART
The Raspberry Pi has a UART interface to allow it to perform serial data 

communication. The data lines used are 3.3 V logic-level signals and 

should not be connected to TTL logic (+5 V) (they also are not RS-232 

compatible). To communicate with equipment using RS-232, you will need 

a converter module.

 RS-232 Converter
While an industrious person could build their own RS-232 converter, there 

is little need to do so when cheap converters on a pcb are available.

Figure 10-1 shows a MAX232CSE chip pcb that I have used. This 

particular unit supports only the RX and TX lines with no hardware flow 

control. When searching for a unit, get one that works with 3.3 V logic 

levels. Some units will only work with TTL (+5 V) logic, which would be 

harmful to your Pi. The MAX232CSE chip supports 3.3 V operation when 

its VCC supply pin is connected to +3.3 V.

https://doi.org/10.1007/978-1-4842-3948-3_10
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I also recommended that you choose a unit supporting the hardware 

flow control signals. Look for the CTS and DTR signals. A full RS-232 

converter would also include DTR, DSR, and CD signals.

Note Throughout this text, we’ll refer to 3 V, knowing that it is more 
precisely 3.3 V.

 TTL Adapters
You can also use TTL adapters instead of converting the signal to the +/- 

voltages required by RS-232. The Pi requirement is that the signaling side 

(TTL) should be capable of operating at +3.3 V instead of the usual +5 V. 

Using a +5 V adapter could damage your Pi. Units that can interface +3.3 V 

will likely have a jumper to select the voltage.

Figure 10-1. MAX232CSE interface
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 DTE or DCE
When choosing your RS-232 converter, keep in mind that there are two 

types of serial connections:

DCE: Data communications equipment (female 

connector)

DTE: Data terminal equipment (male connector)

A normal USB serial adapter (for a laptop, for example) will present 

a DTE (male) connector. The wiring of this cable is such that it expects 

to plug into to a DCE (female) connection. When this holds true for your 

Raspberry Pi’s adapter, the laptop’s serial adapter can plug straight into the 

DCE (female) connector, eliminating the need for a crossover cable or null 

modem.

Consequently, for your Pi, choose a RS-232 converter that provides 

a female (DCE) connector. Likewise, make sure that you acquire for 

the laptop/desktop a cable or USB device that presents a male (DTE) 

connection. Connecting DTE to DTE or DCE to DCE requires a crossover 

cable, and depending on the cable, a “gender mender” as well. It is best to 

get things “straight” right from the start.

Assuming that you used a DCE converter for the Pi, connect the RS-232 

converter’s 3 V logic TX to the Pi’s TXD0 and the RX to the Pi’s RXD0 data lines.

All this business about DCE and DTR has always been rather 

confusing. If you also find this confusing, there is another practical way to 

look at it. Start with the connectors and the cable(s) that you plan to use. 

Make sure they mate at both ends and that the serial cable is known to be 

a straight cable (vs. a crossover). Once those physical problems are taken 

care of, you can get the wiring correct. Connect the TX to RX, and RX to 

TX. In other words, you wire the crossover in your own wiring between the 

RS-232 adapter and the Raspberry Pi. The important thing to remember 

is that somewhere the transmitting side needs to send a signal into the RX 

(receiving) side, in both directions.
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Note a straight serial cable will connect pin 2 to pin 2, and pin 3 to 
pin 3 on a DB9 or DB25 cable. a crossover cable will cross these two, 
among other signal wires.

 RS-232
RS-232 is the traditional name for a series of standards related to serial 

communication. It was first introduced by the Radio Sector of the EIA  

in 1962. The first data terminals were teletypewriters (DTE) 

communicating with modems (DCE). Early serial communications were 

plagued by incompatibilities until later standards evolved.

A serial link includes two data lines, with data being transmitted from a 

terminal and received by the same terminal. In addition to these data lines 

are several handshaking signals (such as RTS and CTS). By default, these 

are not provided for by the Raspberry Pi.

Figure 10-2 shows a serial signal transmission, with time progressing 

from left to right. RS-232 equipment expects a signal that varies between 

–15 V and +15 V.

Figure 10-2. Serial signal
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The standard states that the signal is considered to be in a mark state, 

when the voltage is between –3 and –15 V. The signal is considered in a 

space state if the voltage is between +3 and +15 V. The RS-232 data line is in 

the mark state when the line is idle.

 Start Bit
When an asynchronous character of data is to be sent, the line first shifts to 

a space level for the duration of 1 bit. This is known as the start bit (0). Data 

bits immediately follow.

Asynchronous lines do not use a clock signal like synchronous links. 

The asynchronous receiver must have a clock matching the same baud 

rate as the transmitter. The receiver samples the line 16 times in the bit cell 

time to determine its value. Sampling helps to avoid a noise pulse from 

triggering a false data read.

 Data Bits
Data bits immediately follow the start bit, with the least significant bit 

first. A space is a 0 data bit, while mark represents a 1 bit. Early teletype 

equipment used 5 data bits sending characters in the 5-bit Baudot code.11 

For this reason, serial ports can be configured for 5, 6, 7, or 8 data bits. 

Before the ASCII character set was extended to 8 bits, it was common to 

use 7-bit serial data.

 Parity Bit
An optional parity bit can be generated when transmitting or can be 

detected on the receiving side. The parity can be odd, even, or stick (mark 

or space). The most commonly used setting today is No Parity, which saves 

1-bit time for faster communication. Older equipment often used parity 
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to guard against errors from noisy serial lines. Odd parity is preferred 

over even because it forces at least one signal transition in the byte’s 

transmission. This helps with the data reliability.

Mark or space parity is unusual and has limited usefulness. Mark 

parity could be used along with 2 stop bits to effectively provide 3 stop 

bits for very slow teletypewriter equipment. Mark or space parity reduces 

the effective throughput of data without providing any benefit, except 

possibly for diagnostic purposes. Table 10-1 summarizes the various parity 

configurations.

Table 10-1. RS-232 Parity Settings

Parity X Notes

None N No parity bit

even e 1 if even number of data 1-bits

Odd O 1 if odd number of data 1-bits

Mark M always at mark level (1)

Space S always at space level (0)

 Stop Bits
Asynchronous communication requires synchronizing the receiver with 

the transmitter. For this reason, 1 or more stop bits exist so that the receiver 

can synchronize with the leading edge of the next start bit. In effect, each 

stop bit followed by a start bit provides built-in synchronization.

Many UARTs support 1, 1.5, or 2 stop bits. The Broadcom SoC 

supports 1 or 2 stop bits only. The use of 2 stop bits was common for 

teletypewriter equipment and probably rarely used today. Using 1 stop bit 

increases the overall data throughput. Table 10-2 summarizes the stop-bit 

configurations.
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†Unsupported by the Raspberry Pi

 Baud Rate
The baud rate is calculated from bits per second, which includes the start, 

data, parity, and stop bits. A link using 115200 baud, with no parity and 1 

stop bit, provides the following data byte rate:

D
B

s d p S

bytes s

rate = + + +

=
+ + +

=

115200

1 8 0 1
11 520, /

where

B is the baud rate.

s is the start bit (always 1 bit).

d is the number of data bits (5, 6, 7, or 8).

p is the parity bit (0 or 1).

S is the stop bit (1, 1.5, or 2).

The 115200 baud link allows 11,250 bytes per second. If a parity bit is 

added, the throughput is reduced:

D

bytes s

rate = + + +
=

115200

1 8 1 1
10 472 7, . /

Table 10-2. Stop-Bit Configuration

Stop Bits Description

1 1 stop bit

1.5 1.5 stop bits (†)

2 2 stop bits
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The addition of a parity bit reduces the transmission rate to 10,472.7 

bytes per second.

Table 10-3 lists the standard baud rates that a serial link can be 

configured for on the Raspberry Pi.

Table 10-3. Standard Baud Rates

Rate Notes

75 Teletypewriters

110 Teletypewriters

300 Low-speed (acoustic) modem

1200

2400

4800

9600

19200

38400

57600

115200 raspberry pi console

 Break
With asynchronous communication, it is also possible to send and receive 

a break signal. This is done by stretching the start bit beyond the data bits 

and the stop bit(s), and eventually returning the line to the mark state. 

When the receiver sees a space instead of a mark for the stop bit, it sees a 

framing error.

Some UARTs distinguish between a framing error and a break by 

noting how long the line remains in the space state. A simple framing 

error can happen as part of noisy serial line communications (particularly 
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when modems were used) and normally attributed to a received character 

error. Without break detection, it is possible to assume that a break has 

been received when several framing errors occur in a sequence. Short 

sequences of framing errors, however, can also just indicate a mismatch in 

baud rates between the two endpoints.

 Flow Control
Any link that transmits from one side to a receiver on the other end has the 

problem of flow control. Imagine a factory assembly line where parts to be 

assembled arrive at the worker’s station faster than he/she can assemble 

them. At some point, the conveyor belt must be temporarily stopped, or 

some parts will not get assembled. Alternatively, if the conveyor belt is 

reduced in speed, the assembly worker will be able to keep up, but at a 

slower than optimal pace.

Unless the serial link receiver can process every character of data as fast 

as it arrives, it will need flow control. The simplest approach is to simply 

reduce the baud rate, so that the receiver will always keep up. But this 

isn’t always satisfactory. A logging application might be able to write the 

information quickly, except when writes occur to an SD card, for example.

A better approach is to signal to the transmitter to stop sending when 

the receiver is bogged down. Once the receiver catches up, it can then tell 

the transmitter to resume transmission. Note that this problem exists for 

both sides of a serial link:

• Data transmitted to the terminal (DTE)

• Data transmitted to the data communications 

equipment (DCE)

Two forms of flow control are used:

• Hardware flow control

• Software flow control
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 Hardware Flow Control

Hardware flow control uses additional signal lines to regulate the flow of data. 

The RS-232 standards have quite an elaborate set of signals defined, but the 

main signals needed for flow control are shown in Table 10-4. Unlike the data 

line, these signals are inactive in the space state and active in the mark state.

† Primary flow control signals

The most important signals are the ones marked with a dagger in 

Table 10-4. When CTS is active (mark), for example, the DCE (Pi) is 

indicating that it is OK to send data. If the DCE gets overwhelmed by the 

volume of data, the CTS signal will change to the inactive (space) state. 

Upon seeing this, the DTE (desktop) is required to stop sending data. 

Otherwise, loss of data may occur.

Similarly, the desktop operating as the DTE is receiving data from the 

DCE (Pi). If the laptop gets overwhelmed with the volume of incoming 

data, the RTS signal is changed to the inactive state (space). The remote 

end (DCE) is then expected to cease transmitting. When the desktop has 

caught up, it will reassert RTS, giving the DCE permission to resume.

The DTR and DSR signals are intended to convey the readiness of the 

equipment at each end. If the terminal was deemed not ready (DTR), DSR 

is not made active by the DCE. Similarly, the terminal will not assert DTR 

unless it is ready. In modern serial links, DTR and DSR are often assumed 

to be true, leaving only CTS and RTS to handle flow control.

Table 10-4. Hardware Flow Controls

DTE Direction DCE Description Active

rTS → rTS request to send(†) Low

CTS ← CTS Clear to send(†)

DSr ← DSr Data set ready Low

DTr → DTr Data terminal ready
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Where flow control is required, hardware flow control is considered 

more reliable than software flow control.

 Software Flow Control

To simplify the cabling and the supporting hardware for serial 

communications, the hardware flow controls can be omitted/ignored. In 

its place, a data protocol is used instead.

Initially, each end of the link assumes readiness for reception of 

data. Data is sent until an XOFF character is received, indicating that 

transmission should stop. The receiver sends the XON character when it is 

ready to resume reception again. These software flow control characters 

are shown in Table 10-5.

In a terminal session, the keyboard commands can be used to control 

the serial connection. For example, if information is displaying too fast, 

the user can type Ctrl-S to cause the transmission to stop. Pressing Ctrl-Q 

allows it to resume.

The disadvantages of software flow control include the following:

 1. Line noise can prevent the receiver from seeing the 

XOFF character and can lead to loss of data (due to 

data overrun).

 2. Line noise can prevent the remote end from 

seeing the XON character and can fail to resume 

transmission (causing a link “lockup”).

Table 10-5. Software Flow Control Characters

Code Meaning ASCII Hex Keyboard

XOFF pause transmission DC3 13 Control-S

XON resume transmission DC1 11 Control-Q
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 3. Line noise can cause a false XON/XOFF character to 

be received (data loss or link lockup).

 4. The delay in the remote end seeing a transmitted 

XOFF character can cause loss of data if the receiving 

buffer is full.

 5. The XON and XOFF characters cannot be used for data 

in the transmission link.

Problems 1 to 3 can cause link lockups or data loss. Problem 4 is 

avoidable if the buffer notifies the other end early enough to prevent 

overflow. Problem 5 is an issue for binary data transmission.

 Raspberry Pi UARTs
The Raspberry Pi supports two UARTs:

UART Hardware Node GPIO ALT

UarT0 pL011 /dev/ttyaMa0 14 & 15 0

UarT1 Mini UART /dev/ttyS0 14 & 15 5

Whether the PL011 or the mini UART is used depends upon the model 

of the Raspberry Pi. Originally, this question was simple to answer. The 

Model B and Model A Pi’s simply used the PL011 (/dev/ttyAMA0) device 

for the console. The mini UART (/dev/ttyS0) is a different hardware block 

and was also available, albeit with limited features.

With the addition of Wireless and Bluetooth on the Pi 3 and the Pi 

Zero W, the PL011 UART was commandeered for the BT (Bluetooth) 

and WIFI support while the mini UART was substituted for the serial 

console. All other models use the preferred PL011 device for the 

console instead.
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However, the rules for what is assigned is more complicated now 

that the device tree overlays are being used. More detail is available from 

raspberrypi.org. The following online document, which doesn't include a 

date-stamp, has more of the gory details:

https://www.raspberrypi.org/documentation/configuration/uart.md

 Which Is in Use?
You can verify which serial device is being used as follows:

$ cat /boot/cmdline.txt

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 ...

The console= option can appear multiple times in the kernel 

command line. In this Raspberry Pi 3 Model B example, we see that there 

are two consoles defined, but only one is the serial port (serial0). Listing 

the serial device shows:

$ ls -l /dev/serial0

lrwxrwxrwx 1 root root 5 Jun 19 22:04 /dev/serial0 -> ttyS0

The name /dev/serial0 is a symlink to the actual device /dev/ttyS0.

$ ls -l /dev/ttyS0

crw--w---- 1 root tty 4, 64 Jun 19 22:04 /dev/ttyS0

So this Pi is configured to use the mini UART (/dev/ttyS0).

Listing the boot command line on my Raspberry Pi 3 B+ yielded:

$ cat /boot/cmdline.txt

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 ...

It claims to be using /dev/serial0, but there is no serial0 device for this 

configuration:

$ ls /dev/serial0

ls: cannot access '/dev/serial0': No such file or directory
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The raspberrypi.org page also states:

If cmdline.txt uses the alias serial0 to refer to the user- accessible 
port, the firmware will replace it with the appropriate port 
whether or not this overlay is used.

 Disabling the Serial Console
If you want to make use of the serial device for a non-console purpose, 

then obviously we must disable the console. The easiest way to do this is to 

become root and use raspi-config:

# raspi-config

Cursor down to select “Interface Options” and press Return (Figure 10- 3).

Figure 10-3. The opening dialog for raspi-config, with “Interface 
Options” selected
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Then choose “<No>” to disable the console and press Return 

(Figure 10-5).

Then cursor down (Figure 10-4) to select “Serial” and press Return.

Figure 10-4. Select “Serial” in raspi-config and press Return

Figure 10-5. Choose “<No>” to disable the console in raspi- config

The dialog completes (Figure 10-6) by prompting if you want to reboot. 

This is necessary for a console change in the kernel. This prompt may be 

skipped if you already had the chosen setting.
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 Raspberry Pi 3 Serial Console

When booting the Raspberry Pi 3 with the serial port connected and 

console enabled, the following login prompt is shown after booting up:

Raspbian GNU/Linux 9 rpi3bplus ttyS0

rpi3bplus login: pi

Password:

Note the “ttyS0” above the prompt. Despite the fact that /dev/serial0 

does not exist (on the B+), Raspbian arranges that /dev/ttyS0 (mini 

UART) is used as the console.

 Raspberry Zero Serial Console

Booting the Raspberry Pi Zero (not W) with the serial console enabled 

confirms that it uses the PL011 (/dev/ttyAMA0) device for the console:

Raspbian GNU/Linux 8 raspberrypi ttyAMA0

raspberrypi login: pi

Password:

Figure 10-6. The raspi-config dialog ends by asking if you want to 
reboot
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The Raspberry Pi Zero shown in Figure 10-7 has a female header strip 

soldered into the board. The serial port adapter is a true RS232C converter 

using the MAX232CSE IC. The connections are:

• P1-01 (+3.3 V) to VCC

• P1-06 to Gnd

• P1-08 (GPIO14) to TX

• P1-10 (GPIO15) to RX

With this arrangement, there is no flow control. Given the high baud 

rate involved, if improved data integrity is needed, drop the baud rate to 

something lower like 9600 baud.

 PL011 and Mini UART Differences
The mini UART has smaller FIFOs and does not support hardware flow 

control. Without flow control, it will be prone to losing data at high data 

rates. The mini’s baud rate is also linked to the VPU clock, leading to other 

problems.

Figure 10-7. Raspberry Pi Zero with serial console wired to RS232C 
adapter. The adapter has a true RS232C to USB plugged into it.
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The mini UART also is deficient in the following ways:

• No break detection

• No framing error detection

• No parity bit support

• No receive timeout interrupt

• No DCD, DSR, DTR, or RI signals

The VPU clock presents a problem for the UART because the VPU 

frequency governor normally varies the core frequency. This would cause 

the UART baud rate to vary also. The raspberrypi.org states:

The Linux console can be re-enabled by adding enable_uart=1 
to config.txt. This also fixes the core_freq to 250Mhz (unless 
force_turbo is set, when it will fixe to 400Mhz), which means 
that the UART baud rate stays consistent.

Avoid the mini UART if you can.

 PL011 UART Features

The Broadcom BCM2835 ARM Peripherals manual states that the following 

features are unsupported:

• No Infrared Data Association (IrDA) support

• No Serial InfraRed (SIR) protocol encoder/decoder 

(endec)

• No direct memory access (DMA)

• No support for signals DCD, DSR, DTR, and RI

The following features are supported, however:

• Separate 16×8 transmit and 16×12 receive FIFO buffers

• Programmable baud rate generator
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• False start-bit detection

• Line-break generation and detection

• Support of control functions CTS and RTS

• Programmable hardware flow control

• Fully programmable serial interface characteristics:

• Data can be 5, 6, 7, or 8 bits.

• Even, odd, mark, space, or no-parity bit generation 

and detection.

• 1 or 2 stop-bit generation.

• Baud rate generation, DC up to UARTCLK/16.

Broadcom also states that there are some differences between its 

implementation of the UART and the 16C650 UART. But these are mostly 

device driver details:

• Receive FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.

• Transmit FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.

• The internal register map address space and the bit 

function of each register differ.

• 1.5 stop bits is not supported.

• No independent receive clock.

The only real concern to the application developer is that the 1.5 stop- 

bits configuration option is not available, which is rarely used these days.

If you need the RS-232 DCD, DSR, DTR, and RI signals, these can 

be implemented using GPIO input and output pins (along with the 

appropriate RS-232 line-level shifters). These are relatively slow-changing 

signals, which can easily be handled in user space. The one limitation of 

this approach, however, is that the hang-up TTY controls provided by the 
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device driver will be absent. To change that, the device driver source code 

could be modified to support these signals using GPIO. The Raspbian 

Linux module of interest for this is as follows:

drivers/tty/serial/amba-pl011.c

 UART GPIO Pins
By default, the transmit and receive pins are GPIO 14 (TX) and 15 (RX), 

which are pins P1-08 and P1-10 respectively on the GPIO header. When 

the PL011 device is available, the hardware flow control signals can also be 

made to appear on the GPIO header when alternate function 5 is chosen. 

Table 10-6 lists these connections.

Table 10-6. UART Pins

Function GPIO P1/P5 ALT Direction Description

TXD 14 p1-08 0 Out DTe transmitted data

rXD 15 p1-10 0 In DTe received data

rTS 17 p1-11 5 Out request to send

CTS 30 p1-36 5 In Clear to send

 RTS/CTS Access
Hardware flow controls CTS and RTS are available on GPIO 30 (P1-26) 

and 17 (P1-11), respectively, when configured. By default these are GPIO 

inputs, but this can be reconfigured. To gain access to the UART’s CTS and 

RTS signals, configure GPIO 30 and 17 to alternate function 5.
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 Summary
As the Raspberry Pi has matured into new models, the features associated 

with the serial device have become more complicated. Yet the Raspberry 

Pi Foundation has provided you with the raspi-config tool to simplify the 

configuration of the serial console or exclusive use serial line.

Armed with the information presented, you will be able to log into your 

headless Raspberry Pi Zero using the serial adapter. This information puts 

you in the best possible position to make use of this valuable resource.
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